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Cellular Neural Networks: Applications 

Abstract --The theory of a novel class of information-processing system, 
d e d  c e h h  n e d  networks, which is capable of high-speed parallel 
signal processing, has been presented in a companion paper [l]. Our 
“dynamic route” approach for analyzing the “local dynamics”of this class 
of neural circuits” will be exploited in this paper to steer the system 
tmjectorks into various stable equilibrium configurations which maps onto 
some binary patterns we seek to recognize. Although still in its embryonic 
stage, some impressive applications of cellular neural networks to such 
areas as huge  processing and pattern recognition will be demonstrated in 
this paper, albeit with only a crude circuit. In particular, examples of 
cellular neural networks which can be designed to recognize the key 
features of Chinese characters will be presented. 

I. INTRODUCTION 
ECENTLY, a novel class of information-processing R system called cellular neural networks has been pro- 

posed [l]. Like neural network [2]-[5], it is a large-scale 
nonlinear analog circuit which processes signals in real 
time. Like cellular automata [6]-[9] it is made of a massive 
aggregate of regularly spaced circuit clones, called cells, 
which communicate with each other directly only through 
its nearest neighbors. Each cell is made of a linear capaci- 
tor, a nonlinear voltage-controlled current source, and a 
few resistive linear circuit elements. 

Cellular neural networks share the best features of both 
worlds; its continuous time feature allows real-time sigrlal 
processing found wanting in the digital domain and its 
local interconnection feature makes it tailor made for 
VLSI implementation. 

Some theoretical results concerning the dynamic range 
and the steady-state behavior of cellular neural networks 
have been presented in [l]. In this paper, some impressive 
and promising applications of cellular neural networks to 
image processing will be described. 

In the following sections, we will use cellular neural 
networks to solve some image processing and pattern 
recognition problems. We have stressed only the steady- 
state behavior of cellular neural networks in [l]. However, 
for applications in image processing, the transient behavior 
is equally important. In fact, it is the transient behavior 
which makes it possible to extract a variety of features 
from a single picture, and to solve various image processing 
problems. The role played by the cellular neural network’s 
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transient behavior will be clearly demonstrated in the 
following examples. 

In Section I1 we will review briefly the architecture of 
cellular neural networks proposed in [l], and summarize 
some related results. In Section 111, we will explain how 
cellular neural networks can be applied to image processing. 
In Section IV, the dynamical behavior of cellular neural 
networks will be studied by analyzing a very simple exam- 
ple in image processing. In Section V, we will discuss the 
computer-aided design problem, that is, the simulation of 
cellular neural networks. In Section VI, a cellular neural 
network for noise removal will be presented. In Section 
VII, we present a set of cellular neural networks for feature 
extraction. As an application of these properties, a new 
approach for Chinese character recogrution will be de- 
scribed in Section VIII. 

11. ARCHITECTURE OF CELLULAR NEURAL NETWORKS 
The basic circuit unit of a cellular neural network is 

called a cell. It contains linear and nonlinear circuit ele- 
ments, which typically are linear capacitors, linear resis- 
tors, linear and nonlinear controlled sources, and indepen- 
dent sources. The structure of cellular neural networks is 
similar to that found in cellular automata; namely, any cell 
in a cellular neural network is connected only to its 
neighbor cells. Adjacent cells can interact direct& with 
each other. Cells not directly connected together may 
affect each other indirectly because of the propagation 
effects of the continuous-time dynamics of the network. An 
example of a two-dimensional 4 X 4 cellular neural network 
is shown in [l, fig. 11. The ith row and j t h  column cell is 
indicated as C(i ,  j ) .  ,The r-neighborhood N, of radius r of a 
cell, C(i ,  j ) ,  in a cellular neural network is defined by 

N , ( i , j )  = { C ( k , l ) l m ~ { I k - ~ I , I l - j I }  
(1) 

where r is a positive integer number. Usually, we call the 
r = l  neighborhood a “ 3 x 3  neighborhood.” It can be 
shown that the neighborhood system defined above ex- 
hibits a symmety property in the sense that if C(i ,  j )  E 
N,(k, I ) ,  then C ( k ,  1 )  E N,(i, j ) ,  for all C(i ,  j )  and C ( k ,  I) 
in a cellular neural network. 

A typical example of a cell C(i ,  j )  is shown in [l, fig. 31, 
where the suffixes U, x ,  and y denote the input, state, and 
output, respectively. The node voltage U,,, of C(i ,  j )  is 
defined as the state of the cell whose initial condition is 
assumed to have a magnitude less than or equal to 1. The 
node voltage v ” , ~  is defined as the input of C(i ,  j )  and is 

=G r , I <  k 6 M , I <  I <  N }  
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assumed to be a constant with magnitude less than or 
equal to 1. The node voltage uyij  is defined as the output. 

computed by the following formula for any cellular neural 
network: 

C is a linear capacitor; R ,  and R ,  are linear resistors; I 
is an independent current source; I,,(i, j ;  k ,  I )  and 
IXu( i ,  j ;  k ,  I )  are linear voltage-controlled current sources 
with the characteristics I,,(& j ;  k ,  I )  = A ( i ,  j ;  k ,  I)uykl 
and I.Ji, j ;  k ,  I )  = B(i ,  j ;  k ,  I)uukl for all C ( k ,  I )  E 
N,.( i ,  j ) ;  I,, = ( 1 / R  ,)f( uxi j )  is a piecewise-linear voltage- 
controlled current source wth  characteristic f (  .) as shown 
in [l, fig. 41; Eij  is a time-invariant independent voltage 
source. 

Applying KCL and KVL, the circuit equations of a cell 
are easily derived as follows: 

State equation: 

du . . ( t )  1 
C L  = - -Uxi&)  

dt R ,  

Output equation: 

l a i < M ,  la j<N.  (2b) 

Input equation: 

uuij = Eij,  1 Q i Q M, 1 < j < N .  ( 2 ~ )  
Constraint conditions: 

~ u x i j ( 0 ) ~ < l ,  l < i < M ;  l < j ~ N  ( 2 4  

1 Q i < M ;  1 < j < N .  (2e) Iuuijl <I, 
Parameter assumptions: 

A(  i ,  j ;  k ,  I )  = A(  k ,  I; i ,  j ) ,  

1 < i ,  k < M ;  1 < j ,  I < N .  (2f) 

C>O, R , > O .  (2g) 

In order to guarantee that the circuit equations (2) are 
valid for all cellular neural networks, we have proved the 
following theorem, which can be used to determine the 
dynamic range of all node voltages in the network [l]. 

