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Turing Patterns in CNNs-Part I: 
Once Over Lightly 

Liviu GoraS, Member, IEEE, Leon 0. Chua, Fellow, IEEE, and Domine M. W. Leenaerts, Member, IEEE 

Abstruct-The aim of this three part tutorial is to focus the 
reader’s attention to a new exciting behavior of a particular class 
of cellular neural networks (CNNs): Turing pattern formation 
in two-grid coupled CNNs. We first analyze the reduced Chua’s 
circuit as the basic cell for the two-grid coupled CNNs capable of 
producing Turing patterns. We use a nonstandard normalization 
to derive a dimensionless state equation of the individual cell. 
Then, we present an intuitive explanation of Turing pattern 
formation mechanism for a 1-D two-grid coupled array in relation 
to the original mechanism proposed by Turing. Finally, we derive 
the first two conditions for Turing pattern formation, discuss the 
boundary conditions, and illustrate via an example on how the 
number of the equilibrium points of a CNN increases rapidly even 
though each isolated cell has only one equilibrium point. This 
study is continued in the next two parts of this tutorial where 
analytical derivations and various computer simulation results 
are presented as well. 

I. INTRODUCTION 

AT are Pattems? The word pattem, widely used in w various fields of scientific research, generally suggests 
meanings like configuration, form, specimen, and refers to time 
and/or space variable quantities.’ In a certain sense, pattern 
is the opposite of uniformity or homogeneity. For instance, 
identical interacting elements (cells) placed in the nodes of a 
regular grid is said to give rise to a pattern only when they 
have unequal output states in the dc steady state. 

Throughout this paper, the word “pattern” will denote the dc 
steady-state evolved through a differentiated dynamic behavior 
of identical elements identically coupled in a homogeneous 
(regular) spatial distribution. Thus, the case when all cells have 
identical output states will not be considered as representing 
a pattern. 

It may seem somewhat surprising that in systems composed 
of identical and identically coupled elements (e.g., particles, 
mixtures of substances, biological cells, individuals of certain 
populations, and circuits in this paper) it is still possible for 
patterns to appear. Such phenomena, implying a “breakdown 
of symmetry” are currently being intensely studied in biology, 
physics, chemistry, ecology, and recently [ 11, [2] in electronics 
(Fig. 1). A typical example from physics is the Rayleigh- 
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Pattem recognition should sound rather familiar to most readers. 

BCnard convection [3], [4], which denotes the phenomenon of 
circulating flow that takes place in the case of a fluid placed in 
a flat horizontal box uniformly heated and cooled at the bottom 
and the top, respectively. Autocatalytic chemical reactions 
coupled with molecular diffusion can generate patterns in 
biological, chemical, and biochemical systems following Alan 
Turing’s celebrated model of morphogenesis* [5], [6]. In 
all cases, the shape and dimensions of the patterns depend, 
among other parameters, on the initial conditions, the boundary 
conditions, and the geometry and dimensions of the spatial 
domains. 

A Glimpse Forward-The CNN: The recently introduced 
CNN circuit architecture [7], [8], is characterized by nonlinear, 
continuous-time, discrete-space dynamics. Its main feature 
consists of the fact that each cell3 of the array is connected 
only to its neighboring ones4 according to a template that is 
usually the same for all cells except for those in the boundary 
region. Sharing the best features of analog and digital circuits, 
including the ease of VLSI implementation, CNNs have 
been successfully used for various high speed parallel signal 
processing applications [9]. Under certain conditions, such 
arrays can produce patterns as well as many other spectacular 
dynamic phenomena, such as spiral, concentric, and scroll 
waves, etc. [2]. 

In the following, we begin the study of a particular family 
of CNNs having as cells Chua’s circuits considered as resistive 
two-ports terminated in two capacitors and coupled by means 
of two rectangular resistive grids. We will show that these 
CNNs can produce patterns based on a mechanism similar 
to the reaction-diffusion phenomenon studied by Turing. The 
patterns obtained by this method will be called Turing patterns. 
In the 1-D case, the CNN consist of a chain of two-port cells 
having the corresponding ports linked by resistors. The 2-D 
case is sketched in Fig. 2 and may be viewed as a sandwich 
of cells between grids, each port of each cell being coupled 
to its four nearest adjacent corresponding neighbors through 
linear resistors. All cells are identical, and all resistors of each 
grid are equal to R, and R,, re~pectively.~ 

In this paper, we will refer to CNNs made of A4 x N cells 
arranged in a rectangular array of M rows and N columns. 
The 1-D case will correspond to M = 1. 

pattem and form as, for instance, animal coat patterns. 
Morphogenesis is the part of embryology that studies the development of 

3Cells are identical. 
4The r-neighborhood of a cell C ( i , j )  is defined as N p ( i , j )  = 

{C(k,I)Imax{lk - iJ,IJ - jl} 5 r }  for all admissible k and 1 in the 
array (. E N \ (01 ) .  

