
WANG, H.
Math. Annalen 152, 65--74 (1963)

Tag Systems and Lag Systems*
By

HAO WANG in Cambridge (Mass.)

A combinatorial system in the most general sense would be any finite set
of rules each of which effectively produces a finite set of conclusions from a
finite set of premises. The most intensively studied case is the one in which
each rule has a single premise and a single conclusion. Such a system is called
monogenie if the rules are such tha t for any string at most one rule is applicable.

From this broad class of monogenic systems, P o s t [3] chooses to consider
the tag systems. A tag system is determined by a finite set of rules:

T i : 8 i) E i , i = 1 Q,

such tha t if the first symbol of a string is si, then the first fl symbols are
removed and the string E i is appended at the end. Since the system is mono-
genic, si ~ sj when i ~ j. I f the alphabet contains a symbols, then Q ~ a.

Another natural class is, for want of a bet ter name, the lag systems. A lag
system is a set of ~ a ~ rules :

i i : 8i 1 • . . s i f t > E i ,

such tha t if the first fl symbols of a string are s i . . . s i ~ , the first symbol,

viz., %, is deleted and E i is appended at the end of the string. In either kind
of system, E~ is permit ted to be the null string. Let e~ be the length of Ei ,

be the max imum and e- be the minimum of e~. Thus, each system is associated
with three constants, fl, ~, a, which, in general, appear to be of decreasing
importance in tha t order. Clearly, when fl = 1, tag systems and lag systems
coincide. In general, lag systems are less wasteful since no symbol in a string
is overlooked.

We shall establish, in a sense to be specified, tha t certain tag systems and
lag systems are "undecidable", and all "simpler" ones are decidable. The
undecidable tag system is a slight improvement over the one constructed by
JOHN COCKE and MINSK¥ [2] with fl = 2, e = 4, to one with fl = 2, ~ = 3.

1. All Monotone Systems Are Decidable

With regard to each (tag or lag) system, there is a halting problem and a
derivability problem. A system halts on a given string S if S ever leads to a
string Q whose length [Q[< fl, or to which no rule in the given system is
applicable. The halting problem is to give a general method to decide, for each
given string from the alphabet of the system, whether the system halts on the

• The work for this paper was supported by Bell Telephone Laboratories, Murray Hill,
New Jersey.

Math. Ann. 152 5

66 HAo WANQ:

string. The derivability problem is to decide, for any two given strings, whether
the rules will lead us from the first to the second.

I f we follow POST [3] in requiring 9 = a for tag systems, and analogously
Q = a~ for lag systems, then, since there are only finitely m a n y strings of length
less than fl, a positive solution of the derivability problem yields one for the
halting problem, and a negative solution of the lat ter yields one for the former. In
permitt ing 9 < a or a ~, we do not have such a simple connection between the two
problems. We shall confine ourselves to the more restricted tag and lag systems.

I t is quite evident tha t the decision problems become complex only when
some rules expand a string while others contract it. This remark can be stated
and justified more exactly in two theorems.

Theorem 1. For any given tag system T, i / f l ~ e or fl ~ e-, then the deriv-
ability (and hence also the halting) problem/or T is decidable.

Theorem 2. For any given lag system L, i] ~ <= 1 or s->= 1, then the deriv-
ability, (and hence also the halting) problem/or L is decidable. This includes all
lag systems in which n o E i i8 the null string.

The proofs are similar. We give only a proof of Theorem 1.
Let/3 =< ~- and S be a given string. I f fl < s- , then, for each n => IS], there

is at most a single consequence of S by T tha t is of length n, and there is no
consequence shorter than S. Suppose, for some i, /3 = ei. Each time such a
"s table" rule is applied, the length of the sequence does not change. Let
Isl = a, IQ[--- b, b - - a -- c. I f c is negative, then of course Q is not a consequence
of S. Otherwise, we write out the successive consequences of S one by one,
S = S o, S 1, S~, etc., until we obtain either a repetition or a string longer than Q.
Clearly tSil ~_ tSi+ll, for all i. Moreover, for each fixed length k, there can be
a t most ak strings of length k. Itence, the process must always terminate. I f
S~ = Sq, q > p, and Q is not among S O Sq_l, then Q is not a consequence of
S because S~ Sq_ 1 will repeat and all consequences are contained in
S O Sq_ r I f now IS~I > Q and Q is not among S O St, then again Q
is not a consequence of S.

