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Abstract: New data  structures are developed that represent 
static unlabeled trees and planar graphs. These structures are 
more space-efficient than conventional pointer-based representa- 
tions, but (to within a constant factor) they are just as time- 
efficient for traversal operations. For trees, the data  structures 
described here are asymptotically op t imal:  there is no other struc- 
ture that encodes n-node trees with fewer bits per node, as n 
grows without bound. For planar graphs (and for all graphs of 
bounded pagenumber), the data  structure described uses linear 
space: it is within a constant factor of the most succinct repre- 
sentation. 

1 Introduction 

Linked data  structures often use machine addresses (pointers) to 
represent the linking relation that exists between nodes. While 
this provides for rapid traversal, and is a great convenience when 
the structure is dynamic, it is sometimes wasteful of space. 

One reason for this lack of economy is the “fatness” of point- 
ers. For a pointer to  have the potential to  address n different 
locations, it must be at least [lg n1 bits wide. A structure with 
O ( n )  pointers will therefore occupy O ( n  log n) bits in memory. 
For some classes of linked structures, this is more bits than nec- 
essary to distinguish among members of the class, even with any 
constant fraction of waste. 

As an example of such a class, consider unlabeled binary trees. 
The number of n-node trees is A(:). The number of bits 
needed to differentiate the n-node trees is the logarithm of this 
quantity, which (by Stirling’s Approximation) is 2n + o ( n ) .  A 
pointer representation for binary trees would need O ( n  log n) 
bits, but O(n) bits suffice informationally. 

One need not look far to find a simple two-bit-per-node repre- 
sentation for binary trees. A simple recursive scheme will work: 

rep(T) = 0 r ep (1e f t - ch i ld  of T) 1 r ep ( r igh t - ch i ld  of T) 

The representation function rep exploits the one-to-one corre- 
spondence between binary trees of n nodes and balanced strings 
of 2n parentheses (with 0 and 1 representing open and close 
parenthesis, respectively). This scheme is a ~ y m p t ~ t i c a l l y  opti- 
mal, in the sense that  the ratio of the space actually used to  
the informational lower bound tends to one as n grows without 
bound. In other words, the fraction of wasted space vanishes. 

However, this scheme does not allow efficient tree-traversal. 
Locating the r i g h t - c h i l d  of a node requires a linear scan 
through the bits to  “balance parentheses,” taking O ( n )  time 

in the worst case. The common pointer representation for bi- 
nary trees is much faster, if less space-efficient. How can the 
time-efficiency of pointers be achieved in asymptotically optimal 
space? That  question is answered in this paper. 

1.1 Related work 

The efficiency of the representations presented here in both time 
and space distinguishes this work from that  of other authors who 
merely seek succinct encodings (R. C. Read [6] gives a good sum- 
mary of efficient tree-encodings, and Turbn [SI gives a linear-space 
encoding for planar graphs). 

TurAn’s encoding stores a planar graph of n nodes in 1271 
bits. His encoding uses linear space, but it does not allow ef- 
ficient searching. Kannan et al. [5] show how to represent pla- 
nar graphs implicitly, to  allow efficient adjacency testing. Their 
method makes use of the bounded arboricity of planar graphs. 
They decompose a planar graph into (at most) three edge-disjoint 
spanning trees (using a famous theorem of Nash-Williams), and 
then represent each tree separately. Although they still need 
O(n log n)  bits for the whole graph and they cannot search effi- 
ciently, the beauty of their data structure lies in its implicitness: 
the graph is fully described by the set of its node indices. 

1.2 

Let C, be a of static objects (with natural size parameter n ) ,  
and let S be a set of query operations that  examine a member of 
C,. An implementation is a way of mapping the elements of C,  
into a read-only memory, along with program for each operation 
in S .  

I use the following metrics (functions of the size parameter n )  
to  measure the performance of an implementation: 

space will be measured in bits. Simply count the 
maximum number of bits in the read-only memory. 

time will be measured in bit-accesses into the read- 
only memory. This is a cell-probe metric where cells 
can hold only a single bit. 

Metrics for space and time 

As a concrete example, let C,, be the class of n-node binary 
trees, with operation set 

S = { l e f t - c h i l d ,  r i g h t - c h i l d ,  n u l l )  

A pointer representation of C ,  has space-complexity O ( n  log n ) ,  
but has a time-complexity of O(logn), the number of bits in a 
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single pointer. The 0/1 parenthesis representation presented ear- 
lier has space complexity 2n, but the worst-case time complexity 
is O(n). 

