
A Differentiation Primitive for Extended h-Calculus

Terry Flaherty

Department of Computer Information Systems Applications
City College, Loyola University, New Orleans, LA 70118

Abstract

A symbolic differentiation functional
that handles expressions containing free
and bound variables in an extended h-cal-
culus programming language is described.
The differentiation primitive is implemented
by augmenting the set of graph-reduction
rules that define the evaluation of expres-
sions. A formalization of partial derivatives
of functions wrt position of parameters is
presented, A comparison is made to other
methods of automatic differentiation.

1. Introduction

Although analytic differentiation was
one of the first computer applications, the
subject of automatic differentiation is not a
closed book. Rall (1981) advises “that a
powerful computational tool can be fash-
ioned without excessive effort.” Shearer
and Wolfe (1985) describe a library of im-
perative language procedures that includes
analytic differentiation. The present work
demonstrates that such a widely useful
symbolic operator can be added to a func-
tional language, which is more amenable to
symbolic manipulation. Moreover, we treat
the problem of differentiating expressions
that may contain bound variables (within h
abstractions) as well as free variables.

Previous work in automatic differentia-
tion has been implemented in imperative
languages. We show that it is feasible to
implement differentiation in the hardware of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1988 ACM 0-89791-260-8/88/0002/0009 $1.50 9

a h-calculus graph-reduction machine.
The differentiation primitive is defined by a
small set of graph-reduction rules to be im-
plemented in hardware along with the
standard evaluation rules for such a ma-
chine. We will show that the derivative
primitive acts as a true functional, operating
on functions to produce functions, and
complex chain differentiation is performed.
We hope that the formalization will shed
some light on the theoretical aspects of
symbolic differentiation.

The paper is organized into 6 sections.
Section 2 discusses automatic differentia-
tion. Section 3 discusses the implications
of automatic differentiation within an ex-
tended 3L-calculus -differentiation as a
functional, the symbolic-numeric interface,
and the uniqueness of L-expressions. Sec-

tion 4 describes the extended X-calculus
language SRL, its syntax and rules of eval-
uation. Section 5 includes a formalization
of differentiable expressions, their deriva-
tives, and a set of graph-reduction rules
implementing the derivative primitives.
Section 6 offers some concluding remarks.

2. Automatic Differentiation

We use the term automatic differentia-
tion (in the sense of automatic program-
ming) to refer to techniques whose primary
goal is the numerical evaluation of the
derivative of a function, but which first
produce an executable representation of the
derivative to obtain the numeric results.
The following characteristics distinguish
automatic differentiation from general sym-
bolic manipulation: algebraic simplification
is not an issue, and its implementation must
be relatively simple (in order to compete
with general algebraic manipulation sys-
tems). Brown and Heam (1979) discuss
the importance of such special-purpose al-
gebraic manipulation.

Rall (1983) gives the theory and de-
scribes software which differentiates for-
mulas within a FORTRAN environment.

3. Differentiation In h-Calculus

Differentiation as a True Functional

Although differentiation has become a
typical exercise in introductory Lisp
courses, and huge systems like MAC-
SYMA and REDUCE perform far more
complex algebraic manipulations, questions
of practical and theoretical interest remain.
Can we easily provide the widely useful
differentiation operation without the ex-
pense of a general algebraic manipulation
system? How do we represent differentia-
tion as a functional, especially in systems
that treat functions as first-class citizens and
hence proper arguments to such a func-
tional? MACSYMA’s lack of a true
derivative functional has been noted.
(Wester and Steinberg 1983, Golden 1985)

Symbolic-Numeric Interface

One difficulty in performing algebraic
manipulation is the disparity between the
mathematical statement of an input problem
and the hardware of the computer. (Barton
and Fitch 1972) For example, although
we may use the concept of variable in
FORTRAN to form the expression “x + x”,
its meaning within FORTRAN is not the
same as the mathematical meaning of the
string of symbols. Functional program-
ming languages constructs come closer to
the mathematical statement of a problem.

Backus (1978) showed that programs
based on function application and combin-
ing forms are more easily understood and
manipulated than imperative programs,
which have fewer useful mathematical
properties. Advances in parallel architec-
ture research are making functional pro-
gramming languages a more viable altema-
tive to imperative languages. Landin
(1964) and Turner (1979) describe ma-
chines that execute code generated from
programs written in a h-calculus-based
language. Revesz (1984. 1985) proposes a
graph-reduction technique for evaluating
extended h-expressions directly.

