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Abstrac t  

Past cellular automata models of self-replication have always been initialized with an original copy of the structure that will 

replicate, and have been based on a transition function that only works for a single, specific structure. This article demonstrates 

for the first time that it is possible to create cellular automata models in which a self-replicating structure emerges from an 

initial state having a random density and distribution of individual components. These emergent self-replicating structures 

employ a fairly general rule set that can support the replication of structures of different sizes and their growth from smaller 

to larger ones. This rule set also allows "random" interactions of self-replicating structures with each other and with other 

structures within the cellular automata space. Systematic simulations show that emergence and growth of replicants occurs 

often and is essentially independent of the cellular space size, initial random pattern of components, and initial density of 

components, over a broad range of these parameters. The number of replicants and the total number of components they 

incorporate generally approach quasi-stable values with time. 
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1. I n t r o d u c t i o n  

Attempts to create artificial self-replicating structures or "machines" have been motivated by the desire to un- 

derstand the fundamental information processing principles involved in self-replication [1]. Understanding these 

principles could contribute to a better understanding of biological replication, shed light on the origins of life, and 

support atomic-scale manufacturing (nanotechnology) [6]. While a variety of approaches have been taken, the use 

of cellular automata models has been among the most prominent. 

Cellular automata can be viewed as dynamical systems in which both time and space are discrete. John von 

Neumann first conceived of using cellular automata to study the logical origanization of self-replicating structures 

[18]. In his and subsequent two-dimensional cellular automata models space is divided into cells, each of which 
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can be in one of  n possible states. At any moment most cells are in a distinguished "quiescent" or inactive state 

(designated by a period or blank space in this article) whereas the other cells are said to be in an active state. A 

self=replicating structure or "machine" is represented as a configuration of contiguous active cells, each of  which 

represents a component of the replicating machine. At each instance of simulated time, each active cell or component 

follows a set of  rules called the transition function to determine its next state as a function of  its current state and 

the state of  immediate neighbor cells. Thus, any process of self-replication captured in a model like this must be 

an emergent behavior arising from the strictly local interactions that occur. Based solely on these concurrent local 

interactions, an initially specified self-replicating structure goes through a sequence of steps to construct a duplicate 

copy of  itself (the replica being displaced and perhaps rotated). 

Von Neumann's  original self-replicating structure was a complex "universal constructor-computer" embedded in 

a two-dimensional cellualr automata space that consisted of 29-state cells. Much subsequent work has focused on 

creating simpler replicants, for example, demonstrating that if the components or cell states meet certain symmetry 

requirements, then von Neumann's  configuration could be done in a simpler fashion using cells having only eight 

states [5]. More recently, a qualitatively simpler structure referred to as a self-replicating loop was developed 

[8]. Self-replicating loops have a readily identifiable stored "instruction sequence" that is used by the underlying 

transition function in two ways: as instructions that are interpreted to direct the construction of  a replica, and 

as uninterpreted data that are copied onto the replica. Thus, replicating loops are truely "information replicating 

systems" in the sense that this term is used by organic chemists [11]. Subsequent work led to progressively simpler 

and smaller loops [2,14]; see [15] for a recent review. 

These past cellular automata models of  self-replication have always been initialized with an original copy of  

the structure that will replicate, and have been based on rules that only work for a single, specific structure. The 

replicants exist in an otherwise empty space. This article demonstrates for the first time that it is possible to create 

cellular automata models in which a simple self-replicating structure (loop) emerges from an initial state having 

a random density and distribution of  components (the "primordial soup"). These emergent self-replicating loops 

employ a general purpose rule set that can support the replication of  loops of  different sizes and their growth from 

smaller to larger ones. This rule set also allows random changes of  loop sizes and interaction of self-replicating loops 

within a cellular automata space containing free-floating components. In contrast to another recent study using very 

different methods than those described here [ 12], our model demonstrates the emergence of  very simple replicants 

that evolve to larger ones (rather than the opposite trend). We examine this difference in Section 5. 

This paper is organized into three parts: a brief example simulation illustrating the emergence and growth of  self- 

replicating loops, an explanation of  the transition function underlying this behavior, 2 and the results of  simulations 

done while varying model parameters. These latter, systematic simulations show that emergence and growth of  

replicants is very robust, occurring often and essentially independently of  the cellular space size, initial random 

pattern of  components, and initial density of components over a broad range of  these parameters. The number of 

replicants and the total number of components they incorporate approach quasi-stable values with time. A final 

section discusses the implications of this work and compares it to some recent related results. 

2. An example 

A continuous example running in a randomly initialized, small (40 x 40) cellular automata space using an initial 

component density of 25% is shown in Fig. 1. We use the term "component" to refer to any single cell that is active. 

Periodic boundary conditions are used (opposite edge are taken as connected), so the space is effectively a toms. 

2 The complete transition function is available via the internet at http://www.cs.umd.edu/~hhchou/download.html. 
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Fig. 1. A running example  o f  emergent  self-replication. Epoch numbers  are shown.  
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Initially, at epoch or time t : 0 (upper left, Fig. 1), the space is 25% filled by randomly placed, non-replicating 

components designated graphically as 

0 > L C B E F  or D, 

while cells in the quiescent state are indicated by blank space. All components have strong rotational symmetry 

[14] except > which is viewed as being oriented, i.e., its orientation is significant. 

This simulation is characterized by the initial emergence of very small, self-replicating loops and their progressive 

evolution to increasingly large and varied replicants. During this process a replicant may collide with other loops or 

with free-floating components, and either recover or self-destruct. Thus, by epoch 500 (upper right of Fig. 1), very 

small self-replicating loops of size 2 × 2 and 3 × 3 are present. By epoch 1500 a 4 x 4 loop is about to generate 

a 5 x 5 loop in the middle left region. At epoch 3000 the biggest loop is 8 × 8 and it is about to generate a 9 × 9 

loop. By epoch 5000 many very large loops have annihilated each other and only one intact 10 × 10 loop is left. By 

epoch 7500 all large loops have died, but there are new 3 × 3 loops in the space. These loops will replicate and it 

is not clear when (if ever) this example will cease its activity. In this example, the size of the replicating structures 

became too big to fit comfortably in such a small world (40 × 40 only), and the large loops started to annihilate 

each other. 