Theorem I 
The state uxij  of each cell in a cellular neural network is 

bounded for all time t > O  and the bound U,,, can be 

The basic function of a cellular neural network for image 
processing is to map or transform an input image into a 
corresponding output image. Here, we restrict our output 
images to binary images with - 1 and 1 as the pixel values. 
However, the input images can have multiple gray levels, 
provided that their corresponding voltages satisfy (2e). 
This means that our image processing cellular neural net- 
work must always converge to a constant steady-state 
following any transient regime which has been initialized 
and/or driven by a given input image. We have also 
proved that our cellular neural networks [l] are completely 
stable.' The results are summarized as follow for conveni- 
ence: 

Theorem 2 
After the transient has settled down, a cellular neural 

network always approaches one of its stable equilibrium 
points. In other words, we have 

lim uXi , ( t )  =constant, I < i < M ;  I < j < i ~  ( 4 )  
t - w  

or 

Moreover, we have the following. 
Theorem 3 
If the circuit parameters satisfy 

1 
A ( i ,  j ;  i ,  j )  > - 

Rx 
( 6 )  

lim \uxi , ( t )1>1,  l < i < M ;  l < j < ~  (7) 
then 

t+m 

or equivalently, 
lim u Y i j ( t ) = + 1 ,  l < i < M ; l <  j < N .  ( 8 )  

t'w 

Remarks: 
(a) The above theorem is significant for cellular neural 

networks, because it implies that the circuit will not oscil- 
late or become chaotic [lo],  [ l l ] .  

(b) Theorem 3 guarantees that our cellular neural net- 
works have binary-value o,utputs. This property is crucial 
for solving classification [12] problems in image processing 
applications. 

111. APPLICATION OF CELLULAR NEURAL 
NETWORKS TO IMAGE PROCESSING 

In order to see why cellular neural networks can be used 
for image processing, let us first approximate the differen- 
tial equation (2a) by a difference equation. In particular, 

'A circuit is said to be completely stable iff every trajectory tends to an 
equilibrium state. Consequently, such a circuit cannot oscillate or become -.- chaotic. 
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let t = nh, where h is a constant time step, and approxi- 
mate the derivative of uxi , ( t )  by its corresponding dif- 
ference form 

We can recast (9a) into the form 

known property of an iterative filter is the so-called propa- 
gation property, whch asserts that the pixel values of the 
output image after n iterations can be indirectly affected 
by a larger neighbor region of the input image. This 
property can be observed by substituting uxi , (n)  in (12) 
iteratively down to uxi,(0), which coincides with the input 
image. Since (12) contains some nonlinear functions, it is 
convenient to represent uxi , (n)  by 

U,', ( n  1 = c ginjkl( U x k l ( 0 ) )  7 

C ( k ,  0 E X A i ,  i) 

I g i Q M ;  lgjglV (13) 

where -gckl is a nonlinear function, which depends on 
(i, j ) ,  ( k ,  I), and n. Note that the neighborhood Nnr(i, j )  
is n times larger than Nr(i, j )  and depends on the iteration 
number n. It is easy to see that when the iteration number 
n is sufficiently large, the neighborhood Nnr(i,  j )  will 
eventually cover the entire image, independent of ( i ,  j )  
and r .  

Therefore, the propagation property of iterative filters 
makes it possible to extract some global features in images. 
Of course, the local properties are still preserved in itera- 
tive filters with the closer neighbors having more effects 
than those farther away. 

Ox,,(" + 1) = U,,,(.) + (4 + c 4 1 ,  j ;  k ,  +$k/(  n) + I', , 1 6  I 6 M ;  1 6  J Q N (11) 
C ( k ,  0 E NAz, J )  1 

1 
where we have suppressed the time step h from "nh" for simplicity; i.e., ux, , (n)  = ux,,(nh) and u,,,(n) = uY,,(nh). 

If we substitute (9b) for uykl(n)  in (ll), we would obtain 

uxr, ( n + 1) = uxl, ( n ) + uxl, ( n ) + A ( i , j ; k , 1 )  f ( uxkr ( n ) ) + I,, , 1 Q I 6 M ;  1 6 j 6 N .  (1 2 )  
C ( k ,  0 E N,(' ,  J )  

Equation (12) can be interpreted as a two-dimensional 
filter for transforming an image, represented by ox( n), into 
another one, represented by vx(n + 1). The filter is nonlin- 
ear because f ( u X k l ( n ) )  in (12) is a nonlinear function. 
Usually, the filter is space invariant [12] for image 
processing, which means that A ( i ,  j ;  k ,  1 )  = A( i  - k ,  j - I) 
for all i ,  j ,  k,  and 1. The property of the filter is de- 
termined by the parameters in (12). How to choose the 
filter parameters to achieve a desired image transformation 
is currently still an active research problem. However, 
some basic properties of image processing filters can be 
found in [12], [13]. 

For the one-step filter in (12), the pixel values, 
ux,,(n + l), of an image is determined directly from the 

pixel values, uxi,( n), in the corresponding neighborhood 
N,.(i, j ) .  From the practical point of view, this neighbor- 
hood is always chosen to be as small as possible. A typical 
choice is the 3 X 3 neighborhood, Nl(i ,  j ) .  Therefore, a 
one-step filter can only make use of the local properties of 
images. 

When the global properties of an image is important, 
the above one-step filter can be iterated n times to extract 
additional global information from the image. One well- 

K. Preston, Jr. and M. J. B. Duff considered a special 
class of iterative filters in [9], where they considered the 
images as binary images and the operations as Boolean 
functions. They call these kind of filters cellular logic 
transforms. Several machines have been built to implement 
cellular logic transforms. One of them, called a cellular 
logic image processor (CLIP) [9], has been used success- 
fully in practice. 

Now, it is not difficult to understand how cellular neural 
networks can be used for image processing. Indeed, if we 
let h + 0 in (9a), we would recover the system equation (2) 
defining a cellular neural network. To understand the 
image transform mechanism in our cellular neural net- 
works, let us rewrite (2) in its equivalent integral form as 
follows: 

' x i ,  ( t )  = ' x i ,  (0 )  
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-1.0 0.4 -0.8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 

-0.4 -1.0 -0.8 -0.6 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.8 -0.6 -0.8 -1.0 

(a) (b) (c) 

Fig. 1. Input and output images for the simple example. (a) The input image to be rocessed. (b) The output image of the 
horizontal line detector. (c) The output image of the verticaf)lne detector. 

where 

and 

Equation (14) represents the image at time t ,  which de- 
pends on the initial image uxii(0) and the dynamic rules of 
the cellular neural network. Therefore, we can use a cellu- 
lar neural network to obtain a dynamic transform of an 
initial image at any time t. In the special case where t + 00, 

the state variable uxii tends to a constant and the output 
uyii tends to either +1 or -1 as stated in Theorem 2 and 
Theorem 3. In the following sections, we will present some 
examples of this kind of image transforms. 

IV. A SIMPLE EXAMPLE 
Before we consider real image processing problems, it is 

instructive to look at a very simple example. Although it is 
a much simplified image processing problem, this example 
will help us to understand some of the dynamic behavior 
of cellular neural networks and to derive some intuitive 
ideas on how to design cellular neural networks for solving 
a specific practical image processing problem. 

