
Catalytic Approaches to the Tree Evaluation Problem

James Cook
University of Toronto

Canada
jcook@cs.berkeley.edu

Ian Mertz
University of Toronto

Canada
mertz@cs.toronto.edu

ABSTRACT

The study of branching programs for the Tree Evaluation Problem

(TreeEval), introduced by S. Cook et al. (TOCT 2012), remains one

of the most promising approaches to separating L from P. Given a

label in [:] at each leaf of a complete binary tree and an explicit

function in [:]2 → [:] for recursively computing the value of

each internal node from its children, the problem is to compute

the value at the root node. (While the original problem allows an

arbitrary-degree tree, we focus on binary trees.) The problem is

parameterized by the alphabet size : and the height ℎ of the tree.

A branching program implementing the straightforward recursive

algorithm uses Θ((: + 1)ℎ) states, organized into 2ℎ − 1 layers of

width up to :ℎ . Until now no better deterministic algorithm was

known.

We present a series of three new algorithms solving TreeEval.

They are inspired by the work of Buhrman et al. on catalytic

space (STOC 2012), applied outside the catalytic-space setting. First

we give a novel branching program with 24ℎ poly(:) layers of

width 23: , which beats the straightforward algorithm when ℎ =

l (:/log:). Next we give a branching program with :2ℎ poly(:)

layers of width :3. This has total size comparable to the straightfor-

ward algorithm, but is implemented using the catalytic framework.

Finally we interpolate between the two algorithms to give a branch-

ing program with ($ (:
ℎ
))2ℎ poly(:) layers of width ($ (:

ℎ
))nℎ for

any constant n > 0, which beats the straightforward algorithm for

all ℎ ≥ :1/2+polyn . These are the �rst deterministic branching pro-

grams to beat the straightforward algorithm, but more importantly

this is the �rst non-trivial approach to proving deterministic upper

bounds for TreeEval.

We also contribute new machinery to the catalytic computing

program, which may be of independent interest to some readers.

CCS CONCEPTS

• Theory of computation→ Computational complexity and

cryptography; Design and analysis of algorithms.

KEYWORDS

complexity theory, branching programs, catalytic computing, tree

evaluation problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00
https://doi.org/10.1145/3357713.3384316

ACM Reference Format:

James Cook and Ian Mertz. 2020. Catalytic Approaches to the Tree Evalua-

tion Problem. In Proceedings of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing (STOC ’20), June 22–26, 2020, Chicago, IL, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3357713.3384316

1 INTRODUCTION

The deterministic time and space classes, such as L, P, PSPACE, EXP,

and EXPSPACE are fundamental to complexity theory. While the

containments SPACE(:) ⊆ TIME(2:) and TIME(:) ⊆ SPACE(:)

are exercises that would show up in a �rst complexity course, �g-

uring out whether these containments are strict or not has proved

to be one of the greatest challenges in the �eld. As an example, one

way to separate P from PSPACE would be to separate P from NP,

but determining whether P = NP has remained unsolved for �fty

years. The Tree Evaluation Problem [7] has emerged over the past

ten years as a candidate for separating L from P.

1.1 The Tree Evaluation Problem and L vs. P

De�nition 1 (Tree Evaluation Problem [7]). The tree evaluation

problem TreeEvalℎ,: is parameterized by a height ℎ and an alphabet

size : . The input is a full binary tree of height ℎ, where every leaf

is labeled with an element of [:] and every internal node is labeled

with a function from [:] × [:] to [:]. The output is the value of

the root of the tree, where the tree is evaluated bottom-up in the

natural way. We will often omit the subscripts and write TreeEval.

(In the original statement of the problem [7], the degree of the

internal nodes in the tree is an additional parameter 3 . Here, we

focus exclusively on binary trees (3 = 2).)

The input to TreeEvalℎ,: has size (2ℎ−1−1):2 log:+2ℎ−1 log: =

$ (2ℎ poly(:)). The problem is in P: it can be solved in polynomial

time by evaluating every node, starting from the leaves, in an order

that ensures a node’s two children get evaluated before its parent.

However, it is not a log-space algorithm. The space used depends

on the order in which the nodes are evaluated, since child values

can be forgotten once a parent is evaluated. An argument based on

a “pebbling game” [7, 14] shows that even the most space-e�cient

version of the algorithm must at some point simultaneously store ℎ

values, requiring space Ω(ℎ log:) ⊆ l (ℎ + log:) for non-constant

ℎ, : .

We call this algorithm the pebbling algorithm. (Speci�cally, the

most e�cient version of the algorithm, using Θ(ℎ log:) space.)

1.2 Branching Programs and Lower Bounds

In order to prove space lower bounds for TreeEval, a natural model

which previous work has focused on is the branching program

model, where space is represented by the (logarithm of the) size

of the program. The pebbling algorithm described in the previous

752

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

section can be translated into a branching program whose states

are arranged into 2ℎ −1 layers, corresponding to the order in which

the nodes are evaluated. The number of states in a layer varies

depending on how many values the algorithm must remember at

the corresponding point in its execution, but the pebbling-based

lower bound shows that at least one layer will always have at least

:ℎ nodes. We say this algorithm has length 2ℎ − 1 and width :ℎ .

The size of a branching program is the number of states; a careful

analysis shows this one has size Θ((: + 1)ℎ). (This is equivalent to

Θ(:ℎ) so long as ℎ = $ (:)).)

While no unconditional lower bounds are known, a tight Ω(:ℎ)

lower bound is known for a number of natural restrictions. In the

read-once restriction the branching program only looks at each

bit of the input at most once, while in the thrifty restriction the

branching program must read only bits corresponding to the actual

evaluation of the tree may be read (so for example if the children

of a node E evaluate to G and ~, the branching program must not

read any values of the function at E other than the value at (G,~)).

The pebbling algorithm ful�lls both of these conditions, but either

one of them is enough to guarantee a lower bound of Ω(:ℎ) [9][7],

and neither of these restrictions assume any other structure on the

branching program such as being layered.

1.3 Catalytic Computing

The catalytic computing framework of [3], which came out of a

fascinating line of work [1, 2] on branching programs and circuits,

proposes a novel way to use space in a more e�cient way when

computing circuits with simple invertible operations. The idea is

deceptively simple: assume that we have a small amount of clean

work space but an exponentially larger amount of “catalytic space”,

which is free to use but is full of junk bits that have to be returned

to their original con�guration at the end of the computation. Since

we have no assumptions on the bits in the catalytic space it would

seem like it can’t help us compute anything, but Buhrman et al. [3]

show that if we are working with mathematical instructions that

are invertible, this invertibility can help us in two ways: �rst, by

letting us use the space in a way that can be easily reset at the

end of the computation, and second, by cleverly cancelling out

the “noise” that the bits in the catalytic space introduce into the

computation by inverting the computation and then subtracting o�

the contribution of the noise.

While there has been a �urry of work [4, 5, 8, 11, 15] following

the de�nition of catalytic computing in [3] (see e.g. [12] for a survey

of early results), the preliminary results of [1, 2] solved a slightly

di�erent type of problem. The catalytic computing model involves

having a small clean work tape and exponentially more “catalytic

space”, but [1] and [2] study what can be done by constantly reusing

a small (even constant size) work tape. Since we are looking to rule

out logspace algorithms for TreeEval, it is this latter approachwhich

seems more immediately applicable.

1.4 Our Results

In this work we show how the catalytic computing framework can

be applied to the tree evaluation problem to give novel algorithms,

even for the simple model of layered branching programs. We

present the following three programs (recall that the layered branch-

ing program for the pebbling algorithm has length 2ℎ poly(:) and

width :ℎ)

Theorem 1 (One-hot algorithm). There exists a layered branch-

ing program solving TreeEvalℎ,: with length at most 4ℎ poly(:) and

width 23: .

Theorem 2 (Binary algorithm). There exists a layered branch-

ing program solving TreeEvalℎ,: with length at most (2:)2ℎ poly(:)

and width :3.

Theorem 3 (Hybrid algorithm). For every n > 0 there exists

a � = $ (1/n) and a branching program solving TreeEvalℎ,: with

length at most (� :
ℎ
+ 1)2ℎ poly(:) and width (� :

ℎ
+ 1)nℎ .

While the constants in the exponent mean these algorithms don’t

beat the pebbling algorithm in all cases, for ℎ large (but still > (:))

we do indeed achieve an > (:ℎ) size branching program.

1.5 Important Ideas

This is the �rst non-trivial approach to proving upper bounds for

TreeEval, and in our opinion it highlights a number of interesting

ideas in catalytic computing and branching programs, which we

will highlight before going into the body of the paper.

Pebbling games. The previous best-known algorithm for TreeEval

was based on a strategy for the pebbling game on a complete binary

tree.

The optimal strategy for this game is well-understood, leading to

a Ω(:ℎ) lower bound on the number of states used by any pebbling-

based branching program. Every subsequent deterministic lower

bound for TreeEval, for generalized classes of branching program

beyond pebbling, has arrived at the same quantityΩ(:ℎ), e�ectively

by showing how to relate every algorithm back to the pebbling

game. From its initial de�nition in [7] it has been widely believed

that pebbling gives the optimal lower bound [13].

Our algorithms defeat this common lower bound by using tech-

niques far removed from pebbling.

