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Abstract 

Data compression is when you take a big chunk of data and crunch it down to fit iato a smaller 

space. That data is put on ice; you have to un-crunch the compressed data to get at it. Data 

optimézation, on the other hand, is when you take a chunk of data plus a collection of operations 

you can perform on that data, and crunch it into a smaller space while retaining the ability to 

perform the operations efficiently. 

This thesis investigates the problem of data optimization for some fundamental statte data 

types, concentrating on linked data structures such as trees. I chose to restrict my attention to 

static data structures because they are easier to optimize since the optimization can be performed 

off-line. 

Data optimization comes in two different flavors: concrete and abstract. Concrete optimiza- 

tion finds minimal representations within a given implementation of a data structure; abstract 

optimization seeks implementations with guaranteed economy of space and time. 

I consider the problem of concrete optimization of various pointer-based implementations of 

trees and graphs. The only legitimate use of a pointer is as a reference, so we are free to map 

the pieces of a linked structure into memory as we choose. The problem is to find a mapping that 

maximizes overlap of the pieces, and hence minimizes the space they occupy. 

I solve the problem of finding a minimal representation for general unordered trees where 

pointers to children are stored in a block of consecutive locations. The algorithm presented is based 

on weighted matching. I also present au analysis showing that the average number of cons-cells 

required to store a binary tree of n nodes as a minimal binary DAG is asymptotic to n/(} lg n)?/ 2 

Methods for representing trees of n nodes in O(n) bits that allow efficient tree-traversal are 

presented. I develop tools for abstract optimization based on a succinct representation for ordered 

sets that supports ranking and selection. These tools are put to use in a building an O(n)-bit data 

structure that represents n-node planar graphs, allowing efficient traversal and adjacency-testing. 
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other hand, is when you take a chunk of data plus a collection of operations you can perform on that data, 
and crunch it into a smaller space while retaining the ability to perform the operations efficiently. 

This thesis investigates the problem of data optimization for some fundamental static data types, con- 
centrating on linked data structures such as trees. I chose to restrict my attention to static data structures 
because they are easier to optimise since the optimisation can be performed off-line. 
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I consider the problem of concrete optimisation of various pointer-based implementations of trees and 
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and hence minimises the space they occupy. 

I solve the problem of finding a minimal representation for general unordered trees where pointers 
to children are stored in a block of consecutive locations. The algorithm presented is based on weighted 
matching. I also present an analysis showing that the average number of cons-cells required to store a binary 
tree of n nodes as a minimal binary DAG is asymptotic to n/ (Flg n)/ 2, 

Methods for representing trees of n nodes in O(n) bits that allow efficient tree-traversal are presented. 
I develop tools for abstract optimization based on a succinct representation for ordered sets that supports 
ranking and selection. These tools are put to use in a building an O(n)-bit data structure that represents 
n-node planar graphs, allowing efficient traversal and adjacency-testing. 
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1 What is data optimization? 

Small is beautiful. It is good when a piece of data can be made smaller. It is a bad, however, when 

this reduction in size is accompanied by a reduction in accessibility as well, but this is the usual 

compromise made in classical data compression. Sometimes such a compromise is unacceptable. 

The job of an optimizing compiler is to take a specification of operations to be performed on 

data and produce a functionally equivalent specification that is somehow better than the original. 

An equivalence between the original operations and the optimized operations is necessary; given 

the same data, the two versions must behave identically. An optimizing compiler is absolutely 

uncompromising in this regard. 

I call transformations that make data smaller, while preserving important functionality, data 

optimizations. A compiler must be adamant about its optimization, because the computer is 

hard-wired for a certain set of operations. A fixed computer program that accesses a large static 

' external data structure also assumes a particular concrete representation for the data it accesses. 

The analogy of a program optimizer is a data optimizer, which reduces the size of external data 

structures in a way that is transparent to the program. 

My thesis systematically examines the problems of data optimization for some basic data types 

and combinatorial objects. Special attention is devoted to the optimization of linked data structures, 

since these data structures have been traditionally neglected in the study of data compression. 

I place emphasis both on constructing and analyzing provably efficient algorithms and on the 

practical issues of real-world implementation. 

Data optimization is much easier when we can sit back and do it off-line. I have therefore re- 

stricted my attention to static date structures. Extending the work I present to dynamic structures 

(where possible} would be the subject of another thesis. 

2 Concrete optimization 

The transparent transformation that reduces the size of our data can only be possible if we know 

how the program is going to access the data. Thinking of the data structure as a data type with a 

particular set of query operations already implemented, we can change the data so that the program 

does not see any difference. I call this type of transformation concrete data optimization, since the 

program that accesses the data is considered wholely immutable: the low-level operations are have 

concrete implementations. But because we know the specifications of these operations, we have the 
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freedom to change the data, as long as we do it in such a way that the behavior of any program 

that uses the operations does not change. Concrete optimization is most successful when there are 

many equivalent (from the limited point of view of the program) patterns of bits in memory that 

represent the same data object. We are then free to optimize by choosing a succinct pattern. 

Problems of concrete optimization are optimization problems in the classical sense. We are given 

a concrete representation scheme for our abstract data type, along with a collection of routines that 

access the data in the given scheme. Our task is to devise an algorithm that accepts an object of the 

given type and finds a succinct representation within the scheme. Ideally, we strive for an efficient 

algorithm that finds minimal representations. Sometimes we have to settle for an algorithm that 

finds close-to-minimal representations, or one that produces provably succinct representations in 

the average case. 

2.1 A concrete model of linked data structures 

With linked data structures, there are many different, but equivalent, patterns of bits that represent 

a particular object. Let’s adopt a simple but general model for this class of structures. Our linked 

data structures consist of a collection of nodes. Each node occupies a contiguous block of memory. 

The nodes do not necessarily have a fixed size or layout. The nodes contain one or more pointers 

to other nodes, and they may contain other data as well. We are free to do as we please with 

the other information within a node, but we may only move from node to node by dereferencing a 

pointer. | 

The pointers are simply absolute addresses in memory. The specifications of the abstract data 

type do not permit arbitrary manipulations of these pointers; the operations may only dereference 

them. Because the program is not allowed to use the numerical values of the pointers, the mapping 

of the nodes of the linked structure to memory is up to us. The standard scheme for representing 

a linked structure partitions memory so that each node of the structure occupies a distinct block. 

The nodes do not overlap. But we are free choose a mapping of the nodes to memory locations 

that does overlap, to minimize space. When our chosen mapping allows two nodes of our linked 

data object to share the same memory locations, we save space. 

3 Abstract optimization 

The other type of data optimization allows the optimizer some control over the lowest level access 

primitives of the abstract data type. Here, the abstract specifications of the operations are fixed, 

3 
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but their implementation is up to the optimizer. I call this abstract data optimization. 

When doing abstract optimization, we actually design the format of the data structure. (In 

concrete optimization, this format is already fixed.) Additionally, we must implement the primitive 

operations of the data type. It is naturally desirable that our implementation isn’t much slower 

than an implementation that uses a natural, but less space-efficient, format. 

This is the paradigm of abstract optimization: 

e ‘We start with the specification for a static abstract data type C. (We will abuse notation 

slightly and also use C to refer to the set of all objects of type C.) Typically, there will 

be a natural implementation of C whose performance is satisfactory in execution time, but 

wasteful of space. 

e We choose a natural size parameter n, which partitions the class into subclasses C,,. 

e Combinatorially, we determine the number of elements in C,, as a function of n. This com- 

putation suggest a canonical implementation that simply maps each member of C,, into a 

different integer from 1 to ||C,,||, represented in binary. While this implementation is optimal 

in space, it does not support the desired operations efficiently in time. 

e We devise a new representation for C, and implementations of the primitive operations, that 

has the space-efficiency of the canonical implementation, and the time-efficiency of the natural 

implementation. This is the real optimization step. 

The quality of the optimization depends on how closely, in the last step, we are able to simulta- 

neously approach the space- and time-efficiencies of the canonical and natural implementations. We 

may allow ourselves a reduction in performance by a constant factor, especially in time-efficiency. 

When it is not possible to be efficient in both time and spac> simultaneously, we can explore the 

tradeoffs involved. 

3.1 An abstract model of linked data structures 

Linked data structures are linked because there are pointers that associate the nodes with each 

other. In natural implementations (as in the concrete model proposed earlier) these pointers are 

absolute addresses: integer indices into memory. The most natural size parameter is often the 

number of nodes! n. A structure with n nodes will have at least O(n) pointers, and each pointer 

Although some structures with more than O(1) pointers per node may be more naturally represented by the total 
number of pointers 
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needs to be able to address at least n different locations. To have this much addressing power, we 

need to store about Ign bits per pointer. This means that the natural implementation will occupy 

O(n logn) bits in memory. For many significant families of linked data structures, this is much 

more space than the information-theoretic bound of lg ||C,,||. 

Trees are a good example of such data structures. The number of unlabeled trees with n nodes is 

bounded by k” (with k depending on the exact variety of tree we are talking about), so the number 

of bits required to store a tree is only linear in the number of nodes in the tree. It seems like a great 

waste to use O(n log n) bits when O(n) will do. In fact, there is a large literature on encoding trees 
economically as strings of bits. But this literature devotes itself only to the encoding and decoding | 

of trees to bits. No suggestion of performing the usual tree-traversal operations directly on these 

efficient encodings is found therein. The design of efficient encodings for trees that allow speedy 

traversal is a basic goal of abstract optimization for linked structures. 

How can we overcome the logn bits-per-pointer barrier? For some types of linked structures, 

we cannot. General graphs, for example, require O(m log n) bits (where m is the number of edges) 

by a simple counting argument. But for others (like trees) this barrier can be overcome. Two 

possible approaches are: 

1. Take advantage of the special form of the data structures involved to reduce the space for the 

pointers. Even if we need to address n different locations, we can use the classical techniques 

of data compression (like entropy-coding) to reduce the total space. Remember that the total 

space used is the quantity of interest: we can amortize a few expensive pointers if most of 

them are cheap. 

2. Do away with the need for pointers entirely. Use a radically different encoding that is both 

space-efficient and traversable. 

4 Related work 

Make frequent utterances terse at the expense of making infrequent ones verbose: this is a basic 

concept of classical data compression. Huffman coding, for example, takes a string of tokens 

over a finite alphabet and produces a string of bits whose length is close to the entropy {in the 

information-theoretic sense) contained in the tokens. As an abstract data optimization technique, 

Huffman coding (and other related types of entropy coding) only efficiently support the feeble 

operation of sequentially accessing the tokens starting from the beginning. Furthermore, entropy 
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coding techniques only apply when the number of tokens in the stream is much greater than the 

number of distinct token values. When the natural units of data are chosen from a very large 

alphabet and may not occur more than a few times in the entire data structure (as is the case with 

linked data structures), these methods fail. 

4.1 Concrete optimization 

A well known example of concrete data optimization is the finite-state machine minimization algo- 

tithm due to Huffman and Moore. A finite state machine is a kind of labeled graph, so finding an 

equivalent machine with fewer states is a concrete data optimization of a linked data structure. 

Often it is convenient to structure a large database hierarchically, as a tree. If the database is 

static, and there are choices in the layout of the tree that affect the storage requirements, we can 

perform a concrete optimization to save space. 

A trie is a hierarchical data structure that allows relatively efficient lookup of records with 

multiple keys. Nodes in the trie represent subsets of the records. The root represents the entire 

set, and the leaves represent individual records. The sets represented by the children of a node n 

form a partition of the set represented by n into equivalence classes under equality of a particular 

key. 

When all the records have the same set of keys, we are free to choose which key to use to 

partition each node. The total size of the resulting trie will depend on these choices. A number of 

authors have investigated the problem of minimizing the space required to store tries. Although 

Comer and Sethi prove that the problem is NP. omplete, Comer exhibits a simple heuristic that 

seems to performs well on average. 

This shows another way of demonstrating the effectiveness of a particular concrete data opti- 

mization. Even though an efficient algorithm to solve the optimization problem exactly could not 

be found, Comer was able to get good results from his heuristic for plausible input distributions. 

He also shows that there are classes of tries for which his heuristic does not perform well. 

4.2 Abstract optimization 

Work that is allied to abstract data compression falls into two broad categories: 

1. Design of space-efficient data structures. 

2. Enumeration/Encoding of combinatorial objects. 
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Abstract data compression unites these two categories for abstract data types that are also 

combinatorial objects. Because many data types differ only in their dynamic properties (for ex- 

ample, a static stack, queue or list is merely a sequence), the useful static data structures are are 

relatively few in number. 

The data-structure Designers are concerned with being efficient in time as well as space, but 

they generally do not account for the space they use very strictly. They usually count the space 

used in words rather than bits. They do not strive to achieve the optimum space-efficiency derived 

from information theory—-they merely seek to improve previous results. 

On the other hand, the Encoders are acutely aware of the minimum number of bits required 

to represent objects of a given size. But they do not consider how to operate efficiently on these 

representations directly, without first converting them back into a natural representation. 

Their succinct representations usually can be classified into three categories: 

canonical This is the best we can hope for. This is a mapping from Cy into the integers 

1...{|C,||. The resulting integer is then encoded as a lg ||C,||-bit binary num- 

ber. This type of representation is always possible, the trick is to compute the 

mapping and its inverse efficiently. 

asymptotically . 
optimal This is a little worse than canonical. This is a mapping from C, into a bit 

string of length lg ||C,,|| - (1+ 0(1)). Some wasted space is allowed in this type 

of representation, but as n grows, the fraction of waste must vanish. 

linear This maps C,, into bit strings whose length is O(log ||C,,||). We may have to 

settle grudgingly for this. 

In abstract optimization, we will not insist on canonical representations, but we do value asymp- 

totic optimality. 

5 Cost metrics for abstract optimization 

Suppose we have an abstract class C,, of static data objects, (for example, the set of trees with n 

nodes) and a set of operations S (like car and cdr) that examine a data object but do not modify it. 

Each member of C,, can be viewed as a collection of partial functions, one function corresponding 

to each operation in S. The domain and range of these functions can be either predefined data 
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types (like integer or boolean) or they can be indices. These indices are meant to be the abstract 

analogues of pointers; they can only be used and returned by operations in S. 

In simple tree example cited, we would have a domain node referring to nodes of the tree, and 

the following abstract operations: 

e a function of no arguments (a constant) root returning node. 

e two functions, car and cdr, mapping node to node. 

e a function null mapping node to boolean. 

An implementation of an abstract class provides a mapping from elements of C,, intoa read-only 

memory, and a program for each operation in S that references this memory. An implementation 

also provides a mapping between elements of the index domains and smal! pieces of memory. All of 

these mappings are strictly internal to the implementation, and cannot be referenced by a program 

that makes use of the data type. 

The abstract data types I study have natural implementations that use too much space. Op- 

timization means making something better. A better implementation of these data types has the 

same functionality as the natural implementation, but uses less space. The trick of abstract opti- 

mization is to trim the fat in the data without slowing down the operations too much. How much 

space has been saved? How much slower is the optimized implementation? To provide meaningful 

answers to such questions, we need to have a model of computation that defines precise cost metrics 

for space and time, and that is realistic about computers’ capabilities. 

5.1 Space metrics 

The (worst-case) space cost of an implementation is simply the maximum length of any of the 

bit-strings representing an element in C,. This is a strictly log-cost accounting of space. Since 

space-efficiency is the primary concern here, I cannot afford to be sloppy and measure space in 

words, which hold an unspecified amount of information. It is always possible to make use of all 

the bits in a computer word. 

Bits are universal. While it is possible to buy a computer that does more work per unit time, 

it is not possible to buy a computer that stores more per bit. In other words, the time required 

for a given operation can only be bounded by a functional form, whereas the space required can be 

bounded absolutely. It would be foolish to use any metric for space other than bits. 
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5.2 Time metrics 

The choice of metric for time is not so clear-cut. The unit-cost model of computation is a popular 

accounting metric for time, and with good reason. This model usually has the most realistic 

correspondence to observed running time. The pitfalls of the unit-cost model when numbers get 

large are well known. Less obvious, but just as nasty, are the architecture-specific shortcomings of 

this metric. The unit-cost model assumes some kind of word-size bit parallelism exists within the 

circuits of a computer. When the logarithms of the numbers involved stay below the word size, it is 

reasonable to expect to perform certain operations with this degree of parallelism. But the circuits 

in any given computer are fixed, so we may be out of luck when we try to coerce a computer into 

performing a particular word-size operation for which it is ill-suited. 

Let’s look at a specific example of this phenomenon. Suppose a critical step of an algorithm 

involves counting the number of 1 bits in a certain binary number. Let’s assume that the typical 

number n we are dealing with is small enough to fit in a single computer word. How much time 

should we account for this bit-counting operation? If we get to choose, we can use a CDC computer 

with a bit-count instruction. It would seem reasonable then to aasess a cost of one to bit counting. 

But many other computers lack an explicit bit-count instruction. Should we loop through testing 

the bits of the number n, and charge Ign? Should we use a clever sequence of lglg n shifts, masks, 

and additions to compute the bit-count of n? Or should we break each word into k chunks, keep 

a table of size */n of precomputed bit-counts, and charge k (generally the most efficient scheme in 

practice)? Further complications arise if our computer doesn’t have a multi-place shift instruction. 

The best implementation of this operation, and hence its accounting, depends on the architecture 

of our computer. 

To avoid these processor-specific pitfalls, I restrict my attention to metrics based on bus trans- 

actions between the processor and the static data. I will charge for, and only for, each reference 

the processor makes to the data. The processor is allowed to perform arbitrary computations at 

no cost with the data it has already has in hand. I am measuring I/O complexity. 

By varying the bandwidth of the buses and the costs of transactions, we get different metrics. 

Two that I especially like, and use extensively in the thesis are: 

data-bits model We assume that the data bus from memory to the processor is only one bit 

wide. We simply count the number of bit-accesses performed to get the time 

cost. 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



utde-bus model We assume that the data bus is lg N bits wide, where N is the size of the 

memory. We can fetch lg N bits from consecutive memory locations at unit 

cost. 

In both models we assume that the address bus is sufficiently wide to address any bit contained 

therein. 

The data-bits model has simplicity as its main advantage. There is a strong analogy between 

accounting time as bit-accesses here and accounting the time used by sorting algorithms in element 

comparisons. If nothing else, our time metric gives a very reasonable lower bound on achievable. 

asymptotic performance, as long as the bandwidth of the data bus is fixed. Two disadvantages of 

this model are that it does not reflect the inherent word-size parallelism in the data buses of real 

computers, and that it does not take account of the bounded bandwidth of the addrese bus. 

The wide-bus model, on the other hand, is more realistic about the inherent parallelism in the 

buses of computers. Still, there is something a bit disturbing about the size of the bus growing 

along with the size of the data. 

6 Thesis outline 

I conclude this summary with a chapter-by-chapter outline of the results presented in the technical 

chapters of the thesis. 

Chapter 2: Treats concrete optiniization of trees and other linked data structures. Optimiza- 

tion under various common implementations are considered. The major results 

are: 

e A polynomial-time algorithm, based on weighted matching, that finds a min- 

imal representation of a general unordered tree when the pointers to children 

are stored in a block of consecutive locations. 

e An analysis showing that the average number of cons-cells required to store a 

binary tree of n nodes as a minimal binary DAG is asymptotic to n/ (Zlg n)/ 2 

Chapter 3: Presents a formal model for abstract optimization. An argument for a particular 

choice of metrics for space and time is put forth. 

Chapter 4: Discusses a class of recursive representations for trees in linear space. The logn 

bits-per-pointer barrier is broken by a using a variable-length encoding for the 

10 
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pointers and amortizing the space over the whole tree. An optimal representation 

in this class is identified, and its efficiency is partially analyzed. The conclusion is 

that no representation in this class could be asymptotically optimal. 

Chapter 5: I develop a number of general tools for abstract optimization based on efficient 

data structures for ordered sets and parenthesis balancing. The data structure for 

ordered sets support the operations rank and select. Three applications of these 

tools are presented: 

1. Random-access Huffman coding: how to prepare an index that lets us find 

the mth symbol in a file of n Huffman-coded symbols efficiently. The extra 

space required for the index is o(n). 

2. Trees in asymptotically optimal space: this addresses the same problem as 

chapter 4, but obtains an optimal constant factor. 

3. Planar graphs in linear space: how to store a planar graph on n nodes using 

only O(n) bits. The operations of adjacency testing and searching (neighbor 

enumeration) are efficiently supported. 

11 
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Chapter 1 

Introduction 

1.1 What is data optimization? 

Small is beautiful. It is good when a piece of data can be made smaller. It is bad, however, 

when this reduction in size is accompanied by a reduction in accessibility as well, but this is the 

compromise made in classical data compression. Sometimes such a compromise is unacceptable. 

The job of an optimizing compiler is to take a specification of operations to be performed on 

data and produce a functionally equivalent specification that is somehow better than the original. 

An equivalence between the original operations and the optimized operations is necessary; given 

the same data, the two versions must behave identically. An optimizing compiler is absolutely 

uncompromising in this regard. 

I call transformations that make data smaller, while preserving important functionality, data 

optimszations. A compiler must be adamant about its optimization, because the computer is hard- 

wired for a certain set of operations. A fixed computer program that accesses a large static external 

data structure also assumes a particular representation for the data it accesses. The analogue of a 

program optimizer is a data optimizer, which reduces the size of external data structures in a way 

that is transparent to the program. 

My thesis systematically examines problems of data optimization for some basic data types and 

combinatorial objects. Special attention is devoted to the optimization of linked data structures, 

since these data structures have been traditionally neglected in the study of data compression. 

I place emphasis both on constructing and analyzing provably efficient algorithrns and on the 

practical issues of real-world implementation. 

Data optimization is much easier when we can sit back and do it off-line. I have therefore re- 
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stricted my attention to static data structures. Extending the work I present to dynamic structures 

(where possible) would be the subject of another thesis. 

1.2 Concrete optimization 

The transparent transformation that reduces the size of our data can only be possible if we know 

how the program is going to access the data. Thinking of the data structure as a data type with a 

particular set of query operations already implemented, we can change the data so that the program 

does not see any difference. I call this type of transformation concrete data optimization, since the 

program that accesses the data is considered wholely immutable: the low-level operations are have 

concrete implementations. But because we know how these operations are implemented, we have 

the freedom to change the data, as long as we do it in such a way that the behavior of any program 

that uses the operations does not change. Concrete optimization is most successful when there are 

many equivalent (from the limited point of view of the program) patterns of bits in memory that 

represent the sarne data object. We are then free to optimize by choosing a succinct pattern. 

