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Abstract 

A symbolic differentiation functional 
that handles expressions containing free 
and bound variables in an extended h-cal- 
culus programming language is described. 
The differentiation primitive is implemented 
by augmenting the set of graph-reduction 
rules that define the evaluation of expres- 
sions. A formalization of partial derivatives 
of functions wrt position of parameters is 
presented, A comparison is made to other 
methods of automatic differentiation. 

1. Introduction 

Although analytic differentiation was 
one of the first computer applications, the 
subject of automatic differentiation is not a 
closed book. Rall (1981) advises “that a 
powerful computational tool can be fash- 
ioned without excessive effort.” Shearer 
and Wolfe (1985) describe a library of im- 
perative language procedures that includes 
analytic differentiation. The present work 
demonstrates that such a widely useful 
symbolic operator can be added to a func- 
tional language, which is more amenable to 
symbolic manipulation. Moreover, we treat 
the problem of differentiating expressions 
that may contain bound variables (within h 
abstractions) as well as free variables. 

Previous work in automatic differentia- 
tion has been implemented in imperative 
languages. We show that it is feasible to 
implement differentiation in the hardware of 
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a h-calculus graph-reduction machine. 
The differentiation primitive is defined by a 
small set of graph-reduction rules to be im- 
plemented in hardware along with the 
standard evaluation rules for such a ma- 
chine. We will show that the derivative 
primitive acts as a true functional, operating 
on functions to produce functions, and 
complex chain differentiation is performed. 
We hope that the formalization will shed 
some light on the theoretical aspects of 
symbolic differentiation. 

The paper is organized into 6 sections. 
Section 2 discusses automatic differentia- 
tion. Section 3 discusses the implications 
of automatic differentiation within an ex- 
tended 3L-calculus -differentiation as a 
functional, the symbolic-numeric interface, 
and the uniqueness of L-expressions. Sec- 

tion 4 describes the extended X-calculus 
language SRL, its syntax and rules of eval- 
uation. Section 5 includes a formalization 
of differentiable expressions, their deriva- 
tives, and a set of graph-reduction rules 
implementing the derivative primitives. 
Section 6 offers some concluding remarks. 

2. Automatic Differentiation 

We use the term automatic differentia- 
tion (in the sense of automatic program- 
ming) to refer to techniques whose primary 
goal is the numerical evaluation of the 
derivative of a function, but which first 
produce an executable representation of the 
derivative to obtain the numeric results. 
The following characteristics distinguish 
automatic differentiation from general sym- 
bolic manipulation: algebraic simplification 
is not an issue, and its implementation must 
be relatively simple (in order to compete 
with general algebraic manipulation sys- 
tems). Brown and Heam (1979) discuss 
the importance of such special-purpose al- 
gebraic manipulation. 

Rall (1983) gives the theory and de- 
scribes software which differentiates for- 
mulas within a FORTRAN environment. 



3. Differentiation In h-Calculus 

Differentiation as a True Functional 

Although differentiation has become a 
typical exercise in introductory Lisp 
courses, and huge systems like MAC- 
SYMA and REDUCE perform far more 
complex algebraic manipulations, questions 
of practical and theoretical interest remain. 
Can we easily provide the widely useful 
differentiation operation without the ex- 
pense of a general algebraic manipulation 
system? How do we represent differentia- 
tion as a functional, especially in systems 
that treat functions as first-class citizens and 
hence proper arguments to such a func- 
tional? MACSYMA’s lack of a true 
derivative functional has been noted. 
(Wester and Steinberg 1983, Golden 1985) 

Symbolic-Numeric Interface 

One difficulty in performing algebraic 
manipulation is the disparity between the 
mathematical statement of an input problem 
and the hardware of the computer. (Barton 
and Fitch 1972) For example, although 
we may use the concept of variable in 
FORTRAN to form the expression “x + x”, 
its meaning within FORTRAN is not the 
same as the mathematical meaning of the 
string of symbols. Functional program- 
ming languages constructs come closer to 
the mathematical statement of a problem. 