Use of algebraic techniques. The main result of [3] is to use cat-

alytic computing to e�ciently compute the majority of poly= bits,

which they do in an algebraic way by summing the input and then

using Fermat’s Little Theorem. This relies on an inherent way of

turning majority into an algebraic object [16]. In TreeEval, each

node is labeled with an arbitrary [:] × [:] → [:] function. The

encoding we present for each algorithm determines how this func-

tion can be interpreted as an algebraic object — for example, the

one-hot encoding in §3 allows us to interpret it as a sum over prod-

ucts corresponding to a DNF with at most one AND evaluating

to 1. We then apply techniques from [3]—as well as many novel

improvements on them—to get our results.

Read-once/thrifty restrictions. Our algorithms avoid the lower

bounds in the read-once and thrifty models (§1.2). How do they do

this? Simply put, the “catalytic space” approach involves recomput-

ing nodes many many times and checking the evaluation of every

possible pair of inputs at every node, which leads them to break

the read-once and thrifty restrictions in spectacular fashion. This

753

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

is the �rst approach to TreeEval that breaks both restrictions, and

furthermore in our opinion it does so in a very natural way.

Space-bounded models. We are working in the model of small

total workspace, which in some ways puts our work morally closer

to the results of [1, 2] than to [3]. However at the core of our results

are extensions of techniques from [3], which gives us new ways to

use these techniques designed for the large (catalytic) space regime

in the setting where not even the catalytic tape is available. It would

be interesting to see how many of our known catalytic techniques

can be carried over in this way.

Future improvements. The extensions we prove are not known to

be optimal in terms of how much recomputation is needed, which

is the only bottleneck in the strength of our results. Thus improv-

ing them provides a direct approach to improving our results for

TreeEval. In fact, an “optimal generalization” of the lemma in ques-

tion would give a logspace algorithm for TreeEval, �rmly shutting

the door on the approach of [7].

2 PRELIMINARIES

Whilewe think of the input to TreeEvalℎ,: as being of size 2
ℎ−1 log:+

(2ℎ−1 − 1):2 log: , for our computation model it will be easier to

think of our programs as always reading a whole element of [:] at

once.

De�nition 2 (One piece of the input). In the below de�nitions

of register programs and branching programs, each instruction or

state will be allowed to read one “piece” of the input to TreeEvalℎ,: .

A piece of the input is either the value associated with a leaf, or an

internal node’s function evaluated at one of its :2 possible inputs.

The input consists of 2ℎ−1 + (2ℎ−1 − 1):2 pieces, each of which

is a value in [:].

2.1 Branching Programs

There are di�erent de�nitions of branching programs. Ours is equiv-

alent to that of S. Cook et al. [7], restricted to the deterministic case.

Each state of a branching program reads one piece of the input to

TreeEvalℎ,: (De�nition 2): either the single value associated with

a leaf, or an internal node’s function evaluated at one of the :2

possible inputs.

De�nition 3 (Branching program [7]). A deterministic branching

program1 for TreeEvalℎ,: consists of:

• A set of states + , one of which is identi�ed as the starting

state.

• A set of output states identi�ed in + , each labelled with a

value for the program to output.

• For every non-output state, a piece of the input to query

(De�nition 2) , and a transition function mapping the result

of the query (in [:]) to the next state.

If the sequence of states induced by an input to TreeEvalℎ,: ends

at an output state (rather than looping in�nitely), the program

1In this paper we only consider uniform branching programs, which are branching
programs which can be e�ciently constructed. The exact notion of uniformity we use
is unimportant, except for noting that any size B branching program we construct for
TreeEval can certainly be constructed uniformly in log B space.

terminates with that output. The size of the branching program is

|+ |.

Additionally our programs will be from a restricted model called

a layered branching program, wherein each state E ∈ + is associated

with a layer C , such that if E ’s transition function maps it to E ′ ∈ +

on some query, then E ′ is in layer C + 1.

2.2 Invertible Programs and Transparent

Computation

We describe our algorithms as register machine programs, which are

described by a set of registers each storing values in some ring ',

plus a list of mathematical instructions on updating those registers.

Our algorithms for TreeEval use the two-element �eld ' = F2, but

many of our results apply more generally. Each instruction has the

form 'G ← 'G +
∏

8 D8 (or later, 'G ← 'G +
∑

9
∏

8 D8, 9), where

'G is a register and each D8 is either a constant or a register other

than 'G . These are similar to the programs used in the catalytic

computing work of Buhrman et al. [3]. In particular, every instruc-

tion is reversible—the instructions 'G ← 'G + (−1) ·
∏

D8 and

'G ← 'G +
∑

9 (−1) ·
∏

8 D8, 9 respectively su�ce—so we call them

invertible programs.

We will analyze the behaviour of subroutines by comparing

the register values before and after a subroutine runs. Following

Buhrman et al. [3], we denote the initial value of register '8 with

g8 and say that a subroutine transparently computes value E into

register '8 if '8 = g8 +E when it �nishes. We use similar notation for

vectors of registers: #–g8 is the initial value of
#–

'8 , and transparently

computing a vector #–E means ensuring
#–

'8 =
#–g8 +

#–E .

We depart from [3] by allowing some register indices to depend

on the input. For example, if EG denotes the value of leaf node G

in the input to TreeEval, then the instruction '1,EG ← '1,EG + 1

increments a coordinate of
#–

'1 depending on EG . To connect register

programs to branching programs, we make one restriction of our

register programs, which is that each instruction uses at most one

piece of the input. We can then transform register programs into

branching programs:

Lemma 4. Suppose % is a register program consisting of |% | instruc-

tions using< registers over F2 that transparently computes #–E into a

vector of registers
#–

'1. Then there is a layered branching program �%
of size 1 + |% |2< + : which outputs E . The states of �% other than the

starting and output states are organized into |% | layers of size 2< .

Proof. The �rst layer of �% consists of a single starting state,

and the last consists of : output states. Every other layer corre-

sponds to an instruction in % , and has a state for each of the 2<

possible register con�gurations. A state reads whichever piece of

the input the corresponding instruction uses, and its transition

function leads to the state in the following layer corresponding to

the new register values.

In order to make �% output the correct value, initialize all regis-

ters to zero by choosing 0 ∈ F2
< in the �rst layer as the starting

state, and designating each state in the �nal layer as an output state

labelled with the value of
#–

'1. □

754

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

3 ALGORITHM 1: ONE-HOT

We �rst present our one-hot algorithm, named after the encoding

scheme it uses.

De�nition 4 (One-hot encoding). Let #–E8 = {E8,G }G ∈[:] be a vector

of length : . We say that #–E8 stores the value G ∈ [:] if E8,G = 1 and

E8,G ′ = 0 for all G ′ ≠ G .

The foundation for Algorithm 1 is a formula for the one-hot

encoding of a node in terms of its childrens’ encodings. In TreeEval,

if ? is the parent of nodes ℓ and A , then for all G ∈ [:], the coordinate

E?,G = [E? = G] of ?’s one-hot encoding is

E?,G =

∑

(~,I) ∈5 −1? (G)

[Eℓ,~ = 1] [EA,I = 1]

To build toward Algorithm 1, in subsection 3.1 we show how to

build a reversible program that transparently computes a single

product EℓEA given programs that compute each factor, then in

subsection 3.2 we extend it to e�ciently compute the entire vector
#–E? .

3.1 Binary Catalytic Products

The key tool in Theorem 1 and all our algorithms is a modi�ed form

of Lemma 4 from [3]. We state and prove it below, using a di�erent

program than was originally presented in [3] which will be easier

to generalize.

Lemma 5 (Lemma 4, [3]). Let 'ℓ , 'A and '? be distinct registers.

Let %ℓ be an invertible program which transparently computes Eℓ into

register 'ℓ and leaves the other registers unchanged: in other words,

'ℓ = gℓ + Eℓ

'8 = g8 ∀8 ≠ ℓ .

Similarly, let %A be a program which updates

'A = gA + EA

'8 = g8 ∀8 ≠ A

Then there exists an invertible program %? which transparently com-

putes EℓEA into '? , leaving all other registers unchanged, i.e.

'? = g? + EℓEA

'8 = g8 ∀8 ≠ ?

%? uses only the three registers 'E, 'ℓ , '? (not counting any space

used by the programs %ℓ and %A) and makes two calls to %ℓ and %A
each, plus four basic instructions of the form '? ← '? ± 'ℓ'A .

Proof. Program %? performs as follows:

1: %ℓ
2: '? ← '? − 'ℓ'A ⊲ '? = g? − gℓgA − EℓgA
3: %A
4: '? ← '? + 'ℓ'A ⊲ '? = g? + gℓEA + EℓEA
5: %−1ℓ
6: '? ← '? − 'ℓ'A ⊲ '? = g? − gℓgA + EℓEA
7: %−1A

8: '? ← '? + 'ℓ'A ⊲ '? = g? + EℓEA

While correctness is given by the inline comments, we motivate this

program intuitively. At some point (speci�cally in step 4) we add

(gℓ + 5ℓ) (gA + 5A) to '? . This yields the terms gℓgA + 5ℓgA +gℓ 5A + 5ℓ 5A ,

where the 5ℓ 5A term is ultimately what we want to be added to '? .

To cancel out all other terms, we use %ℓ , %
−1
ℓ , %A , and %

−1
A to isolate

each term in succession, noting that the only spurious term that

will come up is gℓgA . All other registers were reset because they

each have one forward program and one inverse program.