In a h-calculus reduction machine, the
distinction between symbolic computation
and numeric computation is blurred.
However in an imperative language such as
FORTRAN, it is impossible to compile ex-
pressions during the execution of a pro-
gram. Hence a communication problem
exists between symbolic and numeric tech-
niques. (van Hulzen and Calmet 1983)

Using x-notation as our basic
representation of a function, we preserve
the mathematical meaning of the symbols.
Symbols - variables, built-in functions,
and numbers - may be manipulated to
produce both numeric values as well as
symbolic values. If we represent the h-ex-
pression as a graph, then we can apply
graph reduction rules to transform the ex-
pression into equivalent forms. Some of
these forms are “symbolic” in the sense that
it contains variables.

Performing differentiation by hardware-
implemented reduction rules operating on
h-calculus expressions suggest a viable ap-
proach to the symbolic-numeric interface
problem. At the same time, we have the
advantage of the unambiguous denotation
of functions that h-notation affords.
Expressions Unique to h-Calculus

In contrast to a FORTRAN numeric
expression, a h-expression may contain a
h-abstraction, which represents a user-de-
fined function.

Abstractions can occur also when a
complex formula is expressed in terms of
sub-expressions. For example, the set of
equations

u=y+x*z
v = (x*u)/y
g = x**2 + EXP(v) +u
can be expressed in h-calculus as
h.(hv.x**2 + EXP(v) + u)(x*u)/y)

y+x*z

The abstractions specify the substitution
of the sub-expressions into the formula.
Substituting (x*u)/y for v in x**2 +
EXP(v) +u is equivalent to applying the
function kv.x**2 + EXP(v) + u to the ar-
gument (x*u)/y.
h.(hv.x**2 + EXP(v) + u)(x*u)/y) y+x*z
denotes the expression g as a function of x.

If the chain rule is viewed as a symbolic
transformation, the symbolic constituents
are functions and the symbolic construc-
tions are function composition. In a func-

10

tional language we are freer to choose how
to represent functions. However in a non-
functional language such as FORTRAN,
we need extra apparatus to record depen-
dencies among variables to handle partial
differentiation. In the sequel, we show that
X-expressions allow a more complete
application of the chain rule and we offer a
formalization of partial derivatives wrt po-
sition of parameters.

4. Simple Reduction Language
(SRL)

The way a bound variable is associated
with a value distinguishes implementations
of h-calculus-based languages. In Landin’s
(1964) SECD machine and the standard
LISP interpreter, (McCarthy 1960) the en-
vironment is represented with a list of
name-value pairs. Turner’s (1979) tech-
nique eliminates all variables by converting
the X-expression to its pure combinator
equivalent. and applies reduction rules to
subcomponents of the graph representation
of the expression.

Whenever a sub-structure of the graph
matches the LHS of a rule, then we replace
that sub-structure with the RHS and con-
tinue until no rules apply. We have imple-
mented differentiation within Revesz’s
(1984) Simple Reduction Language (SRL)
system which reduces h-expressions di-
rectly. The expression is not converted to
combinators and no separate environment
structures are required to simulate p-re-
duction. (Perrot 1979)

SRL extends pure h-calculus with the
inclusion of lists as expressions and a set of
built-in functions for operating on lists and
integers. Its syntax is given in Table 1.

SRL primitives include arithmetic
operations, list functions, the conditional
function, and the Y-combinator.

If the graph-reduction rules (see Table
2) are implemented in hardware, then SRL
is a human-readable machine language with
programs that correspond directly to the
structure being manipulated.

Table 1. The Syntax of SRL

<h-expression> ::=cvariable> I
<constant, I
<list> I
(<expression>) <expression>1
h <variable> . <expression>

eliso ::= [] I [<expression> <list-tail>

<list-tail> ::=] I , <expression> <list-tail:

<constant> ::=
<integer> I + I - I* I / I* I 4 I & I ?

A non-atomic expression is either a list
e.g., [x, y, 81, an application, e.g.,

[(+)7)8, or an abstraction, e.g.,
hx.3Ly.((+)x)y. In the application (p)q, p is
the operator that is being applied to the
operand q. Note that parentheses are re-
quired around the operator rather than the
operand. In the abstraction
~x.~y.((+>((*)x)x>((*)x)x,
x and y are bound variables, and

((+)((*)x)x)((*)x)x is the body of the ab-
straction. Nary functions are curried. For
example the sum of x and y is written
((+koY.

