
Computing with a full memory: Catalytic space

Harry Buhrman
∗

CWI, Amsterdam and
University of Amsterdam
h.buhrman@cwi.nl

Richard Cleve
†

University of Waterloo
cleve@uwaterloo.ca

Michal Koucký
‡

Charles University, Prague

koucky@iuuk.mff.cuni.cz

Bruno Loff
CWI, Amsterdam

bruno.loff@gmail.com

Florian Speelman
§

CWI, Amsterdam
f.speelman@cwi.nl

ABSTRACT

We define the notion of a catalytic-space computation. This
is a computation that has a small amount of clean space
available and is equipped with additional auxiliary space,
with the caveat that the additional space is initially in an ar-
bitrary, possibly incompressible, state and must be returned
to this state when the computation is finished. We show that
the extra space can be used in a nontrivial way, to compute
uniform TC1-circuits with just a logarithmic amount of clean
space. The extra space thus works analogously to a catalyst
in a chemical reaction. TC1-circuits can compute for exam-
ple the determinant of a matrix, which is not known to be
computable in logspace.

In order to obtain our results we study an algebraic model
of computation, a variant of straight-line programs. We em-
ploy register machines with input registers x1, . . . ,xn and
work registers r1, . . . , rm. The instructions available are of
the form ri ← ri±u×v, with u, v registers (distinct from ri)
or constants. We wish to compute a function f(x1, . . . ,xn)
through a sequence of such instructions. The working regis-
ters have some arbitrary initial value ri = τi, and they may
be altered throughout the computation, but by the end all
registers must be returned to their initial value τi, except
for, say, r1 which must hold τ1 + f(x1, . . . ,xn). We show
that all of Valiant’s class VP, and more, can be computed
in this model. This significantly extends the framework and
techniques of Ben-Or and Cleve [6].

∗Supported in part by EU project SIQS.
†Supported in part by Canada’s NSERC, CIFAR, and the
U.S. ARO.
‡Supported in part by (FP7/2007-2013)/ERC Consolidator
grant LBCAD no. 616787.
§Supported by the NWO DIAMANT project and EU project
SIQS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
STOC ’14, May 31 – June 03 2014, New York, NY, USA
Copyright 2014 ACM 978-1-4503-2710-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591796.2591874

Upper bounding the power of catalytic computation we
show that catalytic logspace is contained in ZPP. We further
construct an oracle world where catalytic logpace is equal to
PSPACE, and show that under the exponential time hypoth-
esis (ETH), SAT can not be computed in catalytic sub-linear
space.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of
Computation

Keywords

Reversible computation; space complexity; transparent com-
putation; straight-line programs; arithmetic circuits

1. INTRODUCTION
Imagine the following scenario. You want to perform a

computation that requires more memory than you currently
have available on your computer. One way of dealing with
this problem is by installing a new hard drive. As it turns out
you have a hard drive but it is full with data, pictures, movies,
files, etc. You don’t need to access that data at the moment
but you also don’t want to erase it. Can you use the hard
drive for your computation, possibly altering its contents
temporarily, guaranteeing that when the computation is
completed, the hard drive is back in its original state with
all the data intact? One natural approach is to compress the
data on the hard disk as much as possible, use the freed-up
space for your computation and finally uncompress the data,
restoring it to its original setting. But suppose that the data
is not compressible. In other words, your scheme has to
always work no matter the contents of the hard drive. Can
you still make good use of this additional space?

In order to study this question we define the following
model of computation, which we call catalytic space1. We
equip the standard Turing machine model — which has input,
output, and work tapes — with an additional auxiliary tape.
We assume that the Turing machine halts on every input
and call it catalytic if at the end of every computation, the
auxiliary tape is unaltered for every possible initial setting

1Catalysis refers to the situation where the rate of a chemical
reaction is increased by participation of a substance which is
not consumed and is available unaltered after the reaction
has taken place.

of its content. As usual in space-bounded computation we
limit the amount of work space by a function s(n), usually
logarithmic or polynomial. We define the class CSPACE(s(n))
to be the class of sets that are computed by catalytic Turing
machines whose work-tape is bounded by s(n) tape cells, and

whose auxiliary space is bounded by 2s(n) cells.
Intuition tells us that the auxiliary tape is not very useful

since its contents must be present in some way at every step
of the computation and if these contents are incompressible,
effectively no extra space is available. Surprisingly it appears
that that CSPACE(logn) is more powerful than ordinary
logspace (DSPACE(logn) or L), for we show that TC1 ⊆
CSPACE(logn). Note that TC1 contains NL and even #L

and other classes that are conjectured to be different from
L. We remark that, although the catalytic requirement of
the auxiliary space suggest the computation is reversible,
it is not sufficient to have just reversibility, since reversible
computation schemes [7, 18, 10] usually require the initial
configuration of all the space cells to be set to some fixed
initial value, for example all blanks. However, a stronger
version of reversibility, that we call transparent computation,
suffices. Our reversibility framework is related to the work of
Ben-Or and Cleve [6] but goes beyond it. We show that the
techniques of Ben-Or and Cleve stop at the class of problems
that are reducible to iterated matrix product (GapL), whereas
our model is able to compute TC1.

We don’t know what the exact power of catalytic logspace
is, but show that it is contained in ZPP. It could be possible
that every problem in P is computable in CSPACE(logn).
This would be remarkable. It could be of practical interest
in situations when additional clean space is not available, for
example when the main memory of a computer is filled with
data of an ongoing background computation which may be
temporarily stopped, but requires the memory to be unal-
tered when it continues. On the other hand, CSPACE(log n)
might be a proper subset of P. There remains the pos-
sibility that CSPACE(logn) = L. If this is the case then
our result implies L = NL, and the intuition that an addi-
tional full memory is useless could lead to an approach for
proving this collapse. Lastly, we present an oracle relative
to which CSPACE(logn) = PSPACE, showing the potential,
at least in a relativized world, of the auxiliary tape. We
also show that under the exponential-time hypothesis [17],
SAT 6∈ CSPACE(o(n)).

2. PRELIMINARIES
To put our results into a proper context we need to review

several problems and related complexity classes.
L, NL, LOGCFL. By L we denote the class of prob-

lems solvable in logspace, by NL the class of problems solv-
able non-deterministically in logspace, and by LOGCFL the
class of problems that are logspace many-one reducible to
context-free languages. Another equivalent characteriza-
tion of LOGCFL is as the class of languages accepted by
non-deterministic logspace-bounded auxiliary push-down au-
tomata (AuxPDAs) running in polynomial time [20].

NCi, SACi, ACi, TCi. These are classes of boolean func-
tions computed by polynomial-size circuits of depth (log n)i.
The different classes differ by the set of gates that are allowed
in the circuit. NCi-circuits consist of input gates, constant
(0/1) gates, binary (fan-in-2) AND and OR gates, and unary
NOT gates. SACi-circuits additionally allow for the OR
gates to have arbitrary fan-in. ACi-circuits allow for both

AND and OR gates to have arbitrary fan-in. TCi-circuits are
additionally allowed to have MAJ gates of arbitrary fan-in
(a MAJ gate decides whether most of its input bits are 1).