The number of recursive calls and basic instructions is clear,

and the program %? can be inverted by running it in reverse or-

der, changing all + operations to − operations and vice-versa, and

switching % calls with %−1 calls for all recursive calls. □

3.2 Parallel Binary Catalytic Products

Our algorithm for Theorem 1 will use one-hot encodings, so we

will need to adapt Lemma 5 to work with vectors of registers. Thus

in place of '? , 'ℓ , and 'A , we will instead have vectors
–

'? ,
#–

'ℓ , and
#–

'A , and for convenience we treat each '8,G as being an element in

F2 (so + and − are both equivalent to a bit�ip).

When we execute the program %ℓ (%A), this will �ip exactly one

register in
#–

'ℓ (exactly one register in
#–

'A), corresponding to the

value of node ℓ (the value of node A , respectively). Our goal will be

to do the same for E , i.e. add the function vector
#–

5E to the register

vector
#–

'E , where 5E,8 will be 1 if the value of the function computed

at node E is 8 and 0 otherwise.

The key subroutine will be a version of Lemma 5 where ℓ and A

are the left and right children of ? . The value of EG,8 will be 1 if the

value of the function computed at node G is 8 , and 0 otherwise. Note

that while we specialize the following lemma to the parameters of

our TreeEval instance, this can easily be adapted as a generalization

of Lemma 5.

Lemma 6 (Lemma 5, parallel sum version). Let
#–

'ℓ ,
#–

'A and
–

'? be

distinct :-dimensional vectors of registers. Let Eℓ,G = 1 i� G is the

value of node ℓ , and let %ℓ be a program which transparently computes
#–Eℓ into register

#–

'ℓ and leaves the other registers unchanged: in other

words,
#–

'ℓ =
#–gℓ +

#–Eℓ
#–

'8 =
#–g8 ∀8 ≠ ℓ

Similarly, let %A be a program which updates
#–

'A =
#–gA +

#–EA
#–

'8 =
#–g8 ∀8 ≠ A

where EA,G = 1 i� A evaluates to G . Then there exists a program %?
which updates

–

'? =
#–g? +

#–E?
#–

'8 =
#–g8 ∀8 ≠ ?.

%? uses only the 3: registers
–

'? ,
#–

'ℓ ,
#–

'A (not counting any space used

by the programs %ℓ and %A). %? uses two calls to %ℓ and %A each, plus

4:2 basic instructions of the form '?,5? (~,I) ← '?,5? (~,I) ± 'ℓ,~'A,I ,

where 5? is the function associated with node ? of the TreeEval in-

stance.

Proof. Program %? performs as follows (note that we retain

the +/− and %/%−1 distinctions only to stress the similarity of this

program with the one in Lemma 5):

755

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

1: %ℓ
2: for G ; (~, I) such that 5? (~, I) = G do

3: '?,G ← '?,G − 'ℓ,~'A,I
⊲ '?,G = g?,G −

∑

(~,I) ∈5 −1? (G)
(gℓ,~gA,I + Eℓ,~gA,I)

4: end for

5: %A
6: for G ; (~, I) such that 5? (~, I) = G do

7: '?,G ← '?,G + 'ℓ,~'A,I
⊲ '?,G = g?,G +

∑

(~,I) ∈5 −1? (G)
(gℓ,~EA,I + Eℓ,~EA,I)

8: end for

9: %−1ℓ
10: for G ; (~, I) such that 5? (~, I) = G do

11: '?,G ← '?,G − 'ℓ,~'A,I
⊲ '?,G = g?,G +

∑

(~,I) ∈5 −1? (G)
(−gℓ,~gA,I + Eℓ,~EA,I)

12: end for

13: %−1A

14: for G ; (~, I) such that 5? (~, I) = G do

15: '?,G ← '?,G + 'ℓ,~'A,I
⊲ '?,G = g?,G +

∑

(~,I) ∈5 −1? (G)
Eℓ,~EA,I

16: end for

The analysis is the same as in Lemma 5, as the instructions for

each pair (~, I) can be treated separately since the only instructions

are '?,5? (~,I) ← '?,5? (~,I) ± 'ℓ,~'A,I . Each basic instruction from

Lemma 5 is now :2 basic instructions, exactly one for each (~, I)

pair, and so all counts are as claimed. □

Proof of Theorem 1. We show by induction on ℎ that there is

an invertible program of length at most (4ℎ − 2):2 using 3: binary

registers which transparently computes the one-hot encoding of

the value of the root node of a TreeEvalℎ,: instance into one set of :

registers, leaving the remaining 2: registers at their original values.

Given such a program % , Lemma 4 shows we can turn it into a

layered branching program with 4ℎ poly(:) layers each containing

23: states. The branching program produced by Lemma 4 outputs

a one-hot encoding; by relabelling the output states with their

decoded values, we can turn into a program that solves TreeEvalℎ,: .

For the base case ℎ = 1, the program only needs to read the value

of the single node and �ip the single register corresponding to its

value, so the program has length 1 ≤ (41 − 2):2. For the inductive

step we are given an instance TreeEvalℎ+1,: , and we inductively

assume that there exist programs %ℓ and %A corresponding to the

children ℓ and A of the root ? , each of which computes a subinstance

of height ℎ.

By Lemma 6, from this we can build a program %? computing

the value at node ? which uses 3: registers and consists of two calls

each to %ℓ and %A plus 4:
2 basic instructions. Thus the total length

of the program is at most (2 + 2) (4ℎ − 2):2 + 4:2 ≤ (4ℎ+1 − 2):2 as

promised. For the space usage, since the programs %ℓ and %A work

regardless of the initial state of the 3: registers they use and reset

everything except the target registers, we will allow both of them

as well as %? to use the same set of 3: registers, relabeling them as

necessary within each program call. □

4 ALGORITHM 2: BINARY

Next is the binary algorithm, once again named after its encoding

scheme. This algorithm never uses less space than the straightfor-

ward “pebbling” algorithm described in subsection 1.1, but it is an

important step toward building the “hybrid” algorithm described

in section 5. It is worth noting that while it performs slightly worse

than pebbling, it does so with very low width.

This algorithm uses a more compact encoding.

De�nition 5 (Binary encoding). Let #–E8 = {E8,1 }1∈[log:] be a vector

of length log: . We say that #–E8 stores the value G ∈ [:] if E8,1 = G1
for all 1 ∈ [log:], where G1 is the 1th bit of G when written in

binary.

Working with this encoding will require moving from the binary

products used by Algorithm 1 to products of fan-in 2 log: . Follow-

ing the same structure as section 3, we �rst show how to compute a

product of more than two scalar values (subsection 4.1), then extend

it to e�ciently compute the entire vector #–E? (subsection 4.2).

4.1 3-ary Catalytic Products

While Lemma 6 can be thought of as a generalization of Lemma 5

to accomodate sums of binary products, our next lemma will be a

generalization to products of more than two variables.

Lemma 7 (Lemma 5, 3-ary version). Let '0, . . . , '3 be distinct reg-

isters, and let %1 . . . %3 be invertible programs where %8 updates

'8 = g8 + E8

' 9 = g 9 ∀9 ≠ 8

Then there exists an invertible program % which updates

'0 = g0 +
∏

8

E8

' 9 = g 9 ∀9 ≠ 0

% uses only the 3 + 1 registers '0, . . . , '3 (not counting any space

used by the programs %8) and makes at most 23 calls to each %8 , plus

23 basic instructions of the form '0 ← '0 + 2
∏

8 '8 for values 2

independent of the register/function values.

Proof. We de�ne some shorthand for the sake of presenting %E .

When we say %(we mean apply all %8 and %−18 necessary so that

'8 = g8 for all 8 ∈ (and '8 = g8 + E8 for all 8 ∉ (. In other words for

all 8 ∈ (such that '8 = g8 + E8 we run %−18 and for all 8 ∉ (such

that '8 = g8 we run %8 , and leave all other registers untouched. Now

program % performs as follows (with 2(left unde�ned):

1: for (⊆ [3] do

2: %(

3: '0 ← '0 + 2(

3
∏

8=1

'8

4: end for

At the end of this program,

'0 = g0 +
∑

(⊆[3]

2(

(

∏

8∈(

g8

) (

∏

8∉(

g8 + E8

)

We will now choose the coe�cients 2(to make that equal g0 +
∏3

8=1 E8 .

756

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

Expanding the polynomial, we can rewrite it as '0 = g0 +
∑

(⊆[3] 3((
∏

8∈(g8)
(
∏

8∉(E8
)

where 3(=
∑

(′⊆(2(′ . Since our

goal is to get '0 = g0 + 1 ·
∏

8 E8 , we can restate our goal as: choose

coe�cients 2(such that 3∅ = 1 and 3(= 0 for all (≠ ∅.

Since 3∅ = 2∅ , we start by setting 2∅ = 1. Now this determines

the singleton sets 3 {8 } = 2 {8 } + 2∅ = 0, namely 2 {8 } = −2∅ for all

8 . We similarly set the remaining 2(values in increasing order of

(≠ ∅ under the partial order ⊆, using the formula:

2(= −
∑

(′⊊(

2(′

This ensures that 3(= 0 for (≠ ∅.

The number of recursive calls to any %8 is at most once per

loop iteration for a total of at most 23 , while there is one basic

instruction per (for a total of 23 . As before the program % can be

inverted by running it in reverse order, changing all + operations to

− operations and vice-versa, and switching %8 calls with %−18 calls

for all recursive calls. □

It should be noted that the number of calls to each %8 can be

improved from at most 23 to exactly 23/3 by having the loop over

all (use a Gray code [10] for order, rather than choosing the order

arbitrarily. However, what will be important for our TEP algorithm

is that the loop runs exactly 23 times.