& is the list construction operator and A
and - denote the head and tail functions. ?
denotes the Y-combinator. Built-in list op-
erations include append and inner (which
forms the inner product of two given lists
of numeric expressions.)

11

Fable 2. SRL Reduction Rules
x-rules: Renaming:

(a-l) (z/x)E+z,ifE=x

(a-2) (z/x)E + E if x not in free@)

(a-3) [z/x)hy.E + hy.{z/x)E,
ifx#y#zandzisnotboundinE

(a-5) (z/x) [E~,...,Enl*
[(z/xlE1....,Iz/x)Enl

)-rules: Sub-:

(p-1) (hx.x)E + E

(P-2) (~.E1)%-+ El
if x not in free(E1)

(p-3) (hx.liy.El)E2-+

Whx.Iz/xlE1)E2
where z is a new variable
not occurring in (hx.hy.E1)E2

(P-4) (WEIF& --$
((hx.El)E3)(hx.Q)Ej

r-rules: List
(y-1) ([EI,.-.&JF-+ @I)F,...WF

(y-2) hx.[E1,...&J+
[hx.El,..., hx.EnJ

The graph-reducer reduces the leftmost
application first. If the argument to a built-
in function requires reduction, then we
perform one step in its reduction and try
again to apply the function. The argument
is reduced only enough to satisfy the con-
ditions of the function.

5. Differentiation Primitives

What kinds of SRL expressions can be
differentiated? We want to handle any n-
ary function whose body is a composition
of both arithmetic primitives and user-de-
fined functions (abstractions).

Def. The class of differentiable
functions are of the form

1x1 . ..hx..P,
where the body, P, is a differentiable
form.

Def. A differentiable form is de-
fined recursively as follows.

1. P, where P is a variable or number.

2. (F)P, where F is one of the func-
tions, sin, cos, atan, log, or exp, and P is a
differentiable form.

3. ((F)P)Q, where F is one of the func-
tions +. -, *, /, or expt, and P and Q are
differentiable forms.

4. (...(hXl. . . . hxn.P)al)...)an, where
Xx1. . . . hx,.P is a differentiable func-
tion, and al ,...,an are differentiable
forms .

Def. The derivative of a differen-
tiable form, P, WIT the variable x, de-
noted by ((diff)x)P, is the formal partial
derivative of the fully-evaluated expression
P, wrt the free variable x.

Def. The derivative of a differen-
tiable function, of the form
Lx1 . ..hxn.P. denoted by (difff)
3Lxl...hxn.P, is the list

[XXI hxn.((diff)xl)P ,...,
hxl....hxn.((diff)x,)P].

Differentiation is often cited as a classic
example ,of a functional. However, in the
usual approach to symbolic differentiation
the functional nature of the process is only

12

implicit. A formula implicitly represents a
function of its indeterminate symbols.

We can easily make the functions ex-
plicit, using h-notation, by abstracting on
all the variables in the formulas. Thus the
derivative of hx.x2 is Xx.2*x.

This distinction may seem pedantic.
However, not only notational purity is at
issue. In the application of a user-defined
function, then the derivative of this func-
tion is needed in order to apply the chain
rule. We need a derivative primitive that is
a functional.

We treat built-in functions and user-de-
fined functions uniformly. Instead of in-
cluding particular graph-reduction rules for
each built-in function, we apply the chain
rule and retrieve the derivatives of built-in
functions. Thus,(xz)*(sin x) is treated as
the binary function, *, applied to x2 and sin
x. The list of partial derivatives for the
function * is stored essentially as [hx.ay.y,
hx.ly.x].

We extend the usual manipulation of
algebraic expressions to produce their
derivatives to the manipulation of abstrac-
tions to produce their derivative functions.
Hence we differentiate expressions con-
taining p-redexes .

The derivative of 1x1. . . . hxn.P,
which has more than one h-binding. is a
list of partial derivatives. We make use of
SRL’s ability to handle lists directly to pro-
duce the list of partial derivatives wrt each
bound variable.

