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A combinatorial system in the most  general sense would be any finite set 
of rules each of which effectively produces a finite set of conclusions from a 
finite set of premises. The most intensively studied case is the one in which 
each rule has a single premise and a single conclusion. Such a system is called 
monogenie if the rules are such tha t  for any string at  most one rule is applicable. 

From this broad class of monogenic systems, P o s t  [3] chooses to consider 
the tag systems. A tag system is determined by  a finite set of rules: 

T i :  8 i ) E i  , i =  1 . . . . .  Q, 

such tha t  if the first symbol of a string is si, then the first fl symbols are 
removed and the string E i is appended at  the end. Since the system is mono- 
genic, si ~ sj  when i ~ j. I f  the alphabet  contains a symbols, then Q ~ a. 

Another natural  class is, for want  of a bet ter  name, the lag systems. A lag 
system is a set of ~ a ~ rules : 

i i :  8i 1 • . . s i f t  > E i ,  

such tha t  if the first fl symbols of a string are s i . . . s i ~ ,  the first symbol, 

viz., %, is deleted and E i  is appended at  the end of the string. In  either kind 
of system, E~ is permit ted to be the null string. Let  e~ be the length of Ei ,  

be the max imum and e-  be the minimum of e~. Thus, each system is associated 
with three constants, fl, ~, a, which, in general, appear  to be of decreasing 
importance in tha t  order. Clearly, when fl = 1, tag systems and lag systems 
coincide. In  general, lag systems are less wasteful since no symbol in a string 
is overlooked. 

We shall establish, in a sense to be specified, tha t  certain tag systems and 
lag systems are "undecidable",  and all "simpler" ones are decidable. The 
undecidable tag system is a slight improvement  over the one constructed by  
JOHN COCKE and MINSK¥ [2] with fl = 2, e = 4, to one with fl = 2, ~ = 3. 

1. All Monotone Systems Are Decidable 

With regard to each (tag or lag) system, there is a halting problem and a 
derivability problem. A system halts on a given string S if S ever leads to a 
string Q whose length [Q[ < fl, or to which no rule in the given system is 
applicable. The halting problem is to give a general method to decide, for each 
given string from the alphabet  of the system, whether the system halts on the 
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string. The derivability problem is to decide, for any  two given strings, whether 
the rules will lead us from the first to the second. 

I f  we follow POST [3] in requiring 9 = a for tag systems, and analogously 
Q = a~ for lag systems, then, since there are only finitely m a n y  strings of length 
less than  fl, a positive solution of the derivability problem yields one for the 
halting problem, and a negative solution of the lat ter  yields one for the former. In  
permitt ing 9 < a or a ~, we do not have such a simple connection between the two 
problems. We shall confine ourselves to the more restricted tag and lag systems. 

I t  is quite evident tha t  the decision problems become complex only when 
some rules expand a string while others contract it. This remark can be stated 
and justified more exactly in two theorems. 

Theorem 1. For any  given tag system T,  i / f l  ~ e or fl ~ e-,  then the deriv- 
ability (and hence also the halting) problem/or T is decidable. 

Theorem 2. For any given lag system L,  i] ~ <= 1 or s->= 1, then the deriv- 
ability, (and hence also the halting) problem/or  L is decidable. This  includes all 
lag systems in which n o  E i i8 the null string. 

The proofs are similar. We give only a proof of Theorem 1. 
Let/3 =< ~- and S be a given string. I f  fl < s- ,  then, for each n => IS], there 

is at  most  a single consequence of S by  T tha t  is of length n, and there is no 
consequence shorter than  S. Suppose, for some i, /3 = ei. Each time such a 
"s table"  rule is applied, the length of the sequence does not change. Let  
Isl = a, IQ[ --- b, b - -  a -- c. I f  c is negative, then of course Q is not a consequence 
of S. Otherwise, we write out the successive consequences of S one by  one, 
S = S o, S 1, S~, etc., until we obtain either a repetition or a string longer than Q. 
Clearly tSil ~_ tSi+ll, for all i. Moreover, for each fixed length k, there can be 
a t  most  ak strings of length k. Itence, the process must  always terminate.  I f  
S~ = Sq, q > p, and Q is not among S O . . . . .  Sq_l, then Q is not a consequence of 
S because S~ . . . . .  Sq_ 1 will repeat  and all consequences are contained in 
S O . . . . .  Sq_ r I f  now IS~I > Q and Q is not  among S O . . . . .  St, then again Q 
is not a consequence of S. 