4.2 Parallel 3-ary Catalytic Products

We now prove an alternative version of Lemma 6 by replacing the

one-hot encoding with the binary encoding (De�nition 5). If ℓ and

A are children of node ? and #–Eℓ and
#–EA are the binary encodings of

the values at those nodes, we can compute #–E? as follows:

E?,1 =

∑

(G,~,I) ∈[:]3

[G1 = 1] [5? (~, I) = G]
∏

1′∈[log:]

[Eℓ,1′ = ~1′] [EA,1′ = I1′]

where C1 is the 1th bit of C written in binary.

Calculating E?,1 in this form requires us to compute a product

of fan-in 2 log: (not counting the constant terms [G1 = 1] and

[5? (~, I) = G]) and thus requires considerably heavier machinery

than Lemma 6, namely Lemma 7.We also need to be able to compute

each bit Eℓ,1 or EA,1 separately in order to cover all subsets of the

product
∏

1∈[log:] [Eℓ,1 = ~1] [EA,1 = I1], so we have to formulate

our recursive statement a bit di�erently.

Again note that this is a generalization of all our previous lemmas,

and the “most general” version of Lemma 5, up to improvements in

the parameters themselves. We discuss these issues in Appendix A.

Lemma 8 (Lemma 5, parallel sum + 3-ary version). Let
#–

'ℓ ,
#–

'A
and

–

'? be distinct (log:)-dimensional vectors of registers. For all

) ⊆ [log:] let %ℓ ()) be a program which updates

'ℓ,1 = gℓ,1 + Eℓ,1 ∀1 ∈)

'8,1 = g8,1 when 8 ≠ ℓ or 1 ∉)

where Eℓ,1 = 1 i� the binary encoding of the value at node ℓ has a

1 in the 1th position. Let %A ()) be de�ned similarly. Then for every

) ⊆ [log:] there exists a program %? ()) which updates

'?,1 = g?,1 + E?,1 ∀1 ∈)

'8,1 = g8,1 when 8 ≠ ? or 1 ∉)

%? uses only the 3 log: registers
–

'? ,
#–

'ℓ ,
#–

'A (not counting any space

used by the programs %ℓ and %A) and makes :2 calls to each %ℓ ())

and :2 calls total to each %A ()) for a total of 2:
2 recursive calls, plus

$ (:3 log:) basic instructions.

Proof. We recall our key equation, which we restate as

E?,1 =

∑

(G,~,I) ∈[:]3

[G1 = 1] [5? (~, I) = G]
∏

1′∈[log:]

(Eℓ,1′ + ~1′) (EA,1′ + I1′)

This is because the indicators [Eℓ,1′ = ~1′] and [EA,1′ = I1′] can be

replaced by taking the negation of their XOR, which is the same as

taking the negation of either one and adding them together mod 2.

Like in the proof of Lemma 7, we say that %(ℓ ,(A means apply

whichever % ((′ℓ) and % ((
′
A) is necessary so that 'ℓ,1 = gℓ for each

1 ∈ (ℓ , 'ℓ,1 = gℓ +Eℓ,1 for 1 ∉ (ℓ , and similarly for (A . Now program

%? ()) performs as follows (with 2(ℓ ,(A left unde�ned):

1: for (ℓ , (A ⊆ [log:] do

2: %(ℓ ,(A
3: for 1 ∈) ; (G,~, I) such that G1 = 1 ∧ 5? (~, I) = G do

4: '?,1 ← '?,1+2(ℓ ,(A

∏

1′∈[log:]

('ℓ,1′+~1′ ·[1
′
∉ (ℓ]) ('A,1′+

I1′ · [1
′
∉ (A])

5: end for

6: end for

The analysis is the same as in Lemma 6 and Lemma 7, where we

think of (ℓ and (A as being one large set together, over two disjoint

parts of a universe of size 2 log: . Again we are forced to choose

2∅,∅ = 1 and then for all other (ℓ , (A which are not both empty

2(ℓ ,(A =

∑

(′ℓ ⊆(ℓ
(′A ⊆(A

((′ℓ ,(
′
A)≠((ℓ ,(A)

−2(′ℓ ,(
′
A

Since there are 2log: = : possible sets (ℓ and (A , there are :
2 pos-

sible pairs of sets, so the number of recursive calls is as claimed.

Each line of basic instructions in the loop consists of :3 basic in-

structions per 1 ∈) ⊆ [log:] the number of basic instructions is

also as claimed. □

Proof of Theorem 2. We show by induction on ℎ that there is

an invertible program of length (2:)2ℎ poly(:) using 3 log: binary

registers which transparently computes the binary encoding of the

value of the root node of a TreeEvalℎ,: instance into one set of log:

registers, leaving the remaining 2 log: registers at their original

values. As in the proof of Theorem 1, we can use Lemma 4 to trans-

form this into a layered branching program with (2:)2ℎ poly(:)

layers each containing :3 states.

For the base case ℎ = 1, the program need only read the value

of the single node and �ip up to log: registers corresponding to

the binary encoding of its value, so the program has length log: ≤

40 poly(:). For the inductive step we are given a TreeEvalℎ+1,:
instance of height ℎ + 1, and we inductively assume that there

exist programs %ℓ (() and %A (() corresponding to the children ℓ and

A of the root ? , each of which computes any subset of bits for a

subinstance of height ℎ.

By Lemma 7 from this we can build a program %? := %? ([log:])

solving the function at ? using 3 log: registers and which makes :2

757

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

recursive calls to %ℓ functions plus :
2 recursive calls to %A functions,

plus$ (:3 log:) basic instructions. The total length of the program

is at most 2:2 · (2:)2ℎ poly(:) +$ (:3 log:) ≤ (2:)2(ℎ+1) poly(:)

as promised. For the space usage we again reuse all registers for

each recursive call. □

5 ALGORITHM 3: HYBRID

Our �nal algorithm is the hybrid algorithm. As the name suggests it

is a synthesis of the two previous approaches: we break our registers

into blocks such that each element in [:] falls into only one block

(one-hot), and inside the block is identi�ed by a binary encoding

(binary).

To prove Theorem 3 we no longer need to generalize Lemma 5

further, as Lemma 8 provides the most general form we need. How-

ever as mentioned before we will generalize the encoding to a

hybrid encoding that interpolates between the one-hot and binary

encodings.

De�nition 6 (Hybrid encoding). Let 0 ∈ [log:] be �xed, and let
#–E8 = {E8,(�,�) }(�,�) ∈[0]×[:/(20−1)] be a vector of length 0 · :

20−1 .

Intuitively we break [:] into blocks of length 20 − 1 so that within

a block each element gets a unique non-zero binary encoding of

length 0. More formally for G ∈ [:] let � (G) = (G mod (20−1)) +1

and let � (G) = ⌈ G
20−1 ⌉. We say that #–E8 stores the value G ∈ [:] if

E8,(�,�) = [� (G)� = 1∧� (G) = �] for all (�, �) ∈ [0] × [:/(20−1)].

Note that for 0 = 1 and 0 = log: we get : blocks of size 1 and 1

block of size log: respectively, which recovers the encodings in

De�nition 4 and De�nition 5.

For all (�, �) ∈ [0] × [:/(20 − 1)] the value E?,(�,�) is given by

E?,(�,�) =
∑

(G,~,I) ∈[:]3

[� (G)� = 1 ∧ � (G) = �] [5? (~, I) = G]·

∏

1∈[0]

[Eℓ,(1,� (~)) = � (~)1] [EA,(1,� (I)) = � (I)1]

Note that if the output of ℓ is not ~, then all bits Eℓ,(1,� (~)) are

zero, and since � (~) is nonzero the term will be zeroed out (and

similarly for the output of A and I).

This is a product of fan-in 20, and so Lemma 7 will step in to

do the work. However one other important component is that in

any term since (~, I) is �xed all [Eℓ,(1,� (~)) = � (~)1] factors only

read from block � (~) and all [EA,(1,� (I)) = � (I)1] only read from

block � (I). Thus instead of running over all subsets of [0] for each

block in [:
20−1] separately, we can simply run over subsets of [0]

and apply them to every block in [:
20−1] simultaneously, for a total

of 220 recursive calls for %ℓ programs and 220 for %A programs.

While Theorem 3 gives one setting of parameters chosen to

make the total size of the branching program small, in reality this

approach gives a whole family of branching programs for TreeEval,

in particular subsuming the constructions in Theorem 1 and Theo-

rem 2.

Lemma 9 (Hybrid lemma). Let
#–

'ℓ ,
#–

'A and
–

'? be distinct (0× :
20−1)-

dimensional vectors of registers. For all) ⊆ [0] let %ℓ ()) be a program

which updates

'ℓ,(�,�) = gℓ,(�,�) + Eℓ,(�,�) ∀(�, �) ∈) × [
:

20 − 1
]

'8,(�,�) = g8,(�,�) when 8 ≠ ℓ or � ∉)

where Eℓ,(�,�) = 1 i� the hybrid encoding of the value at node ℓ has

a 1 in the (�, �)th position. De�ne %A ()) similarly. Then for every

) ⊆ [0] there exists a program %? ()) which updates

'?,(�,�) = g?,(�,�) + E?,(�,�) ∀(�, �) ∈) × [
:

20 − 1
]

'8,(�,�) = g8,(�,�) when 8 ≠ ? or � ∉)

%? ()) uses only the 3 · 0:
20−1 registers

–

'? ,
#–

'ℓ ,
#–

'A (not counting any

space used by the programs %ℓ and %A) and makes $ (220) calls to

%ℓ programs and $ (220) calls to %A programs, plus $ (:3 log:) basic

instructions.