One important problem in image processing is pixel 
classification [12]. To illustrate this concept, consider a 
small image, as shown in Fig. l(a). This image is a 4 x 4  
pixel array with each pixel value Pij E [ - 1,1], for 1 < i < 4 
and 1 Q j Q 4. Assume that the pixel value - 1 corresponds 
to a white background, the pixel value 1 corresponds to a 
black object point value, and the pixel values between - 1 
and 1 correspond to the gray values. The pixel classifica- 
tion problem is to classify each pixel of the image into two 
or more classes. 

From the mathematical point of view, pixel classification 
can be considered as a map, F, which maps a continuous 
vector space into a discrete vector space as defined below: 

I;: [ a , b I M X N - ,  { A , B , C ,  * } M X N  (15) 

where M X N is the number of pixels in an image and 
A ,  B ,  C, stand for different classes. For this example, 
we wish to assign to each pixel in the array one of the two 
values, -1 and 1, based on some classification rules and 

Fig. 2. A typical cloning template of an interactive cell operator. The 
unit used here is W’. 

the original pixel values. So, F is defined by 

F:  [-1.0,1.OIMXN+ { - l , l } M X N .  (16) 
Suppose we wish to design a horizontal line detector to 

filter out the horizontal lines in the input image in Fig. l(a) 
by using a cellular neural network. In order to simplify our 
analysis, we have chosen a very simple dynamic rule for 
this “horizontal line detector” circuit. The circuit element 
parameters of the cell C(i ,  j )  are chosen as follows: 

c = 1 0 - 9 ~ ;  ~ , = 1 0 3  Q ;  I = O  
A ( i ,  j ;  i -1 ,  j-1) = A ( i ,  j ;  i -1, j )  

= A ( i ,  j ;  i -1, j + I )  = O  
A ( i ,  j ;  i ,  j )  = 2 ~ 1 0 - ~  Q-’ ;  

A ( i ,  j ;  i ,  j - 1) = A ( i ,  j ;  i ,  j + 1) = 10-~52 -’ 
A ( i , j ;  i + I , j - I )  =A( i ,  j ;  i + l , j )  

= A ( i ,  j ;  i + I ,  j + 1) = O 
for a 3 x 3 neighborhood system. Since the feedback oper- 
ators A ( i ,  j ;  k, I ) ,  as shown above, are independent of the 
absolute position of the cell, we can simplify the expres- 
sions of A( i ,  j ;  k, I) by coding them as follows: 

A ( - l , - 1 ) = A ( - 1 , 0 ) = A ( - 1 , 1 ) = 0  
A(O,O) = 2 x 1 0 - 3 ~ ;  

A ( O ,  -1) = ~ ( o , i )  =10-39 
A(1, -1) =A(1,0) =A(1,1) =o .  

The indexes in the above interactive parameters indicate 
the relative positions with respect to C(i ,  j ) .  The cellular 
neural network has the space invariance property, that is, 
A(i, j ;  k, 1 )  = A( i  - k, j -  I )  for all i ,  j ,  k, and 1. There- 
fore, as in image processing filters, we can use a cloning 
template, as shown in Fig. 2, to describe the feedback 
operator of the cell, henceforth called a feedback operator 
cloning template. The cloning template is constructed as 
follows: the center entry of the cloning template corre- 
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sponds to A(0,O); the upper left comer entry of the cloning 
template corresponds to A( - 1, - 1); the lower right-hand 
corner entry of the cloning template corresponds to A(1,l); 
and so forth. Since it is extremely convenient and clear to 
characterize the interactions of a cell with its neighbors by 
means of a cloning template, we will use the cloning 
template expression in the following examples. 

The dynamical equations of the cellular neural network 
corresponding to the above parameters are gwen by 

and 

uYij(t) =0.5(l~xjj(t)+11- luxj,(t)-ll), 

f o r l < i < 4 ;  1< j < 4 .  

Note that we have chosen the control operator 
k ,  I )  = 0 for all i, . j ,  k ,  and 1 in this circuit, and 
k ,  1) > 1/R, as stipulated in the condition of Theorem 3. 

For this example, the initial state of the cellular neural 
network is the pixel array in Fig. l(a). From the circuit 
equation (17), we note that the derivative of the pixel 
values depends on their left and right neighbors and them- 
selves, but not on the upper and lower neighbors. This 
particular dynamic rule will therefore enhance the detec- 
tion of horizontal lines in the original image. 

The circuit equations in (17) are first-order nonlinear 
ordinary differential equations. In system theory, they are 
also called a piecewise-linear autonomous system. In gen- 
eral, it is difficult if not impossible to predict the behaviors 
of complex nonlinear dynamical systems. But our analysis 
in [l] shows that the circuit in this example will tend to 
one of its equilibrium points after its transient has settled 
down. Let us now analyze the steady-state behavior of this 
system. 

The equilibrium points of the system can be found by 
solving the equivalent dc circuit equations (replace all 
capacitors by open circuits): 

1 < i < 4 ;  I <  j 6 4 .  (18b) 

In general, for piecewise-linear circuits, we can find all 
solutions of the dc circuit equations either by the brute 
force algorithm [14] or by using some more efficient al- 
gorithms [15], [16]. However, even for this very simple 
example, there are 32 unknown variables and 32 equations 
(16 linear equations and 16 piecewise-linear equations). It 
is time consuming to find all of the equilibrium points of a 
cellular neural network by using the algorithms mentioned 
above because of the large size of its circuit equations. 
(Note that if the nonlinearity of the circuit is not piece- 
wise-linear, there is no general method to find all of its 
equilibrium points.) 

To simplify our problem, we will take advantage of the 
various features of cellular neural networks in our analysis. 
As mentioned before, every cell in a cellular neural net- 
work has the same connections as its neighbors. Therefore, 
each cell's circuit equation is the same as that of the other 
cells in the same circuit. (Without loss of generality, we 
ignore boundary effects.) Hence, we can understand the 
global properties of a cellular neural network by studying the 
local properties of a single cell. This approach is extremely 
useful for the analysis and design of cellular neural net- 
works. 

Before analyzing this example, it is helpful to recall the 
following definitions [l]: 

Definition 1: Cell equilibrium state: 
A cell equilibrium state of a cell circuit C(i ,  j )  in a 

cellular neural network with dc input voltages u,kl is any 
value of the state variable uxij which satisfies 

foraNneighborcellsC(k,I) ENr(i ,  j ) .  (19b) 
It follows from Definition I that the set of all cell 

equilibrium states of a cell circuit C ( i ,  j )  can be found by 
equating the right-hand side of (2a) to zero and by setting 
for uykl to be any combination of f 1, and then solving for 
uXlJ. Note that since the resulting equation is decoupled 
from the rest, it can be trivially solved. On the other hand, 
many of these solutions could be extraneous since when 
the entire coupled system (2) is solved for its equilibrium 
points, some combinations of uY,, = 1 may not satisfy 
these equations. 

Observe also that it is possible for a cell equilibrium 
state to have an absolute value less than one, in which case 
even if it is a valid solution, it would not be observable 
(Le., unstable) in view of Theorem 3, assuming that 
A ( i ,  j ;  k, 1) > l/Rx. We will usually be interested only in 
those cell equilibrium states having a magnitude greater 
than one. 