Suppose/3 ~ e and S is a given string. The argument is similar except tha t
in this case we can list, once and for all, all consequences of S. Thus, either we
get Sq = S~, p < q, then S o , . . . , Sq_ I are all the consequences; or else, we get
St which is the null sequence, and then S O S~_1 are all the consequences.

2. Every System with fl = 1 is Decidable
Since there is no distinction between tag systems and lag systems for

/3 = 1, we shall speak only in terms of tag systems. We assume therefore a tag
system T with rules:

R t : 8 l > E i , i = 1 (~.

Since fl = 1, the only contraction rules are those which produce the null string. By
Theorem 1, we only have to consider the case when there are contraction rules.

2.1. Definition o / ranks . I f Et is null, the rule R~ and the symbol s~ are of
rank 1. I f E~ is not null, but every symbol in Et is of finite rank, then the rank
of s~ and/¢~ is n + 1, n being the maximum of the ranks of the symbols in E~.

Tag Systems and Lag Systems 67

I f a rule R /does not get a rank in the above manner, then R t and s t are said
to have an infinite rank. Clearly:

2.2. I f every rule of T has a finite rank, then every string S has only
finitely many consequences. I f some rules have the infinite rank but S contains
only symbols with finite ranks, S again has only finitely m a n y consequences.

I t may be noted tha t the halting problem is easy to decide. Thus, given
a tag system T and a string S, let T* be obtained from T by deleting first all
rules of finite ranks, and then all symbols of finite ranks from the remaining
rules. Similarly, let S* be obtained from S by deleting all symbols of finite
ranks. T halts on S if and only if S* is null. Thus, if S* is not null, S can keep
on producing consequences by T* and therefore by T. On the other hand,
if S* is null, then there can be only finitely m a n y consequences.

To decide the derivability problem, we introduce more definitions.
2.3. L e t R i be of infinite rank. Consider the a consequences A 1 A ,

of s i, with all symbols of finite ranks deleted. I f some Aj contains s t as a proper
part, then R t and st are of finite degree. I f at least one Aj contains at least one
symbol of finite degree, then R t and si are of finite degree. Otherwise, R i is a
circular rule and si is a circular symbol.

2.4. Given a string S and a tag system T, we have made a round if we have'
operated on every symbol in the string. The next round takes the result of the
previous round as the given string. I f T contains ~ circular rules, a circular
symbol si is periodic if beginning with st as the initial string, we arrive, after
or less rounds, a t a string in which s~ is again the only symbol of infinite rank.

To clarify these definitions, we observe the following. I f T contains no
circular rules, then, beginning with a string S containing some symbols of
infinite rank (other strings being trivial by 2.2), we must get a string with more
symbols with infinite ranks, after at most a rounds. Hence, if IQ] = m, either Q
occurs among the first a m rounds of consequences of S, or Q is not a conse-
quence of S. Moreover, even when T contains circular rules, if S contains
symbols of finite degree, the considerations still hold. Hence, we have to
consider only strings containing no symbols of finite degree in systems con-
taining circular rules.

Given one such system T, there must be at least one periodic symbol si.

Thus, beginning with any circular s t, we can never encounter a symbol of
finite degree because otherwise sj itself would be of finite degree. Hence, at
each stage there is exactly one circular symbol. Since there are only finitely
many (certainly g (~) circular symbols, a t least one of them must be a periodic
symbol.

2.5. Beginning with a periodic symbol a~ as the initial string, we can always
find in less than 2a ~ rounds two consequences St, Sq, such tha t p # q but

The only complication is with symbols of finite ranks since at each stage
there is exactly one symbol of infinite rank. I f now, beginning from at, we come,
after enough (say t ~ a) rounds, for the first t ime to a string A~ containing a~
again, say x 1 . . . x~ ,a iY l . • • y~, then x 1 x=, y~ y~ must all be of finite

5*

68 HAo WANo:

ranks. Call t the period of a i. From A~ on, after each t rounds, we get another
sequence which contains As as a (proper or improper) part, since ai always
produces A~ after t rounds. The max imum finite rank of the rules of T is < at,
and if B~ is obtained from A~ after a t (g a 2) rounds, then, Bt is again obtained
after a t more rounds. This is so because, although B~ m a y be C i A i D i , Ci and D i

can have no more effect after a t rounds and the result is entirely determined
byAi.

We are now ready to settle the principal case. Thus, T contains circular
rules, and each symbol in S is either of finite rank or circular. We wish to decide
whether an arbi trary string Q is a consequence of S. ~Note first tha t after at
most a rounds, we eliminate all the circular symbols which are not also periodic.
Hence, if t is the least common multiple of the periods t 1 t~. of all the
periodic elements, then, by 2.5, after (2(r + 1)t rounds, we get a repetition and
therefore the set of all consequences of S.