Problems of concrete optimization are optimization problems in the classical sense. We are given 

a concrete representation scheme for our abstract data type, along with a collection of routines that 

access the data in the given scheme. Our task is to devise an algorithm that accepts an object of the 

given type and finds a succinct representation within the scheme. Ideally, we strive for an efficient 

algorithm that finds minimal representations. Sometimes we have to settle for an algorithm that 

finds close-to-minimal representations, or one that produces provably succinct representations in 

the average case. 

1.2.1 A concrete model of linked data structures 

With linked data structures, there are many different, but equivalent, patterns of bits that represent 

a particular object. Let’s adopt a simple but general model for this class of structures. Our linked 

data structures consist of a collection of nodes, Each node occupies a contiguous block of memory. 

The nodes do not necessarily have a fixed size or layout. The nodes contain one or more pointers 

to other nodes, and they may contain other data as well. We are free to do as we please with 

the other information within a node, but we may only move from node to node by dereferencing a 

pointer. 

The pointers are simply absolute addresses in memory. The specifications of the abstract data 

type do not permit arbitrary manipulations of these pointers; the operations may only dereference 
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them. Because the program is not allowed to use the numerical values of the pointers, the mapping 

of the nodes of the linked structure to memory is up to us. The standard scheme for representing 

a linked structure partitions memory so that each node of the structure occupies 3 distinct block. 

The nodes do not overlap. But we are free choose a mapping of the nodes to memory locations 

that does overlap, optimizing to minimize space. When our chosen mapping allows two nodes of 

our linked data object to share the same memory locations, we save space. 

1.3 Abstract optimization 

The other type of data optimization allows the optimizer some control over the lowest level access 

primitives of the abstract data type. Here, the abstract specifications of the operations are fixed, 

but their implementation is up to the optimizer. I call this abstract data optimization. 

When doing abstract optimization, we actually design the format of the data structure. (In 

concrete optimization, this format is already fixed.) Additionally, we must implement the primitive 

operations of the data type. It is naturally desirable that our new implementation isn’t much slower 

than an implementation that uses a natural, but less space-efficient, format. 

This is the paradigm of abstract optimization: 

e We start with the specification for a static abstract data type C. (We will abuse notation 

slightly and also use C’ to refer to the set of all objects of type C.) Typically, there will 

be a natural implementation of C whose performance is satisfactory in execution time, but 

wasteful of space. 

e We choose a natural size parameter n, which partitions the class into subclasses Cy. 

e Combinatorially, we determine the number of elements in C,, as a function of n. This com- 

putation suggest a canonical implementation that simply maps each member of C, into a 

different integer from 1 to ||C,||, represented in binary. While this implementation is optimal 

in space, it does not support the desired operations efficiently in time. 

e We devise a new representation for C, and implementations of the primitive operations, that 

has the space-efficiency of the canonical implementation, and the time-efficiency of the natural 

implementation. This is the real optimization step. 

The quality of the optimization depends on how closely, in the last step, we are able to simulta- 

neously approach the space- and time-efficiencies of the canonical and natural implementations. We 
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may allow ourselves a reduction in performance by a constant factor, especially in time-efficiency. 

When it is not possible to be efficient in both time and space simultaneously, we can explore the 

tradeoffs involved. 

1.3.1 An abstract model of linked data structures 

Linked data structures are linked because there are pointers that associate the nodes with each 

other. In natural implementations (as in the concrete model proposed earlier) these pointers are 

absolute addresses: integer indices into memory. The most natural size parameter is often the 

number of nodes! n. A structure with n nodes will have at least O(n) pointers, and each pointer 

needs to be able to address at least n different locations. To have this much addressing power, we 

need to store about Ign bits per pointer. This means that the natural implementation will occupy 

O(n logn) bits in memory. For many significant families of linked data structures, this is much 

more space than the information-theoretic bound of lg ||C,)||. 

Trees are a good example of such data structures. The number of unlabeled trees with n nodes 

is bounded by k” (with k depending on the exact variety of tree we are talking about), so the 

number of bits required to store a tree is only linear in the number of nodes in the tree. It seems 

like a great waste to use O(nlogn) bits when O(n) will do. In fact, there is a large literature on 

encoding trees economically as strings of bits. (R. C. Read[41] provides a good review of these.) 

But this literature devotes itself only to the encoding and decoding of trees to bits. No suggestion of 

performing the usual tree-traversal operations directly on these efficient encodings is found therein. 

The design of efficient encodings for trees that allow speedy traversal is a basic goal of abstract 

optimization for linked structures. 

How can we overcome the logn bits-per-pointer barrier? For some types of linked structures, 

we cannot. General graphs, for example, can be shown to require O(mlogn) bits (where m is the 

number of edges) by a simple counting argument. But for others (like trees) this barrier can be 

overcome. Two possible approaches are: 

1. Take advantage of the special form of the data structures involved to reduce the space for the 

pointers. Even if we need to address n different locations, we can use the classical techniques 

of data compression (like entropy-coding) to reduce the total space. Remember that the total 

‘ Although some structures with more than O(1) pointers per node may be more naturally represented by the total 

number of pointers 
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space used is the quantity of interest: we can afford a few expensive pointers if most of them 

are cheap. 

2. Do away with the need for pointers entirely. Use a radically different encoding that is both 

space-efficient and traversable. 

1.4 Related work 

Make frequent utterances terse at the expense of making infrequent ones verbose: this is a basic 

concept of classical data compression. Huffman coding, for example, takes a string of tokens 

over a finite alphabet and produces a string of bits whose length is close to the entropy (in the 

information-theoretic sense) contained in the tokens. As an abstract data optimization technique, 

Huffman coding (and other related types of entropy coding) only support the feeble operation 

of sequentially accessing the tokens starting from the beginning. Furthermore, entropy coding 

techniques only apply when the number of tokens in the stream is much greater than the number 

of distinct token values. When the natural units of data are chosen from a very large alphabet and 

may not occur more than a few times in the entire data structure (as is the case with linked data 

structures), these methods fail. 

1.4.1 Examples from the literature 

The term data optimization is my own, but researchers have sought useful space-efficient data 

structures since the dawn of computers. Let me now review examples of previous work that is 

related in subject or style to the work presented in this thesis. These examples are grouped by data 

type. 

Sets and sequences 

The most fundmental data types are collections, ordered and unordered: sets and sequences. The 

problem of abstract optimization of subsets of (0... N] with membership queries was first addressed 

by Minsky and Papert[37, pages 215-225]. They give informal bounds on the time required to answer 

membership queries with various amounts of available space. Elias(12], improves and tightens these 

bounds. Later, Elias and Flower(14] investigate more complex retrieval problems with sets of natural 

numbers. Yao[50] considers representations in which a set of cardinality n is maintained by a table 

of n or n+ 1 values from [0...N]. He concludes that keeping a sorted table of set elements is 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



asymptotically optimal when the table has n items, but becomes suboptimal when the table size 

increases slightly. 

Quite a few authors, including Fredman(17] and Tarjan and Yao[45}, have investigated perfect 

hashing. This abstract optimization stores a sparse set with access times within a constant factor 

of those for a straightforward representation (a bitmap), using only a little more space than is 

informationally necessary. Recently, Fiat et al.[16] investigated how non-oblivious hashing, where 

unsuccessful probes determine future probing strategy. This technique can store sparse sets with n 

members using only n+O(logn) memory locations, and still support O(1) worst-case lookup times. 

These hashing schemes account for the space they use in memory locations rather than bits, and 

assume that a memory location is large enough to hold any member of the eet. Of course, hashing is 

not an efficient technique when our sets are not sparse. If we are interested in membership queries 

only, very dense sets can be stored efficiently as a bitmap. 

Linked structures: concrete optimization 

A well known example of concrete data optimization is the finite-state machine minimization al- 

gorithm due to Huffman(24] and Moore[38]. A finite state machine is a kind of labeled graph, so 

finding an equivalent machine with fewer states is a concrete data optimization of a linked data 

structure. 

Often it is convenient to structure a large database hierarchically, as a tree. If the database is 

static, and there are choices in the layout of the tree that affect the storage requirements, we can 

perform a concrete optimization to save space. | 

A trte can be viewed as a hierarchical data structure that allows efficient lookup of records with 

multiple keys. Nodes in the trie represent subsets of the records. The root represents the entire 

set, and the leaves represent individual records. The sets represented by the children of a node n 

form a partition of the set represented by n into equivalence classes under equality of a particular 

key. 

When all the records have the same set of keys, we are free to choose which key to use to 

partition each node. The total size of the resulting trie will depend on these choices. A number of 

authors have investigated the problem of minimizing the space required to store tries. Although 

Comer and Sethi[8] prove that the problem is NP-Complete, Comer(7] exhibits a simple heuristic 

that seems to performs well on average. 

This shows another way of demonstrating the effectiveness of a particular concrete data opti- 
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mization. Even though an efficient algorithm to solve the optimization problem exactly could not 

be found, Comer was able to get good results from his heuristic for plausible input distributions. 

He also shows that there are classes of tries for which his heuristic does not perform well. 

Comer’s analysis of the on-average performance of his heuristic is based on simulation. It would 

have been better if he made a precise mathematical statement of why his heuristic was good. 

Linked structures: abstract optimization 

Although linked structures are not usually designed for space efficiency (and are less commonly 

used for static data), a number of authors have studied ways to reduce the space to store them. 

Work that is allied to abstract data compression falls into two broad categories: 

1. Design of space-efficient data structures. 

2. Enumeration/Encoding of combinatorial objects. 

Abstract data compression unites these two categories for abstract data types that are also 

combinatorial objects. Because many data types differ only in their dynamic properties (for ex- 

ample, a static stack, queue or list is merely a sequence), the useful static data structures are are 

relatively few in number. 

The data-structure Designers are concerned with being efficient in time as well as space, but 

they generally do not account for the space they use very strictly. They usually count the space 

used in words rather than bits. They do not strive to achieve the optimum space-efficiency derived 

from information theory—they merely seek to improve previous results. 

On the other hand, the Encoders are acutely aware of the minimum number of bits required 

to represent objects of a given size. But they usually do not consider how to operate efficiently on 

these representations directly, without first converting them back into a natural representation. 

A good example of a linked data structure designed to be space-efficient is the the compressed 

trie of Maly(35}. His tries are multiway trees with constant branching degree m at the internal 

nodes. Instead of storing m pointers at each internal node as is common, Maly stores only m bits, 

plus about one pointer’s worth of extra space. This achieves significant compression of the trie with 

only a small penalty in execution time. The space required to store a trie of n nodes is reduced 

from O(nm log n) bits down to O(n - (m+ logn)). 

Chazelle(6] designed an efficient data structure to store a static range tree. A range tree is 

itself a data structure that represents a permutation II of 1...n in a way that facilitates answering 
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queries about the size of the set {II(z) < 6 | z < t} as a function of the two parameters s and 

t (this is useful in range counting). Previous implementations of range trees required O(n log n) 

words of space to achieve polylog query times; Chazelle’s implementation requires only O(n) words. 

Of course, since there are O(n log n) bits of information in a permutation on n elements, each word 

must hold O(log) bits. Although he worries about packing bits into words and simulating bit 

operations in weak machine models (and I don’t), Chazelle’s work is very similar in spirit to the 

work presented in this thesis. 

There is a large body of literature on the succinct encoding of linked data structures, particularly 

trees, A good summary of this literature can be found in Read[41]. The tree encoders have different 

goals, but they all deal with trees as atomic data objects. That is, their encodings do not reflect 

the internal structure of the tree, and do not support operations within the tree. Once a tree is 

encoded, a question such as “Where is node z?” may have no satisfactory answer. Even if we can 

find an answer for that question, a question like “Where are the children of z?” cannot be answered 

efficiently. 

For other linked structures, the literature is considerably more sparse. Turan found a way to 

encode planar graphs of n nodes in 12n bits. His encoding does not allow any useful internal 

operations, such as moving from one node to adjacent nodes, or testing adjacency. 

Other structures 

Finite groups are very basic combinatorial objects. Jerrum(26] found a representation for per- 

mutation groups on n elements needing only O(n?) space. His scheme, which supports efficient 

membership testing, is an an improvement over the previously known O(n*) representation of 

Furst et ai{18]. This reduction in space is an abstract optimization. 

Another example of a very practical abstract data optimization is S.C. Johnson’s[34] scheme for 

storing a sparse two-dimensional table used to store the transition tables in the LEX lexical analyzer 

generator. This scheme allows storage of the table in (almost) as little space as other sparse-array 

schemes, while allowing direct access times close to those for full two-dimensional arrays. 

Boolean functions, represented as circuits, are important in the design and simulation of com- 

puter hardware. Often these circuits have a concise hierarchical description, even when they contain 

a great many gates. Appel[4] showed how to use a static hierarchical description, along with a single 

dynamic bit for each wire, to simulate a circuit efficiently. Previous simulators had required one or 

more pointers (with a logarithmic number of bits each) in their representation of the circuit. For 
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n-gate circuits with small hierarchical descriptions of size m, Appel’s scheme optimizes the storage 

required from nlogn bits down to m, without incurring a penalty in simulation time. 

1.5 Thesis outline 

Let me conclude this introduction with a chapter-by-chapter outline of the results presented in the 

technical chapters of the thesis. 

Chapter 2: Treats concrete optimization of trees and other linked data structures. Optimiza- 

tion under various common implementations are considered. The major results 

are: 

e An analysis showing that the average number of cons-cells required to store a 

binary tree of n nodes as a minimal binary DAG is asymptotic to n/(¥ lg n)/ 2, 

e A polynomial-time algorithm, base on weighted matching, that finds a min- 

imal representation of a general unordered tree when the pointers to children 

are stored in a block of consecutive locations. 

Chapter 3: Presents a formal model for abstract optimization. An argument for a particular 

choice of metrics for space and time is put forth. 

Chapter 4: Discusses a class of recursive representations for trees in linear space. The logn 

bits-per-pointer barrier is broken by a using a variable-length encoding for the 

pointers. An optimal representation in this class is identified, and its efficiency is 

partially analyzed. The conclusion is that no representation in this class could be 

asymptotically optimal. 

Chapter 5: I develop a number of general tools for abstract optimization based on efficient 

data structures for ordered sets and parenthesis balancing. The data structure for 

ordered sets support the operations rank and select. Three applications of these 

tools are presented: 

1. Random-access Huffman coding: how to prepare an index that lets us find 

the mth symbol in a file of n Huffman-coded symbols efficiently. The extra 

space required for the index is o{n). 
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2. Trees in asymptotically optimal space: this addresses the same problem as 

chapter 4, but obtains an optimal constant factor. 

3. Planar graphs in linear space: how to store 2 planar graph of n nodes using 

only O(n) bits. The operations of adjacency testing and searching (neighbor 

enumeration) are efficiently supported. 

10 
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Chapter 2 

Concrete Optimized Trees 

This chapter explores the possibility of saving space in pointer-based implementations of static 

trees. Every implementation of a class of static trees has an associated optimization problem: 

given a static tree t, find the shortest sequence of words in memory that represents t. For some 

implementations of trees, the optimization problem is easy. For others it is provably intractable. 

For yet others the problem is of intermediate difficulty: an efficient optimization algorithm exists, 

but it is not obvious. In this chapter such problems are examined and classified. 

The trees discussed in this chapter are very simple. They are unlabeled, with no extra infor- 

mation stored in the nodes. The only operations we implement are: 

@ an operation to move from a node to its children (and to iterate through the children in the 

case of general trees) 

e an operation to test if a node is nil, a special] value indicating that we are no longer in the 

tree. | 

Binary trees are considered first. A simple minimization algorithm for binary trees stored as 

cons-cells is presented, followed by an average case analysis of the space saved thereby. General 

trees, both ordered and unordered, are then considered. The major result is an algorithm to find 

a minimal representation for unordered trees where pointers to children are stored in consecutive 

memory locations. Finally, a practical application of concrete optimization is given: a compact 

representation of a lexicon of English words, structured as a tree. 

11 
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2.1 A taxonomy of trees 

Trees are important in combinatorics, where they are graphs of a simple type, and in computer 

science, where they are the most natural structures for representing hierarchical data. They come 

in many combinatorial varieties, and each variety has several common implementations. 

The most basic definition of a tree is an acyclic, connected graph. We call this a free tree. If 

we choose one of the nodes to be the root, then we call the tree oriented or equivalently rooted. 

The term oriented is used because the choice of root induces a natural orientation on the edges of 

the tree. Sometime we consider all the edges to be oriented toward the root, but more often we 

consider them to be oriented away from the root. This kind of tree models hierarchical data. We 

will deal only with oriented trees in this chapter, because the common representations of free trees 

model them as oriented trees with a root chosen arbitrarily. 

Another dichotomy in the family of trees arises from the labeling of the nodes in the tree. The 

nodes in the tree may be unlabeled; in this case they are intrinsically fungible. Or there may be 

some information stored at each node. Perhaps this information is just sufficient to distinguish 

or label every node. The optimizations described in this chapter become less useful as the nodes 

become more fundamentally distinct (although they will still work). We will ignore the information 

stored in the nodes of the tree, and treat all trees as unlabeled. 

Within the class of unlabeled oriented trees there is another important distinguishing feature: 

the relationship of the children to each other. If the children form an unordered set, then we say 

that the tree is unordered. If they form a sequence, we say that the tree is ordered. Another 

possibility is that the children are labeled with distinct elements of a k-element set. These are the 

k-ary trees. The most important subcase is k = 2, the binary trees. 

To summarize, this chapter will deal with static, oriented, unlabeled trees in three principle 

varieties: 

1. binary trees 

2. ordered trees of general degree 

3. unordered trees of general degree 

For each variety, a number of common implementations will be discussed. 
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2.2 Binary trees as cons-cells 

Let’s begin with binary trees in their most common implementation, as cons-cells. For each node 

in the tree, we reserve a record in memory big enough to hold two pointer fields. For historical 

reasons, we will call these records cons-cells, with the two pointer fields called car and cdr. The 

cdr holds a pointer to the cell reserved for the left son (or a special value nil if there is no left 

son), and the car holds a pointer to the right son. This is all very simple, and navigating among 

the cons-cells is just a matter of dereferencing pointers. 

The usual way to lay out a binary tree T as a collection of cons-cells is to reserve a cell for 

each node of the tree. But if two subtrees within T are isomorphic, we can save space by using the 

game collection of cells for both subtrees, since we are not allowed to perform such operations as 

testing two nodes for equality. If we share space wherever possible, we will find a minimal cons-cell 

representation of a binary tree. This leads to an obvious algorithm: 

1. Find all isomorphic subtrees within T.. 

2. Allocate a cons-cell for each isomorphism class. 

3. Assign values to the pointers. 

Steps 2 and 3 are straightforward. Step 1 is easy to do inefficiently by linear search, comparing each 

subtree with each other subtree. We can make use of a simple dictionary and a postorder tree-walk 

to make this step fast. We will assign each node ¢ an integer label, giving the isomorphism class of 

the subtree rooted at t. Our dictionary D is a two-dimensional array, initially all zeroes. 

label (t: node): integer 
ift= nil 

return 0 
{+- label(left child of t) 
jg label(right child of t) 
ve Di 
ifv=0 

Dy 2 

zre—2zt+l 
return D;,; 

zl 
label (root) 

Algorithm LABEL: find and label isomorphic subtrees 
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The integer variable z holds the number of the next label to be assigned. Nil nodes get label 

0. Using a real two-dimensional array for D would require O(n”) space, although the execution 

time is only O(n). Since D sparse, we can implement it as a balanced tree (with a logn slowdown 

in speed) or as a hash table (and accept expected linear time rather than worst-case linear time) 

using only O(n) space. 

2.3 An average case analysis 

How much space can we save by using the algorithm presented above? One answer is simply “as 

much as possible,” since we are find a minimum representation. In those trees where there is a 

great deal of shared structure, the savings is large; but in those with little or no sharing, there is no 

savings. To get an idea of how much savings we will realize a priori, we need to choose an expected 

distribution of trees. Then we can compute the on-average savings. 

This section presents an average-case analysis of the compression factor achieved by merging 

isomorphic subtrees after choosing an n-node binary tree from a uniform distribution. We show 

that this expected compression factor grows without bound as the number of nodes increases; in 

other words, the expected number of cells needed to store an n-node binary tree in this fashion is 

o(n). 

How many cons cells are needed, on the average, to store a tree of n nodes? The answer, as we 

have previously observed, depends on the amount of shared structure within the particular tree. 

We have the following obvious lemma: 

Lemma 2.1 The mintmum number of cons celle needed to store a binary tree T ts equal to the 

number of non-isomorphic subtrees of T. 

This follows directly from step 2 of the minimization algorithm. 

Let T,, be the set of all n-node binary trees. The direct way to obtain the average number of 

cells S,, used to store a member of T,, is to evaluate the following sum and quotient: 

Sn >> \|{s | ¢ contains s as a subtree}|| (2.1) 
_ 1 

{Tall tT, 

Noting that a given subtree s can occur at most once per tree, we use the technique of inverting 

the summation: 

1 

{|Tnll 
> > Ite 7% | ¢ contains « as a subtree}|| (2.2) 
m=1 «Tn 

Sp = 
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The motivation for this inversion will become clear shortly. Summations over trees are hard to deal 

with, so let us try to replace the inner sum of equation 2.2 with a more tractable one. Another 

lemma will prove useful: 

Lemma 2.2 If 8, and 82 are both m-node binary trees, then the number of n-node trees containing 

8, a8 a subtree is the same as the number of n-node trees containing 82 as a subtree. 

Proof. Consider the mapping M,,.-s, : Tr ‘> Tn that takes an n-node tree ¢ and replaces all 

subtrees of ¢ isomorphic to 8; by copies of 2, and all subtrees of ¢ isomorphic to 82 by copies of 1. 

Because 8; and 82 both have m nodes, neither can be a proper subset of the other, and so M,,..,, 

must be a bijection. Since M,,..., maps trees in 7,, containing 8; to trees containing s2 and vice 

versa, the trees containing copies of 8; must be equinumerous with those containing 42. 

This lemma shows that the number of n-node trees containing a particular m-node tree depends 

only on m, and not on the shape of the particular m-node tree. We can count the total for all 

m-node trees by computing the number for any particular m-node tree, and multiplying by the 

total number of m-node trees. 