Definition 2: Stable cell equilibrium states: 
A cell equilibrium state of a cell circuit C ( i ,  j )  is 

said to be stable iff 
lu* .( > 1. 

X ' J  

Observe that since the observable (i.e., stable) output 
variable uyi, of each cell C ( i ,  j )  can assume only the 
values +1 or -1, it follows that any observable output 
solution vector uy of any cellular neural network with 
A ( i ,  j ;  k, I )  > 1/R, must necessarily be located at a vertex 
of an n-dimensional hypercube S, where n = M X N de- 
notes the total number of cells. If we let So denote the set 
of all n-dimensional vectors uy whose components uyi, 
correspond to all combinations of stable cell equilibrium 
points, then So can have at most 2" members, henceforth 
called the set of virtual equilibrium output uectors. We use 
the adjective " virtual" to emphasize that some members of 
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So w y  not be valid equilibrium points of the overall 
circuit. This is because some of the arbitrary combinations 
of uyk, = k 1  used in calculating the circuit equilibrium 
states may not correspond to actual solutions obtained by 
solving the complete coupled systems of algebraic equa- 
tions (2) with the left-hand side of (2a) set equal to zero. 

Definition 3: Stable system equilibrium point: 
A stable system equilibrium point of a cellular neural 

network with A ( i ,  j ;  k ,  I) > l / R x  is any equilibrium state 
vector ux whose state variable components uxij (i.e., all 
capacitor voltages) consist of stable cell equilibrium states. 

It is important in the following analysis to remember 
that whereas every stable system equilibrium point is made 
up of stable cell equilibrium states, the converse is not true 
as some combinations of stable cell equilibrium points 
may not correspond to an actual equilibrium point of the 
overall circuit. If we denote the corresponding set So* of 
observable equilibrium output vectors, then we have So* c 

Now, let us compute the stable cell equilibrium states of 
an inner cell of the preceding circuit example. Considering 
the condition in the above definitions, the stable cell 
equilibrium states can be obtained by solving (18a) for uxij  
with uVij taking on either the value + 1 or - 1: 

so c s. 

u x i j  = sgn uyij- 1 1  + 2~ [ uyij] + [ uyij+l]  (214 

luxl , l> l ,  l < i < M ;  1 < j < N .  (21b) 

Substituting u y i j p 1  and u,,ij+l in the above equations by 
1,  and considering that sgn [ uyi ,] = sgn [ uxi j ]  from (18b), 

(a) For ~ , , ~ ~ - ~ = - l  and ~ , , ~ , + ~ = - 1 ,  we have uxi j=  

(b) For uJij-l = + 1  and u , , ; ~ + ~  = - 1 ,  we have U . . = 

(c) For u y i j p 1 =  - 1  and u , , ~ , + ~ =  +1, we have uxi, = 

(d)For  u J i j - l = l  and ~ , , ~ , + ~ = l ,  we have uxij=2+ 

It follows from the above analysis that the stable cell 
equilibrium states of any inner cell circuit for our present 
example are -4, -2, 2, and 4. 

It is obvious that the stable cell equilibrium state of each 
cell depends on the stable cell equilibrium states of its 
neighbor cells. Of course, if the input of the cellular neural 
network is not zero, then the stable cell equilibrium states 
of a cell circuit will also depend on the input, uu. Therefore 
the stable system equilibrium points of a cellular neural 
network by Definition 3 depend on the initial conditions, 
the inputs, and the dynamic rule of the circuit. Any stable 
system equilibrium point can be considered as a two-dimen- 
sional pattern. For a given cellular neural network, like the 
one in this example, there are only a finite number of 
discrete patterns. The continuous image space, [ - 1,1]  MXN, 
therefore, is transformed into a finite number of discrete 
patterns by a cellular neural network. The properties of the 
patterns can be determined by those of the stable cell 

we obtain the following four cases: 

- 2 + 2 sgn[ uxij] ,  and hence uxij = - 4. 

2 sgn[ uxij] ,  and hence uxi, = - 2, or 2. 

2 sgn [ uxij] ,  and hence U,;, = - 2, or 2. 

2 sgn [ uxi,], and hence uxi, = 4. 

X I 1  

equilibrium states. Consequently, the output, UJ, must 
possess some structural features for a specific cellular 
neural network. For example, if u ~ ~ , - ~  = 1  and u , , ~ , + ~  =1, 
as prescribed by the above case (d), then uy,, = 1 is the only 
choice. 

As noted in Section 111, the image transform by a 
cellular neural network is a dynamical transform. So, it is 
important to consider the transient response of a cellular 
neural network. The transient response of a cellular neural 
network is simply the trajectory from the initial state to the 
steady state of the system. It is well known from the theory 
of differential equations that any stable system equilibrium 
point, as defined in Definition 3, of a cellular neural 
network is a limit point of a set of trajectories of the 
corresponding differential equations (2). Such an attracting 
limit point has a basin of attraction which consists of the 
union of all trajectories tending to tlus limit point. The 
state space of the system is partitioned into a set of basins 
centered at the stable system equilibrium points. Then the 
map F, as defined in (16) ,  can be characterized by the 
basins and, hence, by the transient response. Since it is 
extremely difficult if not impossible to analyze the tran- 
sient behavior of such complex nonlinear dynamical sys- 
tem, we will use computer simulation method to study the 
transient behaviors of cellular neural networks in the fol- 
lowing examples. 

Let us summarize the above observations from ths  
example, 

(a) Any input image represented in analog form can be 
mapped into a specific output image with binary 
values by a cellular neural network. 

(b) For a given cellular neural network, the output 
images are inbued with some spatial structures re- 
sulting from the dynamic rule of the circuit. For 
instance, it is impossible to have a row like 
[ l ,  -l,l, -11, which is a rejected pattern, in the 
output image of the cellular neural network in the 
above example. Hence, an appropriately chosen dy- 
namic rule could imbue a cellular neural network 
with the ability to recognize and extract some special 
patterns from input images. 

(c) Different input images may be mapped into the 
same output image if they have the same patterns, 
and the same input image may be mapped into 
different output images by different cellular neural 
networks for different image processing or pattern 
recognition purposes. 

The dynamic behavior of the cellular neural network 
with zero control operators and nonzero feedback oper- 
ators in this example is reminiscent of two-dimensional 
cellular automata [6] - [8] .  K. Preston, Jr. and M. J. B. Duff 
have provided some applications of cellular automata in 
their image processing systems [9] .  The main difference 
between a cellular neural network and a cellular automata 
machine is in their dynamic behavior. The former is a 
continuous-time dynamical system while the latter is a 
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name-of-circuit "simple horizontal lines detector" 
CormentS "An example of the application of cellular neural networks." 
circuit-size 4 4 
vector-dimension 1 
cl 1.OE-9 
rl 1000 
yl "pwl term = 3 nseg = 3" 

all size 3 
"ap= 0.0 bp= 0,O. 0.0 cp= O , O ,  - 0 . 5 ' 0 . 5  alphap= 1,0,1,0 betap=-1,l" 

templet 0.0 0.0 0.0 
0.001 0.002 0.001 
0.0 0 . 0  0 . 0  

data-type xl 
transient "0 .  lus Sus UIC" 
output yl 

This is the initial state of the horizontal line detector. 