1.3 Organization of this paper 

First, I will outline the design of data structure to  represent 
subsets of 1 . .  .n efficiently, supporting the operations rank and 
s e l e c t .  This will be used as a tool in the linked structures. 
The two unlabeled tree representation (binary and general) are 
presented, along with traversal algorithms. 

To implement planar graphs in linear space, another tool is 
needed. This tool, a linear-space parenthesis matcher, is then 
described. This is used to  construct a linear-space representation 
for k-page graphs that allows efficient traversal and adjacency 
testing. 

2 Ranking and selection 

Let C ,  be the class of subsets of 1 . .  . n. If the operation set S 
consists only of membership testing, it is trivial to build a data  
structure that  is simultaneously optimal in time and space; a 
simple bit-map will do. 

What if a richer set of operations is desired? Two very useful 
operations on a subset S of 1 . .  . n are: 

r ank(m)  Counts the number of elements in S less than 
or equal to m. 

s e l e c t ( m 1  Finds the mth smallest element in S 

These operations are inverses of each other, in the sense 
that  r a n k ( s e l e c t ( m 1 )  = m, for 1 5 m 5 IISII, and 
s e l e c t ( r a n k ( m ) )  = m, for m E S. Rank and select can, of 
course, be performed directly when a bit-map implementation is 
used, but that  would be very inefficient. In general, a linear scan 
through the bits is required to  rank and select, so the worst-case 
cast of these operations is O(n). 

One way to  add the operations of ranking and selection to a bit- 
map implementation of a set data type is to augment the bit-map 
with an auxiliary structure called a directory. This data  struc- 
ture will help make these additional operations efficient. This 
idea goes back to Elias [3], who used a similar structure to  prc- 
vide good average-case performance for ranking and selecting in 
multisets. 

The scheme used to implement directories for ranking and se- 
lection is too complicated to be included here. A detailed de- 
scription can be found in Jacobson [4]. It uses two-level tables of 
indices, similar t o  a data  structure described by Tarjan and Yao 
[7] for storing static sparse sets. The extra space required for my 
directories is o(n) bits (more precisely, O(n log log n/ log n), so 
the total space for the bit-map and the directory is asymptotic 
to n bits. The time complexity of rank and s e l e c t  operations 
is O(log n), measured in bit-accesses. 

3 Trees in asymptotically optimal space 

Now I describe a method, employing rank/select directories, that 
achieves the asymptotic optimum of two bits per node. 

First, consider binary trees. 

3.1 Level-order binary marked 

When a binary tree is very balanced, it can be represented im- 
plicitly by addresses i n  an array. The root is given the address 
1 .  A node whose address is m has a left child with address 2m 
and a right child with address 2m + 1. This scheme is an effi- 
cient way to  represent heaps (see Aho [l,  page 87]), since there 
is no need for explicit pointers. ‘Trees with imperfect balance can 
also be represented in this way by using these implicit addresses 
to  index an array of bits saying which nodes are present in the 
tree and which are not. This implicit-bit-map representation of 
binary trees is shown in figure 1. This representation makes 

binary tree 

bitmap 

Figure 1: A binary tree and its implicit bit-map 

traversal very cheap, but  it has an obvious drawback: unless the 
tree is extremely well balanced, the number of bits needed will 
be huge. If the deepest node is at depth d ,  the space occupied 
lies between 2d and Zd+’  - 1 bits. 

A modification of this idea can be used to  generate a more 
succinct representation of a binary tree as a string of bits as 
follows: 

1. Mark all the nodes of the tree with 1 bits 

2. Add external nodes to the tree, and mark them all with 0 
bits. 

3. Read o f f  the bits marking the nodes of the tree in (left-to- 
right) level-order. 

This construction, shown in figure 2,  makes it easy to see that the 
original tree can be reconstructed from the string of bits formed. 
Each such bit string is therefore associated with a unique tree. 

How many bits are there in these level-order mark bit strings? 
There are n 1 bits (the internal nodes) and n + 1 O’s, for a total 
of 2n 3- 1 bits. Traversing a tree represented in this way is easy, 
using the ranking tools developed earlier. 

