
Order Number 8918056

Succinct static data structures

Jacobson, Guy Joseph, Ph.D.

Carnegie-Mellon University, 1988

U-M.-I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Succinct Static Data Structures

Guy Jacobson

January 1989

CMU-CS-89-112

Submitted to Carnegie Mellon University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

©1989 Guy Jacobson.

This research was sponsored in part by an Amoco Fellowship, and in part by the

National Science Foundation under contract number CCR-8352081.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computer Science Department

THESIS

SUCCINCT STATIC DATA STRUCTURES

Guy Joseph Jacobson

Submitted in Partia! Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

boos tassel Le Fat ober
/ MAJOR PROFESSOR DATE

Ober 30 fan ‘8Y
hh DEPARTMENT HEAD v 7 DATE

APPROVED: ~

AE Tne. : 3/pe! /€4
PROVOST DATE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Data compression is when you take a big chunk of data and crunch it down to fit iato a smaller

space. That data is put on ice; you have to un-crunch the compressed data to get at it. Data

optimézation, on the other hand, is when you take a chunk of data plus a collection of operations

you can perform on that data, and crunch it into a smaller space while retaining the ability to

perform the operations efficiently.

This thesis investigates the problem of data optimization for some fundamental statte data

types, concentrating on linked data structures such as trees. I chose to restrict my attention to

static data structures because they are easier to optimize since the optimization can be performed

off-line.

Data optimization comes in two different flavors: concrete and abstract. Concrete optimiza-

tion finds minimal representations within a given implementation of a data structure; abstract

optimization seeks implementations with guaranteed economy of space and time.

I consider the problem of concrete optimization of various pointer-based implementations of

trees and graphs. The only legitimate use of a pointer is as a reference, so we are free to map

the pieces of a linked structure into memory as we choose. The problem is to find a mapping that

maximizes overlap of the pieces, and hence minimizes the space they occupy.

I solve the problem of finding a minimal representation for general unordered trees where

pointers to children are stored in a block of consecutive locations. The algorithm presented is based

on weighted matching. I also present au analysis showing that the average number of cons-cells

required to store a binary tree of n nodes as a minimal binary DAG is asymptotic to n/(} lg n)?/ 2

Methods for representing trees of n nodes in O(n) bits that allow efficient tree-traversal are

presented. I develop tools for abstract optimization based on a succinct representation for ordered

sets that supports ranking and selection. These tools are put to use in a building an O(n)-bit data

structure that represents n-node planar graphs, allowing efficient traversal and adjacency-testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Succinct Static Data Structures

[Thesis Summary]

Guy Jacobson

Computer Science Department

Carnegie-Mellon University

Pittsburgh Pennsylvania 15213

Abstract

Data compression is when you take a big chunk of data and crunch it down to fit into a smaller space.
That data is put on ice; you have to un-crunch the compressed data to get at it. Data optimization, on the
other hand, is when you take a chunk of data plus a collection of operations you can perform on that data,
and crunch it into a smaller space while retaining the ability to perform the operations efficiently.

This thesis investigates the problem of data optimization for some fundamental static data types, con-
centrating on linked data structures such as trees. I chose to restrict my attention to static data structures
because they are easier to optimise since the optimisation can be performed off-line.

Data optimisation comes in two different flavors: concrete and abstract. Concrete optimization finds
minimal representations within a given implementation of a data structure; abstract optimization seeks
implementations with guaranteed economy of space and time.

I consider the problem of concrete optimisation of various pointer-based implementations of trees and
graphs. The only legitimate use of a pointer is as a reference, so we are free to map the pieces of a linked
structure into memory as we choose. The problem is to find a mapping that maximizes overlap of the pieces,
and hence minimises the space they occupy.

I solve the problem of finding a minimal representation for general unordered trees where pointers
to children are stored in a block of consecutive locations. The algorithm presented is based on weighted
matching. I also present an analysis showing that the average number of cons-cells required to store a binary
tree of n nodes as a minimal binary DAG is asymptotic to n/ (Flg n)/ 2,

Methods for representing trees of n nodes in O(n) bits that allow efficient tree-traversal are presented.
I develop tools for abstract optimization based on a succinct representation for ordered sets that supports
ranking and selection. These tools are put to use in a building an O(n)-bit data structure that represents
n-node planar graphs, allowing efficient traversal and adjacency-testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 What is data optimization?

Small is beautiful. It is good when a piece of data can be made smaller. It is a bad, however, when

this reduction in size is accompanied by a reduction in accessibility as well, but this is the usual

compromise made in classical data compression. Sometimes such a compromise is unacceptable.

The job of an optimizing compiler is to take a specification of operations to be performed on

data and produce a functionally equivalent specification that is somehow better than the original.

An equivalence between the original operations and the optimized operations is necessary; given

the same data, the two versions must behave identically. An optimizing compiler is absolutely

uncompromising in this regard.

I call transformations that make data smaller, while preserving important functionality, data

optimizations. A compiler must be adamant about its optimization, because the computer is

hard-wired for a certain set of operations. A fixed computer program that accesses a large static

' external data structure also assumes a particular concrete representation for the data it accesses.

The analogy of a program optimizer is a data optimizer, which reduces the size of external data

structures in a way that is transparent to the program.

My thesis systematically examines the problems of data optimization for some basic data types

and combinatorial objects. Special attention is devoted to the optimization of linked data structures,

since these data structures have been traditionally neglected in the study of data compression.

I place emphasis both on constructing and analyzing provably efficient algorithms and on the

practical issues of real-world implementation.

Data optimization is much easier when we can sit back and do it off-line. I have therefore re-

stricted my attention to static date structures. Extending the work I present to dynamic structures

(where possible} would be the subject of another thesis.

2 Concrete optimization

The transparent transformation that reduces the size of our data can only be possible if we know

how the program is going to access the data. Thinking of the data structure as a data type with a

particular set of query operations already implemented, we can change the data so that the program

does not see any difference. I call this type of transformation concrete data optimization, since the

program that accesses the data is considered wholely immutable: the low-level operations are have

concrete implementations. But because we know the specifications of these operations, we have the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

freedom to change the data, as long as we do it in such a way that the behavior of any program

that uses the operations does not change. Concrete optimization is most successful when there are

many equivalent (from the limited point of view of the program) patterns of bits in memory that

represent the same data object. We are then free to optimize by choosing a succinct pattern.

Problems of concrete optimization are optimization problems in the classical sense. We are given

a concrete representation scheme for our abstract data type, along with a collection of routines that

access the data in the given scheme. Our task is to devise an algorithm that accepts an object of the

given type and finds a succinct representation within the scheme. Ideally, we strive for an efficient

algorithm that finds minimal representations. Sometimes we have to settle for an algorithm that

finds close-to-minimal representations, or one that produces provably succinct representations in

the average case.

2.1 A concrete model of linked data structures

With linked data structures, there are many different, but equivalent, patterns of bits that represent

a particular object. Let’s adopt a simple but general model for this class of structures. Our linked

data structures consist of a collection of nodes. Each node occupies a contiguous block of memory.

The nodes do not necessarily have a fixed size or layout. The nodes contain one or more pointers

to other nodes, and they may contain other data as well. We are free to do as we please with

the other information within a node, but we may only move from node to node by dereferencing a

pointer. |

The pointers are simply absolute addresses in memory. The specifications of the abstract data

type do not permit arbitrary manipulations of these pointers; the operations may only dereference

them. Because the program is not allowed to use the numerical values of the pointers, the mapping

of the nodes of the linked structure to memory is up to us. The standard scheme for representing

a linked structure partitions memory so that each node of the structure occupies a distinct block.

The nodes do not overlap. But we are free choose a mapping of the nodes to memory locations

that does overlap, to minimize space. When our chosen mapping allows two nodes of our linked

data object to share the same memory locations, we save space.

3 Abstract optimization

The other type of data optimization allows the optimizer some control over the lowest level access

primitives of the abstract data type. Here, the abstract specifications of the operations are fixed,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but their implementation is up to the optimizer. I call this abstract data optimization.

When doing abstract optimization, we actually design the format of the data structure. (In

concrete optimization, this format is already fixed.) Additionally, we must implement the primitive

operations of the data type. It is naturally desirable that our implementation isn’t much slower

than an implementation that uses a natural, but less space-efficient, format.

This is the paradigm of abstract optimization:

e ‘We start with the specification for a static abstract data type C. (We will abuse notation

slightly and also use C to refer to the set of all objects of type C.) Typically, there will

be a natural implementation of C whose performance is satisfactory in execution time, but

wasteful of space.

e We choose a natural size parameter n, which partitions the class into subclasses C,,.

e Combinatorially, we determine the number of elements in C,, as a function of n. This com-

putation suggest a canonical implementation that simply maps each member of C,, into a

different integer from 1 to ||C,,||, represented in binary. While this implementation is optimal

in space, it does not support the desired operations efficiently in time.

e We devise a new representation for C, and implementations of the primitive operations, that

has the space-efficiency of the canonical implementation, and the time-efficiency of the natural

implementation. This is the real optimization step.

The quality of the optimization depends on how closely, in the last step, we are able to simulta-

neously approach the space- and time-efficiencies of the canonical and natural implementations. We

may allow ourselves a reduction in performance by a constant factor, especially in time-efficiency.

When it is not possible to be efficient in both time and spac> simultaneously, we can explore the

tradeoffs involved.

3.1 An abstract model of linked data structures

Linked data structures are linked because there are pointers that associate the nodes with each

other. In natural implementations (as in the concrete model proposed earlier) these pointers are

absolute addresses: integer indices into memory. The most natural size parameter is often the

number of nodes! n. A structure with n nodes will have at least O(n) pointers, and each pointer

Although some structures with more than O(1) pointers per node may be more naturally represented by the total
number of pointers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

needs to be able to address at least n different locations. To have this much addressing power, we

need to store about Ign bits per pointer. This means that the natural implementation will occupy

O(n logn) bits in memory. For many significant families of linked data structures, this is much

more space than the information-theoretic bound of lg ||C,,||.

Trees are a good example of such data structures. The number of unlabeled trees with n nodes is

bounded by k” (with k depending on the exact variety of tree we are talking about), so the number

of bits required to store a tree is only linear in the number of nodes in the tree. It seems like a great

waste to use O(n log n) bits when O(n) will do. In fact, there is a large literature on encoding trees
economically as strings of bits. But this literature devotes itself only to the encoding and decoding |

of trees to bits. No suggestion of performing the usual tree-traversal operations directly on these

efficient encodings is found therein. The design of efficient encodings for trees that allow speedy

traversal is a basic goal of abstract optimization for linked structures.

How can we overcome the logn bits-per-pointer barrier? For some types of linked structures,

we cannot. General graphs, for example, require O(m log n) bits (where m is the number of edges)

by a simple counting argument. But for others (like trees) this barrier can be overcome. Two

possible approaches are:

1. Take advantage of the special form of the data structures involved to reduce the space for the

pointers. Even if we need to address n different locations, we can use the classical techniques

of data compression (like entropy-coding) to reduce the total space. Remember that the total

space used is the quantity of interest: we can amortize a few expensive pointers if most of

them are cheap.

2. Do away with the need for pointers entirely. Use a radically different encoding that is both

space-efficient and traversable.

4 Related work

Make frequent utterances terse at the expense of making infrequent ones verbose: this is a basic

concept of classical data compression. Huffman coding, for example, takes a string of tokens

over a finite alphabet and produces a string of bits whose length is close to the entropy {in the

information-theoretic sense) contained in the tokens. As an abstract data optimization technique,

Huffman coding (and other related types of entropy coding) only efficiently support the feeble

operation of sequentially accessing the tokens starting from the beginning. Furthermore, entropy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coding techniques only apply when the number of tokens in the stream is much greater than the

number of distinct token values. When the natural units of data are chosen from a very large

alphabet and may not occur more than a few times in the entire data structure (as is the case with

linked data structures), these methods fail.

4.1 Concrete optimization

A well known example of concrete data optimization is the finite-state machine minimization algo-

tithm due to Huffman and Moore. A finite state machine is a kind of labeled graph, so finding an

equivalent machine with fewer states is a concrete data optimization of a linked data structure.

Often it is convenient to structure a large database hierarchically, as a tree. If the database is

static, and there are choices in the layout of the tree that affect the storage requirements, we can

perform a concrete optimization to save space.

A trie is a hierarchical data structure that allows relatively efficient lookup of records with

multiple keys. Nodes in the trie represent subsets of the records. The root represents the entire

set, and the leaves represent individual records. The sets represented by the children of a node n

form a partition of the set represented by n into equivalence classes under equality of a particular

key.

When all the records have the same set of keys, we are free to choose which key to use to

partition each node. The total size of the resulting trie will depend on these choices. A number of

authors have investigated the problem of minimizing the space required to store tries. Although

Comer and Sethi prove that the problem is NP. omplete, Comer exhibits a simple heuristic that

seems to performs well on average.

This shows another way of demonstrating the effectiveness of a particular concrete data opti-

mization. Even though an efficient algorithm to solve the optimization problem exactly could not

be found, Comer was able to get good results from his heuristic for plausible input distributions.

He also shows that there are classes of tries for which his heuristic does not perform well.

4.2 Abstract optimization

Work that is allied to abstract data compression falls into two broad categories:

1. Design of space-efficient data structures.

2. Enumeration/Encoding of combinatorial objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract data compression unites these two categories for abstract data types that are also

combinatorial objects. Because many data types differ only in their dynamic properties (for ex-

ample, a static stack, queue or list is merely a sequence), the useful static data structures are are

relatively few in number.

The data-structure Designers are concerned with being efficient in time as well as space, but

they generally do not account for the space they use very strictly. They usually count the space

used in words rather than bits. They do not strive to achieve the optimum space-efficiency derived

from information theory—-they merely seek to improve previous results.

On the other hand, the Encoders are acutely aware of the minimum number of bits required

to represent objects of a given size. But they do not consider how to operate efficiently on these

representations directly, without first converting them back into a natural representation.

Their succinct representations usually can be classified into three categories:

canonical This is the best we can hope for. This is a mapping from Cy into the integers

1...{|C,||. The resulting integer is then encoded as a lg ||C,||-bit binary num-

ber. This type of representation is always possible, the trick is to compute the

mapping and its inverse efficiently.

asymptotically .
optimal This is a little worse than canonical. This is a mapping from C, into a bit

string of length lg ||C,,|| - (1+ 0(1)). Some wasted space is allowed in this type

of representation, but as n grows, the fraction of waste must vanish.

linear This maps C,, into bit strings whose length is O(log ||C,,||). We may have to

settle grudgingly for this.

In abstract optimization, we will not insist on canonical representations, but we do value asymp-

totic optimality.

5 Cost metrics for abstract optimization

Suppose we have an abstract class C,, of static data objects, (for example, the set of trees with n

nodes) and a set of operations S (like car and cdr) that examine a data object but do not modify it.

Each member of C,, can be viewed as a collection of partial functions, one function corresponding

to each operation in S. The domain and range of these functions can be either predefined data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

types (like integer or boolean) or they can be indices. These indices are meant to be the abstract

analogues of pointers; they can only be used and returned by operations in S.

In simple tree example cited, we would have a domain node referring to nodes of the tree, and

the following abstract operations:

e a function of no arguments (a constant) root returning node.

e two functions, car and cdr, mapping node to node.

e a function null mapping node to boolean.

An implementation of an abstract class provides a mapping from elements of C,, intoa read-only

memory, and a program for each operation in S that references this memory. An implementation

also provides a mapping between elements of the index domains and smal! pieces of memory. All of

these mappings are strictly internal to the implementation, and cannot be referenced by a program

that makes use of the data type.

The abstract data types I study have natural implementations that use too much space. Op-

timization means making something better. A better implementation of these data types has the

same functionality as the natural implementation, but uses less space. The trick of abstract opti-

mization is to trim the fat in the data without slowing down the operations too much. How much

space has been saved? How much slower is the optimized implementation? To provide meaningful

answers to such questions, we need to have a model of computation that defines precise cost metrics

for space and time, and that is realistic about computers’ capabilities.

5.1 Space metrics

The (worst-case) space cost of an implementation is simply the maximum length of any of the

bit-strings representing an element in C,. This is a strictly log-cost accounting of space. Since

space-efficiency is the primary concern here, I cannot afford to be sloppy and measure space in

words, which hold an unspecified amount of information. It is always possible to make use of all

the bits in a computer word.

Bits are universal. While it is possible to buy a computer that does more work per unit time,

it is not possible to buy a computer that stores more per bit. In other words, the time required

for a given operation can only be bounded by a functional form, whereas the space required can be

bounded absolutely. It would be foolish to use any metric for space other than bits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Time metrics

The choice of metric for time is not so clear-cut. The unit-cost model of computation is a popular

accounting metric for time, and with good reason. This model usually has the most realistic

correspondence to observed running time. The pitfalls of the unit-cost model when numbers get

large are well known. Less obvious, but just as nasty, are the architecture-specific shortcomings of

this metric. The unit-cost model assumes some kind of word-size bit parallelism exists within the

circuits of a computer. When the logarithms of the numbers involved stay below the word size, it is

reasonable to expect to perform certain operations with this degree of parallelism. But the circuits

in any given computer are fixed, so we may be out of luck when we try to coerce a computer into

performing a particular word-size operation for which it is ill-suited.

Let’s look at a specific example of this phenomenon. Suppose a critical step of an algorithm

involves counting the number of 1 bits in a certain binary number. Let’s assume that the typical

number n we are dealing with is small enough to fit in a single computer word. How much time

should we account for this bit-counting operation? If we get to choose, we can use a CDC computer

with a bit-count instruction. It would seem reasonable then to aasess a cost of one to bit counting.

But many other computers lack an explicit bit-count instruction. Should we loop through testing

the bits of the number n, and charge Ign? Should we use a clever sequence of lglg n shifts, masks,

and additions to compute the bit-count of n? Or should we break each word into k chunks, keep

a table of size */n of precomputed bit-counts, and charge k (generally the most efficient scheme in

practice)? Further complications arise if our computer doesn’t have a multi-place shift instruction.

The best implementation of this operation, and hence its accounting, depends on the architecture

of our computer.

To avoid these processor-specific pitfalls, I restrict my attention to metrics based on bus trans-

actions between the processor and the static data. I will charge for, and only for, each reference

the processor makes to the data. The processor is allowed to perform arbitrary computations at

no cost with the data it has already has in hand. I am measuring I/O complexity.

By varying the bandwidth of the buses and the costs of transactions, we get different metrics.

Two that I especially like, and use extensively in the thesis are:

data-bits model We assume that the data bus from memory to the processor is only one bit

wide. We simply count the number of bit-accesses performed to get the time

cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

utde-bus model We assume that the data bus is lg N bits wide, where N is the size of the

memory. We can fetch lg N bits from consecutive memory locations at unit

cost.

In both models we assume that the address bus is sufficiently wide to address any bit contained

therein.

The data-bits model has simplicity as its main advantage. There is a strong analogy between

accounting time as bit-accesses here and accounting the time used by sorting algorithms in element

comparisons. If nothing else, our time metric gives a very reasonable lower bound on achievable.

asymptotic performance, as long as the bandwidth of the data bus is fixed. Two disadvantages of

this model are that it does not reflect the inherent word-size parallelism in the data buses of real

computers, and that it does not take account of the bounded bandwidth of the addrese bus.

The wide-bus model, on the other hand, is more realistic about the inherent parallelism in the

buses of computers. Still, there is something a bit disturbing about the size of the bus growing

along with the size of the data.

6 Thesis outline

I conclude this summary with a chapter-by-chapter outline of the results presented in the technical

chapters of the thesis.

Chapter 2: Treats concrete optiniization of trees and other linked data structures. Optimiza-

tion under various common implementations are considered. The major results

are:

e A polynomial-time algorithm, based on weighted matching, that finds a min-

imal representation of a general unordered tree when the pointers to children

are stored in a block of consecutive locations.

e An analysis showing that the average number of cons-cells required to store a

binary tree of n nodes as a minimal binary DAG is asymptotic to n/ (Zlg n)/ 2

Chapter 3: Presents a formal model for abstract optimization. An argument for a particular

choice of metrics for space and time is put forth.

Chapter 4: Discusses a class of recursive representations for trees in linear space. The logn

bits-per-pointer barrier is broken by a using a variable-length encoding for the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pointers and amortizing the space over the whole tree. An optimal representation

in this class is identified, and its efficiency is partially analyzed. The conclusion is

that no representation in this class could be asymptotically optimal.

Chapter 5: I develop a number of general tools for abstract optimization based on efficient

data structures for ordered sets and parenthesis balancing. The data structure for

ordered sets support the operations rank and select. Three applications of these

tools are presented:

1. Random-access Huffman coding: how to prepare an index that lets us find

the mth symbol in a file of n Huffman-coded symbols efficiently. The extra

space required for the index is o(n).

2. Trees in asymptotically optimal space: this addresses the same problem as

chapter 4, but obtains an optimal constant factor.

3. Planar graphs in linear space: how to store a planar graph on n nodes using

only O(n) bits. The operations of adjacency testing and searching (neighbor

enumeration) are efficiently supported.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First, let me thank the members of my committee. Merrick Furst, my advisor, stood up for me

long after most advisors would have given up. Danny Sleator helped steer my wayward brain back

on track when I steered from the true course. His guidance and his friendship are very valuable to

me. Thanks also go to Bob Sedgewick, my outside member, and to Rick Statman, who was there

when I needed him.

I thank my parents, who gently prodded me to finish, and all my friends here at Carnegie

Mellon, who made it so easy for me to stay.

But most of all, I thank my wonderful wife WenLing for her encouragement and her patience.

li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction

1.1 What is data optimization?0. 02. 2 eee eee ee ee eee ee ee

1.2 Concrete optimization ... 0... ee ee te te ee te eee es

1.3 Abstract optimization .. 2... 2. 1 ee ee ee ee es

1.4 Related work .. 20... cece ee ee ee ee ee ees

1.5 Thesis outline... . 2... ee ee ee ee ee ee

2 Concrete Optimized Trees

2.1 Ataxonomy of trees .. 2... 1 ee et tt te te te ee ee

2.2 Binary trees ascons-cells .. 1... 2... eee ee ete te ee ee eee

2.3 An average case analysis... 1... 2 ee ee ee tet te et te eee es

2.4 Binary trees as cdr-coded lists22 02 eee eee eee ee eee eee

2.5 General trees as binary trees ... 2... 2 ee eee eh et tt te tes |

2.6 Unordered trees as cdr-coded lists .. 2... 1. ee ee et te tt es

2.7 Implementation details. 2... 0... 1 ee te te ee eee

2.8 Matching ... 0... 2. eee eet eee ee ee ee

2.9 An application: English lexicon tree .. 2... 1... eee te et ee ees

2.10 Future work... 1. 1 ee ee ee ee te ee tes

3 Abstract Optimization

3.1 Space metrics... . 2... et ee ee ets

3.2 Time metric8 ... 2... ee ee ee we ee ee ee

3.3 Binary trees: anexample .. 2... 2... eee ee ee eee we ee ee ns

iii

11

12

13

14

25

26

28

32

36

37

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Abstract Optimized Trees 45

4.1 Introduction. .. 1... 2 ee ee ee ee wee es 45

4.2 Encoding trees in linear space... 1... ee ee te ee tt ee es 47

4.3 Lowering the constant factor 2... 1. 1 ce ee ee ee ee ee te es 52

4.4 Practical concerns 2. cee eee ee ee ew ee ee ees 63

4.5 Conclusions 0... ee ee ee te ee ee ee ee ee es 70

5 Techniques of abstract optimization 73

5.1 Ranking and selection ... 2... 0... ee ee ee ee ete ee ts 73

5.2 Random-access Huffman coding.-....0.22--2 2 eee eee eee rer eee 81

5.3 Trees in optimal linear space ... 2... 2. ee te te te et ee 82

5.4 Planar graphs in linear space .. 2... 2... 2. ee tt ee es 87

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

5.3

5.4

5.5

5.6

Splicing trees 2... oe ee ee te ee es 16

Graph of S, for lS n< 1000... 2. ee eee ee 18

Craph of Kym and Kj, forn = 1000,m<20....... 0.0.0 ee eee ees 21

Graph of Kam and K/,,, forn =1000,m>20....... 2... 00 ce eee eee 21

A straightforward translation of a tree into an array.--.50+222008:5 29

Reducing the space for tree storage. 000. e eee u eee scees 30

The space-minimization algorithm: an example...0 2.2.0 ete eeee 33

Two types of augmenting paths .. 6... 0... ee ee ee ee tt ete es 37

Balanced parentheses as trees... 0. 1. et et ee ee es 46

Recursive layout of a binary tree 2... 0... eee te ee ee et tt ee es 48

Left leaning tree 2... 1. ee ee ee ew ee es 49

Layout of a binary tree with Left-child-first? bits 50

Layout of an n-node binary tree with generalized Ry,-0000022 0 53

Construction bounding the lower limit of B,/n .. 1... 0. ee ee ee ee ee 58

Layout of a binary tree using child-empty? bits-2.2..00 2000s 66

Layout of a binary tree to allow upward traversal... 2... 2.0.2 0 eee ees 67

A two-level directory for set ranking... 2... 1... 1. ee ee ee ee et ns 76

A binary tree and its implicit bitmap.0.. 0.2.0 ce eee twee 83

Level-order binary marked representation.00 002 cee cue eevee 83

Level-order unary degree sequence representation.--+ 0.0000 e ee eee 86

A structure to balance parentheses .. 1... 00 ee tet tt te et tte ws 91

One-page graphs as balanced parentheses-...00 0. ee eee evuas 92

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 What is data optimization?