3. A general purpose self-replication rule set 

As can be seen from the above example, the transition function supporting these self-replicating loops differs 

from those used in previous cellular automata models of self-replication in several ways. A self-replicating struc- 

ture emerges from an initial random state rather than being given, replication occurs in a milieu of free-floating 

components, and replicants grow and change their size over time, undergoing annihilation when replication is no 

longer possible. All of this occurs in the presence of a single transition function based on the Moore neighborhood, 

which we now consider. The complete rule set is specified in Appendix A. 

The transition function is based on a functional division of data fields [10,17]. As seen in Fig. 2, the original bit 

depth of a cellular automata cell (in our case 8 bits) is functionally divided into four different fields (4, 2, 1 and 1 

bit each) such that each field encodes different meanings and functions to the rule writer. The utilization of field 

divisions greatly simplifies the cellular automata rule programming effort, and makes the resulting rules much more 

readable. In the illustrations in this paper, only the component field is shown unless explicitly indicated otherwise. 

3.1. Data fields 

As noted above, each non-quiesent or active cell is taken to represent a potential "component" of a cellular 

automata structure. A cellular automata structure can be just a single cell, i.e., one with no conceptual connection 

with any adjacent non-quiescent cells, and in that case we call it an unbound component. On the other hand, a cellular 

automata structure can consist of several contiguous nonquiescent ceils that are functionally interrelated, behaving 

as a whole, such as a self-replicating loop. In the latter case we call the structure a multi-component structure or 

simply a structure, and we call its components bound components (their bound bit is set; see Figs. 2 and 3). 

Some cell states direct specific steps during the self-replication process and can be viewed as moving through 

the other components within the cellular automata structure. We will refer to these as signals in the self-replicating 

process. A sequence of signals on a cellular automata structure comprises the signal sequence (algorithm) that 

describes and controls the self-replication process. For example, in Fig. 3 those non-quiescent states whose bound 
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Fig. 3. A 3 x 3 self-replicating loop (upper left). Bound components are defined by set bound bits which are marked in light gray. Bound 
components are treated differently by the transition function than unbound ones. 

bit is set are at the upper left region of  the figure. There are three signals in this cellular automata structure, i.e., 

L > > .  

The four data fields (see Fig. 2) and their states in the transition function are: 

- The four-bit c o m p o n e n t  field accounts for most normal operations of  cellular automata structures. It encodes its 

12 state values (out of  16 possible) as follows: 

O The building block used in self-replicating loops;  allows passage of  a signal sequence, providing a pathway 

for the f l owof  information. 

> The extrude signal that directs the extension/growth of  a cellular automata signal pathway into the adjacent 

quiescent space. This actually represents four states > ,  v ,  < and /x  which are designated in the rule set as 

' > ' ,  ' > ,  1', ' > ,  2 '  and ' > ,  3 ' ,  respectively. 

B The birth component left by the extrude signal >.  A quiescent neighbor will first be converted into this state 

before it becomes part of  a cellular automata structure. 

L The left turn signal that changes the direction of  growing signal path by 90 ° counterclockwise. 

C The corner component  left by the turning signal L. A signal > reaching it will be rotated 90 ° counterclockwise 

to form a corner. 
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EF This pair of signals in sequence directs the branching of a signal pathway. 

D The detachment component  which separates parent and child structures. 

There is also the quiescent state which is denoted by '. '  when referenced in rules; quiescent states are 

shown as white space in all figures. 

- The two-bit  spec i a l  field denotes special situations that arise occasionally in the cellular automata space. There 

are four possible states: 

' . '  No special situation. 

'* '  A branching signal sequence (EF) will be generated. 

' - '  A cell will not allow a signal sequence to pass, effectively deleting the signal sequence. 

'# '  A bound component  in the dissolve mode; will become unbound in the next epoch. 

- The one-bit  growth field, if set (denoted by ' + ' ) ,  marks a stimulus that may cause the existing signal sequence 

to increase in length. 

- The one-bit  b o u n d  field, if  set (denoted by ' ! ' ) ,  marks a cell as part of a multi-cell  structure; otherwise the cell 

is an unbound component.  

3.2. Signal transmission 

The basic building block of a self-replicating loop is the component O which allows a stored signal sequence 

to "flow through it". The general form of  the signal sequence which is transmitted in our model  is exemplified by 

L >  > > > ,  where an arbitrary number of  signals > are followed by a signal L (the signals flow toward the right here; 

so they are read from fight to left). A typical example of  signal sequence flow is shown in Fig. 4, being similar to 

that used in past self-replicating loops [ 14]. 