The number of n-node binary trees is C,, the nth Catalan number: 

2n I 

on= (7) 4 (2.3) 

Using lemma 2.2, we can write equation 2.2 like this: 

Sz = — >. Cm: |\{t € Tr | ¢ contains a particular m-node subtree}|| (2.4) 
" 1Smén 

We must find the size of the set in this sum. Let us give it a name: 

Anm = ||{t € Ta | ¢ contains a particular m-node subtree}|| (2.5) 

2.3.1 <A generating function for Ann 

It is easy to get @ generating function for the first index of Anm. Let us start by counting the 

number of trees Bam that do not contain a particular m-node subtree. Clearly Bam = Cy — Anm. 

Define b,,(z) to be the generating function of Bam over ni: 

bn(z) = > Bam > 2” (2.6) 
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Observe that the values of B,, obey the Catalan recurrence, for most values of n: 

n—-l 

Bam = > Bim> Bn-1-im, forn#m (2.7) 
s=0 

but when n = m, exactly one tree is excluded: 

m-1 

Bam = > Bin> B m—1—i,m ~ 1 (2.8) 
s=0 

From this pair of equations, we see that b,{z) satisfies: 

zb?,,(z) = bn(z) + 2™ — 1 (2.9) 

Using the quadratic formula (and observing that 5,,(0) = 1 for m > 0 to discard the spurious root) 

we obtain: 

ba(z) = s(t ~V1— 42+ 42™t1) (2.10) 

A combinatorial solution 

We could simply expand equation 2.10 directly and subtract from the Catalan numbers to get an 

expression for Anm. An equivalent, but more direct method to obtain such an expression is to use 

the principle of inclusion-exclusion. 

Crudely, we may estimate the number of n-node trees containing a particular m-node tree by 

observing that such trees consist of any (n — m)-node tree, with our desired m-node tree spliced in 

at one of its external nodes, as shown in figure 2.1. Since the (n — m)-node tree has n —-m+1 

n-m 
fa: TaN 

n— m +1 

external nodes 

Figure 2.1: Splicing trees 

external nodes, this shows that 
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This approximation over-counts those n-node trees in which our desired m-node subtree occurs 

more than once. In any case, note that that (n — m+ 1)Cp—m is an upper bound on Any; we will 

make use of this later. 

To refine our approximation, we can subtract off the number of trees in which the desired m-node 

subtree occurs at least twice. We can form such trees by starting with an arbitrary (n — 2m)-node 

tree, and splicing in two copies of the m-node subtree at two of the n — 2m + 1 external nodes. 

Subtracting, we get: 

Ann % (n — m+ 1)Ca-m — (" ~ + ) Cn-2m (2.12) 

This new approximation now under-counts those trees with three or more copies of the m-node 

subtree. Therefore, this quantity must be a lower bound on Anm. 

We can continue in this way, alternately adding and subtracting terms, to get an exact form for 

Anm. Let R,; be the set of all n-node trees ¢ such that the jth node of t (numbering the nodes in 

any predetermined order) is the root of the particular m-node subtree we seek. Let I; denote the 

sum of the sizes of all j-tuple intersections of the R,;’s. Then by inclusion-exclusion, 

[n/m} ; 
Anm= ), (-1)*11; (2.13) 

1 

The upper bound of this sum is simply the maximum number of copies of the m-node subtree that 

could possibly fit into an n-node tree. The argument in the preceding paragraph demonstrates that 

I= (" 7 . uv ; Cn-jm (2.14) 

and so Ln/m| 
ajm ° 

. —jm+l1 Anm = > (-1)9+2 (" ‘ Jonni (2.15) 

j=1 

We can now combine this sum with equation 2.4 to get an expression for the average space 

needed to store a tree of n-nodes: 

nm [n/m J . 
Sr= = > > (-1)**? (" 7 i vi * Canim On (2.16) 

%m=1 j=1 
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2.8.2 Asymptotic space requirements 

Getting an exact closed form for the double sum in equation 2.16 seems to be hard. It is almost 

as enlightening (and more feasible) to study the asymptotic behavior of this sum as n grows large. 

To get a feel for the behavior of S,, a graph for 1 < n < 1000 is included in figure 2.2. (It is hard 

to calculate exact values for large n, since very large binomial coefficients are involved.) What can 

we conclude from this graph? Not too much. In the region shown, it looks a bit like a line with 

slope 1/2, but it would be hasty to make an asymptotic judgement. We will make good use of a 

500 - 
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Figure 2.2: Graph of S, for 1 < n < 1000 

graphical insight a little later on. 

To gain a better understanding of Sj, let’s break down the outer sum of equation 2.16. Say 

that the size of a node n in a tree is number of nodes in the subtree rooted at n. The outer sum 

of equation 2.16 totals up the number of cells used by nodes of various sizes from 1 (the leaves) to 

n (the root). Let us rearrange that equation slightly: 

Sa —_ > —_* Ann (2.17) 

m=1 Ca 

Term the summed quantity Kym = (Cm/Cn)+Anm. This quantity counts the expected number 
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of cells used to store those nodes of size m. Since many nodes have small sizes, Kn, will be relatively 

large when m is small. But since there are a fixed number of different trees with m nodes, and 

each can cost us only one cel] no matter how many times it occurs, Knm must ultimately decrease 

again as m get very small. 

Consider the following two inequalities on Anm: 

Anm < Cn (2.18) 

Anm <& (n-—m+ 1)Ca—-m 

The first inequality expresses the fact that the number of n-node trees containing a particular 

m-node subtree tree cannot exceed the total number of n-node trees. The secoi.d one we recognize 

from equation 2.12. Let us now proceed to identify the range of values for m where each inequality 

is dominant, and disaect the sum of equation 2.17 in the style of Knuth and Green(30, page 48}. 

The formula for the Catalan numbers given in equation 2.3, together with Stirling’s approxi- 

mation, yields the following: 
= —4n,-3/2 n-6/2 na agin $/2 4. O(4 ) (2.19) 

The “crossover point” of Anm where the second inequality begins to dominate the first in the 

minimum occurs where Cp = (n— m+1)Cp-m. By the approximation in equation 2.19 this comes 

about when 

1 an -3/2 _ _ 1 jn-m _— m)\73/2 =4'n = (n m+1)74 (n — m) 

4™ = (n—m+1)(n- myn $/2 (2.20) 
1 1 

m= Sign + 21g (1+ — =| + fis (1+ 

z This shows that when n is large, the crossover comes just past m = 5 1 ign. For concreteness, call 

p= [}1e n| this crossover point. Let us give names to the regions on both sides of p. Call the 

domain of m < p the saturated regime. For values of m in the saturated regime, almost all of the 

Cm different m-node trees are likely to occur as a subtree of an average n-node tree. The domain 

of m > pis the unique regime. In this regime, each m-node subtree of an average n-node tree is 

unlikely to be found elsewhere in the tree; the sharing of structure here is small. 

The two inequalities on Anm lead directly to the following inequalities on Knm, obtained by 

multiplying through by Cm/C):: 

Knm S Cm (2.21) 

19 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kum < (n-—m+}1) Cn—mOm 
Ca 

So we can bound Kny, by a function Kj, defined as follows: 

1 —_J) Om m<p 
Kam — { (n —-m+ 1)Cr—m m > p (2.22) 

We will soon show that Kj, is not too much bigger than Knm for most values of m. The quality 

of the approximation of Knm by K/,,, can be seen in figures 2.3 and 2.4, showing the breakdown 

of space used in trees of 1000 nodes by node size. Note the very sharp transition in both K/,,, and 

Kam around m = p. In figure 2.4, the difference between the two values is unobservably small. 

The value of S,, is equal to the sum of the Knm over m; graphically, this means that S,, is the area 

under the curves shown. 

The saturated regime 

Let us first get a bound on the total space required in the saturated regime. 

Using Ki, a8 our upper bound, we get 

p-1 p-1 

dX Cm < Do CmCp-1-m 
m=1 m=1 

< & 

Remembering that p = [} Ig n| and employing the approximation for C,, from equation 2.19, we 

can see that the total average space used by nodes in the saturated regime is O(n log—*/? n). 

The unique regime 

The graphs of figures 2.4 and 2.3 suggest that the bulk of the space used is in the lower part of the 

unique regime. We will determine the space used by the following steps: 

1. Approximate Kym by Ki... 

2. Find a closed form for the sum of K‘,, in this regime. 

3. Approximate the sum using Stirling’s approximation. 

4. Bound the difference between Kym, and Ki... 
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Figure 2.3: Graph of Knm and Kj,, for n = 1000,m < 20 
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Figure 2.4: Graph of Kym and Kj,,, for n = 1000,m > 20 
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The first step is to replace the sum })f,..p Kam by Lim=p Knm- Looking at the graphs, we would 

guess that this isn’t too bad an approximation; later we shall make this rigorous. 

While Knm is difficult to sum, Kj,,, is simple. We have: 

nh 

do Eh 
m=p 

1 n 

ora(t) Ean (2)(2) 
(" ) (ole - p) +1] (??) (?e- > . 

[2(n — p) +1] (") (77) ~ (2.23) 

by a variety of combinatorial identities. Notice that this formula gives the expected number of 

cells needed to store those nodes of size p or greater in a tree of n nodes when we do not merge 

isomorphic subtrees. We can check this by plugging p = 1 into equation 2.23: 

[2(n - 1) +1] (7) (7) _ n 

As expected, we learn that n cells are required to store trees of n nodes in the normal way. 

Now, applying Stirling’s approximation in the range where p < n to equation 2.23 

2(n — p)+1 n\* (2n “2, “1/2 4 O(np-3/? 2.24 [2( P)+1]\ 2p vane (np-*/?) (2.24) 

We can now plug in p= [$ign], to get 

= 8 
> Kin = V —nlg-*/? n + O(n log—5/? n) (2.25) 
m=p * 

This confirms our suspicion that the bulk of the space is used here. 

So far we have shown that S, = O(n log~*/ 2 n). To find a good lower bound for Sz, it remains 

to bound K!,, — Knm in the unique regime. 

As mentioned earlier, the approximation in equation 2.12 is also an inequality: 

-—2 1 
Anm > (n —m-+ 1)Ca—m - (" i + Jon-tm . (2.26) 
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Multiplying by Cm/Cn, and admitting m > p, we get 

n—2m+1 
Kum > Khim — ( 2 Canim Cm/ Cn (2.27) 

So (7-241) Ch_-amCm/ C,, is a bound on K!, — Knm. We would like to show that the sum of this 

quantity in the unique regime is not too large. We wil! call this quantity Dam. First, let us observe 

that Dam is a decreasing function of m. To see how quickly it gets small, consider the term ratio 

Dam/ Dam+1: 

Dam (n-2™ +) Cn-amCm 

Daym+1 (7-3-1) Ch _am-2Om+1 
2n+4 2%n—2m)—1 2(n—2m)—3 
2m+1 n—-2m-1 n—-2m—-2 R a A pan mn y 

>1 >2 >2 
> 4 

(2.28) 

The values of Dam get smaller from term to term by a factor of at least 4. This makes it easy 

to get a bound on the sum: 

nm fn 

>, Dam < >, Dnp4?-™ 
m=p m=p 

ie 

< Dap >,4™ 
m=p 

4 
< 3 Pre 

The whole sum is simply a constant times the value at m = p. We once again enlist the aid of 

Stirling’s approximation, setting p = [3 Ig n| 

n—2p+1 
Dap = ( . )en-are/ Cn 

= O(nlog~9/? n) 

This demonstrates that our overestimate of Knm by K!,, does not contribute to the asymptoti- 

cally dominating term in the sum, which is O(n log7}/ 2). We previously showed that the entirety 

of the space used by the saturated regime is O(n log—*/? n), so it doesn’t contribute either. Putting 

all the pieces together, we can now conclude that: 

Sy = [Sn Ig/? n + O(n log—9/? n) (2.29) 
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2.3.3 Conclusions 

The main result of this section is that the compression factor realized by merging isomorphic 

subtrees grows without bound, when trees are chosen at random under a uniform distribution. 

This factor grows rather slowly, only O(./logn). For a random binary tree with a million nodes, 

the expected compression factor is a little under three. 

An information-theoretic bound 

We can compare this growth rate in the compression ratio to an information-theoretic bound. Since 

each of the C,, trees are equally likely, we will need an average of at least lg C,, 6tts to encode each 

one. Applying the approximation from equation 2.19, this means that any representation must 

average around 2n bits per tree. The pointers we use must have enough bits to address all the 

different nodes in the tree; therefore each pointer is about lgn bits long. So we must have at least 

Q(n/ log n) pointers (and as many cells, up to a constant factor), to produce the required minimum 

number of bits. This gives an upper bound of O(logn) on the compression factor. 

A distribution favoring balanced trees 

The analysis was done assuming a uniform distribution of n-node binary trees. While this distri- 

bution is a reasonable choice, it does not lead to very balanced trees. The “average” binary tree of 

n nodes is a lean and scraggly fellow whose internal path length is O(./n) (see Knuth(29, section 

6.2.2]). One of the reasons that trees are important in computer science is that (when they are rea- 

sonably balanced) they provide access to elements starting from the root in logarithmic time. This 

means that we might want to redo this analysis using a distribution of trees that favors balance. 

We can expect the savings to be greater when trees are balanced because there are more very small 

subtrees. The perfectly balanced tree of 2% — 1 nodes occupies only m cells, for example. 

One particular non-uniform distribution of trees comes to mind as a candidate for analysis. 

Imagine that our n-node trees are binary search trees formed by inserting n keys in random order 

into an initially empty tree. Ignoring the values of the keys, and looking only at the shape of the 

resulting trees, we get a realistic distribution of n-node binary trees that is much more balanced 

than the uniform distribution. The average internal path length of such trees is only O(log n) (see 

Knuth(29, section 6.2.2, page 427]). To analyze this distribution, we would start by considering the 

n! different possible permutations of the keys as equally likely. We would sum the space used in 
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each permutation, and divide the total by n! to get the average. 

One difficulty of modifying the analysis presented in this section to deal with this distribution is 

that lemma 2.2, which says that the number of n-node trees containing a particular m-node tree is 

independent of the shape of the m-node tree, doesn’t help here. The number of n-node trees may be 

independent of which m-node tree we are looking for, but the total probability under this distribution 

is not. Balanced m-node trees will more likely be found as subtrees than unbalanced ones. Still, it 

should be possible to analyze the average space used under this distribution, and this analysis is 

an open problem. It seems inevitable that less space would be needed, on average, for trees under 

this distribution. In fact, the information-theoretic bound of O(logn) for the compression factor 

doesn’t even apply here, so the compression could conceivably be superlogarithmic. 

Who is using the space? 

Another useful by-product of the way the asymptotic analysis was done is that it gives us a good 

understanding of where in the tree the space is going. The sharp peak in the distribution of space 

around size m = 1/2lgn means that the almost all savings in space (that is, merging of isomorphic 

subtrees) occurs in trees of that size or smaller. We can imagine that there is no savings of space 

for nodes whose size lies in the unique regime, and nearly total saving in the saturated regime. 

This style of accounting for the space by node size may also be useful in the analysis proposed in 

the previous paragraph. 

2.4 Binary trees as cdr-coded lists 

When trees are static, there is an easy way to reduce the space by almost a factor of two. If we 

arrange the tree so that the right son of a node ¢ is stored in the memory location immediately 

following t, then we no longer need cdr pointers. The cdr is right there in the next memory cell. 

This technique (which is similar enough to the cdr-coding of ZETALISP[48] that we will appropriate 

that name for it) needs only one pointer per node (pointing to the left son), plus something more 

to tell us when a node has a node has no right son. We can either reserve one extra bit from each 

memory cell for this purpose, or reserve one extra cell containing a special value following each 

node with no left son. 

We cannot apply the algorithm from the previous section to trees that are cdr-coded. Notice 

that the same node cannot be the cdr of two non-isomorphic nodes, as it can in the cons-cell 
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representation. 

It is still quite easy to optimize space, though. Let’s call a group of nodes stored in consecutive 

locations, where each one’s cdr is in the next cell, a block. A block’s end is flagged either by a bit, 

or by a cell containing a special value. The space used by a particular representation of a tree is 

the total size of all the blocks. 

Two blocks can nest, and share the same space, when one forms a terminal sequence of another. 

Let’s call those nodes that are left children of their parents blockheads, because these nodes would 

appear at the beginnings of blocks if there were no nesting. If a subtree rooted at node ¢ is 

isomorphic to the subtree rooted at another node s, then the block containing t may be nested in 

the block containing s tf and only sf node t is a blockhead. This observation makes it clear how to 

modify the algorithm of the previous section: 

1. Group the nodes of T' into blocks. 

2. Find all isomorphic subtrees within 7. 

3. Allocate k cells for each block of size k whose blockhead is not isomorphic to any other node 

in T. 

4. Assign values to the pointers. 

All these steps are straightforward. In step 3, if we encounter a group of blocks that are isomorphic, 

each of k nodes, we allocate exactly one block of size k for them. 

2.5 General trees as binary trees 

In general trees, each node may have an arbitrary number of children. There is a well-known 

way to represent an ordered general tree as a binary tree: we build a binary tree where “left 

son” and “right son” mean “first child” and “next sibling” respectively in the original tree. After 

translating an ordered general tree into a binary tree in this way, we can then use either the cons- 

cell representation or the cdr-coded representation, described earlier in this chapter, to complete 

a concrete implementation. The optimization problems for general trees stored in this fashion are 

the same as before, so the same algorithms apply. 

It is worth noting that the cdr-coded representation for binary trees, when applied to general 

trees, can be understood as follows: Each node ¢ of the general tree is represented by a block of d 
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cells (where d is the branching degree of t). The d cells store pointers to the blocks that represent 

the d children of node t. This explanation is more easily understood than saying that we first 

translate the general tree into a binary tree, and then represent the binary tree as a cdr-coded list. 

But what about unordered general trees, where we do not require that the children of a given 

node occur in a particular order? Let us restrict our attention to methods that store an unordered 

tree by first fixing an order for the children at each node, and subsequently use one of the methods 

already described. We could simply try each possible order for the children in all combinations to 

find the one with the smallest space requirement, but that would be quite expensive. Can we do 

better? 

2.5.1 Unordered trees as cons-cells 

If we try to represent a tree in a minimum number of cons-cells, we run into intractability; this 

minimization problem is NP-Hard. I now show how to reduce VERTEX COVER(see Garey and 

Johnson(20, pages 53-56]), to this problem. Given a graph G = (V, E) we construct a unordered 

tree T of uniform depth 3 where T can be stored in k + ||V|| + 2||Z|| +1 cons-cells if and only if G 

has a vertex cover of size k. 

There is exactly one node in T at depth 0, the root r. Let each edge e € EH have an associated 

node at depth 1 in T called t,. Each t, itself has exactly two children (at depth 2). Let the nodes 

in V be numbered from 1...||V||. If edge e = (f, 7), then let the two children of node ¢, have ¢ and 

j children respectively (leaves at depth 3). 

How many cells are needed to store T? We need one cell for the root. The leaves, though 

numerous, require exactly ||V|| cells chained together as a list with nil car fields. This linked list 

is shared by all the leaves. We also need exactly one cell for every node at depth 1 of T. This 

accounts for another ||E'| cells, for a total of ||V{| + ||E|| + 1 so far for the nodes at depths 0, 1 and 

3. All that remains to be determined is the number of cells required by nodes at depth 2 in T. 

Now t, has exactly two children at depth 2 in 7. When represented by cons-cells, one of these 

children’s cells (call it the head) will point, via its cdr field, to its next-sibling in the other child’s 

cell (call it the tail). Since all the edges in G are all distinct, the head cells are never shared. But 

tail cells all have nil cdr fields and may be shared. The number of head cells at depth 2 is simply 

||Z||. But the number of tail cells depends on how we chose which of the two children of the t. 

would become the head and which the tail. Each such choice effectively orients the edge e. The 

VERTEX COVER problem can be rephrased as follows: given an undirected graph G and a positive 
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integer k, can the edges of G be oriented so that there are at most k vertices in G with nonzero 

in-degree? If (and only if) G has a vertex cover of size k, we will use only & tail cells. The total 

number of cells needed by nodes at depth 2 is k + ||Z|l. 

This completes the demonstration that T can be represented in k + ||V||+ 2|j|#||+ 1 cells if and 

only if G has a vertex cover of size k. 

2.6 Unordered trees as cdr-coded lists 

If we store our tree as a cdr-coded list, the optimization problem becomes tractable, but the 

algorithm is not obvious. I shall go into this problem in some detail, presenting an algorithm to 

find a minimal representation. Let me start with a complete concrete specification. 

Each node t of the tree has an associated block of cells, which stores pointers to the children of 

t in consecutive locations. All the blocks are concatenated into one big array of memory cells, and 

the pointers are just integer indices that indicate where in the array the children’s blocks start. We 

will use the special value 0 as a block terminator to mark the end of the children. (We could just 

as well use a bit flag in each cell for this purpose; the extra 0 cell will make explanation easier.) 

Given this representation, it is straightforward to translate a tree into an array of integers. (See 

figure 2.5 for an example) The total number of cells needed to store an n-node tree is 2n — 1. Each 

node has a cell containing a 0 marking the end of its children (accounting for n array locations), 

and each of the nodes (except the root) is referred to by exactly one cell, accounting for the n — 1 

locations filled with non-zeroes. 

2.6.1 Minimizing space 

The straightforward method of creating an array from a tree is wasteful in its allocation of space. 

The optimization algorithm presented in section 2.4 cannot be applied, but only because the children 

of a node do not have a fixed order, so two blocks may or may not be nestable, depending on what 

ordering of children we choose. 

The order in which the indices of the children of a tree are stored within a block is up to us. By 

choosing a favorable ordering of the children, we make it possible for certain blocks to be nested 

in other blocks. When each child of t is isomorphic to a child of s, ¢ can be nested in s if we order 

the children of s so that those that are isomorphic to children of ¢ are stored after the others. But 

arranging the children of s so that ¢ can be nested therein may make it impossible to nest some 

other node u in s. 
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Numbers in the tree are array indices 

1 

31 

1.2.3.4.5,6,7,8 9 1011 12 13,14 15 16,1718 19,20 21 22 23 24 25 26 27 28 29 3031 
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Figure 2.5: A straightforward translation of a tree into an erray. 

Note that the nodes t;,t2,...,¢ can be recursively nested, as long as each of the children of t; 

is isomorphic to a child of t;41, for 1 < ¢ < k. This nesting will produce a savings of vr (ce, + 1) 

locations. Figure 2.6 shows the same tree from figure 2.5 represented as an array of minimum size. 

How did we decide how to order the children at each node to maximize savings through nesting? I 

will soon show how weighted matching can be used to find the best ordering. 