Generalization to nonhomogeneous arrays can also be made. 
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Fig. 1. Several voltagc pattern, obtained in a S O  x SO cells tao-grid coupled C N N  (interpolation uhcd for display) 
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Fig 1 (d)  C hua s circuit (b) I -! chdrdcteri\tic of Chua’, diode 

lea\t of second order.6 (It is known that even one-grid coupled 
CNN\  ba\ed on the (third order) Chua’s circuit may produce 
\patio-temporal chaos [ I O ]  ) The reduced (second order) 
Chua’s circuit, which will be used a\ a cell for the two-grid 
coupled CNN,  I \  obtained from the onginal Chua’s circuit by 
short circuiting the inductor as shown in Fig. 3, together wlth 
the piecewise-linear characteristic of the Chua’s diode [ I ] .  
There are two reasons for making this simplification. First, 
most literature on Turing patterns used only second-order 

Fig 2 Sketch of a two-grid coupled C N N  (For {impliiity only one row 
of cells is {hown ) 

I1 THE CELLS 

A. Equatiotzs arid Norii~uiicatioizs cells for the sake of simplicity. Second, our goal is to choose 
the simplest cell capable of producing Turing patterns. The 
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Fig. 4. The reduced Chua’s circuit: (a) unnormalized; (b) normalized; (c) 
equivalent reduced Chua’s circuit containing two identical positive capaci- 
tances. 

reduced Chua’s circuit is simpler not only because it has a 
lower-order state equation, but it contains only two kinds of 
two-terminal circuit elements, namely capacitors and resistors. 

The reduced Chua’s circuit will be regarded as a nonlinear 
resistive 2-port terminated by two linear capacitors as shown 
in Fig. 4(a). The resistive 2-port (consisting of Chua’s diode 
and two linear resistors) is described by the general voltage- 
controlled constitutive relations 

Observe that, since it contains only 2-terminal resistors, the 
cell is reciprocal; i.e. 

E+ m2- mo 

I 
-1 E 

Fig. 5. h(u) characteristic for the normalized reduced Chua’s circuit. 

symmetric and second, the normalizing capacitance is no 
longer equal to C2 but an arbitrarily chosen positive value, 
CO. Thus, both capacitors C1 and C2 (or their normalized 
values Cu and C,) can be used to control the behavior of the 
cells and thus of the CNN. 

Without loss of generality, we choose G = &, CO = 1, 
and lEll as the normalizing values for resistors, capacitors, 
and voltages, respectively. The time scale will thus be nor- 
malized by the value RCo. Multiplying both sides of (4) by 
CO/ I E1 I G = 1 / I El I G and introducing the notations7 

T J l  212 Er 
lEll’ IEll’ El ’ 

U = -  U=- E = -  

c, = Cl, c, = c2, 

(6) IC, I = ,-(U - Y.) The state equations describing each cell are given by 
U ,  

(3) the new dimensionless equations for the reduced Chua’ s circuit 
now assume the form 

and can be written explicitly as 

f ( U ,  TJ) = - ? ( / ( U )  - v) 
(8) GWI + (Ga - Gi)Ei + 1, if < El i A  g(u,TJ) = Y ( U  - vu), 

where 

i = i ( ~ )  = Gaul + I ,  if E1 5 v1 5 Er 

( 5 )  
is the U-i characteristic of Chua’s diode where the symbols 
are defined in Fig. 3(b). 

h(u) = i(u) + U 

m2u + (mz - mo) + E ,  

m l u  + (ma - m1)E + 6 ,  

if U < -1 
if - 1 S u 5 E  (9) 
if U > E 

Grwl+ (Ga - Gr)Er + 1, if T J ~  > Er { 
Normalization: The standard normalization of the third- 

order Chua’s circuit as well as that of the reduced Chua’s 
circuit already used in the study of Turing patterns in [2] are 
presented in the Appendix. Even though such normalizations 
are sufficient for studying Turing pattems, they introduce some 
restrictions on the domains of existence as well as in the shape 
of the patterns. This is why in this paper we will use another 
normalization of the reduced Chua’s circuit that will allow an 
extra degree of freedom when used in an array. Two particular 
features of our normalization procedure are the following: 
j r s t ,  the Chua’s diode characteristic is no longer considered 

and mo = 1 + Ga/G,  ml  = 1 + Gr/G,  m2 = 1 + Gl/G, 
6 = I/(GIEl I). The normalized dimensionless circuit is shown 
in Fig. 4(b) in terms of the three parameters C,, C,, v, 
and the nonlinearity ; (U) .  The characteristic h(u) defined by 
(9) is sketched in Fig. 5. We will see that to obtain Turing 
patterns from this circuit, we must have C, < 0 and C, > 0. 
An equivalent circuit that uses only two identical positive 