Hel~ce we have proved:
Theorem 3. T h e der i vab i l i t y p r o b l e m / o r each tag s y s t e m or lag sy s t em w i th

fl = 1 i s decidable.

3. Undeeidable Lag Systems

We shall give a lag system with fl ---- e = 2 whose halting problem is un-
decidable, by using SS machines introduced in S~EVHERDSON-STuRoIS [4].
They have shown tha t every Turing machine (in particular, a universal one)
can be simulated by an SS machine on the alphabet {0, 1). We shah give a
procedure of simulating these SS machines.

An SS machine is a finite sequence of instructions each of which is of the
following two types.

P0, PI : print 0 (or 1) at the right end of the string S and go to the next
instruction.

SD(k) : scan and delete the leftmost symbol of S; if it is 0, go to the next
instruction, otherwise go to instruction k; if S is null, halt.

Let q ~ , . . . , q, be the instructions of an SS machine working on strings from
{0, 1}. I f the initial string is x 1 . . . x., we shall represent it by b l x 1 . . . x~e I.

At each stage, if the state or instruction is q~, the working string is of the form
b~x 1 . . . x~,e~. Consider now any instruction qt. For brevity, let] = i + 1.

For the n instructions, we have altogether 2n + 4 symbols b 1 b~+ I,
el, . . . , en+l, O, 1.

Case 1. q~ is Po. We wish to get from b i x 1 . . . x~,e~ to b j x 1 . . . x~Oe~.

The rules are:
(1) x~x t+ l) x t + l (x~, x~+l = 0 or 1) ,

(2) b~x) b j x (x = 0 or 1),

(3) etbj) ej

(4) xe~ ~ 0 (x = 0 or 1).

Tag Systems and Lag Systems

Hence, by (2), b,:x 1 . . . x , ei) x I . . . x ~ e i b j x 1 ,

by (1),) x ~ e i b ~ x ~ . . . x~ ,

by (4), • e i b j x 1 . . . x ~ O ,

by (3), > b j x ~ . . , x ,~Oe~.

In order to cover the case p = 0, we add the rule:

(5) b i e i • b ~ O .

Hence, by (5), h i e i), e ib~O ,

by (3),) b j O e j .

C a s e 2 . q~ is P1. The rule (1) above plus:

69

(6) b i x > b j x ,

(7) e i b ~ > e i ,

(8) x e i), 1 ,

(9) biei . • b j l .

C a s e 3. q~ is S D (k) . W e wish to get f rom b i x l . . , x ~ e i to b j x 2 . . , x~e~ if
x~ = 0, to b ~ x e . . , x ~ e k if x 1 = 1. The rules are, besides (1) above:

(10) b i O > b ~ ,

(11) b i l) b k ,

(12) x e i) ,

(13) e i b i) e j ,

(14) e i b k) e k ,

(14') b i e i) (r edundan t) .

The last rule covers the tr ivial case when the string is null. The SS machines
halt then. For the nontr ivial case, we have:

C a s e 3 . 1 . x 1 = O.

By (I0), b i O x 2 . . . x ~ e i > O x 2 . . . x ~ e ~ b ~ ,

by (1),) x ~ e i b s x ~ . . , x ~ ,

by (12), > e i b ~ x ~ . . . x ~ ,

by (13),) b i x 2 . . . x~e~ .

C a s e 3.2. x 1 =: 1.

By (11), b ~ t x e . . , x ~ e i • l x ~ . . , x ~ e i b k ,

by (1),) x ~ e i b ~ x 2 . . . x~, ,

by (12),)* e ~ b ~ x ~ . . , x ~ ,

by (14),) b ~ x 2 . . . x ~ e k •

70 HAOWANO:

There are two remaining loose ends to t idy up. I f i = n, then j = i + 1
= n + 1, and in S D (]¢), we may have]c > n. In these cases, the SS machine is
to halt. Clearly when k > n in SD(]c) , we can always pu t / c = n ÷ 1. Hence,
the necessary rule needed is to halt when we encounter b n + l x l . . . X~en+ 1. This
is taken care of by the following rules:

(15) bn+lx > b n + l ,

(16) Xen+l > e n + l ,

(17) e~+lb,,+l > ,

(18) b n + l e n + 1 > .