2.6.2 Some formal notation 

If the subtree rooted at t and subtree rooted at # are isomorphic, write ¢ & s. If for each child t’ 

of t there exists a child s’ of node a such that ¢' & s', then ¢ is nestable in 8, written ¢ <9. Ift <8 

but not ¢ & s, then t is strictly nestable in s, written ¢ < s. If either s < ¢ or ¢ < s, informally 

say that ¢ and s are nestable. Finally, a collection of nodes that are all mutually comparable under 

nestability will be called mutually nestable, and a partition of a collection of nodes into mutually 

nestable subcollections is a neating partition. 

Note that nestability is a reflexive and transitive relation, and that strict nestability is asym- 

metric and transitive. 
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2.6.3 How to nest? 

A nesting partition of the nodes in a tree places constraints on the ordering of the children. If we 

choose some nesting partition 7, and then nest those blocks that are in the same part under x, the 

resulting array will have a fixed size 

N(x)=2n-1- > (ce -1) (2.30) 

where t is 
nested in 
something 

else 

That is, the space ior all of the blocks that are nested in other blocks (the sum in this equation) is 

saved. Maximizing this sum necessarily minimizes the space used. 

Original tree: 

Original array: 

12.3,4,.5 6 7 8 9 101112 13 14.15 16 17 18 19 20 21 22 23 24 25 26.27 28 29 30.31 

15 |10/21/0]8]9|0] 0] 0 12] 0 [15]16] 0 | 0 419)/20] 0 | 0} 0 [25/26/31] 0 | 0 [29/30] Of OJ 0] 0] 

Minimal array: 

1.23,4,5, 67,8 9 10111213 

5/8 /10}0}4/4)/0]/11;0]4]4/5]0 

Figure 2.6: Reducing the space for tree storage. 
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2.6.4 A matching method 

A nesting partition of the nodes in a tree is just a covering of the nestability relation by chaina. 

(A chain is just a sequence of elements ¢1,¢2,...,¢% such that ¢, < ez X--- x ez.) If the wetght 

of a chain ny < nq <... < ny is defined as cp, +1, then the nesting partition sought is the 

covering by chains of minimum total weight. Minimum covering of a transitive relation by chains 

is a well-known problem. Dilworth[10] showed that it can be solved by bipartite matching. The 

weighted version of the problem here can similarly be solved by weighted bipartite matching (see 

Dantzig{9}). 

From a tree, construct a weighted bipartite graph G = (X,Y, 2) where E is a function from 

X x Y to the natural numbers. For each node ¢, create a pair of vertices z, € X and y; € Y. Let 

E(2e, yt) be ec, +1 if s < t and s # t, and zero otherwise. A matching in G (using only edges with 

positive weight) corresponds directly to a covering of < by chains, and vice versa. Matching z, to 

ye corresponds to... ~m<n-~<... appearing in some chain. The weight of edge E(z,, y;:) in G is 

the savings realized by nesting s in ¢. 

The total weight of a matching in G is the total savings (over the straightforward method) in 

space realized by the corresponding nestings in the tree, as was seen in equation 2.30. A maximum 

matching therefore corresponds to maximum savings, and hence minimum space. Now we can 

sketch an algorithm for translating a tree into an array of minimum size: 

1. Determine which pairs of subtrees are isomorphic. 

2. Determine which pairs of nodes are nestable. 

3. Form the graph G described above, and use a standard algorithm (the Hungarian Method of 

Kuhn(33], for example) to find a maximum weighted bipartite matching in G. 

4. Now consider the graph G' = (T, E) formed by identifying the vertices z, and y, in G. The 

edges in the matching found in the previous step form a covering of G' by chains. Partition 

the nodes placing each chain in its own partition. 

5. For each partition, order the children of each node in a proper nesting order. Allocate space 

for the partitions and assign array indices to all nodes. 

Each step of the above algorithm can be done in polynomial time (in the size of the tree 

structure). The one-to-one correspondence between matchings in the graph G and nesting partitions 
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of the nodes in the tree guarantees that the algorithm will find the minimum size array that can 

store the nodes. An example of this algorithm is graphically illustrated in figure 2.7, using the 

same tree as the other figures. The details of the implementation will now be discussed. 

2.7 Implementation details 

The previous section offered only a sketch of techniques and a demonstration of a polynomial 

algorithm for the problem at hand. Since the algorithm proposed is supposed to be practical for 

very large problem sizes, more must be said about the nitty-gritty issues of implementation. The 

steps in the algorithm will now be addressed in turn. 

2.7.1 Subtree isomorphism 

Identifying isomorphic subtrees is slightly harder for general unordered trees than it is for binary 

trees. Nonetheless, we can still adapt the algorithm LABEL for general trees. Instead of a being 

indexed by a pair of integers (that is, a two-dimensional array) the dictionary D must now be 

indexed by a multiset of integers: 

ulabel (t: node): integer 
ift~= nil 

return 0 

S+-9O 

for each child t' of t 

S — S + {ulabel(¢’)} 
v+ Ds 

ifv=0 
Dg — 2 
z~-aztil 

return Dg 

ze 1 
ulabel(root) 

Algorithm ULABEL: find and label isomorphic subtrees 

Although we can no longer use a simpie array to store D, we can still implement D efficiently. 

Aho[1, pages 84-86] describes an algorithm for comparing two unordered trees similar to ULABEL, 

that uses sorting. If we sort the multiset S, we can build D asa search tree keyed on sorted multisets. 

This would mean a total time of O(n logn) for ULABELing a tree of n nodes, 

32 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Original tree with isomorphism labels: 

5 

0 

Bipartite graph of strict nestability Mazimum weighted matching 

(using the isomorphism labels) shown with heavy edges 

wetght weight 

0 o 1 0 0 1 

l 1 3 1 1 3 

2 2 3 2 2 3 

3 3 2 3 3 2 

4 4 4 4 4 4 

5 5 4 5 5 4 

Resulting mintmum-size array: 

1,2,3,4,5,6,7 8 9 10111213 

(ststiololal4atolitol4i4{s5{0] 

Figure 2.7: The space-minimization algorithm: an example. 
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Instead, we could maintain D as s hash table keyed on multisets. Using an associative and 

commutative hash function to combine the integers in S would remove the need for sorting, and we 

could perform ULABEL in expected time O(n). This is similar to a method described by Miller([36}. 

Nodes that are the roots of isomorphic subtrees are mutually nestable. It can never be a mistake 

(in the later matching phase) to put such isomorphic nodes in the same nesting partition. This is 

so because whenever s & t, the partition 

ee oe ee CO ee Sd 

can be replaced with the partition 

mw! = +++ {...,8,t,...}e°: 

requiring the same number or fewer array locations; that is, N(x’) < N(x). Therefore it simpli- 

fies the rest of the description to transform a tree into a directed acyclic graph G by first identifying 

isomorphic subtrees, and operating directly on G. If the labels assigned by algorithm ULABEL 

are 0...z, then the corresponding graph G = (V, E) will have vertices V = {up... vs}, and edges 

E = {{v,y,vs) | y is the label of a child of a node with label z}. Each vertex of G represents an 

entire class of isomorphic nodes. A nesting partition of the vertices of G directly implies a nesting 

partion of the nodes in the original tree. 

2.7.2 Computing nestability 

This step is likely to be the computational bottleneck of the whole operation. The following simple 

algorithm takes the directed graph G = (V, E) (constructed by the tree isomorphism step described 

in the previous section), and produces the relation R« C V x V, where u < v means that for every 

vertex w, (u,w) € EF => (v,w) € E (the successors of u are a subset of the successors of v). 

R<+O 
foreach u € V 

foreach v € V 
flag — true 
foreach w € V 

flag <— flag A((u,w) ¢ E Vv (v,w) € EB) 
if flag then R~« — Rez U {(u,v)} 

Algorithm NEST: Compute nesting relation R< 
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Note that this presentation of algorithm NEST is just a thinly disguised boolean matrix multipli- 

cation. Let Mt! denote the transpose of a square boolean matrix M, and M denote its element-wise 

complement. Then the matrix R of the relation Rx is related to the adjacency matrix G of the 

graph G by the equation K= GG". tt might seem appealing to use standard algorithms for com- 

puting products of boolean matrices quickly (for example, see Aho[pages 242-247][1]) to expedite 

computing nestability, since computing MM for an arbitrary boolean matrix M is as hard (up to 

a constant factor) as multiplying two boolean matrices A and B. Letting 

0 A 
M= (° =) means that 

OA 1 1 AA' AB 
mat=($ 5) (3 a) > (aa an) 

However, the matrix G is not arbitrary here, since it was constructed by identifying isomorphic 

subtrees of a tree. In particular, the number of edges in G (as well as the number of vertices) 

is bounded by the number of nodes in the original tree. Cases where G and Rx are both fairly 

sparse should be handled much more efficiently, since they will arise most often in practice. This 

means that fast general matrix multiplication algorithms should not be used here; they can only 

hope to approach quadratic running times (from the obvious cubic implementation). Algorithm 

NEST can be made to run in time O(||V]| - ||Z||) as follows: store G using sorted adjacency lists, 

so that the inner loop “foreach w € V ...” is actually implemented as “foreach w € V such that 

(u,w) € E flag + flag A(v,w) € EB.” This means that the running time will be O(n*), where n 

is the number of trees in the original structure. (This observation follows directly from a simple 

method for multiplying sparse matrices.) 

Actually G could be a multigraph, since a node could have two or more isomorphic children. 

This does not add any inherent extra difficulty to the problem of computing nestability. 

There is another method for computing nestings that is useful when the maximum number of 

children of a tree is small (and hence the graph G is of bounded out-degree). If every vertex in G has 

at most k successors, then the relation Rz can be computed in expected time O(|{V|| - 2* + ||2s||). 

Let the hash table H be a map from multisets of vertices in V to sets of vertices in V; HZ: NY 4 2". 

Initially H(S) = @ for all multisets S EV. 

The following algorithm computes the nesting relation R< in two passes through the vertices. 

In the first pass, all subsets of the successors of each vertex are entered in the hash table; the second 

pass looks up each vertex by the full set of its successors. 
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R«-@ 
foreach u & V 

let S = {v | (u,v) € E} 
foreach S'C S 

H(S') — H(S') uU {u} 
foreach u € V 

let S = {v | (u,v) € BE} 
foreach v € H(S) 

Re - Rx U {(u, v)} 

Algorithm NEST2: Compute R« when out-degree is bounded 

Of course, the exponential dependence on k makes algorithm NEST2 unusable even in sparse 

gtaphs with any vertices of high out-degree. A practical algorithm for general sparse graphs with 

subquadratic running time is yet to be found. Research into this area might also yield faster 

algorithms for multiplying sparse boolean matrices and computing transitive closures of sparse 

graphs. 

2.8 Matching 

This step might seem potentially costly, but in practice it should be quick. Once the relation R< is 

found, a weighted bipartite matching problem must be solved in order to find the minimum weighted 

covering of R« by chains. The weights on the edges of the bipartite graph are not general here, since 

for one of the parts, all edges leaving a given vertex in that part have the same weight. This fact 

simplifies finding a maximum matching using an augmenting path method (see Papadimitriou|39, 

chapter 6], or Tarjan(44, chapters 8 and 9]) over the case where the weights are general. 

Let the bipartite graph G = (X,Y, Z) have positive weights associated with the vertices in X. 

Then the augmenting paths in G all have one end at some unmatched vertex z € X and follow 

unmatched and matched edges in E alternately. These paths are of two types: 

1. an alternating path ending at an unmatched vertex in Y. These paths are the exactly the 

augmenting paths in the unweighted graph; and in the weighted graph they increase the 

weight of the matching by the weight of the initial vertex z. 

2. an alternating path ending at a matched vertex z' € X where the weight of z' is less than 

the weight of z. These paths do not increase the cardinality of the set of matched edges, but 

they do increase the weight of the matching by the difference in weight between z and 2’. 
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The diagram of figure 2.8 illustrates these two types of paths. 

weight weight 

5 5 

3 3 

2 2 

7 7 

@ 6 ® 6 

2 2 

Type 1 augmenting path (value 2) Type 2 augmenting path (value 4) 

(matched edges are heavy) 

Figure 2.8: Two types of augmenting paths 

The augmenting paths can be found by depth-first or breadth-first search, so each one might 

take as long as O(||E||) time. If n is the number of nodes in the original tree, then the number 

of times an augmenting path will be found must be bounded by 2n — 1, since each path causes a 

savings of at least one array location in the final representation. The number of edges here in G 

might be as high as O(n?) (this is unlikely, though), so in the worst case, it might take O(n°) steps 

to do the matching. 

Conceivably, the special form of the weights allows an asymptotically more efficient scheme 

(like that of Dinic{11] when applied to unit networks; see Even(15] or Hopcroft([22}), but the extra 

complication introduced would rarely be worth the trouble. The graph G is probably sparse in 

practice, and the time to find augmenting paths is likely to be almost constant, so the method 

described above should exhibit nearly linear behavior anyway. 

2.9 An application: English lexicon tree 

In 1983, Andrew Appel and I wrote a program to play Scrabble[3}. To represent the legal English 

words, we used a tree structure. Nodes in the tree were labeled with letters of the alphabet, and the 

labels along the paths from the root to specially marked nodes formed the set of acceptable words. 

This data structure (a cdr-coded list stored in an array) was chosen because it was convenient for 

move generation. 
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Unlike the trees discussed earlier in this chapter, the trees in this application have some extra 

information associated with each node (letters of the alphabet). We can still apply the results of 

this chapter, as long as we change our notion of isomorphism slightly. To be considered isomorphic, 

two subtrees must agree not only in structure, but also in the information found at the nodes. 

The word list we used contained roughly 94,000 words. Using the straightforward translation, 

the array would have contained about 180,000 locations. We discovered that by merging isomorphic 

subtrees, the number of array locations is reduced to about 60,000. This is an amazing savings, 

especially when you consider that there is no loss in search efficiency, and no need to change the 

Scrabble program at all. 

This is how the matter stood, until I developed and programmed the the optimization algorithm 

for unordered trees stored as cdr-coded lists described in this chapter. Using this new program, 

I found that the minimum number of cells needed to store the tree is about 51,000. Again, the 

savings here is free, since no modification to the program is required, and the search runs just as 

fast. 

I also tried representing the lexicon with cons-cells, after choosing an alphabetical ordering of 

the children. I found that about 43,000 cells are needed to store the same English lexicon. Of 

course, each cell requires two pointers rather than one, so this is not as efficient a representation 

as the cdr-coded one for this application. 

2.10 Future work 

2.10.1 Analysis of other implementations 

This chapter presented an average-case analysis of the cons-cell representation of binary trees. Of 

course, that analysis also applies to the cons-cell representation of general ordered trees. What 

about ecdr-coded representations? The techniques of analysis presented earlier probably can be 

applied here as well, when dealing with binary or ordered trees. 

Analyzing the average-case space requirements for unordered trees would be much more difficult. 

Computing the expected weighi cf the maximum matching requires a more sophisticated approach 

than has been presented here. 
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2.10.2 Concrete optimization of graphs 

What about other linked structures? Although this chapter discussed only trees, the techniques 

presented here can be applied to other linked structures. When a graph is stored as an adjacency 

list, the tree-minimization algorithms described in this chapter can be applied directly. Only the 

first step, where isomorphic nodes are labeled, needs to be changed. In graphs, isomorphism labeling 

can be performed efficiently by a partition refinement finite-state machine minimization algorithm 

(for example, see Hopcroft([31, pages 189-196]). 
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Chapter 3 

Abstract Optimization 

In this chapter I present a framework for studying abstract optimization of static data structures, 

and discuss metrics for measuring the computational resources involved. 

Suppose we have an abstract class C,, of static data objects, and a set of operations S that 

examine a data object but do not modify it. Each member of C, can be viewed as a collection 

of partial functions, one function corresponding to each operation in S. The domain and range 

of these functions can be either predefined data types (like integer or boolean) or they can be 

indices. These indices are meant to be the abstract analogues of pointers; they can only be used 

and returned by operations in S. 

An implementation of an abstract class provides a mapping from elements of C,, into a read-only 

memory, and a program for each operation in S that references this memory. An implementation 

also provides a mapping between elements of the index domains and small pieces of memory. All of 

these mappings are strictly internal to the implementation, and cannot be referenced by a program 

that makes use of the data type. 

The abstract data types I study have natural implementations that use too much space. Op- 

timization means making something better. A better implementation of these data types has the 

same functionality as the natural implementation, but uses less space. The trick of abstract opti- 

mization is to trim the fat in the data without slowing down the operations too much. How much 

space has been saved? How much slower is the optimized implementation? To provide meaningful 

answers to such questions, we need to use a model of computation that defines precise cost metrics 

for space and time, and that is realistic about computers’ capabilities. 

40 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 Space metrics 

The (worst-case) space cost of an implementation is simply the maximum length of any of the 

bit-strings representing an element in Cp. This is a strictly log-cost accounting of space. Since 

space-efficiency is the primary concern here, I cannot afford to be sloppy and measure space in 

words, which hold an unspecified amount of information. It is always poesible to make use of all 

the bits in a computer word. 

Bits are universal. While it ts possible to buy a computer that does more work per unit time, 

it ts not possible to buy a computer that stores more per bit. In other words, the time required 

for a given operation can only be bounded by a functional form, whereas the space required can be 

bounded absolutely. It would be foolish to use any metric for space other than bits. 

We wish to represent the elements of C,, in such a way that the maximum length of an element, 

measured in bits, is a slowly-growing function of n. How should we measure the space-performance 

of our representation-length function? Information theory provides us with an excellent yardstick. 

We know that there are ||C,,|| different elements in Cy. It follows that there some objects must 

have be at least Ig ||C,|| bits; otherwise, the objects could not all have distinct representations. 

This absolute lower bound on the size of any possible representation gives us something to shoot 

for. Let’s classify our succinct representations into one of three categories, in decreasing order of 

desirability: 

canonical is the best we can hope for. This is a mapping from C,, into the integers 

1...||Cnlj. The resulting integer is then encoded as a lg ||C,,||-bit binary num- 

ber. 

asymptotically 
optimal is a little worse than canonical. This is a mapping from C,, into a bit string 

of length lg ||C,|| - (1 + 0(1)). Some wasted space is allowed in this type of 

representation, but as n grows, the fraction of waste must vanish. 

linear maps C,, into bit strings whose length is O(log ||Cy|l). 

These categories are based on the functional form of the extra space required over lg ||C,| 

bits. In abstract optimization, 1 will not insist on canonical representations, but I do strive for 

asymptotic optimality. 
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3.2 Time metrics 

The choice of metric for time is not so clear-cut. The unit-cost model of computation is a popular 

accounting metric for time, and with good reason. This model usually has the most realistic 

correspondence to observed running time. The pitfalls of the unit-cost model when numbers get 

too large are well known. Less obvious, but just as nasty, are the architecture-specific shortcomings 

of this metric. The unit-cost model assumes some kind of word-size bit parallelism exists within 

the circuits of a computer. When the logarithms of the numbers involved stay below the word size, 

it is reasonable to expect to perform certain operations with this degree of parallelism. But the 

circuits in any given computer are fixed, so we may be out of luck when we try to coerce a computer 

into performing a particular word-size operation for which it is ill-suited. 

Let me provide a specific example of this phenomenon. Suppose a critical step of an algorithm 

involves counting the number of 1 bits in a binary number. Assume that the typical number n 

we are dealing with is small enough to fit in a single computer word of w bits . How much time 

should we account for this bit-counting operation? If we get to choose, we can use a computer with 

a bit-count instruction. It would seem reasonable then to assess a cost of one to bit counting. 

But many computers lack an explicit bit-count instruction. Should we loop through the bits of 

the word testing for ones, and charge w? Should we use a clever sequence of lgw shifts, masks, 

and additions to compute the bit-count of n? Or should we break each word into k chunks, keep a 

table of size 2”/* of precomputed bit-counts, and charge k (generally the most efficient scheme in 

practice)? Further complications arise if our computer doesn’t have a muiti-place shift instruction. 

The best implementation of this operation, and hence its accounting, depends on the architecture. 

To avoid these processor-specific pitfalls, I restrict my attention to metrics based on bus trans- 

actions between the processor and the static data. I will charge for, and only for, each reference 

the processor makes to the data. The processor is allowed to perform arbitrary computations at 

no cost with the data it has already has in hand. I am measuring I/O complexity. 

By varying the bandwidth of the buses and the costs of transactions, we get different metrics. 

Two that I like particularly well, and use extensively in the thesis are: 

data-bits model assumes that the data bus from memory to the processor is only one bit wide. 

We simply count the number of bit-accesses performed to get the time cost. 

wide-bus model assumes that the data bus is lg N bits wide, where N is the size of the memory. 

We can fetch lg N bits from consecutive memory locations at unit cost. 
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In both models we assume that the address bus is sufficiently wide to address any bit contained 

in memory. 

The data-bits model has simplicity as its main advantage. There is a strong analogy between 

accounting time as bit-accesses here and accounting the time used by sorting algorithms in element 

comparisons. If nothing else, our time metric gives a very reasonable lower bound on achievable 

asymptotic performance, as long as the bandwidth of the data bus is fixed. Two disadvantages of 

this model are that it does not reflect the inherent word-size parallelism in the data buses of real 

computers, and that it does not take account of the bounded bandwidth of the address bus. 

The wide-bus model, on the other hand, is more realistic about the inherent parallelism in the 

buses of computers. Still, there is something a little disturbing about the size of the bus growing 

along with the size of the data. 

3.3 Binary trees: an example 

Let me make the model developed in this chapter clear by giving an example. Let our class C,, be 

the set of binary trees with n nodes, and let the set of operations S be: 

e a function of no arguments (a constant) root returning node. 

e two functions, car and cdr, mapping node to node. 

e a function null mapping node to boolean. 

The type node is an index type. This is the abstract analog of the pointers that occur in the 

natural implementation. Note that there is no information stored in the tree; the only operations 

we can perform are moving from a node to its children and testing if a node exists. 

3.3.1 <A natural implementation 

A natural implementation uses a cons cell (a pair of pointers) for each node. Externally, each node 

is referenced by a pointer to its cons cell. 

Fach pointer requires about lgn bits, since there are n different nodes. The operations is S 

can be performed by dereferencing a pointer. This takes time O(log n) in the data-bits model, and 

time O(1) in the wide-bus model. 

The space used for each cons cell is about 2lgn bits. So the total space for an n-node tree 

is O(nlogn). We could cut this space nearly in half by storing the cdrs in consecutive memory 
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locations, so we only need pointers to the cars. But tais does not change the basic O(n log n) space 

performance. 