Let an internal node m be represented by the index of where 
its 1 bit appeared in the level-order mark bit string. Consider 
the bit string as the bit-map of the set of indices of the (internal) 
nodes. Now build a ranking directory for this set. Each 1 bit on 
level d corresponds to a node with two children (some of which 
may be external nodes) on level d + 1, and these two children 
will correspond to two adjacent bits in the part of the string 
where the level d + 1 nodes appear. Also, left-to-right ordering 
is maintained from one level to  the next: If two nodes, a and b ,  
are on the same level, and a’s 1 bit is to the left of b’s, then the 
adjacent pair of bits corresponding to the children of a will occur 
before b’s pair in the string. 
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binary tree: 

ezternal nodes added: 

level-order bitmap (= = 1, 0 = 0): 

1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 0 ~ 1 ~ 0 ~ 0 ~ 1 [ 0 ~ 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0  

Figure 2: Level-order binary marked representation. 

This leads t o  a very simple algorithm to compute 
l e f t - c h i l d ( m )  and r i g h t - c h i l d ( m ) ,  for (internal) node m. 

Note the strong similarity to  the implicit addressing scheme dis- 
cussed earlier. The value of n u l l ( m )  is true exactly when the 
mth bit of the string is a 0, since this indicates an external node. 
The root node has index 1. 

The string itself occupies 2n + 1 bits, and the ranking direc- 
tory occupies o(n) bits, so the total space required is 2n + o(n). 
This is asymptotically optimal linear space. The tree-traversal 
operations do a single rank, so they require time O(logn) time, 
measured in bit-accesses. 

Keeping a selection directory allows efficient computation of 
pa ren t  (m) too. This is because 

p a r e n t ( m )  = se l ec t ( jm/21)  

Now, I turn my attention to unlabeled general rooted trees 
with ordered children. These are equinumerous with binary trees 
with the same number of nodes, so the optimal lower bound of 
2 bits per node applies here as well. I use both ranking and 
selection, together with another 2n bit string scheme (again based 
on level-order) to represent such trees. 

3.2 Level-order unary degree sequence 

A rooted, ordered tree can be represented by reporting its degree 
sequence in any of a number of standard orderings of the nodes. 
Consider the degree sequence of a tree, ordering the nodes in the 
left-to-right level order employed in the previous section. This 
sequence of n integers uniquely identifies the tree. Now encode 

these integers using a simple binary prefix code R (the “unary” 
code): 

R(0) = 0 

R ( k  > 0) = l . R ( k -  1) ( 1 )  

The integer d is represented by the string l d O .  Take the sequence 
of degrees encoded in binary and simply concatenate them to- 
gether to  form a bit string. Since the codes are prefix codes, the 
unique tree associated with a string is easily found. 

The number of 1 bits in this bit string is n. Every node except 
the root is a child of another node, so the number of 0 bits is 
n- 1. The total length of the string is thus 2n- 1 bits. Each node 
is associated with exactly one 0 bit and (except for the root) one 
1 bit. To maintain the “one 1 per node” property, add a fake 
super-root node to  the top of the tree, whose only child is the 
root. Now each node has a unique 1 bit associated with it,  and 
the string is only two bits longer. 

This bit-string scheme has much in common with the level- 
order marked binary scheme described in the previous section. 
A depiction of a tree and its level-order unary degree sequence is 
in figure 3. 

tree: with degrees: 
super-root -7 10 

i o  i o  

degrees concatenated in level-order: 

1 ~ 0 ( 1 ( 1 ( 1 ~ 0 ~ 1 ~ 1 ~ 0 ~ 0 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 ~ 0 ~ 0 ~ 0 ~ 0  

Figure 3: Level-order unary degree sequence representation. 

Represent a node m by the index of its corresponding 1 bit 
in the string, as in the previous section. Also, build ranking 
and selection directories for the bit-string and its bitwise com- 
plement. This will permit efficient selection of the mth element 
not present in the set (the mth 0 bit). Use the notation rank0 
and s e l e c t 0  to refer to the operations of ranking and selection 
in the complement of the bit-string. 

With this representation, n u l l ( m )  can be tested, as be- 
fore, by inspecting the mth bit of the bit-map. The operation 
nex t - s ib l ing (m)  is simply an increment of m. This representa- 
tion also allows access to  previous siblings, access to  children by 
number, and counting of children. The basic traversal operations 
are performed as follows: 

f i r s t - c h i l d ( m )  t se l ec tO( rank(m) )  + 1 
n e x t - s i b l i n g ( m )  t m + 1 
p a r e n t ( m )  + select(rankO(m1) 

4 Planar graphs in linear space 

Tur6n’s 12-bit-per-node representation shows that the space re- 
quired to store a planar graph is linear in the number of nodes. 
Kannan et al. (51 represent planar graphs by decomposing them 
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into three edge-disjoint spanning trees. I will now show how de- 
composing a planar graph into pages, rather than spanning trees, 
permits a linear-space representation with efficient traversal and 
adjacency testing. Heavy use will be made of ranking and selec- 
tion. I will also need one other tool: a parenthesis balancer. 