The y-rules of SRL control the applica-
tion of lists of curried functions.
(([hx.hy.((diff)x)P,hx.hy.((diff)y)P])Q)R
represents the application of a list of partial
derivatives to the arguments Q and R. The
result is the list of applications,
[hx.hy.((diff)x)P)Q)R,((hx.hy.((diff)y)P)
QFI

Table 3. Reduction Rules for Diff
l-a. ((diff)x)(P)Q +

((inner>(((diffb>x>P)Q>((diffa)x)oQ,
if (P)Q is a differentiable form

l-b. ((diff)x)Xy.P + hy.((diff)x)P

l-c. .((diff)x)x + 1

l-d. ((diffjx)y + 0,

ber
ifyisavariable+xoryisanum

Table 4. Reduction Rules for Diffb
2-a. ((diffb)x)(P)Q --r, (((diffb)x)P)Q

2-b. ((diffb)x)hy.P + ((difff)hx.hy.P)x,
if x in free(3Ly.P)

((diffb)x)hy.P + ((difff)hz.hy.P)z,
if x not in free(1y.P)
(z is a “fresh” system variable)

2-c. ((diffb)x)f + ((difff)f)x,
if f is a built-m function

Table 5. Reduction Rules for Difff
3-a. (difff)(P)Q +],

if (P)Q is a differentiable form

3-b. (difff)hx.P +((&)
hx.((diff)x)P)
hx.(difff)P

3-c. (difff)f, see Table 7,
if f is a built-in function

Table 6. Reduction Rules for Diffu
4-a. ((diffa)x)(P)Q 3 ((append)

(WfWP) WiffN)Ql,
if (P)Q is a differentiable form

4-b. ((diffa)x)P +[l],
if P is not an application

13

Table 7. Built-in Function Deriva-
tives
(difff)+ +

[hzAx.hy.O, hz.hx.hy.l,3cz.hx.hy.l]

(difff) + [hz.hx.hy.O, hz.hx.Xy.1,
hz.hx.Xy.((-)O)l]

(difff)* +[hz.hx.hy.O, hz.lix.ay.y,
hz.hxAy.x]

(difff)/ + [hz.hx.hy.0,3Lz.hx.hy.((/)l)y,
hZ.hX.hY .((-N>(m)((*>x>xl

(difff)expt + [hz.hx.hy.0,
~z.~x.~y.((*>y)((expt)x)(o)y)l,
hz.hx.hy.((*>((expt>x)y)(log)xl

(difff)sin +[hz.hx.O, hz.hx.(cos)x]

(difff)cos +[hz.hx.0, hz.hx.((-)O)(sin)x

(difff)atan +
[hz.hx.O,hz.hx.((/)l)((+)l)((*)x)x]

(difff)log +[hz.hx.0, hz.hx.((/)l)x]

(difff)exp +[hz.hx.0, hz.Ax.(exp)xl

In the following discussion, the
references are to the differentiation reduc-
tion rules in Tables 3-6. where x is the
variable of differentiation.

Diff Handles Differentiable Forms

Applying diff to an application, we use
the chain rule. The derivative is the inner
product of the list of partial derivatives ap-
plied to the arguments, and the list of
derivatives wrt x of each argument. This is
sufficient if the body of the operator part of
P does not contain free occurrences of x.
To handle the case where the body does
contain occurrences of x, we add the

derivative wrt x of the body of the operator
part of P, evaluated at is arguments. (Rule
l-a)

Applying diff to an abstraction results
in moving diff inside and applying it to the
body . The result is an abstraction with the
same bound variables. We reduce
((diff)x)P next. (Rule 1 -b)

Rules 1 -c and 1 -d handle the base cases
of differentiation of a differentiable form.

Diffb Handles Body of an Abstrac-
tion

Diffb ‘s purpose is to differentiate an
abstraction, producing both the partial
derivatives of the function as well as the
derivative of the body of the function
wrt the variable of differentiation.

The derivative of the body is obtained
by further abstracting the function using the
variable of differentiation. For example
((diffb)x)hy.P becomes ((difff)hx.hy.P)x.
(When difff is applied the derivative of
the body of the abstraction wrt x is com-
puted.) If hx occurs in the prefix of hy.P,
then x does not occur free in hy.P and we
must not duplicate our differentiation of P
wrt x. In this case, we abstract using a new
system variable that is guaranteed not to
occur in hy.P. We have ((dii7b)x)hy.P +
((difff)hz.hy.P)z. (Rule 2-b)

If diffb’s argument is a built-in func-
tion, then diffi’s result is the list of partial
derivatives returned by diff applied to the
variable of differentiation (Rule 2-c).

