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Abstract-Elementary results in algorithmic information 
theory are invoked to show that almost all finite func- 
tions are highly random. That is, the shortest program 
generating a given function description is rarely much 
shorter than the description. It is also shown that the 
length of a program for learning or optimization poses a 
bound on the algorithmic information it supplies about 
any description. For highly random descriptions, suc- 
cess in guessing values is essentially accidental, but 
learning accuracy can be high in some cases if the pro- 
gram is long. Optimizers, on the other hand, are graded 
according to the goodness of values in partial functions 
they sample. In a highly random function, good values 
are as common and evenly dispersed as bad values, and 
random sampling of points is very efficient. 

1 Introduction 
Loosely speaking, the idea of conservation in analysis of 
learning [ l ]  and optimization algorithms [2] has been that 
good performance on some problem instances is offset by 
bad performance on others. For a given random distribution 
on a problem class and a given performance measure, the 
condition of conservation is that all algorithms solving that 
class of problem have identical performance distributions. 
It has been shown that conservation of statistical informa- 
tion underlies conservation of optimizer performance [3]. 

The present work diverges from past by addressing con- 
servation in terms of algorithmic information [4]. The in- 
formation of a problem instance is no longer the extrinsic 
“surprise” at seeing it as the realization of a random vari- 
able, but the intrinsic complexity of computing its descrip- 
tion. This shift in analytic paradigm makes it possible to 
characterize what optimizers and learners do on most or all 
instances of a problem, rather than to characterize the per- 
formance distribution. Remarkably, almost every instance 
exhibits a high degree of algorithmic randomness, and thus 
has very little internal structure exploitable by programs. 
Thus conservation is not so much an artifact of the distri- 
bution of instances as a consequence of the pervasiveness 
of algorithmically random instances. 

It is shown that an optimizer or learner can essentially 
reduce the complexity of a particular instance, random or 
not, by “matching” it. The degree of match, or mutual 
complexity, is bounded by the length of the program. The 
essence of conservation of algorithmic information is that a 
program for exploration or learning cannot reduce the algo- 
rithmic complexity of a problem instance by more than its 
own complexity. 

Here optimization and active category learning are 
given a unified treatment in terms of function exploration 
(suggested in [3]). The analysis is straightforward, but the 
unfamiliarity of key concepts will pose problems for some 
readers. Thus section 2 gives an informal overview of the 
main results of the paper. Section 3 gives a string repre- 
sentation of functions, describes both variants of function 
exploration, and formally introduces algorithmic informa- 
tion theory. Section 4 briefly derives conservation of sta- 
tistical performance, and lays a crucial foundation for sec- 
tion 5 by establishing that function exploration entails im- 
plicit permutation of the string representation of the given 
function. Section 5 derives the main results in conservation 
of algorithmic information. Sections 6 and 7 give discus- 
sion and conclusions. 

2 Overview 
This section gives an informal introduction to topics that 
actually require formal treatment. Everything presented 
here should be taken on a provisional basis. 

2.1 Function Exploration 
The notion of an optimizer that explores a function to lo- 
cate points with good values is familiar. The notion of a 
learner that explores a function is less common. If every 
domain point belongs to exactly one category, then the as- 
sociation of points with their categories is a function. A 
learner guesses unobserved parts of the category function 
on the basis of observed parts. The learner is acrive when it 
decides on the basis of observations which point’s category 
to guess next. Thus optimizers and active learners both ex- 
plore functions. 

An optimizer is evaluated according to the sequence of 
values it observes while exploring the function. An active 
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learner, on the other hand, is evaluated according to its ac- 
curacy in guessing what it will observe. The most straight- 
forward measure of accuracy is the number of correct 
guesses. 

For the sake of analysis, finite functions are represented 
as binary strings. Each string is a function description. The 
distinction between functions and descriptions is important 
because the performance of an algorithm on a particular 
function is generally sensitive to the representation. 