Suppose/3 ~ e and S is a given string. The argument  is similar except tha t  
in this case we can list, once and for all, all consequences of S. Thus, either we 
get Sq = S~, p < q, then S o , . . . ,  Sq_ I are all the consequences; or else, we get 
St which is the null sequence, and then S O . . . . .  S~_1 are all the consequences. 

2. Every System with fl  = 1 is Decidable 
Since there is no distinction between tag systems and lag systems for 

/3 = 1, we shall speak only in terms of tag systems. We assume therefore a tag 
system T with rules: 

R t : 8 l > E i , i = 1 . . . . .  (~. 

Since fl = 1, the only contraction rules are those which produce the null string. By 
Theorem 1, we only have to consider the case when there are contraction rules. 

2.1. Definition o / ranks .  I f  Et is null, the rule R~ and the symbol s~ are of 
rank 1. I f  E~ is not null, but  every symbol in Et is of finite rank, then the rank 
of s~ and/¢~ is n + 1, n being the maximum of the ranks of the symbols in E~. 
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I f  a rule R /does  not get a rank in the above manner, then R t and s t are said 
to have an infinite rank. Clearly: 

2.2. I f  every rule of T has a finite rank, then every string S has only 
finitely many  consequences. I f  some rules have the infinite rank but  S contains 
only symbols with finite ranks, S again has only finitely m a n y  consequences. 

I t  may  be noted tha t  the halting problem is easy to decide. Thus, given 
a tag system T and a string S, let T* be obtained from T by  deleting first all 
rules of finite ranks, and then all symbols of finite ranks from the remaining 
rules. Similarly, let S* be obtained from S by  deleting all symbols of finite 
ranks. T halts on S if and only if S* is null. Thus, if S* is not null, S can keep 
on producing consequences by  T* and therefore by T. On the other hand, 
if S* is null, then there can be only finitely m a n y  consequences. 

To decide the derivability problem, we introduce more definitions. 
2.3. L e t  R i  be of infinite rank. Consider the a consequences A 1 . . . . .  A ,  

of s i, with all symbols of finite ranks deleted. I f  some Aj contains s t as a proper 
part,  then R t  and st are of finite degree. I f  at least one Aj contains at  least one 
symbol of finite degree, then R t and si are of finite degree. Otherwise, R i  is a 
circular rule and si is a circular symbol. 

2.4. Given a string S and a tag system T, we have made a round if we have'  
operated on every symbol in the string. The next round takes the result of the 
previous round as the given string. I f  T contains ~ circular rules, a circular 
symbol si is periodic if beginning with st as the initial string, we arrive, after 
or less rounds, a t  a string in which s~ is again the only symbol of infinite rank. 

To clarify these definitions, we observe the following. I f  T contains no 
circular rules, then, beginning with a string S containing some symbols of 
infinite rank (other strings being trivial by  2.2), we must  get a string with more 
symbols with infinite ranks, after at most a rounds. Hence, if IQ] = m, either Q 
occurs among the first a m  rounds of consequences of S, or Q is not a conse- 
quence of S. Moreover, even when T contains circular rules, if S contains 
symbols of finite degree, the considerations still hold. Hence, we have to 
consider only strings containing no symbols of finite degree in systems con- 
taining circular rules. 

Given one such system T, there must  be at  least one periodic symbol si. 