’This normalization is equivalent to the unnormalized form upon choosing 
G = 1, C1 = C,, Cz = C,, [Ell = 1, and E,  = E.  Without loss of 
generality and following standard analysis of Turing pattems [6] ,  y will be 
assumed positive. 
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The reduced Chua's circuit is a nonlinear autonomous 

capacitors is shown in Fig. 4(c). Its equivalence is verified in 
the Appendix. To avoid clutter, we will denote the normalized 
time tlRCo by t .  

The symbol y is chosen to coincide with the notation used in 

- 
to the two linear resistors in series; i.e., a 2 0 resistor, are 
shown in ~ i ~ .  6(a). ~h~ intersection Q gives the dc operating 

using load line method and composition of characteristics. Q: operating point, 
z(u): characteristic Of Chua's diode in Fig. 4(b), 2 = - 0 . 5 ~ :  load line. (b) 
Graphical solution of system (IO).  

point at U0 = 2.25 V. The voltage Vo across capacitor Cv 
in Fig. 4(b) is just the voltage across the voltage divider; i.e., 
vo = i (2 .25)  = 1.125. Hence, there is a unique equilibrium 
point located at (UO, VO) = (2.25,1.125) This equilibrium 
point could of course be calculated directly by solving the 
following equilibrium equation obtained from (7), as shown 

The elements f u ,  f v ,  g u ,  gv  have, for the equilibrium point 
(Uo, VO) on the right branch of the characteristic', the values: 
fu  = -lL y m l ,  f v  - - c, ICJ, gu - IC74 , gv  = -gv. The 
corresponding linear(ized) equations are 

C,  

graphically in Fig. 6(b) 

h(u) - w = 0 
-U + vw = 0. 

In terms of f u ,  fv , g u ,  gv the characteristic polynomial is 
Stability of the Equilibrium Point: Let us investigate first 

(13) - f u  - f v  = the local stability of the equilibrium point of an isolated 
cell. We will assume there is only one equilibrium point 

linear(ized) system around the equilibrium point (UO\ VO) will 

&ti I 0; -su - gu 
(in this case, on the rightmost segment of the nonlinear 
characteristic). The stability problem is a linear one and the 

be asymptotically stable if the characteristic polynomial of the 
linear state equations 

x2 - (fu + gv)X + f u g u  - f u g u  = 0 (14) 

and has the roots 

X 1 , 2  = 0.5(fu + gv  f J(fu - g v ) 2  + 4 f v g , ) .  (15) 

To have both roots strictly in the left hand plane, the following 
conditions should be fulfilled simultaneously 

g = r ( fuu  + fv.) 

f u  = xlLro,vo' fv  = 2 1 C o , b b '  gu = x I U o , v o ' g v  - Z I U " , V O  

= y(guu + gv.) (' i 
has both of its roots in the open left hand plane, where 

8.f a9 - 89 

are the elements of the Jacobian matrix of f ( u ,  w )  and g ( u ,  w). 
The first condition ensures that, for complex roots, their real 
part is negative, and the second one refers to real roots for 'Patterns in two-grid coupled CNNs can be obtained using unstable cells 

too. However, in this paper, the term Turing pattern refers only to patterns 
produced in CNNs made of stable isolated cells; the distinguishing feature is which the greatest Value should be negative. It is obvious 
that even though the equilibrium point of the isolated cells is stable, when that the values fu  = 0.1, fv  = -1, gu = 0.1, gv = 
they are coupled through the two resistive grids, this equilibrium point, which 
corresponds to a homogeneous pattem, becomes unstable, and a nonuniform When the equilibrium point is on the middle part of the piecewise-linear 
pattem corresponding to another equilibrium point emerges. 

(16) ifu fugu +gv  - f u g u  < O > 0. 

characteristic, ml should be replaced by mo. 
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Fig. 7. I-D two-grid coupled CNN. 