S 

: -1.0; 
: -0.8; 
: -0.6;  
: - 0 . 4 :  
: -0.2; 
: 0.0; 
: 0.2; 
: 0 . 4 :  
: 0.6;  
: 0.8:  
: 1.0. 

. 7 1 .  
3.12 
939* 
121. 

*******t********tttttt*ttt**tt******************,,,**********~***~***,*****~** 

(b) 
Fig. 3. (a) The cellular neural network description file of the simple horizontal line detector for the circuit simulation 

preprocessor CELL. (b) The data file of CELL for the image in Fig. l(a). 

discrete-time dynamical system. Because the two systems 
have many similarities, we can use cellular automata the- 
ory to study the steady-state behavior of cellular neural 
networks. Another remarkable distinction between them is 
that while the states of a cellular neural network will 
always tend to equilibrium points, a cellular automaton 
will usually have a much richer dynamical behavior, such 
as periodic, chaotic and even more complex phenomena. 
This is because we have chosen a sigmoid nonlinearity for 
the nonlinear circuit elements in our cellular neural net- 
works. If we choose some other form of nonlinearity for 
the nonlinear elements, many more complex phenomena 
will also occur in cellular neural networks. 

v. SIMULATION OF CELLULAR NEURAL NETWORKS 
Since cellular neural networks are nonlinear dynamical 

systems, there are presently few analytical methods for 
studying their transient behaviors. Consequently, it is nec- 
essary to use computer simulation. The circuit simulator 
we used is PWLSPICE [17], which is a modified version of 
SPICE.3 [18] for piecewise-linear circuit analysis. In this 
section, we will introduce a preprocessor of PWLSPICE, 
called CELL, which automatically generates the input cir- 
cuit files for PWLSPICE according to an easily under- 
standable circuit descripticn file and a data file. We will 

also describe two postprocessors, called BINF and PLOT, 
which transfer the standard outputs from PWLSPICE into 
a binary data file and then feed them to a color graphics 
terminal for display. 

Our computer simulation procedure consists of the fol- 
lowing steps: 

Step I :  

Step 2: 

Step 3: 

Write a cellular neural network description file 
for CELL. As an example, the circuit descrip- 
tion file for the simple example in the preced- 
ing section is shown in Fig. 3(a). The first word 
of each line in the description file is a key 
word: it tells CELL the meaning of the param- 
eters which follow. 
Write a data file for CELL, which consists of 
the initial condition and/or the input of the 
cellular neural network. The data file for the 
horizontal line detector is shown in Fig. 3(b). 
Note that we have quantized the pixel values in 
this example into 11 discrete levels to simplify 
the display. 
After running CELL with the circuit descrip- 
tion and data files, we obtain the input file 
for the circuit simulator PWLSPICE. The 
PWLSPICE input file of the horizontal line 
detector is shown in Table I in the Appendix. 
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(To save space, only part of the input file is 
presented.) 

PWLSPICE. The transient simulation of the 
horizontal line detector is shown in Table I1 in 
the Appendix. (Again only part of the output 
file is presented.) 

Step 5: Transfer the PWLSPICE output file to a bi- 
nary data file by using BINF. 

Step 6: Display the output image on a color graphics 
terminal (we use a MASSCOMP terminal) by 
using PLOT with the binary output data file. 

Our simulation result of the simple example in Section 
IT/ is shown in Fig. l(b). Note that row 3 stands out as a 
black horizontal line with value 1.0 and flanked by a white 
background with value -1.0. Hence, even such a crude 
horizontal line detector circuit is capable of extracting the 
horizontal line structures in the given image in Fig. l(a). 
(Of course, this simple dynamic rule cannot handle more 
sophisticated line detection problems.) 

If we change the dynamic rule of our circuit, say, instead 
of (17a), we use 

Step 4: Obtain the transient simulation output of 

(17a’) 

then this cellular neural network becomes a simple vertical 
line detector. Its simulation result for the pixel array in 
Fig. l(a) is shown in Fig. l(c). Here, all pixels are of 
uniformly white with value -1.0. From the simulation 
results of the above two detector circuits, we know that the 
pixel array in Fig. l(a) has horizontal lines but no vertical 
lines. 

VI. CELLULAR NEURAL NETWORKS 
FOR NOISE REMOVAL 

Now, let us consider one of the most important prob- 
lems in image processing. Since the input pictures usually 
come from the real world through a camera or some other 
optical equipment, there will always be some noise super- 
imposed on the images of the objects. In this paper, we will 
concentrate on text processing problems, specifically, on 
the recognition of Chinese characters. Suppose that the 
characters in the input images are smeared in some way 
such as the picture in the upper left-hand corner of Fig. 5. 

The colors in Figs. 5-14 and 19-35 are chosen to distinguishr 
the gray levels of the pixels in the pictures, where 

background = light blue; 

7 6  [ -1.0, - f] =greenish blue; (-i,-i) =bluegreen; 

5 4  (-4 = bluish green; ( - 8 ,  - i ]  = green; 

4 ( - 8, - a] = yellowish green; ( - - , - - i ]  =green yellow; 

0.0 0.0 

4.0 

4.0 

0.0 

(C) (d) 

Fig. 4. Cloning templates for various interactive cell operators for noise 
removing cellular neural networks. The unit used here is W’. 

2 (-,,-:I =greenishyellow; 

( f , i] = yellow orange; 

( i, i] = yellowish orange; ( i, $1 = orange; 

4 5  5 6  ( - 8 ’  -1 8 = reddish orange; ( -  8 ’ 8  -1 = orange red; 

(:, i] = orangish red; - ,1.0 = red.’ ( i  I 
For this case, the smeared character in Fig. 5 is generated 
from a perfect binary image by adding a Gaussian white 
noise with U = 0.2, m = 0. The size of the image in Fig. 5 is 
16x16 pixels, so the noise removing cellular neural net- 
work should have 16x16 cells. In image processing, the 
simplest way to delete noise from the image is to use an 
averaging operator [12]. We choose therefore the averaging 
operator as the dynamic rule for our “noise removing” 
cellular neural network. This averaging operator can be 
expressed by a cloning template as shown in Fig. 4(a), and 
we use it as the feedback operator. Assuming that the 
other circuit parameters are the same as those in the simple 
example in Section IV, the resulting cell circuit equations 
are given by 

and 

uyij ( t  ) = 0.5( I uxi j (  t ) + 1 I - I uXt j (  t )  - 1 I). (22b) 

The above color classification terminology follows the MASSCOMP 
graphics applications programming manual. Due to printing inperfections, 
the actual printed color may differ from this legend. 



.... 





CHUA AND YANG: NEURAL NETWORKS: APPLICATIONS 1283 

Note that the rate of change of the state of cell C ( i ,  j )  is 
approximately proportional to the average of the outputs 
of the neighborhood Nl(i ,  j ) .  Hence, the steady state of 
C ( i ,  j )  depends on the average of those of its neighbor 
cells. 