The transition function rules in our model  are based on the Moore neighborhood. They can be precisely represented 

in a high-level language for clarity, where neighbor position prefixes are designated no, ne,  ea ,  se ,  so,  sw, w e  and 

nw, for north, northeast,  eas t ,  southeest ,  south,  southwest,  wes t  and northwest, respectively. North is arbitraily 

taken to be up. For  example, the rules that implement  the signal sequence flow illustrated in Fig. 4 are: 

if (component::'O') rot if (we:component::'>') component='>'; 

rot if (component=='>') if (we:component=='L') component='L' ; 

else if (we:component::'>') component='>' ; 

if (component=='L') component:'O'; 

OL>>O0000 OOL>>O000 O00L>>O00 

0 1 2 

O000L>>O0 O0000L>>O O00000L>> 

3 4 5 

Fig. 4. Signal sequence flow. Each box is a snapshot of the same region in the cellular automata space during successive epochs (iterations). 
Numbers denote the epochs. Signal > is followed by either a signal > or by the signal L. Signal L always changed to O, the latter changing 
to > if pointed at by >. 
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The first, ou te r / f  statement says that if there is a component O with a signal > as its west neighbor that points 

at the O, then component O will change to > in the next epoch. The rotated if prefix rot of the inner i f  statement 

expands this condition to the other three equivalent possibilities in this isotropic space, i.e., a v to the north, a < 

to the east or a/x to the south. The second, ou te r / f  statement says that if the west neighbor of a > signal is an L 

signal, the > signal will change to L, but if the west neighbor is instead a >,  it will stay as >.  Again, the rotated 

prefix rot expands the condition to the other three cases: a signal v with an L or a v as a north neighbor, asignal 

< with an L or a < as an east neighbor, and a signal/x with an L or a A as a south neighbor. The last i f  statement 

simply says L always change to O. 

3.3. Extended replication 

The complete set of rules forming the transition function support replication of loops in a fashion similar to that 

used in the past [8,14]. As illustrated in Fig. 5, as a signal sequence circulates around a loop, it sends duplicate copies 

out an ann  that triggers the extension, turning, rejoining, and separation of the child loop. Usually a self-replicating 

loop will produce another loop with the same size and signal sequence as itself, as shown in Fig. 5. This can change 

if the loop's signal sequence is lengthened, as shown in Fig. 6, resulting in a larger child loop. We refer to this 

process wherein a loop's replicant is of a different (larger) size as extended replication. A loop's signal sequence 

can become modified to generate different structures than itself by an active growth field appearing in one of its 

cells during the arm branching process. The growth field (Fig. 2) is set when a loop dies, as explained below. 

When extended replication is under way, there is a timing problem, as seen in Fig. 6. The problem is that, due 

to the different sizes of parent and child structures, there will be an extra partial signal sequence in the new loop, 

together with a complete and correct signal sequence. This partial signal sequence must be erased to guarantee a 
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Fig. 5. Replication and separation of loops in isolation. The original 3 × 3 loop (epoch 0) goes through a series of extruding and turning 
steps (epochs 1-32) until finally its arm closes on itself (epoch 33). Component C designates a location where a corner (left turn) will 
form, while component B indicates the "birth" of a new component. When a loop closes on itself, D forms in the connecting cell between 
the two loops (epoch 34). D in turn triggers the setting of ' , '  values in the special field for both loops, shown in a light gray color at epoch 
35. These special markers result in both separation of the loops and altered signal sequences in both loops (EF suffix at epochs 38 and 
44), causing the generation of a new arm in each loop. 
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Fig. 6. Extended replication of loops. In epoch 0 the parent loop has one more > signal than it normally has (compare to Fig. 5). This 

causes a bigger loops to be generated. By epoch 8 this signal sequence generates a longer arm. By epoch 34 the arm has completed about 
3/4 of its closing process. At epoch 38 the ann closes on itself, causing D to be set in the connecting cells as usual, and a '-' value to 

appear in the special field of the child loop (epoch 39). Setting the special field immediately stops that O from passing a signal sequence 
until an incomming signal L appears (epoch 40). Then the special field changes to the value '*' as in epoch 41 (L is not copied). From 
then on the new arm branching process is under way. Note that the parent (left) loop completes its ann branching process and starts a new 
replication cycle in epoch 50. The larger child loop (right) takes longer to finish replication (in epOch 61 the child loop is complete). 

healthy new loop. This is achieved by setting the special field to '- '  in the closing corner cell  of  the new loop. The 

cell  in state O will  detect an extended replication in progress and will  set its spec ia l  field accordingly. Once its 

spec ia l  field is set to ' - ' ,  that O stops copying signal sequences, thus effectively erasing any signal sequence going 

through it, as shown in epochs 39-41 in Fig. 6. This erasing process ends when the O detects an incoming L, which 

is the tail of  the signal sequence being erased, and the cell in state O resets the spec ia l  field '-'  to ' , '  to start the 

process of  generating a new arm. 

Cellular automata rules that support extended replication are new. In the past, a different rule set has been 

required for each size replicating loop [14]; here the emergence of  different size loops and their simultaneous 

replication is supported by a single rule set. This is very important, since it permits an initially small emergent 

self-replicating structure to grow in size. Unlike past self-replication rules, those described here abstract the self- 

replication phenomena out of  any particular assumption about size of  the self-replicating structures. 

3.4. Collision detection and clean up 

In all past work on self-replicating loops, replication occurs in an otherwise empty space and the transition 

function does not need to handle unanticipated events. In other words, while writing the rules one has complete 

control over the behaviors occurring in the cellular automata space, including the initial state. In contrast, here the 

very first assumption is that there is no a priori knowledge about the interactions between self-replicating loops, or 

what the cellular automata space is like in epoch zero. Although the behaviors (and their associated rules) considered 

so far can reliably direct a structure to do replication or extended replication in isolation, they cannot guarantee that 
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Fig. 7. Dissolving cellular automata structures. The bound bit, if set, is shown as a light gray exclamation mark '!' in the background. It 
denotes the part of the cellular automata space which "belongs" to a cellular automata structure. In epoch 0 we have two self-replicating 
loops both starting their replication cycles. By epoch 26 both have attained partial replication. In epoch 33 the smaller child loop has 
closed on itself, but the larger child loop is colliding with it. In epoch 34 the separation state D is formed at the connecting cell. The 
upper left L cell of the inner loop detects a failure situation and sets its failure mark '#' (light gray, epoch 35). In epoch 36 the D has 
disappeared and the leftmost original loop is secure, while the failure mark spreads in the larger loops. The spread of the failure mark '#' 
in a loop is fast (epoch 39), such that by epoch 49 all but the leftmost cellular automata structure has dissolved completely into unbound 
components. The original left loop will continue its replication in a new direction. 