3.3.2 A canonical implementation 

The number of different binary trees of n-nodes is Cy, the famous Catalan numbers. They are 

defined by: > 
1 n 

Ca= nal ( n (3.1) 

Let us represent a tree by an integer in the range 1...C,. This canonical representation would 

take [lgC,] bits. Considering the combinatoric meaning of the choose operator, it is clear that 

(2") is strictly less than 27°. The number of bits used by the canonical representation is thus 

bounded above by 2n. Of course, there is no obvious way to represent individual nodes in such a 

representation to allow efficient performance of the operations in S. 

3.38.3 Optimization 

Do we really need to store O(n log n) bits to obtain the time-performance of the natural implemen- 

tation? No. The next chapter describes a scheme that uses linear space. The trick employed there 

is to use a variable-length code for the pointers. Although the largest pointers are O(log n) bits 

long, the average pointers are only O(1) bits. Summed over the entire tree, the total size of all the 

pointers is O(n). 

Another solution for this problem is presented in chapter 5. The representation given there uses 

asymptotically optimal space, and doesn’t use anything resembling a pointer. 
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Chapter 4 

Abstract Optimized Trees 

This chapter addresses the problem of representing static trees in space proportional to their in- 

formation content, without sacrificing more than a constant factor in time efficiency (of the basic 

traversal operations) over conventional pointer methods. A family of recursive representations 

with this desirable economy is exhibited, parameterized by prefix codes for the natural numbers. 

A simple and practical representation is described and analyzed. Next, properties of the opti- 

mal representation in the family are presented and partially analyzed. A discussion of practical 

considerations and extensions to these techniques concludes the chapter. 

4.1 Introduction 

How much information is encoded in the shape of a tree? The number of distinct unlabeled 

trees with n nodes grows functionally as k” (times a subexponential factor), for some constant k. 

Knuth(29, section 2.4.4.4] gives the value for k for several classes of trees. The information content 

of a tree of n nodes is about log k”, or cn for some c. It should therefore be poasible to represent 

a tree using only a constant number of bits per node. 

This is easy to do, in a number of ways. We could simply assign each distinct tree a canonical 

number. This would be optimal in terms of space, although it is difficult to see how we could 

perform tree-traversal operations using this representation. The local structure of the tree is not 

reflected anywhere in such numbers. 

Let’s start by considering n-node binary trees, since they are easy to analyze and are equivalent 

to general ordered trees with n+ 1 nodes using the well-known trick of tilting the general tree by 

45 degrees (see Knuth(29, section 2.3.2]). One way to represent both binary and general trees in 
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a linear number of bits is to use the structural correspondence between ordered trees and strings 

of balanced parentheses. This correspondence is best described recursively: the empty tree is 

represented by the empty string, and other trees are represented by an open ‘(’, followed by the 

concatenations of the representations of the tree’s children, followed by a close ‘)’, as in figure 4.1. 

(This is just the LISP S-expression for the tree.) Trees of n nodes are represented by strings of 

$ 

(€€0O) CO) O0OIO) 

Figure 4.1: Balanced parentheses as trees 

length 2n. Since each character in the string is either a ‘(’ or a ‘)’, we could use 0’s and 1’s to 

encode the n-node tree with 2n bits. 

Although this representation is not informationally perfect, (since an unbalanced string of paren- 

theses does not represent any tree), it is quite efficient. As we use this scheme to represent ever 

larger trees, the fraction of bits wasted vanishes. The number of balanced strings of 2n parentheses 

is given by the nth Catalan number C, = (?")<1,. By Stirling’s approximation, C, = 4".@(n-5/?), 

Taking logarithms base 2, lg Cn = 2n + o(n), so two bits per node is the best possible asymptotic 

bound on the storage needed. 

Contrast the representation as a string of parentheses with the common linked (pointer) rep- 

resentation for such trees. Every node in the tree, except perhaps the leaves, stores one or more 

pointers to children. Since there are n nodes in the tree (each having a unique address), the pointers 
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must be at least logn bits wide. So this scheme takes M(n log n) bits, although the cost is linear in 

the unit cost model of space. 

The logn blowup in space is compensated by the superior speed of the linked representa- 

tion for accessing parts of the tree. The two common tree-traversal primitives Right-child and 

Left-child (equivalently, First-child and Next-sibling, or car and cdr) can be accomplished 

in constant time under the unit cost measure, and in logarithmic time under the log-cost measure. 

To move around in a tree structure represented as a string of balanced parentheses, it will some- 

times be necessary to scan through a large fraction of the string, matching parentheses, to find 

the Right-child. The worst-case cost of this operation is 2(n), much worse than the cost in the 

linked representation. 

Another representation that uses just two bits per node is marked preorder sequential, de- 

scribed by Smith[42, page 225]. Storing the nodes in preorder, we keep a pair of bits called 

Left-child-empty? and Right-child-empty? for each one. The shape of the tree can be recon- 

structed from this information, but locating the positions of the children in such a tree still requires 

a linear scan through the data. 

Is it possible to enjoy representational efficiency without sacrificing too much in speed? The 

answer is yes, and a class of representations achieving this is developed in the next section. 

4.2 Encoding trees in linear space 

Although the space to store a pointer in the linked representation is N(log n), most of those bits do 

not carry their weight in information. When the nodes in a tree are laid out in preorder, the left 

child of a node immediately follows its parent in memory, and the right child is probably not too 

far ahead, since most of the nodes in a (balanced) tree are near the bottom level . If we were to 

represent pointers as relative addresses rather than absolute addresses, the numbers stored in the 

pointers would be smaller, so they could, on average, be represented with fewer bits. Near the top 

of the tree, the relative pointers will still be large (around log n bits), but if we are clever, the total 

size of all the pointers summed over the whole tree will be only O(n). Let’s represent our binary 

tree recursively as a string of bits as shown in figure 4.2 

The header block tells us the relative sizes of the left and right subtrees; it is followed by the 

encoding of the left subtree concatenated with the encoding of the right subtree. The empty tree 

is represented by the empty string. A position in the tree is represented by an index into this 
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header block representation of left subtree repreaentation of right subtree 

(011010 eoeee 110100|110101 cee ceeeeccacecceeoes 010011|001011 ae ccccececesenceencs 000110} 

representation of the whole binary tree 

Figure 4.2: Recursive layout of a binary tree 

bit string (the start of the block corresponding to the desired subtree), along with the size of the 

current subtree (so we know how large the block is). 

A test for emptiness can be performed by checking if the stored size of the subtree is zero. To 

move to the left child, simply skip the header block, adjust the size, and position the new index 

at the end of the header. To move to the right child, take the same action, except that the new 

position is computed by adding the size of the left subtree (somehow computed from the header) 

to the position at the end of the header. 

The header encodes the number of nodes in the left subtree as an integer n, which functions as 

a relative pointer to the right subtree. To find the size in bits of the left subtree, we compute a 

function B,, the maximum number of bits in the representation of any n-node tree. We will insist 

that all n-node trees occupy ezactly B, bits, padding them if needed. This allows us to store the 

sizes of our blocks as the number of nodes encoded therein, rather than as a count of bits. 

To make this scheme work, we have to know when we are done reading through the header. 

Since the number of nodes in a tree is unbounded, we obviously cannot put a fixed ceiling on the 

number of bits in any code that represents these numbers. However, there are well-known methods 

of encoding integers as self-terminating bit strings (called prefiz codes by Elias(13]), that use a 

logarithmic number of bits; that is, the representation of n takes only O(log n) bits. The methods 

in the literature are concerned mainly with the asymptotic efficiency of the representations (for 

example, see Stout(43]), and strive to minimize functional form of the representation achieving 

Ign + @(loglogn), Ign + Iglgn + O(log loglogn) and beyond. Here, though, it will be important 

to pay close attention to the representation of very small integers, since many of the subtrees will 

be small. Let us assume for the moment that we use any prefix code that achieves logarithmic 

succinctness. 

Although the numbers representing the sizes of the largest subtrees of an n-node tree have 

logn bits, we will show that the large number of small subtrees causes the total number bits 
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used, summed over the entire tree, to be only linear in n. To see the basic reason for this, let 

us (erroneously) suppose that the worst-case occurs when our trees are balanced, complete binary 

trees. If B,, denotes the space required for a tree of n nodes, then, informally, 

Bn = O(log n) + 2B). (4.1) 

log ns 

2 2§ - O(1og(n/2')) 

= O(n) 

so at each lower level of the tree, the relative pointers (really, the encodings of the sizes of the 

subtrees) require one fewer bit, leading to amortized constant space per node. 

root —=* | 

.e > n nodes 

[n—ijn-2{n—-3] }; 2 7 1 |] o | 

tree representation 
numbers encoded in header blocks 

Figure 4.3: Left leaning tree 

Unfortunately, this analysis does not apply to arbitrary trees. Consider a tree which leans 

all the way to the left, shown in figure 4.3. For this tree, the size of the relative pointer doesn’t 

decrease very much from one level to the next, and the representation described above will take 

O(n logn) bits. We can fix the representation by adding a Left-child-first? bit for every node 

telling which of its subtrees has more nodes, and encoding the smaller subtree first, shown in figure 

4.4, This guarantees that the size of the pointers must shrink by at least one each level, since the 

smaller subtree has fewer than half as many nodes as the whole tree. 

Now we will get a linear space representation as long as we use a prefix code for the natural 

numbers that uses O(logn) bits to encode the integer n. The choice of which code we use has 
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header 
ts ~ 

[_prefiz code [04] representation of smaller subtree | representation of larger subtree | 

YO Left-child-first? bit 
number of nodes in smaller subtree 

Figure 4.4: Layout of a binary tree with Left-child-first? bits 

an important effect on the asymptotic constant of linearity. To access a child, we must examine 

O(log n) consecutive bits to read in a prefix code (and process those bits). This takes O(log n) time 

in the data bits model, but only O(1) time in the wide bus model. This representation scheme is 

therefore as fast as a pointer representation, up to a constant factor. A complete analysis of this 

scheme with a particular prefix code comprises the next section. 

4.2.1 Analysis of a practical encoding 

Let’s use the following very simple prefix code, with encoding function & taking the natural numbers 

to binary strings. Define 

R(0) = 0 

R(n>0) = 1-([n mod 2]- R({n/2}) (4.2) 

here « denotes concatenation, and n mod 2 is either a 0 or a 1 depending on whether n is even or 

odd. Let r(n) denote the length in bits of R(n): 

r(0) = 1 

r(n>0) = r([n/2])+2 (4.3) 

So in particular, R(0) = 0, R(1) = 110, R(2) = 10110, R(3) = 11110, and R(4) = 1010110. 

This encoding amounts to taking the standard binary representation of n (which, of course, is not 

a prefix code) reversing it, and shuffling it with a binary string of the form 1*0. To decode a bit 

string, begin reading the bits until you encounter a 0 in an odd position. The bits in even positions, 

reading backwards, form the standard binary encoding of the integer. 

This is not a particularly efficient encoding of the integers; it asymptotically requires twice as 

many bits as the most efficient schemes, and it even wastes some codes (for example, 100 doesn’t 

begin the code for any integer). We use this encoding because it is easy to analyze. 

50 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To simplify the analysis, define the integer logarithm function [(n) on the natural numbers to 

be |Ig(n + 1/2)|. (This is really just [Ign], except that it is defined to be —1 forn = 0.) This 

function has the property that 

K(|n/2]) =t(n) —1 for all integral n > 0 (4.4) 

Note that the code length function r(n) = 2/(n) + 3. 

The representation scheme for trees is as follows: 

R(empty tree) = € 

R(T) = R(number of nodes in smaller subtree) (4.5) 

-[Left-child-first? bit| 

-R(emaller subtree) 

-R(larger subtree) 

Let B,, be the maximum number of bits needed to store a tree of n nodes. Bo = 0; for positive n, 

Bn= ogactia* 2) [r(kK) + 1+ By + Bn—1~«] (4.6) 

(The n—1’s in this important equation are due to the fact that the subtrees can have at most n—-1 

nodes, since there is one node at the root.) 

Theorem 4.1 The space By, for a tree of n nodes is given by: 

Brn = 4n — 2I(n) — 2 (4.7) 

Proof by induction on n. By = 4-0-—2-(—1) — 2 = 0, verifying the base case. From equation 4.6, 

[r(k) + 1+ Be + Bn-1-2] max 

OSkS|(n—-1)/2) 

max (2i(k) + 3) + 1+ (4k — 2i{k) — 2) 
O<k<[(n—-1)/2} | + (4(n —1—k) — 2l(n — 1 — k) — 2) 

= cad y/2) [4n — 4 —21(n —1—k)] 

= n-n-2.| min n-1-0) 
OSkS |(n—-1)/2} 

= 4n-—4-2l(n-—1-|(n —1)/2]) (4.8) 
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= 4n—4- 2i(|n/2]|) 

4n — 4— 2(I(n) — 1) (4.9) 
4n — 2I(n) ~ 2 

= Ba 

demonstrating the induction case. Equation 4.8 follows from the monotonicity of the integer loga- 

rithm function [(n), and equation 4.9 follows from equation 4.4. oO 

The limit of B,/n as n grows without bound is 4 (since I(n) is o(n)), so this scheme stores trees 

in about four bits per node. 

This representation for binary trees is quite practical and easy to implement. The decoding 

of the relative pointers from the bits strings is straightforward, as is the computation of B,, from 

n. The space required by this scheme is asymptotically only a factor of two worse than the space 

required by any possible representation. The time required is within a constant factor of that used 

by the standard pointer representation. 

Because this representation uses an inefficient scheme to encode the integers, it is logical to 

look for schemes using more efficient integer encodings, to better approach the asymptotic bound 

of two bits per node. Any logarithmically succinct prefix code leads directly to a representation 

scheme, based on the solution to the recurrence in equation 4.6 with a different function r(n). 

For practical purposes, it is desirable that B, be efficiently computable, since this computation 

must be performed in traversing the tree. The encoding above yields a particularly simple form for 

By; for some other representations I have examined it is more difficult to find a simple formula. 

Nevertheless, since the model of computation used here only counts bit-accesses to the data, we 

can assume that B,, can be computed for free given any chosen encoding of the integers. This at 

least gives a lower-bound for those schemes where By is easy to compute. ) 

4.3 Lowering the constant factor 

Imagine the following quasi-mechanical search for an efficient representation: 

For each prefix code R for the natural numbers, plug the code length function r for 

that encoding into equation 4.6 and solve the recurrence to obtain a formula for By. 

Find the asymptotic limit of B,/n and minimize. 

There are two problems with this approach: 
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1. How can you enumerate all the valid prefix codes of the natural numbers? There are infinitely 

many of them. 

2. Given a particular code length function r, how can you solve the recurrence of equation 4.6 

to obtain B,/n, or even the asymptotic value of B,/n? 

In order to find an efficient representation, let’s generalize our scheme slightly. Instead of 

employing one fixed prefix code R to encode all the relative pointers, use a family of codes Ry. 

We intend to use the code R,, to encode the relative pointer at the root of all trees containing n 

nodes. (Remember that we keep track of the number of nodes in the current tree anyway, to tell 

when the tree is empty.) If a tree has n nodes, the number of nodes in a subtree is between 0 and 

n— 1 inclusive, so R, need only map [0...n — 1] into strings of bits. This generalized scheme also 

allows us to do without the Left-child-first? bit; that is, R, can directly encode the number of 

children in the left subtree in a tree of m nodes, as shown in figure 4.5. The new &,, simply assigns 

short codes to the integers near 0 and those near m — 1. 

B, bits —- - 
Ry(m) | representation of left subtree | representation of right subtree 

<—— rn(m) bits —- B,, bits ~< Bn-1-m bits ———- 

possible padding bit(s) 

Figure 4.5: Layout of an n-node binary tree with generalized R,, 

Call representations in the new scheme variable encodings, to distinguish them from the uniform 

encodings in the old scheme for representing trees. 

First, note that variable encodings strictly generalize uniform encodings; any uniform encoding 

' can be regarded as a variable encoding R, that doesn’t change as n grows (except inasmuch 

as the extra Left-child-first? bit is subsumed in the new R,,). Therefore representations 

using variable encoding must be at least as good as those using uniform encoding. Under variable 

encodings, the recurrence of equation 4.6 becomes: 

Ba = Ocken {r,(k) + Bi + Bn-1-k] (4.10) 

where r,, is, analogously, the length of R,,. 

At first it would seem that this added generality makes the search for efficient representations 

even more difficult. The space of possible encoding functions is now indexed by two variables, 
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rather than one. However, this generality actually simplifies the search tremendously, as we will 

show in the next section. 

4.3.1 The optimal variable encoding 

Now that we allow different encodings of the relative pointers in different size trees, a wonderful 

thing happens. The size of n-node trees, B,, now depends only on the values of B, for k < n, 

and on the function r,,, whereas before it depended on the uniform function r, which had to be the 

same for all n. This independence of B, from the encodings R,, (m # n) together with equation 

4.10 means that the principle of optimality holds. For By, to be minimal, each B; must also be 

minimal for k <n. This suggests the following dynamic programming algorithm which computes 

optimal (minimal) values of B,, along with encoding functions that achieve those values: 

Bo 0 

for n+ 1...00 
By + 00 

for each encoding Ry, of (0...n — 1] 

rn [|Rall 
b omex, [pa(k) + By + Bn-1-«] 

Bn — min[By, 3] 

Algorithm A 

For the rest of this section, we will use the notation B, to mean the optimal value of B, over 

all variable encodings. Note again that this B,, is an absolute lower bound on all possible uniform 

encodings, for reasons mentioned earlier. 

The search over all possible encodings in the algorithm above seems daunting. Actually, no 

search is required at all. From the algorithm, r,(k) can be as large as B, —- By - By_1-4; that 

is, the encoding of the integer k in variable encoding #,, can have as many as B,, — By ~— By-1-k 

bits. (Of course, we don’t know what B,, is, yet.) Because Ry is a prefix code, the set of strings 

{Rn(k) | 0 < k < n} must have the prefiz property: no R,(k:) may be a proper prefix of another 

Ry(k2). We can find an encoding R, of {(0...n — 1] with respective lengths [r,(0)...rn(n — 1)] 

with the prefix property exactly when the values of r,(k) satisfy Kraft’s[32] inequality for noiseless 

encoding (better explained by Gallager(19, page 47)): 

n=-1 

1> do 27ralt) (4.11) 
=0 
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now, using r,(k) < By — By — By-1-,~, substituting: 

n-1 
1> > 2BitBn-1-k—Bn 

k=0 

multiplying by 22" 
a-l 

9Bn > >> 23+ Bn—1-t 

k=0 

now taking logarithms and minimizing B, (remembering that B, is constrained to be an integer) 

we obtain the following recurrence: 

n-1 

Bn = he > 2PerBnnst] (4.12) 
k=0 

A search-free dynamic programming algorithm to compute the values of B, follows directly 

from the recurrence of equation 4.12: 

Bo — 0 

for n+ 1...00 
t-0 

for k—0O...n-—1 
t— t+ 2Be+Bn-1-4 

Br = [lgt] 

Algorithm B 

It still remains to construct prefix codes R, that achieve these values of B,. We can work 

backwards, starting from the B, computed by algorithm B. In constructing prefix code Ry, assign 

the integer k a weight W, = 25t+Bn-1-k-Bn, Because we chose the B, to satisfy Kraft’s inequality, 

we know that > W, < 1. Now, use Huffman’s([23] classic algorithm to find a prefix code of minimum 

total weight. A well-known property of such minimal-weight codes is that Wi < 2-ra(*)+1 (see 

Gallager[19, page 50]}; in our case, this means that r,(k) < B, — By, — B,-1-, which is the bound 

we need. 

‘These algorithms to compute B, and 2, given = arc all that is needed (at least in theory) to 

implement the optimal variable encoding of binary trees. To make the optimal scheme practical, 

it is necessary that values of B, and decodings via R, be computed quickly. Although our model 

of computation doesn’t charge us for these computations, algorithm B above takes O(n”) time to 

compute By. 
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n Ba n Bn 

1 0 600 1360 

2 1 700 1589 

3 3 800 1818 

4 5 900 2047 

5 7 1000 2276 

6 9 2000 4567 

7 11 3000 6859 

8 13 4000 9151 

9 15 5000 | 11443 

10 17 6000 | 13736 

20 38 7000 | 16028 

30 60 8000 | 18320 

40 82 9000 | 20613 

50 105 10000 | 22905 

60 127 20000 | 45830 

70 150 30000 | 68756 

80 173 40000 | 91681 

90 195 50000 | 114607 

1CO 218 60000 | 137533 

200 446 70000 | 160460 

300 674 80000 | 183386 

400 903 90000 | 206312 

500 1132 100000 | 229238 

Table 4.1: Some values of By, 

It might seem that the computations involving ¢ in algorithm B would be expensive to perform 

because of the extremely large size of the numbers involved, when n is large. The trick is to store t 

as a floating point number with binary exponent and mantissa stored in separate integer variables. 

If the mantissa is maintained as a normalized fixed-point fraction 1/2 < m < 1, with the exponent 

e an integer, then t = m-2* can be maintained as an invariant of the inner loop with only a constant 

number of (unit cost) operations. The number of bits in the mantissa need only be a few bits larger 

than the difference between the longest and shortest code in the range of Rn. This difference is 

logarithmic in n, and in practice, the mantissa can be stored in a single 32-bit machine word for 

values of n into the hundreds of thousands. The value of the exponent e at the end of the loop is 

Bp. 
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Maybe there is a simple closed form for B,, (or at least a more efficient algorithm than algorithm 

B), but such a formula has eluded me. The next section discusses some of the properties of B, and 

the recurrence of equation 4.12. 

4.3.2 The function B, 

To give a feel for B,, selected values of B,, computed by algorithm B, are tabulated in table 

4.1. It appears that B,,/n is about 2.29 as B, approaches infinity, which would mean that the 

optimal algorithm (and hence any algorithm using a uniform or variable encoding) has about a 

15% overhead asymptotically. But what can be proven about the asymptotic form of B,? 