Backus (1978) showed that programs 
based on function application and combin- 
ing forms are more easily understood and 
manipulated than imperative programs, 
which have fewer useful mathematical 
properties. Advances in parallel architec- 
ture research are making functional pro- 
gramming languages a more viable altema- 
tive to imperative languages. Landin 
(1964) and Turner (1979) describe ma- 
chines that execute code generated from 
programs written in a h-calculus-based 
language. Revesz (1984. 1985) proposes a 
graph-reduction technique for evaluating 
extended h-expressions directly. 

In a h-calculus reduction machine, the 
distinction between symbolic computation 
and numeric computation is blurred. 
However in an imperative language such as 
FORTRAN, it is impossible to compile ex- 
pressions during the execution of a pro- 
gram. Hence a communication problem 
exists between symbolic and numeric tech- 
niques. (van Hulzen and Calmet 1983) 

Using x-notation as our basic 
representation of a function, we preserve 
the mathematical meaning of the symbols. 
Symbols - variables, built-in functions, 
and numbers - may be manipulated to 
produce both numeric values as well as 
symbolic values. If we represent the h-ex- 
pression as a graph, then we can apply 
graph reduction rules to transform the ex- 
pression into equivalent forms. Some of 
these forms are “symbolic” in the sense that 
it contains variables. 

Performing differentiation by hardware- 
implemented reduction rules operating on 
h-calculus expressions suggest a viable ap- 
proach to the symbolic-numeric interface 
problem. At the same time, we have the 
advantage of the unambiguous denotation 
of functions that h-notation affords. 
Expressions Unique to h-Calculus 

In contrast to a FORTRAN numeric 
expression, a h-expression may contain a 
h-abstraction, which represents a user-de- 
fined function. 

Abstractions can occur also when a 
complex formula is expressed in terms of 
sub-expressions. For example, the set of 
equations 

u=y+x*z 
v = (x*u)/y 
g = x**2 + EXP(v) +u 
can be expressed in h-calculus as 
h.(hv.x**2 + EXP(v) + u)(x*u)/y) 

y+x*z 

The abstractions specify the substitution 
of the sub-expressions into the formula. 
Substituting (x*u)/y for v in x**2 + 
EXP(v) +u is equivalent to applying the 
function kv.x**2 + EXP(v) + u to the ar- 
gument (x*u)/y. 
h.(hv.x**2 + EXP(v) + u)(x*u)/y) y+x*z 
denotes the expression g as a function of x. 

If the chain rule is viewed as a symbolic 
transformation, the symbolic constituents 
are functions and the symbolic construc- 
tions are function composition. In a func- 
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tional language we are freer to choose how 
to represent functions. However in a non- 
functional language such as FORTRAN, 
we need extra apparatus to record depen- 
dencies among variables to handle partial 
differentiation. In the sequel, we show that 
X-expressions allow a more complete 
application of the chain rule and we offer a 
formalization of partial derivatives wrt po- 
sition of parameters. 

4. Simple Reduction Language 
(SRL) 

The way a bound variable is associated 
with a value distinguishes implementations 
of h-calculus-based languages. In Landin’s 
(1964) SECD machine and the standard 
LISP interpreter, (McCarthy 1960) the en- 
vironment is represented with a list of 
name-value pairs. Turner’s (1979) tech- 
nique eliminates all variables by converting 
the X-expression to its pure combinator 
equivalent. and applies reduction rules to 
subcomponents of the graph representation 
of the expression. 

Whenever a sub-structure of the graph 
matches the LHS of a rule, then we replace 
that sub-structure with the RHS and con- 
tinue until no rules apply. We have imple- 
mented differentiation within Revesz’s 
(1984) Simple Reduction Language (SRL) 
system which reduces h-expressions di- 
rectly. The expression is not converted to 
combinators and no separate environment 
structures are required to simulate p-re- 
duction. (Perrot 1979) 

SRL extends pure h-calculus with the 
inclusion of lists as expressions and a set of 
built-in functions for operating on lists and 
integers. Its syntax is given in Table 1. 

SRL primitives include arithmetic 
operations, list functions, the conditional 
function, and the Y-combinator. 