Small is beautiful. It is good when a piece of data can be made smaller. It is bad, however,

when this reduction in size is accompanied by a reduction in accessibility as well, but this is the

compromise made in classical data compression. Sometimes such a compromise is unacceptable.

The job of an optimizing compiler is to take a specification of operations to be performed on

data and produce a functionally equivalent specification that is somehow better than the original.

An equivalence between the original operations and the optimized operations is necessary; given

the same data, the two versions must behave identically. An optimizing compiler is absolutely

uncompromising in this regard.

I call transformations that make data smaller, while preserving important functionality, data

optimszations. A compiler must be adamant about its optimization, because the computer is hard-

wired for a certain set of operations. A fixed computer program that accesses a large static external

data structure also assumes a particular representation for the data it accesses. The analogue of a

program optimizer is a data optimizer, which reduces the size of external data structures in a way

that is transparent to the program.

My thesis systematically examines problems of data optimization for some basic data types and

combinatorial objects. Special attention is devoted to the optimization of linked data structures,

since these data structures have been traditionally neglected in the study of data compression.

I place emphasis both on constructing and analyzing provably efficient algorithrns and on the

practical issues of real-world implementation.

Data optimization is much easier when we can sit back and do it off-line. I have therefore re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stricted my attention to static data structures. Extending the work I present to dynamic structures

(where possible) would be the subject of another thesis.

1.2 Concrete optimization

The transparent transformation that reduces the size of our data can only be possible if we know

how the program is going to access the data. Thinking of the data structure as a data type with a

particular set of query operations already implemented, we can change the data so that the program

does not see any difference. I call this type of transformation concrete data optimization, since the

program that accesses the data is considered wholely immutable: the low-level operations are have

concrete implementations. But because we know how these operations are implemented, we have

the freedom to change the data, as long as we do it in such a way that the behavior of any program

that uses the operations does not change. Concrete optimization is most successful when there are

many equivalent (from the limited point of view of the program) patterns of bits in memory that

represent the sarne data object. We are then free to optimize by choosing a succinct pattern.

Problems of concrete optimization are optimization problems in the classical sense. We are given

a concrete representation scheme for our abstract data type, along with a collection of routines that

access the data in the given scheme. Our task is to devise an algorithm that accepts an object of the

given type and finds a succinct representation within the scheme. Ideally, we strive for an efficient

algorithm that finds minimal representations. Sometimes we have to settle for an algorithm that

finds close-to-minimal representations, or one that produces provably succinct representations in

the average case.

1.2.1 A concrete model of linked data structures

With linked data structures, there are many different, but equivalent, patterns of bits that represent

a particular object. Let’s adopt a simple but general model for this class of structures. Our linked

data structures consist of a collection of nodes, Each node occupies a contiguous block of memory.

The nodes do not necessarily have a fixed size or layout. The nodes contain one or more pointers

to other nodes, and they may contain other data as well. We are free to do as we please with

the other information within a node, but we may only move from node to node by dereferencing a

pointer.

The pointers are simply absolute addresses in memory. The specifications of the abstract data

type do not permit arbitrary manipulations of these pointers; the operations may only dereference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

them. Because the program is not allowed to use the numerical values of the pointers, the mapping

of the nodes of the linked structure to memory is up to us. The standard scheme for representing

a linked structure partitions memory so that each node of the structure occupies 3 distinct block.

The nodes do not overlap. But we are free choose a mapping of the nodes to memory locations

that does overlap, optimizing to minimize space. When our chosen mapping allows two nodes of

our linked data object to share the same memory locations, we save space.

1.3 Abstract optimization

The other type of data optimization allows the optimizer some control over the lowest level access

primitives of the abstract data type. Here, the abstract specifications of the operations are fixed,

but their implementation is up to the optimizer. I call this abstract data optimization.

When doing abstract optimization, we actually design the format of the data structure. (In

concrete optimization, this format is already fixed.) Additionally, we must implement the primitive

operations of the data type. It is naturally desirable that our new implementation isn’t much slower

than an implementation that uses a natural, but less space-efficient, format.

This is the paradigm of abstract optimization:

e We start with the specification for a static abstract data type C. (We will abuse notation

slightly and also use C’ to refer to the set of all objects of type C.) Typically, there will

be a natural implementation of C whose performance is satisfactory in execution time, but

wasteful of space.

e We choose a natural size parameter n, which partitions the class into subclasses Cy.

e Combinatorially, we determine the number of elements in C,, as a function of n. This com-

putation suggest a canonical implementation that simply maps each member of C, into a

different integer from 1 to ||C,||, represented in binary. While this implementation is optimal

in space, it does not support the desired operations efficiently in time.

e We devise a new representation for C, and implementations of the primitive operations, that

has the space-efficiency of the canonical implementation, and the time-efficiency of the natural

implementation. This is the real optimization step.

The quality of the optimization depends on how closely, in the last step, we are able to simulta-

neously approach the space- and time-efficiencies of the canonical and natural implementations. We

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may allow ourselves a reduction in performance by a constant factor, especially in time-efficiency.

When it is not possible to be efficient in both time and space simultaneously, we can explore the

tradeoffs involved.

1.3.1 An abstract model of linked data structures

Linked data structures are linked because there are pointers that associate the nodes with each

other. In natural implementations (as in the concrete model proposed earlier) these pointers are

absolute addresses: integer indices into memory. The most natural size parameter is often the

number of nodes! n. A structure with n nodes will have at least O(n) pointers, and each pointer

needs to be able to address at least n different locations. To have this much addressing power, we

need to store about Ign bits per pointer. This means that the natural implementation will occupy

O(n logn) bits in memory. For many significant families of linked data structures, this is much

more space than the information-theoretic bound of lg ||C,)||.

Trees are a good example of such data structures. The number of unlabeled trees with n nodes

is bounded by k” (with k depending on the exact variety of tree we are talking about), so the

number of bits required to store a tree is only linear in the number of nodes in the tree. It seems

like a great waste to use O(nlogn) bits when O(n) will do. In fact, there is a large literature on

encoding trees economically as strings of bits. (R. C. Read[41] provides a good review of these.)

But this literature devotes itself only to the encoding and decoding of trees to bits. No suggestion of

performing the usual tree-traversal operations directly on these efficient encodings is found therein.

The design of efficient encodings for trees that allow speedy traversal is a basic goal of abstract

optimization for linked structures.

How can we overcome the logn bits-per-pointer barrier? For some types of linked structures,

we cannot. General graphs, for example, can be shown to require O(mlogn) bits (where m is the

number of edges) by a simple counting argument. But for others (like trees) this barrier can be

overcome. Two possible approaches are:

1. Take advantage of the special form of the data structures involved to reduce the space for the

pointers. Even if we need to address n different locations, we can use the classical techniques

of data compression (like entropy-coding) to reduce the total space. Remember that the total

‘ Although some structures with more than O(1) pointers per node may be more naturally represented by the total

number of pointers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space used is the quantity of interest: we can afford a few expensive pointers if most of them

are cheap.

2. Do away with the need for pointers entirely. Use a radically different encoding that is both

space-efficient and traversable.

1.4 Related work

Make frequent utterances terse at the expense of making infrequent ones verbose: this is a basic

concept of classical data compression. Huffman coding, for example, takes a string of tokens

over a finite alphabet and produces a string of bits whose length is close to the entropy (in the

information-theoretic sense) contained in the tokens. As an abstract data optimization technique,

Huffman coding (and other related types of entropy coding) only support the feeble operation

of sequentially accessing the tokens starting from the beginning. Furthermore, entropy coding

techniques only apply when the number of tokens in the stream is much greater than the number

of distinct token values. When the natural units of data are chosen from a very large alphabet and

may not occur more than a few times in the entire data structure (as is the case with linked data

structures), these methods fail.

1.4.1 Examples from the literature

The term data optimization is my own, but researchers have sought useful space-efficient data

structures since the dawn of computers. Let me now review examples of previous work that is

related in subject or style to the work presented in this thesis. These examples are grouped by data

type.

Sets and sequences

The most fundmental data types are collections, ordered and unordered: sets and sequences. The

problem of abstract optimization of subsets of (0... N] with membership queries was first addressed

by Minsky and Papert[37, pages 215-225]. They give informal bounds on the time required to answer

membership queries with various amounts of available space. Elias(12], improves and tightens these

bounds. Later, Elias and Flower(14] investigate more complex retrieval problems with sets of natural

numbers. Yao[50] considers representations in which a set of cardinality n is maintained by a table

of n or n+ 1 values from [0...N]. He concludes that keeping a sorted table of set elements is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

asymptotically optimal when the table has n items, but becomes suboptimal when the table size

increases slightly.

Quite a few authors, including Fredman(17] and Tarjan and Yao[45}, have investigated perfect

hashing. This abstract optimization stores a sparse set with access times within a constant factor

of those for a straightforward representation (a bitmap), using only a little more space than is

informationally necessary. Recently, Fiat et al.[16] investigated how non-oblivious hashing, where

unsuccessful probes determine future probing strategy. This technique can store sparse sets with n

members using only n+O(logn) memory locations, and still support O(1) worst-case lookup times.

These hashing schemes account for the space they use in memory locations rather than bits, and

assume that a memory location is large enough to hold any member of the eet. Of course, hashing is

not an efficient technique when our sets are not sparse. If we are interested in membership queries

only, very dense sets can be stored efficiently as a bitmap.

Linked structures: concrete optimization

A well known example of concrete data optimization is the finite-state machine minimization al-

gorithm due to Huffman(24] and Moore[38]. A finite state machine is a kind of labeled graph, so

finding an equivalent machine with fewer states is a concrete data optimization of a linked data

structure.

Often it is convenient to structure a large database hierarchically, as a tree. If the database is

static, and there are choices in the layout of the tree that affect the storage requirements, we can

perform a concrete optimization to save space. |

A trte can be viewed as a hierarchical data structure that allows efficient lookup of records with

multiple keys. Nodes in the trie represent subsets of the records. The root represents the entire

set, and the leaves represent individual records. The sets represented by the children of a node n

form a partition of the set represented by n into equivalence classes under equality of a particular

key.

When all the records have the same set of keys, we are free to choose which key to use to

partition each node. The total size of the resulting trie will depend on these choices. A number of

authors have investigated the problem of minimizing the space required to store tries. Although

Comer and Sethi[8] prove that the problem is NP-Complete, Comer(7] exhibits a simple heuristic

that seems to performs well on average.

This shows another way of demonstrating the effectiveness of a particular concrete data opti-

wee : cone me ee ae een ee ee ee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mization. Even though an efficient algorithm to solve the optimization problem exactly could not

be found, Comer was able to get good results from his heuristic for plausible input distributions.

He also shows that there are classes of tries for which his heuristic does not perform well.

Comer’s analysis of the on-average performance of his heuristic is based on simulation. It would

have been better if he made a precise mathematical statement of why his heuristic was good.

Linked structures: abstract optimization

Although linked structures are not usually designed for space efficiency (and are less commonly

used for static data), a number of authors have studied ways to reduce the space to store them.

Work that is allied to abstract data compression falls into two broad categories:

1. Design of space-efficient data structures.

2. Enumeration/Encoding of combinatorial objects.

Abstract data compression unites these two categories for abstract data types that are also

combinatorial objects. Because many data types differ only in their dynamic properties (for ex-

ample, a static stack, queue or list is merely a sequence), the useful static data structures are are

relatively few in number.

The data-structure Designers are concerned with being efficient in time as well as space, but

they generally do not account for the space they use very strictly. They usually count the space

used in words rather than bits. They do not strive to achieve the optimum space-efficiency derived

from information theory—they merely seek to improve previous results.

On the other hand, the Encoders are acutely aware of the minimum number of bits required

to represent objects of a given size. But they usually do not consider how to operate efficiently on

these representations directly, without first converting them back into a natural representation.

A good example of a linked data structure designed to be space-efficient is the the compressed

trie of Maly(35}. His tries are multiway trees with constant branching degree m at the internal

nodes. Instead of storing m pointers at each internal node as is common, Maly stores only m bits,

plus about one pointer’s worth of extra space. This achieves significant compression of the trie with

only a small penalty in execution time. The space required to store a trie of n nodes is reduced

from O(nm log n) bits down to O(n - (m+ logn)).

Chazelle(6] designed an efficient data structure to store a static range tree. A range tree is

itself a data structure that represents a permutation II of 1...n in a way that facilitates answering

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queries about the size of the set {II(z) < 6 | z < t} as a function of the two parameters s and

t (this is useful in range counting). Previous implementations of range trees required O(n log n)

words of space to achieve polylog query times; Chazelle’s implementation requires only O(n) words.

Of course, since there are O(n log n) bits of information in a permutation on n elements, each word

must hold O(log) bits. Although he worries about packing bits into words and simulating bit

operations in weak machine models (and I don’t), Chazelle’s work is very similar in spirit to the

work presented in this thesis.

There is a large body of literature on the succinct encoding of linked data structures, particularly

trees, A good summary of this literature can be found in Read[41]. The tree encoders have different

goals, but they all deal with trees as atomic data objects. That is, their encodings do not reflect

the internal structure of the tree, and do not support operations within the tree. Once a tree is

encoded, a question such as “Where is node z?” may have no satisfactory answer. Even if we can

find an answer for that question, a question like “Where are the children of z?” cannot be answered

efficiently.

For other linked structures, the literature is considerably more sparse. Turan found a way to

encode planar graphs of n nodes in 12n bits. His encoding does not allow any useful internal

operations, such as moving from one node to adjacent nodes, or testing adjacency.

Other structures

Finite groups are very basic combinatorial objects. Jerrum(26] found a representation for per-

mutation groups on n elements needing only O(n?) space. His scheme, which supports efficient

membership testing, is an an improvement over the previously known O(n*) representation of

Furst et ai{18]. This reduction in space is an abstract optimization.

Another example of a very practical abstract data optimization is S.C. Johnson’s[34] scheme for

storing a sparse two-dimensional table used to store the transition tables in the LEX lexical analyzer

generator. This scheme allows storage of the table in (almost) as little space as other sparse-array

schemes, while allowing direct access times close to those for full two-dimensional arrays.

Boolean functions, represented as circuits, are important in the design and simulation of com-

puter hardware. Often these circuits have a concise hierarchical description, even when they contain

a great many gates. Appel[4] showed how to use a static hierarchical description, along with a single

dynamic bit for each wire, to simulate a circuit efficiently. Previous simulators had required one or

more pointers (with a logarithmic number of bits each) in their representation of the circuit. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n-gate circuits with small hierarchical descriptions of size m, Appel’s scheme optimizes the storage

required from nlogn bits down to m, without incurring a penalty in simulation time.

1.5 Thesis outline

Let me conclude this introduction with a chapter-by-chapter outline of the results presented in the

technical chapters of the thesis.

Chapter 2: Treats concrete optimization of trees and other linked data structures. Optimiza-

tion under various common implementations are considered. The major results

are:

e An analysis showing that the average number of cons-cells required to store a

binary tree of n nodes as a minimal binary DAG is asymptotic to n/(¥ lg n)/ 2,

e A polynomial-time algorithm, base on weighted matching, that finds a min-

imal representation of a general unordered tree when the pointers to children

are stored in a block of consecutive locations.

Chapter 3: Presents a formal model for abstract optimization. An argument for a particular

choice of metrics for space and time is put forth.

Chapter 4: Discusses a class of recursive representations for trees in linear space. The logn

bits-per-pointer barrier is broken by a using a variable-length encoding for the

pointers. An optimal representation in this class is identified, and its efficiency is

partially analyzed. The conclusion is that no representation in this class could be

asymptotically optimal.

Chapter 5: I develop a number of general tools for abstract optimization based on efficient

data structures for ordered sets and parenthesis balancing. The data structure for

ordered sets support the operations rank and select. Three applications of these

tools are presented:

1. Random-access Huffman coding: how to prepare an index that lets us find

the mth symbol in a file of n Huffman-coded symbols efficiently. The extra

space required for the index is o{n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Trees in asymptotically optimal space: this addresses the same problem as

chapter 4, but obtains an optimal constant factor.

3. Planar graphs in linear space: how to store 2 planar graph of n nodes using

only O(n) bits. The operations of adjacency testing and searching (neighbor

enumeration) are efficiently supported.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Concrete Optimized Trees

This chapter explores the possibility of saving space in pointer-based implementations of static

trees. Every implementation of a class of static trees has an associated optimization problem:

given a static tree t, find the shortest sequence of words in memory that represents t. For some

implementations of trees, the optimization problem is easy. For others it is provably intractable.

For yet others the problem is of intermediate difficulty: an efficient optimization algorithm exists,

but it is not obvious. In this chapter such problems are examined and classified.

The trees discussed in this chapter are very simple. They are unlabeled, with no extra infor-

mation stored in the nodes. The only operations we implement are:

@ an operation to move from a node to its children (and to iterate through the children in the

case of general trees)

e an operation to test if a node is nil, a special] value indicating that we are no longer in the

tree. |

Binary trees are considered first. A simple minimization algorithm for binary trees stored as

cons-cells is presented, followed by an average case analysis of the space saved thereby. General

trees, both ordered and unordered, are then considered. The major result is an algorithm to find

a minimal representation for unordered trees where pointers to children are stored in consecutive

memory locations. Finally, a practical application of concrete optimization is given: a compact

representation of a lexicon of English words, structured as a tree.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 A taxonomy of trees

Trees are important in combinatorics, where they are graphs of a simple type, and in computer

science, where they are the most natural structures for representing hierarchical data. They come

in many combinatorial varieties, and each variety has several common implementations.

The most basic definition of a tree is an acyclic, connected graph. We call this a free tree. If

we choose one of the nodes to be the root, then we call the tree oriented or equivalently rooted.

The term oriented is used because the choice of root induces a natural orientation on the edges of

the tree. Sometime we consider all the edges to be oriented toward the root, but more often we

consider them to be oriented away from the root. This kind of tree models hierarchical data. We

will deal only with oriented trees in this chapter, because the common representations of free trees

model them as oriented trees with a root chosen arbitrarily.

Another dichotomy in the family of trees arises from the labeling of the nodes in the tree. The

nodes in the tree may be unlabeled; in this case they are intrinsically fungible. Or there may be

some information stored at each node. Perhaps this information is just sufficient to distinguish

or label every node. The optimizations described in this chapter become less useful as the nodes

become more fundamentally distinct (although they will still work). We will ignore the information

stored in the nodes of the tree, and treat all trees as unlabeled.

Within the class of unlabeled oriented trees there is another important distinguishing feature:

the relationship of the children to each other. If the children form an unordered set, then we say

that the tree is unordered. If they form a sequence, we say that the tree is ordered. Another

possibility is that the children are labeled with distinct elements of a k-element set. These are the

k-ary trees. The most important subcase is k = 2, the binary trees.

To summarize, this chapter will deal with static, oriented, unlabeled trees in three principle

varieties:

1. binary trees

2. ordered trees of general degree

3. unordered trees of general degree

For each variety, a number of common implementations will be discussed.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Binary trees as cons-cells

Let’s begin with binary trees in their most common implementation, as cons-cells. For each node

in the tree, we reserve a record in memory big enough to hold two pointer fields. For historical

reasons, we will call these records cons-cells, with the two pointer fields called car and cdr. The

cdr holds a pointer to the cell reserved for the left son (or a special value nil if there is no left

son), and the car holds a pointer to the right son. This is all very simple, and navigating among

the cons-cells is just a matter of dereferencing pointers.

The usual way to lay out a binary tree T as a collection of cons-cells is to reserve a cell for

each node of the tree. But if two subtrees within T are isomorphic, we can save space by using the

game collection of cells for both subtrees, since we are not allowed to perform such operations as

testing two nodes for equality. If we share space wherever possible, we will find a minimal cons-cell

representation of a binary tree. This leads to an obvious algorithm:

1. Find all isomorphic subtrees within T..

2. Allocate a cons-cell for each isomorphism class.

3. Assign values to the pointers.

Steps 2 and 3 are straightforward. Step 1 is easy to do inefficiently by linear search, comparing each

subtree with each other subtree. We can make use of a simple dictionary and a postorder tree-walk

to make this step fast. We will assign each node ¢ an integer label, giving the isomorphism class of

the subtree rooted at t. Our dictionary D is a two-dimensional array, initially all zeroes.

label (t: node): integer
ift= nil

return 0
{+- label(left child of t)
jg label(right child of t)
ve Di
ifv=0

Dy 2

zre—2zt+l
return D;,;

zl
label (root)

Algorithm LABEL: find and label isomorphic subtrees

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

st eo en ee

The integer variable z holds the number of the next label to be assigned. Nil nodes get label

0. Using a real two-dimensional array for D would require O(n”) space, although the execution

time is only O(n). Since D sparse, we can implement it as a balanced tree (with a logn slowdown

in speed) or as a hash table (and accept expected linear time rather than worst-case linear time)

using only O(n) space.

2.3 An average case analysis

How much space can we save by using the algorithm presented above? One answer is simply “as

much as possible,” since we are find a minimum representation. In those trees where there is a

great deal of shared structure, the savings is large; but in those with little or no sharing, there is no

savings. To get an idea of how much savings we will realize a priori, we need to choose an expected

distribution of trees. Then we can compute the on-average savings.

This section presents an average-case analysis of the compression factor achieved by merging

isomorphic subtrees after choosing an n-node binary tree from a uniform distribution. We show

that this expected compression factor grows without bound as the number of nodes increases; in

other words, the expected number of cells needed to store an n-node binary tree in this fashion is

o(n).

How many cons cells are needed, on the average, to store a tree of n nodes? The answer, as we

have previously observed, depends on the amount of shared structure within the particular tree.

We have the following obvious lemma:

Lemma 2.1 The mintmum number of cons celle needed to store a binary tree T ts equal to the

number of non-isomorphic subtrees of T.

This follows directly from step 2 of the minimization algorithm.

Let T,, be the set of all n-node binary trees. The direct way to obtain the average number of

cells S,, used to store a member of T,, is to evaluate the following sum and quotient:

Sn >> \|{s | ¢ contains s as a subtree}|| (2.1)
_ 1

{Tall tT,

Noting that a given subtree s can occur at most once per tree, we use the technique of inverting

the summation:

1

{|Tnll
> > Ite 7% | ¢ contains « as a subtree}|| (2.2)
m=1 «Tn

Sp =

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The motivation for this inversion will become clear shortly. Summations over trees are hard to deal

with, so let us try to replace the inner sum of equation 2.2 with a more tractable one. Another

lemma will prove useful:

Lemma 2.2 If 8, and 82 are both m-node binary trees, then the number of n-node trees containing

8, a8 a subtree is the same as the number of n-node trees containing 82 as a subtree.

Proof. Consider the mapping M,,.-s, : Tr ‘> Tn that takes an n-node tree ¢ and replaces all

subtrees of ¢ isomorphic to 8; by copies of 2, and all subtrees of ¢ isomorphic to 82 by copies of 1.