4.1 Parentheses balancing 

Given a static balanced string of n parentheses, I will build, in 
space linear in n, a directory that makes the following operation 
efficient: 

Find the position in the string of the close (open) paren- 
thesis that  matches the open (close) parenthesis in p+ 
sition p. 

Obviously it suffices to solve the restricted problem of finding 
close parentheses that match open ones, because we can build 
a backwards directory to find the open parentheses that match 
close ones. 

First, break the string of parentheses into blocks of length 
logn, and let these blocks be numbered starting with 1. A few 
simple definitions: 

Definit ion 1 A parenthesis p is  called a far parenthesis iff p’s 
matching parenthesis lies outside i t s  own block. 

Definit ion 2 A far  parenthesis i s  a pioneer iff i t s  matching 
parenthesis lies i n  a different block that that of the previous far  
parenthesis in the string. 

Keep the set of pioneer parentheses (as a bitmap) along with 
a ranking directory for that  set. Also, store a table of block 
nhmbers recording where the matches for the pioneer parenthesis 
lie. 

If p is not a far parenthesis, its match (call it q )  is easily located 
by linear local search with its own block. Otherwise, find out 
which block contains q as follows: compute the rank of p in the 
set of pioneer parentheses, and use the result as an index into the 
table of block numbers. To find where exactly in this block q is, 
it is necessary to keep another table on hand: the nesting depth 
of the start  every block. (This is just the tally of excess open over 
close parentheses in a prefix of the string.) The nesting depth of 
p itself can be computed by from the depth a t  the beginning of its 
block and the parentheses in that block before p (local search). 
This depth, together with the depth a t  the beginning the block 
b, where q lies, allows location of q by a linear scan through the 
parentheses in b,. 

This structure, pictured in figure 4, finds matching parentheses 
in O(1ogn) time. The table of nesting depths, the set (bitmap) 
of pioneer parenthesis, and its ranking directory add up to only 
2 n  + o(n)  extra bits. But what about the table of matching 
block numbers for the pioneer parentheses? If there were more 
than O(n/  log n) pioneers, this table could grow to be more than 
linear. Any individual block can contribute Ig n pointers into the 
table. The following theorem shows that the number of pioneers 
can never be too large: 

T h e o r e m  1 The number of pioneer parentheses in a balanced 
string divided into b blocks is  at  most  2b - 3 .  

Proof: Imagine a graph with a node for each block of the string. 
Lay these nodes out on the plane in a straight line in order of 

the blocks. Create an edge between two nodes if there is a far 
parenthesis in one that points into the other. The number of 
edges in such a graph is at least as great as the number of pioneers 
in the string, since every pioneer can be mapped to a different 
edge. But since this string of parentheses is balanced, none of 
the edges can cross, and the graph is outer-planar (that is, it can 
be embedded in the plane with all the vertices on a single face). 
Therefore the number of edges is at  most 2b - 3 ,  by a well-known 
property of outer-planar graphs. 0 

Since each pointer in the table is Ig n bits wide, this means the 
entire table is a t  most [ 2 ( n /  Ig n) - 31 . Ig n = 2 n  + o(n )  bits. 

4.2 Bounded pagenumber graphs 

Instead of describing how to represent planar graphs, I will show 
how to represent a larger class of graphs of which planar graphs 
are a subclass. This larger class is the class of bounded pagenum- 
ber graphs. These are the graphs that have k-page book embed- 
dings, where k is a parameter of the class. First, define the term 
book embedding, following Bernhart and Kainen [ 2 ] .  

A k-page book embedding of a graph G = (V, E )  is a printing 
order of V (a permutation specifying the ordering of the nodes 
along the spine of a book), plus a partition of E into k pages.  
The edges on a given page must not intersect, and all pages share 
the same printing order of the nodes. 

The pagenumber (or book-thickness) of a graph G is the mini- 
mum number of pages in any book embedding of G. Let 5 k  be 
the class of all graphs whose pagenumber is bounded by k .  Given 
a particular graph G E 5 k ,  and a k-page embedding of G,  I will 
show how to visit neighbors and test adjacency in G .  For G with 
n nodes, only O(log n) bit-inspections are performed per opera- 
tion, using a representation of G with total number of bits linear 
in n (for fixed k ) .  The number of bits used is actually O ( k n ) .  