If the graph-reduction rules (see Table 
2) are implemented in hardware, then SRL 
is a human-readable machine language with 
programs that correspond directly to the 
structure being manipulated. 

Table 1. The Syntax of SRL 

<h-expression> ::=cvariable> I 
<constant, I 
<list> I 
( <expression> ) <expression>1 
h <variable> . <expression> 

eliso ::= [] I [ <expression> <list-tail> 

<list-tail> ::= ] I , <expression> <list-tail: 

<constant> ::= 
<integer> I + I - I* I / I* I 4 I & I ? 

A non-atomic expression is either a list 
e.g., [ x, y, 81, an application, e.g., 

[(+)7)8, or an abstraction, e.g., 
hx.3Ly.((+)x)y. In the application (p)q, p is 
the operator that is being applied to the 
operand q. Note that parentheses are re- 
quired around the operator rather than the 
operand. In the abstraction 
~x.~y.((+>((*)x)x>((*)x)x, 
x and y are bound variables, and 

((+)((*)x)x)((*)x)x is the body of the ab- 
straction. Nary functions are curried. For 
example the sum of x and y is written 
((+koY. 

& is the list construction operator and A 
and - denote the head and tail functions. ? 
denotes the Y-combinator. Built-in list op- 
erations include append and inner (which 
forms the inner product of two given lists 
of numeric expressions.) 
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Fable 2. SRL Reduction Rules 
x-rules: Renaming: 

(a-l) (z/x)E+z,ifE=x 

(a-2) (z/x)E + E if x not in free@) 

(a-3) [z/x)hy.E + hy.{z/x)E, 
ifx#y#zandzisnotboundinE 

(a-5) (z/x) [E~,...,Enl* 
[(z/xlE1....,Iz/x)Enl 

)-rules: Sub-: 

(p-1) (hx.x)E + E 

(P-2) (~.E1)%-+ El 
if x not in free(E1) 

(p-3) (hx.liy.El)E2-+ 

Whx.Iz/xlE1)E2 
where z is a new variable 
not occurring in (hx.hy.E1)E2 

(P-4) (WEIF& --$ 
((hx.El)E3)(hx.Q)Ej 

r-rules: List 
(y-1) ([EI,.-.&JF-+ @I)F,...WF 

(y-2) hx.[E1,...&J+ 
[hx.El,..., hx.EnJ 

The graph-reducer reduces the leftmost 
application first. If the argument to a built- 
in function requires reduction, then we 
perform one step in its reduction and try 
again to apply the function. The argument 
is reduced only enough to satisfy the con- 
ditions of the function. 

5. Differentiation Primitives 

What kinds of SRL expressions can be 
differentiated? We want to handle any n- 
ary function whose body is a composition 
of both arithmetic primitives and user-de- 
fined functions (abstractions). 

Def. The class of differentiable 
functions are of the form 

1x1 . ..hx..P, 
where the body, P, is a differentiable 
form. 

Def. A differentiable form is de- 
fined recursively as follows. 

1. P, where P is a variable or number. 

2. (F)P, where F is one of the func- 
tions, sin, cos, atan, log, or exp, and P is a 
differentiable form. 

3. ((F)P)Q, where F is one of the func- 
tions +. -, *, /, or expt, and P and Q are 
differentiable forms. 

4. (...(hXl. . . . hxn.P)al)...)an, where 
Xx1. . . . hx,.P is a differentiable func- 
tion, and al ,...,an are differentiable 
forms . 

Def. The derivative of a differen- 
tiable form, P, WIT the variable x, de- 
noted by ((diff)x)P, is the formal partial 
derivative of the fully-evaluated expression 
P, wrt the free variable x. 

Def. The derivative of a differen- 
tiable function, of the form 
Lx1 . ..hxn.P. denoted by (difff) 
3Lxl...hxn.P, is the list 

[XXI . . . . hxn.((diff)xl)P ,..., 
hxl....hxn.((diff)x,)P]. 

Differentiation is often cited as a classic 
example ,of a functional. However, in the 
usual approach to symbolic differentiation 
the functional nature of the process is only 
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implicit. A formula implicitly represents a 
function of its indeterminate symbols. 