Because 8; and 82 both have m nodes, neither can be a proper subset of the other, and so M,,..,,

must be a bijection. Since M,,..., maps trees in 7,, containing 8; to trees containing s2 and vice

versa, the trees containing copies of 8; must be equinumerous with those containing 42.

This lemma shows that the number of n-node trees containing a particular m-node tree depends

only on m, and not on the shape of the particular m-node tree. We can count the total for all

m-node trees by computing the number for any particular m-node tree, and multiplying by the

total number of m-node trees.

The number of n-node binary trees is C,, the nth Catalan number:

2n I

on= (7) 4 (2.3)

Using lemma 2.2, we can write equation 2.2 like this:

Sz = — >. Cm: |\{t € Tr | ¢ contains a particular m-node subtree}|| (2.4)
" 1Smén

We must find the size of the set in this sum. Let us give it a name:

Anm = ||{t € Ta | ¢ contains a particular m-node subtree}|| (2.5)

2.3.1 <A generating function for Ann

It is easy to get @ generating function for the first index of Anm. Let us start by counting the

number of trees Bam that do not contain a particular m-node subtree. Clearly Bam = Cy — Anm.

Define b,,(z) to be the generating function of Bam over ni:

bn(z) = > Bam > 2” (2.6)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observe that the values of B,, obey the Catalan recurrence, for most values of n:

n—-l

Bam = > Bim> Bn-1-im, forn#m (2.7)
s=0

but when n = m, exactly one tree is excluded:

m-1

Bam = > Bin> B m—1—i,m ~ 1 (2.8)
s=0

From this pair of equations, we see that b,{z) satisfies:

zb?,,(z) = bn(z) + 2™ — 1 (2.9)

Using the quadratic formula (and observing that 5,,(0) = 1 for m > 0 to discard the spurious root)

we obtain:

ba(z) = s(t ~V1— 42+ 42™t1) (2.10)

A combinatorial solution

We could simply expand equation 2.10 directly and subtract from the Catalan numbers to get an

expression for Anm. An equivalent, but more direct method to obtain such an expression is to use

the principle of inclusion-exclusion.

Crudely, we may estimate the number of n-node trees containing a particular m-node tree by

observing that such trees consist of any (n — m)-node tree, with our desired m-node tree spliced in

at one of its external nodes, as shown in figure 2.1. Since the (n — m)-node tree has n —-m+1

n-m
fa: TaN

n— m +1

external nodes

Figure 2.1: Splicing trees

external nodes, this shows that

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This approximation over-counts those n-node trees in which our desired m-node subtree occurs

more than once. In any case, note that that (n — m+ 1)Cp—m is an upper bound on Any; we will

make use of this later.

To refine our approximation, we can subtract off the number of trees in which the desired m-node

subtree occurs at least twice. We can form such trees by starting with an arbitrary (n — 2m)-node

tree, and splicing in two copies of the m-node subtree at two of the n — 2m + 1 external nodes.

Subtracting, we get:

Ann % (n — m+ 1)Ca-m — (" ~ +) Cn-2m (2.12)

This new approximation now under-counts those trees with three or more copies of the m-node

subtree. Therefore, this quantity must be a lower bound on Anm.

We can continue in this way, alternately adding and subtracting terms, to get an exact form for

Anm. Let R,; be the set of all n-node trees ¢ such that the jth node of t (numbering the nodes in

any predetermined order) is the root of the particular m-node subtree we seek. Let I; denote the

sum of the sizes of all j-tuple intersections of the R,;’s. Then by inclusion-exclusion,

[n/m} ;
Anm=), (-1)*11; (2.13)

1

The upper bound of this sum is simply the maximum number of copies of the m-node subtree that

could possibly fit into an n-node tree. The argument in the preceding paragraph demonstrates that

I= (" 7 . uv ; Cn-jm (2.14)

and so Ln/m|
ajm °

. —jm+l1 Anm = > (-1)9+2 (" ‘ Jonni (2.15)

j=1

We can now combine this sum with equation 2.4 to get an expression for the average space

needed to store a tree of n-nodes:

nm [n/m J .
Sr= = > > (-1)**? (" 7 i vi * Canim On (2.16)

%m=1 j=1

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8.2 Asymptotic space requirements

Getting an exact closed form for the double sum in equation 2.16 seems to be hard. It is almost

as enlightening (and more feasible) to study the asymptotic behavior of this sum as n grows large.

To get a feel for the behavior of S,, a graph for 1 < n < 1000 is included in figure 2.2. (It is hard

to calculate exact values for large n, since very large binomial coefficients are involved.) What can

we conclude from this graph? Not too much. In the region shown, it looks a bit like a line with

slope 1/2, but it would be hasty to make an asymptotic judgement. We will make good use of a

500 -

Av
er
ag
e

nu
mb

er

of
 c

el
ls
 u

se
d

Oo a | 5 | L 9 E I l J

0 100 200 300 400 500 600 700 800 900 1000

Number of nodes

Figure 2.2: Graph of S, for 1 < n < 1000

graphical insight a little later on.

To gain a better understanding of Sj, let’s break down the outer sum of equation 2.16. Say

that the size of a node n in a tree is number of nodes in the subtree rooted at n. The outer sum

of equation 2.16 totals up the number of cells used by nodes of various sizes from 1 (the leaves) to

n (the root). Let us rearrange that equation slightly:

Sa —_ > —_* Ann (2.17)

m=1 Ca

Term the summed quantity Kym = (Cm/Cn)+Anm. This quantity counts the expected number

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of cells used to store those nodes of size m. Since many nodes have small sizes, Kn, will be relatively

large when m is small. But since there are a fixed number of different trees with m nodes, and

each can cost us only one cel] no matter how many times it occurs, Knm must ultimately decrease

again as m get very small.

Consider the following two inequalities on Anm:

Anm < Cn (2.18)

Anm <& (n-—m+ 1)Ca—-m

The first inequality expresses the fact that the number of n-node trees containing a particular

m-node subtree tree cannot exceed the total number of n-node trees. The secoi.d one we recognize

from equation 2.12. Let us now proceed to identify the range of values for m where each inequality

is dominant, and disaect the sum of equation 2.17 in the style of Knuth and Green(30, page 48}.

The formula for the Catalan numbers given in equation 2.3, together with Stirling’s approxi-

mation, yields the following:
= —4n,-3/2 n-6/2 na agin $/2 4. O(4) (2.19)

The “crossover point” of Anm where the second inequality begins to dominate the first in the

minimum occurs where Cp = (n— m+1)Cp-m. By the approximation in equation 2.19 this comes

about when

1 an -3/2 _ _ 1 jn-m _— m)\73/2 =4'n = (n m+1)74 (n — m)

4™ = (n—m+1)(n- myn $/2 (2.20)
1 1

m= Sign + 21g (1+ — =| + fis (1+

z This shows that when n is large, the crossover comes just past m = 5 1 ign. For concreteness, call

p= [}1e n| this crossover point. Let us give names to the regions on both sides of p. Call the

domain of m < p the saturated regime. For values of m in the saturated regime, almost all of the

Cm different m-node trees are likely to occur as a subtree of an average n-node tree. The domain

of m > pis the unique regime. In this regime, each m-node subtree of an average n-node tree is

unlikely to be found elsewhere in the tree; the sharing of structure here is small.

The two inequalities on Anm lead directly to the following inequalities on Knm, obtained by

multiplying through by Cm/C)::

Knm S Cm (2.21)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kum < (n-—m+}1) Cn—mOm
Ca

So we can bound Kny, by a function Kj, defined as follows:

1 —_J) Om m<p
Kam — { (n —-m+ 1)Cr—m m > p (2.22)

We will soon show that Kj, is not too much bigger than Knm for most values of m. The quality

of the approximation of Knm by K/,,, can be seen in figures 2.3 and 2.4, showing the breakdown

of space used in trees of 1000 nodes by node size. Note the very sharp transition in both K/,,, and

Kam around m = p. In figure 2.4, the difference between the two values is unobservably small.

The value of S,, is equal to the sum of the Knm over m; graphically, this means that S,, is the area

under the curves shown.

The saturated regime

Let us first get a bound on the total space required in the saturated regime.

Using Ki, a8 our upper bound, we get

p-1 p-1

dX Cm < Do CmCp-1-m
m=1 m=1

< &

Remembering that p = [} Ig n| and employing the approximation for C,, from equation 2.19, we

can see that the total average space used by nodes in the saturated regime is O(n log—*/? n).

The unique regime

The graphs of figures 2.4 and 2.3 suggest that the bulk of the space used is in the lower part of the

unique regime. We will determine the space used by the following steps:

1. Approximate Kym by Ki...

2. Find a closed form for the sum of K‘,, in this regime.

3. Approximate the sum using Stirling’s approximation.

4. Bound the difference between Kym, and Ki...

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ ——= K'nm
Knm

Av
er
ag
e

nu
mb
er

of
 c

el
ls

us

ed

8 3 T

a

Oo 2 4 6 8 10 12 14 16 18 20

Size of subtree

© 8

Figure 2.3: Graph of Knm and Kj,, for n = 1000,m < 20

5.00

4.00}

3.00 }-

2.00 |-

Av
er
ag
e

nu
mb
er

of
 c

el
ls

us

ed

1.00 ma

0 100 200 300 400 500 600 700 800 900 1000

Size of subtree

Figure 2.4: Graph of Kym and Kj,,, for n = 1000,m > 20

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first step is to replace the sum })f,..p Kam by Lim=p Knm- Looking at the graphs, we would

guess that this isn’t too bad an approximation; later we shall make this rigorous.

While Knm is difficult to sum, Kj,,, is simple. We have:

nh

do Eh
m=p

1 n

ora(t) Ean (2)(2)
(") (ole - p) +1] (??) (?e- > .

[2(n — p) +1] (") (77) ~ (2.23)

by a variety of combinatorial identities. Notice that this formula gives the expected number of

cells needed to store those nodes of size p or greater in a tree of n nodes when we do not merge

isomorphic subtrees. We can check this by plugging p = 1 into equation 2.23:

[2(n - 1) +1] (7) (7) _ n

As expected, we learn that n cells are required to store trees of n nodes in the normal way.

Now, applying Stirling’s approximation in the range where p < n to equation 2.23

2(n — p)+1 n* (2n “2, “1/2 4 O(np-3/? 2.24 [2(P)+1]\ 2p vane (np-*/?) (2.24)

We can now plug in p= [$ign], to get

= 8
> Kin = V —nlg-*/? n + O(n log—5/? n) (2.25)
m=p *

This confirms our suspicion that the bulk of the space is used here.

So far we have shown that S, = O(n log~*/ 2 n). To find a good lower bound for Sz, it remains

to bound K!,, — Knm in the unique regime.

As mentioned earlier, the approximation in equation 2.12 is also an inequality:

-—2 1
Anm > (n —m-+ 1)Ca—m - (" i + Jon-tm . (2.26)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multiplying by Cm/Cn, and admitting m > p, we get

n—2m+1
Kum > Khim — (2 Canim Cm/ Cn (2.27)

So (7-241) Ch_-amCm/ C,, is a bound on K!, — Knm. We would like to show that the sum of this

quantity in the unique regime is not too large. We wil! call this quantity Dam. First, let us observe

that Dam is a decreasing function of m. To see how quickly it gets small, consider the term ratio

Dam/ Dam+1:

Dam (n-2™ +) Cn-amCm

Daym+1 (7-3-1) Ch _am-2Om+1
2n+4 2%n—2m)—1 2(n—2m)—3
2m+1 n—-2m-1 n—-2m—-2 R a A pan mn y

>1 >2 >2
> 4

(2.28)

The values of Dam get smaller from term to term by a factor of at least 4. This makes it easy

to get a bound on the sum:

nm fn

>, Dam < >, Dnp4?-™
m=p m=p

ie

< Dap >,4™
m=p

4
< 3 Pre

The whole sum is simply a constant times the value at m = p. We once again enlist the aid of

Stirling’s approximation, setting p = [3 Ig n|

n—2p+1
Dap = (.)en-are/ Cn

= O(nlog~9/? n)

This demonstrates that our overestimate of Knm by K!,, does not contribute to the asymptoti-

cally dominating term in the sum, which is O(n log7}/ 2). We previously showed that the entirety

of the space used by the saturated regime is O(n log—*/? n), so it doesn’t contribute either. Putting

all the pieces together, we can now conclude that:

Sy = [Sn Ig/? n + O(n log—9/? n) (2.29)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 Conclusions

The main result of this section is that the compression factor realized by merging isomorphic

subtrees grows without bound, when trees are chosen at random under a uniform distribution.

This factor grows rather slowly, only O(./logn). For a random binary tree with a million nodes,

the expected compression factor is a little under three.

An information-theoretic bound

We can compare this growth rate in the compression ratio to an information-theoretic bound. Since

each of the C,, trees are equally likely, we will need an average of at least lg C,, 6tts to encode each

one. Applying the approximation from equation 2.19, this means that any representation must

average around 2n bits per tree. The pointers we use must have enough bits to address all the

different nodes in the tree; therefore each pointer is about lgn bits long. So we must have at least

Q(n/ log n) pointers (and as many cells, up to a constant factor), to produce the required minimum

number of bits. This gives an upper bound of O(logn) on the compression factor.

A distribution favoring balanced trees

The analysis was done assuming a uniform distribution of n-node binary trees. While this distri-

bution is a reasonable choice, it does not lead to very balanced trees. The “average” binary tree of

n nodes is a lean and scraggly fellow whose internal path length is O(./n) (see Knuth(29, section

6.2.2]). One of the reasons that trees are important in computer science is that (when they are rea-

sonably balanced) they provide access to elements starting from the root in logarithmic time. This

means that we might want to redo this analysis using a distribution of trees that favors balance.

We can expect the savings to be greater when trees are balanced because there are more very small

subtrees. The perfectly balanced tree of 2% — 1 nodes occupies only m cells, for example.

One particular non-uniform distribution of trees comes to mind as a candidate for analysis.

Imagine that our n-node trees are binary search trees formed by inserting n keys in random order

into an initially empty tree. Ignoring the values of the keys, and looking only at the shape of the

resulting trees, we get a realistic distribution of n-node binary trees that is much more balanced

than the uniform distribution. The average internal path length of such trees is only O(log n) (see

Knuth(29, section 6.2.2, page 427]). To analyze this distribution, we would start by considering the

n! different possible permutations of the keys as equally likely. We would sum the space used in

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each permutation, and divide the total by n! to get the average.

One difficulty of modifying the analysis presented in this section to deal with this distribution is

that lemma 2.2, which says that the number of n-node trees containing a particular m-node tree is

independent of the shape of the m-node tree, doesn’t help here. The number of n-node trees may be

independent of which m-node tree we are looking for, but the total probability under this distribution

is not. Balanced m-node trees will more likely be found as subtrees than unbalanced ones. Still, it

should be possible to analyze the average space used under this distribution, and this analysis is

an open problem. It seems inevitable that less space would be needed, on average, for trees under

this distribution. In fact, the information-theoretic bound of O(logn) for the compression factor

doesn’t even apply here, so the compression could conceivably be superlogarithmic.

Who is using the space?

Another useful by-product of the way the asymptotic analysis was done is that it gives us a good

understanding of where in the tree the space is going. The sharp peak in the distribution of space

around size m = 1/2lgn means that the almost all savings in space (that is, merging of isomorphic

subtrees) occurs in trees of that size or smaller. We can imagine that there is no savings of space

for nodes whose size lies in the unique regime, and nearly total saving in the saturated regime.

This style of accounting for the space by node size may also be useful in the analysis proposed in

the previous paragraph.

2.4 Binary trees as cdr-coded lists

When trees are static, there is an easy way to reduce the space by almost a factor of two. If we

arrange the tree so that the right son of a node ¢ is stored in the memory location immediately

following t, then we no longer need cdr pointers. The cdr is right there in the next memory cell.

This technique (which is similar enough to the cdr-coding of ZETALISP[48] that we will appropriate

that name for it) needs only one pointer per node (pointing to the left son), plus something more

to tell us when a node has a node has no right son. We can either reserve one extra bit from each

memory cell for this purpose, or reserve one extra cell containing a special value following each

node with no left son.

We cannot apply the algorithm from the previous section to trees that are cdr-coded. Notice

that the same node cannot be the cdr of two non-isomorphic nodes, as it can in the cons-cell

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representation.

It is still quite easy to optimize space, though. Let’s call a group of nodes stored in consecutive

locations, where each one’s cdr is in the next cell, a block. A block’s end is flagged either by a bit,

or by a cell containing a special value. The space used by a particular representation of a tree is

the total size of all the blocks.

Two blocks can nest, and share the same space, when one forms a terminal sequence of another.

Let’s call those nodes that are left children of their parents blockheads, because these nodes would

appear at the beginnings of blocks if there were no nesting. If a subtree rooted at node ¢ is

isomorphic to the subtree rooted at another node s, then the block containing t may be nested in

the block containing s tf and only sf node t is a blockhead. This observation makes it clear how to

modify the algorithm of the previous section:

1. Group the nodes of T' into blocks.

2. Find all isomorphic subtrees within 7.

3. Allocate k cells for each block of size k whose blockhead is not isomorphic to any other node

in T.

4. Assign values to the pointers.

All these steps are straightforward. In step 3, if we encounter a group of blocks that are isomorphic,

each of k nodes, we allocate exactly one block of size k for them.

2.5 General trees as binary trees

In general trees, each node may have an arbitrary number of children. There is a well-known

way to represent an ordered general tree as a binary tree: we build a binary tree where “left

son” and “right son” mean “first child” and “next sibling” respectively in the original tree. After

translating an ordered general tree into a binary tree in this way, we can then use either the cons-

cell representation or the cdr-coded representation, described earlier in this chapter, to complete

a concrete implementation. The optimization problems for general trees stored in this fashion are

the same as before, so the same algorithms apply.

It is worth noting that the cdr-coded representation for binary trees, when applied to general

trees, can be understood as follows: Each node ¢ of the general tree is represented by a block of d

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cells (where d is the branching degree of t). The d cells store pointers to the blocks that represent

the d children of node t. This explanation is more easily understood than saying that we first

translate the general tree into a binary tree, and then represent the binary tree as a cdr-coded list.

But what about unordered general trees, where we do not require that the children of a given

node occur in a particular order? Let us restrict our attention to methods that store an unordered

tree by first fixing an order for the children at each node, and subsequently use one of the methods

already described. We could simply try each possible order for the children in all combinations to

find the one with the smallest space requirement, but that would be quite expensive. Can we do

better?

2.5.1 Unordered trees as cons-cells

If we try to represent a tree in a minimum number of cons-cells, we run into intractability; this

minimization problem is NP-Hard. I now show how to reduce VERTEX COVER(see Garey and

Johnson(20, pages 53-56]), to this problem. Given a graph G = (V, E) we construct a unordered

tree T of uniform depth 3 where T can be stored in k + ||V|| + 2||Z|| +1 cons-cells if and only if G

has a vertex cover of size k.

There is exactly one node in T at depth 0, the root r. Let each edge e € EH have an associated

node at depth 1 in T called t,. Each t, itself has exactly two children (at depth 2). Let the nodes

in V be numbered from 1...||V||. If edge e = (f, 7), then let the two children of node ¢, have ¢ and

j children respectively (leaves at depth 3).

How many cells are needed to store T? We need one cell for the root. The leaves, though

numerous, require exactly ||V|| cells chained together as a list with nil car fields. This linked list

is shared by all the leaves. We also need exactly one cell for every node at depth 1 of T. This

accounts for another ||E'| cells, for a total of ||V{| + ||E|| + 1 so far for the nodes at depths 0, 1 and

3. All that remains to be determined is the number of cells required by nodes at depth 2 in T.

Now t, has exactly two children at depth 2 in 7. When represented by cons-cells, one of these

children’s cells (call it the head) will point, via its cdr field, to its next-sibling in the other child’s

cell (call it the tail). Since all the edges in G are all distinct, the head cells are never shared. But

tail cells all have nil cdr fields and may be shared. The number of head cells at depth 2 is simply

||Z||. But the number of tail cells depends on how we chose which of the two children of the t.

would become the head and which the tail. Each such choice effectively orients the edge e. The

VERTEX COVER problem can be rephrased as follows: given an undirected graph G and a positive

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integer k, can the edges of G be oriented so that there are at most k vertices in G with nonzero

in-degree? If (and only if) G has a vertex cover of size k, we will use only & tail cells. The total

number of cells needed by nodes at depth 2 is k + ||Z|l.

This completes the demonstration that T can be represented in k + ||V||+ 2|j|#||+ 1 cells if and

only if G has a vertex cover of size k.

2.6 Unordered trees as cdr-coded lists

If we store our tree as a cdr-coded list, the optimization problem becomes tractable, but the

algorithm is not obvious. I shall go into this problem in some detail, presenting an algorithm to

find a minimal representation. Let me start with a complete concrete specification.

Each node t of the tree has an associated block of cells, which stores pointers to the children of

t in consecutive locations. All the blocks are concatenated into one big array of memory cells, and

the pointers are just integer indices that indicate where in the array the children’s blocks start. We

will use the special value 0 as a block terminator to mark the end of the children. (We could just

as well use a bit flag in each cell for this purpose; the extra 0 cell will make explanation easier.)

Given this representation, it is straightforward to translate a tree into an array of integers. (See

figure 2.5 for an example) The total number of cells needed to store an n-node tree is 2n — 1. Each

node has a cell containing a 0 marking the end of its children (accounting for n array locations),

and each of the nodes (except the root) is referred to by exactly one cell, accounting for the n — 1

locations filled with non-zeroes.

2.6.1 Minimizing space

The straightforward method of creating an array from a tree is wasteful in its allocation of space.

The optimization algorithm presented in section 2.4 cannot be applied, but only because the children

of a node do not have a fixed order, so two blocks may or may not be nestable, depending on what

ordering of children we choose.

The order in which the indices of the children of a tree are stored within a block is up to us. By

choosing a favorable ordering of the children, we make it possible for certain blocks to be nested

in other blocks. When each child of t is isomorphic to a child of s, ¢ can be nested in s if we order

the children of s so that those that are isomorphic to children of ¢ are stored after the others. But

arranging the children of s so that ¢ can be nested therein may make it impossible to nest some

other node u in s.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Numbers in the tree are array indices

1

31

1.2.3.4.5,6,7,8 9 1011 12 13,14 15 16,1718 19,20 21 22 23 24 25 26 27 28 29 3031
[5 [10[21| 0 [8 | 9 | 0] 0 | 0 [12] 0 [15|16] 0] 0 [19|20] Of 0] 0 j25/26/31] 0 | 0 f29|30] ofo jojo} p=

Figure 2.5: A straightforward translation of a tree into an erray.

Note that the nodes t;,t2,...,¢ can be recursively nested, as long as each of the children of t;

is isomorphic to a child of t;41, for 1 < ¢ < k. This nesting will produce a savings of vr (ce, + 1)

locations. Figure 2.6 shows the same tree from figure 2.5 represented as an array of minimum size.

How did we decide how to order the children at each node to maximize savings through nesting? I

will soon show how weighted matching can be used to find the best ordering.

2.6.2 Some formal notation

If the subtree rooted at t and subtree rooted at # are isomorphic, write ¢ & s. If for each child t’

of t there exists a child s’ of node a such that ¢' & s', then ¢ is nestable in 8, written ¢ <9. Ift <8

but not ¢ & s, then t is strictly nestable in s, written ¢ < s. If either s < ¢ or ¢ < s, informally

say that ¢ and s are nestable. Finally, a collection of nodes that are all mutually comparable under

nestability will be called mutually nestable, and a partition of a collection of nodes into mutually

nestable subcollections is a neating partition.

Note that nestability is a reflexive and transitive relation, and that strict nestability is asym-

metric and transitive.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.3 How to nest?

A nesting partition of the nodes in a tree places constraints on the ordering of the children. If we

choose some nesting partition 7, and then nest those blocks that are in the same part under x, the

resulting array will have a fixed size

N(x)=2n-1- > (ce -1) (2.30)

where t is
nested in
something

else

That is, the space ior all of the blocks that are nested in other blocks (the sum in this equation) is

saved. Maximizing this sum necessarily minimizes the space used.