-0.2 correspond to a stable cell: the eigenvalues are A1,2 = 
e above values correspond to C, = -0.1 (y = 

lo) ,  C, = 1, and v = 2. Observe that the position of the 
equilibrium point does not depend on C,(y) and C,, but 
its stability obviously does depend on the capacitor values 
through gu and g,. 

Observation: By choosing E = 0 and appropriate values 
for the parameters (e.g., v = 2, m0 = 0.1, ml = m2 = -1, 
E = 1) there is a unique stable equilibrium point at the origin 

-1*tjm Th 
20 . 

(U0 = vo = 0). 

111. COUPLING THE CELLS: THE TWO-GRID COUPLED CNN 

In this paper, the CNN is made of the above second-order 
Chua’s circuit as basic cells and has the structure shown in 
Fig. 2. Since the resulting network is much more complex 
than a simple cell, much more complex dynamics as well as 
a diversity of equilibrium points can be expected. In fact, the 
network is described by a system of 2 MN nonlinear ordinary 
differential equations. Observe that the array will still have 
an equilibrium point having (U0, VO) for all cells because all 
node voltages on each grid are then identical, and hence, the 
currents through the resistors of the grids are zero. In this case, 
the cells will behave as if they were uncoupled. However, by 
the usual definition of a Turing pattern, this homogeneous 
equilibrium point (regarded as an equilibrium for the 
CNN) must become unstable so that the array can evolve 
to other (stable) equilibria depending on the boundary and 
initial conditons. Before making a rigorous analysis of the 
dynamics of the two-grid coupled CNN, let us consider an 

intuitive explanation directly related to the famous “reaction- 
diffusion” mechanism proposed by A. Turing and several 
general qualitative features of pattern formation. 

Intuitive Explanation of Pattem Formation in a 1-D Ar- 
ray: Qualitative explanations, when possible, could be useful 
for intuitive understanding of a phenomenon and also for 
mathematical modeling, when its governing physical laws 
are not (completely) known. However, we should warn the 
reader that the same system may exhibit qualitatively different 
behaviors for other values of the parameters. 

Consider the 1-D CNN shown in Fig. 7 where C, and R, 
are negative and the diffusion coefficients D, = l/R,C, and 
D, = 1/&C, satisfy the relation D, > D, > 0. Suppose 
that at the beginning all cells are operating in their (individual) 
equilibrium point (U0, Vo), which is also an equilibrium point 
for the whole CNN as we already observed above. No currents 
flow through the grid resistances in this case. The essence 
of the following discussion is to suggest how, due to a 
small perturbation and to different “diffusion” coefficients, a 
differentiated spatial behavior occurs. We will focus on cells 
i and k and the RC coupling network represented with thick 
lines in Fig. 7. 

First Feature-Local Activation: Suppose that a local per- 
turbation causes a small increase of the voltage from U, = U0 
to U, = U0 + Au across the capacitor C, connected to the 
u,th node as shown by a vertical arrow in the left-upper 
part of Fig. 7. Now, remember that all elements connected 
to this node except the cell’s transversal resistor R (i.e., 
R, and C,) are negative or operate on a negative-slope 
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piecewise-linear domain (Chua’s diode). The above increase 
will have transversal effects on the value of vz and longitudinal 
effects, through the RUC, couplings on the values of ~ ~ - 1 ,  

~ ~ - 2 . .  . and u,+1, uz+2 ”‘uk.. .. First, an increase of the 
current through the transversal resistor R of the i th  cell will 
inject some part of this current into capacitor C,, charging 
it, thereby increasing the voltage v, of the opposite node 
as depicted by arrows on the left cell i in the upper part 
of Fig. 7. The longitudinal effect of the initial perturbation 
will be to increase the current through the u-grid resistors 
with the direction shown in the figure (since R, < 0) and, 
consequently, to increase the voltages of the neighboring u- 
nodes (since C, < 0). Thus, U ,  behaves as a local “activator” 
for both the U and v neighboring variables. 