Thus, beginning with any  circular s t, we can never encounter a symbol of 
finite degree because otherwise sj itself would be of finite degree. Hence, at  
each stage there is exactly one circular symbol. Since there are only finitely 
many (certainly g (~) circular symbols, a t  least one of them must  be a periodic 
symbol. 

2.5. Beginning with a periodic symbol a~ as the initial string, we can always 
find in less than  2a ~ rounds two consequences St, Sq, such tha t  p #  q but  

The only complication is with symbols of finite ranks since at  each stage 
there is exactly one symbol  of infinite rank. I f  now, beginning from at, we come, 
after enough (say t ~ a) rounds, for the first t ime to a string A~ containing a~ 
again, say x 1 . . .  x~ ,a iY l .  • • y~, then x 1 . . . . .  x=, y~ . . . . .  y~ must  all be of finite 
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ranks. Call t the period of a i. From A~ on, after each t rounds, we get another 
sequence which contains As as a (proper or improper) part,  since ai always 
produces A~ after t rounds. The max imum finite rank of the rules of T is < at,  
and if B~ is obtained from A~ after a t  ( g  a 2) rounds, then, Bt is again obtained 
after a t  more rounds. This is so because, although B~ m a y  be C i A i D i ,  Ci and D i  

can have no more effect after a t  rounds and the result is entirely determined 
byAi. 

We are now ready to settle the principal case. Thus, T contains circular 
rules, and each symbol in S is either of finite rank or circular. We wish to decide 
whether an arbi trary string Q is a consequence of S. ~Note first tha t  after at  
most  a rounds, we eliminate all the circular symbols which are not also periodic. 
Hence, if t is the least common multiple of the periods t 1 . . . . .  t~. of all the 
periodic elements, then, by  2.5, after (2(r + 1)t rounds, we get a repetition and 
therefore the set of all consequences of S. 

Hel~ce we have proved: 
Theorem 3. T h e  der i vab i l i t y  p r o b l e m / o r  each tag s y s t e m  or lag sy s t em  w i th  

fl = 1 i s  decidable.  

3. Undeeidable Lag Systems 

We shall give a lag system with fl ---- e = 2 whose halting problem is un- 
decidable, by  using SS machines introduced in S~EVHERDSON-STuRoIS [4]. 
They have shown tha t  every Turing machine (in particular, a universal one) 
can be simulated by  an SS machine on the alphabet {0, 1). We shah give a 
procedure of simulating these SS machines. 

An SS machine is a finite sequence of instructions each of which is of the 
following two types. 

P0, PI :  print 0 (or 1) at  the right end of the string S and go to the next  
instruction. 

SD(k) :  scan and delete the leftmost symbol of S; if it is 0, go to the next  
instruction, otherwise go to instruction k; if S is null, halt. 

Let  q ~ , . . . ,  q, be the instructions of an SS machine working on strings from 
{0, 1}. I f  the initial string is x 1 . . .  x.,  we shall represent it  by  b l x  1 . . .  x~e  I. 

At each stage, if the state or instruction is q~, the working string is of the form 
b~x 1 . . .  x~,e~. Consider now any instruction qt. For  brevity,  let ] = i + 1. 

For  the n instructions, we have altogether 2n  + 4 symbols b 1 . . . . .  b~+ I, 
el, . . . ,  en+l,  O, 1. 

Case  1. q~ is Po. We wish to get from b i x  1 . . . x~,e~ to b j x  1 . . . x~Oe~. 

The rules are: 
(1) x~x t+ l  ) x t + l  (x~, x~+l = 0 or 1) , 

(2) b~x ) b j x  (x = 0 or 1), 

(3) etbj  ) ej 

(4) xe~ ~ 0 (x = 0 or 1).  
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Hence, by  (2), b,:x  1 . . . x ,  ei  ) x I . . . x ~ e i b j x  1 , 

by (1), ) x ~ e i b ~ x ~ .  . . x~  , 

by (4), • e i b j x  1 . . . x ~ O  , 

by (3), > b j x ~ . . ,  x ,~Oe~.  