Consider the recurrence of equation 4.12 without the ceiling function: 

n-1 

BY = lg Y> 274+ n-1- (4.13) 
k=0 

Removing the ceiling function amounts to allowing us to express the relative pointers with a frac- 

tional number of bits. If we define C,, = 23n , equation 4.13 becomes: 

na-l1 

gC, = lg >; Cy > Ch-1-k 
k=0 

n-—1 

Ch = >) Ce-Crie (4.14) 
k=0 

Now observe that equation 4.14 is a defining recurrence for the Catalan numbers encountered 

earlier. So C,, are the Catalan numbers. If we could somehow encode the relative pointers using 

fractional bits with no waste (some kind of arithmetic coding comes to mind) , our encoding would 

be absolutely perfect. I don’t know how to do this, and it is an interesting open problem in this 

area. 

The analysis of equation 4.12 is made very difficult by the presence of the ceiling function. 

However, the monotonicity of the value of B, with respect to values of B,,k < n, together with 

the fact that [z] < z+ 1 allows us to write the following inequality: 

n-1 

Bn <1+1g >. 22st Bn-1-8 (4.15) 
k=0 

which allows us to show the following: 

Theorem 4.2 The value of By, < 3n, for positive n. 
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Proof Let Bj, be the function that makes the inequality 4.15 an equality. Clearly B,, < Bi. Let 

C! be 29». Then 
n=-1 

Cn=2 0 CL Chie 
k=0 

Now the claim that C/, = 2"C,, where C, are the Catalan numbers, is easily verified by induction, 

using this equation and the recurrence of equation 4.14. So B!, = n+ 1gC,, and it was argued 

earlier by Stirling’s approximation that lg C, = 2n — o(n). So B! =n +2n-—o(n), and By, < 3n, 

completing the proof. mi) 

This theorem, giving a bound of three bits per node, seems rather weak, observing the values 

in table 4.1. The rest of this section will examine techniques for finding bounds on the asymptotic 

limit of B,/n. First, observe that is is possible, a priori, that B,/n does not approach a limit 

as n —+ oo. We know that in the limit, 2 < B,/n < 3, but perhaps B, is like the function 

f(n) = 2!e"1, which takes on values between n and 2n, but has no limit lim,.¢o f(n)/n. Let's call 

inf{k | kn > By a.e.} the upper limit of B,/n, and sup{k | kn < B, a.e.} the lower limit of B,/n. 

Then B,,/n has a true limit if the lower limit equals the upper limit. This equality is indeed the 

case, and will be proved shortly. But first, a word about the lower limit. 

The monotonicity of B,, gives an easy technique to estimate the lower limit of Bn/n. For any 

value of n we can exhibit an n-node tree T requiring B,, bits (this is trivial; they all require B, 

bits). We can take k copies of T and build a tree T', with a right-leaning spine of k nodes, where 

each node of the spine has a copy of T' as its left child, as shown in figure 4.6. 

AA nn k-node 
_ bits bits — spine 

k copies 
i -) 

k(n + 1) nodes; 
at least kB,, bits 

Figure 4.6: Construction bounding the lower limit of B,/n 
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The tree T’ has k(n + 1) nodes, and since it contains k copies of T, it must occupy more than 

kB, bits. Since our choice of k was arbitrary, there exists an infinite set of trees (one for each 

k) where the number of bits per node is greater than B,/(n +1). So for every n, the value of 

B,/(n + 1) is a lower bound on the lower limit of B,/n. (This intuitive proof directly translates 

into a symbolic one, using equation 4.10 and doing induction on both n and k.) From the values 

in table 4.1 we now know that the lower limit is at least 2.2935. 

The fact that B,/(n +1) is always less than the lower limit of B,,/n implies that the lower limit 

is equal to the upper limit, as we now demonstrate: 

Theorem 4.3 limps Bn/n exists. 

Proof: Suppose that the uppez limit u and the lower limit / of B,/n were unequal. Choose some 

u’ such that | < u' < u. Now u = inf{k | kn > B, a.e.}, so for our u’ < u, there exists an 

infinite sequence {n1,n2,...} where u'n; < Bn,. We also know that for any n, Bn/(n +1) < l. 

Combining these two inequalities, we have u'n; < I(n; + 1) for the infinite sequence of n,’s. Thus 

u'/l < (ng+1)/n,. As § increases without bound, the ratio on the right goes to 1; therefore u'/I < 1. 

But we chose u’ to be greater than /, hence contradiction. Our assumption that u > ! must be 

false, proving the theorem. oO 

It seems to be much more difficult to get upper bounds on the limit of B,/n. The bound of 3 

shown in theorem 4.2 can be improved using a variation of the technique used in the proof given 

earlier. Consider a sequence Bi, defined as follows: 

Bn n<N 
i n-1 ' 

By _ 1+ lg > Ft ie nar n>wN (4.16) 

k=0 

Here N is a parameter of the sequence. The idea is that the new sequence B! is defined to be 

identical to B, on all values up to Bh, and obeys the defining recurrence for B, for the values 

beyond N, with the ceiling operator replaced by increment. We know that Bi > B, from the 

monotonicity of B,. Note that the sequence B! in theorem 4.2 is a special case of the sequence 

B' here, with N = 0. Since we have discarded the troublesome ceiling function, the sequence B’ 

should prove more tractable. We can compute the asymptotic value of B/,/n for increasing values 

of N; this will provide an upper bound on the limit of B,/n. 

59 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To simplify our analysis, let’s define C’, = 22». So 

23n n<WN 
c' = n-1 

n 2-> C.CL_1-, n>N 
k=0 

Now consider the generating function c(x) for the Cj: 

c(z) = >, Ciz" 
n>0 

squaring and multiplying by z, we find 

rn 

ze? (x) = > >, CiCh-1- | 2” 

N f[n-1 
= >> 5 2PrvBo-a| 2” 

n=1 Lk=0 

+> b CtCt1-+] 2” 
n>N Lk=0 

from equation 4.17, the second part of this sum can be written: 

-1 

> Scie z= LS ote" 
n>N 2 k=0 n>N 

1 x cy = 3 eC) -ySocez 
n=0 

1f x 
= = |e(z)— >_ 239 

2 he n=0 

therefore 

2xe(x) = c(z) + 3 2 (= arta) - 2° 2” 
k=0 

(4.17) 

(4.18) 

(4.19) 

Equation 4.19 is just a quadratic equation in c(z) and can be solved using the quadratic formula 

(remembering that c(0) = Cj = 1): 

c(z) = = [1 - yeeP(z) +1] 

where P(z) is the Nth degree polynomial defined by: 

N n—1 

P(x) = > 2 (= gPrt Bost] _ 2° 2” 

n=0 k=0 
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The coefficients of P(z) are simply computed from known values of B,. Observe that P(x) is the 

series p(z) truncated to N + 1 terms: 

p(x) = > 2 (= port) 2 

n20 k>0 

= ~-1l+2+ 227 + 225+ grt + 402° + 19226 +... (4.22) 

The key to finding the asymptotic behavior of Bj, lies in the analysis of equation 4.20. Calcu- 

lating the exact expansion of c(z) seems laborious, since it involves finding the expansion for the 

square root of ugly polynomials. However, we are only interested in bounding the values of C!, 

asymptotically. Let us first observe that C), = —D,41/4 for n > 0, where D, is the expansion of 

(eePQe) +1 = Dae” 
n2o0 

So it suffices to find asymptotic bounds on the magnitude of D,. Imagine factoring the polynomial 

82P(z) + 1 into a product of the form: 

the simpler 

(1 — 2/r1)(1 — 2/r2)-++ (1 — 2/rw41) 

where the r, are the complex roots of the polynomial. Then 

V82P(2) +1 = (1~ 2/r1)#(1 — 2/r2)} +++ (1 — 2/ryai)? 

Now the expansion of (1 — z/r)}/? is, from the binomial theorem: 

z()) nao \" r 

The radius of convergence of this series is simply r. Since \/8zP(z) + 1 is a product of factors of 

the form (1 — 2/r)*/?, the region of convergence of its expansion will include the intersection of 

the regions of convergence of the factors (see Kemp[28, page 92, theorem 4.8]. Therefore the series 

Lin>o Dnz” converges for any value of z where |z| is less than the smallest root of 8zP(zx) + 1. 

For the series to converge, it must also be true that limpco Daz” = 0. So for any y less than 

the smallest root of 8zP(z) + 1, |Dn| = o((1/y)"). Choosing r as the smallest root, we see that 

lg|D,| = (—Igr)- n+ o(n). This implies that Bi, = lg |C!| = (-Igr)-n+ o(n), also. 

Since By, < By, the value of —lgr is an upper bound on the limit of B,/n. This suggests the 

following procedure for finding such bounds: 
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N || A(8zP(z) + 1) | smallest root | bound on Bn/n 

0] 1-82 12500 3.0000 

1 + 82? 14645 2.7716 

2\| +162° 15772 2.6645 

3} +1624 16021 2.6420 

4] +6425 16204 2.6256 

5 || +320z° 16374 2.6105 

10 .16916 2.5636 

25 17637 2.5033 

50 .17806 2.4896 

100 .17830 2.4876 

Table 4.2: Upper bounds on the limit of Ba/n 

for N -—0...c0 

let r be the smallest root of 
N n-1 

8 > 2 (= 2erttn-s} _ 2-| ghtl +1= 0 

n=0 k=0 

then the limit of B,/n < —igr 

Algorithm C 

Using a symbolic algebra package, I computed the polynomial 8zP(zx)+1 for a number of values 

of N, and found its smallest root. The result of these calculations! are tabulated in table 4.2. I 

have a strong reason to suspect that the values of the bounds given in the table are converging to 

about 2.487, since for large values of N there is a root which is just slightly larger than the smallest 

one. Since the polynomial for N +1 is strictly greater than the one for N at all positive z, the limit 

value of the smallest root (it must converge, since it is monotonically increasing and bounded from 

above) lies between these two roots. It is not clear that the bound derived in this way converges 

to the limit of B,/n (this seems unlikely, in view of the values in table 4,1). We have only proved 

that the optimal encoding asymptotically requires less than 2.5 bits per node. 

The optimal algorithm is interesting from a theoretical standpoint, because it provides a lower 

bound on the storage needed by any representation of this class. It is also amusing to note that 

the difficulty of making the optimal algorithm practical lies in the difficulty of the analysis of its 

11 would have liked to go further, but the polynomials were getting too big and ill-conditioned for the symbolic 

algebra package to handle. 
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performance. Often in computer science, a simple algorithm will have a very complex analysis, 

but that complexity has no direct impact on the implementor. Here, though, the complexity of 

deriving an easily-evaluated closed form for B, makes the implementation of the optimal algorithm 

impractical. The algorithm is only practical if it is easy to analyze! 

4.4 Practical concerns 

In the first part of this chapter, a basic method for storing trees in linear space was presented. 

Now, variations on that method of a practical nature will be discussed. 

4.4.1 Other operations on trees 

The family of representations developed in this chapter was designed only to make the common 

tree-traversal operations car, cdr, and null efficient. As a bonus, certain other operations dealing 

with the size of subtrees and tree numberings can also be implemented efficiently. Obviously, 

obtaining the number of nodes in a given subtree is free, since we are storing it anyway. We can 

also keep track of the preorder, postorder, or inorder numbers of the nodes as we descend, so it is 

also cheap to provide operations to query for them. The following relations make it clear how to 

maintain these numbers as we descend in the tree, using the size(T) function counting the number 

of nodes in the subtree rooted at T: 

preorder(car(T)) = preorder(T) + 1 

preorder(cdr(T)) = preorder(T) + size(car(T)) + 1 

inorder(car(T)) = inorder(T) - size(edr(car(T)) - 1 

inorder(cdr(T)) = inorder(T) + size(car(cdr(T)) + 

postorder(car(T)) = postorder(T) - size(cdr(T)) - 1 

postorder(cdr(T)) = postorder(T) - 1 

Furthermore, we can with reasonable efficiency access nodes by their preorder, inorder, or 

postorder numbers, using the above relations. To access a node at depth d by number, it takes 

O(dlogn) time (bit accesses) in a tree of n nodes. Since there are only O(n) bits in the entire 

data structure, the time required is also bounded by O(n), which is better when the tree is very 

unbalanced and we are accessing a node at depth d > n/ logn. 

63 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that while moving from one node to a child may take O(logn) time, the total time 

to traverse the entire tree is only O(n), since we need to scan each bit in the data only once. 

More generally, the time required to fully explore a subtree of m nodes with a root at depth d 

is O(m + dlogn), when the whole tree has n-nodes. Another useful observation is that we can 

fully explore an inorder subrange of tree from the node with inorder number m, to the node with 

number mz (at depths d, and d3) in time O((m2 — m1) + (d; + d2) logn). This bound is derived 

from the number of bits we need to look at to scan all nodes in the range. 

Another operation that can be efficiently performed using this scheme is testing whether two 

pointers (meaning indices into the string of bits) refer to the same subtree. This operation was 

taken for granted here, and it simply involves comparing the two indices for equality. But the fact 

that we can easily keep track of preorder and postorder numbers means that we can also test if 

one node is an ancestor of another. Node a is an ancestor of node 6 if and only if it has a smaller 

preorder number and a larger postorder number than 6, or equivalently (see Aho[2, page 82]), when 

postorder(a) - size(a) < postorder(b) < postorder(a) 

If we resolve to always store the lexicographically smaller subtree first (rather than the storing 

the one with fewer nodes first, and breaking ties at random), then we can also check two subtrees 

for structural isomorphism in time proportional to the number of nodes they contain by checking 

their bit strings for equality. If we wish to check two trees for similarity (isomorphism where we 

disregard the distinction between left and right children), we check their bit strings for equality, 

ignoring the Left-child-first? bits. . 

4.4.2 An improvement that obviates dynamic counts 

Suppose we don’t really need to perform any of these operations that make use of the count of the 

nodes in the current subtree. Can we avoid keeping track of this count while traversing the tree? 

In our current scheme, there is a need to keep this value on hand during tree traversal: without it 

we cannot tell when we have reached a leaf, and we would go “off the trolley,” marching down into 

another part of the bit string. Happily, it is possible to modify our scheme to avoid maintaining 

this dynamic node count while still keeping the basic operations efficient. 

We now wish to represent a position in the tree as a simple index into the string of bits. As 

before, the position will be the head of a recursively defined block of bits. Conceptually, the simplest 

modification to the old scheme we could adopt would be to add a bit to the header telling if the 
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subtree stored second (the larger subtree) is empty. (We can always tell if the subtree stored first 

is empty by decoding the node count in the header.) But if the larger subtree is empty, then the 

smaller subtree is empty too, and the current tree is a leaf node, so this new bit is only set at the 

leaves. If our encoding of the integers R has some unused codes we can, instead of reserving a 

new bit in all the headers, choose the shortest unused code (this is 100 in the scheme examined 

in section 4.2.1) and assign it to encode the leaf nodes. If we run across this special code when 

decoding the header, we know we are at a leaf, so this change is sufficient to allow us to use the 

four bit per node scheme. Except that now, the scheme requires more than four bits per node. By 

an analysis too similar to that done in section 4.2.1 to merit inclusion, we find that with the special 

leaf encoding, Bn = [9n/2] — 2l(n) — 2, which is exactly [n/2] bits more than we used to need. 

The asymptotic constant of proportionality has risen to 4.5 bits per node. 

As an alternative to modifying the four bit per node scheme by adding a special leaf code, 

there is a perhaps more direct (and more efficient) way to avoid the need for dynamic node counts. 

We can cross-breed the marked preorder sequential scheme (mentioned in the introduction) with 

our scheme. We will keep our recursive preorder layout; for each node, we will have the first two 

bits in the header be the Left-child-empty? and Right-child-empty? flags telling which of the 

children are missing. The rest of the header will only be present when these first two bits are 00, 

indicating that both children are present. The rest of the header consists, as before, of an encoding 

of the number of nodes in the smaller of the two subtrees, plus the Left-child-first? bit. The 

encodings of the subtrees follow the header, with the smaller subtree first. A leaf node is encoded 

very simply as 11. All this is depicted in figure 4.7 | 

Notice that we never need to define R(0) here, since the second part of the header is only present 

when both subtrees are non-empty. Our analysis is made very simple by the following choice of R: 

R(i1) = 1 

R(n>1) = O-R(|n/2])- [n mod 2} 

so the corresponding representation length function r is defined by: 

r(1) = 1 

r(n > 1) r(|[n/2]) +2 

This representation is simple to understand. A positive integer n is represented by its standard 

binary representation, prefixed by the string olls"], To decode, count the number of leading 0’s 
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header Tree with both children non-empty: 

fo [o| Rm) 4] representation of smaller subtree | representation of larger subtree | 

a YA Left-child-first? bit 
prefiz encoding of m, the number of nodes in amaller subtree 

Right-child-empty? bit 

Left-child-empty? bit 

Tree unth left child empty: Tree with right child empty: 

[1]0] representation of right subtree | [oli] representation of left subtree | 

XQ Right-child-empty? bit Y Right-child-empty? dst 

Left-child-empty? 5st Left-child-enpty? b:t 

Figure 4.7: Layout of a binary tree using child-empty? bits 

until you come to the first 1. After that, read as many more digits as you encountered leading 0's. 

Note that r(n) = 2I(n) + 1. The recurrence for By, is 

B,a= cee to® Xa) [r(k)+3+ Bet Bn-1-«] (4.23) 

Note that this recurrence is correct even in the boundary case of k = 0, where the second part of 

the header is omitted, because (even though R(0) is undefined) r(0) = 2/(0) + 1 = —1 and Bo = 0, 

so the quantity in the brackets is -1+3+0+ By-1 = Bn-1+ 2. 

The new r(n) is exactly 2 less than the old one from equation 4.3. This is exactly compensated 

by the extra 2 in the bracketed quantity in equation 4.23 compared to equation 4.6. Therefore, the 

same analysis can be recycled, giving B, = 4n — 2I(n) — 2 here as well. 

We have recovered the asymptotic half bit per node painlessly. We can use this improved scheme 

without keeping track of the number of nodes in the current subtree (but we can still keep track of 

this value if we choose to). 

4.4.8 Moving up 

So far, we have concerned ourselves only with tree traversal operations that move downward in the 

tree. Sometimes we want to move upward, back to our parent. In the representation presented here, 

as in the standard pointer representation, we may choose to keep a stack of nodes encountered on 

our downward path, and move upward by simply popping the stack. In the standard representation, 

it can sometimes be advantageous to store an additional explicit static upward pointer at each node, 

to avoid the dynamic space overhead of maintaining a stack. 
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This option is available to us in our linear space representation as well, at a cost of increasing 

the number of bits stored per node. We modify the scheme presented in the last section that allowed 

us to traverse the tree downward without maintaining a dynamic node count. Two more bits are 

added to the first part of the header: I-am-only-child? and I-am-first-child?. If there is a 

second part to the header, we replicate this second part and include it between the encodings of 

the children. The general (neither child empty) case of this complex layout is shown in figure 4.8. 

Tree with both children non-empty: 

[0/0 0404] Ho | representation of smaller subtree | He | representation of larger subtree | 

second part of header (2 x): 

I-am-first-child? bt R(m) 

I-am-only-child? bit L 7 4) 

\ Right-child-empty? bt prefiz code 

Left-child-empty? bit Left-child-first? bit 

Figure 4.8: Layout of a binary tree to allow upward traversal 

The basic idea here is that string of bits immediately preceding our current block now gives us 

an idea of how many bits backward we necd to skip to get to the start of our parent’s block. 

It is also necessary to use a new encoding function R. Since we will be scanning through the 

encoded integer both forwards and backwards, we need an encoding that is self-terminating in both 

directions. Here is one such encoding: R(1) = 0; form R(n > 1) by taking the standard (|log | +1) 

digit binary representation of n, removing the most-significant bit (a 1) and shuffling the remainder 

into 10l!°s"]-14, To decode (in either direction), read the first bit. If it is a O the number encoded 

is 1. Otherwise, continue reading bits, looking for a 1 in an even position marking the end of the 

number. The bits from the odd positions (with the leading 1 bit restored) are the standard binary 

encoding of the number (when taken in order of increasing position in the bit string). This R has 

the same length function as the previous encoding: r(n) = 2/(n) + 1. 

Traversing down in the tree is accomplished as before, except that when moving to the larger 

child, we must skip the bits in the duplicated header as well. To move up, there are three cases, 

based on the values of the bits I-am-only-child? and I-am-first~child?: 

1x: In this case, our parent has only a one-part header. Skipping back four bits will take us 

to the beginning of our parent’s block. 
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01: We are the smaller child, stored first. Scan backwards through the whole two-part header 

of our parent, ending up at the beginning of our parent’s block. 

QO: We are the larger child, stored second. Scan backwards, reading the duplicate copy of the 

second part of our parent’s header. Decode the number of nodes n in our smaller sibling 

from this, then skip backwards B, bits. We are now at the beginning of our sibling’s 

block; the 01 case now applies. 

The first part of the header is now twice as large; the second part is always present in duplicate. 

Therefore this representation will take exactly twice as much space as the scheme presented in the 

previous section: By, = 8n — 4I(n) — 4. 

One unfortunate consequence of this upward-capable scheme is that it doesn’t allow us to 

maintain the dynamic count of nodes in the current tree. The problem is that when we move up 

from a smaller child to its parent, we have to determine how many nodes are in its larger sibling. 

This quantity is not to be found anywhere; in fact, the absence of this potentially large number is 

directly necessary for the space-linearity of our scheme. Perhaps there is some clever modification 

that would allow us to maintain the dynamic node counts while moving upwards, but I haven’t 

found one. 

4.4.4 Other types of trees 

In this chapter, we have so far concentrated on two equivalent types of unlabeled trees: binary 

trees and general ordered trees. The classes of labeled trees and of unlabeled unordered trees (both 

oriented and free) will now be briefly considered. 

In labeled trees, we assume that the nodes of the tree are are all distinguishable irrespective 

of their position in the tree. We can think that each node in an n-node tree bears a distinct 

integer label from 1 to n. It can be shown that the number of oriented labeled trees with n nodes 

is n—!, and it simply follows that the number of unoriented labeled trees is n”~? (see Knuth(29, 

section 2.3.4.4]). Taking logarithms, the information content of such trees is @(n logn). A standard 

pointer representation, using O(n) pointers of O(log n) bits each, (plus an additional field of Ign 

bits storing the label of each node) achieves this informational limit to within a constant factor, so 

the techniques expounded in this chapter do not help. This @(nlogn) bound applies even when 

we bound the degree of the nodes in our trees. The conclusion is that for labeled trees, we might 

as well use the standard pointer representation. 
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nee mee ne oe 

Within the class of unordered trees (those where the children of a node form a multiset, rather 

than a list) there are two main types: the oriented (or rooted) trees, and the free trees. The only 

difference between these two is that the oriented trees have a distinguished node called a root, and 

the edges of the tree are considered to be oriented toward (or away from) the root. The number of 

oriented trees of n nodes is at most n times as great as the number of free trees of n nodes, since 

each free tree plus a choice of root equals an oriented tree. The information content of an n-node 

free tree is therefore at most Ign bits less than that of an n-node oriented tree, so the asymptotic 

number of bits per node required for the two are the same. Let us consider all unordered trees to 

be rooted, since this only engenders the small extra cost of lg n bits. 