We can easily make the functions ex- 
plicit, using h-notation, by abstracting on 
all the variables in the formulas. Thus the 
derivative of hx.x2 is Xx.2*x. 

This distinction may seem pedantic. 
However, not only notational purity is at 
issue. In the application of a user-defined 
function, then the derivative of this func- 
tion is needed in order to apply the chain 
rule. We need a derivative primitive that is 
a functional. 

We treat built-in functions and user-de- 
fined functions uniformly. Instead of in- 
cluding particular graph-reduction rules for 
each built-in function, we apply the chain 
rule and retrieve the derivatives of built-in 
functions. Thus,(xz)*(sin x) is treated as 
the binary function, *, applied to x2 and sin 
x. The list of partial derivatives for the 
function * is stored essentially as [hx.ay.y, 
hx.ly.x]. 

We extend the usual manipulation of 
algebraic expressions to produce their 
derivatives to the manipulation of abstrac- 
tions to produce their derivative functions. 
Hence we differentiate expressions con- 
taining p-redexes . 

The derivative of 1x1. . . . hxn.P, 
which has more than one h-binding. is a 
list of partial derivatives. We make use of 
SRL’s ability to handle lists directly to pro- 
duce the list of partial derivatives wrt each 
bound variable. 

The y-rules of SRL control the applica- 
tion of lists of curried functions. 
(([hx.hy.((diff)x)P,hx.hy.((diff)y)P])Q)R 
represents the application of a list of partial 
derivatives to the arguments Q and R. The 
result is the list of applications, 
[hx.hy.((diff)x)P)Q)R,((hx.hy.((diff)y)P) 
QFI 

Table 3. Reduction Rules for Diff 
l-a. ((diff)x)(P)Q + 

((inner>(((diffb>x>P)Q>((diffa)x)oQ, 
if (P)Q is a differentiable form 

l-b. ((diff)x)Xy.P + hy.((diff)x)P 

l-c. .((diff)x)x + 1 

l-d. ((diffjx)y + 0, 

ber 
ifyisavariable+xoryisanum 

Table 4. Reduction Rules for Diffb 
2-a. ((diffb)x)(P)Q --r, (((diffb)x)P)Q 

2-b. ((diffb)x)hy.P + ((difff)hx.hy.P)x, 
if x in free(3Ly.P) 

((diffb)x)hy.P + ((difff)hz.hy.P)z, 
if x not in free(1y.P) 
(z is a “fresh” system variable) 

2-c. ((diffb)x)f + ((difff)f)x, 
if f is a built-m function 

Table 5. Reduction Rules for Difff 
3-a. (difff)(P)Q +], 

if (P)Q is a differentiable form 

3-b. (difff)hx.P +((&) 
hx.((diff)x)P) 
hx.(difff)P 

3-c. (difff)f, see Table 7, 
if f is a built-in function 

Table 6. Reduction Rules for Diffu 
4-a. ((diffa)x)(P)Q 3 ((append) 

(WfWP) WiffN)Ql, 
if (P)Q is a differentiable form 

4-b. ((diffa)x)P +[l], 
if P is not an application 
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Table 7. Built-in Function Deriva- 
tives 
(difff)+ + 

[hzAx.hy.O, hz.hx.hy.l,3cz.hx.hy.l] 

(difff) + [ hz.hx.hy.O, hz.hx.Xy.1, 
hz.hx.Xy.((-)O)l] 

(difff)* +[ hz.hx.hy.O, hz.lix.ay.y, 
hz.hxAy.x] 

(difff)/ + [hz.hx.hy.0,3Lz.hx.hy.((/)l)y, 
hZ.hX.hY .((-N>(m)((*>x>xl 

(difff)expt + [ hz.hx.hy.0, 
~z.~x.~y.((*>y)((expt)x)(o)y)l, 
hz.hx.hy.((*>((expt>x)y)(log)xl 

(difff)sin +[hz.hx.O, hz.hx.(cos)x] 

(difff)cos +[ hz.hx.0, hz.hx.((-)O)(sin)x 

(difff)atan + 
[ hz.hx.O,hz.hx.((/)l)((+)l)((*)x)x] 

(difff)log +[ hz.hx.0, hz.hx.((/)l)x] 

(difff)exp +[ hz.hx.0, hz.Ax.(exp)xl 

In the following discussion, the 
references are to the differentiation reduc- 
tion rules in Tables 3-6. where x is the 
variable of differentiation. 