The exploration algorithm obtains the value of a point 
by reading the value (a field of bits) from the appropriate 
location in the string. The algorithm is required to read all 
values in finite time, and to write a non-redundant trace of 
the sequence of values it reads. When the algorithm halts, 
the trace is a permutation of the values in the description. 
Thus there is no formal distinction between descriptions 
and traces. A key fact (sec. 4.1) is that the input-output re- 
lation of each exploration algorithm is a 1-to-1 correspon- 
dence on function descriptions. 

2.2 Algorithmic Randomness 
The algorithmic complexity of a binary string is the length 
of the shortest program that generates it and halts. The pro- 
gram is loosely analogous to the self-extracting archives 
commonly transmitted over the Internet. The complexity of 
the data is essentially the length of the executable archive. 
Algorithmic complexity is uncomputable, however. 

When a string has complexity greater than or equal to its 
length, it is said to be algorithmically incompressible. An 
incompressible string is also algorithmically random. Al- 
gorithmic randomness entails all computable tests of ran- 
domness [5] ,  and here the term is abbreviated to random. If 
a long string can be algorithmically compressed by at most 
a small fraction of its length, it may not satisfy the crisp 
definition of algorithmic randomness, but it is nonetheless 
highly random. 

How many strings of a given length are highly random? 
If the length is great, then almost all of them are. The frac- 
tion of strings that are algorithmically compressible by 
more than k bits is less than 2.' [ 5 ] .  To appreciate this re- 
sult, consider the modest example of functions on set of 32- 
bit integers. Each of 232 domain elements has a 32-bit value, 
so a function is described by N = 32 x 2'' = 2n bits. Com- 
pression by more than 1 I 2'' = 0.1% corresponds to k = N I  
1024 = 2n, giving 2.' = 2-13421n28, Compressible descriptions, 
though plentiful in sheer number, are relatively quite rare. 

2.3 Exploration and Complexity 
Function exploration has been formulated in such a way as 
to facilitate reasoning about the algorithmic complexity of 
the function as described and the function as processed. 
This line of reasoning does not lead to simple statements 
about performance, but it does help to characterize the in- 
formation processing of exploration programs. 

The 1-to.1 correspondence of descriptions and traces of 
a program implies that the mean difference in complexity 
of description and corresponding trace is zero. The range of 
differences can vary greatly from one program to another, 
however. An exploration program cannot generate more al- 
gorithmic information than it contains. Suppose that pro- 
gram p explores description x and writes trace y .  The dif- 
ference in complexity of x and y is bounded approximately 
by the complexity of p. If the difference were to exceed the 
complexity of p by more than a small amount, then p and 
the shortest program generating y could be combined with a 
small amount of code to generate x: 

Foreach  d e s c r i p t i o n  x Loop 
Execute  p w i t h  x a s  i n p u t  
I f  t race matches y Then 

o u t p u t  x 
H a l t  

EndIf 
EndLoop 

This generate-and-test algorithm exploits the invertibility 
of the mapping from description to trace. The shortest im- 
plementation has complexity lower than that of x, but gen- 
erates x ,  a contradiction. 

This has covered the case of reduction of complexity 
due to exploration. A program similarly cannot add more 
than its own complexity to that of the description in gener- 
ating the trace string. In practice, exploration programs are 
short in comparison to descriptions, and the complexity ra- 
tio of the function as processed and the function as de- 
scribed must be close to unity unless the description is low 
in complexity. 

2.4 Complexity and Performance 
There is much about the relationship between complexity 
and performance that has yet to be investigated. Only sim- 
ple cases are addressed here, but the results are significant. 
Performance is assessed differently in learning than in op- 
timization, and it appears that separate treatment is neces- 
sary. 