a structure will not  run into another  structure, that two structures will  not  try to replicate into the same region of  

the cel lular  automata  space, or that a replicat ing loop will  not  run  into free-floating unbound  components .  These 

factors are all " randomly"  determined.  Exper iments  (unpubl ished)  with several past  t ransi t ion funct ions for self- 

repl icat ing loops demonstra ted that even min ima l  introduct ion of r andom cell state changes could completely  disrupt 

the repl icat ion process (i.e., past  t ransi t ion funct ions  have been  brittle). In contrast, the transi t ion funct ion used here 

assumes that no t  all designated regular  procedures will  always be fol lowed without  interrupt ion or dis turbance from 

other structures. It  includes rules that will detect any failed regular  procedures and clean up the cellular  automata  

space after such  failure. 

A failure si tuation happens  when  something prevents the regular replicating procedures from cont inuing,  such 

as an obstacle in the extrusion path, or two loops col l iding into each other. W h e n  such a si tuation occurs the failure 

value '# '  appears in the s p e c i a l  field. W h e n  a loop has any of  its cells enter  this failure mode,  this mode quickly 

spreads throughout  the whole  structure, as shown in Fig. 7, causing the loop to dissolve completely. The loop 's  

components  become u n b o u n d  and revert to be ing control led by  the rules governing u n b o u n d  components .  Cell  state 

D blocks a failure mark  from passing through it, thus protect ing a failed child from its parent, and vice versa. 

To illustrate some of  the rules used dur ing the failure detect ion process, recall the fol lowing rule for passing 

signal > through an O that was introduced earlier: 

if (component :='0') rot if (we:component:'>') component='>' ; 
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To check  for failure, in the actual rule set additional condit ions  are present to detect when  there is more than one > 

signal trying to m o v e  into the same O. If  that is the case the fail mark should be set, as fol lows:  

if (component::' O' ) 

rot if (we:component=:'>') 

if (no:component[='>,l' && no:component!='>,2' && 

ea:component!='>,2' && ea:component!='>,3' && 

so:component!:'>,3' && so:component!:'>') 

component: ' > ' ; 

else special='#' ; 

Here ! = means  "not equal to" and && is a logical  A N D  operation. Other failure checking  rules are similar, i.e., 

they are all elaborated forms of  normal rules for various regular functions.  

Finally, a way is needed to set the growth bits that trigger extended replication. Recal l  that there is no a priori 

information about when  and where these should be placed, and no growth bits are set initially. We adopted the 

fo l lowing  approach. Whenever  a signal L dissolves ,  it leaves behind a growth bit at its location. A loop usual ly  has 

only  one L signal,  so one d isso lv ing  loop usual ly  produces one new growth bit in the cellular automata space. This 

way, the generation of  the growth bit becomes  part of  the behavior of  the cellular automata space, since when  and 

where  a loop wi l l  d i sso lve  is determined purely by the interactions within the cellular automata space. 

The growth  bit is ut i l ized during the arm branching phase of  self-replicating loop to extend the signal sequence 

in a loop. A s  shown in Fig. 8, this is a two-step strategy. First, i f  a s ignal > sees a growth bit in its place and it 
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Fig. 8. The growth of a larger loop. In epoch 0 the branch special flag in the lower left cell and the growth bit in the middle right cell 
are both set. In epoch 2 the normal arm branching EF signal sequence is generated. In epoch 3 the signal sequence becomes > > >  and 

subsequently the growth bit is unset. By epoch 8 the parent loop is about to start the replication cycle with one more > signal than it 
normally has. By epoch 47 a whole new loop bigger than the original one is generated. By epoch 58 the two loops have separated and the 

original one is just about to start another replication cycle. In epoch 69 the new, bigger loop is finished and is starting its own replication 

cycle. 
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is the last > before the signal L, it does not  copy the signal L behind it as it normally does. Instead, it stays at its 

current value > for one more epoch, thus effectively increasing the size of  the signal sequence by one. The signal 

L disappears temporarily since it is not copied, but reappears when the signal > sees a trailing signal F and the 

growth bit in its position. The growth bit is unset after signal L is regained, so the same growth bit does not cause 

another growth stimulus. Thus, when a loop dies, it leaves a set growth bit behind, and when a loop expands, it 

consumes a growth bit. This provides an interesting ecological balancing factor in the cellular automata universe. 

3.5. The minimum loop and emergence of  replication 

What is the smallest possible loop capable of  self-replication? The answer to this question is important because 

the probability of  the random occurrence of  a specific self-replicating structure arising from random occurrences of  

individual unbound components would in general decrease as its size increases. Our previous research in minimizing 

the size of  self-replicating loops led to self-replicating structures with only five components [ 14]. However, the rules 

described here so far can only support the self-replication of  3 x 3 loops and larger because the signal sequence 

rules require that two signal sequences not be adjacent to each other. In addition, a critical limiting factor in the 

number of  available signal carrying cells in a loop. For the arm extrusion sequence (EF) to work we need on some 

occasions two more cells in addition to those for the normal replication sequence. At least one extra loop cell is 

also needed if we want to allow extended replication where loops grow in size. For a 3 x 3 cell structure the total 

number of  required cells is 6. For a 2 x 2 cell structure that number becomes 5, a seemingly impossible case since 

it only has four cells. Nevertheless, with the addition of  rules that specifically address these problems, it is possible 

to support replication of  2 x 2 loops, as illustrated in Fig. 9. With such a small replicating loop, it is straightforward 

to provide for the emergence of  self-replication from an initially random set of  unbounded components. This is 

achieved by allowing the unbound components to translate and change or appear at "random", i.e., by "stirring the 

primordial soup". The unbound component rules that do this can be summarized by: 

- If  a quiescent cell has exactly three active neighbors, it will itself become active in the next epoch. Its active value 

will be determined quasi-randomly based on the state of its neighbors. 3 

- If  an active cell has exactly two or three active neighbors, it will stay active; otherwise, an active cell will return 

to the quiescent state in the next epoch. 