Second Feature-Distant Inhibition: The emergence of a 
pattern would not be possible if the “diffusion” coefficients 
were equal. At this stage of our qualitative description, we 
show the key role in pattern formation of the unbalance 
of the “diffusion” coefficients D, and D,; i.e., of the fact 
that U “diffuses” more slowly than v. Roughly speaking, this 
unbalance can be seen as a difference in the “speeds” with 
which a perturbation is sensed by distant nodes through the 
u-grid compared with the v-grid. First, observe that, due to 
the positive values of the elements connected to the v-nodes, 
an increase of the voltage will induce an increase of the 
neighboring v-node voltages as depicted by arrows in the 
figure. We now focus on the lcth cell further to the right. For 
the values C, = -0.1, R, = -50, C, = 1, and R, = 0.025, 
the time constants of the RUC, circuits are 200 times greater 
than that of the RUC, circuits.” Thus, the node V k  will sense 
the perturbation from node w, earlier than the node U k  senses 
the perturbation from the node U,. Consequently, the behavior 
of Uk will be determined by ‘uk rather than by U, as follows 
(see Fig. 7); an increase of Wk will induce an increase in 
the current through the R resistor of the lcth cell with the 
direction indicated in the figure. Due to the negative values of 
the elements connected to the node U k ,  the currents induced by 
the increase of vk, with the direction shown in the figure, will 
cause Uk to decrease. we remark that ‘uk has an “inhibiting” 
effect on uk. w e  have thus a long-range “inhibition” effect 
exerted by the U, voltage, through Wk,  on the voltage U k .  Also 
observe that, if we focus on the lcth cell, the voltage ‘uk has a 
local “inhibitory” effect on the voltage Uk. Summarizing, the 
mechanism of pattern formation is the result of the interaction 
of the variables U and U, which behave as activators and 
inhibitors, respectively. Similar considerations can be made 
for a 2-D array. 

In the above explanation, we have made use of the rather 
unusual terms of “activation” and “inhibition” to make a 
connection with the original mechanism of reaction-diffusion 
proposed by A. Turing. Since the reader is probably unfamiliar 
with the terminology used by chemists on Turing patterns, 
it might be more instructive to present first a “circuit” ex- 
planation and then to briefly review the principle used by 

Turing. A useful “dictionary” for this translation is to make the 
dynamics of  a single cell correspond to what the chemists call a 
“reaction” between U (activator) and w (inhibitor) and to make 
the dynamics of the whole array correspond to “reaction” plus 
“diffusion” of U and v .  

Qualitative Description of Turing’s Reaction-Diffusion Prin- 
ciple: In his famous 1952 paper “The chemical basis of 
morphogenesis”‘ Alan Turing proposed to model pattern 
development in biological arrays of cells by an interaction of 
chemicals called morphogens. The simplest model uses two 
morphogens (whose concentrations are the state variables of 
the cells) called an activator and an inhibitor. The interaction 
between these morphogens has two aspects: reaction and dif- 
fusion. Locally, the activator reacts with itself in an excitatory 
(auto-catalytic) manner and also activates the inhibitor; the 
inhibitor reacts with itself in an inhibitory manner and also 
inhibits (“consumes”) the activator. l 2  The reaction alone is not 
able to produce patterns. The mechanism that will provide the 
long-range inhibition is the differentiated diffusion behavior of 
the morphogens; the activator must have a smaller diffusion 
rate than the inhibitor. Thus, at long-range, the inhibitor not 
only will inhibit the activator’s tendency to increase but also 
will cause it to decrease (auto-catalytically as well). The initial 
decrease will determine a further decrease and so on. Thus, at 
long-range, the activator’s concentrations will decrease. 

Terminology and Basic Principle of Pattern Forma- 
tion: From the above short explanations, it is apparent 
that, roughly speaking, the interactions between the variables 
involved in a dynamics leading to a pattern may be excitatory 
(activating) and/or inhibitory. Such interactions may take 
place between local variables and between local and distant 
(similar or different) ones. Thus, since we refer to initially 
homogeneous systems, the mechanism of pattern formation 
should provide the following two features: 

-breakdown of the homogeneous steady-state symmetry 

-differentiated behavior in space. 
and 

The above conditions are realized through local activation 
(symmetry breakdown) and long range inhibition (differen- 
tiated spatial behavior). 

Several qualitative features of  pattern formation are given 
in the following with reference to the qualitative behavior of 
the above-presented I-D two-grid coupled CNN that has all 
ingredients of a pattern-producing mechanism: 

Tendency toward instability of the homogeneous state (the 
homogeneous equilibrium state of the array is unstable). 
The existence of certain specific interactions between 
local state variables and between local ones and distant 
ones. The above interactions could be highly nonlinear, 
but for restricted domains, some of them should be 
locally excitatory and inhibitory at long-range. (Choosing 
a piecewise nonlinear characteristic in the reduced Chua’s 
circuit makes things more tractable.) 

I 1  Considered by theoretical biologists as the most important paper of the 
century in this area. Turing is also considered the father of computer science 
through his invention of the Turing Muchine. 