2.4.1 Complexity and Optimizer Performance 
Assume that the performance criterion is a function of the 
trace. (In practice, it might be a function of a possibly- 
redundant record of values observed, rather than a non- 
redundant record.) For a relatively short optimization pro- 
gram operating upon highly random function descriptions, 
the traces are also highly random. This implies that a very 
good value occurs with high probability in a short prefix of 
the trace. The probability associated with obtaining a cer- 
tain level of quality in a prefix of a certain length depends 
only upon the quality, not the size of the function (see sec. 
5.3). Remarkably, almost all functions are easy to optimize. 
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The non-constant functions of lowest complexity are 
actually the hardest to optimize. These “needle in a hay- 
stack’’ functions assign a good value to exactly one point 
and a bad value to all the other points. On average, any 
program must explore half the points to find the good 
value. 

2.4.2 Complexity and Learning Accuracy 
The active learning program guesses the trace, rather than 
the function description. If the program is short relative to a 
highly random description, the trace is also highly random, 
and guesses of the trace are correct essentially by chance. 
That is, about 1 in M guesses will be correct. In this sense, 
almost all functions are hard to learn. 

If a program guesses all values in the trace correctly, 
this amounts to compression of the function description to 
a very short length, and the program must be as complex as 
the description. The construction is omitted here, but the 
gist is that the learner does not have to write a trace it can 
guess perfectly, and a contradiction arises if the complexity 
of the trace is not absorbed into the learner. 

3 Formal Preliminaries 

3.1 Notation and Conventions 
The set of functions under consideration is F = cflf: S+[O, 
1 )”) for indexed S = [x , ,  , . ., x,) and positive L. The de- 
scripfion off E F is the concatenation Ax,) . . . Ax,) E [ 0, 
1JN, where N = LM. Every string in (0, l J N  describes ex- 
actly one function in F. 

Here an optimization or learning algorithm is required 
to be deterministic, though perhaps pseudorandom with a 
constant seed, and may be sequential or parallel. Imple- 
mented algorithms are referred to as programs. As previ- 
ously indicated, optimization and learning are grouped un- 
der the rubric of function exploration. An exploration algo- 
rithm reads values from function descriptions, and writes 
binary truce strings as outputs (sec. 4.1 gives details). At- 
tention is restricted to exploration algorithms that read 
every input before halting. To read the value of domain 
point x, is to read the i-th field of L bits in the description. 

The performance of an optimizer on a given description 
is a function of the trace. It is assumed that there is some 
mapping from values in (0, 1 1 to goodness values. General 
characterization of learning accuracy is not so simple. In 
the present work, the elements of (0, lJL are taken as cate- 
gory labels, and the learner guesses labels immediately be- 
fore reading them from the description. The performance 
criterion is the fraction of correct guesses. 

3.2 Algorithmic Complexity 
Algorithmic information theory [4] defines the algorithmic 
complexity of binary strings in terms of halting programs 
for a universal computer (i.e., an abstract model as power- 

Fig. 1. Complexity is indicated by the size of a region. Thus h(x) > 
h b ) .  The shaded regions depict the joint complexity of x and y, 
h(x, y); the mutual complexity of x and y, h(x : y); and the com- 
plexity of x relative toy, h(x I y). 

ful as any known). The programs are themselves binary 
strings, and are required to be self-delimiting. The choice 
of universal computer is insignificant for large programs, 
because any universal computer may simulate any other 
with a program of constant length. 

Let x and y be strings in [ 0, 1) *. The algorithmic com- 
plexity of x,  denoted h(x), is the length of the shortest pro- 
gram that generates x as output and halts. The relafive 
complexity of x given y ,  denoted h(x I y), is the length of the 
shortest program that generates x as output, given a pro- 
gram that generates y “for free” [4] (see fig. 1) .  The algo- 
rithmic complexity of the pair (x ,  y) is 

h(x, y )  = h(x) + h(y I x )  + O(1). (1) 
O(1) denotes the set of all functions with magnitude as- 
ymptotically dominated by some constant. The mutual 
complexity of x and y is 

h(x : y )  = h(x) + h(y) - h(x, y )  
= h(x) - h(x I y )  + O( 1) 
=h(y) -h(y Ix) + O(1) (2) 