The unordered trees of n nodes are no more numerous than the ordered ones, since the order 

of the children in each unordered tree can be fixed arbitrarily, giving distinct ordered trees. We 

can certainly store an unordered tree by arbitrarily ordering the children of each node, and then 

using the techniques described earlier in this chapter. What loss in efficiency do we incur by doing 

this? The number of unordered trees with n nodes was shown to be k" - @(n—5/?) by Pélya[40], 

and Knuth[29, section 2.3.4.4, exercise 4] gives the value of k = 2.95576. The number of bits stored 

per node must be asymptotically lg 2.95576 = 1.56353, compared to 2.0 for ordered trees. There 

is leas information here, by a constant factor. Since our methods for storing binary trees in linear 

space are already suboptimal by a constant factor, the situation is no different when the method 

is applied to unordered trees (except that the constant is worse). 

Rather than use an arbitrary ordering of the children, we can choose some canonical ordering, 

and take advantage of the constraints implicit in the chosen ordering. This can yield a smaller 

constant factor. For example, if we are dealing with unordered binary trees (unordered trees of 

maximum degree 2), we do not need to store the Left-child-first? bits, and we do not need 

two bits for Left-child-empty and Right-child-empty. We can represent leaves by a single bit, 

and have one additional bit in the non-leaves to tell if the tree has both children non-empty. An 

analysis of this scheme reveals an asymptotic performance of 33 bits per node, using an encoding 

of the integers with r = 2I(n) +1. It is very likely that a little more research into this area will 

yield more efficient schemes than this. 

When representing unordered general trees (as binary trees) we should arrange the children of 

each node in lexicographic order. As we proceed from a node to its Next-sibling (its cdr), we 

know that the number of nodes in the First-children (the cars) will be non-decreasing. While 

traversing downward, we can remember both the number of nodes n in the current subtree, and 
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a lower bound on the number of nodes m in the First-child of that subtree. Just as was done 

in the optimal variable encoding, we can choose a different encoding function Ram for each n and 

m (mapping [m...n — 1] into bit strings), and find a minimal value of Bam. (Observe that for 

such trees, the First-child will always contain fewer nodes than the Next-sibling, unless the 

Next-sibling is empty.) The complete analysis of this construction is an interesting open problem. 

4.5 Conclusions 

When are the schemes presented in this chapter really useful? There are a few conditions to be 

met: 

e The trees are static. 

e The amount of extra information stored at a node is small compared to the size of a standard 

pointer. 

e Economy of space is more critical than speed. 

The first condition is obvious. Updating the structures described in this chapter would require a 

great deal of bit copying. If the amount of extra information to be stored per node is much larger 

than the size of a pointer, then the savings realized by our scheme will only be a fraction of the total 

space needed, and the extra complexity and slowness are probably not worth it. Finally, it is clear 

that our scheme will be substantially slower than a standard pointer implementation. Computers 

are fast at doing indirect addressing with word-size pointers, and slow at extracting information 

from memory a bit at a time. This is more a reality of current hardware than a necessity, since a 

fast hardware decoder of variable length integers could be devised. Ultimately, the bottleneck will 

be the fixed bandwidth of the channel between the processor and the memory. 

A few more words should be said about the encoding of the extra information in the nodes. If 

each node has a constant number of bits of extra information, we have two choices: 

1. We can store the per-node information directly in the bit stream, right after (or before) the 

header. If we have k extra bits, we simply adjust the function B, to be By, + kn. 

2. We can store the per-node information in a separate array, indexed by one of the tree num- 

berings. 

Which of these methods we choose is mostly a matter of style. 
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4.5.1 Open Problems 

The research described in this chapter is really just a beginning; many interesting probiems re- 

main open. Foremost among these is the question of whether or not it is possible to achieve the 

information-theoretic limit of two bits per node, while maintaining the efficiency of traversal op- 

erations. An affirmative answer to this question is shown in the next chapter, using a radically 

different scheme. 

Perhaps the method of arithmetic coding can be used to recover the fractional bits lost in the 

optimal variable encoding. It is difficult to see how to make this idea work, since we would have to 

“jump” into fractional bit positions. 

Another important question is: what is the optimum number of bits per node under uniform 

encodings? Assume we do not keep track of the number of nodes in the current subtree, and 

only keep an index into the stream of bits. Variable encoding schemes require us to maintain the 

dynamic node count. Perhaps it is easier to show lower bounds in this weaker model. 

Here is another puzzler: Is there a fast way of calculating the optimal B,? If this could be 

done in logarithmic time, it would be an important step in making the optimal algorithm practical. 

Even a somewhat faster (better than the O(n?) algorithm derived from the recurrence) would be 

nice, just to allow calculation of more values of B,. The convoluted form of the defining recurrence 

suggests that an O(nlogn) algorithm based on the FFT may be possible. 

If an efficient means of calculating general values B,, eludes us, it may still be possible to calcu- 

late values for all practical values of n (less than a billion, say) without storing a large table. There 

may be small circuits to compute B,. For example, the values of B,, (for small n), can be described 

as the floor of a piecewise-linear function with a relatively small number of segments. Witness table 

4,3, which shows that for n < 100000, only 46 linear segments are needed to approximate B,. A 

table such as this is a useful first step in making the optimal algorithm practical. We would still 

need a scheme for finding a satisfactory R, (one that could be quickly decoded) to use such a table. 

Finally, it still remains to get a good upper bound on the limit of B,/n. The upper bound 

from the sequence of “delayed roundup” generating functions appears to converge to a value above 

limn—co Bn/n. What is the reason for this? 
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Interval Ba=|...] Interval Bi=|...| 
25n< 22 2.033333 -n— 2.566667 13961 <n < 15519 | 2.292492 -n — 19.476375 
23<n< 48 2.224747 -n— 6.113636 15520 <n < 18312 | 2.292516 -n — 19.843489 
49<n< 94 2.254032 -n-- 7.322581 18313 <n < 19946 | 2.292532 -n — 20.135994 
95 <n < 152 2.273864 -n— 8.971591 19947 <n < 21515 | 2.292541 -n — 20.319023 

183 <n < 244 2.282202 -m — 10.164103 21516 <n < 24065 | 2.292548 -n — 20.472911 
245 <n < 551 2.286002 -n — 10.999136 24066 < n < 26027 | 2.292555 -n — 20.629614 
552 <n< 717 2.288976 - n — 12.503472 26028 < n < 28570 =| 2.292567 -n — 20.921727 
718 <n < 855 2.289597 -n — 12.917241 28571 <n < 33919 | 2.292577 -n — 21.212190 
856 <n < 1213 2.290382 - nm — 13.550759 33920 <n < 37412 | 2.292584 -n — 21.465772 
1214<n< 1481 2.290957 -n — 14.212939 37413 <n < 40570 | 2.292590 -n — 21.665376 
1482 <n < 1735 2.291283 -n — 14.676910 40571 <n < 43082 | 2.292594-n — 21.817455 
1736 <n < 2911 2.291647 -n — 15.297429 43083 <n < 45987 | 2.292598 -n — 22.008348 
2912 <n < 3233 2.291779 -n — 15.640428 45988 <n < 48393 | 2.292601 -n — 22.141789 
3234 <n < 3733 2.291980 -n — 16.260426 48394 <n < 55628 | 2.292605 -n — 22.313719 
3734 <n < 4137 2.292049 - n — 16.508203 55629 <n < 58902 | 2.292608 -n — 22.489890 
4138 <n < 4979 2.292144 -n — 16.887125 58903 < n < 63003 | 2.292611 -n — 22.683609 
4980 < n < 5636 2.292227 -n — 17.291437 63004 < n < 69421 2.292614 -n — 22.846136 
5637 <n < 7456 2.292299 -n — 17.688497 69422 <n < 73891 | 2.292617 -n — 23.074457 
7457 <n < 8636 2.292368 - n — 18.187833 73892 <n < 76953 | 2.292619 -n — 23.187472 
8637 < n < 9874 2.292401 -n — 18.461952 76954 <n < 87957 | 2.292621 -n — 23.327815 
9875 <n < 11064 | 2.2924384-n— 18.789478 87958 <n < 91183 | 2.292621 -n — 23.400569 

11065 <n < 12736 | 2.292457 - n — 19.029091 91184 <n < 96972 | 2.292624 -n — 23.598943 
12787 <n < 13960 | 2.292481 -n — 19.323283 96°73 <n < 100362 | 2.292625 -n — 23.727124 

Table 4.3: Piecewise-linear B,, for 2 <n < 100362 
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Chapter 5 

Techniques of abstract optimization 

This chapter develops some basic tools for abstract data optimization. Several applications are 

presented, including schemes for storing trees in optimal space {improving the results from chapter 

4), doing random-access Huffman coding, and storing planar graphs in linear space (with searching). 

We begin by exhibiting a space-efficient data structure to represent ordered sets. 

5.1 Ranking and selection 

Ordered sets are a most fundamental data type. Given a static subset of 1...n, it is trivial to 

design a data structure that supports membership testing in optimal space; a simple bit-vector will 

do. If the set is sparse, with m elements chosen from 1...n where m <n, we desire to store the 

set in lg (*) bits, which is roughly mig =. Various hashing techniques allow us to approach this 

limit. 

What if we desire a richer set of set operations? Two very useful operations on a subset S of 

1... are: 

rank(m) Returns the number of elements in S less than or equal to m. 

select(m) Returns the mth smallest element in S. 

These are inverses of each other, in the sense that rank(select(m)) = m, for1<m < ||S||, 

and select(rank(m)) = m, form e€S. These operations can, of course, be performed directly 

when a bit-map implementation is used, but that would be very inefficient. We generally must 

perform a linear scan through the bits to rank and select, so the worst-case cost of these operations 

is O(n). 
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Ranking and selection are basic operations that can be used to implement a variety of useful 

functions on ordered sets. For example, let j,k <n, and me€ S: 

rangecount(j,k) Returns the number of elements in S in the interval j...k. 

This is rank(k) - rank(j— 1). 

next(j7) Returns the smallest element in S greater than j. 

This is select (rank(j)+1). 

prev(j) Returns the largest element in S less than j. 

This is select (rank(j —1)). 

skip(m,j7) Returns the element in S that comes j positions after m in a sorted list. 

This is select (rank(m)+)). 

One way to add the operations of ranking and selection to a bit-map implementation of a set 

data type is to augment the bit-map with an auxiliary structure which we shall call a directory. 

This data structure will help make the additional operations efficient. 

The term directory is taken from Elias{12], where he examines a similar problem: efficient 

ranking and selection in multisets (which he calls inventories). For multisets, there is a pleasing 

symmetry between ranking and selection, which Elias exploits. However, his scheme is only efficient 

in the average case. The number of bit-inspections required for any particular operation may be 

large, but when averaged over all possible inputs he gets logarithmic performance. This average- 

case efficiency is not good enough for us, since we plan to use ranking and selection as tools. Once 

they are incorporated into another algorithm, it will be difficult to describe the distribution of 

inputs to rank and select in a meaningful way. Still, Elias’s construction is the inspiration for the 

two-level directory structure we develop later in section 5.1.1. 

Simply storing all the precomputed values of rank(m) and select(m) would produce a kind of 

directory. Since the range values are 1...n, we need about Ign bits per value stored. So the space 

for this would be O(n logn), which is unacceptable. The term directory implies that the auxiliary 

data is not too large compared to the bit-map itself. We know that there is a great deal of “fat” in 

this representation, since the values don’t change much from one to the next. 
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5.1.1 Ranking directories 

To achieve good performance with small directories, we will have to be a little more sophisticated. 

For now, let’s restrict our attention to the problem of creating a directory to make ranking efficient. 

We will add in extra information to facilitate selection later. 

One-level directories 

Rather than storing all the precomputed values of the rank operation, we will store only a fraction 

of them. The other values can be reconstructed by interpolation, by counting 1 bits in a small 

region of the bit-map. If we store some of the n values, with equal spacing k between each stored 

value, we can compute rank(m) by computing |m/k], doing one table lookup, and then scanning 

through at most k bits of the bit-map adding up 1’s to get the desired answer. This requires about 

(n/k) ign bits in the directory (which is organized as an n /k element array of numbers, each of Ign 

bits), and does Ign + k bit accesses in the worst case to compute ranks. The choice of k produces 

a trade-off of space for time. The bits are chopped up into consecutive blocks of size k, and the 

information in the directory limits our inspection of the bits from the bit-map to a single block. 

Choosing k = Ign gives a scheme that uses O(n) space (in bits) and takes O(log n) time (in 

bit-accesses). The time used is within a constant factor of optimal, as is the space. But we would 

really like a scheme that uses 1+ 0(1) times the minimal number of bits; since we are retaining the 

n bits in the bit-map, we want the space for the directory to be o(n). 

If we choose k to grow faster than logn, say log? n, we need only O(n/ log n) bits, but the time 

increases to O(log? n). (We can choose any monotonic unbounded f(n), set k = f(n)logn, and 

achieve O(n/f(n)) space and O(f(n)logn) time). This gets the space down to where we want it, 

but now the time grows too quickly. 

Two-level directories 

The directory schemes proposed above are one-level schemes. We know how many bits in positions 

less than m are 1’s (except for those in the same block as m) with a single lookup in the directory. 

Since the maximum number of 1 bits in a block is & (which is small) the values in the directory 

still don’t change too much from one to the next. This suggests using 4 multi-level directory to 

recoup some of the space lost to this redundancy. As long as the number of levels is bounded by 

a constant, we need only inspect O(log n) bits of the directory. If the final, smallest block size is 
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Ign, this will lead to a total time of O(log n). 

Let’s consider two-level directories. The first-level directory is simply a one-level directory, with 

block size 7. Each block is treated as a independent subset of 1...7, with its own directory (with 

block size k) forming the second level directory. This is shown in figure 5.1. To find rank(m), we 

first-level directory: 
n/jz blocks 

rank(0) | rank(j) | rank(2)) | eee I 

Ign bits 

lg 7 bits 
as 

LLL. --_LII1 - CTT: TE 
rw ani 

g[k blocks 
‘wa 

J 

n/j second-level directories 

Figure 5.1: A two-level directory for set ranking. 

first compute the first-level block number 6, = |m/j|. We look up the value of rank(j- 61) in the 

first-level directory, a table of n/j numbers each of Ign bits. Then we proceed to the appropriate 

second-level directory. We compute the second-level block number 62 = |(m mod j)/k]. Then we 

look at element number 63 in the second level directory; this will be rank(k - 62) in the subrange 

(by > j).-.(b1 «7 + b2- kt). Adding this value to the value from the first-level directory gives the 

number of 1 bits in the whole set, except for those in the same second-level block as m. These last 

few bits (at most k) can be scanned directly in the bit-map and added in to get the total value of 

rank(m). 

The extra space required by this scheme is as follows: (n/J)-lg n bits for the first-level directory; 

n/j second-level directories at (j/k) -1g7 bits each for a total of (n/k) + lg 7 bits. The number of 

bits accessed is: Ign in the first-level directory; lg 7 in the second level; and at most & in the 

bit-map itself. The total time is therefore O(logn + k). Choosing k = lgn to make the total time 

O(logn), the total space used is n - ((Ign)/j + (Ig j)/(Ign)]. This space is at a minimum when 

j =|gn-lInn. The space needed at this value of 7 is 2nInInn/ Inn + O(n log~! n) bits, which is 

O(n log log n/ log n) = o(n). Since the extra space for the directory becomes a vanishing fraction of 

the space for the bit-map itself, the two-level directory scheme achieves the time and space bounds 

we seek simultaneously. 
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Since two levels outdo one, it is tempting to try using the same scheme with more levels to 

get better results. However, this doesn’t lead to improvement over the 1 + O(log log n/ log n) bit 

per element ratio that the two-level scheme realizes. Observe that the bulk of the space in any 

multi-level directory will be found in the bottom level. If the block size at the bottom level is k(n) 

and the block size at the penultimate level is j(n), the total space used by the bottom level will be 

(n/k(n)) - lg j(n). We know that j(n) > k(n), and we require k(n) = O(log n) to achieve the time 

bound of O(log n) bit-accesses. The number of bits in the directories per element must therefore 

be {2(log log n/ logn). This is not to say, however, that some fundamentally different scheme could 

not achieve better performance. 

5.1.2 Selection directories 

Now that we know how to construct a succinct directory to make ranking efficient, we would like 

to do the same thing for selection. First, note that a directory that does ranking in time ¢(n) can 

be used to do selection (with no additional space) in time t(n) -lgn, by binary search. If we seek 

the mth element in the set, we start by doing rank(|n/2|) and compare the returned value with 

m to determine in which half of 1...n the value of select(m) lies. After lgn such bisections, we 

will know the value of select(m) exactly. 

While this is better than no directory at all, it doesn’t get us down to the bound of O(log n) 

bit inspections we are after. The ranking directories we built require O(log n) time per operation, 

so this binary search technique will only get us down to O(log? n). 

Another line of attack is to do what we did when building the ranking directories: keep a 

table of precomputed values of select(m) for m a multiple of some suitably chosen 7. Then to 

find select (m), we can look up the value of select(j + |m/j|), and begin scanning the bit-map, 

starting at the returned position until m mod j more 1 bits are encountered. The problem with 

this idea is that the number of bits we need to scan through in the bit-map may be very large in 

the worst case (where the set is sparse). 

Putting the ideas together 

Neither of the two ideas proposed above is powerful enough to get us the O(logn) time bound we 

are after by itself. But if we skillfully combine them, we can make things work. 

Assume we have the optimal two-level ranking directory of the previous section available to us. 

If we knew which second-level block contained select(m), we could compute the rank of the first 
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element in that block, and look through at most lgn bits in the bit-map to find the value we want. 

This means that once we locate the second-level block containing select(m), we need only look 

at O(log n) more bits to get the exact value. 

What if we knew which first-level block contained select(m)? We could compute the rank of 

the first element in that block, subtract from m, and do binary search to find the second-level block 

containing select(m). The binary search would require only |g 7 bisections, and each bisection 

would require us to inspect a number with only lgj bits, for a total of lg? 7 bit-inspections. We 

chose j = Ign- Inn, so this works out to O((loglogn)’?) = O(logn) time. This, together with 

the result of the previous paragraph, shows that if we could locate the first-level block containing 

select(m) in O(log n) time, we could compute the exact value in O(log) time. 

We are still left with the problem of finding the correct first-level block. A binary search of 

the whole first-level directory would be too slow. But we can use a table of precomputed values of 

select(m) to find a subarray of the first-level directory to start the binary search. Furthermore, 

if we know that the values in that subarray are in the range a...(a + 5), we need only inspect the 

Ig 6 least significant bits of the numbers in the subarray. The other bits can be deduced from the 

value of a. 

In our precomputed table of select(m) we will store all values where m is a multiple of 

j=|Ign-lnn]. If we want to find select(m) for m not a multiple of 7, we know that the answer 

lies between select(j-|m/j|) and select(j- [m/j]), both of which can be obtained via table 

lookup. Dividing these upper and lower bounds by j, we get a pair of values that bound 5), the 

first-level block that contains select(m). We can use these indices to define the subarray of the 

first-level directory on which we start the binary search. We know that in this initia] subarray, 

there are at most 37 elements of the set (at most 7 in the first block, at most 7 in the last block, 

and at most j in between). 

At this point we run into a smal! problem. The upper and lower bounds we get out of the 

table might be quite far apart, if the set is very sparse in this region. Luckily, there is a simple fix 

for this problem. We will prepare a compressed ranking directory consisting of the values in the 

first-level ranking directory with duplicates removed. Also, we prepare a two-way index between 

the compressed and non-compressed ranking directories. The index will store, for each value in the 

non-compressed ranking directory, the unique position in the compressed directory where that value 

occurs, and for each value in the compressed directory, the first position in the non-compressed 

directory where that value occurs. 
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With the aid of the compressed ranking directory and the two-way index, we can use the bounds 

from the table of select values to start the binary search with a small subarray. After finding the 

upper and lower bounds from this table, we use the non-compressed to compressed index to find a 

subarray of the compressed ranking directory. Since there are at most 37 elements in the subarray, 

and the subarray is strictly increasing, the subarray is at most 37 long. We can then perform binary 

search through this subarray of the compressed directory with only lg 37 = O(log log n) bisections, 

and use the compressed to non-compressed index to find 8,, the true first-level block number. As 

we remarked earlier, we do not need to inspect all of the bits of the numbers in the compressed 

directory to do the binary search either. If we read the first number in its entirety, then we only 

need to look at the least significant lg 37 bits of the others, since we know the other values cannot 

differ from the first value by more than 37. Therefore each bisection can be performed using only 

O(log log n) time, and the total time for the binary search is O((log log)*) = O(log n). 

This completes the demonstration that select (m) can be carried out in O(log n) time. But 

we have been pretty free and easy with the space, adding new structures as needed. How much did 

we actually use? 

Extra space for the selection directory 

First we have the table of precomputed values of select. There are n/j = n/(Ig n-Inn) of these at 

Ign bits each, for a total of n/ Inn bits here. Then there is the compressed ranking directory, which 

cannot be bigger than the non-compressed first-level directory, weighing in at n/Inn bits. Finally, 

there is the two-way index. Once again, each of these structures is n/Inn bits. The total additional 

space used by the selection directory (not counting the ranking directory) is O(n/logn). Recall that 

we previously showed that the two-level ranking directory used O(n log log n/ log n) bits. Thus the 

bit-map itself, the ranking directory and the selection directory come to n-[1+ O(log log n/logn)] = 

n- (1+ o(1)}. 

A summary of selection 

Here is a summary of the steps performed in computing select(m). (Remember that 7 is defined 

to be [Ign -Inn].) 

1. If j divides m, then we can find select(m) by table lookup. 
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2. Otherwise, we do two lookups to obtain a lower bound / of select (j|m/j|) and an upper 

bound uw of select (j[m/j7]). 

3. The subarray of the (non-compressed) ranking directory we want is from locations |!/j| to 

[u/j] inclusive. We use table lookup to find the appropriate range !’ to u' in the compressed 

ranking directory. 