Proof. We can rewrite our main equation for the hybrid algo-

rithm as

E?,(�,�) =
∑

(G,~,I) ∈[:]3

[� (G)� = 1 ∧ � (G) = �] [5? (~, I) = G]·

∏

1∈[0]

(Eℓ,(1,� (~)) + � (~)1) (EA,(1,� (I)) + � (I)1)

This is the same as the equation stated before this lemma, except

that as in Lemma 8, we have expressed the indicators [Eℓ,(1,� (~)) =

� (~)1] and [EA,(1,� (I)) = � (I)1] using negations of XORs. Now

program %? ()) performs as follows (with 2(ℓ ,(A left unde�ned):

1: for (ℓ , (A ⊆ [0] do

2: %(ℓ ,(A
3: for � ∈) ;�; (G,~, I) such that � (G)� = 1 ∧ � (G) = � ∧

5? (~, I) = G do

4: '?,(�,�) ← '?,(�,�)+2(ℓ ,(A
∏

1∈[0] ('ℓ,(1,� (~))+� (~)1 [1 ∉

(ℓ]) ('A,(1,� (I)) + � (I)1 [1 ∉ (A])

5: end for

6: end for

Notice that we nevermultiply bits'ℓ (1,�) and'ℓ (1′,�′) for� ≠ �′,

and so our program is able to run the protocol from Lemma 8 “in

parallel” for every block � ∈ [:
20−1] in the inner loop, so we only

need 220 recursive calls each to %ℓ and %A (one per iteration of the

outer loop).

To determine the values of 2(ℓ ,(A , let us compute the �nal value

of '?,(�,�) , for an arbitrary � ∈) and � ∈ [:/(20 − 1)]. To do

this, we expand the polynomial added on line 4 of the program, and

take the sum over all iterations of the loop: that is, all (ℓ , (A ⊆ [0]

and all G,~, I satisfying � (G)� = 1 ∧ � (G) = � ∧ 5? (~, I) = G . This

produces:

'?,(�,�)

=g?,(�,�) +
∑

(ℓ ,(A ⊆[0]

(G,~,I) ∈[:]3

[� (G)� = 1 ∧ � (G) = � ∧ 5? (~, I) = G]·

2(ℓ ,(A (
∏

8∈(ℓ

gℓ,(1,� (~))) (
∏

8∉(ℓ

(gℓ,(1,� (~)) + Eℓ,(1,� (~)) + � (~)1))·

(
∏

8∈(A

gA,(1,� (I))) (
∏

8∉(A

(gA,(1,� (I)) + EA,(1,� (I)) + � (I)1))

=g?,(�,�) +
∑

(G,~,I) ∈[:]3

[� (G)� = 1 ∧ � (G) = � ∧ 5? (~, I) = G]·

758

STOC ’20, June 22–26, 2020, Chicago, IL, USA James Cook and Ian Mertz

∑

(ℓ ,(A ⊆[0]

3(ℓ ,(A (
∏

8∈(ℓ

gℓ,(1,� (~))) (
∏

8∉(ℓ

(Eℓ,(1,� (~)) + � (~)1))·

(
∏

8∈(A

gA,(1,� (I))) (
∏

8∉(A

(EA,(1,� (I)) + � (I)1))

where 3(ℓ ,(A =
∑

(′ℓ ⊆(ℓ ,(
′
A ⊆('

2(ℓ ,(A . Note that this is essentially the

same structure as Lemma 8, with the only di�erences being the

binary �ag [[� (G)� = 1 ∧ � (G) = � ∧ 5? (~, I) = G] and the exact

registers being multiplied together.

As usual, if we can ensure3∅,∅ = 1 and all other coe�cients are 0,

then the part after g?,(�,�) exactly matches our formula for E?,(�,�) ,

and so we have '?,(�,�) = g?,(�,�) + E?,(�,�) as required. We start

by setting 2∅,∅ = 1, and then for all (ℓ , (A such that (ℓ ≠ ∅ ∨ (A ≠ ∅,

2(ℓ ,(A =

∑

(′ℓ ⊆(ℓ
(′A ⊆(A

((′ℓ ,(
′
A)≠((ℓ ,(A)

−2(′ℓ ,(
′
A

again treating (ℓ and (A as being one set over disjoint parts.

Since there are 20 possible sets (ℓ and (A , there are 2
20 possible

pairs of sets, so the number of recursive calls is as claimed. □

Proof of Theorem 3. By the same induction as in Theorem 1

and Theorem 2, we can use Lemma 9 to build a program %? :=

%? ([0] × [
:

20−1]) which �nds the value at node ? using 3 · 0:
20−1

registers and 220 recursive calls plus $ (:3 log:) basic steps. The

total length of the program is at most 220ℎ poly(:) and by reusing

space the width is 230:/(2
0−1) . For any� choosing 0 = log(� :

ℎ
+ 1)

we get that

220ℎ poly(:) = 22ℎ log(�:/ℎ+1) poly(:) = (�
:

ℎ
+ 1)2ℎ poly(:)

230:/(2
0−1) ≤ 2(3/�)ℎ log(�:/ℎ+1)

= (�
:

ℎ
+ 1) (3/�)ℎ

and so choosing � =
3
n completes the proof. □

6 CONCLUSION

A reasonable question to ask is if a better version of Lemma 7 might

be too much to ask for. Certainly in terms of TreeEval it repre-

sents one possible path directly to proving TreeEval ∈ L. Namely if

Lemma 7 can be improved in the following ways:

• make only $ (1) calls to each %8
• all rounds of calls to %8 ’s can be parallelized as in Lemma 8

such that only $ (1) rounds of calls are needed

• these rounds can be parallellized such that 2$ (3) instances

sharing some set of $ (3) target registers can be run in the

same round, with only $ (3) registers being used in total

then it should be possible to run Lemma 8with length 2$ (ℎ) poly(:)

and width poly(:), yielding a logspace algorithm. However it may

be that such a lemma would have implications on L itself. As the

most immediate avenue to improving our main theorems, studying

the feasibility of such an algorithm is our most important open

problem. We discuss one potential avenue in Appendix A.

S. Cook et al. [6] o�er a prize for any algorithm which, for a

�xed ℎ, proves TreeEvalℎ,: ∈ $ (:
ℎ−n) for any constant n > 0. Note

that if ℎ ≥ :1/2+n/4 then

(� :
ℎ
+ 1) (2+n)ℎ ≤ ((� + 1):1/2−n/4) (2+n)ℎ

= (� ′:) (2+n) (1/2−n/4)ℎ

≤ : (1−n
2/4+log�′/log:)ℎ ≪ :ℎ−n

and so we far surpass what is required for the prize. However to

get an > (:ℎ) upper bound for all ℎ, the catalytic technique seems to

inevitably require 33 registers for a representation of length 3 , and

so getting more e�cient algorithms for succinct representations

where3 ≪ $ (:) seems to be a necessary next step for our approach.

As discussed in section 1, our techniques come from and gener-

alize the catalytic computing framework despite being in a small

space regime. Understanding the power of catalytic techniques to

run many parallel 3-ary products in the same space could help us

understand the power of using catalytic techniques for small space

classes, which could help us understand the power of small space.

ACKNOWLEDGMENTS

The authors would like to thank Stephen Cook and Toniann Pitassi

for many helpful discussions leading up to this paper.Wewould also

like to thank the anonymous reviewers for their useful suggestions.

Both authors are partially funded by NSERC.

A IMPROVED 3-ARY CATALYTIC PRODUCTS

As touched upon before, Lemma 7 gives a 3-ary form of Lemma 5,

with the main slowdown being the $ (23) recursive calls to each %8
program. As a greedy next step, we could try to reduce the number

of recursive calls, possibly even to match the constant number

needed in Lemma 5.

It is worth noting that we actually have such a construction

which makes only poly(3) calls to each %8 , a major improvement

on Lemma 7.We state and prove this improvement, and then discuss

the problems with using the construction presented for improving

our main results.

Lemma10 (Lemma 7, polynomially e�cient version). Let'0, . . . , '3
be distinct registers. Let %1 . . . %3 be a invertible programs where %8
updates

'8 = g8 + E8

' 9 = g 9 ∀9 ≠ 8 .

Then there exists an invertible program % which updates

'0 = g0 +
∏

8

E8

' 9 = g 9 ∀9 ≠ 0.

% uses the 3 + 1 registers '0, . . . , '3 plus 3 additional registers (not

counting any space used by the programs %8) and makes 32 calls to

each %8 plus poly(3) basic instructions of the form '? ← '? ±
∏

8 '8 .