Diff Handles Differentiable Forms 

Applying diff to an application, we use 
the chain rule. The derivative is the inner 
product of the list of partial derivatives ap- 
plied to the arguments, and the list of 
derivatives wrt x of each argument. This is 
sufficient if the body of the operator part of 
P does not contain free occurrences of x. 
To handle the case where the body does 
contain occurrences of x, we add the 

derivative wrt x of the body of the operator 
part of P, evaluated at is arguments. (Rule 
l-a) 

Applying diff to an abstraction results 
in moving diff inside and applying it to the 
body . The result is an abstraction with the 
same bound variables. We reduce 
((diff)x)P next. (Rule 1 -b) 

Rules 1 -c and 1 -d handle the base cases 
of differentiation of a differentiable form. 

Diffb Handles Body of an Abstrac- 
tion 

Diffb ‘s purpose is to differentiate an 
abstraction, producing both the partial 
derivatives of the function as well as the 
derivative of the body of the function 
wrt the variable of differentiation. 

The derivative of the body is obtained 
by further abstracting the function using the 
variable of differentiation. For example 
((diffb)x)hy.P becomes ((difff)hx.hy.P)x. 
(When difff is applied the derivative of 
the body of the abstraction wrt x is com- 
puted.) If hx occurs in the prefix of hy.P, 
then x does not occur free in hy.P and we 
must not duplicate our differentiation of P 
wrt x. In this case, we abstract using a new 
system variable that is guaranteed not to 
occur in hy.P. We have ((dii7b)x)hy.P + 
((difff)hz.hy.P)z. (Rule 2-b) 

If diffb’s argument is a built-in func- 
tion, then diffi’s result is the list of partial 
derivatives returned by diff applied to the 
variable of differentiation (Rule 2-c). 

If diffl’s argument is an application, 
then diffb’s result is the list of partial 
derivatives of the left-most function of the 
application, applied to its arguments Rule 
2-a insures that diffb moves inside nested 
applications until it encounters a function. 
For example 
((diffb)x)(((hp.hq.h.F)x)y)z 
reduces after three applications of Rule 2-a 
to 
((((diffb)x)hp.hq.hr.F)x)y)z 
and then after several steps to 
((([Lx. hp.hq.hr.((diff)x)F, 
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hx. hp.hq.hr.((diff)p)F, 
hx. hp.lq.hr.((diff)q)F, 
hx. hp.hq.hr. ((diff)r)F])x)y)z. 

The head of the list is the derivative of 
F wrt x. The rest of the list contains the 
partial derivatives wrt the bound variables 
of hp.3Lq.hr.F. This is applied in a curried 
fashion to the arguments x, y, and z. using 
the y-1 rule of SRL. 

Diff Handles Differentiable Func- 
tions 

Difffrequires an abstraction or a built- 
in function for an argument. If the ar- 
gument is an abstraction, then difff’s re- 
sult is the list of partial derivatives wrt each 
bound variable (Rule 3-a). The head of the 
list is the partial derivative wrt the first 
bound variable and the tail is the list of par- 
tial derivatives wrt the remaining bound 
variables. Thus the list of partial deriva- 
tives is constructed in a telescoping fashion 
using the y-2 rule of SRL. For example, 
(difff)hx.hy.P -+ 
((&)hx.((diff)x)hy.P)hx.(difff)ky.P + 
((&)hx.hy.((diff)x)P)hx.(difff)hy.P + 

((&)hx.hy.((diff)x)P) 
hx.((&)hy.((diff)y)P)(difff)P+ 

((&)hxAy.((diff)x)P) 

hx.((&>hy.((diff)y)P>[1-, 
((&)hx.hy.((diff)x)P)kx.[hy.((diff)y)P)l 
+ 
((&)hx.hy.((diff)x)P)[hx.hy.((diff,Jy)P)l 
+ 
[hx.hy.((diff)x)P),hx.hy.((diff)y)P)l 

The value of difff given a built-in func- 
tion is the appropriate list of partial deriva- 
tives, the first of which corresponds to the 
derivative of the body of an abstraction. 