In order to cover the case p = 0, we add the rule: 

(5) b i e  i • b ~ O .  

Hence, by  (5), h i e  i ), e ib~O , 

by  (3), ) b j O e j  . 

C a s e  2 .  q~ is P1. The rule (1) above plus: 
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(6) b i x  > b j x ,  

(7) e i b  ~ .... > e i ,  

(8) x e  i ), 1 ,  

(9) biei .  • b j l .  

C a s e  3.  q~ is S D ( k ) .  W e  wish to  get f rom b i x l . . ,  x ~ e  i to b j x 2 . . ,  x~e~  if 
x~ = 0, to  b ~ x e . . ,  x ~ e  k if x 1 = 1. The  rules are, besides (1) above:  

(10) b i O  > b ~ ,  

(11) b i l  ) b k ,  

(12) x e i  ) , 

(13) e i b  i ) e j ,  

(14) e i b  k ) e k ,  

(14') b i e  i ) ( r edundan t ) .  

The last rule covers the tr ivial  case when the string is null. The  SS machines 
halt then. For  the nontr ivial  case, we have:  

C a s e 3 . 1 .  x 1 = O. 

By (I0), b i O x  2 . . . x ~ e i  > O x  2 . . . x ~ e ~ b ~ ,  

by (1), ) x ~ e i b s x ~ . . ,  x ~ ,  

by (12), > e i b ~ x  ~ . . .  x ~ ,  

by (13), ) b i x  2 . . . x~e~  . 

C a s e  3.2. x 1 =: 1. 

By (11), b ~ t x e . . ,  x ~ e i  • l x ~ . . ,  x ~ e i b k ,  

by (1), ) x ~ e i b ~ x  2 . . . x~, , 

by (12), )* e ~ b ~ x ~ . . ,  x ~ ,  

by (14), ) b ~ x 2  . . . x ~ e k  • 
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There are two remaining loose ends to t idy up. I f  i = n,  then j = i + 1 
= n + 1, and in S D  (]¢), we may  have ]c > n. In  these cases, the SS machine is 
to halt. Clearly when k > n in SD(]c) ,  we can always pu t / c  = n ÷ 1. Hence, 
the necessary rule needed is to halt  when we encounter b n + l x l . . .  X~en+ 1. This 
is taken care of by the following rules: 

(15) bn+lx  > b n + l ,  

(16) Xen+l > e n + l ,  

(17) e~+lb,,+l > , 

(18) b n + l e n +  1 > . 

Hence, by  (15), b n + l x l  • • • x~en+l  > x l .  • • x ~ e n + l b n + l ,  

by  (1), > x ~ e ~ + l b , + i x  2 . . . x~ , 

by  (16) and (17), > b n + l X  2 . . . x ~ e n +  1 , 

repeating, > b~ +1 e~ +1, 

by  (18), > e ,+ l .  

Hence, the lag system halts by definition. 
The other loose end is that  we have not used all the (2n + 4) 3 pairs of 

symbols in the rules, e.g., e, ek. This is a simple mat ter  since such combinations 
of letters do not occur. We add simply: 

(19) c d  ....... ; , if c d  does not begin any of the rules (1) to (18) . 

Therefore, we have established: 
Theorem 4. There  i s  a lag s y s t e m  w i t h  fl - e = 2, whose ha l t ing  problem is  

unsolvable .  

By Theorem 3, lag systems with fl = 1 are always decidable. By  Theorem 2, 
when fl = 2, a lag system is decidable if either no ei ~ 2 or no ei = 0. Hence, 
if we disregard the less decisive factor, the number  a of symbols in the alphabet,  
the above result is the best possible. 

4. Undeeidable Tag Systems 
We modify somewhat the proof in [2] to get the following theorem. 
Theorem 5. There  i s  a tag s y s t e m  w i t h  ~ = 2, e = 3, e- = 1, whose  ha l t ing  

prob lem is  unsolvable .  