Proof. We inductively compute
∏

8 E8 using Lemma 5 as a sub-

routine. We will compute the product like a binary tree, at each

level 9 computing products of pairs from level 9−1. Inductively each

register at level 9 will be the product of 29 58 ’s. For all 9 = 0 . . . log3

let
#–

' 9
= {'

9
8 } be a vector of 3

29
registers, where '08 := '8 for all

759

Catalytic Approaches to the Tree Evaluation Problem STOC ’20, June 22–26, 2020, Chicago, IL, USA

8 ∈ [3] and '
log3
1 := '0. Since

∑

9
3
29

= 23 this gives us 23 reg-

isters as claimed. Let %0ℓ := %1, %3 . . . and %0A := %2, %4 . . ., and for

9 ∈ [log3] we inductively de�ne programs %
9
ℓ as follows:

1: %
9−1
ℓ

2: for 8 = 1, 3 . . . do

3: '
9
8 ← '

9
8 − '

9−1
28−1'

9−1
28

4: end for

5: %
9−1
A

6: for 8 = 1, 3 . . . do

7: '
9
8 ← '

9
8 + '

9−1
28−1'

9−1
28

8: end for

9: (%
9−1
ℓ)−1

10: for 8 = 1, 3 . . . do

11: '
9
8 ← '

9
8 − '

9−1
28−1'

9−1
28

12: end for

13: (%
9−1
A)−1

14: for 8 = 1, 3 . . . do

15: '
9
8 ← '

9
8 + '

9−1
28−1'

9−1
28

16: end for

We de�ne the program %
9
A similarly but for even 8 in each loop

instead.

We claim that %
9
ℓ (%

9
A) sets '

9
8 = g

9
8 +

∏29 8
8′=29 (8−1)+1

E8′ for all odd

(even) 8 and leaves all other registers untouched, and that it uses at

most 49 calls to each %8 plus
2
3 (4

9 − 1)3 basic instructions. This is

clear for 9 = 0 as %0ℓ and %0A simply add E8 to all the corresponding

odd and even registers respectively using one call to each relevant

%8 and no basic instructions. Inductively correctness follows by

the correctness of the program for Lemma 5, as for each 8 our

program performs the same steps. Since %
9−1
ℓ and %

9−1
A each make

at most 49−1 calls to each %8 and two calls are made to each of these

programs, we get at most 4 · 49−1 = 49 calls to each %8 program. The

for loops add 23 basic instructions for a total of 4· 23 (4
9−1−1)3+23 =

2
3 (4

9 − 1)3 .

Running %
log3
1 we thus get '0 = '

log3
1 = g0 +

∏3
8′=1 E8′ as re-

quired, with a total of 4log3 = 32 calls to each %8 and $ (4
log33) =

poly(3) basic instructions. □

This would seem like major leap for all our results: plugging

these numbers into our construction for Theorem 2 would give a

branching program with length (log:)3ℎ poly(log:), which would

go far and beyond the task of beating :ℎ for every super-constant

: and ℎ. Unfortunately, the recursive steps of Algorithms 2 and

3 (speci�cally, Lemmas 8 and 9) don’t just compute one product

∏3
8=1 E8 — they actually compute a sum involving :2 di�erent prod-

ucts. Recall that in Lemma 8 our key equation was

E?,1 =

∑

(G,~,I) ∈[:]×[:]×[:]

[G1 = 1] [5? (~, I) = G]·

∏

1′∈[log:]

[Eℓ,1′ = ~1′] [EA,1′ = I1′]

Each distinct (~, I) gives rise to a di�erent product, because

the ~′
1
or I′

1
values will be distinct. This is no issue for Lemmas

8 and 9, because each di�erent product in the sum is computed
directly into the same 'E registers, whereas the tree-like construc-

tion in Lemma 10 uses log: extra registers, denoted '
9
8 in the proof.

Naïvely, then, computing all :2 products simultaneously would re-

quire :2 log: extra registers, at which point Algorithm 1 is a better

option. It would be interesting to try to improve on this approach.

REFERENCES
[1] David A Barrington. 1989. Bounded-width polynomial-size branching programs

recognize exactly those languages in NC1 . J. Comput. System Sci. 38, 1 (1989),
150–164.

[2] Michael Ben-or and Richard Cleve. 1992. Computing Algebraic Formulas Using
a Constant Number of Registers. SIAM J. Comput. 21, 1 (Feb. 1992), 54–58.

[3] Harry Buhrman, Richard Cleve, Michal Kouckỳ, Bruno Lo�, and Florian Speelman.
2014. Computing with a full memory: catalytic space. In Proceedings of the forty-
sixth annual ACM symposium on Theory of computing. ACM, 857–866.

[4] Harry Buhrman, Michal Koucký, Bruno Lo�, and Florian Speelman. 2018. Cat-
alytic Space: Non-determinism and Hierarchy. Theory Comput. Syst. 62, 1 (2018),
116–135.

[5] Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh. 2018.
Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity. In 26th
Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland (LIPIcs), Vol. 112. 12:1–12:15.

[6] Stephen Cook, Mark Braverman, Pierre McKenzie, Rahul Santhanam, and Dustin
Wehr. 2009. Branching Programs: Avoiding Barriers. (August 2009). https://
www.cs.toronto.edu/~sacook/barriers.ps Talk at Barriers Workshop at Princeton.

[7] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam. 2012. Pebbles and Branching Programs for Tree Evaluation. ACM Trans.
Comput. Theory 3, 2, Article 4 (Jan. 2012), 43 pages. https://doi.org/10.1145/
2077336.2077337 arXiv version freely available at http://arxiv.org/abs/1005.2642.

[8] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.
2020. Randomized and Symmetric Catalytic Computation. Electronic Colloquium
on Computational Complexity (ECCC) 27 (2020), 24. https://eccc.weizmann.ac.il/
report/2020/024

[9] Je� Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. 2018. Hardness of
Function Composition for Semantic Read once Branching Programs. In 33rd
Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA (LIPIcs), Vol. 102. 15:1–15:22.

[10] Frank Gray. 1953. Pulse code communication. https://patents.google.com/patent/
US2632058A/en. US Patent 2632058A.

[11] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. 2019. Un-
ambiguous Catalytic Computation. Electronic Colloquium on Computational
Complexity (ECCC) 26 (2019), 95.

[12] Michal Koucký. 2016. Catalytic computation. Bulletin of the EATCS 118 (2016).
[13] David Liu. 2013. Pebbling Arguments for Tree Evaluation. CoRR (2013).
[14] Michael S. Paterson and Carl E. Hewitt. 1970. Comparative Schematology.

In Record of the Project MAC Conference on Concurrent Systems and Paral-
lel Computation, Jack B. Dennis (Ed.). ACM, New York, NY, USA, 119–127.
https://doi.org/10.1145/1344551.1344563

[15] Aaron Potechin. 2016. A Note on Amortized Branching Program Complexity.
arXiv:cs.CC/1611.06632

[16] John H. Reif and Stephen R. Tate. 1992. ON THRESHOLD CIRCUITS AND
POLYNOMIAL COMPUTATION.

760

Catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

STOC 2020

Catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

STOC 2020

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem

Hello from Toronto, Canada!
This video is an overview of a paper by Ian Mertz and myself, about a
new space-efficient algorithm for the Tree Evaluation Problem.
The video is divided into two parts.

Outline

The Tree Evaluation Problem

New algorithm

Outline

The Tree Evaluation Problem

New algorithm
2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

In the first part, I’ll talk about the Tree Evaluation problem. It was
introduced in an attempt to separate complexity classes: the problem can
easily be solved in polynomial time, but it seems impossible to solve in
low-memory classes like log space.
In the second part, I’ll show you a new algorithm for solving this problem
with limited memory. This algorithm gives the first space improvement
since the problem was originally introduced ten years ago, and it makes
use of some techniques for re-using memory using reversible
computations.

The Tree Evaluation Problem

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

The first part is older work mostly done by other people.
It’s based on a couple of papers from 2010 that introduced the problem.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

I’ll start by describing the problem and its motivation. Then I’ll talk
about a couple of abstractions we use to analyse it, called branching
programs and pebbling games. And finally, before I move on the new
algorithm, I’ll talk about some lower bounds that the our algorithm had
to work around.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

So, let’s start with the motivation.

The Tree Evaluation Problem (TEP)
Motivation

Fact

TEP ∈ P

Conjecture

TEP 6∈ L

The Tree Evaluation Problem (TEP)
Motivation

Fact

TEP ∈ P

Conjecture

TEP 6∈ L

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The Tree Evaluation Problem, or TEP for short is easy to solve in
polynomial time, but it’s conjectured that you can’t solve it in log space.
The goal is to prove this conjecture, implying that L is not equal to P.
In fact, the gap it aims to close is a little narrower than that: it’s in log
CFL but conjectured not to be in NL. But we’ll just focus on P and L in
this video.
So, that’s the motivation. Now let’s talk about what this problem
actually is.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The input to the Tree Evaluation Problem is a complete binary tree with
some information attached to each node. Each leaf has a number
attached to it — in this case, 3, 1, 2 and 2 — and each internal node has
a table of numbers.
Given that input, we’re going to recursively define a single number at
each node, called the value of the node.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The values of the leaves are already part of the input.
To compute the value of an internal node, we need to first know the
values of its children.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

For example, let’s look at the left child of the root. The values of its two
children tell us where to look in its table. In this case, we look at row
three, column one, and we find the number two.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

Similarly, we look up row two column two of the node on the right, and

find the number three.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

Finally, the numbers two and three tell us where to look in the root node,

and we find the number two.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The output of the Tree Evaluation Problem is the value at the root.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

There are two parameters to this problem. The first is the height of the
tree. Three in this case. The second parameter is k, which is the range of
the numbers at the nodes. In this case it’s also three, meaning every
number is between one and three, and the tables are all three by three.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The size of the input to TEP is on the order of two to the h internal
nodes, times k squared numbers stored in each node, times log k bits to
store each number.