If diffl’s argument is an application,
then diffb’s result is the list of partial
derivatives of the left-most function of the
application, applied to its arguments Rule
2-a insures that diffb moves inside nested
applications until it encounters a function.
For example
((diffb)x)(((hp.hq.h.F)x)y)z
reduces after three applications of Rule 2-a
to
((((diffb)x)hp.hq.hr.F)x)y)z
and then after several steps to
((([Lx. hp.hq.hr.((diff)x)F,

14

hx. hp.hq.hr.((diff)p)F,
hx. hp.lq.hr.((diff)q)F,
hx. hp.hq.hr. ((diff)r)F])x)y)z.

The head of the list is the derivative of
F wrt x. The rest of the list contains the
partial derivatives wrt the bound variables
of hp.3Lq.hr.F. This is applied in a curried
fashion to the arguments x, y, and z. using
the y-1 rule of SRL.

Diff Handles Differentiable Func-
tions

Difffrequires an abstraction or a built-
in function for an argument. If the ar-
gument is an abstraction, then difff’s re-
sult is the list of partial derivatives wrt each
bound variable (Rule 3-a). The head of the
list is the partial derivative wrt the first
bound variable and the tail is the list of par-
tial derivatives wrt the remaining bound
variables. Thus the list of partial deriva-
tives is constructed in a telescoping fashion
using the y-2 rule of SRL. For example,
(difff)hx.hy.P -+
((&)hx.((diff)x)hy.P)hx.(difff)ky.P +
((&)hx.hy.((diff)x)P)hx.(difff)hy.P +

((&)hx.hy.((diff)x)P)
hx.((&)hy.((diff)y)P)(difff)P+

((&)hxAy.((diff)x)P)

hx.((&>hy.((diff)y)P>[1-,
((&)hx.hy.((diff)x)P)kx.[hy.((diff)y)P)l
+
((&)hx.hy.((diff)x)P)[hx.hy.((diff,Jy)P)l
+
[hx.hy.((diff)x)P),hx.hy.((diff)y)P)l

The value of difff given a built-in func-
tion is the appropriate list of partial deriva-
tives, the first of which corresponds to the
derivative of the body of an abstraction.

Diffa Handles Arguments to a
Function

DiffQ returns the list consisting of 1.
followed by the derivatives wrt x of each
argument of the function application. In the
expression (P)Q, Q is one argument to the
function that is contained in P. We place its
derivative at the end of the list of deriva-
tives. P contains the other arguments (if
present) as well as the function. We apply
diffa recursively to handle these arguments
(Rule 4-a).

Since diffa is applied to a differ-
entiable form, (...(F)al)...)a,, we will
have processed all the arguments al,a.
exactly when we reach the operator F
(Rule 4-b).

Example . Here are some of the stages in
the reduction of the expression
difff)hx.((*)x)x.

difff)hx.((*)x)x

+ ((&I ~.((diWxX(*>x>x>
x.(difff)((*)x)x + [hx.((diff)x)((*)x)xl
+ [hx.((inner) (((diffb)x)(*)x)x)

((difWN*)x>xl
+ [hx.((inner) ((((diffb)x)*)x)x)x)

((diffa)x)((*)x)xl
+ [A.x.((inner) ((((difff)*)x)x)x)x)

((diffa)x)((*)x)xl
+ [hx.((inner) ((([hz.hx.hy.O,

hz.hx.hy.y,
hz.hx.hy.x])x)x)x)x)
((diffa)x)((*)x)xl

+ [hx.((inner) [O, x, xl) ((diffa)x)((*)x)x
+ [hx.((inner) 10, x, xl)

t((diffJx)x,((diff)x)xll
+ [hx.((inner) [0, x, xl) [l, 1, 11 1

+ m.((+)x)xl

6. Concluding Remarks

Comparison to Other Projects

In SUPER-CODEX, each formula is
compiled into a code list and its name
(LHS) is entered into a table. (Rall 1981)
Whenever a function code list is differenti-
ated, the resulting code list is entered into
the table. Differentiating a formula f wrt a
variable x also places f into a list of vari-
ables that depend on x. These “dependency
tables” are used to determine whether a
variable occurrence is treated as a constant
or whether its derivative code list exists and
can be used. Rall reports that the most
time-consuming segment of SUPER-
CODEX is the search of the dependency
table.