These identities are closely analogous to ones in conven- 
tional information theory. Indeed the algorithmic complex- 
ity of random strings is asymptotically equivalent to Shan- 
non entropy: 

E l l n  h(X‘ I n)+H(X) as n+m, (3) 

where x“ is a sequence of n i.i.d. random variables distrib- 
uted as X on (0, 1) and H(X) is the Shannon entropy of the 
distribution of X (see theorem 7.3.1 in [5]) .  Now if a func- 
tion is drawn uniformly from F, the N bits in the descrip- 
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tion are i.i.d. uniform on (0, 1) with one bit of entropy 
apiece. Setting n = N and X - Uniform(0, 1) in (3), and as- 
suming that N is large, the expected complexity of the de- 
scription is N. How can the average complexity be equal to 
the actual length of the descriptions? Some length-N strings 
can be generated only by self-delimiting programs that are 
greater than N in length, even when the programs are given 
N. 

4 Exploration, Permutation, and 

The following derivation of conservation of performance is 
conventional in its invocation of properties of the distribu- 
tion of functions. It is unusual, however, in unifying the 
treatment of conservation of optimization performance [2, 
31 and conservation of learning accuracy [ 13. 

4.1 Exploration Is Equivalent to Honest Permutation 

Definition. Let A denote a finite alphabet. An algorithm 
that permutes input string x = x,  . . . x, E A" to generate out- 
put x(x) = xi, ... x .  is honest if it setsj, without examining 

Conservation 

'" 
xi,, k =  1, ..., n. 

Any exploration algorithm can be modified to yield 
honest permutations. With alphabet A = (0, l)", function 
descriptions are elements of AM. Code may be inserted to 
immediately write elements of A that are read, ensuring 
that no input is written more than once to the output, and 
ordering values read in parallel according to input position. 
In other words, the trace is an honest permutation of the de- 
scription. 

Theorem I (n preserves i.i.d. inputs): Let X = XI, . . ., Xn be 
a sequence of random variables i.i.d. on A. If n: A"-+A" is 
the input-output relation of an honest permutation algo- 
rithm, A(X) - X. 

Proof: Inputs X I ,  . . ., Xn are identically distributed, so there 
is no prior distinction between them. By independence, 
only xi supplies information about Xi ,  i = 1, ..., n, but an 
honest permutation algorithm does not read any Xi = xi be- 
fore setting output index j i .  Thus the output ordering j , , . . ., 
jn  conveys no information about X ,  and n:(X) = Xj, ,  . , ., X ,  - 
X .  

Now drawing a string uniformly from A" is equivalent to 
sequentially drawing n elements independently and uni- 
formly from A. Thus a uniform distribution of input strings 
is preserved in the outputs of an honest permutation algo- 
rithm. It follows that if every string in A" is input to the al- 
gorithm exactly once, then every string in A" occurs exactly 
once as an output: 

Corollary (n: is bijective): If A: A"+A" is the input-output 
relation of an honest permutation algorithm, A is a 1-to-1 
correspondence. 

Thus any exploration algorithm induces a 1-to-1 corre- 
spondence on function descriptions. If the trace is regarded 
as the "description as processed," then each algorithm pro- 
cesses each description in response to some input. 

4.2 Conservation of Optimizer Performance 
Assume that the values associated with all domain points 
are i.i.d. as X on (0, l)L. By thm. 1, the trace values of any 
optimizer are also i.i.d. as X, and all optimizers have iden- 
tical trace distributions. Because the performance measure 
is a function of the trace, it must also be the case that all 
optimizers have identical performance distributions. Any 
superiority an optimizer exhibits on a subset of descriptions 
is precisely offset by inferiority on the complementary sub- 
set. This is one sense in which performance is conserved. 