The rest of the pictures in Fig. 5 are the outputs of the 
cellular neural network at time steps 10, 20, and 30, 
respectively. This cellular neural network has the same 
properties as a two-dimensional low-pass filter. It retains 
the low-frequency components while eliminating the high- 
frequency components. Consequently, the corners of the 
objects in the images suffer from the same problem we 
experienced in two-dimensional low-pass filters. In the 
spectrum of an image, the high-frequency components 
contain information about the comers of objects. These 
high-frequency components are removed along with the 
high-frequency noise because of the low-pass filter effect. 
Therefore, the pixel classification will not be correct at the 
corners of objects. To see this, let us consider the upper 
left picture of Fig. 6 .  The only difference between the 
smeared pictures in Figs. 6 and 5 is that the standard 
deviation of the Gaussian white noise in Fig. 6 is 0.4 
(U = 0.4). For comparison, the circuit simulation results 
are shown in Fig. 6 ,  for time steps 10, 20, and 30. 

If we increase the weight of the cell itself in the feedback 
operator, as shown in Fig. 4(b), we would obtain the 
simulation results in Figs. 7 and 8 for U = 0.2 and U = 0.4, 
respectively. Observe that the results in Figs. 7 and 8 are 
better than those in Figs. 5 and 6 in the sense that they are 
closer to the undisturbed character. Particularly, the char- 
acter in the lower right picture of Fig. 7 is exactly the 
original undisturbed character. 

The above cell feedback operator involves only four 
nearest neighbors. To see the effects of the other neighbors 
of a cell, let us use a feedback operator as shown in Fig. 
4(c). The corresponding simulation results are as shown in 
Fig. 11 for U = 0.2, and in Fig. 12 for U = 0.4. 

Usually the noise in images is not Gaussian noise. Fig. 
13 shows a simulation result for a non-Gaussian noise 
image. The feedback operator used here is the same as that 
for Fig. 4(a). 

To see the effects of interactions between cells in cellular 
neural networks, Fig. 14 provides a simulation result of a 
non-Gaussian noise image, which is processed by a cellular 
neural network with its feedback operator as shown in 
Fig. 4(d). (Note that, the pixel values of the yellow points 
in the output image (the lower right picture) of Fig. 14 
are zeros. They are the unstable local equilibrium states. 
Unlike those in a physical electronic circuit, the unstable 
local equilibrium states can be observed from computer 
simulations.) 

From the above results, it can be seen that cellular 
neural networks are effective for removing noise in image 
processing, especially for images with large objects and few 
corners. Fig. 9 is the simulation result for a large object 
with a Gaussian white noise ( o  = 0.6). The feedback oper- 
ator used in this simulation is that in Fig. 4(a). Fig. 10 is 
the result for U =1.0 case. 

VII. CELLULAR NEURAL NETWORKS 
FOR FEATURE EXTRACTION 

Feature extraction is another important problem in image 
processing. As we have seen in the previous simple exam- 
ple in Section IV, the cellular neural network can extract 
horizontal lines in the input image in a very simple case. In 
th s  section, we will give some other examples of cellular 
neural networks for feature extraction in image processing. 
These examples can help the reader to understand the 
application of cellular neural networks to feature extrac- 
tion. 

7.1. Extract the Edges of a Diamond 
Consider the upper left image shown in Fig. 19; namely, 

the picture of a diamond. What we want to do here is to 
extract the edges of this diamond, since they contain most 
of the information regarding the shape of the diamond. 
This time we will use another two-dimensional filter, called 
the Laplacian operator, shown in Fig. 15, as the feedback 
operator for our cellular neural network. The Laplacian is 
a well-known operator which is good for edge detection 
[12], [13]. We still use the same parameters C ,  R ,  and 
B(i ,  j ;  k ,  I )  as those in the circuit in Section II. However, 
we choose I =  -1.75 X10-3 A for our diamond edge- 
extraction cellular neural network. 

The cell circuit equation of this cellular neural network 
is given by 

-- - lo6 [ - uXij  ( t ) - 0.5 U ~ ~ -  I ,  ( t ) dux,  ( t 
dt 

- 0.5 uy,, - ( t + 2uy1, ( - O.5uY,, + ( t 
- 0.5~,,,+ I ,  ( t ) - 1 .75] (234 

and 
Uyz, ( t >  = 0 4  lUxr,  ( 0  + 11 - I%, ( t )  - 11) 2 

l < i < 1 6 , l < j < 1 6 .  (23b) 
The result of our circuit simulation is shown in Fig. 19, 

which is just what we expect. The parameter I in this 
example can control the derivatives of the state variables, 
and thus affects the dynamics of cellular neural networks. 
For example, if we choose I = - 1.5 x lop3 A or I = - 2.0 
X l o p 3  A and keep the other circuit parameters the same 
as those above, then the results of simulations will be those 
as shown in Fig. 20 or Fig. 21, respectively. 

7.2. Extract the Edges of a Square 
If we use the cellular neural network designed in the 

preceding section with (23) to process the upper left image 
shown in Fig. 22, we would obtain the results as shown in 
Fig. 22. Observe that the output image, or the output of 
the cellular neural network at steady state, fails to extract 
the edges of the square: only the comers have been ex- 
tracted. Why is this? Let us take a closer look at the 
dynamic rule of this cellular neural network. At the initial 
time t = 0 of the circuit transient, one can enumerate a 
maximum of ten possible structures, as shown in Fig. 16, 
around a cell. (Here we have ignored the cells on the 
boundary of the image and listed only those structures 
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Fig. 15. 

m] 
-0.5 

The cloning template defining the Laplacian operator. 

which cannot be obtained from the others by a symmetri- 
cal transformation; e.g., a rotation.) The derivative of the 
state voltage with respect time t at the initial time t = 0 
can be computed from (23); namely, 

(a) -O.75x1O6; (b) -0.75X1O6; 

(e) -2.75X106; (f) -2.75XlO6; 

(i) -1.75X106; (j) -O.75X1O6. 
Observe that all cells have a negative state voltage 

derivative at the initial time of the circuit transient. It 
follows that the state voltages of all cells must decrease at 
t = 0. For the cells with the structures of Fig. 16(a)-(e), the 
state voltages u,,,(t) all begin by decreasing from -1.0 
(the center of each template in (a)-(e) is equal to -l.O), 
and hence the corresponding output voltages will remain 
unchanged at u,,,,(t) = - 1.0. Consequently, these cells do 
not change their effects on their neighbor cells. However, 
for those cells with the structures of (f)-(j) in Fig. 16, both 
the state and the output voltages must decrease from 1.0 
(the center of each template of (0-(j) is equal to 1.0) 
simultaneously. Hence, these cells will affect the rate of 
change of the state voltages of their neighbor cells. Since 
those cells with the structure of (j) in Fig. 16 (the comer 
cells) have the slowest rate ( - 0.75 X lo6), the voltage 
values at the comer cells will become relatively, as time 
increases, larger than those of their neighbors during the 
transient evolution. This may cause their state voltage rates 
to eventually become positive. (In fact, this is exactly what 
happens in this example.) Since the voltages of the comer 
cells will increase after their rates become positive, their 
corresponding output voltages will eventually tend to 1.0 
at the circuit steady state. In light of the above circuit 
dynamics, the result in Fig. 22 is not surprising. 