12Turing pattem may appear if the local influence the two morphogens have 
upon each other is opposite to the above as well. 

fact, there will be loading effects by the resistive parts 
of the cells, but since the resistances in parallel to the capacitors have 
approximatively equal absolute values (1 and -0.9), the above statement still 
remains qualitatively true. 
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I I  p 

(b) 

Fig. 8. Three-cell CNN with zero-flux (a) and periodic, (b) boundary conditions. 

Dynamical character. The cells of the CNN contain 
capacitors; i.e., conservative elements. 
The existence of a nonlinear mechanism that influences 
the final pattern and also bounds the values of the state 
variables. In our case, the nonlinearity of the piecewise 
linear resistor plays this role. 
The dependence of the pattern on the initial and boundary 
conditions, as well as on the shape and geometrical di- 
mensions of the domain. Pattern development is possible 
only for a restricted domain of the parameters governing 
the phenomena. 

Iv .  INITIAL AND BOUNDARY 
CONDITIONS; EQUILIBRIUM POINTS 

Initial and Boundary Conditions: Let us return to the CNN 
made of second-order Chua’s circuits. It will be described by a 
set of 2MN state equations (which are derived in Part I1 of this 
paper) as there are no capacitor loops, each cell is second order 
and there are MN cells. To solve such a system of ordinary 
nonlinear differential equations, the initial conditions; i.e., the 
initial values of the voltages of the capacitors should be known. 
The CNN “processes” the initial condition and may produce a 
pattern. Random initial conditions are appropriate to model a 
physical realization if no other mechanism for imposing initial 
conditions exists. We discuss in the following the boundary 
conditions. The main observations are that using the same 

number of cells and the same M and N ,  (slightly) different 
CNNs can be obtained depending on the way the edge cells 
are connected; i.e., on the boundary conditions. 

Let us imagine a cell on one side of a rectangular array. 
If it is not a comer cell, each capacitor is connected, through 
resistors, with only 3 neighbor cells (2, for comer cells). For 
the other end of the fourth resistor (outside of the boundary) 
one of the following possibilities will be considered: 

1) The zero-Jluxl’ boundary conditions correspond to the 
case when the free ends of all coupling (grid) resistors 
are not connected (i.e., these resistors can be deleted). 
In this case, the value of the boundary conditions are 
precisely the values of the voltages of the boundary 
cells of the array. (This is as if each edge cell is 
connected to some external cell consisting of a controlled 
voltage source that mimics its behavior.) The boundary 
conditions are, in the 2-D case:14 U(-1, j ,  t )  = u(0, j ,  t ) ;  

u ( i , N , t )  = u( i ,N  - l , t) ,  and similarly for the w 
variable. For example, a 1-D three-cell CNN with zero- 
flux boundary conditions is shown in Fig. 8(a). 

u(i ,  -1,t) = u(i,O,t); u ( M , j , t )  = u(M - l , j , t ) ;  

I3The term comes from the continuous reaction-diffusion case when the 
zero-flux boundary condition reads (n . V)u = 0 for (2, y ) on the boundary 
of the reaction-diffusion domain (n is the vector normal to the boundary) 
which implies that the external medium does not influence the system in any 
way. 

I4The cells are numbered from zero to A4 - 1 and N - 1, respectively. 
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(b) 

Fig. 9. 
nonlinear resistors. (b) Equivalent circuit. 

(a) Two-cell CNN viewed as a linear two-port loaded with two 

2)  Periodic boundaries: This situation corresponds to a ring 
(in the 1-D case) or a torus (in the 2-D case) when the 
cells from the opposite ends of each row and column are 
connected through a common resistor of the same value 
as that of the array resistors. Thus, in fact, there are 
no boundaries. The corresponding “boundary” relations 
are u ( - l , j , t )  = u ( M -  l , j , t ) ;  u(o , j , t )  = u ( M , j , t ) ;  
~ ( i ,  -1,t) = ~ ( i ,  N - 1,t);  u(i,O,t) = u ( i , N , t ) ,  and 
similarly for ‘U. The same I-D three-cell CNN for the 
periodic boundary conditions case is shown in Fig. 8(b). 

Other types of boundary conditions are also possible. In 
this paper, we describe only the example of applying a side- 
wall forcing [2];  the boundary cells are independent voltage 
sources, and thus, the CNN is no longer autonomous for 
time-varying sources. 