These rules, of  course, are generalizations of  those used in the Game Of Life [7] from binary to non-binary states. 

Fig. 10 shows a simple example of  how these rules work. They generally produce a continually varying distribution 

of  unbound components. 

All that is then required for the emergence of  self-replication is a small set of  rules that watch for the "random" 

formation of  the smallest loop configuration (the 2 x 2 loop). Once such a configuration occurs, all four members 

of  it simultaneously set their own bound  bit and produce an active smallest loop in the next epoch. This is how the 

first self-replicant is formed. This is possible using only local operations because the minimum loop configuration 

is so small that it is within a 3 × 3 Moore neighborhood, so each component can simultaneously "see" the same 

configuration. An example of  how the final unbound component rule set works and how it leads to the first self- 

replicating structure is demonstrated in Fig. 11. 

3 Since the transition function is deterministic, the identity of a newborn component is determined by adding the integer values of its 
neighboring cell states mod 6. This selects one of the six states >, v, <, A, L or O. Only the initial state of the cellular space (same six 
components; see Fig. 1) is based on a pseudo-random number generator. 



~-H. Chou, ZA. Reggia/Physica D 110 (199~ 2 5 2 ~  

OO <L LO O0 
L> FE VFO L>> 

0 2 3 4 

OA O0 LO C OO < 
OL>B L>OOC vOOL> L>OOL 

5 8 15 16 

O ^  BL <L LO LO O0 O0 OA 
OL>OO OOD>O VQD~> L~ EL 

17 18 19 20  

OA LE 
O ~  vF 

^ D 
O^ <L O^ <L O0 O^ <L <L LE O0 
OL FE OL OOL> L> OL FE O0 vF L>> 

21 25 40 42 

263 

Fig. 9. The smallest self-replicating loop shown in isolation. This structure starts as only a 2 x 2 loop with its lower left cell's special 

field set to '*'. By epoch 5 the arm appeared. By epoch 17 the new loop is closing on itself and in epoch 18 the separator D is formed as 

usual. In epoch 19 the two branching special  values ' , '  are set for both loops. Note that although the child (right) loop has not detached 

from the parent (left) loop here, it has precisely replicated the parent loop (epoch 0). In epoch 20 the D disappears, completely separating 

the parent and child loop. By epoch 42 there are four loops, and all are still actively replicating. 
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Fig. 10. The effects of unbound component rules. In epoch 0 a few random active states are introduced into the cellular automata space. 

In epoch 1 the middle ' <'  component dies because it has more than three active neighbours (Moore neighborhood). In the same epoch 

two new components, one 'O' and one '<'  are born since there were exactly three active neighbors at their locations. Note that the state 

value 'O' and one '<' are determined by state values of the active neighbors (see text). In epoch 2 one new 'L' component is born. This 

process continues indefinitely. 
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F i g .  11. The emergence of a self-replicating structure. Components of structures are marked b y  a non-zero bound bit, or an ' ! '  m a r k .  I n  

epoch 0 a randomly generated initial space is given. This space has only unbound components until epoch 8, when the pattern of the 

smallest replicating loop (circled) appears. In epoch 9 this configuration turns into a functioning self-replicating loop when its four cells 

set their bound bit simultaneously. Its peripheral cells clear and the arm branching process begins (epochs 10-13). By epoch 28 the first 

sibling is about to separate. By epoch 51 four loops are obtained and all are actively engaging in the replication processes. 

4. Experiments and analysis 

The rule set that we designed is intended to produce self-replicating loops when starting with an initial space 

having randomly placed unbound components. However, it is not obvious that this rule set will work frequently 

or quickly, how often self-replicants will arise, whether they will persist, and how model parameters will affect 

the occurence of  self-replication. In this section we describe systematic experiments that examined these issues, 

including how the space size and initial component density affected model behavior. We also consider the long-term 

behavior of  the model. 

4.1. Methods 

A series of  simulations were conducted while varying the cellular automata space size (50 x 50, 100 x 100, 

150 x 150 and 200 x 200), initial unbound component density (10%, 20%, 30%, 40% and 50%) and random initial 

configuration. All simulations were run for 30 000 epochs unless the cellular automata space ceased all activity 

before then. 

Since it was not feasible to collect the simulation data manually, a data collecting module was built into the 

simulator to analyze the cellular automata space configuration while the simulation was running. It counts the number 

of  ceils of  certain types and also recognizes some higher-level structures. Replicating loops were automatically 

identified, and their sizes were recorded. Data collected for each simulation epoch contained the number of  active 
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cells, the number of active bound cells, the number of growth bits, and the number and size of individual loops in 

the cellular automata space. These data were later batch processed by another program to determine the average 

size of loops for each epoch. 

4.2. Basic results 

Eighty one simulations were done while systematically varying the space size (50 x 50 to 200 x 200) and 

initial density of unbound components (10% to 50%). A new, randomly assigned initial state was used with every 

simulation. It was found to be harder to support long term evolution of emergent self-replicating loops in the smallest 
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Fig. 12. Comparison of simulations having different initial densities of unbound components. In this example simulations for a cellular 

automata space of 100 x 100 cells are compared using four different initial densities (10%, 20%, 30% and 40%). The number of loops 

present is shown during the first 1000 epochs (a) and during the first 5000 epochs (b). 
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cellular space size examined (50 x 50). Only one-third of the simulations for the 50 x 50 world size reached epoch 

30 000, the predetermined termination point. The other two-thirds ceased all activity before reaching the termination 

epoch 30 000 (usually between 15 000 and 28 000 epochs). Despite the shorter life span of simulations for this space 

size, they all still generated self-replicating loops except for one unusual simulation with an initial low (10%) 

unbound component density, where all activity ceased by epoch 95. Since only one out of 81 simulations done 

failed to generate self-replicating loops, apparently it is easy to generate self-replicating loops with the rule set 

described in this paper. 