GapL, #LOGCFL. We also consider counting classes:
GapL is the class of functions obtained by counting the dif-
ference between the number of accepting and rejecting paths
of a non-deterministic logspace machine; #LOGCFL is the
class of functions that count the number of accepting paths
of AuxPDAs running in logarithmic space and polynomial
time.
VP(R), SkewVP(R). Finally, we will also work with alge-

braic circuits that operate over some ring R. When R is the
ring of integers Z, these are also called arithmetic circuits.
Valiant’s class VP(R) [23] is the class of (families of) multi-
variate polynomials over R, computed by algebraic circuits
using addition and multiplication gates over R, that have
size and degree nO(1) (where n is the number of variables).
SkewVP(R) is the class of multivariate polynomials which
can be computed by VP(R)-circuits, with the further restric-
tion that each multiplication gate is binary and such that
one of its inputs is either a constant or an input variable.
#NCi(R), #SACi(R), #ACi(R). These are classes of

families of multivariate polynomials over R that are computed
by polynomial-size algebraic circuits of depth (log n)i. Again,
these classes differ only by the set of gates that are allowed.
#NCi(R)-circuits consist of input gates, constant gates (one
such gate for each element in R), and binary addition and
multiplication gates. #SACi(R)-circuits further allow for the
addition gates to have arbitrary fan-in. #ACi(R)-circuits
can have both addition and multiplication gates of arbitrary
fan-in.
Beside circuit families over a ring R that is the same

for all input lengths we also consider circuit families where
the circuit for inputs of length n computes over a ring Rn,
e.g., #NC1(Mn2×n2(Z)) consists of families of multivariate
polynomials over the ring of integer matrices, where the
size of the matrices is n2 for n being the number of matrix
variables.

DETn,R, IMMn,m,R. By DETn,R we denote the problem of
computing a determinant of an n×n matrix over a ring R. By
IMMn,m,R we denote the problem of computing the product
of n matrices, each over the ring R of dimension m × m.
We can omit the subscripts when the ring or dimensions are
understood from the context. Typically we may think of R
being the ring of integers, and m = n.
Relationship among these concepts. We now present

known relationships among these classes; see Figure 1 for
an overview.2. It is standard knowledge that TC0 ⊆ NC1 ⊆
SAC1 ⊆ AC1 ⊆ TC1, but none of these inclusions is known
to be proper. TC0 is known to contain problems such as
computing the sum and the product of n-many n-bit integers,
computing the division of two n-bit integers, etc [5, 19, 15].
It is also (not-as-well) known that NC1 ⊆ L ⊆ NL ⊆ SAC1 =
LOGCFL [26].

2Below and in Figure 1, inclusion is not meant in a set-
theoretic sense, and should be interpreted with the usual
caveats that apply to complexity classes; for instance, NL ⊆
GapL in the sense that the characteristic function of any
NL decision problem is in GapL; or, to give another exam-
ple, #AC0(Zp) ⊆ TC0 in the sense that any polynomial in
#AC0(Zp) can be computed in TC0 using the canonical en-
coding of Zp (see Section 4.1) But describing this with full
precision would give a cluttered, poorer exposition.

SAC1

TC0 // NC1 // L // NL
��

// LOGCFL

��

// AC1 // TC1

#AC0(Zpn) // GapL // #LOGCFL // #AC1(Zpn)

SkewVP(Z) VP(Z)

#AC0(Z2poly(n))

OO

#NC1(Mn×n(Z)) SAC1(Z) #AC1(Z2poly(n))

OO

Figure 1: Inclusion diagram for all the classes.

The complexity of computing the determinant character-
izes GapL. More precisely, f is in GapL if and only if it
is logspace many-one reducible to DETn,Z [21, 14, 27, 24].
Cook and others [12, 3] have shown that the class of prob-
lems logspace many-one reducible to DET is the same as
the class of problems logspace many-one reducible to IMM.3

Taken over the integers, SkewVP(Z) equals GapL [22], and
also #NC1(MnO(1)×nO(1)(Z)), the class of log-depth fan-in-2

circuits over integer matrices.4

#SAC1(R) is actually a characterization of VP(R) [25], a
deep result of depth-reduction for algebraic circuits. Taken
over the integers VP(Z) equals #LOGCFL [27].

The question posed by Valiant [23] about the relationship
between the determinant and VP(Z), namely, whether evalu-
ating a VP(Z) circuit reduces to evaluating the determinant
of a matrix that is at most polynomially larger in size (or,
equivalently, whether SkewVP(Z) = VP(Z)), is no different
to the question about the relationship between GapL and
#LOGCFL.
[1, 9, 19] establish a relationship between the classes TCi

and #ACi(R) over various integral rings and finite fields. For
instance, it is shown in [19] that TCi ⊆ #ACi(Zp(n)), where
p(n) is any prime number larger than the maximum fan-in of
the TCi circuit to be simulated (for inputs of length n), and
that, conversely, #ACi(Zf(n)) ⊆ TCi holds for any function

f(n) = O(2poly(n)).
A remark on TC1 versus GapL. Immerman and Landau

[16] conjecture that computing determinant over the integers
is hard for TC1. However, there is evidence suggesting that
this is not the case. Namely, it is known that TC1 circuits
can evaluate #AC1 circuits over Zm, the ring of integers mod
m, for exponentially large m.5 If the Immerman-Landau
conjecture were true then #SAC1 circuits over the integers —
which compute polynomials of degree polynomial in the num-
ber of inputs — could simulate TC1, and hence #AC1. But
the latter can have super-polynomial degree! This conclusion
can not be ruled out entirely, because while polynomials of
nO(1) degree over integer variables can not simulate poly-

3A function f is logspace many-one reducible to the deter-
minant if there is a function g computable in logspace such
that f(x) (viewed as a number written in binary) is equal to
the determinant of matrix g(x).
4This follows from [6, 11], see Theorem 1 below.
5This is because TC0 circuits can evaluate an iterated sum
and iterated product of integers, as well as compute the re-
mainder mod m. TC1 circuits cannot evaluate #AC1 circuits
over unbounded integers since #AC1 circuits represent poly-
nomials of degree up to nO(logn), and hence the encoding of
their output may require super-polynomially many bits.

nomials of larger degree over integer variables, they could
still conceivably simulate polynomials of nlogn degree over
integers modulo 2n (Z2n). But this does seem unlikely.

3. TRANSPARENT COMPUTATION
The model for transparent computation is a variant of

straight-line programs. The computational device is a register
machine equipped with read-write working registers ~r =
r1, r2, . . . , rm and read-only input registers ~x = x1, . . . ,xn.
Each register xi or ri holds a value from some designated ring
R. The standard set of instructions — called standard basis —
consists of instructions of the form ri ← ri±u×v, where u and
v are either elements of R (“constants”), or registers different
from ri, and the +,− and × are the operations of R. These
instructions are said to be reversible, and for an instruction I,
its inverse I−1 is I with the + or − interchanged.6 Moreover
when at least one of the u and v is an input register or
constant we call the instruction skew, and the skew basis is
the standard basis restricted to skew instructions
A program for this register machine is a sequence of re-

versible instructions, and we also call these programs re-
versible. Thus for a reversible program P = I1, I2, . . . , I` we
let the inverse program P−1 be I−1

` , I−1
`−1, . . . , I

−1
1 . It is easy

to verify that P ,P−1 computes the identity.
We say that a program P uses register r if one of its

instructions involves this register, e.g., r1 ← r1 + r4 · r7 uses
registers r1, r4 and r7.