Original tree:

Original array:

12.3,4,.5 6 7 8 9 101112 13 14.15 16 17 18 19 20 21 22 23 24 25 26.27 28 29 30.31

15 |10/21/0]8]9|0] 0] 0 12] 0 [15]16] 0 | 0 419)/20] 0 | 0} 0 [25/26/31] 0 | 0 [29/30] Of OJ 0] 0]

Minimal array:

1.23,4,5, 67,8 9 10111213

5/8 /10}0}4/4)/0]/11;0]4]4/5]0

Figure 2.6: Reducing the space for tree storage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.4 A matching method

A nesting partition of the nodes in a tree is just a covering of the nestability relation by chaina.

(A chain is just a sequence of elements ¢1,¢2,...,¢% such that ¢, < ez X--- x ez.) If the wetght

of a chain ny < nq <... < ny is defined as cp, +1, then the nesting partition sought is the

covering by chains of minimum total weight. Minimum covering of a transitive relation by chains

is a well-known problem. Dilworth[10] showed that it can be solved by bipartite matching. The

weighted version of the problem here can similarly be solved by weighted bipartite matching (see

Dantzig{9}).

From a tree, construct a weighted bipartite graph G = (X,Y, 2) where E is a function from

X x Y to the natural numbers. For each node ¢, create a pair of vertices z, € X and y; € Y. Let

E(2e, yt) be ec, +1 if s < t and s # t, and zero otherwise. A matching in G (using only edges with

positive weight) corresponds directly to a covering of < by chains, and vice versa. Matching z, to

ye corresponds to... ~m<n-~<... appearing in some chain. The weight of edge E(z,, y;:) in G is

the savings realized by nesting s in ¢.

The total weight of a matching in G is the total savings (over the straightforward method) in

space realized by the corresponding nestings in the tree, as was seen in equation 2.30. A maximum

matching therefore corresponds to maximum savings, and hence minimum space. Now we can

sketch an algorithm for translating a tree into an array of minimum size:

1. Determine which pairs of subtrees are isomorphic.

2. Determine which pairs of nodes are nestable.

3. Form the graph G described above, and use a standard algorithm (the Hungarian Method of

Kuhn(33], for example) to find a maximum weighted bipartite matching in G.

4. Now consider the graph G' = (T, E) formed by identifying the vertices z, and y, in G. The

edges in the matching found in the previous step form a covering of G' by chains. Partition

the nodes placing each chain in its own partition.

5. For each partition, order the children of each node in a proper nesting order. Allocate space

for the partitions and assign array indices to all nodes.

Each step of the above algorithm can be done in polynomial time (in the size of the tree

structure). The one-to-one correspondence between matchings in the graph G and nesting partitions

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the nodes in the tree guarantees that the algorithm will find the minimum size array that can

store the nodes. An example of this algorithm is graphically illustrated in figure 2.7, using the

same tree as the other figures. The details of the implementation will now be discussed.

2.7 Implementation details

The previous section offered only a sketch of techniques and a demonstration of a polynomial

algorithm for the problem at hand. Since the algorithm proposed is supposed to be practical for

very large problem sizes, more must be said about the nitty-gritty issues of implementation. The

steps in the algorithm will now be addressed in turn.

2.7.1 Subtree isomorphism

Identifying isomorphic subtrees is slightly harder for general unordered trees than it is for binary

trees. Nonetheless, we can still adapt the algorithm LABEL for general trees. Instead of a being

indexed by a pair of integers (that is, a two-dimensional array) the dictionary D must now be

indexed by a multiset of integers:

ulabel (t: node): integer
ift~= nil

return 0

S+-9O

for each child t' of t

S — S + {ulabel(¢’)}
v+ Ds

ifv=0
Dg — 2
z~-aztil

return Dg

ze 1
ulabel(root)

Algorithm ULABEL: find and label isomorphic subtrees

Although we can no longer use a simpie array to store D, we can still implement D efficiently.

Aho[1, pages 84-86] describes an algorithm for comparing two unordered trees similar to ULABEL,

that uses sorting. If we sort the multiset S, we can build D asa search tree keyed on sorted multisets.

This would mean a total time of O(n logn) for ULABELing a tree of n nodes,

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Original tree with isomorphism labels:

5

0

Bipartite graph of strict nestability Mazimum weighted matching

(using the isomorphism labels) shown with heavy edges

wetght weight

0 o 1 0 0 1

l 1 3 1 1 3

2 2 3 2 2 3

3 3 2 3 3 2

4 4 4 4 4 4

5 5 4 5 5 4

Resulting mintmum-size array:

1,2,3,4,5,6,7 8 9 10111213

(ststiololal4atolitol4i4{s5{0]

Figure 2.7: The space-minimization algorithm: an example.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instead, we could maintain D as s hash table keyed on multisets. Using an associative and

commutative hash function to combine the integers in S would remove the need for sorting, and we

could perform ULABEL in expected time O(n). This is similar to a method described by Miller([36}.

Nodes that are the roots of isomorphic subtrees are mutually nestable. It can never be a mistake

(in the later matching phase) to put such isomorphic nodes in the same nesting partition. This is

so because whenever s & t, the partition

ee oe ee CO ee Sd

can be replaced with the partition

mw! = +++ {...,8,t,...}e°:

requiring the same number or fewer array locations; that is, N(x’) < N(x). Therefore it simpli-

fies the rest of the description to transform a tree into a directed acyclic graph G by first identifying

isomorphic subtrees, and operating directly on G. If the labels assigned by algorithm ULABEL

are 0...z, then the corresponding graph G = (V, E) will have vertices V = {up... vs}, and edges

E = {{v,y,vs) | y is the label of a child of a node with label z}. Each vertex of G represents an

entire class of isomorphic nodes. A nesting partition of the vertices of G directly implies a nesting

partion of the nodes in the original tree.

2.7.2 Computing nestability

This step is likely to be the computational bottleneck of the whole operation. The following simple

algorithm takes the directed graph G = (V, E) (constructed by the tree isomorphism step described

in the previous section), and produces the relation R« C V x V, where u < v means that for every

vertex w, (u,w) € EF => (v,w) € E (the successors of u are a subset of the successors of v).

R<+O
foreach u € V

foreach v € V
flag — true
foreach w € V

flag <— flag A((u,w) ¢ E Vv (v,w) € EB)
if flag then R~« — Rez U {(u,v)}

Algorithm NEST: Compute nesting relation R<

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that this presentation of algorithm NEST is just a thinly disguised boolean matrix multipli-

cation. Let Mt! denote the transpose of a square boolean matrix M, and M denote its element-wise

complement. Then the matrix R of the relation Rx is related to the adjacency matrix G of the

graph G by the equation K= GG". tt might seem appealing to use standard algorithms for com-

puting products of boolean matrices quickly (for example, see Aho[pages 242-247][1]) to expedite

computing nestability, since computing MM for an arbitrary boolean matrix M is as hard (up to

a constant factor) as multiplying two boolean matrices A and B. Letting

0 A
M= (° =) means that

OA 1 1 AA' AB
mat=($ 5) (3 a) > (aa an)

However, the matrix G is not arbitrary here, since it was constructed by identifying isomorphic

subtrees of a tree. In particular, the number of edges in G (as well as the number of vertices)

is bounded by the number of nodes in the original tree. Cases where G and Rx are both fairly

sparse should be handled much more efficiently, since they will arise most often in practice. This

means that fast general matrix multiplication algorithms should not be used here; they can only

hope to approach quadratic running times (from the obvious cubic implementation). Algorithm

NEST can be made to run in time O(||V]| - ||Z||) as follows: store G using sorted adjacency lists,

so that the inner loop “foreach w € V ...” is actually implemented as “foreach w € V such that

(u,w) € E flag + flag A(v,w) € EB.” This means that the running time will be O(n*), where n

is the number of trees in the original structure. (This observation follows directly from a simple

method for multiplying sparse matrices.)

Actually G could be a multigraph, since a node could have two or more isomorphic children.

This does not add any inherent extra difficulty to the problem of computing nestability.

There is another method for computing nestings that is useful when the maximum number of

children of a tree is small (and hence the graph G is of bounded out-degree). If every vertex in G has

at most k successors, then the relation Rz can be computed in expected time O(|{V|| - 2* + ||2s||).

Let the hash table H be a map from multisets of vertices in V to sets of vertices in V; HZ: NY 4 2".

Initially H(S) = @ for all multisets S EV.

The following algorithm computes the nesting relation R< in two passes through the vertices.

In the first pass, all subsets of the successors of each vertex are entered in the hash table; the second

pass looks up each vertex by the full set of its successors.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R«-@
foreach u & V

let S = {v | (u,v) € E}
foreach S'C S

H(S') — H(S') uU {u}
foreach u € V

let S = {v | (u,v) € BE}
foreach v € H(S)

Re - Rx U {(u, v)}

Algorithm NEST2: Compute R« when out-degree is bounded

Of course, the exponential dependence on k makes algorithm NEST2 unusable even in sparse

gtaphs with any vertices of high out-degree. A practical algorithm for general sparse graphs with

subquadratic running time is yet to be found. Research into this area might also yield faster

algorithms for multiplying sparse boolean matrices and computing transitive closures of sparse

graphs.

2.8 Matching

This step might seem potentially costly, but in practice it should be quick. Once the relation R< is

found, a weighted bipartite matching problem must be solved in order to find the minimum weighted

covering of R« by chains. The weights on the edges of the bipartite graph are not general here, since

for one of the parts, all edges leaving a given vertex in that part have the same weight. This fact

simplifies finding a maximum matching using an augmenting path method (see Papadimitriou|39,

chapter 6], or Tarjan(44, chapters 8 and 9]) over the case where the weights are general.

Let the bipartite graph G = (X,Y, Z) have positive weights associated with the vertices in X.

Then the augmenting paths in G all have one end at some unmatched vertex z € X and follow

unmatched and matched edges in E alternately. These paths are of two types:

1. an alternating path ending at an unmatched vertex in Y. These paths are the exactly the

augmenting paths in the unweighted graph; and in the weighted graph they increase the

weight of the matching by the weight of the initial vertex z.

2. an alternating path ending at a matched vertex z' € X where the weight of z' is less than

the weight of z. These paths do not increase the cardinality of the set of matched edges, but

they do increase the weight of the matching by the difference in weight between z and 2’.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The diagram of figure 2.8 illustrates these two types of paths.

weight weight

5 5

3 3

2 2

7 7

@ 6 ® 6

2 2

Type 1 augmenting path (value 2) Type 2 augmenting path (value 4)

(matched edges are heavy)

Figure 2.8: Two types of augmenting paths

The augmenting paths can be found by depth-first or breadth-first search, so each one might

take as long as O(||E||) time. If n is the number of nodes in the original tree, then the number

of times an augmenting path will be found must be bounded by 2n — 1, since each path causes a

savings of at least one array location in the final representation. The number of edges here in G

might be as high as O(n?) (this is unlikely, though), so in the worst case, it might take O(n°) steps

to do the matching.

Conceivably, the special form of the weights allows an asymptotically more efficient scheme

(like that of Dinic{11] when applied to unit networks; see Even(15] or Hopcroft([22}), but the extra

complication introduced would rarely be worth the trouble. The graph G is probably sparse in

practice, and the time to find augmenting paths is likely to be almost constant, so the method

described above should exhibit nearly linear behavior anyway.

2.9 An application: English lexicon tree

In 1983, Andrew Appel and I wrote a program to play Scrabble[3}. To represent the legal English

words, we used a tree structure. Nodes in the tree were labeled with letters of the alphabet, and the

labels along the paths from the root to specially marked nodes formed the set of acceptable words.

This data structure (a cdr-coded list stored in an array) was chosen because it was convenient for

move generation.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Unlike the trees discussed earlier in this chapter, the trees in this application have some extra

information associated with each node (letters of the alphabet). We can still apply the results of

this chapter, as long as we change our notion of isomorphism slightly. To be considered isomorphic,

two subtrees must agree not only in structure, but also in the information found at the nodes.

The word list we used contained roughly 94,000 words. Using the straightforward translation,

the array would have contained about 180,000 locations. We discovered that by merging isomorphic

subtrees, the number of array locations is reduced to about 60,000. This is an amazing savings,

especially when you consider that there is no loss in search efficiency, and no need to change the

Scrabble program at all.

This is how the matter stood, until I developed and programmed the the optimization algorithm

for unordered trees stored as cdr-coded lists described in this chapter. Using this new program,

I found that the minimum number of cells needed to store the tree is about 51,000. Again, the

savings here is free, since no modification to the program is required, and the search runs just as

fast.

I also tried representing the lexicon with cons-cells, after choosing an alphabetical ordering of

the children. I found that about 43,000 cells are needed to store the same English lexicon. Of

course, each cell requires two pointers rather than one, so this is not as efficient a representation

as the cdr-coded one for this application.

2.10 Future work

2.10.1 Analysis of other implementations

This chapter presented an average-case analysis of the cons-cell representation of binary trees. Of

course, that analysis also applies to the cons-cell representation of general ordered trees. What

about ecdr-coded representations? The techniques of analysis presented earlier probably can be

applied here as well, when dealing with binary or ordered trees.

Analyzing the average-case space requirements for unordered trees would be much more difficult.

Computing the expected weighi cf the maximum matching requires a more sophisticated approach

than has been presented here.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.10.2 Concrete optimization of graphs

What about other linked structures? Although this chapter discussed only trees, the techniques

presented here can be applied to other linked structures. When a graph is stored as an adjacency

list, the tree-minimization algorithms described in this chapter can be applied directly. Only the

first step, where isomorphic nodes are labeled, needs to be changed. In graphs, isomorphism labeling

can be performed efficiently by a partition refinement finite-state machine minimization algorithm

(for example, see Hopcroft([31, pages 189-196]).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Abstract Optimization

In this chapter I present a framework for studying abstract optimization of static data structures,

and discuss metrics for measuring the computational resources involved.

Suppose we have an abstract class C,, of static data objects, and a set of operations S that

examine a data object but do not modify it. Each member of C, can be viewed as a collection

of partial functions, one function corresponding to each operation in S. The domain and range

of these functions can be either predefined data types (like integer or boolean) or they can be

indices. These indices are meant to be the abstract analogues of pointers; they can only be used

and returned by operations in S.

An implementation of an abstract class provides a mapping from elements of C,, into a read-only

memory, and a program for each operation in S that references this memory. An implementation

also provides a mapping between elements of the index domains and small pieces of memory. All of

these mappings are strictly internal to the implementation, and cannot be referenced by a program

that makes use of the data type.

The abstract data types I study have natural implementations that use too much space. Op-

timization means making something better. A better implementation of these data types has the

same functionality as the natural implementation, but uses less space. The trick of abstract opti-

mization is to trim the fat in the data without slowing down the operations too much. How much

space has been saved? How much slower is the optimized implementation? To provide meaningful

answers to such questions, we need to use a model of computation that defines precise cost metrics

for space and time, and that is realistic about computers’ capabilities.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Space metrics

The (worst-case) space cost of an implementation is simply the maximum length of any of the

bit-strings representing an element in Cp. This is a strictly log-cost accounting of space. Since

space-efficiency is the primary concern here, I cannot afford to be sloppy and measure space in

words, which hold an unspecified amount of information. It is always poesible to make use of all

the bits in a computer word.

Bits are universal. While it ts possible to buy a computer that does more work per unit time,

it ts not possible to buy a computer that stores more per bit. In other words, the time required

for a given operation can only be bounded by a functional form, whereas the space required can be

bounded absolutely. It would be foolish to use any metric for space other than bits.

We wish to represent the elements of C,, in such a way that the maximum length of an element,

measured in bits, is a slowly-growing function of n. How should we measure the space-performance

of our representation-length function? Information theory provides us with an excellent yardstick.

We know that there are ||C,,|| different elements in Cy. It follows that there some objects must

have be at least Ig ||C,|| bits; otherwise, the objects could not all have distinct representations.

This absolute lower bound on the size of any possible representation gives us something to shoot

for. Let’s classify our succinct representations into one of three categories, in decreasing order of

desirability:

canonical is the best we can hope for. This is a mapping from C,, into the integers

1...||Cnlj. The resulting integer is then encoded as a lg ||C,,||-bit binary num-

ber.

asymptotically
optimal is a little worse than canonical. This is a mapping from C,, into a bit string

of length lg ||C,|| - (1 + 0(1)). Some wasted space is allowed in this type of

representation, but as n grows, the fraction of waste must vanish.

linear maps C,, into bit strings whose length is O(log ||Cy|l).

These categories are based on the functional form of the extra space required over lg ||C,|

bits. In abstract optimization, 1 will not insist on canonical representations, but I do strive for

asymptotic optimality.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Time metrics

The choice of metric for time is not so clear-cut. The unit-cost model of computation is a popular

accounting metric for time, and with good reason. This model usually has the most realistic

correspondence to observed running time. The pitfalls of the unit-cost model when numbers get

too large are well known. Less obvious, but just as nasty, are the architecture-specific shortcomings

of this metric. The unit-cost model assumes some kind of word-size bit parallelism exists within

the circuits of a computer. When the logarithms of the numbers involved stay below the word size,

it is reasonable to expect to perform certain operations with this degree of parallelism. But the

circuits in any given computer are fixed, so we may be out of luck when we try to coerce a computer

into performing a particular word-size operation for which it is ill-suited.

Let me provide a specific example of this phenomenon. Suppose a critical step of an algorithm

involves counting the number of 1 bits in a binary number. Assume that the typical number n

we are dealing with is small enough to fit in a single computer word of w bits . How much time

should we account for this bit-counting operation? If we get to choose, we can use a computer with

a bit-count instruction. It would seem reasonable then to assess a cost of one to bit counting.

But many computers lack an explicit bit-count instruction. Should we loop through the bits of

the word testing for ones, and charge w? Should we use a clever sequence of lgw shifts, masks,

and additions to compute the bit-count of n? Or should we break each word into k chunks, keep a

table of size 2”/* of precomputed bit-counts, and charge k (generally the most efficient scheme in

practice)? Further complications arise if our computer doesn’t have a muiti-place shift instruction.

The best implementation of this operation, and hence its accounting, depends on the architecture.

To avoid these processor-specific pitfalls, I restrict my attention to metrics based on bus trans-

actions between the processor and the static data. I will charge for, and only for, each reference

the processor makes to the data. The processor is allowed to perform arbitrary computations at

no cost with the data it has already has in hand. I am measuring I/O complexity.

By varying the bandwidth of the buses and the costs of transactions, we get different metrics.

Two that I like particularly well, and use extensively in the thesis are:

data-bits model assumes that the data bus from memory to the processor is only one bit wide.

We simply count the number of bit-accesses performed to get the time cost.

wide-bus model assumes that the data bus is lg N bits wide, where N is the size of the memory.

We can fetch lg N bits from consecutive memory locations at unit cost.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In both models we assume that the address bus is sufficiently wide to address any bit contained

in memory.

The data-bits model has simplicity as its main advantage. There is a strong analogy between

accounting time as bit-accesses here and accounting the time used by sorting algorithms in element

comparisons. If nothing else, our time metric gives a very reasonable lower bound on achievable

asymptotic performance, as long as the bandwidth of the data bus is fixed. Two disadvantages of

this model are that it does not reflect the inherent word-size parallelism in the data buses of real

computers, and that it does not take account of the bounded bandwidth of the address bus.

The wide-bus model, on the other hand, is more realistic about the inherent parallelism in the

buses of computers. Still, there is something a little disturbing about the size of the bus growing

along with the size of the data.

3.3 Binary trees: an example

Let me make the model developed in this chapter clear by giving an example. Let our class C,, be

the set of binary trees with n nodes, and let the set of operations S be:

e a function of no arguments (a constant) root returning node.

e two functions, car and cdr, mapping node to node.

e a function null mapping node to boolean.

The type node is an index type. This is the abstract analog of the pointers that occur in the

natural implementation. Note that there is no information stored in the tree; the only operations

we can perform are moving from a node to its children and testing if a node exists.

3.3.1 <A natural implementation

A natural implementation uses a cons cell (a pair of pointers) for each node. Externally, each node

is referenced by a pointer to its cons cell.

Fach pointer requires about lgn bits, since there are n different nodes. The operations is S

can be performed by dereferencing a pointer. This takes time O(log n) in the data-bits model, and

time O(1) in the wide-bus model.

The space used for each cons cell is about 2lgn bits. So the total space for an n-node tree

is O(nlogn). We could cut this space nearly in half by storing the cdrs in consecutive memory

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locations, so we only need pointers to the cars. But tais does not change the basic O(n log n) space

performance.

3.3.2 A canonical implementation

The number of different binary trees of n-nodes is Cy, the famous Catalan numbers. They are

defined by: >
1 n

Ca= nal (n (3.1)

Let us represent a tree by an integer in the range 1...C,. This canonical representation would

take [lgC,] bits. Considering the combinatoric meaning of the choose operator, it is clear that

(2") is strictly less than 27°. The number of bits used by the canonical representation is thus

bounded above by 2n. Of course, there is no obvious way to represent individual nodes in such a

representation to allow efficient performance of the operations in S.

3.38.3 Optimization

Do we really need to store O(n log n) bits to obtain the time-performance of the natural implemen-

tation? No. The next chapter describes a scheme that uses linear space. The trick employed there

is to use a variable-length code for the pointers. Although the largest pointers are O(log n) bits

long, the average pointers are only O(1) bits. Summed over the entire tree, the total size of all the

pointers is O(n).

Another solution for this problem is presented in chapter 5. The representation given there uses

asymptotically optimal space, and doesn’t use anything resembling a pointer.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Abstract Optimized Trees

This chapter addresses the problem of representing static trees in space proportional to their in-

formation content, without sacrificing more than a constant factor in time efficiency (of the basic

traversal operations) over conventional pointer methods. A family of recursive representations

with this desirable economy is exhibited, parameterized by prefix codes for the natural numbers.

A simple and practical representation is described and analyzed. Next, properties of the opti-

mal representation in the family are presented and partially analyzed. A discussion of practical

considerations and extensions to these techniques concludes the chapter.

4.1 Introduction

How much information is encoded in the shape of a tree? The number of distinct unlabeled

trees with n nodes grows functionally as k” (times a subexponential factor), for some constant k.

Knuth(29, section 2.4.4.4] gives the value for k for several classes of trees. The information content

of a tree of n nodes is about log k”, or cn for some c. It should therefore be poasible to represent

a tree using only a constant number of bits per node.

This is easy to do, in a number of ways. We could simply assign each distinct tree a canonical

number. This would be optimal in terms of space, although it is difficult to see how we could

perform tree-traversal operations using this representation. The local structure of the tree is not

reflected anywhere in such numbers.

Let’s start by considering n-node binary trees, since they are easy to analyze and are equivalent

to general ordered trees with n+ 1 nodes using the well-known trick of tilting the general tree by

45 degrees (see Knuth(29, section 2.3.2]). One way to represent both binary and general trees in

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a linear number of bits is to use the structural correspondence between ordered trees and strings

of balanced parentheses. This correspondence is best described recursively: the empty tree is

represented by the empty string, and other trees are represented by an open ‘(’, followed by the

concatenations of the representations of the tree’s children, followed by a close ‘)’, as in figure 4.1.

(This is just the LISP S-expression for the tree.) Trees of n nodes are represented by strings of

$

(€€0O) CO) O0OIO)

Figure 4.1: Balanced parentheses as trees

length 2n. Since each character in the string is either a ‘(’ or a ‘)’, we could use 0’s and 1’s to

encode the n-node tree with 2n bits.

Although this representation is not informationally perfect, (since an unbalanced string of paren-

theses does not represent any tree), it is quite efficient. As we use this scheme to represent ever

larger trees, the fraction of bits wasted vanishes. The number of balanced strings of 2n parentheses

is given by the nth Catalan number C, = (?")<1,. By Stirling’s approximation, C, = 4".@(n-5/?),

Taking logarithms base 2, lg Cn = 2n + o(n), so two bits per node is the best possible asymptotic

bound on the storage needed.

Contrast the representation as a string of parentheses with the common linked (pointer) rep-

resentation for such trees. Every node in the tree, except perhaps the leaves, stores one or more

pointers to children. Since there are n nodes in the tree (each having a unique address), the pointers

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must be at least logn bits wide. So this scheme takes M(n log n) bits, although the cost is linear in

the unit cost model of space.