For simplicity, I will first exhibit a linear-space representation 
of one-page graphs (these are exactly the outer-planar graphs) 
and then generalize. 

4.2.1 

The edges on a given page of the graph all lie to one side of 
the nodes (which are on the spine) and may not cross. When 
the “book” is drawn so that the spine is horizontal (as shown in 
figure 5), observe that the nesting structure of the edges is just 
that  of a balanced string of parentheses. Start with a shring 

One-page  g r a p h s  in l inear  space  

Figure 5: One-page graphs as balanced parentheses 

of n node symbols each, denoted by 0 .  For each edge (U,.) on 
the page, insert a ( just before the ( U  + 1)st node symbol and a 
) just after the vth node symbol. (Note that the parentheses i l l  

the string remains balanced after each such insertion.) The final 
result is a string over a 3 symbol alphabet, containing n nodc 
symbols and at  most 2 n  - 3 each open and close parenthesrs 
The parentheses between the mth and the m + 1st node syrrlbol 
correspond to the set of edges out of node m. Now, encode 
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nesting 
depths: 

parentheses: 

pioneer 
bitmap: 

block numbers o j  blocks 
containing matches of 
pioneer parentheses: 

I I 
t t ... ... 
c 

logn bits 

...................... 

(one entry per pioneer) 

n/  log n 2 b ... --J 

logn bit8 

Figure 4: A structure to balance parentheses. 

this 3-symbol string into a pair of strings of bits. First, record 
the sets of positions occupied by node symbols as a bit-map. 
Term this the node map. Next, delete the node symbols and 
record the remaining parenthesis string in binary. These two 
strings allow reconstruction of the original graph, and use a t  
most [n + 2(2n - 3)] + [2(2n - 3)] = 9n - 12 = O(n)  bits. 

These two bit strings are a t  the heart of the linear space rep- 
resentation of G.  Additionally, construct the following tools: 

A matcher for the parentheses string. 

A rank/select directory for the node-map and its comple- 
ment. 

These tools will require extra space, but the total storage used 
will still be O ( n ) .  

The natural numbering provided by the printing order are the 
indices of the nodes. Indices into the string of parentheses will 
serve as edge indices. 

4.2.2 Searching and adjacency testing 

With these structures, searching around in G is little more than 
matching parentheses. Each edge in G is associated with a pair of 
matching parentheses. To follow an edge, given the index of one 
of its associated parentheses, simply find the matching parenthe- 
sis. First, define two simple macros: node-to-edge converts a 
node number into the index of the first edge out of that  node, 
and edge-to-node takes an edge index into the parenthesis string 
and finds the number of the node containing that edge: 

node-to-edge(m) = rankO(select(m) + 1) 
edge-to-node(e) = rank(se lec tO(e1)  

e t node-to-edgecm) 
while edge-to-node(e) = m 

e‘ t paren-match(e) 
visit edge-to-node(e’)) 

1 e e e + l  

This algorithm performs only a constant number of rank, se- 
lect, and parenthesis matching operations between the nodes it 
produces. Therefore it uses only O(log n) bit-inspections per 
neighbor visited. 

Another useful operation is adjacency testing: is there an edge 
between node U and node v? This operation can also be per- 
formed using only O(log n)  bit-inspections; see Jacobson [4] for 
details. 

4.2.3 

In the previous section, I showed how to represent a one-page 
graph of n nodes in O(n)  bits allowing searching and adjacency 
testing in O(log n) time. The generalization to multi-page graphs 
is direct. If graph G is a k-page graph, represent each of its 
pages (these are one-page graphs) separately. To produce all 
the neighbors of a particular node m, go through each of the k 
pages in turn, using the above algorithm to visit neighbors on 
that page. To test two nodes for adjacency, simply resolve the 
question for each page. 

Therefore any G E 5 k  (the class of k-page graphs) can be rep- 
resented in O(kn) bits, allowing searching and adjacency test- 
ing in O(klog n) time. For a sub-class of graphs with bounded 
pagenumber, this becomes O ( n )  space and O(logn) time. Yan- 
nakakis [9] gives a linear-time algorithm that embeds any planar 
graph in four pages. Since I have shown the linear-space result 
for any class of graphs with bounded pagenumber, it follows for 
planar graphs as well. 

Graphs of more than one page 

The algorithm to visit neighbors of a node m is: 
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