Simulation behavior was not much influenced by the initial random configurations. All simulations sharing the 

same parameters (space size and initial unbound component density) exhibited the same characteristic behavior. For 

example, the total number of active cells and number of growth bits set were qualitatively and almost quantitatively 

the same over time, and with both of these measures the quantities asymptotically approached near-constant values. 

More surprisingly, the initial unbound component density also did not significantly change the simulation results, 

at least over the range of values examined. For example, Fig. 12 shows the number of self-replicating loops in the 

cellular automata space during four simulations having different initial unbound component densities for a cellular 

automata space size of 100 x 100. Although these curves are somewhat different for the four simulations, especially 

initially, the initial density of unbound components did not make any significant difference beyond epoch 1000. 

This similarity occurred with all other cellular automata space sizes and for all other data collected. Clearly the 

emergence, proliferation and persistence of self-replicating loops is a robust phenomenon relatively insensitive to 

the initial conditions of a simulation. 

Simulations were also run with different cellular automata space sizes. If all data are normalized by dividing 

them by a measure of relative size of the cellular automata space, the resulting values are again mostly similar 

to each other, except for the average loop sizes. To do this normalization, we use a size ratio of 1 for a 50 x 50 

space, 4 for a 100 x 100 space, 9 for a 150 x 150 space, etc. With such normalization, the number of active 

cells per unit area is found to be roughly the same and thus largely linearly scalable and independent of the 

cellular automata space size. Plots of active cells over time for smaller cellular automata spaces tend to have 

greater variances as would be expected, but the average tendency is still the same. Fig. 13 shows the number 

of replicating loops in the cellular automata space, starting with an initial unbound component density of 40%, 

for different space sizes. The curves for smaller cellular automata spaces tend to have greater variances, but the 

general trends are the same. This and other similar comparisons show that the number of active cells, the number 

of bound cells, the number of growth bits and the number of loops per unit area are essentially all independent 

of the cellular automata space size. In contrast, the normalized average loop size is not the same for different 

space size simulations. In Fig. 14, for example, both the normalized and unnormalized average loop size curves 

are shown for four simulations having the same initial unbound component density of 30% but different space 

sizes. It can be seen that although a larger cellular automata space tends to allow larger loops, the increase is not 

linear. 

In summary, the following properties are observed: 

- Different simulations having the same cellular automata space size and initial unbound component density but 

different random initial configurations behave the same. 

- Different simulations having the same cellular automata space size but different initial unbound component 

densities behave the same. 

- Different simulations having different cellular automata space sizes and initial unbound component densities 

behave the same except the average loop size. 

Thus there is a very stable and characteristic dynamics under the emergent self-replicating rule set. Because of 

these observations, in the following we just describe the data for 200 x 200 cellular automata space simulations as 

examples, with the understanding that the other different space sizes behave fairly similarly. 
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Fig.  13. C o m p a r i s o n  o f  n u m b e r  o f  loops  for  d i f fe ren t  ce l lu la r  a u t o m a t a  space  sizes.  T h e  n u m b e r  o f  loops  in the  ce l lu la r  a u t o m a t a  space  

is sca led  b y  the  s p a c e  size ra t io  fo r  the  f o u r  s imula t ions .  

4.3. Further analysis 

Fig. 15 shows the number of active cells and the number of bound cells for a simulation with a 200 x 200 

cellular automata space and an initial unbound density of 30%. These two curves have an almost constant difference 

between their values, in this case an average of 2480 cells, representing the number of unbound components. The 

same average differences for three similar 200 x 200 cell simulations with an initial unbound component density 

of 10%, 20% and 40% are 2475, 2477 and 2473. This value appears to be very stable over time. 

To determine if this constant population of unbound components is the natural tendency of the unbound component 

rules in isolation, or if it is the joint  property of these rules and those governing self-replication, simulations were 
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Fig. 14. Comparison of average loop sizes for different cellular automata space sizes. In this figure, the average loop sizes for each 
simulation are compared: (a) normalized by space size ratio, (b) not normalized. The relative vertical positions of curves are reversed in 
these two graphs, i.e., the curve for a 200 x 200 space is the lowest in (a) but the highest in (b). 

conduc ted  where  bound  cells  were  not  a l lowed to be generated.  N o n e  of  these s imulat ions mainta ined a constant  

unbound componen t  popula t ion  as high as that o f  2480 in a 200 x 200 cel lular  automata  space. Actually,  all o f  

them ceased act ivi ty long before  reaching  30 000 epochs.  Thus,  the relat ively constant  level  of  unbound components  

depended  on the entire rule set. 

The  behav ior  o f  act ive cells can be  seen mos t  c lear ly  in Fig. 15(b). At  the beginning,  there are 12000  active 

cells, or  30% of  the total cells  in the space. This  number  drops rapidly since the unbound componen t  rules a lone 

are not  capable  o f  sustaining such a vast  number  o f  act ive cells. I f  no  bound  components  are formed,  this number  

wil l  cont inue to fall. However ,  around epoch  100 bound  componen t s  appear with the emergence  of  self-replication.  

There  is an initial surge o f  bound  componen t s  due to the initial prol i fera t ion o f  small  and rapidly repl icat ing loops. 
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Fig. 15. The relationship between active cells and bound cells for a simulation with 200 x 200 space size and 30% initial unbound 
component density. Graph (b) is an expanded view of the first 2000 epochs of graph (a). 

Gradually, a balance is achieved and the number of  unbound and bound components approximate constant values 

asymptotically.  