Hence, by (15), b n + l x l • • • x~en+l > x l . • • x ~ e n + l b n + l ,

by (1), > x ~ e ~ + l b , + i x 2 . . . x~ ,

by (16) and (17), > b n + l X 2 . . . x ~ e n + 1 ,

repeating, > b~ +1 e~ +1,

by (18), > e ,+ l .

Hence, the lag system halts by definition.
The other loose end is that we have not used all the (2n + 4) 3 pairs of

symbols in the rules, e.g., e, ek. This is a simple mat ter since such combinations
of letters do not occur. We add simply:

(19) c d ; , if c d does not begin any of the rules (1) to (18) .

Therefore, we have established:
Theorem 4. There i s a lag s y s t e m w i t h fl - e = 2, whose ha l t ing problem is

unsolvable .

By Theorem 3, lag systems with fl = 1 are always decidable. By Theorem 2,
when fl = 2, a lag system is decidable if either no ei ~ 2 or no ei = 0. Hence,
if we disregard the less decisive factor, the number a of symbols in the alphabet,
the above result is the best possible.

4. Undeeidable Tag Systems
We modify somewhat the proof in [2] to get the following theorem.
Theorem 5. There i s a tag s y s t e m w i t h ~ = 2, e = 3, e- = 1, whose ha l t ing

prob lem is unsolvable .

By Theorem 3 and Theorem 1, we can say this is the best possible result.
I t is perhaps of interest to compare this with the undecidable lag system : while
we need here ~ -- 3 rather than 2, we do not need rules with the null string as
consequences.

I n order to prove the theorem, we use a program formulation of Turing
machines developed in [5]. Each machine is represented by a finite sequence of
instructions (or states) of the following five types: M (mark), E (erase), L (shift
left), R (shift right), Ck (transfer to instruction k if the square under scan is
marked, otherwise go to next instruction). Compared with the proof in [2],
the present version separates the different actions (shift, write, transfer) so
tha t the argument is perhaps easier to follow.

T~g Systems and Lag Systems 71

Assume now we are given a universal Turing machine and its program,
with the two symbols 0, I only. The halting problem is unsolvable with initial
inputs confined to include only finitely many l's. At instruction or state i, the
whole configuration is represented by (X iX i)ms i s i (y tY i) n, where the minimum
portion including all l 's and the symbol si under scan i s . . . a2a laosbob lb 2

and m = Z a t2 ~, n =: Z b t2 t. The exponention on x~x~ and YiYi means repe-
tition so that, e.g., (x ix i) ° is the empty string. (Compare, e.g., [5], p. 66.)

For each state i, a corresponding alphabet is introduced with tag rules
which produce (xjxj)m's~s~ (y~yi) n" from (X i X i) m s i 8 i (y l y i) n,] being the next state.
The simulation for all instructions of a kind is uniform. Except for Ck, ~ is
always i + 1, although we could as well take any fixed ~ in each case, and Ck
is the only kind of instruction that introduces branching.

(a) Mark: i.M. This leads from (x i x i) ~ s i s i (y i Y t) n to

(X i + l X i + l) m 1i+11i+1 (Y i+ lY i+ l) n ,

X i) X i + l X i + 1

s i) 1i+11i+ 1 ,

Yi) Y i + l Y i + l .

(b) Erase: i,E. Similar, replace second rule by: si) Oi+~Oi+l.
(c) Conditional transfer: i.Ck. Given (X i X i) m s i s i (y t y i) n, this goes to

(X i + l X i + l) m S i + l S i + l (Y i + l Y i + l) n i f 8 i is 01, and to (x~x~)ms~s~(y~y~) ~ otherwise.
This case gives a simple illustration of the "phase-shifting" device of [2].

The rules are:

(1) x i)" t i t i , 0 i > 0~,

(~) t~). x~x; ' ,

. 1~ ~ (3) 0 i • x,~0~ 0~ , t~ 1~ ,

(4") X~)~ Zt~Xl¢ , X~ t ") X i + l X i + l ,

t t t

Yi >YkYk , Y~ • Y i + l Y t + l .

Deductions.
When s = 0,

by (1), ~"

by (2), >

by (3),)

by (4),

When 8 = I,
>

)

t ! t
Ii) l i l i , Yi ~ u i u i ,

u~ ~ y~y~', u~ ~ y~ 'y~ ,

0~') 0 i + 1 0 i + 1, l~.') l~ lk ,

(Xi Xi) m Oi Oi (Yi Y~)'*,

(t i t ,)mO~(u,u~)" ,

O~ u, (u~ u,)" - l u~ x~ (4'x~)m - l x~' ,

(x'~x~)m oi'o;.' (y~'y~).,
(x i+ lx i+ l)~O~+lOi+t (y~+ly~+l) ~-

(x tx i) m 1 ~ 1~ (y iy t) n

(t , t ,) ,~ 1~ l~ (u~ u~).