Summarizing, to solve the system of differential state equa- 
tions describing the CNN, one needs 2 M N  initial conditions 
(i = 0,1, .  . . , M - 1, j = 0, I , .  . . , N - 1) 

4 i , i O ) ,  ‘U(i , j ,O)  (17) 

for the “temporal” part and 4 ( M  + N )  boundary conditions 
(i = 0,1, .  . . , M  - I, j = O , 1 ; .  . . , N  - 1) for all values of 
t E [0, 

(18) U(-l,j,t) U ( 2 ,  -1, t )  ‘U(-l,j,t) v(2,  -1, t )  
u ( M , j ,  t )  U ( i ,  N ,  t )  .(M, j ,  t )  ‘U(i, N ,  t )  

for the “spatial” part. 
How Multiple Equilibria Are Born: The nonlinear equa- 

tions of the two-grid coupled CNN should have at least another 
equilibrium point different from that corresponding to (U,, V0) 

and which is stable. In fact, depending on the parameters of the 
cells, the diffusion constants and the dimensions of the array, 
there may be many stable equilibria, each one corresponding 
to a different pattern. Of course, the system may have unstable 
equilibrum points as well, the already discussed homogeneous 
equilibrium point being one of them. Which equilibrium point 

will the CNN converge to depends on which basin of attraction 
does the initial condition lie. To illustrate the complexity of 
the equilibrium point problem, let us consider the simplest 
possible CNN made of only two cells, subject to a zero- 
flux or a periodic boundary condition, respectively. We will 
show that even in such simple cases many equilibrium points 
are possible. The two-cell CNN configuration is shown in 
Fig. 9(a) and corresponds to zero-flux conditions; both cells in 
this case are edge cells, and no other connections are necessary 
(the currents through the boundary resistors connecting the 
controlled source to the edge cells are zero, and those resistors 
can be deleted). For periodic boundary conditions, the opposite 
cells should be linked through resistors of the same values to 
that of the grids as shown in Fig. 8(b). Observe that in this 
case there will be two extra resistors linking the corresponding 
nodes so that (only in the case of two-cell CNNs) the ring 
configuration differs from the zero-flux only by the values of 
the resistors R, and R, in Fig. 9(a); for periodic boundary 
conditions, the resistors R, and R, should be replaced by 
resistors having the values 0.5R, and 0.5R,, respectively. In 
view of this observation, only one set of calculations need be 
made. Observe that the circuit in Fig. 9(a) (where the cells 
have been numbered with 1 and 2) can be viewed as a linear 
two-port loaded with two nonlinear resistors. The two-port 
is reciprocal and symmetric and is described by a resistance 
matrix 

Rii R12 
R =  [Rzl R2?] 

whose elements satisfy R11 = R22 and R12 = R21 and are 
determined by the following relations in terms of the grid and 
linear resistances of the cells: 

2R,(1 + 
4(1+ R,) + R,(2 + R,) R11 = 

R7‘ + 4(& + 1) 
R12 = 4(1+ R,) + R,,(2 + R?,)’ 

Moreover, using standard techniques from circuit theory (the 
A - Y equivalence) the linear two-port can be transformed 
into a (symmetric) T configuration as shown in Fig. 9(b). 

1 -  Assuming G, = - - -0.02 and G, = & = 40, the 
following values are obtained: RA = Rg = 1.055 and 

Now it is an easy task to obtain all the equilibrium points 
of the CNN. The successive geometric constructions are pre- 
sented in Fig. 10 as follows: the equivalent characteristic of 
the left nonlinear resistor in series with RA is presented in 
Fig. 10(a), the characteristic of the resulting nonlinear resistor 
in parallel with the linear resistor Rc is sketched in Fig. 10(b), 
and the characteristic of the last one in series with the linear 
resistor RB = Rq is shown in Fig. lO(c). Assuming the 
same values for the grid conductances as above, the equivalent 
nonlinear resistor “seen” at the right port is described by the 
following voltage-current relations: 

RU 

Rc = 0.451. 

i 2  = 1 .005~2  - 1.14 ~2 5 3.35 
i2 = 0.726~2 - 0.202 3.36 5 ~2 5 13.36 (21) 
22 = 1.005~2 - 3.931 up 2 13.36. 
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(C) 

Fig. 10. Graphical constructions for obtaining the equivalent vol&gecurrent 
nonlinear characteristic of port 2. The composite characteristics are shown 
with broken line. 