The logn blowup in space is compensated by the superior speed of the linked representa-

tion for accessing parts of the tree. The two common tree-traversal primitives Right-child and

Left-child (equivalently, First-child and Next-sibling, or car and cdr) can be accomplished

in constant time under the unit cost measure, and in logarithmic time under the log-cost measure.

To move around in a tree structure represented as a string of balanced parentheses, it will some-

times be necessary to scan through a large fraction of the string, matching parentheses, to find

the Right-child. The worst-case cost of this operation is 2(n), much worse than the cost in the

linked representation.

Another representation that uses just two bits per node is marked preorder sequential, de-

scribed by Smith[42, page 225]. Storing the nodes in preorder, we keep a pair of bits called

Left-child-empty? and Right-child-empty? for each one. The shape of the tree can be recon-

structed from this information, but locating the positions of the children in such a tree still requires

a linear scan through the data.

Is it possible to enjoy representational efficiency without sacrificing too much in speed? The

answer is yes, and a class of representations achieving this is developed in the next section.

4.2 Encoding trees in linear space

Although the space to store a pointer in the linked representation is N(log n), most of those bits do

not carry their weight in information. When the nodes in a tree are laid out in preorder, the left

child of a node immediately follows its parent in memory, and the right child is probably not too

far ahead, since most of the nodes in a (balanced) tree are near the bottom level . If we were to

represent pointers as relative addresses rather than absolute addresses, the numbers stored in the

pointers would be smaller, so they could, on average, be represented with fewer bits. Near the top

of the tree, the relative pointers will still be large (around log n bits), but if we are clever, the total

size of all the pointers summed over the whole tree will be only O(n). Let’s represent our binary

tree recursively as a string of bits as shown in figure 4.2

The header block tells us the relative sizes of the left and right subtrees; it is followed by the

encoding of the left subtree concatenated with the encoding of the right subtree. The empty tree

is represented by the empty string. A position in the tree is represented by an index into this

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

header block representation of left subtree repreaentation of right subtree

(011010 eoeee 110100|110101 cee ceeeeccacecceeoes 010011|001011 ae ccccececesenceencs 000110}

representation of the whole binary tree

Figure 4.2: Recursive layout of a binary tree

bit string (the start of the block corresponding to the desired subtree), along with the size of the

current subtree (so we know how large the block is).

A test for emptiness can be performed by checking if the stored size of the subtree is zero. To

move to the left child, simply skip the header block, adjust the size, and position the new index

at the end of the header. To move to the right child, take the same action, except that the new

position is computed by adding the size of the left subtree (somehow computed from the header)

to the position at the end of the header.

The header encodes the number of nodes in the left subtree as an integer n, which functions as

a relative pointer to the right subtree. To find the size in bits of the left subtree, we compute a

function B,, the maximum number of bits in the representation of any n-node tree. We will insist

that all n-node trees occupy ezactly B, bits, padding them if needed. This allows us to store the

sizes of our blocks as the number of nodes encoded therein, rather than as a count of bits.

To make this scheme work, we have to know when we are done reading through the header.

Since the number of nodes in a tree is unbounded, we obviously cannot put a fixed ceiling on the

number of bits in any code that represents these numbers. However, there are well-known methods

of encoding integers as self-terminating bit strings (called prefiz codes by Elias(13]), that use a

logarithmic number of bits; that is, the representation of n takes only O(log n) bits. The methods

in the literature are concerned mainly with the asymptotic efficiency of the representations (for

example, see Stout(43]), and strive to minimize functional form of the representation achieving

Ign + @(loglogn), Ign + Iglgn + O(log loglogn) and beyond. Here, though, it will be important

to pay close attention to the representation of very small integers, since many of the subtrees will

be small. Let us assume for the moment that we use any prefix code that achieves logarithmic

succinctness.

Although the numbers representing the sizes of the largest subtrees of an n-node tree have

logn bits, we will show that the large number of small subtrees causes the total number bits

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used, summed over the entire tree, to be only linear in n. To see the basic reason for this, let

us (erroneously) suppose that the worst-case occurs when our trees are balanced, complete binary

trees. If B,, denotes the space required for a tree of n nodes, then, informally,

Bn = O(log n) + 2B). (4.1)

log ns

2 2§ - O(1og(n/2'))

= O(n)

so at each lower level of the tree, the relative pointers (really, the encodings of the sizes of the

subtrees) require one fewer bit, leading to amortized constant space per node.

root —=* |

.e > n nodes

[n—ijn-2{n—-3] }; 2 7 1 |] o |

tree representation
numbers encoded in header blocks

Figure 4.3: Left leaning tree

Unfortunately, this analysis does not apply to arbitrary trees. Consider a tree which leans

all the way to the left, shown in figure 4.3. For this tree, the size of the relative pointer doesn’t

decrease very much from one level to the next, and the representation described above will take

O(n logn) bits. We can fix the representation by adding a Left-child-first? bit for every node

telling which of its subtrees has more nodes, and encoding the smaller subtree first, shown in figure

4.4, This guarantees that the size of the pointers must shrink by at least one each level, since the

smaller subtree has fewer than half as many nodes as the whole tree.

Now we will get a linear space representation as long as we use a prefix code for the natural

numbers that uses O(logn) bits to encode the integer n. The choice of which code we use has

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

header
ts ~

[_prefiz code [04] representation of smaller subtree | representation of larger subtree |

YO Left-child-first? bit
number of nodes in smaller subtree

Figure 4.4: Layout of a binary tree with Left-child-first? bits

an important effect on the asymptotic constant of linearity. To access a child, we must examine

O(log n) consecutive bits to read in a prefix code (and process those bits). This takes O(log n) time

in the data bits model, but only O(1) time in the wide bus model. This representation scheme is

therefore as fast as a pointer representation, up to a constant factor. A complete analysis of this

scheme with a particular prefix code comprises the next section.

4.2.1 Analysis of a practical encoding

Let’s use the following very simple prefix code, with encoding function & taking the natural numbers

to binary strings. Define

R(0) = 0

R(n>0) = 1-([n mod 2]- R({n/2}) (4.2)

here « denotes concatenation, and n mod 2 is either a 0 or a 1 depending on whether n is even or

odd. Let r(n) denote the length in bits of R(n):

r(0) = 1

r(n>0) = r([n/2])+2 (4.3)

So in particular, R(0) = 0, R(1) = 110, R(2) = 10110, R(3) = 11110, and R(4) = 1010110.

This encoding amounts to taking the standard binary representation of n (which, of course, is not

a prefix code) reversing it, and shuffling it with a binary string of the form 1*0. To decode a bit

string, begin reading the bits until you encounter a 0 in an odd position. The bits in even positions,

reading backwards, form the standard binary encoding of the integer.

This is not a particularly efficient encoding of the integers; it asymptotically requires twice as

many bits as the most efficient schemes, and it even wastes some codes (for example, 100 doesn’t

begin the code for any integer). We use this encoding because it is easy to analyze.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To simplify the analysis, define the integer logarithm function [(n) on the natural numbers to

be |Ig(n + 1/2)|. (This is really just [Ign], except that it is defined to be —1 forn = 0.) This

function has the property that

K(|n/2]) =t(n) —1 for all integral n > 0 (4.4)

Note that the code length function r(n) = 2/(n) + 3.

The representation scheme for trees is as follows:

R(empty tree) = €

R(T) = R(number of nodes in smaller subtree) (4.5)

-[Left-child-first? bit|

-R(emaller subtree)

-R(larger subtree)

Let B,, be the maximum number of bits needed to store a tree of n nodes. Bo = 0; for positive n,

Bn= ogactia* 2) [r(kK) + 1+ By + Bn—1~«] (4.6)

(The n—1’s in this important equation are due to the fact that the subtrees can have at most n—-1

nodes, since there is one node at the root.)

Theorem 4.1 The space By, for a tree of n nodes is given by:

Brn = 4n — 2I(n) — 2 (4.7)

Proof by induction on n. By = 4-0-—2-(—1) — 2 = 0, verifying the base case. From equation 4.6,

[r(k) + 1+ Be + Bn-1-2] max

OSkS|(n—-1)/2)

max (2i(k) + 3) + 1+ (4k — 2i{k) — 2)
O<k<[(n—-1)/2} | + (4(n —1—k) — 2l(n — 1 — k) — 2)

= cad y/2) [4n — 4 —21(n —1—k)]

= n-n-2.| min n-1-0)
OSkS |(n—-1)/2}

= 4n-—4-2l(n-—1-|(n —1)/2]) (4.8)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= 4n—4- 2i(|n/2]|)

4n — 4— 2(I(n) — 1) (4.9)
4n — 2I(n) ~ 2

= Ba

demonstrating the induction case. Equation 4.8 follows from the monotonicity of the integer loga-

rithm function [(n), and equation 4.9 follows from equation 4.4. oO

The limit of B,/n as n grows without bound is 4 (since I(n) is o(n)), so this scheme stores trees

in about four bits per node.

This representation for binary trees is quite practical and easy to implement. The decoding

of the relative pointers from the bits strings is straightforward, as is the computation of B,, from

n. The space required by this scheme is asymptotically only a factor of two worse than the space

required by any possible representation. The time required is within a constant factor of that used

by the standard pointer representation.

Because this representation uses an inefficient scheme to encode the integers, it is logical to

look for schemes using more efficient integer encodings, to better approach the asymptotic bound

of two bits per node. Any logarithmically succinct prefix code leads directly to a representation

scheme, based on the solution to the recurrence in equation 4.6 with a different function r(n).

For practical purposes, it is desirable that B, be efficiently computable, since this computation

must be performed in traversing the tree. The encoding above yields a particularly simple form for

By; for some other representations I have examined it is more difficult to find a simple formula.

Nevertheless, since the model of computation used here only counts bit-accesses to the data, we

can assume that B,, can be computed for free given any chosen encoding of the integers. This at

least gives a lower-bound for those schemes where By is easy to compute.)

4.3 Lowering the constant factor

Imagine the following quasi-mechanical search for an efficient representation:

For each prefix code R for the natural numbers, plug the code length function r for

that encoding into equation 4.6 and solve the recurrence to obtain a formula for By.

Find the asymptotic limit of B,/n and minimize.

There are two problems with this approach:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. How can you enumerate all the valid prefix codes of the natural numbers? There are infinitely

many of them.

2. Given a particular code length function r, how can you solve the recurrence of equation 4.6

to obtain B,/n, or even the asymptotic value of B,/n?

In order to find an efficient representation, let’s generalize our scheme slightly. Instead of

employing one fixed prefix code R to encode all the relative pointers, use a family of codes Ry.

We intend to use the code R,, to encode the relative pointer at the root of all trees containing n

nodes. (Remember that we keep track of the number of nodes in the current tree anyway, to tell

when the tree is empty.) If a tree has n nodes, the number of nodes in a subtree is between 0 and

n— 1 inclusive, so R, need only map [0...n — 1] into strings of bits. This generalized scheme also

allows us to do without the Left-child-first? bit; that is, R, can directly encode the number of

children in the left subtree in a tree of m nodes, as shown in figure 4.5. The new &,, simply assigns

short codes to the integers near 0 and those near m — 1.

B, bits —- -
Ry(m) | representation of left subtree | representation of right subtree

<—— rn(m) bits —- B,, bits ~< Bn-1-m bits ———-

possible padding bit(s)

Figure 4.5: Layout of an n-node binary tree with generalized R,,

Call representations in the new scheme variable encodings, to distinguish them from the uniform

encodings in the old scheme for representing trees.

First, note that variable encodings strictly generalize uniform encodings; any uniform encoding

' can be regarded as a variable encoding R, that doesn’t change as n grows (except inasmuch

as the extra Left-child-first? bit is subsumed in the new R,,). Therefore representations

using variable encoding must be at least as good as those using uniform encoding. Under variable

encodings, the recurrence of equation 4.6 becomes:

Ba = Ocken {r,(k) + Bi + Bn-1-k] (4.10)

where r,, is, analogously, the length of R,,.

At first it would seem that this added generality makes the search for efficient representations

even more difficult. The space of possible encoding functions is now indexed by two variables,

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rather than one. However, this generality actually simplifies the search tremendously, as we will

show in the next section.

4.3.1 The optimal variable encoding

Now that we allow different encodings of the relative pointers in different size trees, a wonderful

thing happens. The size of n-node trees, B,, now depends only on the values of B, for k < n,

and on the function r,,, whereas before it depended on the uniform function r, which had to be the

same for all n. This independence of B, from the encodings R,, (m # n) together with equation

4.10 means that the principle of optimality holds. For By, to be minimal, each B; must also be

minimal for k <n. This suggests the following dynamic programming algorithm which computes

optimal (minimal) values of B,, along with encoding functions that achieve those values:

Bo 0

for n+ 1...00
By + 00

for each encoding Ry, of (0...n — 1]

rn [|Rall
b omex, [pa(k) + By + Bn-1-«]

Bn — min[By, 3]

Algorithm A

For the rest of this section, we will use the notation B, to mean the optimal value of B, over

all variable encodings. Note again that this B,, is an absolute lower bound on all possible uniform

encodings, for reasons mentioned earlier.

The search over all possible encodings in the algorithm above seems daunting. Actually, no

search is required at all. From the algorithm, r,(k) can be as large as B, —- By - By_1-4; that

is, the encoding of the integer k in variable encoding #,, can have as many as B,, — By ~— By-1-k

bits. (Of course, we don’t know what B,, is, yet.) Because Ry is a prefix code, the set of strings

{Rn(k) | 0 < k < n} must have the prefiz property: no R,(k:) may be a proper prefix of another

Ry(k2). We can find an encoding R, of {(0...n — 1] with respective lengths [r,(0)...rn(n — 1)]

with the prefix property exactly when the values of r,(k) satisfy Kraft’s[32] inequality for noiseless

encoding (better explained by Gallager(19, page 47)):

n=-1

1> do 27ralt) (4.11)
=0

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

now, using r,(k) < By — By — By-1-,~, substituting:

n-1
1> > 2BitBn-1-k—Bn

k=0

multiplying by 22"
a-l

9Bn > >> 23+ Bn—1-t

k=0

now taking logarithms and minimizing B, (remembering that B, is constrained to be an integer)

we obtain the following recurrence:

n-1

Bn = he > 2PerBnnst] (4.12)
k=0

A search-free dynamic programming algorithm to compute the values of B, follows directly

from the recurrence of equation 4.12:

Bo — 0

for n+ 1...00
t-0

for k—0O...n-—1
t— t+ 2Be+Bn-1-4

Br = [lgt]

Algorithm B

It still remains to construct prefix codes R, that achieve these values of B,. We can work

backwards, starting from the B, computed by algorithm B. In constructing prefix code Ry, assign

the integer k a weight W, = 25t+Bn-1-k-Bn, Because we chose the B, to satisfy Kraft’s inequality,

we know that > W, < 1. Now, use Huffman’s([23] classic algorithm to find a prefix code of minimum

total weight. A well-known property of such minimal-weight codes is that Wi < 2-ra(*)+1 (see

Gallager[19, page 50]}; in our case, this means that r,(k) < B, — By, — B,-1-, which is the bound

we need.

‘These algorithms to compute B, and 2, given = arc all that is needed (at least in theory) to

implement the optimal variable encoding of binary trees. To make the optimal scheme practical,

it is necessary that values of B, and decodings via R, be computed quickly. Although our model

of computation doesn’t charge us for these computations, algorithm B above takes O(n”) time to

compute By.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n Ba n Bn

1 0 600 1360

2 1 700 1589

3 3 800 1818

4 5 900 2047

5 7 1000 2276

6 9 2000 4567

7 11 3000 6859

8 13 4000 9151

9 15 5000 | 11443

10 17 6000 | 13736

20 38 7000 | 16028

30 60 8000 | 18320

40 82 9000 | 20613

50 105 10000 | 22905

60 127 20000 | 45830

70 150 30000 | 68756

80 173 40000 | 91681

90 195 50000 | 114607

1CO 218 60000 | 137533

200 446 70000 | 160460

300 674 80000 | 183386

400 903 90000 | 206312

500 1132 100000 | 229238

Table 4.1: Some values of By,

It might seem that the computations involving ¢ in algorithm B would be expensive to perform

because of the extremely large size of the numbers involved, when n is large. The trick is to store t

as a floating point number with binary exponent and mantissa stored in separate integer variables.

If the mantissa is maintained as a normalized fixed-point fraction 1/2 < m < 1, with the exponent

e an integer, then t = m-2* can be maintained as an invariant of the inner loop with only a constant

number of (unit cost) operations. The number of bits in the mantissa need only be a few bits larger

than the difference between the longest and shortest code in the range of Rn. This difference is

logarithmic in n, and in practice, the mantissa can be stored in a single 32-bit machine word for

values of n into the hundreds of thousands. The value of the exponent e at the end of the loop is

Bp.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Maybe there is a simple closed form for B,, (or at least a more efficient algorithm than algorithm

B), but such a formula has eluded me. The next section discusses some of the properties of B, and

the recurrence of equation 4.12.

4.3.2 The function B,

To give a feel for B,, selected values of B,, computed by algorithm B, are tabulated in table

4.1. It appears that B,,/n is about 2.29 as B, approaches infinity, which would mean that the

optimal algorithm (and hence any algorithm using a uniform or variable encoding) has about a

15% overhead asymptotically. But what can be proven about the asymptotic form of B,?

Consider the recurrence of equation 4.12 without the ceiling function:

n-1

BY = lg Y> 274+ n-1- (4.13)
k=0

Removing the ceiling function amounts to allowing us to express the relative pointers with a frac-

tional number of bits. If we define C,, = 23n , equation 4.13 becomes:

na-l1

gC, = lg >; Cy > Ch-1-k
k=0

n-—1

Ch = >) Ce-Crie (4.14)
k=0

Now observe that equation 4.14 is a defining recurrence for the Catalan numbers encountered

earlier. So C,, are the Catalan numbers. If we could somehow encode the relative pointers using

fractional bits with no waste (some kind of arithmetic coding comes to mind) , our encoding would

be absolutely perfect. I don’t know how to do this, and it is an interesting open problem in this

area.

The analysis of equation 4.12 is made very difficult by the presence of the ceiling function.

However, the monotonicity of the value of B, with respect to values of B,,k < n, together with

the fact that [z] < z+ 1 allows us to write the following inequality:

n-1

Bn <1+1g >. 22st Bn-1-8 (4.15)
k=0

which allows us to show the following:

Theorem 4.2 The value of By, < 3n, for positive n.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof Let Bj, be the function that makes the inequality 4.15 an equality. Clearly B,, < Bi. Let

C! be 29». Then
n=-1

Cn=2 0 CL Chie
k=0

Now the claim that C/, = 2"C,, where C, are the Catalan numbers, is easily verified by induction,

using this equation and the recurrence of equation 4.14. So B!, = n+ 1gC,, and it was argued

earlier by Stirling’s approximation that lg C, = 2n — o(n). So B! =n +2n-—o(n), and By, < 3n,

completing the proof. mi)

This theorem, giving a bound of three bits per node, seems rather weak, observing the values

in table 4.1. The rest of this section will examine techniques for finding bounds on the asymptotic

limit of B,/n. First, observe that is is possible, a priori, that B,/n does not approach a limit

as n —+ oo. We know that in the limit, 2 < B,/n < 3, but perhaps B, is like the function

f(n) = 2!e"1, which takes on values between n and 2n, but has no limit lim,.¢o f(n)/n. Let's call

inf{k | kn > By a.e.} the upper limit of B,/n, and sup{k | kn < B, a.e.} the lower limit of B,/n.

Then B,,/n has a true limit if the lower limit equals the upper limit. This equality is indeed the

case, and will be proved shortly. But first, a word about the lower limit.

The monotonicity of B,, gives an easy technique to estimate the lower limit of Bn/n. For any

value of n we can exhibit an n-node tree T requiring B,, bits (this is trivial; they all require B,

bits). We can take k copies of T and build a tree T', with a right-leaning spine of k nodes, where

each node of the spine has a copy of T' as its left child, as shown in figure 4.6.

AA nn k-node
_ bits bits — spine

k copies
i -)

k(n + 1) nodes;
at least kB,, bits

Figure 4.6: Construction bounding the lower limit of B,/n

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tree T’ has k(n + 1) nodes, and since it contains k copies of T, it must occupy more than

kB, bits. Since our choice of k was arbitrary, there exists an infinite set of trees (one for each

k) where the number of bits per node is greater than B,/(n +1). So for every n, the value of

B,/(n + 1) is a lower bound on the lower limit of B,/n. (This intuitive proof directly translates

into a symbolic one, using equation 4.10 and doing induction on both n and k.) From the values

in table 4.1 we now know that the lower limit is at least 2.2935.

The fact that B,/(n +1) is always less than the lower limit of B,,/n implies that the lower limit

is equal to the upper limit, as we now demonstrate:

Theorem 4.3 limps Bn/n exists.

Proof: Suppose that the uppez limit u and the lower limit / of B,/n were unequal. Choose some

u’ such that | < u' < u. Now u = inf{k | kn > B, a.e.}, so for our u’ < u, there exists an

infinite sequence {n1,n2,...} where u'n; < Bn,. We also know that for any n, Bn/(n +1) < l.

Combining these two inequalities, we have u'n; < I(n; + 1) for the infinite sequence of n,’s. Thus

u'/l < (ng+1)/n,. As § increases without bound, the ratio on the right goes to 1; therefore u'/I < 1.

But we chose u’ to be greater than /, hence contradiction. Our assumption that u > ! must be

false, proving the theorem. oO

It seems to be much more difficult to get upper bounds on the limit of B,/n. The bound of 3

shown in theorem 4.2 can be improved using a variation of the technique used in the proof given

earlier. Consider a sequence Bi, defined as follows:

Bn n<N
i n-1 '

By _ 1+ lg > Ft ie nar n>wN (4.16)

k=0

Here N is a parameter of the sequence. The idea is that the new sequence B! is defined to be

identical to B, on all values up to Bh, and obeys the defining recurrence for B, for the values

beyond N, with the ceiling operator replaced by increment. We know that Bi > B, from the

monotonicity of B,. Note that the sequence B! in theorem 4.2 is a special case of the sequence

B' here, with N = 0. Since we have discarded the troublesome ceiling function, the sequence B’

should prove more tractable. We can compute the asymptotic value of B/,/n for increasing values

of N; this will provide an upper bound on the limit of B,/n.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To simplify our analysis, let’s define C’, = 22». So

23n n<WN
c' = n-1

n 2-> C.CL_1-, n>N
k=0

Now consider the generating function c(x) for the Cj:

c(z) = >, Ciz"
n>0

squaring and multiplying by z, we find

rn

ze? (x) = > >, CiCh-1- | 2”

N f[n-1
= >> 5 2PrvBo-a| 2”

n=1 Lk=0

+> b CtCt1-+] 2”
n>N Lk=0

from equation 4.17, the second part of this sum can be written:

-1

> Scie z= LS ote"
n>N 2 k=0 n>N

1 x cy = 3 eC) -ySocez
n=0

1f x
= = |e(z)— >_ 239

2 he n=0

therefore

2xe(x) = c(z) + 3 2 (= arta) - 2° 2”
k=0

(4.17)

(4.18)

(4.19)

Equation 4.19 is just a quadratic equation in c(z) and can be solved using the quadratic formula

(remembering that c(0) = Cj = 1):

c(z) = = [1 - yeeP(z) +1]

where P(z) is the Nth degree polynomial defined by:

N n—1

P(x) = > 2 (= gPrt Bost] _ 2° 2”

n=0 k=0

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.20)

(4.21)

The coefficients of P(z) are simply computed from known values of B,. Observe that P(x) is the

series p(z) truncated to N + 1 terms:

p(x) = > 2 (= port) 2

n20 k>0

= ~-1l+2+ 227 + 225+ grt + 402° + 19226 +... (4.22)

The key to finding the asymptotic behavior of Bj, lies in the analysis of equation 4.20. Calcu-

lating the exact expansion of c(z) seems laborious, since it involves finding the expansion for the

square root of ugly polynomials. However, we are only interested in bounding the values of C!,

asymptotically. Let us first observe that C), = —D,41/4 for n > 0, where D, is the expansion of

(eePQe) +1 = Dae”
n2o0

So it suffices to find asymptotic bounds on the magnitude of D,. Imagine factoring the polynomial

82P(z) + 1 into a product of the form:

the simpler

(1 — 2/r1)(1 — 2/r2)-++ (1 — 2/rw41)

where the r, are the complex roots of the polynomial. Then

V82P(2) +1 = (1~ 2/r1)#(1 — 2/r2)} +++ (1 — 2/ryai)?