TEP Input size: Θ(2hk2 log k).

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

TEP Input size: Θ(2hk2 log k).

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

Using this formula for the input size, we can rephrase the conjecture I
showed you earlier.
Saying TEP is not in L is the same as saying it can’t be solved in big oh
of h plus log k space.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Now that I’ve defined the Tree Evaluation Problem, I want to talk about
algorithms for solving it. I’ll start by describing branching programs,
which are the computational model we’re using. Then I’ll talk about an
abstraction called a pebbling game which can be useful for both upper
and lower bounds.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

So, here’s our TEP input again. I’ll define a query to be any piece of that
input we might want to read.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Specifically, a query is either a leaf, meaning we want to read the input at
that leaf, or it’s a particular cell in one of the tables in an internal node.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

A branching program is a directed graph, where the nodes are called
states. There are two kinds of state.
A query state is labelled with a query, and has k outgoing edges: the
edge you follow depends on the answer to the query.
The other kind is a final state. When you get to one of those, the
computation stops, and you output whatever the state is labelled with.
One of the states is marked as the starting state, where computation
begins.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Let’s return to our lower bound conjecture. We’ve written it as: TEP
can’t be solved in big oh of h plus log k space.
Any Turing machine can be transformed into a uniform family of
branching programs, with one state for each possible configuration.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.
In other words, it can’t be solved by a uniform family of branching programs with
2O(h)kO(1) states.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.
In other words, it can’t be solved by a uniform family of branching programs with
2O(h)kO(1) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

So, we can rephrase our conjecture one more time: TEP can’t be solved
by a uniform family of branching programs with only two to the order h
times a polynomial in k states. We could also state the conjecture
without the uniformity condition.

Now, let’s look at an example of a branching program for solving TEP.

To keep it small, we’ll set both the height and the alphabet size to 2.

A11

A12

A21

A22

B C

A11

A12

A21

A22

B C
2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

When both h and k are two, an input to TEP is structured like this.
There are six things we can query: the four cells in the root node A’s
table, and the two leaves B and C.

A11

A12

A21

A22

B C

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Here’s a branching program that solves it. It’s organized into layers going
from left to right.
The starting state queries the first leaf, B. Depending on the answer, we
end up in one of the two states in the next layer. Those states query the
other leaf C, and depending on the answer, we end up in one of four
possible states in the third layer. Each node in the third layer queries a
different cell in the root node’s table, and depending on the answer, we
output 1 or 2.

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Here’s an example input. Let’s see what the computation looks like.

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

Both the leaves are 2, so we end up at the node that queries A22. Then
the value is 1, so we output 1.
One thing to notice here is that every layer remembers a different set of
information.

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

In the second layer, we remember node B, and in the third layer, we
remember both B and C. All the lower bounds we have so far for TEP
involve arguments about how many things the branching program needs
to remember at once.
One way to model this idea of remembering things is pebbling games.

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

Pebbling games were first defined by Paterson and Hewitt in 1970. In the
context of the Tree Evaluation Problem, they work like this. Suppose we
have a complete binary tree of height h.

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

Three in this case.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

You have some limited number of pebbles. Let’s say it’s also three. They
all start in your hand. You’re allowed two kinds of move.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

First, you can move one of your pebbles to a leaf of the tree. And
second, if a node’s two children both have pebbles on them, you can
move one of your pebbles to that node. The goal is to place a pebble on
the root node.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

Here’s a sequence of moves that does this. We start with the leaves and

work our way up.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

We’ve succeeded, because there’s now a pebble on the root node. The
important question is: how many pebbles do we need? In this case we
had three pebbles, and it was enough.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

In general, you can solve this game with h pebbles, where h is the height
of the tree, using a simple recursive algorithm. The algorithm visits each
node once, so that’s two to the h minus one steps.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

A corollary of that is that we can build a branching program that solves
the tree evaluation problem using two to the h times k to the h states.
Each step of the game translates into a layer of the branching program,
and the placement of the pebbles determines which values the program is
remembering. Since our strategy uses at most h pebbles at a time, the
program will only need to remember at most h values at once, which
requires k to the power h states in a single layer.
Now, the pebbling strategy is tight: if you only have h-1 pebbles, no
sequence of legal moves can put one on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

The proof of that is not as obvious. I’ll leave it as an exercise. Now, it
would be nice if we could make a corresponding corollary.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

Since we need at least h pebbles, maybe we can prove that the tree
evaluation problem needs at least on the order of k to the h states. We’ll
see in a moment that this would imply that log space is not equal to
polytime.
For a long time, nobody could come up with any algorithm that did
better, so this conjecture seemed quite plausible.
The algorithm I’ll present later is the first counterexample.
Let’s take a look at where we are.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

We started with this conjecture that TEP is not in L, meaning two to the
order h times poly k states isn’t enough.
We saw our first algorithm. If you analyse it carefully, it turns out the
pebbling algorithm uses on the order of k plus one to the power h states.
And the pebbling framework led to a conjuctered lower bound of k to the
h.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(k
h
))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(k
h
))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

The new algorithm I’m going to show you has on the order of k over h to
the power two h plus an arbitrarily small constant times a polynomial in k
states.
This defeats the conjectured lower bound of k to the h whenever h is not
too small compared to k. Specifically, if h is k to a power bigger than one
half, this algorithm is an asymptotic improvement.
But, it’s still not a log space algorithm, so the door is still open to using
TEP as a way to separate L from P.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Lower bounds

Now, I want to briefly mention some existing lower bounds for TEP, to
give you an idea of why we found this new algorithm surprising.

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Lower bounds

It turns out that under some pretty reasonable-sounding assumptions,
you can prove that the pebbling algorithm is essentially the best possible.

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Lower bounds

You can prove it if you assume the algorithm is read-once. That means
that once the algorithm reads a certain piece of the input, it is not
allowed to read it again.

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

1

1

3

3

1

2

1

2

1X

X

X

X

X

X

X

X

3 2

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

1

1

3

3

1

2

1

2

1X

X

X

X

X

X

X

X

3 22
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Lower bounds

Another assumption we can make instead is that the algorithm is thrifty.
This means that the algorithm never reads an irrelevant piece of the
input. For example, if an internal node’s left child has value three and its
right child has value 2, then it’s only allowed to read the entry at position
three two in that node’s table, since none of the other entries matter.
Our new algorithm beats this lower bound of k to the h, so, as you may
have already inferred, it’s not read-once or thrifty. Our algorithm is
actually going to read every piece of the input several times. I’ve said a
lot of mysterious things about the algorithm, so maybe it’s time I told
you how it works.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

This part of the video has two pieces.

I’ll begin with some techniques we use related to reversible computation,

and then I’ll tell you how we apply them to solve TEP.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

The first thing I want to tell you about is a paper that caught our
attention, and showed us that reversible computation is something we
should be looking at.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Catalytic space

The paper is from 2014, and it’s called Computing with a full memory:

catalytic space.
The idea is that you’re given a small amount of ordinary memory to work
with, and a much larger amount of extra memory. The catch with the
extra memory is that it starts out filled with data, possibly
incompressible, and once you’re done with your computation, you need to
return it back the way it was.
Surprisingly, the authors found that the extra memory seems to help.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Catalytic space

With only a logarithmic amount of ordinary memory but a polynomial
amount of borrowed memory, you can compute many things not known
to be computable in log space, such as the determinant of a matrix, or
anything in nondeterministic log space.
We stumbled on this result when we were trying to prove a lower bound
for the Tree Evaluation Problem.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.2

0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Catalytic space

We had the following idea for a proof. First, at some point you need to
compute the left child of the root: node B in this diagram. Then you
need to keep that in memory while you compute the right child, C. That
uses up log k bits of memory in addition to the subroutine that’s
computing C. Therefore, the argument goes, every level you add to the
tree adds log k bits that your algorithm needs to remember.
The catalytic space result effectively shows that this approach will never
work. Even if we could argue that you need to remember B while you’re
computing C, this result says that the subroutine computing C can
borrow the memory being used to store B.
The history of the techniques we use goes back pretty far.

Bounded-width polynomial-size branching programs recognize exactly those languages

in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]

Bounded-width polynomial-size branching programs recognize exactly those languages

in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

A 1989 paper by Barrington showed that if you restrict branching
programs to have just five nodes in every layer, you can still do a lot with
them. A later 1992 paper by Ben-Or and Cleve showed how you can do a
lot with register programs that only use three registers.
Both of these papers show how you can trade time for space in order to
make algorithms that use an extremely limited amount of memory.
Another thing they have in common is that they use reversible operations.
The basic ingredient in our algorithm is reversible operations on registers.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.
2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

The model is that we have n inputs, x one through x n, and m work
registers r one through r m, and their values are all in some ring R.
We’re interested in reversible instructions. For example, the first
instruction here adds register four times input 1 to register five. We can
reverse that instruction by subtracting instead of adding. When you run
these two instructions in sequence, it’s the same as doing nothing.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

For any register rj , let’s define τj to be its initial value before our
computation begins.
Now, suppose we have some function f we’re interested in computing.
I’m going to define something called cleanly computing f.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

A sequence of reversible instructions cleanly computes a function f into
register i if, once the computation finishes, the new value of register i is
its old value τi plus f, and every other register is unchanged: r j equals
tau j for j not equal to i. Note that we’re allowed to use these other
registers, as long we make sure to undo all our changes.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)2

0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

Since each instruction is reversible, we can reverse the entire sequence by
running the inverses of the original instructions in reverse order. If we do
that, the result is a clean computation of negative f.
There are two reasons we like this definition. The first is that it’s
designed to help us re-use memory, as we’ll see later. The second reason
is we can translate register programs into branching programs.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R |m states.