Perhaps the greatest recommendation
for incorporating differentiation within a
graph-reduction machine is that the func-
tions to be differentiated are already repre-
sented structurally. Rall(l981) emphasizes
the importance of the “coder” module in the
CODEX system. In reduction systems, the
applicative structure of expressions is di-
rectly accessible.

Methods like Shearer and Wolfe’s AL-
GLIB (1985) system, intended to operate
within a high-level language, also require
that transformations be made between
string and graph representations of the
functions.

15

Summary

It is feasible to include a differentiation
primitive in h-calculus reduction languages.
It effects a symbolic manipulation within a
computation that also includes numeric
evaluations.

Expressions containing bound vari-
ables, can be handled reasonably. h-ab-
stractions enable the differentiation primi-
tive to act as a true functional. This repre-
sentation facilitates chain differentiation.

We define the derivative of an abstrac-
tion to be the abstraction that represents the
function which is the derivative of the input
function wrt its bound variable. For an n-
ary function it is the list of partial deriva-
tives wrt each of its parameters.

An interesting aspect of our method is
that it applies the chain rule to an expres-
sion before reducing P-redexes. This pro-
vides yet another example of the feasibility
of delayed evaluation. Indeed, the chain
rule itself is a naturally lazy method of
evaluation.

A great opportunity exists for perform-
ing symbolic manipulation within a graph-
reduction machine, since expressions are
already represented in a tree structure. This
permits operators that change the structure
of a program during its execution.

REFERENCES

Backus, I. “Can Programming Be Liberated
from the von Neumann Style? A
Functional Style and its Algebra of
Programs,” Comm. ACM: Vol. 21,
No. 2, 1978.

Barton, D. and Fitch, J. P. “A Review of
Algebraic Manipulation Programs and
Their Application,” Commuter Journal,
Vol. 15, 1972.

Brown, W. S., and Hearn, A. C.
“Application of Symbolic Mathematical
Computations,” Comnuter Phvsics . .
Communlcatlon s, Vol. 17, 1979.

Flaherty T. An Imnlementation of
Differentiation as a Built-In Function
for a Lambda-Calculus Granh-Reduc-
tion Machine, Ph.D. Thesis. Tulane,
University. New Orleans, Louisiana.
1986.

Golden, J.P. “Differentiation of Unknown
Functions in Macsyma,” SIGSAM
Bulletin. May 1985.

van Hulzen, J. A. and Cahnet, J. “Computer
Algebra Systems,” in Computer Alee-
bra: Svmbolic and Aleebraic Comnu-
tation, ed. Buchberger, B., Collins,
G. E. and Loos, R. Springer, Wien,
1983.

Landin, P. J. “The Mechanical Evaluation of
Expressions,” Comnuter Journal, Vol.
6, 1964.

McCarthy, J. “Recursive functions of sym-
bolic expressions and their computa-
tion by machine,” Comm. ACM, Vol.
3, No. 4, 1960.

Perrot, J-F. “LISP et Lambda-Calcul,” in
Lambda-Calcul et Semantiaue
F Pronram- ormelle des La sages
mation Paris, ml, 1979.

de
-9

Rall, L. B. Automatic Differentiation: Tech-
niques and ADDlications., Springer-
Verlag, Berlin, 1981.

Revesz, G. “An Extension of Lambda-Cal-
culus for Functional Programming,”
Journal of Logic Programming, Vol.
1, No. 3. 1984.

Revesz, G. “Axioms for the theory of
lambda-conversion,” SIAM J. Com-
g&g, Vol. 14, No. 2, May 1985.

Shearer, J.M. and Wolfe, M. A. “ALGLIB,
A Simple Symbol-Manipulation Pack-
age,” Comm. of ACM, Vol. 28, No.
8, 1985.

Turner, D. A. “A New Implementation
Technique for Applicative Languages,”
Software Practice and Exnerience,
Vol. 9, 1979.

Wester, M. and Steinberg, S. “An Extension
to MACSYMA’s Concept of Func-
tional Differentiation,” SIGSAM Bul-
letin. August and November, 1983.

16