Now the expansion of (1 — z/r)}/? is, from the binomial theorem:

z()) nao \" r

The radius of convergence of this series is simply r. Since \/8zP(z) + 1 is a product of factors of

the form (1 — 2/r)*/?, the region of convergence of its expansion will include the intersection of

the regions of convergence of the factors (see Kemp[28, page 92, theorem 4.8]. Therefore the series

Lin>o Dnz” converges for any value of z where |z| is less than the smallest root of 8zP(zx) + 1.

For the series to converge, it must also be true that limpco Daz” = 0. So for any y less than

the smallest root of 8zP(z) + 1, |Dn| = o((1/y)"). Choosing r as the smallest root, we see that

lg|D,| = (—Igr)- n+ o(n). This implies that Bi, = lg |C!| = (-Igr)-n+ o(n), also.

Since By, < By, the value of —lgr is an upper bound on the limit of B,/n. This suggests the

following procedure for finding such bounds:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N || A(8zP(z) + 1) | smallest root | bound on Bn/n

0] 1-82 12500 3.0000

1 + 82? 14645 2.7716

2\| +162° 15772 2.6645

3} +1624 16021 2.6420

4] +6425 16204 2.6256

5 || +320z° 16374 2.6105

10 .16916 2.5636

25 17637 2.5033

50 .17806 2.4896

100 .17830 2.4876

Table 4.2: Upper bounds on the limit of Ba/n

for N -—0...c0

let r be the smallest root of
N n-1

8 > 2 (= 2erttn-s} _ 2-| ghtl +1= 0

n=0 k=0

then the limit of B,/n < —igr

Algorithm C

Using a symbolic algebra package, I computed the polynomial 8zP(zx)+1 for a number of values

of N, and found its smallest root. The result of these calculations! are tabulated in table 4.2. I

have a strong reason to suspect that the values of the bounds given in the table are converging to

about 2.487, since for large values of N there is a root which is just slightly larger than the smallest

one. Since the polynomial for N +1 is strictly greater than the one for N at all positive z, the limit

value of the smallest root (it must converge, since it is monotonically increasing and bounded from

above) lies between these two roots. It is not clear that the bound derived in this way converges

to the limit of B,/n (this seems unlikely, in view of the values in table 4,1). We have only proved

that the optimal encoding asymptotically requires less than 2.5 bits per node.

The optimal algorithm is interesting from a theoretical standpoint, because it provides a lower

bound on the storage needed by any representation of this class. It is also amusing to note that

the difficulty of making the optimal algorithm practical lies in the difficulty of the analysis of its

11 would have liked to go further, but the polynomials were getting too big and ill-conditioned for the symbolic

algebra package to handle.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance. Often in computer science, a simple algorithm will have a very complex analysis,

but that complexity has no direct impact on the implementor. Here, though, the complexity of

deriving an easily-evaluated closed form for B, makes the implementation of the optimal algorithm

impractical. The algorithm is only practical if it is easy to analyze!

4.4 Practical concerns

In the first part of this chapter, a basic method for storing trees in linear space was presented.

Now, variations on that method of a practical nature will be discussed.

4.4.1 Other operations on trees

The family of representations developed in this chapter was designed only to make the common

tree-traversal operations car, cdr, and null efficient. As a bonus, certain other operations dealing

with the size of subtrees and tree numberings can also be implemented efficiently. Obviously,

obtaining the number of nodes in a given subtree is free, since we are storing it anyway. We can

also keep track of the preorder, postorder, or inorder numbers of the nodes as we descend, so it is

also cheap to provide operations to query for them. The following relations make it clear how to

maintain these numbers as we descend in the tree, using the size(T) function counting the number

of nodes in the subtree rooted at T:

preorder(car(T)) = preorder(T) + 1

preorder(cdr(T)) = preorder(T) + size(car(T)) + 1

inorder(car(T)) = inorder(T) - size(edr(car(T)) - 1

inorder(cdr(T)) = inorder(T) + size(car(cdr(T)) +

postorder(car(T)) = postorder(T) - size(cdr(T)) - 1

postorder(cdr(T)) = postorder(T) - 1

Furthermore, we can with reasonable efficiency access nodes by their preorder, inorder, or

postorder numbers, using the above relations. To access a node at depth d by number, it takes

O(dlogn) time (bit accesses) in a tree of n nodes. Since there are only O(n) bits in the entire

data structure, the time required is also bounded by O(n), which is better when the tree is very

unbalanced and we are accessing a node at depth d > n/ logn.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that while moving from one node to a child may take O(logn) time, the total time

to traverse the entire tree is only O(n), since we need to scan each bit in the data only once.

More generally, the time required to fully explore a subtree of m nodes with a root at depth d

is O(m + dlogn), when the whole tree has n-nodes. Another useful observation is that we can

fully explore an inorder subrange of tree from the node with inorder number m, to the node with

number mz (at depths d, and d3) in time O((m2 — m1) + (d; + d2) logn). This bound is derived

from the number of bits we need to look at to scan all nodes in the range.

Another operation that can be efficiently performed using this scheme is testing whether two

pointers (meaning indices into the string of bits) refer to the same subtree. This operation was

taken for granted here, and it simply involves comparing the two indices for equality. But the fact

that we can easily keep track of preorder and postorder numbers means that we can also test if

one node is an ancestor of another. Node a is an ancestor of node 6 if and only if it has a smaller

preorder number and a larger postorder number than 6, or equivalently (see Aho[2, page 82]), when

postorder(a) - size(a) < postorder(b) < postorder(a)

If we resolve to always store the lexicographically smaller subtree first (rather than the storing

the one with fewer nodes first, and breaking ties at random), then we can also check two subtrees

for structural isomorphism in time proportional to the number of nodes they contain by checking

their bit strings for equality. If we wish to check two trees for similarity (isomorphism where we

disregard the distinction between left and right children), we check their bit strings for equality,

ignoring the Left-child-first? bits. .

4.4.2 An improvement that obviates dynamic counts

Suppose we don’t really need to perform any of these operations that make use of the count of the

nodes in the current subtree. Can we avoid keeping track of this count while traversing the tree?

In our current scheme, there is a need to keep this value on hand during tree traversal: without it

we cannot tell when we have reached a leaf, and we would go “off the trolley,” marching down into

another part of the bit string. Happily, it is possible to modify our scheme to avoid maintaining

this dynamic node count while still keeping the basic operations efficient.

We now wish to represent a position in the tree as a simple index into the string of bits. As

before, the position will be the head of a recursively defined block of bits. Conceptually, the simplest

modification to the old scheme we could adopt would be to add a bit to the header telling if the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subtree stored second (the larger subtree) is empty. (We can always tell if the subtree stored first

is empty by decoding the node count in the header.) But if the larger subtree is empty, then the

smaller subtree is empty too, and the current tree is a leaf node, so this new bit is only set at the

leaves. If our encoding of the integers R has some unused codes we can, instead of reserving a

new bit in all the headers, choose the shortest unused code (this is 100 in the scheme examined

in section 4.2.1) and assign it to encode the leaf nodes. If we run across this special code when

decoding the header, we know we are at a leaf, so this change is sufficient to allow us to use the

four bit per node scheme. Except that now, the scheme requires more than four bits per node. By

an analysis too similar to that done in section 4.2.1 to merit inclusion, we find that with the special

leaf encoding, Bn = [9n/2] — 2l(n) — 2, which is exactly [n/2] bits more than we used to need.

The asymptotic constant of proportionality has risen to 4.5 bits per node.

As an alternative to modifying the four bit per node scheme by adding a special leaf code,

there is a perhaps more direct (and more efficient) way to avoid the need for dynamic node counts.

We can cross-breed the marked preorder sequential scheme (mentioned in the introduction) with

our scheme. We will keep our recursive preorder layout; for each node, we will have the first two

bits in the header be the Left-child-empty? and Right-child-empty? flags telling which of the

children are missing. The rest of the header will only be present when these first two bits are 00,

indicating that both children are present. The rest of the header consists, as before, of an encoding

of the number of nodes in the smaller of the two subtrees, plus the Left-child-first? bit. The

encodings of the subtrees follow the header, with the smaller subtree first. A leaf node is encoded

very simply as 11. All this is depicted in figure 4.7 |

Notice that we never need to define R(0) here, since the second part of the header is only present

when both subtrees are non-empty. Our analysis is made very simple by the following choice of R:

R(i1) = 1

R(n>1) = O-R(|n/2])- [n mod 2}

so the corresponding representation length function r is defined by:

r(1) = 1

r(n > 1) r(|[n/2]) +2

This representation is simple to understand. A positive integer n is represented by its standard

binary representation, prefixed by the string olls"], To decode, count the number of leading 0’s

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

header Tree with both children non-empty:

fo [o| Rm) 4] representation of smaller subtree | representation of larger subtree |

a YA Left-child-first? bit
prefiz encoding of m, the number of nodes in amaller subtree

Right-child-empty? bit

Left-child-empty? bit

Tree unth left child empty: Tree with right child empty:

[1]0] representation of right subtree | [oli] representation of left subtree |

XQ Right-child-empty? bit Y Right-child-empty? dst

Left-child-empty? 5st Left-child-enpty? b:t

Figure 4.7: Layout of a binary tree using child-empty? bits

until you come to the first 1. After that, read as many more digits as you encountered leading 0's.

Note that r(n) = 2I(n) + 1. The recurrence for By, is

B,a= cee to® Xa) [r(k)+3+ Bet Bn-1-«] (4.23)

Note that this recurrence is correct even in the boundary case of k = 0, where the second part of

the header is omitted, because (even though R(0) is undefined) r(0) = 2/(0) + 1 = —1 and Bo = 0,

so the quantity in the brackets is -1+3+0+ By-1 = Bn-1+ 2.

The new r(n) is exactly 2 less than the old one from equation 4.3. This is exactly compensated

by the extra 2 in the bracketed quantity in equation 4.23 compared to equation 4.6. Therefore, the

same analysis can be recycled, giving B, = 4n — 2I(n) — 2 here as well.

We have recovered the asymptotic half bit per node painlessly. We can use this improved scheme

without keeping track of the number of nodes in the current subtree (but we can still keep track of

this value if we choose to).

4.4.8 Moving up

So far, we have concerned ourselves only with tree traversal operations that move downward in the

tree. Sometimes we want to move upward, back to our parent. In the representation presented here,

as in the standard pointer representation, we may choose to keep a stack of nodes encountered on

our downward path, and move upward by simply popping the stack. In the standard representation,

it can sometimes be advantageous to store an additional explicit static upward pointer at each node,

to avoid the dynamic space overhead of maintaining a stack.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This option is available to us in our linear space representation as well, at a cost of increasing

the number of bits stored per node. We modify the scheme presented in the last section that allowed

us to traverse the tree downward without maintaining a dynamic node count. Two more bits are

added to the first part of the header: I-am-only-child? and I-am-first-child?. If there is a

second part to the header, we replicate this second part and include it between the encodings of

the children. The general (neither child empty) case of this complex layout is shown in figure 4.8.

Tree with both children non-empty:

[0/0 0404] Ho | representation of smaller subtree | He | representation of larger subtree |

second part of header (2 x):

I-am-first-child? bt R(m)

I-am-only-child? bit L 7 4)

\ Right-child-empty? bt prefiz code

Left-child-empty? bit Left-child-first? bit

Figure 4.8: Layout of a binary tree to allow upward traversal

The basic idea here is that string of bits immediately preceding our current block now gives us

an idea of how many bits backward we necd to skip to get to the start of our parent’s block.

It is also necessary to use a new encoding function R. Since we will be scanning through the

encoded integer both forwards and backwards, we need an encoding that is self-terminating in both

directions. Here is one such encoding: R(1) = 0; form R(n > 1) by taking the standard (|log | +1)

digit binary representation of n, removing the most-significant bit (a 1) and shuffling the remainder

into 10l!°s"]-14, To decode (in either direction), read the first bit. If it is a O the number encoded

is 1. Otherwise, continue reading bits, looking for a 1 in an even position marking the end of the

number. The bits from the odd positions (with the leading 1 bit restored) are the standard binary

encoding of the number (when taken in order of increasing position in the bit string). This R has

the same length function as the previous encoding: r(n) = 2/(n) + 1.

Traversing down in the tree is accomplished as before, except that when moving to the larger

child, we must skip the bits in the duplicated header as well. To move up, there are three cases,

based on the values of the bits I-am-only-child? and I-am-first~child?:

1x: In this case, our parent has only a one-part header. Skipping back four bits will take us

to the beginning of our parent’s block.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01: We are the smaller child, stored first. Scan backwards through the whole two-part header

of our parent, ending up at the beginning of our parent’s block.

QO: We are the larger child, stored second. Scan backwards, reading the duplicate copy of the

second part of our parent’s header. Decode the number of nodes n in our smaller sibling

from this, then skip backwards B, bits. We are now at the beginning of our sibling’s

block; the 01 case now applies.

The first part of the header is now twice as large; the second part is always present in duplicate.

Therefore this representation will take exactly twice as much space as the scheme presented in the

previous section: By, = 8n — 4I(n) — 4.

One unfortunate consequence of this upward-capable scheme is that it doesn’t allow us to

maintain the dynamic count of nodes in the current tree. The problem is that when we move up

from a smaller child to its parent, we have to determine how many nodes are in its larger sibling.

This quantity is not to be found anywhere; in fact, the absence of this potentially large number is

directly necessary for the space-linearity of our scheme. Perhaps there is some clever modification

that would allow us to maintain the dynamic node counts while moving upwards, but I haven’t

found one.

4.4.4 Other types of trees

In this chapter, we have so far concentrated on two equivalent types of unlabeled trees: binary

trees and general ordered trees. The classes of labeled trees and of unlabeled unordered trees (both

oriented and free) will now be briefly considered.

In labeled trees, we assume that the nodes of the tree are are all distinguishable irrespective

of their position in the tree. We can think that each node in an n-node tree bears a distinct

integer label from 1 to n. It can be shown that the number of oriented labeled trees with n nodes

is n—!, and it simply follows that the number of unoriented labeled trees is n”~? (see Knuth(29,

section 2.3.4.4]). Taking logarithms, the information content of such trees is @(n logn). A standard

pointer representation, using O(n) pointers of O(log n) bits each, (plus an additional field of Ign

bits storing the label of each node) achieves this informational limit to within a constant factor, so

the techniques expounded in this chapter do not help. This @(nlogn) bound applies even when

we bound the degree of the nodes in our trees. The conclusion is that for labeled trees, we might

as well use the standard pointer representation.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nee mee ne oe

Within the class of unordered trees (those where the children of a node form a multiset, rather

than a list) there are two main types: the oriented (or rooted) trees, and the free trees. The only

difference between these two is that the oriented trees have a distinguished node called a root, and

the edges of the tree are considered to be oriented toward (or away from) the root. The number of

oriented trees of n nodes is at most n times as great as the number of free trees of n nodes, since

each free tree plus a choice of root equals an oriented tree. The information content of an n-node

free tree is therefore at most Ign bits less than that of an n-node oriented tree, so the asymptotic

number of bits per node required for the two are the same. Let us consider all unordered trees to

be rooted, since this only engenders the small extra cost of lg n bits.

The unordered trees of n nodes are no more numerous than the ordered ones, since the order

of the children in each unordered tree can be fixed arbitrarily, giving distinct ordered trees. We

can certainly store an unordered tree by arbitrarily ordering the children of each node, and then

using the techniques described earlier in this chapter. What loss in efficiency do we incur by doing

this? The number of unordered trees with n nodes was shown to be k" - @(n—5/?) by Pélya[40],

and Knuth[29, section 2.3.4.4, exercise 4] gives the value of k = 2.95576. The number of bits stored

per node must be asymptotically lg 2.95576 = 1.56353, compared to 2.0 for ordered trees. There

is leas information here, by a constant factor. Since our methods for storing binary trees in linear

space are already suboptimal by a constant factor, the situation is no different when the method

is applied to unordered trees (except that the constant is worse).

Rather than use an arbitrary ordering of the children, we can choose some canonical ordering,

and take advantage of the constraints implicit in the chosen ordering. This can yield a smaller

constant factor. For example, if we are dealing with unordered binary trees (unordered trees of

maximum degree 2), we do not need to store the Left-child-first? bits, and we do not need

two bits for Left-child-empty and Right-child-empty. We can represent leaves by a single bit,

and have one additional bit in the non-leaves to tell if the tree has both children non-empty. An

analysis of this scheme reveals an asymptotic performance of 33 bits per node, using an encoding

of the integers with r = 2I(n) +1. It is very likely that a little more research into this area will

yield more efficient schemes than this.

When representing unordered general trees (as binary trees) we should arrange the children of

each node in lexicographic order. As we proceed from a node to its Next-sibling (its cdr), we

know that the number of nodes in the First-children (the cars) will be non-decreasing. While

traversing downward, we can remember both the number of nodes n in the current subtree, and

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a lower bound on the number of nodes m in the First-child of that subtree. Just as was done

in the optimal variable encoding, we can choose a different encoding function Ram for each n and

m (mapping [m...n — 1] into bit strings), and find a minimal value of Bam. (Observe that for

such trees, the First-child will always contain fewer nodes than the Next-sibling, unless the

Next-sibling is empty.) The complete analysis of this construction is an interesting open problem.

4.5 Conclusions

When are the schemes presented in this chapter really useful? There are a few conditions to be

met:

e The trees are static.

e The amount of extra information stored at a node is small compared to the size of a standard

pointer.

e Economy of space is more critical than speed.

The first condition is obvious. Updating the structures described in this chapter would require a

great deal of bit copying. If the amount of extra information to be stored per node is much larger

than the size of a pointer, then the savings realized by our scheme will only be a fraction of the total

space needed, and the extra complexity and slowness are probably not worth it. Finally, it is clear

that our scheme will be substantially slower than a standard pointer implementation. Computers

are fast at doing indirect addressing with word-size pointers, and slow at extracting information

from memory a bit at a time. This is more a reality of current hardware than a necessity, since a

fast hardware decoder of variable length integers could be devised. Ultimately, the bottleneck will

be the fixed bandwidth of the channel between the processor and the memory.

A few more words should be said about the encoding of the extra information in the nodes. If

each node has a constant number of bits of extra information, we have two choices:

1. We can store the per-node information directly in the bit stream, right after (or before) the

header. If we have k extra bits, we simply adjust the function B, to be By, + kn.

2. We can store the per-node information in a separate array, indexed by one of the tree num-

berings.

Which of these methods we choose is mostly a matter of style.

70

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 Open Problems

The research described in this chapter is really just a beginning; many interesting probiems re-

main open. Foremost among these is the question of whether or not it is possible to achieve the

information-theoretic limit of two bits per node, while maintaining the efficiency of traversal op-

erations. An affirmative answer to this question is shown in the next chapter, using a radically

different scheme.

Perhaps the method of arithmetic coding can be used to recover the fractional bits lost in the

optimal variable encoding. It is difficult to see how to make this idea work, since we would have to

“jump” into fractional bit positions.

Another important question is: what is the optimum number of bits per node under uniform

encodings? Assume we do not keep track of the number of nodes in the current subtree, and

only keep an index into the stream of bits. Variable encoding schemes require us to maintain the

dynamic node count. Perhaps it is easier to show lower bounds in this weaker model.

Here is another puzzler: Is there a fast way of calculating the optimal B,? If this could be

done in logarithmic time, it would be an important step in making the optimal algorithm practical.

Even a somewhat faster (better than the O(n?) algorithm derived from the recurrence) would be

nice, just to allow calculation of more values of B,. The convoluted form of the defining recurrence

suggests that an O(nlogn) algorithm based on the FFT may be possible.

If an efficient means of calculating general values B,, eludes us, it may still be possible to calcu-

late values for all practical values of n (less than a billion, say) without storing a large table. There

may be small circuits to compute B,. For example, the values of B,, (for small n), can be described

as the floor of a piecewise-linear function with a relatively small number of segments. Witness table

4,3, which shows that for n < 100000, only 46 linear segments are needed to approximate B,. A

table such as this is a useful first step in making the optimal algorithm practical. We would still

need a scheme for finding a satisfactory R, (one that could be quickly decoded) to use such a table.

Finally, it still remains to get a good upper bound on the limit of B,/n. The upper bound

from the sequence of “delayed roundup” generating functions appears to converge to a value above

limn—co Bn/n. What is the reason for this?

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interval Ba=|...] Interval Bi=|...|
25n< 22 2.033333 -n— 2.566667 13961 <n < 15519 | 2.292492 -n — 19.476375
23<n< 48 2.224747 -n— 6.113636 15520 <n < 18312 | 2.292516 -n — 19.843489
49<n< 94 2.254032 -n-- 7.322581 18313 <n < 19946 | 2.292532 -n — 20.135994
95 <n < 152 2.273864 -n— 8.971591 19947 <n < 21515 | 2.292541 -n — 20.319023

183 <n < 244 2.282202 -m — 10.164103 21516 <n < 24065 | 2.292548 -n — 20.472911
245 <n < 551 2.286002 -n — 10.999136 24066 < n < 26027 | 2.292555 -n — 20.629614
552 <n< 717 2.288976 - n — 12.503472 26028 < n < 28570 =| 2.292567 -n — 20.921727
718 <n < 855 2.289597 -n — 12.917241 28571 <n < 33919 | 2.292577 -n — 21.212190
856 <n < 1213 2.290382 - nm — 13.550759 33920 <n < 37412 | 2.292584 -n — 21.465772
1214<n< 1481 2.290957 -n — 14.212939 37413 <n < 40570 | 2.292590 -n — 21.665376
1482 <n < 1735 2.291283 -n — 14.676910 40571 <n < 43082 | 2.292594-n — 21.817455
1736 <n < 2911 2.291647 -n — 15.297429 43083 <n < 45987 | 2.292598 -n — 22.008348
2912 <n < 3233 2.291779 -n — 15.640428 45988 <n < 48393 | 2.292601 -n — 22.141789
3234 <n < 3733 2.291980 -n — 16.260426 48394 <n < 55628 | 2.292605 -n — 22.313719
3734 <n < 4137 2.292049 - n — 16.508203 55629 <n < 58902 | 2.292608 -n — 22.489890
4138 <n < 4979 2.292144 -n — 16.887125 58903 < n < 63003 | 2.292611 -n — 22.683609
4980 < n < 5636 2.292227 -n — 17.291437 63004 < n < 69421 2.292614 -n — 22.846136
5637 <n < 7456 2.292299 -n — 17.688497 69422 <n < 73891 | 2.292617 -n — 23.074457
7457 <n < 8636 2.292368 - n — 18.187833 73892 <n < 76953 | 2.292619 -n — 23.187472
8637 < n < 9874 2.292401 -n — 18.461952 76954 <n < 87957 | 2.292621 -n — 23.327815
9875 <n < 11064 | 2.2924384-n— 18.789478 87958 <n < 91183 | 2.292621 -n — 23.400569

11065 <n < 12736 | 2.292457 - n — 19.029091 91184 <n < 96972 | 2.292624 -n — 23.598943
12787 <n < 13960 | 2.292481 -n — 19.323283 96°73 <n < 100362 | 2.292625 -n — 23.727124

Table 4.3: Piecewise-linear B,, for 2 <n < 100362

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Techniques of abstract optimization

This chapter develops some basic tools for abstract data optimization. Several applications are

presented, including schemes for storing trees in optimal space {improving the results from chapter

4), doing random-access Huffman coding, and storing planar graphs in linear space (with searching).

We begin by exhibiting a space-efficient data structure to represent ordered sets.

5.1 Ranking and selection

Ordered sets are a most fundamental data type. Given a static subset of 1...n, it is trivial to

design a data structure that supports membership testing in optimal space; a simple bit-vector will

do. If the set is sparse, with m elements chosen from 1...n where m <n, we desire to store the

set in lg (*) bits, which is roughly mig =. Various hashing techniques allow us to approach this

limit.