By Theorem 3 and Theorem 1, we can say this is the best possible result. 
I t  is perhaps of interest to compare this with the undecidable lag system : while 
we need here ~ -- 3 rather  than 2, we do not need rules with the null string as 
consequences. 

I n  order to prove the theorem, we use a program formulation of Turing 
machines developed in [5]. Each machine is represented by  a finite sequence of 
instructions (or states) of the following five types:  M (mark), E (erase), L (shift 
left), R (shift right), Ck (transfer to instruction k if the square under scan is 
marked,  otherwise go to next  instruction). Compared with the proof in [2], 
the present version separates the different actions (shift, write, transfer) so 
tha t  the argument  is perhaps easier to follow. 
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Assume now we are given a universal Turing machine and its program, 
with the two symbols 0, I only. The halting problem is unsolvable with initial 
inputs confined to include only finitely many l's. At instruction or state i, the 
whole configuration is represented by (X iX i )ms i s i ( y tY i )  n, where the minimum 
portion including all l 's  and the symbol si under scan i s . . .  a2a laosbob lb  2 . . . .  

and m = Z a t2  ~, n =: Z b t2  t. The exponention on x~x~ and YiYi  means repe- 
tition so that,  e.g., (x ix i )  ° is the empty string. (Compare, e.g., [5], p. 66.) 

For each state i, a corresponding alphabet is introduced with tag rules 
which produce (xjxj)m's~s~ (y~yi) n" from ( X i X i ) m s i  8 i ( y l y i )  n, ] being the next  state. 
The simulation for all instructions of a kind is uniform. Except  for Ck, ~ is 
always i + 1, although we could as well take any fixed ~ in each case, and Ck 
is the only kind of instruction that  introduces branching. 

(a) Mark: i.M. This leads from ( x i x i ) ~ s i s i ( y i Y t )  n to 

( X i + l X i + l )  m 1i+11i+1 (Y i+ lY i+ l )  n , 

X i ) X i + l X i +  1 

s i ) 1i+11i+ 1 , 

Yi ) Y i + l Y i + l .  

(b) Erase: i,E. Similar, replace second rule by: si ) Oi+~Oi+l. 
(c) Conditional transfer: i.Ck. Given ( X i X i ) m s i s i ( y t y i )  n, this goes to 

( X i + l X i + l ) m S i + l S i + l ( Y i + l Y i + l )  n i f  8 i is 01, and to (x~x~)ms~s~(y~y~)  ~ otherwise. 
This case gives a simple illustration of the "phase-shifting" device of [2]. 

The rules are: 

(1) x i  )" t i t i ,  0 i > 0~, 

( ~ )  t~ . . . . .  ). x~x; ' ,  

. . . . . .  1~ ~ . . . .  (3) 0 i  • x,~0~ 0~ , t~ 1~ , 

(4") X~ )~ Zt~Xl¢ , X~ t " ) X i + l X i + l ,  

t t t  

Yi >YkYk ,  Y~ • Y i + l Y t + l .  

Deductions. 
When s = 0, 

by (1), ~" 

by (2), > 

by (3), ) 

by (4), 

When 8 = I, 
> 

) 

t ! t 
Ii ) l i l i ,  Yi ~ u i u i  , 

u~ .... ~ y~y~',  u~ ~ y~ 'y~ ,  

0~' ) 0 i + 1 0 i +  1, l~.' ) l~ lk ,  

(Xi Xi) m Oi Oi (Yi Y~)'*, 

(t i t ,)mO~(u,u~)" , 

O~ u, ( u~ u,)" - l u~ x~ ( 4'x~)m - l x~' , 

(x'~x~)m oi'o;.' (y~'y~)., 
( x i+ lx i+ l )~O~+lOi+t (y~+ly~+l )  ~- 

(x tx i )  m 1 ~ 1~ (y iy t )  n 

(t , t ,)  ,~ 1~ l~ (u~ u~). 