We say that f(~x) can be computed transparently into a reg-
ister ri if there is a reversible program P that when executed
on registers r1, r2, . . . , rm with initial values τ1, τ2, . . . , τm
ends with value τi+f(~x) in register ri; the other registers may
contain arbitrary values at the end of the computation. (We
will always use τi to denote the initial value held in register ri
before executing a program.) Clearly, if we have a program
that transparently computes f into a register r we can modify
it by relabeling registers to compute f transparently into
a different register. We may also want P to transparently
compute a vector of functions (f1(~x), f2(~x), . . . , fk(~x)) into
registers ri1 , ri2 , . . . , rik , meaning that the execution of P
ends with the value τij + fj(~x) in each register rij .

Transparent computation is a very special type of reversible

6Generally speaking, the reversibility property would hold
for any instruction of the form ri ← σ~x,~r 6=i

(ri), where σ~x,~r 6=i

is a permutation of R which may arbitrarily depend on
the input registers and on the work registers other than
ri. Also, in principle, different registers could work over
different domains. In this paper we do not make use of these
possibilities, but they may appear in future work.

computation as it has the additional property that the com-
putation is meaningful regardless of the initial setting of the
working registers.7 Hence the choice of name: the compu-
tation is “transparent,” in the sense that it somehow sees
through the contents of the working registers. This property
is not universally shared by reversible models of computation.
Our model is a variant of the model considered by Copper-
smith and Grossman [13], and by Ben-Or and Cleve [6].

Definition 1. TP(R, s,m) is the class of functions trans-
parently computed by reversible programs over the standard
basis over ring R, having at most s instructions and using at
most m registers. TP(R) is the class of (families of) func-
tions in TP(R, poly, poly). SkewTP(R, s,m) and SkewTP(R)
are analogously defined for the skew basis.

Coppersmith and Grossman [13] have shown that the class

TP(Z2, 2
O(n),O(1)) contains all boolean functions (cf. [11]).

The reason why we are interested in transparent computation
is because it allows us to restore the work registers to their
initial values. For suppose that we have a reversible program
P that transparently computes f(~x) into register r1, while
freely modifying the contents of other registers. Then we
can take the program P ′: r ← r − r1,P , r ← r + r1,P

−1,
where r is a register not used by P . While this new program
still transparently computes f(~x) into r, all of the remaining
registers are returned to their initial value. We then say
that P ′ cleanly (as well as transparently) computes f(~x) into
register r.

Uniformity. Our class TP(R) is a non-uniform class. Natu-
rally, we may consider also its uniform variant. All our results
in which we simulate circuits by transparent programs essen-
tially preserve the uniformity, so a uniform family of circuits
is simulated by a uniform family of transparent programs.
There is only a slight loss in our Powering Lemma where
we hardwire binomial coefficients into the transparent pro-
gram. Since the necessary binomial coefficients can easily
be computed in logarithmic space the resulting transparent
program is still at least logspace uniform if the circuit family
is. This also affects all our results that use the Powering
Lemma, including our main result on simulation of TC1. A
possible way to avoid this loss in uniformity is to construct
very uniform transparent programs that would compute the
binomial coefficients.

7Furthermore, and quite remarkably, the following can be
shown: let R(t) be the contents of the working registers after
executing t instructions of some transparent program, and let
X = X1, . . . ,Xn be the input; then for any t, I(R(t) : X) =
I(R(0) : X), where I denotes the common information, either
in the Shannon or Kolmogorov sense (input and registers
must be suitably specified, respectively as a distribution or
as a binary string, in order to fit in either framework; details
are left to the reader).
In particular, if the initial contents of the registers are in-
dependent of the input (I(R(0) : X) = 0), then at any
point in the computation, the register machine knows noth-
ing about the input, other than whichever specific register
Xi it might be accessing directly (as when executing the
instruction r ← r +Xi, for instance).
It should be noted, however, that if one is to look at two
distinct time-steps t1 and t2, some information about X
could be derived, i.e., it could hold that I(R(t1),R(t2) :
X) > I(R(0) : X).

3.1 Previous results on this model
It is a natural question to ask: what functions can be

transparently computed by small programs over the stan-
dard basis, or over other bases? We do not have a precise
answer to this question but we will be able to show that all
functions in the circuit class TC1 can be computed transpar-
ently by polynomial size programs over the standard basis.
This greatly extends the result of Ben-Or and Cleve [6] who
in essence show that any function in NC1 can be computed
transparently by a polynomial size program using three reg-
isters. Cleve in his thesis [11] shows a result slightly stronger
than [6], namely that iterated matrix product can be com-
puted transparently by polynomial size programs over the
standard basis. Indeed, an inspection of the proof, together
with the technique of Ben-Or and Cleve, shows that the
iterated matrix product can be computed transparently by
polynomial size programs over the skew basis. In particular,
iterated matrix product of n matrices can be represented by
a formula over Rm×m of depth logn. Using the same tech-
niques, we can prove a tight characterization of SkewTP(R).

Theorem 1. Let f(x1, . . . ,xn) be a polynomial over a
ring R.

(a) If f can be represented as an entry of a d-depth for-
mula over the ring Mm×m(R), where each entry in each
matrix input to this formula is either an element of R,
or ± xi for some i, and m = poly(n), then f is in
SkewTP(R,O(m34d),O(m2)).

(b) If f is in SkewTP(R, s,m), then f can be represented as
an entry in the product of s-many (m+1)× (m+1) such
matrices.

Proof. The first part is a restatement of Theorem 3.3.1
of [11]. For the given parameters, it follows that f ∈
SkewTP(R,O(m34d),O(m2)). The only minor difference
is that Theorem 3.3.1 of [11] uses standard basis instructions
and not our skew basis. However, the inspection of the proof
together with the technique of Ben-Or and Cleve [6] shows
that the theorem is true also for the skew basis.
Now suppose that f ∈ SkewTP(R,S,m). Consider the

(m+1)-dimensional vector R0 = (0, . . . , 0, 1), where the first
m entries represent the values of registers r1, . . . , rn used
by the program, and the last entry represents a constant
one. The skew instruction ri ← ri ± rj · v, where v is either
an element of R or a variable xi, can be represented by
the (m + 1) × (m + 1) matrix having 1 on the diagonal,
±v in the (j, i) position, and 0 elsewhere. The instruction
ri ← ri + v can be represented by an identity matrix with
the entry (m+ 1, i) set to v. These matrices will act on the
vector R0 in the same way as their corresponding instructions.
If the program transparently computes f into r1 then the
(1,m+1) entry of the product of the matrices corresponding
to the program gives f . For each instantiation of ~x, this
product can be computed by a balanced (O(logn)-depth)
tree of product gates over the ring Mm×m(R).