What if we desire a richer set of set operations? Two very useful operations on a subset S of

1... are:

rank(m) Returns the number of elements in S less than or equal to m.

select(m) Returns the mth smallest element in S.

These are inverses of each other, in the sense that rank(select(m)) = m, for1<m < ||S||,

and select(rank(m)) = m, form e€S. These operations can, of course, be performed directly

when a bit-map implementation is used, but that would be very inefficient. We generally must

perform a linear scan through the bits to rank and select, so the worst-case cost of these operations

is O(n).

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ranking and selection are basic operations that can be used to implement a variety of useful

functions on ordered sets. For example, let j,k <n, and me€ S:

rangecount(j,k) Returns the number of elements in S in the interval j...k.

This is rank(k) - rank(j— 1).

next(j7) Returns the smallest element in S greater than j.

This is select (rank(j)+1).

prev(j) Returns the largest element in S less than j.

This is select (rank(j —1)).

skip(m,j7) Returns the element in S that comes j positions after m in a sorted list.

This is select (rank(m)+)).

One way to add the operations of ranking and selection to a bit-map implementation of a set

data type is to augment the bit-map with an auxiliary structure which we shall call a directory.

This data structure will help make the additional operations efficient.

The term directory is taken from Elias{12], where he examines a similar problem: efficient

ranking and selection in multisets (which he calls inventories). For multisets, there is a pleasing

symmetry between ranking and selection, which Elias exploits. However, his scheme is only efficient

in the average case. The number of bit-inspections required for any particular operation may be

large, but when averaged over all possible inputs he gets logarithmic performance. This average-

case efficiency is not good enough for us, since we plan to use ranking and selection as tools. Once

they are incorporated into another algorithm, it will be difficult to describe the distribution of

inputs to rank and select in a meaningful way. Still, Elias’s construction is the inspiration for the

two-level directory structure we develop later in section 5.1.1.

Simply storing all the precomputed values of rank(m) and select(m) would produce a kind of

directory. Since the range values are 1...n, we need about Ign bits per value stored. So the space

for this would be O(n logn), which is unacceptable. The term directory implies that the auxiliary

data is not too large compared to the bit-map itself. We know that there is a great deal of “fat” in

this representation, since the values don’t change much from one to the next.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1 Ranking directories

To achieve good performance with small directories, we will have to be a little more sophisticated.

For now, let’s restrict our attention to the problem of creating a directory to make ranking efficient.

We will add in extra information to facilitate selection later.

One-level directories

Rather than storing all the precomputed values of the rank operation, we will store only a fraction

of them. The other values can be reconstructed by interpolation, by counting 1 bits in a small

region of the bit-map. If we store some of the n values, with equal spacing k between each stored

value, we can compute rank(m) by computing |m/k], doing one table lookup, and then scanning

through at most k bits of the bit-map adding up 1’s to get the desired answer. This requires about

(n/k) ign bits in the directory (which is organized as an n /k element array of numbers, each of Ign

bits), and does Ign + k bit accesses in the worst case to compute ranks. The choice of k produces

a trade-off of space for time. The bits are chopped up into consecutive blocks of size k, and the

information in the directory limits our inspection of the bits from the bit-map to a single block.

Choosing k = Ign gives a scheme that uses O(n) space (in bits) and takes O(log n) time (in

bit-accesses). The time used is within a constant factor of optimal, as is the space. But we would

really like a scheme that uses 1+ 0(1) times the minimal number of bits; since we are retaining the

n bits in the bit-map, we want the space for the directory to be o(n).

If we choose k to grow faster than logn, say log? n, we need only O(n/ log n) bits, but the time

increases to O(log? n). (We can choose any monotonic unbounded f(n), set k = f(n)logn, and

achieve O(n/f(n)) space and O(f(n)logn) time). This gets the space down to where we want it,

but now the time grows too quickly.

Two-level directories

The directory schemes proposed above are one-level schemes. We know how many bits in positions

less than m are 1’s (except for those in the same block as m) with a single lookup in the directory.

Since the maximum number of 1 bits in a block is & (which is small) the values in the directory

still don’t change too much from one to the next. This suggests using 4 multi-level directory to

recoup some of the space lost to this redundancy. As long as the number of levels is bounded by

a constant, we need only inspect O(log n) bits of the directory. If the final, smallest block size is

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ign, this will lead to a total time of O(log n).

Let’s consider two-level directories. The first-level directory is simply a one-level directory, with

block size 7. Each block is treated as a independent subset of 1...7, with its own directory (with

block size k) forming the second level directory. This is shown in figure 5.1. To find rank(m), we

first-level directory:
n/jz blocks

rank(0) | rank(j) | rank(2)) | eee I

Ign bits

lg 7 bits
as

LLL. --_LII1 - CTT: TE
rw ani

g[k blocks
‘wa

J

n/j second-level directories

Figure 5.1: A two-level directory for set ranking.

first compute the first-level block number 6, = |m/j|. We look up the value of rank(j- 61) in the

first-level directory, a table of n/j numbers each of Ign bits. Then we proceed to the appropriate

second-level directory. We compute the second-level block number 62 = |(m mod j)/k]. Then we

look at element number 63 in the second level directory; this will be rank(k - 62) in the subrange

(by > j).-.(b1 «7 + b2- kt). Adding this value to the value from the first-level directory gives the

number of 1 bits in the whole set, except for those in the same second-level block as m. These last

few bits (at most k) can be scanned directly in the bit-map and added in to get the total value of

rank(m).

The extra space required by this scheme is as follows: (n/J)-lg n bits for the first-level directory;

n/j second-level directories at (j/k) -1g7 bits each for a total of (n/k) + lg 7 bits. The number of

bits accessed is: Ign in the first-level directory; lg 7 in the second level; and at most & in the

bit-map itself. The total time is therefore O(logn + k). Choosing k = lgn to make the total time

O(logn), the total space used is n - ((Ign)/j + (Ig j)/(Ign)]. This space is at a minimum when

j =|gn-lInn. The space needed at this value of 7 is 2nInInn/ Inn + O(n log~! n) bits, which is

O(n log log n/ log n) = o(n). Since the extra space for the directory becomes a vanishing fraction of

the space for the bit-map itself, the two-level directory scheme achieves the time and space bounds

we seek simultaneously.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since two levels outdo one, it is tempting to try using the same scheme with more levels to

get better results. However, this doesn’t lead to improvement over the 1 + O(log log n/ log n) bit

per element ratio that the two-level scheme realizes. Observe that the bulk of the space in any

multi-level directory will be found in the bottom level. If the block size at the bottom level is k(n)

and the block size at the penultimate level is j(n), the total space used by the bottom level will be

(n/k(n)) - lg j(n). We know that j(n) > k(n), and we require k(n) = O(log n) to achieve the time

bound of O(log n) bit-accesses. The number of bits in the directories per element must therefore

be {2(log log n/ logn). This is not to say, however, that some fundamentally different scheme could

not achieve better performance.

5.1.2 Selection directories

Now that we know how to construct a succinct directory to make ranking efficient, we would like

to do the same thing for selection. First, note that a directory that does ranking in time ¢(n) can

be used to do selection (with no additional space) in time t(n) -lgn, by binary search. If we seek

the mth element in the set, we start by doing rank(|n/2|) and compare the returned value with

m to determine in which half of 1...n the value of select(m) lies. After lgn such bisections, we

will know the value of select(m) exactly.

While this is better than no directory at all, it doesn’t get us down to the bound of O(log n)

bit inspections we are after. The ranking directories we built require O(log n) time per operation,

so this binary search technique will only get us down to O(log? n).

Another line of attack is to do what we did when building the ranking directories: keep a

table of precomputed values of select(m) for m a multiple of some suitably chosen 7. Then to

find select (m), we can look up the value of select(j + |m/j|), and begin scanning the bit-map,

starting at the returned position until m mod j more 1 bits are encountered. The problem with

this idea is that the number of bits we need to scan through in the bit-map may be very large in

the worst case (where the set is sparse).

Putting the ideas together

Neither of the two ideas proposed above is powerful enough to get us the O(logn) time bound we

are after by itself. But if we skillfully combine them, we can make things work.

Assume we have the optimal two-level ranking directory of the previous section available to us.

If we knew which second-level block contained select(m), we could compute the rank of the first

17

ee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

element in that block, and look through at most lgn bits in the bit-map to find the value we want.

This means that once we locate the second-level block containing select(m), we need only look

at O(log n) more bits to get the exact value.

What if we knew which first-level block contained select(m)? We could compute the rank of

the first element in that block, subtract from m, and do binary search to find the second-level block

containing select(m). The binary search would require only |g 7 bisections, and each bisection

would require us to inspect a number with only lgj bits, for a total of lg? 7 bit-inspections. We

chose j = Ign- Inn, so this works out to O((loglogn)’?) = O(logn) time. This, together with

the result of the previous paragraph, shows that if we could locate the first-level block containing

select(m) in O(log n) time, we could compute the exact value in O(log) time.

We are still left with the problem of finding the correct first-level block. A binary search of

the whole first-level directory would be too slow. But we can use a table of precomputed values of

select(m) to find a subarray of the first-level directory to start the binary search. Furthermore,

if we know that the values in that subarray are in the range a...(a + 5), we need only inspect the

Ig 6 least significant bits of the numbers in the subarray. The other bits can be deduced from the

value of a.

In our precomputed table of select(m) we will store all values where m is a multiple of

j=|Ign-lnn]. If we want to find select(m) for m not a multiple of 7, we know that the answer

lies between select(j-|m/j|) and select(j- [m/j]), both of which can be obtained via table

lookup. Dividing these upper and lower bounds by j, we get a pair of values that bound 5), the

first-level block that contains select(m). We can use these indices to define the subarray of the

first-level directory on which we start the binary search. We know that in this initia] subarray,

there are at most 37 elements of the set (at most 7 in the first block, at most 7 in the last block,

and at most j in between).

At this point we run into a smal! problem. The upper and lower bounds we get out of the

table might be quite far apart, if the set is very sparse in this region. Luckily, there is a simple fix

for this problem. We will prepare a compressed ranking directory consisting of the values in the

first-level ranking directory with duplicates removed. Also, we prepare a two-way index between

the compressed and non-compressed ranking directories. The index will store, for each value in the

non-compressed ranking directory, the unique position in the compressed directory where that value

occurs, and for each value in the compressed directory, the first position in the non-compressed

directory where that value occurs.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With the aid of the compressed ranking directory and the two-way index, we can use the bounds

from the table of select values to start the binary search with a small subarray. After finding the

upper and lower bounds from this table, we use the non-compressed to compressed index to find a

subarray of the compressed ranking directory. Since there are at most 37 elements in the subarray,

and the subarray is strictly increasing, the subarray is at most 37 long. We can then perform binary

search through this subarray of the compressed directory with only lg 37 = O(log log n) bisections,

and use the compressed to non-compressed index to find 8,, the true first-level block number. As

we remarked earlier, we do not need to inspect all of the bits of the numbers in the compressed

directory to do the binary search either. If we read the first number in its entirety, then we only

need to look at the least significant lg 37 bits of the others, since we know the other values cannot

differ from the first value by more than 37. Therefore each bisection can be performed using only

O(log log n) time, and the total time for the binary search is O((log log)*) = O(log n).

This completes the demonstration that select (m) can be carried out in O(log n) time. But

we have been pretty free and easy with the space, adding new structures as needed. How much did

we actually use?

Extra space for the selection directory

First we have the table of precomputed values of select. There are n/j = n/(Ig n-Inn) of these at

Ign bits each, for a total of n/ Inn bits here. Then there is the compressed ranking directory, which

cannot be bigger than the non-compressed first-level directory, weighing in at n/Inn bits. Finally,

there is the two-way index. Once again, each of these structures is n/Inn bits. The total additional

space used by the selection directory (not counting the ranking directory) is O(n/logn). Recall that

we previously showed that the two-level ranking directory used O(n log log n/ log n) bits. Thus the

bit-map itself, the ranking directory and the selection directory come to n-[1+ O(log log n/logn)] =

n- (1+ o(1)}.

A summary of selection

Here is a summary of the steps performed in computing select(m). (Remember that 7 is defined

to be [Ign -Inn].)

1. If j divides m, then we can find select(m) by table lookup.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Otherwise, we do two lookups to obtain a lower bound / of select (j|m/j|) and an upper

bound uw of select (j[m/j7]).

3. The subarray of the (non-compressed) ranking directory we want is from locations |!/j| to

[u/j] inclusive. We use table lookup to find the appropriate range !’ to u' in the compressed

ranking directory.

4, We read the value ¢ stored in the compressed ranking directory at location l’. We know that

between /' and u’, all the values are between s and s + 37.

5. Using s, I’ and u’, we do a binary search through a subarray of the compressed ranking

directory. We examine only the least significant 1g37 bits of each number. This yields an

index into the compressed ranking directory of the first-level block holding select(m).

6. We map the index into the compressed directory into the true (non-compressed) first-level

block number using a table lookup into the two-way index.

7. We doa binary search through the second-level index to find which second-level block contains

select(m).

8. Finally, we scan through the bits of the proper second-level block in the bit-map until we find

the right 1 bit. The address of this bit is the value of select (m).

Discussion

The construction used in building the selection directory is indeed ugly. But now that we have

this construction, we can forget about its dirty internal details and freely use selection and ranking

as tools for data optimization. All the other set operations mentioned in the first section of this

chapter are now at our disposal.

There are still several ways in which these rank/select structures could be improved:

e The number of extra bits per universe element goes as loglogn/logn. While this quantity

does vanish as n grows without bound, it does so quite slowly. Even for very large n, it

doesn’t even half as n squares! We would rather use less extra space. An asymptotic value

of something like n!—€ for some positive € would be better.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e The analysis was performed using the data bits model, which counts time in bit-accesses. A

careful examination of the construction of the ranking directory shows that we only examine

a constant number of consecutive strings of bits, and each string examined is only O(log n)

bits long. Therefore ranking can be done in constant time in the wide-bus model, where

aligned fetches of lgn bits only cost us one unit. The same is not true of the construction

of the selection directory. The binary search steps may access a non-constant number of

consecutive bit-strings. So if we employ a selection directory, we do not have the desirable

property of being constant-cost under the wide-bus model. Is there a way to reorganize the

selection directory to achieve constant-cost under the wide-bus model?

Remember that if we improve the performance of the rank/select directory, all the other operations

using ranking and selection benefit.

5.2 Random-access Huffman coding

For a simple first application of ranking and selecting, consider the following problem (which has

nothing to do with linked data structures): We are given a file of Huffman coded symbols. We

would like to prepare a directory to make random access into the unencoded file efficient; that

is, given an index m, find the mth symbol in the original file. We would like to use a vanishing

proportion of extra space for this directory.

This sounds very much like a selection problem. Let us begin by preparing a selection directory

for the set of positions in the (binary) Huffman-coded that begin new symbols in the original file.

If the encoded file is of n bits long, we only use o(n) extra bits for the directory. This means

that if Huffman-coding achieves some compression factor over a fixed-codeword-length encoding,

we can (given long enough files) achieve the same compression factor and enjoy random-access to

the symbols.

Of courae, there is a big problem with the proposed solution. To do selection, we need to store

the original set bit-map as well as the directory. This would double the storage required, which is

unsatisfactory. We can get as far as computing the second-level block in which the desired codeword

begins without storing the bit-map of start positions. But we cannot scan through the second-level

block (the final step in selection) because the blocks are out of synch with the codewords; we do

not know how many bits of this block are part of the the last codeword beginning in a previous

block.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We do not need to store all Ign bits of the second-level blocks to recover this synchronizing

information. It suffices to store, for each of the n/lgn blocks, the number of bits in the block that

belong to a codeword that begins in a previous block. These numbers are at most Ign, so we only

need Iglgn bits each, and only (n/Ign)- (Iglgn) = o(m) extra bits for all of them.

With the select directory (minus the set bit-map) and the synchronizing table, we can find the

start position of the mth symbol in O(logn) time, using only o(n) extra bits.

5.3. Trees in optimal linear space

In chapter 4 we discussed a general scheme for storing trees in linear space while allowing efficient

traversal. The methods described, while simple and practical, failed to achieve the optimal asymp-

totic ratio of two bits per node. Now we shall describe a method, employing rank/select directories,

that achieves this optimum.

First, let us consider the case of binary trees.

5.3.1 Level-order binary marked

When a binary tree is very balanced, we can implicitly represent the tree as addresses in an array.

The root is given the address 1. A node whose address is m has a left child with address 2m and

a right child with address 2m + 1. The “information” at the nodes of the tree can be stored in the

array. This scheme is an efficient choice to represent heaps (see Aho[1, page 87]) since there is no

need for explicit pointers, and no wasted space.

Since we are not interested in the information stored at the nodes, but we are interested in trees

with imperfect balance, we can use the implicit addresses to index an array of bits saying which

nodes are present in the tree and which are not. This implicit-bitmap representation of binary

trees is shown in figure 5.2. This representation is great for searching (we can do car and cdr in

a single bit access!) but it has an obvious drawback: unless the tree is extremely well balanced,

the number of bits needed will be huge. If the deepest node is at depth d, we will need between 24

and 2¢+1 — 4 bits. This is simply unacceptable.

The bit-string corresponding to an unbalanced tree will be full of zeroes that indicate missing

nodes. But once we know that some node is not in the tree, it is redundant to store zeroes telling

us that its children are not in the tree. We can save great deal of the space by leaving out the

bits for non-nodes whose parents are also non-nodes. If there is a O at location m and a 0 at

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

binary tree

; bstmap

~~ 4 [1 | | | [1Jojifololalojojol1j1}
6 6 i) 1 2 3 4 7? 8 8 10 123 123 15 14 16

vig

Se et eT TY eT e
e

T
e

‘ t b.

Figure 5.2: A binary tree and its implicit bitmap.

location |m/2], simply cross out the former. This compressed representation is depicted in figure

5.3. Notice that this representation can also be obtained from the original tree as follows:

binary tree: external nodes added:

level-order bitmap (e = 1, O = 0):

fafz{afa[afo[sjojo[1{ol1jofolojojo}

Figure 5.3: Level-order binary marked representation.

1. Mark all the nodes of the tree with 1 bits.

2. Add external nodes to the tree, and mark them all with 0 bits.

3. Read off the bits marking the nodes of the tree in (left-to-right) level-order.

This construction makes it easy to see that the original tree can be reconstructed from the string

of bits formed. Each such bit string is therefore associated with a unique tree.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

How many bits are there in these level-order mark bit strings? There are n 1 bits (the internal

nodes) and n + 1 0’s, for a total of 2n + 1 bits. This representation is therefore asymptotically

optimal. But in the compression process, we lost the ability to navigate in the tree by simple index

arithmetic. How can we regain the ability to efficiently traverse the tree?

Ranking to the rescue

Suppose we were to represent (internal) node m by the index of where its 1 bit appeared in the

level-order mark bit string. Now, consider the bit string as the bit-map of the set of indices of the

(internal) nodes. We can build a ranking directory for this set. Each 1 bit on level d corresponds

to a node with two children (some of which may be external nodes) on level d+ 1, and these two

children will correspond to two adjacent bits in the part of the string where the level d+ 1 nodes

appear. Also, left-to-right ordering is maintained from one level to the next: If two nodes, a and 8,

are on the same level, and a’s 1 bit is to the left of 6’s, then the adjacent pair of bits corresponding

to the children of a will occur before 6’s pair in the string.

This leads to a very simple algorithm to compute car(m) and cdr(m), for (internal) node m.

car(m) — 2- rank(m)
cdr(m) — 2-rank(m) +1

Algorithm LOB

There is a strong similarity to the implicit addressing scheme discussed earlier. The node m is nil

exactly when the mth bit of the string is a O, since this indicates an external node. The root node

has index 1.

The string itself occupies 2n + 1 bits, and the ranking directory occupies o(n) bits, so the

total space required is 2n + o(n). This is asymptotically optimal linear space. The tree-traversal

operations do a single rank, so they require time O(log n) time under the data-bits model (but only

constant time under the wide-bus model). This improves the results of chapter 4.

If we were also to keep a selection directory, we could find parent(m) efficiently too. This is .

because

parent(m) = select(|m/2})

Now, we turn our attention to general rooted trees with ordered children. We will use both

ranking and selection, together with another 2n bit string scheme (again based on level-order) to

represent such trees.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8.2 Level-order unary degree sequence

A rooted, ordered tree can be represented by giving the branching degree sequence in any of a

number of standard orderings of the nodes. (The (branching) degree of a node in a rooted tree

is simply the number of children it has.) Suppose we write down the degree sequence of a tree,

ordering the nodes in the left-to-right level order employed in the previous section. This sequence

of n positive integers uniquely identifies the tree. Now let us encode these positive integers with

the simplest possible binary prefix code (the “unary” code):

R(0) = 0

R(k>0) = 1-R(k-1) (5.1)

The integer d is represented by the string 140. Let us take the sequence of degrees encoded in

this fashion and simply concatenate them together to form a bit string. Since the codes are prefix

codes, we still can easily find the unique tree associated with a string.

The number of 1 bits in this string is n. Every node except the root is a child of another node,

go the number of 0 bits isn —1. The total length of the string is thus 2n — 1 bits. We will say that

each node is associated with exactly one 0 bit and (except for the root) one 1 bit. To maintain the

“one 1 per node” property, let us add a fake super-root node to the top of the tree, whose only

child is the root. Now each node has a unique 1 bit associated with it, and the string is only two

bits longer.

This bit-string scheme has much in common with the level-order marked binary scheme de-

scribed in the previous section. Figure 5.4 depicts a tree and its level-order unary degree sequence.

An almost identical scheme is described by Read[41, pages 173-175]. This “bottom-up valency

code,” as he terms it, is just one of several correspondences between ordered trees of n nodes and

binary strings of length about 2n that he gives. But Read is only interested in encoding trees as

strings and subsequently decoding them; he does not consider the possibility of performing search

operations directly on these bit strings, ae we do.

We will represent a node m by the index of its corresponding 1 bit in the string, as in the

previous section. Let us build ranking and selection directories for the bit-string and its bitwise

complement. This will allow us the additional freedom to select the mth element not present in the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree: with degrees:

super-root ————-+O 10

degrees concatenated in level-order:

[2 {ojaj2j2]ofijsojoj1joj1jol1lolojojo}

Figure 5.4: Level-order unary degree sequence representation.

set (the mth O bit). We will use the notation rank0 and select0O to refer to the set-complemented

operations.

With this representation, we shall be able to support a rich collection of tree-traversal opera-

tions. In particular, we will be able to efficiently move up in the tree and enjoy random access to

children.

We can test if m is nil, as before, by inspecting the mth bit of the bit-map. The operation

next-sibling(m) is simply an increment of m. In fact, we can find the sibling j after m by

incrementing m by j. This also allows us to access previous siblings, and access children by number

(provided we can find first-children efficiently). Here is the full set of available operations on

(non-nil) node m:

first-child(m) <— selectO(rank(m)) +1

next-sibling(m) —m+1
parent(m) — select(rankO(m))

Algorithm LOUDS

To make random access to children truly useful, we need to know how many children a given node

m has. This is easily computed as:

selectO(rank(m)+1) — first-child(m)

Once again, we have improved the results of chapter 4 by making the linear constant optimal

while retaining logarithmic time in bit-accesses. In this case, we have also provided a more flexible

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repertoire of tree-traversal operations. However, since we make heavy use of selection directories,

we cannot claim constant-time performance in the wide-bus model for this case.

5.4 Planar graphs in linear space

Up until now, we have avoided abstract optimization of graphs. This seems like an obvious gener-

alization of optimization of trees, but there is a fundamental difference.

A pointer-based representation of a tree is very wasteful of information; we have seen that

it uses O(nlogn) bits where O(n) suffice. But for general graphs, a pointer-based adjacency-list

representation is reasonably efficient (for graphs that are not very dense). For a (labeled) graph

of n nodes and m edges, we need lg ((3)) bits. Unlabeled graphs require about lg(n!) fewer bits,

but even then the number of bits needed is 2(mlogm). For sparse graphs, where m = O(n), the

adjacency list representation is within a constant factor of optimal. Itai and Rodeh{25] show that

an adjacency list is close to optimal even for graphs that are fairly dense.

The problem is that there are just too many graphs to be able to represent them all succinctly.