4.3 Conservation of Learning Accuracy 
A learner not only has to read values, but to predict them. 
Performance is some function of the guesses and the trace. 
It is easiest to exhibit conservation of learning accuracy if 
the descriptions are uniform on (0, 1 I N  and the perform- 
ance criterion is the fraction of correct guesses. Under this 
condition, the category labels in descriptions are i.i.d. uni- 
form on (0, l)", and, by thm. 1, so are the labels in the 
trace. Any guessing strategy gets exactly 1 of 2" guesses 
correct, on average. A leaner may have superior guessing 
accuracy on one subset of functions, but must compensate 
precisely on the complementary subset. 

5 Complexity and Function Exploration 
In contrast to the preceding section, this section derives re- 
sults that apply to individual function descriptions, rather 
than to distributions. 

5.1 Almost All Descriptions Are Highly Random 
Section 3.2 indicated that under the realistic assumption 
that function descriptions are long, the average complexity 
of descriptions relative to their length is their length. Con- 
sider that a very short program p can be affixed to any de- 
scription x to obtain a program px  that writes x and halts. 
The complexity h(px I N) of a brute force generator of x is 
at most slightly greater than N .  On the other hand, h(x I N) 
<< N for some descriptions x .  Given this asymmetry, it 
must be the case that h(x I N) 2 N for more than half of all x 

It is furthermore the case that almost all descriptions x 
have h(x I N) very close to N .  In general, the fraction of 
strings x in (0, 1 )" such that h(x I n) < n - k is less than 1 in 
2', where 0 I k < n. That is, 

E (0, qN. 
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I(x E (0, 1y:  h(x I n) c n - k ) l /  2" c 2&. (4) 
(See thm. 7.5.1 in [5] . )  With n = N ,  this characterizes both 
descriptions and traces, due to their 1-to-1 correspondence. 
In practice, however, programs often generate only a prefix 
of the trace before halting. Let n be the length of trace pre- 
fixes, with n a constant integer multiple of L. Each prefix 
occurs in 2"" complete traces, and thus is generated in re- 
sponse to 2"" descriptions. Because prefixes occur in equal 
proportion, inequality (4) applies to them as to full traces. 

Now x" E (0, 1)" is said to be algorithmically random 
when h(x" I n) 2 n. This entails all computable tests for ran- 
domness [5]. Algorithmic randomness is equivalent to al- 
gorithmic incompressibility, and compressibility of a finite 
string is a matter of degree, not an absolute [4]. Thus it is 
appropriate to say that a string is nearly random when the 
compression ratio h(x" I n) / n is slightly less than unity. As 
illustrated in sec. 2.2, compression by even a small fraction 
of n is very rare when n is large. 

In sum, more than half of all descriptions, traces, and 
trace prefixes strictly satisfy the algorithmic incompressi- 
bility criterion for algorithmic randomness. Many others 
are nearly incompressible. For perspicuity, binary strings x" 
with compression ratios h(x" I n) / n close to unity will be 
referred to as highly random. Note that the algorithmic ran- 
domness of a description is an intrinsic property, and does 
not depend upon an extrinsic random distribution on F. 

5.2 Conservation of Algorithmic Information 
Consider again an exploration program p generating honest 
permutations y = 'IC@) of descriptions x E ( 0, 1 ) ". The fact 
that 7~ is a bijection immediately implies that algorithmic 
complexity of descriptions is conserved by the program. 
That is, n((0, 1)") = (0, l)", and 

I(x: h(x IN) = n)l  = I(x: h(n(x) IN) = n)l  (5)  

for n = 1, 2, 3, ... The complexity histogram for traces is 
precisely that for descriptions, and does not depend upon 
the exploration program. 