(x~xi ' )  m 1~' l i '  (Yl y;O)n 

(XkXk) m 1 k 1~ (yky~) '~ . 
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(d) Shift  r ight  : i.R. Addit ional  complication is necessary in this case when 
we reduce e f rom 4 to 3. I n  particular,  the  doubling requires a bit  of e lementary 
ari thmetic.  Thus, if we wish to double (an) ~ to  get  (bb) zm, we m a y  use the rules 
a ~ ccd,  c > bbb, d > bb. When  m is even, we do succeed because 
(an) 2 gives ( uuv )  ~ and  (bb)a; when m is odd, the last (aa) gives u u v  and  
(bbbbb) by  borrowing a symbol  f rom the sequence following v. However ,  we 
can manage  to  cut  off the  very  first b and  then get  (bb)~% I n  what  follows we 
shall assume these simple calculations. Al though the  whole set of symbols  
and rules are int roduced all for a given state i, we shall, to  avoid excessive 
subscripts, omit  references to  i. We wish to  get  f rom (xix~)ms~si(y¢y~) '~ to  
(x~+xx~+~)z'~+~S~+lS~+~(y'y')in/~], where s~+~= ( n - -  [n/2])i+ 1. Observe t h a t  s 
and s '  m a y  each be 0 or 1. The a lphabet :  xi, si (Oi and 1i), Yi; x~x'~, s~ (0~ and 
1~), y~, x~, t, y~, x~, t~, t',, y~. 

The rules : 

(1) x i > x~X~Xa, 

(2) x~ > XbXoXb, 

(3) 0 ,  > t, 

(4) XD ) XoXo. 

(5) t , tot' . ,  

(6) xo > x ~ + ~ x i + ~ .  

(7) ta > 1i+11i+1, 

By (1), (XiXi)mSi8i (yiyi) n 

B y  (2), if m is even 

if m is odd 

By  (3), in both cases 

By  (4), 

Si  > 8 a S a ,  Y i  > Y a Y a "  

t 
X a ' > X b Z  b . 

la ~ XbXb t ,  Y~ ) Yb" 

Yb ~ Y~Y~" 

t 
t a > X i + l O i + l O i + l ,  Y~ 

> ( X a X a X a ) m S a S a ( y a y a )  n . 

~ > S~S~(y~y~)n(XbXb) 2~ , 

sa (y~y~)~ (Xb Xb)2m Xb . 

(XbXb)2m+'ty~ . 

At this stage, we have two cases according as n is even or odd. 

n is even : 

n is odd :  

(5) 
ty~(xexc) 2m+' r- (XcXc)~'~+'-lXctata(ycyc)n/2 , 

(6) ~- " a x y c g c p  x 1+1 i + l ]  t t (at ~1 ~n/2{ x X ~2m+s 

(7) 
X X 2 r n T s  >(  i+t i+1) Oi+lOi+l(Yi+lYi+l) ~/2. 

ty~ (x~x~)".~ + 8 . !~! ). (xcx~)2m + st~ta (ycy~)(~-I)/2 , 

(6) ,~ ~ tp l~, ~* ~(n--1)]2l  x X ~ 2 m + s  
a a ~ f c Y c ]  ~ i + l  i+11  

(7) X X 2 r a + * l  1 (n -1) /2  
"~ ( l + 1  i + 1 )  t + 1  i + l ( Y i + l Y i + l )  • 

) Y i+lY~÷I .  

(e) Shift  left:  i.L. We  desire : 
m/2 t t 2 n + s  (x~x~)'~sist(yiyt) '~ ~" (xt+lx~+0[ ls i+ts~+t(Yt+lYi+l)  , 

where s = m - -  2 [m/2]. 
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Rules : 

(1) xi 

(2) y~ 

(3) 0b 

(4) t 

(5) x~ 

(6) t2 

'Deductions : 

or 
In  bo th  cases, 

xaxa,  Si • SaSa, Yi ) YaYaYa, xa 

) Y~Y~Yb, y a - - - - ~ y b y ~ ,  Xb • x~x~ . 