Diffa Handles Arguments to a 
Function 

DiffQ returns the list consisting of 1. 
followed by the derivatives wrt x of each 
argument of the function application. In the 
expression (P)Q, Q is one argument to the 
function that is contained in P. We place its 
derivative at the end of the list of deriva- 
tives. P contains the other arguments (if 
present) as well as the function. We apply 
diffa recursively to handle these arguments 
(Rule 4-a). 

Since diffa is applied to a differ- 
entiable form, (...(F)al)...)a,, we will 
have processed all the arguments al, . . ..a. 
exactly when we reach the operator F 
(Rule 4-b). 

Example . Here are some of the stages in 
the reduction of the expression 
difff)hx.((*)x)x. 

difff)hx.((*)x)x 

+ ((&I ~.((diWxX(*>x>x> 
x.(difff)((*)x)x + [hx.((diff)x)((*)x)xl 
+ [hx.((inner) (((diffb)x)(*)x)x) 

((difWN*)x>xl 
+ [hx.((inner) ((((diffb)x)*)x)x)x) 

((diffa)x)((*)x)xl 
+ [A.x.((inner) ((((difff)*)x)x)x)x) 

((diffa)x)((*)x)xl 
+ [hx.((inner) ((([ hz.hx.hy.O, 

hz.hx.hy.y, 
hz.hx.hy.x])x)x)x)x) 
((diffa)x)((*)x)xl 

+ [ hx.((inner) [O, x, xl) ((diffa)x)((*)x)x 
+ [hx.((inner) 10, x, xl) 

t((diffJx)x,((diff)x)xll 
+ [hx.((inner) [0, x, xl) [l, 1, 11 1 

+ m.((+)x)xl 

6. Concluding Remarks 

Comparison to Other Projects 

In SUPER-CODEX, each formula is 
compiled into a code list and its name 
(LHS) is entered into a table. (Rall 1981) 
Whenever a function code list is differenti- 
ated, the resulting code list is entered into 
the table. Differentiating a formula f wrt a 
variable x also places f into a list of vari- 
ables that depend on x. These “dependency 
tables” are used to determine whether a 
variable occurrence is treated as a constant 
or whether its derivative code list exists and 
can be used. Rall reports that the most 
time-consuming segment of SUPER- 
CODEX is the search of the dependency 
table. 

Perhaps the greatest recommendation 
for incorporating differentiation within a 
graph-reduction machine is that the func- 
tions to be differentiated are already repre- 
sented structurally. Rall(l981) emphasizes 
the importance of the “coder” module in the 
CODEX system. In reduction systems, the 
applicative structure of expressions is di- 
rectly accessible. 

Methods like Shearer and Wolfe’s AL- 
GLIB (1985) system, intended to operate 
within a high-level language, also require 
that transformations be made between 
string and graph representations of the 
functions. 
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Summary 

It is feasible to include a differentiation 
primitive in h-calculus reduction languages. 
It effects a symbolic manipulation within a 
computation that also includes numeric 
evaluations. 

Expressions containing bound vari- 
ables, can be handled reasonably. h-ab- 
stractions enable the differentiation primi- 
tive to act as a true functional. This repre- 
sentation facilitates chain differentiation. 

We define the derivative of an abstrac- 
tion to be the abstraction that represents the 
function which is the derivative of the input 
function wrt its bound variable. For an n- 
ary function it is the list of partial deriva- 
tives wrt each of its parameters. 

An interesting aspect of our method is 
that it applies the chain rule to an expres- 
sion before reducing P-redexes. This pro- 
vides yet another example of the feasibility 
of delayed evaluation. Indeed, the chain 
rule itself is a naturally lazy method of 
evaluation. 

A great opportunity exists for perform- 
ing symbolic manipulation within a graph- 
reduction machine, since expressions are 
already represented in a tree structure. This 
permits operators that change the structure 
of a program during its execution. 
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