The change in the number of  growth bits is shown in Fig. 16(a) for a 200 x 200 cell simulation with 30% initial 

unbound component  density. The number of  growth bits climbs rapidly at the beginning, but gradually tends to level 

off as consumption and generation of  growth bits become balanced. The final growth bit density occurs at 56% in 

this case. 

The number of  replicating loops generally stabilizes too. In Fig. 16(b) the change in the number of  loops with 

time is shown for the same simulation. After  10 000 epochs, there is no significant change of  the average number of 

loops (147) in the cellular automata space. In  the beginning of  the simulation, there is a transient overshoot of  this 
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Fig. 16. Change in number of growth bits (a) and loops (b) with time (200 x 200 cellular automata space size, 30% initial unbound 
component density). 

long term average number of  loops. This is for the same reason that the number of  bound components overshoots, 

i.e., smaller loops are proliferating rapidly at the beginning but slow down when competitive pressure raises. 

The change in average loop size is shown in Fig. 17(a) for the same 200 × 200 cell simulation with a 30% initial 

unbound component density. A detailed portion of this is shown in Fig. 17(b) where it is seen that, the average 

loop size is almost cycling at times. This behavior is in exact accordance with what one observes visually in the 

cellular automata space during a simulation. Recall the example of  Fig. 1 where loops in the cellular space showed 

the tendency to grow bigger and bigger (epochs 500-5000), until there is no more space to grow any larger, and 

then the bigger loops disappeared, replaced by smaller loops again (epoch 7500). It is this quasi-cycling behavior 

which produces the zigzag shape of  the curve and may reflect an underlying chaotic dynamics. 
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Fig. 17. The change in average loop size with time. Graph (a) is for the whole course of the simulation, graph (b) for epochs 20 000- 
22 000. 

The  average  loop size after the cel lular  au tomata  space has reached a stable condi t ion  is about  73 cells  for a 

200 x 200 cel lular  au tomata  space size. As  shown earlier, the average loop size is not  l inearly scalable with the 

cel lular  au tomata  space size. The  average loop size for a 150 x 150 cell  space is 64 cells,  for  a 100 x 100 space it 

is about  56 cells,  and for  a 50 x 50 space it is about  39 cells. Two term curve-fi t t ing with  the available s imulat ion 

data reveals  a c lose  fit o f  the curve  loopsize = - 5 6 . 5 3  + 24.38 log(space size) to the data. The  fitted curve  and the 

s imulat ion data are compared  in Fig. 18.4 

4 T h i s  c u r v e  is  solely intended to suggest a logarithmic relation for the existing data and not for extrapolation beyond the limited range 
of sapce sizes examined. 
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Fig. 18. The long term average loop size for each simulation is indicated by 'o' marks. The fitted curve is shown by a line. 

Finally an extremely long simulation was done with a 200 x 200 space and an initial unbound component density 

of 30%. This simulation was allowed to run for 613 920 epochs, about 20 times longer than the above simulations. 

The results showed no sign of changing once a quasi-stable status had been reached. An important issue is whether 

the cellular automata space might be going through some sort of cycle, i.e., whether the configuration of the cellular 

automata space is repeating itself. To study this, the positions and numbers of self-replicating loops of the long 

term simulation for each epoch were cross-compared with each other. No duplication was found during the entire 

613 920 epochs. 

5. Discussion 

The results reported here show for the first time that non-trivial self-replicating structures can emerge in a cellular 

automata space initialized with a randomly distributed set of components. Unlike past cellular automata models, 

the initial states in our simulations did not contain any replicating structures, and were different in each simulation. 

The emergence of replicating loops was quite robust, occurring in 80 of 81 simulations having different space sizes, 

densities of components, and initial configurations of these components. 

Once small self-replicating loops appeared, they gradually increased in size, eventually reaching an average size 

that was characteristic of the size of the cellular space. However, the number and size of self-replicating loops never 

reached an equilibrium. Instead, these values oscillated around an average value. The oscillations were of varying 

amplitude and non-periodic, suggesting that the behavior of the model has a chaotic dynamics. 

To our knowledge, only one previous computational study of emergent self-replication has been done [12]. That 

investigation used a very different (non-cellular automata) model having an initial state composed of randomly 

generated sequences of computer operations. It evolved self-replication via a mutation operation. The primary 

conclusion, backed up by simulation results, was that the probability of a randomly generated sequence of operations 

becoming self-replicating increased with the number of computer operations it contained. Further, self-replicating 

sequences decreased in size once they appeared. Our cellular automata model provides a "proof by existence" that 

such behaviors are not necessarily an inherent aspect of emergent self-replication, in that very small self-replicants 
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can arise first and then increase in size, as is often argued to have occurred with the origins of biological replication. 

We attribute the differences in our results to the fact that we started with random individual components rather than 

random initial sequences of computer operations, that our rules were hand crafted, and that cellular automata are 

based solely on highly local operations (e.g., there is no global copy operation that copies a loop to a nearby region 

of the space). 

The results of this study and previous work are encouraging in that they suggest that computational models of 

self-replicating structures may be used effectively to explore hypotheses related to the origins of life. In addition, 

recent demonstrations that replicating loops in cellular automata spaces can be programmed to solve problems as 

well as to replicate [4,13,16] raises the possibility that these abstract models of replication may ultimately lead to 

practical applications. Two other future avenues of investigation are also suggested by this work. First, there is a 

clear need for theoretical analysis and explanation of the long term behavior of the self-replication process modeled 

here. Second, development of more realistic models of replication that can be more directly related to experimentally 

studied replication of oligonucleotides [3] would allow a tighter coupling of theoretical/computational work and 

experimental work. 
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Appendix A. Rule listing 

The ~llowing roles differ somewhat ~om those in the text because, ~ r  efficiency, more else-~ statements are 

used rather than plain ~statements, and they are o~anized according to the component ~pes  they deal with rather 

than the ~nctions of the roles. By deNult, if no role matches a cell's current state, its state is unchanged at the next 

epoch. A fully commented version of these roles is available online at the website listed earlier. 