What if we restrict our attention to a particular class of graphs whose number is simply exponential

in the number of nodes? Then the possibility of a linear-space (in bits) representation exists. One

important class of graphs with this property is the class of planar graphs. Planar graphs come up

frequently in computer science, and it would be useful to have a space-efficient encoding for them.

Turén[46] gives such an encoding. His encoding stores a graph of n nodes in 12n bits. It is

possible to encode graphs into trees (and vice-versa) with a simple construction in linear time. But

there is no easy way to do useful graph-traversal on the encoded form of the graph. Soon we will

show how to do this. Let us first briefly summarize Turan’s elegant construction.

5.4.1 Turdn’s construction

We start by embedding the graph G in the plane. This is accomplished in linear time by a number

of well-known algorithms. Next we choose an arbitrary rooted spanning tree T of G. Let the

planar dual of G be G’. Then the edges in G’ that do not cross an edge in T form a spanning tree

T' of G'. Observe that each edge in G is either in the spanning tree T or crosses a unique edge in

T'. If we could represent T’ and 7" and the relationship between them in linear space, we would

have a linear space encoding.

As we saw in chapter 4, trees have a natural representation as balanced strings of parentheses.

The tree 7 can be encoded with one type of parenthesis, and the tree T’ with another. These two

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

balanced strings of parentheses can then be “shuffled” together in such a way that the relationship

between T and 7" is encoded.

The resulting string, encoded in binary, is the encoding of G. Each edge in G is either in T

or crosses one in 7’, and thus accounts for one pair of parentheses in the final string. Since there

are two different types of parenthesis, there are four distinct symbols, so each parenthesis requires

two-bits. Finally, since planar graphs have at most 3n — 6 edges, the number of bits used is:

3n edges 2 parentheses — 2 bits = = 12n bits

planar graph edge parenthesis planar graph

5.4.2 Searching and testing adjacency

Turdn’s encoding gives linear space, but it does not allow efficient searching. With a linked repre-

sentation, we could iterate through the neighbors of a node with only O(log n) bit inspections per

neighbor. We really want an encoding that permits efficient searching. Additionally, we would like

to support adjacency testing with similar efficiency.

Recently, Kannan et al.[27| show how to implicitly represent planar graphs to allow adjacency

testing with O(log n) bit-inspections. Their method makes use of the bounded arboricity of planar

graphs. They decompose a planar graph into (at most) three edge-disjoint spanning trees (using

a famous theorem of Nash-Williams), and then represent each tree separately. Although they still

need O(n log n) bits for the whole graph and they cannot search efficiently, the beauty of their data

structure lies in its implicitness: the graph is fully described by the set of its node indices.

The decomposition of planar graphs into three trees seems like an attractive idea for us, too,

since we already know how to represent trees efficiently. The problem is that we can’t afford the

space required to cross-reference the node indices from one tree to another. Kannan et al.’s scheme

applies to the full class of graphs with bounded arboricity, not just to planar graphs. There are

too many graphs of arboricity two to represent each one in O(n) bits. Still, the idea of edge-

decomposing graphs will prove effective for our problem. We simply need a decomposition that

admits a global indexing scheme for the nodes. Later, we will show how the decomposition of a

graph into pages fits our needs.

5.4.38 Parentheses balancing

We will show a structure that implements the operations of searching and adjacency testing with

the desired O(log n) bit-accesses-per-operation, in a number of bits proportional to n. Heavy use

will be made of ranking and selection. We will also need one other tool: a parenthesis balancer.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The construction of Turén shows how useful trees, and ultimately strings of balanced parenthe-

ses, can be for representing planar graphs. We will not make use of his construction, but we will

make use of balanced parentheses. Let’s first describe and build the tool.

As we mentioned early in chapter 4, a balanced parenthesis string is not a good representation

for a tree if we desire to do tree-traversal efficiently, because we might have to scan through a large

fraction of the string to find a matching parenthesis (much as the text editor I am using does). If I

type an unmatched “}” right now, the editor will pause noticeably before informing me that there

is no matching open parenthesis. Making (static) parenthesis balancing efficient is a job for data

optimization.

Given 2 static balanced string of n parentheses, we wish to build, in space linear in n, a directory

that will make the following operation eff cient:

Find the position in the string of the close (open) parenthesis that matches the open

(close) parenthesis in position m.

Obviously it suffices to solve the restricted problem of finding close parentheses that match open

ones, because we can build a backwards directory to find the open parentheses that match close

ones.

As a primitive first cut, we could simply try to store, for each index m, a pointer to the matching

parenthesis. This obviously fails, since each pointer stored needs to be ign bits in length.

The next refinement is to break the string into blocks of size lgn. We can afford to spend Ign

time checking if a parenthesis has a match within its own block, so we only need to store pointers

for parentheses whose matches lie outside their blocks (let’s call these the far parentheses). The

block in which the parenthesis that matches a far parenthesis will be called the matching block of

that far parenthesis.

We will record the nesting depth at the beginning of each block with only Ign-n/Iign =n

bits. Now we can store the pointers for far parentheses as the block numbers of the matching

blocks instead of exact indices. To find the match for a far parenthesis, we look up the depth

at the beginning of its own block and then scan through that block to find the depth of the far

parenthesis. We next look up the matching block, look up the matching block’s initial nesting

depth, and scan through the parentheses in the matching block until the depth is the same as that

of the far parenthesis we started with. We have then found the matching parenthesis with only

O(log n) work.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is a start, but we are not yet there. It may be the case that almost all of the parentheses

are far; witness this deeply nested string:

C€6CCCCEECCECECECCCCCCCCCC(€(0)))))999)))99999)9))))9)))))

While there may be many far parentheses, two far parenthesis that are near each other in the

string are likely to have matches that are nearby each other. This fact is the key to a succinct

representation of the far pointers.

Let us take our table of far pointers (the block numbers of the matching blocks of the far

pointers) and compress it by removing consecutive duplicates. How will we find which entry in the

pointer table contains the block number of the matching parenthesis for a particular far parenthe-

sis? Easy. We build the set (via a bit-map) of indices of those far parentheses whose matching

block is different from that of the previous far parenthesis in the string (let us call such far paren-

theses pioneer parentheses). Also, we construct a ranking directory for that set. Now, to find the

appropriate location in the table where the pointer for a far parenthesis with index m, we just

compute rank(m) in the set of pioneers.

Now we have a structure that can balance parentheses in O(log n)} time. A picture of this hairy

beast is included as figure 5.5.

The table of nesting depths, the set (bitmap) of pioneer parenthesis, and its ranking directory

add up to only 2n + o(n) extra bits. But what about the compressed pointer table? If there are

more than O(n/logn) pioneers, this table could grow to be more than linear. Any individual block

can contribute Ign pointers into the table. Let us now prove that the total size of this table is not

too large.

Theorem 5.1 The number of pioneer parentheses in a balanced string divided into b blocks ts at

most 26 — 3. .

Proof: Imagine a graph with a node for each block of the string. Lay these nodes out on the

plane in a straight line in order of the blocks. Create an edge between two nodes if there is a far

parenthesis in one that points into the other. The number of edges in such a graph is at least as

great as the number of pioneers in the string, since every pioneer can be mapped to a different

edge. But since our string of parentheses is balanced, none of the edges can cross, and the graph

is outer-planer (that is, it can be embedded in the plane with all the vertices on a single face).

Therefore the number of edges is at most 2b — 3, by a property of outer-planar graphs. Oo

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since each pointer in the table is lg n bits wide, this means the entire table is at most [2(n/ lg n)—

3] -Ign = 2n + o(n) bits.

This completes the description of the linear-space parenthesis balancer. We have built a struc-

ture of 5n + o{n) bits that balances parentheses strings of length n in O(log m) time in bit-accesses

(and constant time under the wide-bus model, since we only use ranking and not selection). Of

course, an obvious open problem is to reduce the constant factor to less than 5 (ideally to 1).

| i vee \

nesting depthe: L 0 i 4 } cee h | one |

Ign bite

Wock 1 block 2 Block }

parentheses: FOTO OOOO ree foo e+ ()))]
ry

(matches for far parentheses)

Bionee f[O001000000010000000 «++ +-++++++seeeeceeeeescneencens en G00) + | Jorn’,
eae

(one entry per pioneer)
compressed

table of [rfien T 2 T 6’ Ts
far pointers: - v 4

lgn bite

Figure 5.5: A structure to balance parentheses

5.4.4 Bounded pagenumber graphs

Instead of describing how to use the tools we have built to efficiently represent planar graphs, we

will actually show how to represent a larger class of graphs, of which planar graphs are a subclass.

This larger class is the class of bounded pagenumber grapha. These are the graphs that have k-page

book embeddings, where k is a parameter of the class. Let us first define the term book embedding,

following Benrhart([5].

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A k-page book embedding of a graph G = (V,£) is a printing order of V (a permutation

specifying the ordering of the nodes along the spine of a book), plus a partition of E into k pages.

The edges on a given page must not intersect, and all pages share the same printing order of the

nodes.

The pagenumber (or book-thickness) of a graph G is the minimum number of pages in any

book embedding of G. Let G, be a class of graphs ail of whose pagenumber is bounded by k.

Given a particular graph G € G,, and a correct k-page embedding of G, we will show how to visit

neighbors and test adjacency in G. For G with n nodes, we will use only O(log) bit-inspections

per operation, using a representation of G with total number of bits linear in n (for fixed k). The

number of bits used will actually be O(kn).

Let us first build up a representation of G. To make things simple, we will start by showing

a linear-space representation for one-page graphs (these are exactly the outer-planer grapl.s) and

then generalize.

One-page graphs in linear space

The edges on a given page of the graph all lie to one side of the nodes (which are on the spine)

and may not cross. If we lay our “book” so so that the spine is horizontal (as shown in figure 5.6)

we observe that the nesting structure of the edges is just that of a balanced string of parentheses.

e (CC © ¢ ° C e)) ° ¢ e))

Figure 5.6: One-page graphs as balanced parentheses

We start with a string of n node symbols each, denoted by e. For each edge (u,v) on the page, we

insert a ‘(’ just before the (u + 1)st node symbol and a ‘)’ just after the vth node symbol. (Note

that the parentheses in the string remain balanced after each such insertion.) The final result is

a string over a 3 symbol alphabet, containing n node symbols and at most 2n — 3 each open and

close parentheses (from the properties of outer-planer graphs discussed earlier). The parentheses

between the mth and the m+ lst node symbol correspond to the set of edges out of node m.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let us further encode this 3-symbol string into a pair of strings of bits. First, we will record the

sets of positions occupied by node symbols as a bit map. Term this the node map. Next, delete

the node symbols and record the remaining parenthesis string in binary. These two strings allow

reconstruction of the original graph, and use at most [n+ 2(2n — 3)]+ [2(2n — 3)] = 9n — 12 = O(n)

bits.

These two bit strings are at the heart of the linear space representation of G. Additionally, we

will construct and employ the following optimization tools:

e A matcher for the parentheses string.

: @ Arank/select directory for the node-map and its complement.

These tools will require extra space, but the total storage used will still be O(n).

We shall use the natural numbering provided by the printing order as our indices for the nodes.

When iterating through the edges leaving a given node, we will store an index into the parenthesis

string as edge indices.

Searching

With these structures, searching around in G is little more than matching the parentheses. Each

edge in G is associated with a pair of matching parentheses. To follow an edge, given the index of

one of its associated parentheses, simply find the matching parenthesis. We will also make use of

two simple macros: node-to-edge converts a node number into an index into the parenthesis string _

where the edges (parentheses) out of that node start, and edge-to-node takes an index into the

parenthesis string and finds the number of the node whose block contains that edge (parenthesis):

node-to-edge(m) = rankO(select(m) + 1)

edge-to-node(e) = rank(selectO0(e))

Now we can write the algorithm to visit the neighbors of a node given by its index number:

e+ node-to-edge(m)
while edge-to-node(e) = m

e' — paren-match(e)
visit edge-to-node (e’)
emer+l

Algorithm NEIGHBORS: visit the neighbors of node m

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This algorithm performs only a constant number of rank, select, and parenthesis matching

operations between the nodes it visite. Therefore it can be used to search with only O(logn)

bit-inspections per edge examined.

Testing adjacency

Another frequently desired operation is adjacency testing: is there an edge between node u and node

v? This operation is not efficiently implemented by adjacency-lists, but with our data structure, it

is cheap.

First, we need an easy theorem. Say that an edge (u,v) out of node v is a forward edge if u

comes after v in the printing order, and a backward edge otherwise. Also, let us define the length

of an edge (u,v) to be |u — v|, where u and v are printing order numbers.

Theorem 5.2 Let graph G = (V, BE) be embedded in one page, and let u and v be two nodes from

V given by printing order number, with u before v. Then e = (u,v) & E tf and only if either e is

the longest forward edge out of u or e is the longest backward edge out of v.

Proof: The if part is trivial. To show the only if, use proof by contradiction. Assume that

e = (u,v) € E, but that the longest forward edge out of u is not e (so it must be (u,v), for some

v' that lies ahead of v), and that the longest backward edge out of v is not e (it must be (u’, v), for

au’ before u). But the edge (u,v’) would have to cross the edge (u’,v), violating our stipulation

that G be embedded in one page. oO

Each edge (u,v) is a forward edge out of one of the nodes it impinges upon, and a backward

edge out of the other. The forward edges correspond to the open parentheses in our string, and the

backward edges correspond to the close parentheses. The edges out of a given node correspond to

a contiguous block of the parenthesis string: first the backward edges appear in order of increasing

length, and then the forward edges appear in order of decreasing length. This ordering of the edges

out of a node makes it easy to locate the longest forward and backward edges, and theorem 5.2 tells

us that we only need to look at these longest edges to determine adjacency in one-page graphs.

To determine where the block of backward edges (close parentheses) ends and the block of

forward edges (open parentheses) begins, we will need to keep an additional rank/select directory

for the parenthesis string. This will permit us to find the next-open-paren in the string efficiently,

using the techniques described in section 5.1, and add only linear extra storage. Here is the

04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm to check the adjacency of node u with node v, assuming u precedes v in the printing

order:

e «~- next-open-paren(node-to-edge (u))

e' — paren-match(e)

f — next-open-paren(node-to-edge(v)) — 1

f' — paren-match(f)

if edge-to-node(e) = u and edge-to-node Ce =v

or edge-to-node(f') = u and edge-to-node(f) =v

return TRUE

else
return FALSE

Algorithm ADJ: Test if (u,v) is an edge.

Like NEIGHBOR, algorithm ADJ performs only a constant number of rank, select and match

operations, and so it requires only O(log n) time.

Graphs of more than one page

In the previous section, we showed how to represent a one-page graph of n nodes in O(n) bits

allowing searching and adjacency testing in O(log n) time. The generalization to multi-page graphs

is direct. If graph G is a k-page graph, we simply represent each of its pages (these are one-page

graphs) separately. All the pages share the same printing order, so node indices are common +o all

pages. To visit all the neighbors of a particular node m, go through each of the k pages in turn,

executing algorithm NEIGHBOR. To test two nodes for adjacency, simply use ADJ to resolve the

question for each page, and take the OR of the results.

So we can represent any G € G, (the class of k-page graplis) in O(kn) bits, with searching and

adjacency testing in O(klogn) time. For any sub-class of graphs with bounded pagenumber, this

becomes O(n) space and O(log n) time. Yannakakis[49] gives a linear-time algorithm that embeds

any planar graph in four pages. Since we have shown the linear-space result for any class of graphs

with bounded pagenumber, it follows for pianar grapns as well.

Room for improvement

The linear factor used by our planar-graph representation leaves much room for improvement. The

constructions given were chosen to maximize clarity, rather than minimize this factor. If the reader

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was strict in accounting the bits used, she will have counted 64 bits per node in the graph (ignoring

the sublinear terms). This is in contrast with Turdn’s construction, which uses only 12 bits per

node (but does not allow efficient searching). Most of the overhead comes from the inefficiency of

the parenthesis matcher, which takes 4 extra bits per parenthesis per direction. If these extra bits

could be eliminated, we would need only 16 bits per node, still 4 short of Turdén’s bound.

I really don’t know if 12 bits per node is asymptotically optimal for planar graphs. I believe

that the formula for the (asymptotic) number of nonisomorphic planar graphs on n nodes is not

known.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] AHo, A. V., Hoporort, J. E., AND ULLMAN, J. D. (1974). The Design and Analysts

of Computer Algorithms. Addison-Wesley, Reading, MA.

[2] AHo, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1983). Data Structures and

Algorithms. Addison-Wesley, Reading, MA.

(3] APPEL, A. W., AND JACOBSON, G. J. (1988). “The World’s Fastest Scrabble Program.”

Communications of the ACM 31(5):572-585.

[4] APPEL, A. W. (1988). “Simulating Digital Circuits with One Bit Per Wire.” IEEE Trans-

actions on CAD/ICAS 17(9).

[5] BERNHART, F., AND KAINEN, P. C. (1979). “The book thickness of a graph.” Journal of

Combinatorial Theory B 27:320-331.

[6] CHAZELLE, B. (1985). “Slimming down data structures; a functional approach to algorithm

design.” Proceedings of the 26th IEEE Symposium on Foundations of Computer Sctence, pages

165-174.

[7] CoMER, D., AND SETHI, R. (1977). “The complexity of trie index construction.” Journal

of the ACM 24(3):428~440.

{8] COMER, D. (1981). “Analysis of a heuristic for full trie minimization.” ACM Transactions

on Database Systems 6(3):513-537.

[9] DANTZIG, G. B., AND FULKERSON, D. R. (1954). “Minimizing the number of tankers to

meet a fixed schedule.” Naval Research Logistics Quarterly 1:217-222.

[10] DILWORTH, R. P. (1950). “A decomposition theorem for partially ordered sets.” Annals of

Mathematics 51:161-166.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] Dino, E. A. (1970). “Algorithm for solution of a problem of maximum flow in a network

with power estimation.” Soviet Math. Dokl. 11:1277-1280.

[12] ELIAS, P. (1974). “Efficient Storage and Retrieval by Content and Address of Static Files.”

Journal of the ACM 21(2):246-260.

[13] ELtas, P. (21975). “Universal Codeword Sets and Representations of the Integers.” [EEE

Transactions on Information Theory IT-21(2):194-203.

[14] ELras, P., AND FLOWER, R. A. (1975). “The Complexity of Some Simple Retrieval

Problems.” Journal of the ACM 22(3):367-379.

[15] EVEN, S., AND TARJAN, R. E. (1975). “Network flow and testing graph connectivity.”

SIAM Journal of Computing 4:507-518.

[16] FIAT, A., NAOR, J., SCHMIDT, P., AND SIEGEL, A. (1988). “Non-oblivious Hashing.”

Proceedings of the 20th ACM Symposium on Theory of Computing, pages 367-376.

[17] FREDMAN, M. L., KOLM6s, J., AND SZEMEREDI, E. (1982). “Storing a Sparse Table

with O(1) Worst Case Access Time.” Proceedings of the 28rd IEEE Symposium on Foundations

of Computer Science, pages 165-169.

[18] FuRST, M., HOPcROFT, J., AND LUKS, EB. (1981). “Polynomial-time algorithms for

permutation groups.” Proceedings of the 21st IEEE Symposium on Foundations of Computer

Science, pages 36-41.

[19] GALLAGER, R. G. (1980). Information Theory and Reliable Communication. John Wiley &

Sons, New York, NY.

[20] GAREY, M. R., AND JOHNSON, D. S. (1979). Computers and Intractability. Freeman,

San Francisco, CA.

[21] VAN DEN HERIK, H. J., AND HERSCHBERG, I. S. (1986). “A Data Base on Data Bases.”

ICCA Journal 2(1):29-34.

[22] Hoporort, J. E., AND Karp, R. M. (1973). “An n°/? algorithm for maximum matching

in bipartite graphs.” SIAM Journal of Computing 2:225-231.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] HUFFMAN, D. A. (1952). “A method for the construction of minimum-redundancy codes.”

Proceedings of the IRE 40:1098-1101.

[24] HUFFMAN, D. A. (1954). “The synthesis of sequential switching circuits.” Journal of the

Franklyn Institute 257:3—4, 161-190, 275-303.

[25] ITAI, A., AND RODEH, M. (1980). “Representations of Graphs.” Acta Informatica 17:215-

219.

[26] JERRUM, M. (1982). “A Compact Representation for Permutation Groups.” Proceedings of

the 23rd IEEE Symposium on Foundations of Computer Sctence, pages 126-133.

[27] KANNAN, S., NAOR, M., AND RuDIOH, S. (1988). “Implicit Representations of Graphs.”

Proceedings of the 20th ACM Symposium on Theory of Computing, pages 334-343.

[28] Kemp, R. (1984). Fundamentals of the Average Case Analysis of Particular Algorithme.

B. G. Teubner, Stuttgart, and John Wiley & Sons, Chichester.

[20] KNUTH, D. E. (1973). The Art of Computer Programming. Addison-Wesley, Reading, MA.
«as

[30] KNUTH, D. E., AND GREEN, D. H. (1981). Mathematics for the Analysis of Algorithms.

Birkhauser, Boston, MA.

[31] KOHAVI, Z., AND Paz, A. (editors) (1971). Theory of Machines and Computations. Aca-

demic Press, New York, NY.

(32] KRAFT, L. K. (1949). “A Device for Quantization, Grouping, and Coding Amplitude Mod-

ulated Pulses.” M.S. Thesis, Electrical Engineering Department, Massachusetts Institute of

Technology, Cambridge, MA.

[33] KUHN, H. W. (1955). “The Hungarian method for the assignment problem.” Naval Research

Logtetics Quarterly 2:83-97.

[34] LesK, M. BE. (1975). LEX — a lezical analyzer generator. CSTR 39, Bell Laboratories,

Murray Hill, NJ.

[35] MALY, K. (1976). “Compressed Tries.” Communications of the ACM 19(7):409~415.

99

eee ee ee ee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[36] MILLER, G. L., AND REIF, J. H. (1985). Parallel tree contraction and its application.

Technical report 18-85, Center for Research ia Computing Technology, Harvard University,

Cambridge, MA.

[37] MINSKY, M., AND PAPERT, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

[38] MoorRE, E. F. (1956). “Gedanken experiments on sequential machines.” in Automata

studies, pages 129-153. Princeton University Press, Princeton, NJ.

[39] PAPADIMITRIOU, C. H., AND STEIGLITZ, K. (1982). Combinatorial Optimization: algo-

rithms and compleztty. Prentice Hall, Englewood Cliffs, NJ.

[40] PGOLYA (1937). “Kombinatorische Anzah]bestimmungen fiir Gruppen, Graphen, und chemis-

che Verbindungen.” Acta Math. 68:145-253. Translated as Combinatorial Enumeration of

Groups, Graphe and Chemical Compounds, by R. C. Read (1987), Springer-Verlag, New

York, NY.

[41] READ, R. C. (1972). “The coding of various kinds of unlabeled trees.” in Graph Theory and

Computing, pages 153-182. Academic Press, New York, NY.

[42] SMITH, H. F. (1987). Data Structures: Form and Function. Harcourt Brace Jovanovich,

San Diego, CA.)

[43] STouT, Q. F. (1980). “Improved Prefix Encodings of the Natural Numbers.” IEEE Trans-

actions on Information Theory IT-26(5):607-609.

[44] TARJAN, R. E. (1983). Data Structures and Network Algorithms. SIAM, Philadelphia, MA.

[45] TARJAN, R. E., AND YAO, A. C. (1979). “Storing a Sparse Table.” Communications of

the ACM 22(11):606-611.

[46] TURAN, G. (1984). “Succinct Representations of Graphs.” Discrete Applied Math 8:289~294.

[47] WEINER, P., (1973). “Linear pattern matching algorithms.” Proceedings of the 14th IEEE

Symposium on Switching and Automata Theory, pages 1-11.

[48] WEINREB, D., AND MOON, D. (1981). Liep Machine Manual, Fourth Edition. Mas-

sachusetts Institute of Technology, Cambridge, MA.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[49] YANNAKAKIS, M. (1986). “Four pages are necessary and sufficient for planar graphs.” Pro-

ceedings of the 18th ACM Symposium on Theory of Computing, pages 104-108.

[50] YAO, A. C. (1981). “Should Tables be Sorted?” Journal of the ACM 28(3):615-628.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