From the GapL-completeness of IMM over Z, we get:

Corollary 1. SkewTP(Z) = GapL = SkewVP(Z) =
#NC1(MnO(1)×nO(1)(Z)).

3.2 Getting more
The previous characterization tells us that, to go beyond

GapL, we can not restrict ourselves to skew instructions. We
will now show how to use reversible programs to transparently
compute #SAC1(R). We must then be able to transparently
compute binary product and unbounded sum.

Lemma 1 (Binary product). Let r0, r1, r2, r3, r4 be
registers over some ring R. There are reversible programs
I1, I2, I3 over the standard basis using registers over R such
that for any reversible program P that does not use r0, r3
and r4 and that transparently computes r1 ← τ1 + f1(~x)
and r2 ← τ2 + f2(~x), the program I1,P , I2,P

−1, I3 computes
r0 ← τ0 + f1(~x)× f2(~x). The total length of I1, I2, I3 is eight
instructions.

Proof. The following program computes the required
product. The right-hand side indicates the result of applying
the instructions on the left-hand side.

1.
r0 ← r0 + r1r2 + r1r4

+ r3r2
// r0 = τ0 + τ1τ2 + τ1τ4 + τ3τ2

2. P // ri = τi + fi(~x), for i = 1, 2

3. r3 ← r3 + r1 // r3 = τ3 + τ1 + f1(~x)
r4 ← r4 + r2 // r4 = τ4 + τ2 + f2(~x)
r0 ← r0 + r1r2 // r0 = τ0 + f1(~x)f2(~x)

+ τ1(τ4 + τ2 + f2(~x))
+ (τ3 + τ1 + f1(~x))τ2

4. P−1 // ri = τi, for i = 1, 2

5. r0 ← r0 − r1r4 − r3r2 // r0 = τ0 + f1(~x)f2(~x)

The first statement, which can be implemented using three
standard basis instructions, forms I1; the statements from
line 3 form I2; and the two instructions corresponding to line
5 form I3.

Lemma 2 (Unbounded sum). Let r0, r1, r2, . . . , rk be
registers over some ring R. There are reversible programs I1
and I2 over the standard basis using registers over R such that
for any reversible program P that does not use r0 and that
for each i = 1, . . . , k transparently computes ri ← τi + fi(~x),

the program I1,P , I2 computes r0 ← τ0 +
∑k

i=1 fi(~x). The
total length of I1, I2 is 2k.

Proof. The following program computes the sum.

1. For each i = 1, . . . , k do r0 ← r0 − ri.

2. P

3. For each i = 1, . . . , k do r0 ← r0 + ri.

The first statement which corresponds to k standard basis
instructions forms I1, and the k instructions from line 3 form
I2.

Corollary 2. If R is a ring and f is computed by a
depth-d arithmetic circuit with w wires and s gates for binary
product and unbounded fan-in addition, then

f ∈ TP(R,O(dw2d+1),O(s)) .

Proof. Let C be the depth-d circuit for f of given prop-
erties. Let us assume that C is layered, that is, each gate at
level ` takes as its inputs gates at level `−1. For every gate gi

of C we will have an auxiliary register ri into which we will
transparently compute the value of gi. We will compute the
values of gates inductively level by level.

If gi is an input gate then it corresponds either to a constant
c ∈ R or to an input variable xj . In the former case the
instruction ri ← ri + c transparently computes the value
of gi, and in the latter case ri ← ri + xj does the job. A
concatenation of such instructions in arbitrary order for all
the input gates gives a program that simultaneously and
transparently computes the values of input gates into their
associated registers.

Assume that we already have a program P`−1 that simul-
taneously and transparently computes the values of gates
at the level `− 1 into appropriate registers. If gi is a gate
at level ` then it is either the sum of the values of gates at
the level `− 1 or their binary product. By the Unbounded
Sum Lemma or by the Binary Product Lemma, there are
programs Ii1, I

i
2, I

i
3 such that Ii1,P`−1, I

i
2,P

−1
`−1, I

i
3 transpar-

ently computes gi into ri. (We can and will assume that
Ii1, I

i
2, I

i
3 use different auxiliary registers for different i.) If

gi1 , gi2 , . . . , gik are the gates at level ` then

P` = Ii11 , . . . , I
ik
1 ,P`−1, I

i1
2 , . . . , I

ik
2 ,P−1

`−1, I
i1
3 , . . . , I

ik
3

computes simultaneously and transparently the values of the
gates at level ` into appropriate registers. In this way we
obtain a program Pd for transparently computing the value
of C.

If the size of the program P` is S` then S` ≤ 2S`−1 + 4w`,
where w` is the number of wires leading into the gates at
the level `. The number of input gates can be bounded by
w, so S1 ≤ w. Thus S` ≤ 6w2`−2 ≤ w2`+1. Each gate uses
at most three registers, and hence our final program will
use O(s) registers. This is under the assumption that C
is layered. Any circuit can be transformed into a layered
one while increasing its number of wires by a factor of at
most d.

We thus get a potentially larger class of functions than
that of Ben-Or and Cleve:

Corollary 3. For any ring R, #SAC1(R) ⊆ TP(R). In
particular,

#LOGCFL = #SAC
1(Z) = VP(Z) ⊆ TP(Z).

3.3 Getting TC1

To go even further and obtain TC1 we will need the ability
to compute the n-th power of a gate. We will show how to
do this over commutative rings, but we do not know how to
proceed in the non-commutative case.
The following lemma gives a small-length program for

computing the iterated product of registers.

Lemma 3 (Iterated product). There is a program P
with 2k + 1 instructions from the standard basis over R that
transparently computes, for every i ≤ k,

ri ← τi +m1 × . . .×mi,

where m1, . . . ,mk are either input registers, work registers
(different from the ri), or constants.

Proof. The following program computes the product.

1. For i = k, . . . , 2 do ri ← ri − ri−1 ×mi.

2. r1 ← r1 +m1

3. For i = 2, . . . , k do ri ← ri + ri−1 ×mi.

Notice that this lemma is different from the binary product
or unbounded sum lemmas, in that we do not prove how to
inductively compute the iterated product of the outputs of
some given program. In fact, we currently do not know how
to prove this.

To compute the n-th power over commutative rings, we will
need the following variant of the usual binomial expansion.

Lemma 4. For any elements a,x of a commutative ring,
and any integer k ≥ 1, the following holds:

(a+ x)k = xk +

k
∑

i=1

(−1)i−1

(

k

i

)

ai(a+ x)k−i

Proof. Let us consider the binomial expansion of (a +
x− a)k.

xk = (a+ x− a)k =

k
∑

i=0

(

k

i

)

(−a)i(a+ x)k−i

= (a+ x)k +

k
∑

i=1

(−1)i
(

k

i

)

ai(a+ x)k−i

Now the lemma immediately follows.