(x~xi ') m 1~' l i ' (Yl y;O)n

(XkXk) m 1 k 1~ (yky~) '~ .

72 HAoWA~G:

(d) Shift r ight : i.R. Addit ional complication is necessary in this case when
we reduce e f rom 4 to 3. I n particular, the doubling requires a bit of e lementary
ari thmetic. Thus, if we wish to double (an) ~ to get (bb) zm, we m a y use the rules
a ~ ccd, c > bbb, d > bb. When m is even, we do succeed because
(an) 2 gives (uuv) ~ and (bb)a; when m is odd, the last (aa) gives u u v and
(bbbbb) by borrowing a symbol f rom the sequence following v. However , we
can manage to cut off the very first b and then get (bb)~% I n what follows we
shall assume these simple calculations. Al though the whole set of symbols
and rules are int roduced all for a given state i, we shall, to avoid excessive
subscripts, omit references to i. We wish to get f rom (xix~)ms~si(y¢y~) '~ to
(x~+xx~+~)z'~+~S~+lS~+~(y'y')in/~], where s~+~= (n - - [n/2])i+ 1. Observe t h a t s
and s ' m a y each be 0 or 1. The a lphabet : xi, si (Oi and 1i), Yi; x~x'~, s~ (0~ and
1~), y~, x~, t, y~, x~, t~, t',, y~.

The rules :

(1) x i > x~X~Xa,

(2) x~ > XbXoXb,

(3) 0 , > t,

(4) XD) XoXo.

(5) t , tot' . ,

(6) xo > x ~ + ~ x i + ~ .

(7) ta > 1i+11i+1,

By (1), (XiXi)mSi8i (yiyi) n

B y (2), if m is even

if m is odd

By (3), in both cases

By (4),

Si > 8 a S a , Y i > Y a Y a "

t
X a ' > X b Z b .

la ~ XbXb t , Y~) Yb"

Yb ~ Y~Y~"

t
t a > X i + l O i + l O i + l , Y~

> (X a X a X a) m S a S a (y a y a) n .

~ > S~S~(y~y~)n(XbXb) 2~ ,

sa (y~y~)~ (Xb Xb)2m Xb .

(XbXb)2m+'ty~ .

At this stage, we have two cases according as n is even or odd.

n is even :

n is odd :

(5)
ty~(xexc) 2m+' r- (XcXc)~'~+'-lXctata(ycyc)n/2 ,

(6) ~- " a x y c g c p x 1+1 i + l] t t (at ~1 ~n/2{ x X ~2m+s

(7)
X X 2 r n T s >(i+t i+1) Oi+lOi+l(Yi+lYi+l) ~/2.

ty~ (x~x~)".~ + 8 . !~!). (xcx~)2m + st~ta (ycy~)(~-I)/2 ,

(6) ,~ ~ tp l~, ~* ~(n--1)]2l x X ~ 2 m + s
a a ~ f c Y c] ~ i + l i+11

(7) X X 2 r a + * l 1 (n -1) /2
"~ (l + 1 i + 1) t + 1 i + l (Y i + l Y i + l) •

) Y i+lY~÷I .

(e) Shift left: i.L. We desire :
m/2 t t 2 n + s (x~x~)'~sist(yiyt) '~ ~" (xt+lx~+0[ls i+ts~+t(Yt+lYi+l) ,

where s = m - - 2 [m/2].

Tag Systems and Lag Systems 73

Rules :

(1) xi

(2) y~

(3) 0b

(4) t

(5) x~

(6) t2

'Deductions :

or
In bo th cases,

xaxa, Si • SaSa, Yi) YaYaYa, xa

) Y~Y~Yb, y a - - - - ~ y b y ~ , Xb • x~x~ .

) t , 1~ >tycy~, y~ >YcYc, x¢

> tlt2, Yc > Y~Ya •

) X i + l X i + 1 .

> X i + l O i + l O i + l , t l • l i + l l i + l , Y a > Y i + l Y i + l "

) ' X b X b , 8 a

) X d •

(XiXi)m s~si (yiYi) n > (yayaya)~(XbXb)mSbSb,

• Sb Sb (Yb Yb) 2~ (XcXc) ~n (n even) ,

• sb Yb (Y~ Yb) ~ (X~X~) ~ (n odd) .