Let us replace the Laplacian operator by the one in Fig. 
17, and use the parameter I =  -2.0X10-3 A. From the 
simulation results shown in Fig. 23, we can see that, in 
addition to extracting the edges of the square, we have also 
extracted four other points. This occurs because the de- 
rivatives of the state variables of the cells keep changing 
during the circuit transient. For instance, the derivative of 
the state voltage for the cell C(6,7) in Fig. 23 is negative at 
the initial time, but it becomes positive after 15 time steps 
in the transient response. This in turn causes the state 
voltage of C(6,7) to increase to its stable equilibrium state. 

The cause of the above problem can therefore be traced 
to a lost of the original information of the image during 
the circuit transient. This observation suggests that if we 
choose a nonzero control operator in a cellular neural 

(c) - 1.75 X lo6 ;  (d) - 1.75 X lo6 ;  

(g) -2.75X106; (h) -1.75X106; 

-1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 

(a) 

(d) mi 
1.0 1.0 1.0 

-1.0 

-1.0 -1.0 -1.0 

(b) )I: I 1.0 LOj 

-1.0 -1.0 

-1.0 -1.0 ni 
1 .o 

1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 

(C) pJ 
1 .o 

-1.0 -1.0 -1.0 

(g) 01) (0 

-1.0 

ti) 
Fig. 16. Ten relationships for the cells with their neighbors. 

-1.0 -1.0 

0.0 -1.0 

Fig. 17. Cloning template defining the Laplacian operator. The unit 
used here is Q-' 

0.0 

(b) 

Fig. 18. (a) Closing template of the feedback operator for the edge 
detector. (b) Cloning template of the controlling (feed forward) oper- 
ator for the edge detector. 

network and use the input image both as the input and as 
the initial condition of the circuit, then the above problem 
should not occur since the input (input image) will main- 
tain the same value during circuit transients. 

7.3. An Edge Detecting Cellular Neural Network 
Using our above experience, let us now design a more 

practical edge detector. In this edge detecting cellular 
neural network, both the feedback and control operators 
are nonzero; their cloning templates are shown in Figs. 
l8(a) and (b), respectively. The other circuit parameters 
are chosen as follows: C=10-9 F; R, = l o 3  a; and I =  
-1.5X10p3A. 
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The circuit simulation results of this cellular neural 
network for detecting the edges of a diamond and a square 
are shown in Figs. 24 and 25, respectively, where the input 
images are chosen for both the inputs and the initial 
conditions of the edge detector. From the pictures in Figs. 
24 and 25, we can see the perfect performance of this 
cellular neural network. 

Note that, although we may use a digital computer to do 
the same job as the above edge detector, here the processing 
speed of the cellular neural network is much faster than 
that of the digital computers. For the circuit parameters 
chosen in this example, the processing speed is about 
seconds. Furthermore, the processing speed of cellular 
neural networks is independent of the circuit size. This 
means it takes no longer to process a 512 x 512 image than 
one of 16 X 16 pixels. 

7.4. A Corner Detecting Cellular Neural Network 
To obtain a corner detecting cellular neural network, we 

change the circuit parameter Z to - 3 X A and keep 
the other parameters the same as those in the edge detector 
designed in the preceding section. The circuit simulation 
results of this corner detector for detecting the comers of a 
diamond and a square are shown in Figs. 26 and 27, 
respectively. 

VIII. CELLULAR NEURAL NETWORKS FOR CHINESE 
CHARACTER RECOGNITION 

There are about 60000 Chinese characters and ap- 
proximately 6000 of them are used in daily life. The 
prohibitively large number of Chinese characters makes 
the Chinese character recognition problem much more 
difficult than other character recognition problems. For 
the past twenty years, research on the Chinese character 
recognition problem has focused exclusively on algorithms 
using digital computers. 

Theoretically, the Chinese character recognition problem 
has been solved for the 6000 most commonly used char- 
acters [19]. But the slow recognition speed continues to be 
the main problem in this area. To the best of our knowl- 
edge, the current average speed for Chinese character 
recognition using ordinary digital computers is about 2 
characters per second, from a vocabulary consisting of 
6000 basic characters. This recognition speed is much too 
slow for practical needs. The reason for this low recogni- 
tion speed is that the nature of the algorithm for Chinese 
character recognition involves mainly parallel processing, 
because of the two-dimensional structure of the charac- 
ters, but conventional digital computers are sequential 
processing machines. 

From the above feature extraction examples, we have 
seen that cellular neural networks can extract certain fea- 
tures of images using appropriate dynamic rules. Come- 
quently, the cellular neural network could be an efficient 
tool for solving the Chinese character recognition problem. 
First, we can design various cellular neural networks for 
extracting different features from Chmese characters. Then 
we can pass the character image simultaneously to all 
distinct feature extraction circuits in parallel. After the 

transient has settled down, (the time constants of cellular 
neural networks are generally less than seconds) we 
would have extracted the different features of the original 
input character, which can then be used for higher level 
character recognition using a computer or any other kind 
of processing machine. As an example, we will present a 
simplified feature extraction circuit and use it to process a 
few simple Chinese characters. 

The feature we want to extract here are the convex 
corners3 of the strokes of Chmese characters. For this 
reason, we will use the corner detector designed in 
Section 7.4 as our feature extracting cellular neural net- 
work. Figs. 28-35 are the circuit simulation results of 8 
Chinese characters obtained by using our corner extraction 
circuit. From the simulation results, it can be seen that the 
convex corners of the strokes of the characters have been 
extracted. These corners contain most of the structural 
information of the characters, and can be used for coding 
the characters. 

The purpose of these examples is to demonstrate the 
feature-extraction capability of cellular neural networks in 
image processing. What Iund of structural features are 
useful for Chinese character recognition and how to ex- 
tract them using cellular neural networks represent two 
important future research problems. 

The resolution of the character images then is poor 
because of the small size of our pixel array. In Chinese 
character recognition, the typical pixel array for the char- 
acter images is 48x48  or 64x64. Our experience shows 
that the larger the size of the cellular neural network, the 
better is the feature extraction capability for the characters 
due to increased spatial resolution. VLSI techniques will 
make it possible to implement large-sized cellular neural 
net works. 

IX. CONCLUDING REMARKS 
We have presented some applications of cellular neural 

networks in image processing and pattern recognition. For 
such applications, the cellular neural network functions as 
a two-dimensional filter. However, unlike the conventional 
two-dimensional digital filters, our cellular neural network 
uses parallel processing of the input image space and 
delivers its output in continuous time. This remarkable 
feature makes it possible to process a large-size image in 
real time. Moreover, the nearest neighbor interactive prop- 
erty of cellular neural networks makes them much more 
amenable to VLSI implementation. 