Lemma 5 (Powering). Let k be a positive integer. Let
r0 and r be registers over some commutative ring R. There
are programs I1, I2 and I3 over the standard basis registers
over R such that for any program P that does not use any
registers used by I1, I2, I3 other than r and that transparently
computes

r ← τ + f(~x),

the program I1,P , I2,P
−1, I3 computes

r0 ← τ0 + [f(~x)]k.

The total length of I1, I2, I3 is O(k), and O(k) registers are
used.

Proof. Assume we have auxiliary registers r1, r2, . . . , rk.
Then for the constants ci = (−1)i−1

(

k
i

)

, i = 1, . . . , k, the
following program computes the power of f(~x).

1. For i = 1, . . . , k do r0 ← r0 + ci · ri · r
k−i.

2. P

3. For i = 1, . . . , k do ri ← ri + ri.
r0 ← r0 + rk.

4. P−1

5. For i = 1, . . . , k do r0 ← r0 − ci · ri · r
k−i.

This can be seen as before by carefully tracking the contents
of the registers, and eventually by applying Lemma 4. By the
Iterated Product Lemma the first line can be implemented us-
ing a program over the standard basis of size O(k). This will
be I1. Similarly, line 3 and line 5 can each be implemented
by a similar-size program I2 and I3, respectively. This would
give programs of size O(k) using O(k) registers.

Lemma 6 (Exact value). Let p be a prime, R be the
field Zp, and s ∈ R. Let r0, r1, r2, . . . , rk be registers over R.
There are programs I1, I2 and I3 over the standard basis using
registers over R such that for any program P that does not
use r0 and that transparently computes for each i = 1, . . . , k

ri ← τi + fi(~x),

the program I1,P , I2,P
−1, I3 computes

r0 ← τ0 + [[

k
∑

i=1

fi(~x) 6= s]],

where [[
∑k

i=1 fi(~x) 6= s]] equals 1 if
∑k

i=1 fi(~x) 6= s and equals
0 otherwise. The total length of I1, I2, I3 is O(p + k), and
O(p) registers are used.

Proof. By the Unbounded Sum Lemma we have pro-
grams I ′1 and I ′2 such that for any program P that simulta-
neously and transparently computes ri ← ri + fi(~x), the pro-

gram P ′ = I ′1,P , I ′2 transparently computes
∑k

i=1 fi(~x)− s
into an auxiliary register r. The total length of I ′1, I

′
2 is

2k + 1. Notice,
∑k

i=1 fi(~x)− s is non-zero iff
∑k

i=1 fi(~x) 6=
s. Since R is a field of size p, by Fermat’s little theo-
rem, (

∑k
i=1 fi(~x) − s)p−1 is one iff

∑k
i=1 fi(~x) − s is non-

zero. Hence, by the Powering Lemma, we have programs
I ′′1 , I

′′
2 , I

′′
3 such that I ′′1 ,P

′, I ′′2 ,P
′−1, I ′′3 transparently com-

putes (
∑k

i=1 fi(~x) − s)p−1, i.e., [[
∑k

i=1 fi(~x) 6= s]]. Set-
ting I1 = I ′′1 , I

′
1, setting I2 = I ′2, I

′′
2 , (I

′
2)

−1 and setting
I3 = (I ′1)

−1, I ′′3 gives the required programs. Their total
length is 2(2k + 1) +O(p).

Corollary 4. Let a function f be computed by a depth-
d boolean circuit consisting of at most s MAJ-gates, each
of fan-in at most k. Let p > k be a prime. Then f ∈
TP(Zp,O(dpks4d),O(dksp)).

Proof. First, notice that MAJ gates can be simulated
using the Exact Value gates. Indeed, let b1, b2, . . . , bk be bits
where k is even. Then

[[

k/2
∑

j=1

[[

k
∑

i=1

bi 6= j]] 6= k/2]]

if and only if

k
∑

i=1

bi > k/2.

Similarly for odd k. Hence, the depth-d circuit C for f
consisting of MAJ gates has an equivalent depth-2d circuit
C′ consisting of the Exact Value gates. The number of gates
in C′ is at most O(ks). Making C′ layered may increase
the number of gates by a factor of 2d. Using the same
technique as in the proof of Corollary 2 we can transparently
simulate the computation of C′ by a reversible program.
Each gate of C′ will require additional computation of size
O(k + p), and uses O(p) registers. Since, there are O(dks)
gates this will contribute by O(dks(k+ p)) instructions using
O(dksp) registers. However, as we proceed layer by layer in
constructing the program for C′, the number of instructions
gets multiplied by a factor of at most 22d as the instructions
for each gate get copied twice at each sub-sequent layer.
Hence, in total we obtain a program of length O(22d(dk2s+
dkps)) = O(4ddkps).

Allender and Koucký [2] show that for any ε > 0, one
can simulate MAJ-gate of fan-in n by a uniform constant
depth circuit of polynomial size consisting of MAJ-gates of
fan-in at most nε. Hence, in the previous lemma we could
use polynomially smaller primes for the cost of increasing
the size of the resulting program by a polynomial factor. We
can state our main technical result.

Theorem 2. For any sequence of primes (pn)n∈N of size
polynomial in n, TC1 ⊆ TP(Zpn).

Note, we can find polynomially large primes in logspace
so if f is computable by a logspace uniform family of TC1

circuits then f is transparently computable by a logspace
uniform family of polynomial size transparent programs.
Because of the relationship between TC1 and #AC1 the

previous theorem allows us to simulate the computation of
#AC1 circuits over Zm, the ring of integers modulo m, where
m can be exponentially large. Because the degree of the
polynomials computed by #AC1(Zm) circuits can be as high
as nlogn, this seems to give a significant improvement over
GapL and #LOGCFL.

4. CATALYTIC COMPUTATION
A catalytic Turing machine is a Turing machine equipped

with a read-only input tape, a work tape8, and an extra tape
— the auxiliary tape. For every possible initial setting of the
auxiliary tape, at the end of the computation the catalytic
Turing machine must have returned the tape to its initial
contents.

We say a language L is decided by a catalytic Turing ma-
chine M if for any string x, and for any string a representing
the initial contents of the auxiliary tape, M(x,a) halts with
contents of the auxiliary tape being exactly a and M(x,a)
accepts if and only if x ∈ L.

Definition 2. Let S,Sa : N → N. We define the class
CSPACE(S(n),Sa(n)) to be the set of all languages that can
be decided by a catalytic machine using O(S(n)) space of the
work tape and O(Sa(n)) auxiliary space of the auxiliary tape,
for an input of length n.

As a notational shorthand we define CSPACE(S(n)) =

CSPACE(S(n), 2O(S(n))) as the set of languages that can be
decided by a catalytic machine with a work tape of size S(n).
We take the auxiliary space exponential in S(n), the largest
amount of auxiliary space which can be addressed when using
the machine’s work tape.
We will pay the most attention to the setting where the

machine has work tape of logarithmic size, which we call
catalytic logspace or CSPACE(log n).