Ring R

Inputs x1, . . . , xn ∈ R

Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R |m states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

If we can cleanly compute f with m registers and ` instructions, then we
can turn that into a branching program with ` plus one layers, each
containing R to the m states in order to remember all the register values.
So, we can design our algorithm using register instructions and then
convert it to a branching program. Now, let’s try some examples of clean
computation.

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

I r1 ← r1 + x2

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

I r1 ← r1 + x2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

For our first example, suppose we want to cleanly compute x one plus x
two into register one. We can do this with two instructions: first add x
one, then add x two.

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

After we add x one, the value of the register is tau one plus x one.

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2 [r1 = τ1 + x1 + x2]

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2 [r1 = τ1 + x1 + x2]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation

And after we add x two, the value of the register is tau one plus x one
plus x two. By definition, we’ve cleanly computed x1 plus x2 into r1.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

For our next example, let’s say we’ve got a subroutine P one that cleanly
computes a function f 1, and a subroutine P two that cleanly computes a
function f 2, and our goal is to compute the product f 1 times f 2.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

The program looks like this. We can think of it as being made out of two
interlocking pieces.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

The first piece is calling the subroutines P one and P two. We first call P
one, then P two. Since everything’s made out of reversible instructions,
we’re then able to run P one backward and P two backward.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

P1

r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

The other piece is adding and subtracting r one times r two. Since the
subroutines are modifying the contents of r one and r two, this has a
different effect each time. So, let’s see what happens when we run the
program.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

We start by running P1. After it’s finished, register one has value tau 1
plus f 1, and the other two registers have their original values tau 2 and
tau 3.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2
P−1
1

r3 ← r3 − r1 × r2
P−1
2

r3 ← r3 + r1 × r2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

The next instruction subtracts two terms from register three, leaving a
value of tau 3 minus tau 1 times tau 2 minus f one times tau 2.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

As the program continues, different terms are added and subtracted from
register 3.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

At the end, register three holds its original value plus f1 times f2, and the
other registers have been restored. That means we’ve succeeded.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3
r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2
P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1
1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1
2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

Now, we’ve computed f1 times f2, but what did it cost us? Well, we had
to make four subroutine calls: P1 and P2 forward and backward. But,
this algorithm is extremely efficient with memory. Notice that P1 and P2
are allowed to use all of our memory, as long as they restore it when
they’re done. There is no memory that needs to be set aside for the
parent routine’s exclusive use. I like to think of these programs as
“borrowing” the memory they use.
Now let’s talk about how to apply these techniques to solving the Tree
Evaluation Problem.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

This is the last part of the video.
We want to build a reversible computation to compute the value at the
root node of the tree. In order to do that, it will be helpful to have an
algebraic formula for that root value.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
A formula for TEP

From here on, our ring will be the integers mod two, meaning registers
will store bits. I’ll introduce some notation: brackets x equals y is an
indicator which equals one if they are equal and otherwise zero.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
A formula for TEP

Now, suppose we have some node v with two children, ` and r, and this
is the table at that node. Let’s try to build a formula for the indicater v
equals one.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
A formula for TEP

Well, there are three ways that node v can be equal to one,
corresponding to the three times one appears in the table at node v. We
can turn this into a formula with three terms.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
A formula for TEP

The terms say: either ` equals 2 and r equals 1, or ` equals 2 and r
equals 2, or ` equals 1 and r equals 3.
Now let’s write the general formula.

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
A formula for TEP

Let’s say f v is the table of values at node v.
In general, we take the sum over all possible values y and z for the two
children. Inside the sum, we check node v’s table to see whether each
term should be included. We multiply that indicator by the indicators `
equals y and r equals z.
With that formula in hand, let’s try to build a recursive algorithm.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

I’ve left our formula at the top of the slide for reference. Our algorithm’s
goal is to compute the formula, which determines whether node v has
value x.
The algorithm is parameterized by the node v, the value x, and some
target register i. If node v has value x, it will flip the bit in register i. In
other words, it assigns r i plus the indicator v equals x to r i.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

If v is a leaf node, then the value of v is directly available as part of the
input. So, we can do this in just one instruction.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

If v is an internal node, then we compute this formula by looping over all
k squared possible values for y and z and adding each term to r i one at a
time.
Each term includes a product of the indicators l equals y times r equals z,
which we compute using the multiplication algorithm. This requires four
recursive calls to CheckNode and two auxiliary registers j and j ′.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

We use a total of three registers: register i holds our output, and two
more registers j and j ′ are required by the multiplication algorithm. Since
we’re using clean computations, the calls to the subroutine are free to use
those same three registers, so we really don’t need any more than three
registers, including all the recursive calls.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

If we convert this to a branching program, those three one-bit registers
translate to eight states in each layer. The length of the program is four
k squared to the power h minus one, since at every level, we make four k
squared recursive calls.
This isn’t very good.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
First attempt

Our original pebbling algorithm just uses k plus one to the h states. So,
we’ll need another trick if we’re going to beat it.
Let’s take a closer look at what’s going on in this for loop.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

Each iteration of the for loop is using the multiplication lemma to
combine the indicators ` equals y and r equals z.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

If you remember the multiplication lemma, it looks kind of like this. We
make four calls to our subroutines for checking ` and r, and in between
those four calls, we update our final output register r i. I’ve coloured the
recursive calls in blue.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

The for loop just means we do this whole thing over and over again, k
squared times.
It turns out we can completely parallelize this. All of the instructions on
the first row can be run at the same time, with one recursive call that
checks all of the possible values for the left child. We can do similar
things for the other lines.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

This means that instead of four k squared recursive calls, we only need to
make four! The catch is that instead of three registers, we need three k,
since each recursive call needs to return k different indicator values.
We can think of the output of the subroutine as a k-bit string, where
exactly one of the bits is one and the others are zero. We call this a
one-hot encoding.
So, how efficient is this strategy?

I Pebbling algorithm: Θ((k + 1)h) states.

I Pebbling algorithm: Θ((k + 1)h) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

Remember that the Pebbling algorithm uses on the order of k plus one to
the h states.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

This new parallel algorithm uses three k registers, so each layer of the
branching program will have two to the three k states. It calls itself
recursively four times, which means the number of layers is on the order
of four to the h times k squared extra work that needs to be done.
In total, we have on the order of two to the three k times four to the h
times k squared states.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

When k is large compared to h, this is much worse than the pebbling
algorithm. But when h is asymptotically larger than around k over log k,
this algorithm is an improvement.
The three times k registers are really hurting us, so the next thing we
tried was a binary encoding: instead of k bits, use log k bits to represent
the value at the node in binary.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

The benefit here is that we only need three times log k registers, instead
of three k.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

The trouble is that we end up needing to multiply more than two values
at once — our formula has degree two log k. We found that we needed
to make k squared recursive calls in order to multpily two log k values,
resulting in a total of k to the two h plus order one states.
This is strictly worse than the pebbling algorithm, but it’s still a useful
stepping stone.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(k

h
))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h�
k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(k

h
))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

By interpolating between the two encodings, you get an algorithm that
does asymptotically better than pebbling as long as the height of the tree
is at least k to the power one half plus any small constant.

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.
2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

In conclusion, we presented a new algorithm for the tree evaluation
problem, which is the first improvement since TEP was introduced ten
years ago.
It is not a log space algorithm, so TEP remains a possible approach for
separating P from L.

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

There are two basic directions for future work.
The first is to improve the algorithm. The main limiting factor seems to
be computing products. The “binary encoding” algorithm didn’t work
because the number of recursive calls we have to make at each level is
exponential in the degree of the polynomial we’re computing. It would be
nice to be able to improve that. We’re not the first to point out this
direction.
The other direction is to go back to proving lower bounds for the tree
evaluation problem. If you remember, I briefly mentioned that we have
lower bounds for two restricted classes of algorithm. The first is
read-once algorithms, which are never allowed to read the same part of
the input twice. The second is thrifty algorithms, which never read an
irrelevant piece of the input. Our new algorithms violate both of those
restrictions: we read every single part of the input, whether it’s relevent
or not, and we do it over and over again, using repeated computation to
save memory.

Thanks!

Thanks!

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP
Thanks!

Thanks for watching, and I hope to see you at the first fully online STOC!

	Abstract
	1 Introduction
	1.1 The Tree Evaluation Problem and L vs. ¶
	1.2 Branching Programs and Lower Bounds
	1.3 Catalytic Computing
	1.4 Our Results
	1.5 Important Ideas

	2 Preliminaries
	2.1 Branching Programs
	2.2 Invertible Programs and Transparent Computation

	3 Algorithm 1: One-Hot
	3.1 Binary Catalytic Products
	3.2 Parallel Binary Catalytic Products

	4 Algorithm 2: binary
	4.1 d-ary Catalytic Products
	4.2 Parallel d-ary Catalytic Products

	5 Algorithm 3: Hybrid
	6 Conclusion
	Acknowledgments
	A Improved d-ary Catalytic Products
	References
	The Tree Evaluation Problem
	Motivation and definition
	Branching programs and pebbling games
	Lower bounds

	New algorithm
	Reversible computation
	Solving TEP