More significantly, there is conservation in the com- 
plexity of any description and its corresponding trace rela- 
tive to the program. Specifically, h(x I p ,  Nj = h(.n(x) I p ,  N), 
and this implies that the absolute difference in complexity 
of the description and the trace is bounded by the complex- 
ity of the program. Thus algorithmic information is con- 
served in the sense that an exploration program cannot add 
or take away more information than is present in itself (see 
fig. 2). In the following, 'IC is the input-output relation of 
honest permutation program p ,  and y = x(x)  for arbitrary x 

Lemma I: Given p, x, and N ,  the complexity of y is 
bounded by a constant. That is, 

E [O, lJN. 

h(Y I p ,  x, N) = W ) .  (6) 
Proof: Construct program p* that generates output y by in- 
voking p with N and x as input, and then halts. The invoca- 
tion of given programs may be accomplished with code of 
constant length, and thus the shortest p* is constant in 
length. 

Lemma 2: Given p ,  y ,  and N ,  the complexity of x is 
bounded by a constant. That is, 

h(x I PI y,  w = O(1). (7) 

Proof: Construct program p* that enumerates strings w E 
(0, 11". Given N ,  the enumeration may be performed by a 
constant-length code. For each w, p* supplies N and w t o p  
as input, and checks to see if the output of p is y. Because n: 
is invertible, there is exactly one w such that 'IC(W) = y. Thus 
p* generates output of x = w and halts when the output of p 
is y. The comparison of n(w) to y can be accomplished with 
code of constant length, given N .  Enumeration, compari- 
son, and invocations of given programs all can be accom- 
plished with code of constant length, and thus the shortest 
p* is constant in length. 

Theorem 2 (Preservation of relative complexity): The dif- 
ference in complexity of x and y relative to p and N is 
bounded by a constant. That is, 

Fig. 2. Conservation of complexity for description x, trace y ,  and 
program p .  Conditioning upon N is omitted. The x and y regions 
outside the p rectangle are equal in area because h(x I p) = h(y I p). 
Thus any difference in x area and y area must be accounted for 
within the p rectangle. That is, the difference in area of the hatched 
regions of x-p overlap and y-p overlap is the complexity difference 
of x and y .  and h ( ~ )  - h(y) = h(x : p )  - h(y : p )  I h@). 
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by lemmas 1 and 2. Subtraction of h@ I N) from both sides 
of the relation yields (8). 

In the following theorem, note that both positive and 
negative constants are O(1). Conditioning on N is implicit 
in all complexity expressions. 

Theorem 3 (Conservation): The magnitude of information 
gain in the output of p is bounded by the complexity of p. 
That is, 

Ih(x) - h(y)l + O(1) = Ih(x : p )  - hO, : p)I (9a) 
(9b) 

I h@). (9c) 
I max( h(x : p) ,  hO, : p ) )  

Proof: To establish (9a), take the difference of 

h(x) = h(x Ip) + h(x : p )  + 0(1) 

h O , ) = h O , I p ) + h O , : p ) + O ( l )  

and 

= h(x I p )  + hO, : p )  + O(1) [by Thm. 21. 

Inequality (9b) follows from the non-negativity of h(x : p) 
and hO, : p). Inequality (9c) holds because h(w : p) I h@) 
for all w E (0, 

Corollary (Conservation in prefixes): If y = y’z = ~ ( x ) ,  y’ E 
(0, l ) ’ ” , O c m c N , a n d z E  (0, l)”,then 

hO,’ I m) 2 h(x I N) - h(p) - I *  - n + O(1), (10) 
where I* =log* min(m, n). 

Proof: The inequality 

hO, IN) I 1* +h@’ I m) + h(z I n) + O(1) (11) 
is derived by constructing a program that, given N ,  invokes 
programs to write y’ (given m) and z (given n) succes- 
sively. The value of min( m, n) is stored in the program in a 
self-delimiting form that requires I* = log* min(m, n) bits 
[5] .  The value of max(m, n) is computed as N - min(m, n). 
The length of the code for subtraction and invocations is 
O(1). Thus the right-hand side of (11) gives the length of a 
program that, given N, generates y. Eqn. (10) is obtained 
from (11) by replacing hO, I N) with its minimum value of 
h(x I N )  - h(p), replacing h(z I n) with its maximum value of 
n + 0(1), and rearranging terms. 
Observution: If both y’ and z are algorithmically random, 
I* can be omitted from (10). 