4.1 Simulation of transparent computation by
catalytic computation

Our goal is to present now several surprising containments
in the catalytic logspace. To achieve that, we will show
how to simulate transparent programs in catalytic logspace,
how to extract the value of a function from the transparent
computation, and how to deal with uniformity issues.
Let us first observe that, in the same way in which one

can compose logspace reductions, we can compose constantly

8For simplicity, the Turing machine’s alphabet is assumed to
be {0, 1}, but the model naturally extends to larger alphabets.

many reductions running in catalytic logspace into a single
reduction that will also run in catalytic logspace. In this
case the total work space will be roughly the sum of the
work space used by each of the reductions, but the same
auxiliary space can be reused by each of the reductions, since
it is returned to its original content after each use. We will
heavily use such compositions in this section.

Before proceeding further let us specify what we mean by
a uniform sequence of rings.9 We say that a map h : R →
{0, 1}∗ is a compact encoding of the ring R if h is a bijection
between R and the lexicographically first |R| strings of length
` = dlog2 |R|e.

10 We say that a family of rings (Rn)
∞
n=1 is

logspace uniform, if there are logspace-bounded Turing ma-
chines M ,M+,Mc,Ms and a family (hn)

∞
n=1 of compact en-

codings of (Rn)
∞
n=1, such that (1) on input (1n,hn(u)◦hn(v)),

M outputs hn(u ◦ v), where u, v ∈ R and ◦ ∈ {+,−,×}; (2)
with (1n,hn(v)) written on a read-only tape and hn(u) writ-
ten on a read-write tape, M+ transforms hn(u) in-place into
hn(u+ v) for any u, v ∈ Rn (possibly using O(log n) of extra
space); (3) on input 1n, Mc outputs hn(−1),hn(0),hn(1)
and Ms outputs |Rn|.
Examples of logspace uniform families are (Z2)

∞
n=1 and

(Z2n)
∞
n=1. More generally, if a sequence of numbers m1,

m2, . . . is itself logspace uniform in the usual sense then
(Zmn)

∞
n=1 is logspace uniform. (This follows since addition,

multiplication and taking remainder are all computable in
logspace, and adding and subtracting two integers can be
done in-place.) In the case of Zm, we will make use of
the canonical compact encoding mapping n ∈ Zm to the
n-th dlogme-bit string in the lexicographical order. In this
case, the encoding of the binomial coefficients

(

n
k

)

can be
computed in O(logm) space, which will be important for the
TC1 simulation in Section 3.3.

The following is our key simulation lemma.

Lemma 7 (Catalytic simulation). For any logspace
uniform family of rings (Rn)n, there is a logspace catalytic
machine M that on input (P ,x) outputs f(x), where P is a
transparent program using registers r1, r2, . . . , rm over R|x|
that transparently computes f(x) into r1. Furthermore, M
uses (m·dlog2 |R|x||e)

2 bits of auxiliary space, and logarithmic
(in terms of length of P and x) amount of work-space.

Proof. The machine M will compute f(x) by simulating
P in the auxiliary space. Let n = |x|. To simulate registers
r1, . . . , rm of P the machine will view its auxiliary space as
consisting of blocks each having b = dlog2 |Rn|e bits. Each
of the blocks may be used as a register.

Consider first the case when |Rn| is a power of two. Then
the first m blocks of the auxiliary space can be used to rep-
resent the values of registers r1, . . . , rm. As the sequence of
rings is uniform, in logspace we can simulate any instruction
in the standard basis. Hence, in logspace we can simulate P .
To compute the value f(x), we can design a reduction that

9The well-endowed rings defined by Borodin, Cook and Pip-
penger [8] are similar, but have different requirements.

10The encoding is called compact because in some cases using
the lexicographically first |R| strings forces the encoding to
be unnatural. This happens in the case of prime fields Fpn for
p > 2 and n > 1, where the most natural encoding would be n
blocks of dlog2 pe bits, each holding a Zp coefficient; but such
a natural encoding does not map into the lexicographically
first strings of ndlog2 pe bits, so it is not a compact encoding!
We will need the encoding to be compact in order to simulate
register machines using a full memory.

first outputs the content of r1, that is the initial content τ1
of the first block of the auxiliary space, then simulates P and
again outputs the content of r1, this time holding the value
τ1 + f(x), and finally runs P−1 which restores the original
content of the auxiliary space. Clearly, this is a reduction
running in catalytic logspace. By composing this reduction
with one which subtracts the two output values obtained by
the previous reduction, we get a program computing f(x).

When |Rn| is not a power of two, we will proceed similarly
but we have to represent registers differently. We split our
auxiliary space into m groups of mb blocks (each block having
b bits as before). Two possibilities may happen: either there
is a group in which none of the blocks represents a value
from Rn, or each group has a block that represents a value
from Rn.

In the first case, if b bits do not represent a value from Rn,
then — because our encoding of Rn is compact — they have
their first bit set to one. Thus in this case there is a group
of mb blocks where the first bit of each block is set to one.
These mb bits can be used to simulate m registers of P . We
will first erase them, then simulate P , output the content of
the first register, which holds f(x), and in the end reset the
mb bits back to one.

In the second case, we will use the first block representing
a value from Rn in the i-th group to represent the register ri.
Since during the simulation of P , register ri always contains
a value from Rn, it is uniquely determined during the whole
computation and we can locate it in logspace. Using the
same strategy as in the case of Rn having size of power of
two we can compute f(x) while restoring the auxiliary space
to its original contents.

We remark that we could save on the auxiliary space, and
instead of using (m · dlog2 |R|x||e)

2 bits of auxiliary space,
we could use only O(m · dlog2 |R|x||e) bits if we were to use
some stronger compression of the high order bits in the case
when there are insufficiently many blocks representing values
from Rn.

It is clear that if a sequence of programs (Pn)n is logspace
constructible — where the programs are over some logspace
constructible sequence of rings and Pn transparently com-
putes fn into a register r1 — then we can compute the
function family (fn)n in catalytic logspace.

Corollary 5. Let (Pn)n be a logspace uniform sequence
of programs over some logspace constructible sequence of
rings. Let Pn transparently compute fn into a register r1.
Then the function family (fn)n is in catalytic logspace.

We remark that our constructions of transparent programs
in Section 3 are all logspace-uniform. Thus, from the results
in Section 3 we conclude, quite surprisingly, that a computer
which has plenty of occupied memory is (to the extent we
believe that TC1 6⊆ L) more powerful than one that does not.

Theorem 3. TC1 ⊆ CSPACE(log n), for logspace uniform
TC1.

The Ben-Or & Cleve construction of Theorem 1(a) is also
uniform. From this (using Chinese remaindering computable
in logspace) we obtain a result incomparable to the above:

Theorem 4. Iterated matrix product of n matrices over Z,
each of dimension m(n)×m(n), can be computed in logspace

with O(m(n)2 · logn) bits of auxiliary space. In particular,
the iterated matrix product of n matrices over Z, each of

dimension 2
√
logn× 2

√
logn, can be computed in logspace with

sub-polynomial (2O(
√

logn)) auxiliary space.