) t ,  1~ >tycy~,  y~ >YcYc, x¢ 

> tlt2, Yc > Y~Ya • 

) X i + l X i +  1 . 

> X i + l O i + l O i + l ,  t l  ..... • l i + l l i + l , Y a  > Y i + l Y i + l "  

) ' X b X  b , 8 a 

) X d • 

(XiXi)m s~si (yiYi) n > (yayaya)~(XbXb)mSbSb, 

• Sb Sb (Yb Yb) 2~ (XcXc) ~n (n even) , 

• sb Yb (Y~ Yb) ~ (X~X~) ~ (n odd) . 

) t (ycye)2n+'xr~,  

> x ~ - l t l t 2  (ydyd)2n ÷ 8, 

> t2 (ydy~)~  + 8 (X i +1Xi +1) m/2 ( ' t  even) , 

> (Xi + l X i  +1)[m/2] 0i +10i +1 (Yi  + 1Yi  +1) 2n + s ,  

or > t l t2(ygyd)2n+S(Xi+lXi+l)(m-1)/2(m odd) ,  

• (Xi+lXi+l)[m/2]l i l i (Yi+lYi+l)  2n+s . 

To complete the argument ,  we assume tha t  the machine simulated has n 
instructions ql . . . . .  qn and rewrite Ck as C (n + 1), whenever  k > n. Whenever  
we get  to n + 1 from qn or by  C (n + 1), the machine is to stop. We add simply 
a new symbol  h and the rules: 

xn+l ) h,  sn+ 1 ) h,  Y~+I • h ,  h ) h .  

This completes the proof of Theorem 5. 

5. Monogenic Normal System ([3]) 
A normal  sys tem is any  set of rules 

N i :  B i  > E i 

such that ,  for each given string, if it is B t P ,  it becomes P E ~  by  the rule. 
I t  is monogenie if, for i =4= ], B i  is never  B~ or Bj followed by  some string. 
A different definition of monogenic sys tem would be t h a t  any  string can be 
broken up in at  mos t  one wa y  into the Bi ' s .  The two definitions are no t  quite 
the same, since the lat ter  includes more. For  example, if the alphabet  is {0, 1}, 
and B 1 is 00, B 2 is 001,  B 3 is 11. Given any  string, when we encounter  001,  
we have a question of taking it to  be B 11 or B2, bu t  this can be sett led by  
determining whether  there are an even or an odd number  of consecutive l ' s  
immediately following 00. For  our purpose, it is convenient  to  use the narrower  
definition. 

) 8b8 b • 
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I t  is ve ry  easy to  use the  SS machines to  give a new proof of the  known fact  
t h a t  there are monogenie normal  systems with an  unsolvable hal t ing problem. 
Thus,  as before, take  a universal  SS machine with n instructions. The rules for 
the corresponding monogenic normal  sys tem are simply:  

(1) O ) O. 

(2) 1 ) 1 .  

For  each q~ which is Po: 

(3) b i > bi+ 1 . 

(4) e i • 0ei+ 1 . 

For  each qi which is P i :  

(5) b~ • bi+ 1 . 

(6) e i ). le i+  1 . 

For  each qt which is S D ( k ) :  

(7) biO > ei+ibi+i . 

(8) b i l  ) ekbk .  

(9) eiei+i ) e i+ i .  

(10) eie~ • ek .  

Observe tha t  if we reverse the arrows in the above rules, we do not  get  a 
monogenic system. We m a y  modify  (7)--(10) to read:  b i O  • e}bi+l, 

bi l > e~'bl~, e~e~ )~ e~+l, eie~' ) ek. Nevertheless, we would still have 
0 a t  the  r ight  hand  side of (1), 0e~+ i a t  t h a t  of (4), 1 in (2), l e i+ i  in (6); in 
fact,  ei+i in (4) or  (6) migh t  be the  same as e~ in (10). 
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