53 Optimization Is Almost Always Easy 
It was established in sec. 5.1 that the fraction of function 
descriptions for which trace prefixes of a given length are 
compressible by more than k bits is less than 2A. For pre- 
fixes containing m 5 N / L values, almost all are highly ran- 

dom if m is large. This implies a high degree of dispersion 
of values over the codomain. For instance, both 0 and 1 
must occur in every position of the L-bit values in the pre- 
fix, or it is possible to compress the prefix simply by omit- 
ting constant bits. If the values are interpreted as unsigned 
integers, this alone guarantees that a value in the upper half 
of the codomain occurs in the prefix. But it must also be 
the case that 0 and 1 are approximately equiprobable in 
each position of the integers in the prefix, or there is a 
scheme for compressing the prefix. Thus approximately 
half of the values are in the better half of the codomain, ap- 
proximately one-fourth are in the best quartile of the co- 
domain, .etc. Thus highly random trace prefixes are quite 
benign in the context of optimization. 

Assuming that the prefix y’ comprises less than half of 
algorithmically random trace y. it  can be inferred from (10) 
that 

h(y ‘ I m’) 2 m‘ - h@) - log* m‘ + O( l), (12) 

where m’ = mL is the length in bits of an m-value prefix. To 
appreciate how log* m’ is dominated by other terms in (12), 
consider that m’ = 23 gives log* m’ = 36.2. Thus any long 
trace prefix generated by a short program is highly random 
when the description is algorithmically random. 

A nonparametric approach to assessing the difficulty of 
optimization in almost all cases is to select an arbitrary 
function description x E (0, 1 )“ and derive the fraction of 
optimizers that achieve a certain level of performance. The 
infinitude of optimization programs with the same input- 
output relation is problematic, however, so the fraction of 
permutations of the description giving a certain level of 
performance is derived instead. The assumption is that each 
permutation of x is implemented by as many programs as 
every other permutation. 

What fraction of permutations of x yield a value as good 
as 8 among the first m values? Let n = N / L be the number 
of values in x ,  and let k be the number of values in x that 
are worse that 8. Then the fraction of permutations of x that 
do not contain a value as good as 8 in the m-prefix is 

(13) 

Interestingly, (13) arises in counting functions for which a 
fixed optimizer fails to obtain the threshold value [6, 71. 
For n = 232 points, k = 0.99999n, and m = lo6, all but 4.5 x 
lo” of permutations include a one-in-ten-thousand value 
among the first million values. Thus almost all optimizers 
discover good values rapidly. It bears mention that this 
analysis, unlike that at the beginning of the subsection, de- 
fines “good” in terms of the range of the described func- 
tion., and not the codomain. 
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5.4 Learning Is Almost Always Hard 
Learners have the disadvantage, relative to optimizers, of 
being scored on their prediction of all values in the trace, 
not their discovery of good values. For a highly random de- 
scription, the learner attempts to infer regularity from ran- 
dom values and use that (nonexistent) regularity to predict 
random values. Learning to guess well is equivalent to re- 
ducing the uncertainty of unread values, and that implies 
data compression. But almost all descriptions are com- 
pressible by at most a small amount, and accurate guessing 
is rare. 

Learning performance is evaluated in terms of the entire 
trace. In practice, the number of distinct category labels, k 
= 2L, is much less than n = N / L, the number of labels in the 
trace. Under this condition, any highly random trace con- 
tains approximately the same number of instances of each 
label. Although the point will not be argued formally, this 
gives some insight as to why the typical accuracy, and not 
just the mean accuracy, of a learning program is 1 in k cor- 
rect. 