Thus even if the auxiliary space is of less than polynomial
size, in catalytic logspace we can still compute functions that
are not known to be in the ordinary logspace.

4.2 Upper bounds
Let ZTIME(T (n)) be the set of languages decidable by a

zero-error probabilistic Turing machine that runs in expected
time O(T (n)) for any input of length n.

Theorem 5. CSPACE(S(n)) ⊆ ZTIME(2O(S(n))).

Proof. Consider an input x of length n, and let s =
O(S(n)) be the available space on the work tape and sa be
the size of the auxiliary tape of the machine M . Since the
total space available to the catalytic machine equals s+ sa,
it has at most O(2s+sa) possible configurations. We take sa
to be at most 2O(s).
When running M with input x and auxiliary start a, the

machine can visit any configuration only once, since otherwise
it would never halt. Similarly, a catalytic Turing machine
can also not have any configuration in common between
a computation starting with a or one with a′ 6= a, for a
certain input x; from that point on they would run the same
computation, so the restored auxiliary part at halting would
be incorrect for at least one of them.

Because of this uniqueness property, we can bound the ex-
pected runtime of a catalytic computation by simple counting.
Note that the total number of different configurations that a
Turing machine of memory s+ sa can have is bounded by
O(2sa+s+log sa+log s), where we need the logarithmic terms to
account for the location of the tape heads. Let timeM(x, a)
denote the computation time of M on input x with the
auxiliary tape initialized to a. Then it holds that

2sa−1
∑

a=0

timeM(x, a) ≤ O(2sa+s+log sa+log s) .

Dividing by 2sa gives

E
a∈R{0,1}sa

[timeM(x, a)] ≤ 2O(s),

where we use that log sa = O(s). Now the inclusion in

ZTIME(2O(S(n))) directly follows: a simulating zero-error
probabilistic machine can just run the same computation
as M , randomly generating bits of a as needed, and halt in
expected time 2O(s).

In particular, for catalytic logspace, CSPACE(logn) ⊆
ZPP.
A natural question to ask is: can a catalytic machine

directly simulate deterministic Turing machines that use
strictly more space, by having a translation for every instruc-
tion? From the previous theorem it follows that the answer
is no. (Lack of this type of simulation of course does not rule
out the possibility that the catalytic machine could decide
languages that need more space, it only hints that such a
construction can not use another Turing machine as a black
box.)

Corollary 6. No step-by-step simulation of determinis-
tic space ω(S(n)) is possible in catalytic space S(n).

Proof. There is some computation M on space ω(S(n))

that uses time t = 2ω(S(n)) for all inputs of length n. Let x
be an input of length n. Suppose that M has a step-by-step
catalytic simulation M ′, which runs in space s = S(n) with
auxiliary space sa.
By the definition of a step-by-step simulation, we have

that

∀a ∈ {0, 1}sa timeM ′(x, a) ≥ timeM(x) ≥ 2ω(s).

From the proof of Theorem 5 we know that on expectation
over a, M ′ must have timeM ′(x, a) ≤ O(2s), a contradic-
tion.

Corollary 7.
If ZPP = L then CSPACE(S(n)) = DSPACE(S(n)).

Proof. This follows from Theorem 5. Using padding,
ZPP = L =⇒ ZTIME(2S(n)) ⊆ DSPACE(S(n)) giving

CSPACE(S(n)) ⊆ ZTIME(2S(n)) ⊆ DSPACE(S(n)).

Corollary 8. The exponential-time hypothesis [17] im-
plies that SAT 6∈ CSPACE(o(n)).

Proof. The ETH says that SAT 6∈ BPTIME(2o(n)). From

this it directly follows that SAT 6∈ ZTIME(2o(n)) and by
Theorem 5 this implies SAT 6∈ CSPACE(o(n)).

4.3 Oracle results for catalytic computation
We can show an oracle relative to which CSPACE(log n) =

PSPACE.

Theorem 6. There exists an oracle A such that

DSPACE
A(2Ω(S(n))) = CSPACE

A(S(n))

The intuition behind the proof is as follows. Any auxiliary
string is either compressible, in which case we can replace
it by a compressed version and use the now-available free
space, or hard to compress, in which case we can make some
non-trivial use of it — in this case as a ‘password’ for the
oracle that can not be found by a small-space computation.

Some care has to be taken when interpreting oracle results
for space-bounded computation. For example, there are
oracles relative to which classic results like Savitch’s theorem
and the Immerman-Szelepcsènyi theorem do not hold.

Proof. Kolmogorov complexity will give us the notion of
compressibility:

Definition 3. Fix some choice U for a universal Turing
machine, and let x, y be two binary strings. The Kolmogorov
complexity of a x relative to y, denoted C(x|y) is the size
of the smallest program p for machine U that outputs x on
input y (i.e., U(p, y) = x). The Kolmogorov complexity of x,
denoted C(x), is C(x|ε).

Fact 1 (Chain Rule [28]). C(x, y) ≥ C(x)+C(y|x)−
4 logC(x, y)−O(1).

We will construct an oracle A such that, relative to this oracle,
a catalytic computation with work-tape space s = S(n) can

simulate a deterministic computation that uses space 2s/16.
As a minor technical restriction, consider S(n) such that

2S(n)/8 = ω(n), i.e., S(n) is at least c log(n) for c > 8.
Let a be a bit-string of length 2s, the arbitrary initial

contents of the auxiliary tape.

The oracle A will be given by four distinct parts, which
we first describe informally. The first part checks if the
(relative) Kolmogorov complexity of a given string is low. The
second and third part can be respectively used to compress
or decompress a given string. The fourth part, for which the
definition is slightly more involved, gives access to a complete
set for the large space computation when given a string with
high complexity.

A1 =
{

〈1, s, a, a′〉
∣

∣ |a| = 2s/8 and C(a|a′) <
3

4
s
}

A2 =
{

〈2, a, a′, i, b〉
∣

∣b is the i-th bit of the smallest p

such that U(p, a′) = a
}

A3 =
{

〈3, a, p, i, b〉
∣

∣b is the i-th bit of U(p, a)
}

A′ = A1 ∪A2 ∪A3

Now let KO
f(n) be a complete language for space f(n)

relative to oracle O. We define A4 in stages, where the
complete set is given relative to only the previous stages.

A
(n)
4 =

{

〈4, a,x〉
∣

∣|x| = n and C(a) ≥ 2S(n)/8

and x ∈ K
A′∪A<n

4

2S(n)/16

}

A4 =
⋃

n

A
(n)
4

Here A<n
4 =

⋃n−1
i=1 A

(i)
4 . Now the oracle A is the union of

these parts, A = A′ ∪A4.
Let us give an algorithm to decide any given language L ∈

DSPACEA(2S(n)/16). We divide the first 2s/4 bits of a into

2s/8 parts each of size 2s/8 and name the parts a1, . . . , a2s/8 .
Let a<i be the concatenation of a1 up to ai−1.