At this stage, the circuit consists of a parallel connection 
of two nonlinear resistors: Chua’s diode of the second cell 
and the equivalent nonlinear resistor; thus, the problem of 
finding the equilibrium points for the CNN is straightforward. 
The geometrical “load line” [ l l ]  construction is shown in 
Fig. 1 1 .  Observe that for the chosen numerical values there 
are five operating points corresponding to the following U -  

voltages: uz = -18.6, u2 = 0.86, u2 = 2.25, u2 = 4.0, and 
u2 = 28.6. Due to the symmetry of the CNN, the same values 
are valid for the voltage u1 of the first cell. Thus, the five 
equilibrium points of the CNN in terms of the u-voltages are: 
(uI,u~) = (28.9, -18.6), ( u ~ , u z )  = (4.0,0.86), ( u ~ , u z )  = 
(2.25,2.25), ( u ~ , u z )  = (0.86,4.0), ( u ~ , u z )  = (-18.6,28.9). 
In the first and the last case, the equilibrium points lie on the 
rightmost, and respectively, leftmost parts of the piecewise- 
linear characteristics of Chua’s diode. In the second and fourth 
case, the equilibrium point lies on the rightmost segment of the 
nonlinear resistors for one cell and on the middle segment for 
the other cell. Finally, the third operating point corresponds 
to the cells operating both on the middle characteristic of 
the nonlinear resistors. This is the spatially homogeneous 
equilibrium point identical to (Uo, VO) obtained for the isolated 

Fig. 1 1 .  
points of the two-cell CNN. 

Load line construction for the determination of the equilibrium 

cell. In this case, the currents through the resistive grids are 
zero and, by definition, this spatially homogeneous equilibrium 
point should be unstable to have Turing patterns. 

Obviously, the above results15 and geometric constructions 
as well as the stability of the equilibrium points depend on the 
values of the cell parameters and the grid resistances as well. 
However, this simple example shows that even in the case of 
a two-cell CNN, already five equilibrium points are possible. 
We conjecture that the number of equilibrium points increases 
exponentially with the number of cells. 

APPENDIX 
BRIEF REVIEW OF CHUA’S CIRCUIT 

In the following, we first briefly review the third-order 
Chua’s circuit (Fig. 3) where the inductor is present; i.e., it is 
not short circuited. The state equations describing this circuit 
are 

$ = & [ G ( v ~  - V I )  - i ( ~ l ) ]  
% = &[G(vl - ~ 2 )  + 231 
& = - L  L (212 f ROi3) 

(22) { d t  

where 

i = i(21l) 

Glvl + (Ga - Gi)El + I  
Gaul + I  

if V I  < El 
if El 5 211 5 E, (23) { Grul + ( G a  - G,)E, + I if VI > E 

and G = 1/R. Using the notations 

GL = G + G,, GL = G + Ga, GI = G + Gi, (24) 

the state equations of Chua’s circuit become (see (25) at the 
bottom of this page). 

should be replaced by 0.5R, and 0.5R,, respectively. 
”For periodic boundary conditions; i.e., ring configuration R, and R, 
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R =1 

Fig. 12. Standard normalization of the reduced Chua’s circuit. 

Standard Normalization of Chua ’s Circuit: The usual way 
of normalizing Chua’s circuit for the particular case -El = 
E, = E = 1, GI = G, = Gh is based on the relations 
r = t  U = %  1 U = ~ , n = ~ . / j = ~ .  R% c 2  R’ Cr 

RC ’ E ’  E ’  E c 
R hC, I G , t = GE, 7llO = 3 + 1, in1 = rri2 = y = o L  

and leads to the following dimensionless equations 
+ 1. G G 

where h(u) = U + ; ( U )  = mlu + 0.5(mo - ml)(lu + 11 - 
Standard Normalization of the Reduced Chua ’s Circuit: The 

state equation (4) of the reduced Chua’s circuit when the 
inductor is short circuited (Fig. 3(a)) can be normalized using 
the same relations as above and defining U = 1 + 9 [2] .  
These equations are 

IZL - 11) + t 

dr - a(-h(u)  + 7)) {:I d r  - U - U l i .  

The dimensionless circuit is shown in Fig. 12. The reduced 
Chua’s circuit can also be obtained from the original di- 
mensionless third-order Chua’s circuit by using a limiting 
argument: p + m; y + m; = finite: U = 1+c. w = -;U. 

Equivalent Normalized Reduced Chua ’s Circuit: The re- 
duced Chua’s circuit normalized by means of the relations 
(6) can be represented in an equivalent form making use of 
two identical capacitors directly related to the parameter y 
used in standard theory of Turing patterns [6]. The circuit 

11 
Y Y ’  

is shown in Fig. 4(c), and is described by the following 

c, c, c, c, - parameters: GI y, G2 = uIc,I  - IC, G3 = Ic,i - C, 
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