All applications described in this paper assume an 
N,.(i, j )  neighborhood with r = 1; namely, the nearest 
neighbors. Other applications may call for a larger neigh- 
borhood with r > 1. In the extreme case where r = M = N ,  
i.e., Nr(i ,  j )  is chosen to be the entire circuit, a cellular 
neural network may be interpreted as a generalization of a 
Hopfield neural network upon choosing B(i ,  j ;  k ,  I) = 0 
and I =  Z, in (2a). Even in th s  case, the resemblance of 
(2a) to the well-known Hopfield model is only a superficial 
3A comer in a pattern is said to be convex (resp., concave) if the area in 

the vicinity of the comer appears like a convex (resp., concave) object. 
For example, for the character in the upper-left hand comer in Fig. 28, 
only the “outer” comers in the character pattern are convex, as higl- 
lighted in the edges in the character pattern shown in the upper-right 
hand comer. 
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Simulation results of the cellular neural network 

one. To uncover the furzdaniental difference between these 
two models. observe that all current applications of the 
Hopfield model assumes zero “diagonal” coupling coeffi- 
cients: i.e., A (  i, j :  i, j )  = 0, whereas all current applica- 
tions of the cellular neural network requires the condition 

1 
A ( i , j ; i , j )  > - > 0 

selffeedhack in each neuron-like unit in the Hopfield 
as stipulated in (6). In other words, whereas there is no 

model, euery cell in a cellular neural network requires a 

R ,  

Fig. 3 5 .  

for feature extraction of the Chinese characters. 
minimum amount of self-feedback. This self- feedback con- 
dition is in fact responsible for the extremely robust per- 
formance we have observed from cellular neural networks, 
where the output of each cell is guaranteed to be either + 1 
or -1, even though the slope of the linear region of the 
feedback nonlinearity is always unity. In sharp contrast, in 
order to achieve the same result in the Hopfield model. i t  
is necessary that this slope approach infinity [4]. This 
“infinite-gain” condition is difficult to control in practice 
and is in fact responsible for various anomalous results 
(e.g.. hysteresis, erratic outputs) that have been observed 
when a Hopfield model is operating under this condition. 

APPENDIX 
TABLE I 

SIMPLE HOWONTAL LINE DETECTOR: 
TYPICAL INPUT FILE FOR THE CIRCUIT SIMULATOR PWLSPICE 

CllOlOl 
RllOlOl 
GllOlOlOlOl 
G1101010102 
P210101 
R210101 
c110102 
R I 1 0 1 0 2  
G1101020101 
G1101020102 
G1101020103 
P710102 
R 2  10102 
C110103 
R110103 
G1101030102 
GI101030103 
G1101030104 
P210103 
R2 10 103 
C110104 
R110104 
GI101040103 
G1101040104 
P210104 
R2 10 104 

0 
0 

0 
0 
0 

0 
0 
0 

0 
0 

110101 
110101 

110101 210101 0 
110101 210102 0 

110101 210101 
210101 
110102 
110102 

110102 210101 0 
110102 210102 0 
110102 210103 0 

110102 210102 
210102 
110103 
110103 

110103 210102 0 
110103 210103 0 
110103 210104 0 

110103 210103 
210103 
110104 
110104 

110104 210103 0 
110104 210104 0 

110104 210104 
210104 

0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

0.002 
0.001 

0.001 
0.002 
0.001 

0.001 
0.002 
0.001 

0.001 
0.002 

le-09 
1000 

rnodpwll 
1 
le-09 
1000 

modpwll 
1 
le-09 
1000 

modpwll 
1 
le-09 
1000 

modpwll 
1 

* ‘This i s  a PWL v CCS model w i t h  a common noiir. 
.model rnodpwll pwl term = 3 nseg = 3 
+ ap= 0,0 bp= O,O, 0 , O  cp= O, O ,  - 0 . 5 , 0 . 5  a l p h a p =  1,0,1.0 betap=-I, I 
.ic ~(110101)=-1 v(110102)=0.4 ~(110103)=-0.8 ~(110104)--1 
.tran 0.lus 5 u s  UIC 
. p r i n t  tran v I 2 1 0 1 0 1 )  vl210102) ~(210103) ~(210104) 
.end 

The indexes of nodes are coded as follows: The first number f rom the left specifies the type of the nodes in a cell, 1 for  the state voltage node, 
2 for the output voltage node; the second number f rom the left specifies the layer number; the third and fourth numbers specify the rows; and the fifth and 
sixth numbers specify the c o h m m .  For example, vji  i0102) means v X l 2 ,  and V(210104) means ~ ~ 1 4 ,  and so on. 
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TABLE I1 
SIMPLE HORIZONTAL LINES DETECTOR: 

TRANSIENT ANALYSIS. (THE INDEXES OF THE NODES ARE THE SAME AS THOSE IN TABLE I.) 

~(210104) Index TIME v(210101) v (210102) ~(210103) 

0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 O . O O O O O O F + L  
1 1.000000E-09 -1.000000E+00 3.985972E-01 -8.0140283-01 -1.000000Ei 
2 2.000000E-09 -1.000000E+00 3.971916E-01 -8.028084E-01 -1.000000Ei 
3 4.000000E-09 -1.000000E+00 3.943747E-01 -8.056253E-01 -1.00000@E+ 
4 8.000000E-09 -1.000000E+00 3.887070E-01 -8.112930E-01 -1.00000OE+ 
5 1.600000E-08 -1.000000E+00 3.772346E-01 -8.227654E-01 -1.000000Et 
E 3.200000E-08 -1.000000Et00 3.537300E-01 -8.462700E-01 -1.000000El 
1 6.400000E-08 -1.000000E+00 3.043898E-01 -8.956102E-01 -1.000000El 
8 1.280000E-07 -1.000000E+00 1.957343E-01 -1.000000E+00 -1.000000Ei 
9 2.280000E-07 -1.000000E+00 5.811578E-03 -1.000000E+00 -1.000000Et 
10 3,2800003-07 -1.000000E+00 -2.041030E-01 -1.000000E+00 -1.000000E+ 
11 4.280000E-07 -1.000000E+00 -4.361138E-01 -1.000000E+00 -1.000000E4 
12 5.280000E-07 -1.000000E+00 -6.925469E-01 -1.000000E+00 -1.OUOOOOEi 
1 3  6.280000E-07 -1.000000E+00 -9.759729E-01 -1.000000E+00 -1.000000Ei 
14 7.280000E-07 -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000Ei 
15 8,2800006-07 -1.000000E+00 -1.000000E+DO -1.000000E+00 -1.000000Et 
16 9.280000E-07 -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000Ei 
17 1.028000E-06 -1.000000E+00 -1.000000Et00 -1.OOOOOOEt00 -1.00OOOOE4 
18 1.128000E-06 -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000Ei 
19 1.228000E-06 -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000Ei 
20 1.328000E-06 -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000El 
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