) t (ycye)2n+'xr~,

> x ~ - l t l t 2 (ydyd)2n ÷ 8,

> t2 (ydy~)~ + 8 (X i +1Xi +1) m/2 (' t even) ,

> (Xi + l X i +1)[m/2] 0i +10i +1 (Yi + 1Yi +1) 2n + s ,

or > t l t2(ygyd)2n+S(Xi+lXi+l)(m-1)/2(m odd) ,

• (Xi+lXi+l)[m/2]l i l i (Yi+lYi+l) 2n+s .

To complete the argument , we assume tha t the machine simulated has n
instructions ql qn and rewrite Ck as C (n + 1), whenever k > n. Whenever
we get to n + 1 from qn or by C (n + 1), the machine is to stop. We add simply
a new symbol h and the rules:

xn+l) h, sn+ 1) h, Y~+I • h , h) h .

This completes the proof of Theorem 5.

5. Monogenic Normal System ([3])
A normal sys tem is any set of rules

N i : B i > E i

such that , for each given string, if it is B t P , it becomes P E ~ by the rule.
I t is monogenie if, for i =4=], B i is never B~ or Bj followed by some string.
A different definition of monogenic sys tem would be t h a t any string can be
broken up in at mos t one wa y into the Bi ' s . The two definitions are no t quite
the same, since the lat ter includes more. For example, if the alphabet is {0, 1},
and B 1 is 00, B 2 is 001, B 3 is 11. Given any string, when we encounter 001,
we have a question of taking it to be B 11 or B2, bu t this can be sett led by
determining whether there are an even or an odd number of consecutive l ' s
immediately following 00. For our purpose, it is convenient to use the narrower
definition.

) 8b8 b •

74 HAO WA~a: Tag Systems and Lag Systems

I t is ve ry easy to use the SS machines to give a new proof of the known fact
t h a t there are monogenie normal systems with an unsolvable hal t ing problem.
Thus, as before, take a universal SS machine with n instructions. The rules for
the corresponding monogenic normal sys tem are simply:

(1) O) O.

(2) 1) 1 .

For each q~ which is Po:

(3) b i > bi+ 1 .

(4) e i • 0ei+ 1 .

For each qi which is P i :

(5) b~ • bi+ 1 .

(6) e i). le i+ 1 .

For each qt which is S D (k) :

(7) biO > ei+ibi+i .

(8) b i l) ekbk .

(9) eiei+i) e i+ i .

(10) eie~ • ek .

Observe tha t if we reverse the arrows in the above rules, we do not get a
monogenic system. We m a y modify (7)--(10) to read: b i O • e}bi+l,

bi l > e~'bl~, e~e~)~ e~+l, eie~') ek. Nevertheless, we would still have
0 a t the r ight hand side of (1), 0e~+ i a t t h a t of (4), 1 in (2), l e i+ i in (6); in
fact, ei+i in (4) or (6) migh t be the same as e~ in (10).

References
[1] ~iNSKY, M. L. ** Recursive unsolvabflity of Post's problem of Tag. Ann. Math. 74,

437--455 (1961).
[2] - - Universality of (p = 2) Tag systems. A. I. Memo No. 33, Cambridge, Mass. (1962).

A modified version of this (Memo No. 52, April 1963) has been prepared by COCK~
and MIl~sxY for publication. This new proof is such that a simple modification
would yield Theorem 5 above.-

[3] POST, E. L.: Formal reduction of the general combinatorial decision problem. Am.
J. Math. 65, 197--215 (1943).

[4] SttEPH]~RDSOl%J.C., and H. E. STU~IS: The computability of partial reeursive
functions by forms of turing machines. Abstracts, International Congress for Logic,
Methodology and Philosophy of Science, Stanford, California (1960), p. 17. The
full paper has just appeared as "Computability of reeursive functions", Journal of
Association for Computing Machinery 10, 217--255 (1963).

[5] WAI~G, HAO: A varian~ to Turing's theory of computing machines. Journal of Associa-
tion for Computing Machinery 4, 63--92 (1957).

[6] - - Tag systems and tag systems. (Abstract) Notices of the Am. Math. Soc. 9, 407
(1962). AI~I~ TRITTER has recently made use of results in [2] and [6] to obtain
a universal Turing machine with 4 symbols and 6 states, the smallest at present.

(Received October 22, 1962)