Now let y denote any trace. The approach is to hold y 
constant and determine the fraction of learners achieving a 
given level of guessing accuracy. To simplify, it is assumed 
that each sequence of guesses is generated by an identical 
number of programs, allowing sequences to be counted in- 
stead of programs. The fraction of sequences with m cor- 
rect guesses has the form of the binomial distribution, b(m; 
n, p). p = 1 / k, though it is not random. To determine the 
fraction of sequences with m or fewer correct guesses, the 
standard normal approximation z = (m - np) / (npq)lR, q = 1 
- p ,  is convenient. To appreciate the rarity of learners that 
have accuracy as good as 1.001 times the chance rate, let 
the domain have n = 23’ points, let the number of categories 
be k = 26 + 1, and let the number of correct guesses be m = 
(1 + 2.”) pn. The resulting z-value is 8. Thus very few 
learners get more than 1.001 of k guesses correct. 

6 Discussion 

6.1 Near Ubiquitity of Highly Random Trace Prefixes 
The length of trace prefixes does not have to be great for it 
to be the case that almost all prefixes are highly random. 
Exploration of 2” = lo6 points is common in applications. 
If an exploration program halts after reading the values of 
2M domain points, and each point has a 32-bit value, then 
the program generates a trace prefix of n = 2” bits. Com- 
pression of n / 1024 bits gives k = 2” in (4). That is, fewer 
than 1 in 232768 functions yields a trace prefix compressible 
by more than 0.1% of its length. 

6.2 Conservation of Algorithmic Information 
A difficulty in understanding conservation of algorithmic 
information (sec. 5.2) is that it is inherently .backhanded. 

The crucial point is that an exploration program is equally 
uninformed of a function description and the corresponding 
trace, but not equally informed. This constraint of h(x I p ,  
N) = h(x(x) I p ,  N) arises from invertibility of the program’s 
mapping from descriptions to traces. The synopsis in fig. 2 
of this result and its ramifications is perhaps the best aid to 
intuition. 

6.3 Highly Random Function Descriptions 
It is essential to understand that the results of sections 5.1, 
5.3, and 5.4 depend upon the fact that almost all function 
descriptions are intrinsically random objects, and not upon 
a random distribution of functions. The uniform distribu- 
tion is assumed only in determining what fraction of de- 
scriptions are highly random. The focus is upon perform- 
ance of algorithms on almost all descriptions, individually, 
not their performance distributions for a function distribu- 
tion. Thus the results may be characterized as distribution- 
free. 

It should be noted, nonetheless, that for almost all de- 
scriptions it is impossible to reject with much confidence 
the hypothesis that the description’s bits were generated by 
flipping a fair coin N times. Thus almost every description 
provides properties that have been exploited in prior work 
with the uniform distribution of functions. The condition of 
values that are independent and uniform on the codomain 
does not arise merely when all function distributions are 
averaged to obtain the uniform. It holds approximately for 
individual functions, with relatively few exceptions. In this 
sense the uniform is not just an average, but is nearly ubiq- 
uitous. 

Any distribution on the set of highly random descrip- 
tions is a boon to most or all optimizers and the bane of 
most or all learners. In the extreme case that all probability 
mass is assigned to one random description, by virtue of 
high mutual complexity with the description some complex 
optimizers will generate a trace with values in reverse order 
of goodness and some complex learners will guess per- 
fectly. But with its dearth of structure, the description in- 
herently does not hide good values from optimizers and 
does not allow generalization from observed to unobserved 
values. 

7 Conclusion 
Elementary algorithmic information theory has facilitated 
reformulation of conservation of information [3] in terms 
of individual functions. The issue of the distribution of 
functions has been circumvented. The notion, previously 
rather nebulous [3], that a program could excel only by en- 
coding prior knowledge has been made concrete. The algo- 
rithmic information supplied by an optimization or learning 
program is roughly bounded by its own length, whether or 
not the explored function is highly random. 
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It has been shown that category learners with high accu- 
racy are extremely rare. In optimization, on the other hand, 
it has been shown that for the vast majority of functions 
there is no strategy better than to visit a large number of 
points as rapidly as possible. Indeed, such a strategy works 
extremely well, and the epithet of “just random search” has 
no basis in formal analysis. 
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