Starting with i = 1, ask part 1 of the oracle if C(ai|a<i) <
3
4
s. If that is not the case, increment i and repeat. If that

is the case, then use the second part of the oracle to find
the compressed version of ai (given a<i). Then store the
compressed string version in our ordinary memory of size s,
and erase the ai part in the auxiliary tape. This frees up
2s/8 bits of memory, which we can use to decide if x ∈ L.
When we are done with that, we can use the third part of
the oracle to decompress ai back into the auxiliary tape.
If none of the ai for i ∈ {1, . . . , 2s/8} are compressible

given a<i, we can show a lower bound for the Kolmogorov
complexity of a using the chain rule:

C(a1, a2, . . . , a2s/8) ≥
2s/8
∑

i=1

(C(ai|a<i)− 4 logC(a)−O(1))

≥ 2s/8
(

3

4
s−

4

8
s−O(1)

)

≥ 2s/8

(for s sufficiently large). Now we can use a as a high com-
plexity ‘password’ for the fourth part of the oracle.

No machine in space o(2s/8) can make a query of complex-
ity as large as a. To see this, consider the configuration of the
machine (including the input tape) before it starts writing
the first character of any query q to the oracle tape. This con-
figuration can be stored using O(2S(n)/16) + n = o(2S(n)/8)
bits, but it contains all the information needed to produce
q — a contradiction if q has Kolmogorov complexity at least
2s/8.

This implies that machines with space 2S(n)/16, on an input
of length n, cannot distinguish A′ ∪ A<n

4 from A, because

they cannot query any string in A
(i)
4 , for i ≥ n. For any n

it then holds that K
A′∪A<n

4

2S(n)/16 = KA
2S(n)/16 , for the accessible

strings of length n, and hence, having access to the string a
and the oracle A, our catalytic machine can decide KA

2S(n)/16

(and therefore whether x ∈ L) by using the part 4 of the
oracle.

Theorem 7. There is an oracle B such that NLB 6⊆
CSPACEB(log n).

Proof. A Baker-Gill-Solovay [4] construction works: from
the proof of Theorem 5 we know that a Turing machine M
deciding a language in CSPACE(log n) has to run in average
polynomial time, averaged over all possible auxiliary starting
contents a. Therefore for any input x there is always an a for
which M makes only polynomially many queries, and we ap-
ply the construction for that starting state — we diagonalize
against the machine M at a string in the oracle that is not
queried by M(x, a). Because the outcome of the catalytic
computation should be correct for all possible starting values,
the existence of a value a such that the machine fails implies
that the machine does not correctly decide the language.

Acknowledgments

The third author acknowledges stimulating discussions with
Steve Cook on L versus P which motivated this research. He
also thanks Pierre McKenzie for helpful conversations.

5. REFERENCES
[1] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0,

and arithmetic circuits. Journal of Computer and
System Sciences, 60(2):395–421, 2000.

[2] E. Allender and M. Koucký. Amplifying lower bounds
by means of self-reducibility. J. ACM, 57(3), 2010.

[3] E. Allender and M. Ogihara. Relationships among PL,
#L, and the determinant. In Proceedings of the Ninth
Annual Structure in Complexity Theory Conference,
pages 267–278, 1994.

[4] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P =? NP question. SIAM Journal on Computing,
4(4):431–442, 1975.

[5] P. Beame, S. Cook, and H. Hoover. Log depth circuits
for division and related problems. SIAM Journal on
Computing, 15(4):994–1003, 1986.

[6] M. Ben-Or and R. Cleve. Computing algebraic
formulas using a constant number of registers. SIAM
Journal on Computing, 21(1):54–58, 1992.

[7] C. H. Bennett. Logical reversibility of computation.
IBM Journal of Research and Development, 1973.

[8] A. Borodin, S. Cook, and N. Pippenger. Parallel
computation for well-endowed rings and space-bounded
probabilistic machines. Information and Control,
58(1–3):113–136, 1983.

[9] J. Boyar, G. Frandsen, and C. Sturtivant. An
arithmetic model of computation equivalent to
threshold circuits. Theoretical Computer Science,
93(2):303–319, 1992.

[10] H. Buhrman, J. Tromp, and P. Vitányi. Time and
space bounds for reversible simulation. In Proceedings
of the 28th ICALP, 2001.

[11] R. Cleve. Methodologies for Designing Block Ciphers
and Cryptographic Protocols. PhD thesis, University of
Toronto, 1989.

[12] S. A. Cook. A taxonomy of problems with fast parallel
algorithms. Information and Control, 64:2–22, 1985.

[13] D. Coppersmith and E. Grossman. Generators for
certain alternating groups with applications to
cryptography. SIAM Journal on Applied Mathematics,
29(4):624–627, 1975.

[14] C. Damm. DET=L(#L). Technical Report
Informatik-Preprint 8, Fachbereich Informatik der
Humboldt–Universität zu Berlin, 1991.

[15] W. Hesse, E. Allender, and D. A. Mix Barrington.
Uniform constant-depth threshold circuits for division
and iterated multiplication. Journal of Computer and
System Sciences, 65(4):695–716, 2002.

[16] N. Immerman and S. Landau. The complexity of
iterated multiplication. Information and Computation,
116(1):103–116, 1995.

[17] R. Impagliazzo and R. Paturi. The complexity of k-sat.
In Proceedings of the 14th CCC, pages 237–240, 1999.

[18] K. J. Lange, P. McKenzie, and A. Tapp. Reversible
space equals deterministic space. In Proceedings of the
12th CCC, 1997.

[19] J. Reif and S. Tate. On threshold circuits and
polynomial computation. SIAM Journal on Computing,
21(5):896–908, 1992.

[20] I. H. Sudborough. On the tape complexity of
deterministic context-free languages. J. ACM,
25(3):405–414, July 1978.

[21] S. Toda. Counting problems computationally equivalent
to computing the determinant. Technical Report CSIM,
91-07, 1991.

[22] S. Toda. Classes of arithmetic circuits capturing the
complexity of computing the determinant. IEICE
Transactions on Information and Systems,
E75-D:116–124, 1992.

[23] L. G. Valiant. Completeness classes in algebra. In
Proceedings of the eleventh annual ACM symposium on
Theory of computing, STOC ’79, pages 249–261, New
York, NY, USA, 1979. ACM.

[24] L. G. Valiant. Why is Boolean complexity theory
difficult? In Poceedings of the London Mathematical
Society symposium on Boolean function complexity,
pages 84–94. Cambridge University Press, 1992.

[25] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff.
Fast parallel computation of polynomials using few
processors. SIAM Journal on Computing,
12(4):641–644, 1983.

[26] H. Venkateswaran. Properties that characterize
LOGCFL. Journal of Computer and System Sciences,
43(2):380–404, 1991.

[27] V. Vinay. Counting auxiliary pushdown automata and
semi-unbounded arithmetic circuits. In Proceedings of
the Sixth Annual Structure in Complexity Theory
Conference, pages 270–284, 1991.

[28] A. K. Zvonkin and L. A. Levin. The complexity of
finite objects and the development of the concepts of
information and randomness by means of the theory of
algorithms. Russian Mathematics Surveys, 256:83–124,
1970.