// ********** Default rules are used when no other rule apply *********** 

default component:component; default growth=growth; default bound:bound; 

default rot if (component && special::'.' && 

(ea:component::'D' && no:component && we:component I I 

we:component::'D' && no:component && ea:component)) 

special='*'-, 

else special:special; 

// **************** Variable and Function Declarations ***************** 

int count, // number of neighbors meeting a certain condition 

value; // accumulates component values from neighbors 

nbr y; // a variable used for looping through all neighbors 

int Error() // detection of anomalous conditions (e.g., loop collision) 

{count=0; 

over each other y: if (y:component) count++; 

if (count && count<:5) return 0; else return i;} 
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// ****************** Unbound component rules ********************* 

if (bound==0) { 

count:0; value=0; 

over each other y: 

{ if (y:component) { count++; value = value + y:component; } 

if (y:bound &A y:component && y:special!='#') [count = 99; break; ]} 

if (count==99) { component=' '; bound='!'; } 

else if (special) special=0; 

else rot if (component::'>' && we:component=:'L' && nw:component:='0' && 

no:component=='0') { bound:'!'; special:'*'; } 

else rot if (component:='L' && ea:component=='>' && no:component::'0' && 

ne:component=='0') bound=l; 

else rot if (component::'0' && 

(so:component:='L' &&se:component::'>' &&ea:component:='0'I I 

so:component::'>' &&sw:component::'L' &&we:component::'0')) 

bound:l; 

else if (count<2 I I count>3) component='.'; 

else if (component:=' ' && count=:3) component = (value+l)%6+l; 

} // closure of the "if (bound=0) { ..." statement 

// ************** Bound component rules (loop components) ************** 

else { 

if (special:='#') bound:0; 

else rot if (component && component! ='D' && 

(no:special::'#' I I ne:special=:'#')) 

[ special:'#'; if (component::'L') growth:'+'; } 

else if (component && Error()) special:'#'; 

else { 

if (component=='0') { // ***************** Block 0 rules 

if (special!:'--') { 

rot if (no:component::'B' && nw:component:=' ' && 

(we:component=='0' I I ea:component::'L') special:'--'; 

else rot if (we:component=:'>') 

if (no:component!='>,l' && no:component!:'>,2' && 

ea:component ~-'.- >,2' && ea:component .-~-'>,3 && 

so:component I-, , .:,>, , . .- >,3 && so:component~ ) component= >', 

else special='#'; 

else rot if (so:component::'>') 

if (we:component!='>',l' && we:component [='>' && 

no:componentS:'> ' .  ,2' && no:component .':'>,i' && 

ea:component!='>, 3' && ea:component!:'>,2') component='>,3'; 

else special ='#'; 

else rotif (so:component:='F' && se:component:='. && 

no:component=='.' && ea:component=='.' && 

we:component::' ') component='>,3'; 
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else rot if ((nw:component:='>,3' I [ nw:component::'0') && 

(ne:component:='B' I I ne:component=:'>,l') && 

no:component=:' ' && ea:component && we:component ) 

component:'D'; 

} else rot if (we:component=='L') special:'*'; } 
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else rot if (component=='>' { // ***************** Signal > rules 

if ((nw:component=:'>,3'l I nw:component:='0') && 

(ne:component=='B' I I ne:component::'>,l') && 

no:comp0nent=:' ' && ea:component && we:component) component:'D'; 

else if (we:component=='L' 

if (nw:component:='E' && (growth I I no:component::'>,3') growth='+'; 

else component='L'; 

else if (no:component=='L' component:'L'; 

else if (we:component=:'> component='>'; 

else if (we:component:='>,l') component='>'; 

else if (no:component:='>,l') component:'>'; 

else if (growth && nw:component::'F') { component='L'; growth:0; } 

else component:'0'; } 

else if (component::'B') { // **************** Birth B rules 

rot if (we:component=='L' && no:component=='0') component='L'; 

else rot if (we:component=:'L') component:'C'; 

else rot if (we:component=='>') component='>'; 

else rot if (no:component && so:component) special='#'; 

else component='0'; } 

else if (component=='L') { // **************** Signal L rules 

if (special=='*') component='E'; 

else rot if (we:component=='>') special:'#'; 

else rot if (so:component::'E' && sw:component[:'F' && 

(no:component::'.' I I we:component::'.')) component='E'; 

else component:'0'; } 

else if (component::' ') { // **************** Quiescent state . rules 

rot if (we:bound && we:component::'>' && (nw:component:='.' I I 

nw:component::'>,l' I I nw:component::'L')) component:'B'; 

else rot if (so:special=:0 && so:component=:'E' && 

se:component=='.' && no:component==' ') component='0'; 

else {count:0; 

over each other y: 

if (y:bound && y: component && y:special::0) count++; 

if (count::0) bound:0; } } 

else if (component=:'C') { // **************** Corner C rules 
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rot if (no=component:='E' II no:component=:'F') special:'#'; 

else rot if (we:component::'>' I I we:component:='>,l') component:'>,3'; 

else if (component::'D') // **************** Detach D rules 

{ rot if (ea:special) component:'.'; ] 

else if (component::'E') // **************** Signal E rules 

{ component:'F'; special='.'; } 

else if (component=='F') { // **************** Signal F rules 

rot if (no:component=='>,2' && ea:component) 

if (ea:component:='E' II so:component=='O') component:'>,l'; 

else special:'#'; 

else rot if (no:component ==' O' && 

(ea:component=='O' II ea:component:='L') && 

so:component::'.' && we:component:='.') special:'#'; 

else component:'O'; } } 
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