4, We read the value ¢ stored in the compressed ranking directory at location l’. We know that 

between /' and u’, all the values are between s and s + 37. 

5. Using s, I’ and u’, we do a binary search through a subarray of the compressed ranking 

directory. We examine only the least significant 1g37 bits of each number. This yields an 

index into the compressed ranking directory of the first-level block holding select(m). 

6. We map the index into the compressed directory into the true (non-compressed) first-level 

block number using a table lookup into the two-way index. 

7. We doa binary search through the second-level index to find which second-level block contains 

select(m). 

8. Finally, we scan through the bits of the proper second-level block in the bit-map until we find 

the right 1 bit. The address of this bit is the value of select (m). 

Discussion 

The construction used in building the selection directory is indeed ugly. But now that we have 

this construction, we can forget about its dirty internal details and freely use selection and ranking 

as tools for data optimization. All the other set operations mentioned in the first section of this 

chapter are now at our disposal. 

There are still several ways in which these rank/select structures could be improved: 

e The number of extra bits per universe element goes as loglogn/logn. While this quantity 

does vanish as n grows without bound, it does so quite slowly. Even for very large n, it 

doesn’t even half as n squares! We would rather use less extra space. An asymptotic value 

of something like n!—€ for some positive € would be better. 
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e The analysis was performed using the data bits model, which counts time in bit-accesses. A 

careful examination of the construction of the ranking directory shows that we only examine 

a constant number of consecutive strings of bits, and each string examined is only O(log n) 

bits long. Therefore ranking can be done in constant time in the wide-bus model, where 

aligned fetches of lgn bits only cost us one unit. The same is not true of the construction 

of the selection directory. The binary search steps may access a non-constant number of 

consecutive bit-strings. So if we employ a selection directory, we do not have the desirable 

property of being constant-cost under the wide-bus model. Is there a way to reorganize the 

selection directory to achieve constant-cost under the wide-bus model? 

Remember that if we improve the performance of the rank/select directory, all the other operations 

using ranking and selection benefit. 

5.2 Random-access Huffman coding 

For a simple first application of ranking and selecting, consider the following problem (which has 

nothing to do with linked data structures): We are given a file of Huffman coded symbols. We 

would like to prepare a directory to make random access into the unencoded file efficient; that 

is, given an index m, find the mth symbol in the original file. We would like to use a vanishing 

proportion of extra space for this directory. 

This sounds very much like a selection problem. Let us begin by preparing a selection directory 

for the set of positions in the (binary) Huffman-coded that begin new symbols in the original file. 

If the encoded file is of n bits long, we only use o(n) extra bits for the directory. This means 

that if Huffman-coding achieves some compression factor over a fixed-codeword-length encoding, 

we can (given long enough files) achieve the same compression factor and enjoy random-access to 

the symbols. 

Of courae, there is a big problem with the proposed solution. To do selection, we need to store 

the original set bit-map as well as the directory. This would double the storage required, which is 

unsatisfactory. We can get as far as computing the second-level block in which the desired codeword 

begins without storing the bit-map of start positions. But we cannot scan through the second-level 

block (the final step in selection) because the blocks are out of synch with the codewords; we do 

not know how many bits of this block are part of the the last codeword beginning in a previous 

block. 
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We do not need to store all Ign bits of the second-level blocks to recover this synchronizing 

information. It suffices to store, for each of the n/lgn blocks, the number of bits in the block that 

belong to a codeword that begins in a previous block. These numbers are at most Ign, so we only 

need Iglgn bits each, and only (n/Ign)- (Iglgn) = o(m) extra bits for all of them. 

With the select directory (minus the set bit-map) and the synchronizing table, we can find the 

start position of the mth symbol in O(logn) time, using only o(n) extra bits. 

5.3. Trees in optimal linear space 

In chapter 4 we discussed a general scheme for storing trees in linear space while allowing efficient 

traversal. The methods described, while simple and practical, failed to achieve the optimal asymp- 

totic ratio of two bits per node. Now we shall describe a method, employing rank/select directories, 

that achieves this optimum. 

First, let us consider the case of binary trees. 

5.3.1 Level-order binary marked 

When a binary tree is very balanced, we can implicitly represent the tree as addresses in an array. 

The root is given the address 1. A node whose address is m has a left child with address 2m and 

a right child with address 2m + 1. The “information” at the nodes of the tree can be stored in the 

array. This scheme is an efficient choice to represent heaps (see Aho[1, page 87]) since there is no 

need for explicit pointers, and no wasted space. 

Since we are not interested in the information stored at the nodes, but we are interested in trees 

with imperfect balance, we can use the implicit addresses to index an array of bits saying which 

nodes are present in the tree and which are not. This implicit-bitmap representation of binary 

trees is shown in figure 5.2. This representation is great for searching (we can do car and cdr in 

a single bit access!) but it has an obvious drawback: unless the tree is extremely well balanced, 

the number of bits needed will be huge. If the deepest node is at depth d, we will need between 24 

and 2¢+1 — 4 bits. This is simply unacceptable. 

The bit-string corresponding to an unbalanced tree will be full of zeroes that indicate missing 

nodes. But once we know that some node is not in the tree, it is redundant to store zeroes telling 

us that its children are not in the tree. We can save great deal of the space by leaving out the 

bits for non-nodes whose parents are also non-nodes. If there is a O at location m and a 0 at 
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Figure 5.2: A binary tree and its implicit bitmap. 

location |m/2], simply cross out the former. This compressed representation is depicted in figure 

5.3. Notice that this representation can also be obtained from the original tree as follows: 

binary tree: external nodes added: 

level-order bitmap (e = 1, O = 0): 

fafz{afa[afo[sjojo[1{ol1jofolojojo} 

Figure 5.3: Level-order binary marked representation. 

1. Mark all the nodes of the tree with 1 bits. 

2. Add external nodes to the tree, and mark them all with 0 bits. 

3. Read off the bits marking the nodes of the tree in (left-to-right) level-order. 

This construction makes it easy to see that the original tree can be reconstructed from the string 

of bits formed. Each such bit string is therefore associated with a unique tree. 
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How many bits are there in these level-order mark bit strings? There are n 1 bits (the internal 

nodes) and n + 1 0’s, for a total of 2n + 1 bits. This representation is therefore asymptotically 

optimal. But in the compression process, we lost the ability to navigate in the tree by simple index 

arithmetic. How can we regain the ability to efficiently traverse the tree? 

Ranking to the rescue 

Suppose we were to represent (internal) node m by the index of where its 1 bit appeared in the 

level-order mark bit string. Now, consider the bit string as the bit-map of the set of indices of the 

(internal) nodes. We can build a ranking directory for this set. Each 1 bit on level d corresponds 

to a node with two children (some of which may be external nodes) on level d+ 1, and these two 

children will correspond to two adjacent bits in the part of the string where the level d+ 1 nodes 

appear. Also, left-to-right ordering is maintained from one level to the next: If two nodes, a and 8, 

are on the same level, and a’s 1 bit is to the left of 6’s, then the adjacent pair of bits corresponding 

to the children of a will occur before 6’s pair in the string. 

This leads to a very simple algorithm to compute car(m) and cdr(m), for (internal) node m. 

car(m) — 2- rank(m) 
cdr(m) — 2-rank(m) +1 

Algorithm LOB 

There is a strong similarity to the implicit addressing scheme discussed earlier. The node m is nil 

exactly when the mth bit of the string is a O, since this indicates an external node. The root node 

has index 1. 

The string itself occupies 2n + 1 bits, and the ranking directory occupies o(n) bits, so the 

total space required is 2n + o(n). This is asymptotically optimal linear space. The tree-traversal 

operations do a single rank, so they require time O(log n) time under the data-bits model (but only 

constant time under the wide-bus model). This improves the results of chapter 4. 

If we were also to keep a selection directory, we could find parent(m) efficiently too. This is . 

because 

parent(m) = select(|m/2}) 

Now, we turn our attention to general rooted trees with ordered children. We will use both 

ranking and selection, together with another 2n bit string scheme (again based on level-order) to 

represent such trees. 
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5.8.2 Level-order unary degree sequence 

A rooted, ordered tree can be represented by giving the branching degree sequence in any of a 

number of standard orderings of the nodes. (The (branching) degree of a node in a rooted tree 

is simply the number of children it has.) Suppose we write down the degree sequence of a tree, 

ordering the nodes in the left-to-right level order employed in the previous section. This sequence 

of n positive integers uniquely identifies the tree. Now let us encode these positive integers with 

the simplest possible binary prefix code (the “unary” code): 

R(0) = 0 

R(k>0) = 1-R(k-1) (5.1) 

The integer d is represented by the string 140. Let us take the sequence of degrees encoded in 

this fashion and simply concatenate them together to form a bit string. Since the codes are prefix 

codes, we still can easily find the unique tree associated with a string. 

The number of 1 bits in this string is n. Every node except the root is a child of another node, 

go the number of 0 bits isn —1. The total length of the string is thus 2n — 1 bits. We will say that 

each node is associated with exactly one 0 bit and (except for the root) one 1 bit. To maintain the 

“one 1 per node” property, let us add a fake super-root node to the top of the tree, whose only 

child is the root. Now each node has a unique 1 bit associated with it, and the string is only two 

bits longer. 

This bit-string scheme has much in common with the level-order marked binary scheme de- 

scribed in the previous section. Figure 5.4 depicts a tree and its level-order unary degree sequence. 

An almost identical scheme is described by Read[41, pages 173-175]. This “bottom-up valency 

code,” as he terms it, is just one of several correspondences between ordered trees of n nodes and 

binary strings of length about 2n that he gives. But Read is only interested in encoding trees as 

strings and subsequently decoding them; he does not consider the possibility of performing search 

operations directly on these bit strings, ae we do. 

We will represent a node m by the index of its corresponding 1 bit in the string, as in the 

previous section. Let us build ranking and selection directories for the bit-string and its bitwise 

complement. This will allow us the additional freedom to select the mth element not present in the 
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tree: with degrees: 

super-root ————-+O 10 

degrees concatenated in level-order: 
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Figure 5.4: Level-order unary degree sequence representation. 

set (the mth O bit). We will use the notation rank0 and select0O to refer to the set-complemented 

operations. 

With this representation, we shall be able to support a rich collection of tree-traversal opera- 

tions. In particular, we will be able to efficiently move up in the tree and enjoy random access to 

children. 

We can test if m is nil, as before, by inspecting the mth bit of the bit-map. The operation 

next-sibling(m) is simply an increment of m. In fact, we can find the sibling j after m by 

incrementing m by j. This also allows us to access previous siblings, and access children by number 

(provided we can find first-children efficiently). Here is the full set of available operations on 

(non-nil) node m: 

first-child(m) <— selectO(rank(m)) +1 

next-sibling(m) —m+1 
parent(m) — select(rankO(m)) 

Algorithm LOUDS 

To make random access to children truly useful, we need to know how many children a given node 

m has. This is easily computed as: 

selectO(rank(m)+1) — first-child(m) 

Once again, we have improved the results of chapter 4 by making the linear constant optimal 

while retaining logarithmic time in bit-accesses. In this case, we have also provided a more flexible 
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repertoire of tree-traversal operations. However, since we make heavy use of selection directories, 

we cannot claim constant-time performance in the wide-bus model for this case. 

5.4 Planar graphs in linear space 

Up until now, we have avoided abstract optimization of graphs. This seems like an obvious gener- 

alization of optimization of trees, but there is a fundamental difference. 

A pointer-based representation of a tree is very wasteful of information; we have seen that 

it uses O(nlogn) bits where O(n) suffice. But for general graphs, a pointer-based adjacency-list 

representation is reasonably efficient (for graphs that are not very dense). For a (labeled) graph 

of n nodes and m edges, we need lg ((3)) bits. Unlabeled graphs require about lg(n!) fewer bits, 

but even then the number of bits needed is 2(mlogm). For sparse graphs, where m = O(n), the 

adjacency list representation is within a constant factor of optimal. Itai and Rodeh{25] show that 

an adjacency list is close to optimal even for graphs that are fairly dense. 

The problem is that there are just too many graphs to be able to represent them all succinctly. 

What if we restrict our attention to a particular class of graphs whose number is simply exponential 

in the number of nodes? Then the possibility of a linear-space (in bits) representation exists. One 

important class of graphs with this property is the class of planar graphs. Planar graphs come up 

frequently in computer science, and it would be useful to have a space-efficient encoding for them. 

Turén[46] gives such an encoding. His encoding stores a graph of n nodes in 12n bits. It is 

possible to encode graphs into trees (and vice-versa) with a simple construction in linear time. But 

there is no easy way to do useful graph-traversal on the encoded form of the graph. Soon we will 

show how to do this. Let us first briefly summarize Turan’s elegant construction. 

5.4.1 Turdn’s construction 

We start by embedding the graph G in the plane. This is accomplished in linear time by a number 

of well-known algorithms. Next we choose an arbitrary rooted spanning tree T of G. Let the 

planar dual of G be G’. Then the edges in G’ that do not cross an edge in T form a spanning tree 

T' of G'. Observe that each edge in G is either in the spanning tree T or crosses a unique edge in 

T'. If we could represent T’ and 7" and the relationship between them in linear space, we would 

have a linear space encoding. 

As we saw in chapter 4, trees have a natural representation as balanced strings of parentheses. 

The tree 7 can be encoded with one type of parenthesis, and the tree T’ with another. These two 
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balanced strings of parentheses can then be “shuffled” together in such a way that the relationship 

between T and 7" is encoded. 

The resulting string, encoded in binary, is the encoding of G. Each edge in G is either in T 

or crosses one in 7’, and thus accounts for one pair of parentheses in the final string. Since there 

are two different types of parenthesis, there are four distinct symbols, so each parenthesis requires 

two-bits. Finally, since planar graphs have at most 3n — 6 edges, the number of bits used is: 

3n edges 2 parentheses — 2 bits = = 12n bits 

planar graph edge parenthesis planar graph 

5.4.2 Searching and testing adjacency 

Turdn’s encoding gives linear space, but it does not allow efficient searching. With a linked repre- 

sentation, we could iterate through the neighbors of a node with only O(log n) bit inspections per 

neighbor. We really want an encoding that permits efficient searching. Additionally, we would like 

to support adjacency testing with similar efficiency. 

Recently, Kannan et al.[27| show how to implicitly represent planar graphs to allow adjacency 

testing with O(log n) bit-inspections. Their method makes use of the bounded arboricity of planar 

graphs. They decompose a planar graph into (at most) three edge-disjoint spanning trees (using 

a famous theorem of Nash-Williams), and then represent each tree separately. Although they still 

need O(n log n) bits for the whole graph and they cannot search efficiently, the beauty of their data 

structure lies in its implicitness: the graph is fully described by the set of its node indices. 

The decomposition of planar graphs into three trees seems like an attractive idea for us, too, 

since we already know how to represent trees efficiently. The problem is that we can’t afford the 

space required to cross-reference the node indices from one tree to another. Kannan et al.’s scheme 

applies to the full class of graphs with bounded arboricity, not just to planar graphs. There are 

too many graphs of arboricity two to represent each one in O(n) bits. Still, the idea of edge- 

decomposing graphs will prove effective for our problem. We simply need a decomposition that 

admits a global indexing scheme for the nodes. Later, we will show how the decomposition of a 

graph into pages fits our needs. 

5.4.38 Parentheses balancing 

We will show a structure that implements the operations of searching and adjacency testing with 

the desired O(log n) bit-accesses-per-operation, in a number of bits proportional to n. Heavy use 

will be made of ranking and selection. We will also need one other tool: a parenthesis balancer. 
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The construction of Turén shows how useful trees, and ultimately strings of balanced parenthe- 

ses, can be for representing planar graphs. We will not make use of his construction, but we will 

make use of balanced parentheses. Let’s first describe and build the tool. 

As we mentioned early in chapter 4, a balanced parenthesis string is not a good representation 

for a tree if we desire to do tree-traversal efficiently, because we might have to scan through a large 

fraction of the string to find a matching parenthesis (much as the text editor I am using does). If I 

type an unmatched “}” right now, the editor will pause noticeably before informing me that there 

is no matching open parenthesis. Making (static) parenthesis balancing efficient is a job for data 

optimization. 

Given 2 static balanced string of n parentheses, we wish to build, in space linear in n, a directory 

that will make the following operation eff cient: 

Find the position in the string of the close (open) parenthesis that matches the open 

(close) parenthesis in position m. 

Obviously it suffices to solve the restricted problem of finding close parentheses that match open 

ones, because we can build a backwards directory to find the open parentheses that match close 

ones. 

As a primitive first cut, we could simply try to store, for each index m, a pointer to the matching 

parenthesis. This obviously fails, since each pointer stored needs to be ign bits in length. 

The next refinement is to break the string into blocks of size lgn. We can afford to spend Ign 

time checking if a parenthesis has a match within its own block, so we only need to store pointers 

for parentheses whose matches lie outside their blocks (let’s call these the far parentheses). The 

block in which the parenthesis that matches a far parenthesis will be called the matching block of 

that far parenthesis. 

We will record the nesting depth at the beginning of each block with only Ign-n/Iign =n 

bits. Now we can store the pointers for far parentheses as the block numbers of the matching 

blocks instead of exact indices. To find the match for a far parenthesis, we look up the depth 

at the beginning of its own block and then scan through that block to find the depth of the far 

parenthesis. We next look up the matching block, look up the matching block’s initial nesting 

depth, and scan through the parentheses in the matching block until the depth is the same as that 

of the far parenthesis we started with. We have then found the matching parenthesis with only 

O(log n) work. 
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This is a start, but we are not yet there. It may be the case that almost all of the parentheses 

are far; witness this deeply nested string: 

C€6CCCCEECCECECECCCCCCCCCC(€(0)))))999)))99999)9))))9))))) 

While there may be many far parentheses, two far parenthesis that are near each other in the 

string are likely to have matches that are nearby each other. This fact is the key to a succinct 

representation of the far pointers. 

Let us take our table of far pointers (the block numbers of the matching blocks of the far 

pointers) and compress it by removing consecutive duplicates. How will we find which entry in the 

pointer table contains the block number of the matching parenthesis for a particular far parenthe- 

sis? Easy. We build the set (via a bit-map) of indices of those far parentheses whose matching 

block is different from that of the previous far parenthesis in the string (let us call such far paren- 

theses pioneer parentheses). Also, we construct a ranking directory for that set. Now, to find the 

appropriate location in the table where the pointer for a far parenthesis with index m, we just 

compute rank(m) in the set of pioneers. 

Now we have a structure that can balance parentheses in O(log n)} time. A picture of this hairy 

beast is included as figure 5.5. 

The table of nesting depths, the set (bitmap) of pioneer parenthesis, and its ranking directory 

add up to only 2n + o(n) extra bits. But what about the compressed pointer table? If there are 

more than O(n/logn) pioneers, this table could grow to be more than linear. Any individual block 

can contribute Ign pointers into the table. Let us now prove that the total size of this table is not 

too large. 

Theorem 5.1 The number of pioneer parentheses in a balanced string divided into b blocks ts at 

most 26 — 3. . 

Proof: Imagine a graph with a node for each block of the string. Lay these nodes out on the 

plane in a straight line in order of the blocks. Create an edge between two nodes if there is a far 

parenthesis in one that points into the other. The number of edges in such a graph is at least as 

great as the number of pioneers in the string, since every pioneer can be mapped to a different 

edge. But since our string of parentheses is balanced, none of the edges can cross, and the graph 

is outer-planer (that is, it can be embedded in the plane with all the vertices on a single face). 

Therefore the number of edges is at most 2b — 3, by a property of outer-planar graphs. Oo 
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Since each pointer in the table is lg n bits wide, this means the entire table is at most [2(n/ lg n)— 

3] -Ign = 2n + o(n) bits. 

This completes the description of the linear-space parenthesis balancer. We have built a struc- 

ture of 5n + o{n) bits that balances parentheses strings of length n in O(log m) time in bit-accesses 

(and constant time under the wide-bus model, since we only use ranking and not selection). Of 

course, an obvious open problem is to reduce the constant factor to less than 5 (ideally to 1). 

| i vee \ 

nesting depthe: L 0 i 4 } cee h | one | 

Ign bite 

Wock 1 block 2 Block } 

parentheses: FOTO OOOO ree foo e+ ()))] 
ry 

(matches for far parentheses) 

Bionee f[O001000000010000000 «++ +-++++++seeeeceeeeescneencens en G00) + | Jorn’, 
eae 

(one entry per pioneer) 
compressed 

table of [rfien T 2 T 6’ Ts 
far pointers: - v 4 

lgn bite 

Figure 5.5: A structure to balance parentheses 

5.4.4 Bounded pagenumber graphs 

Instead of describing how to use the tools we have built to efficiently represent planar graphs, we 

will actually show how to represent a larger class of graphs, of which planar graphs are a subclass. 

This larger class is the class of bounded pagenumber grapha. These are the graphs that have k-page 

book embeddings, where k is a parameter of the class. Let us first define the term book embedding, 

following Benrhart([5]. 
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A k-page book embedding of a graph G = (V,£) is a printing order of V (a permutation 

specifying the ordering of the nodes along the spine of a book), plus a partition of E into k pages. 

The edges on a given page must not intersect, and all pages share the same printing order of the 

nodes. 

The pagenumber (or book-thickness) of a graph G is the minimum number of pages in any 

book embedding of G. Let G, be a class of graphs ail of whose pagenumber is bounded by k. 

Given a particular graph G € G,, and a correct k-page embedding of G, we will show how to visit 

neighbors and test adjacency in G. For G with n nodes, we will use only O(log) bit-inspections 

per operation, using a representation of G with total number of bits linear in n (for fixed k). The 

number of bits used will actually be O(kn). 

Let us first build up a representation of G. To make things simple, we will start by showing 

a linear-space representation for one-page graphs (these are exactly the outer-planer grapl.s) and 

then generalize. 

One-page graphs in linear space 

The edges on a given page of the graph all lie to one side of the nodes (which are on the spine) 

and may not cross. If we lay our “book” so so that the spine is horizontal (as shown in figure 5.6) 

we observe that the nesting structure of the edges is just that of a balanced string of parentheses. 

e (CC © ¢ ° C e )) ° ¢ e )) 

Figure 5.6: One-page graphs as balanced parentheses 

We start with a string of n node symbols each, denoted by e. For each edge (u,v) on the page, we 

insert a ‘(’ just before the (u + 1)st node symbol and a ‘)’ just after the vth node symbol. (Note 

that the parentheses in the string remain balanced after each such insertion.) The final result is 

a string over a 3 symbol alphabet, containing n node symbols and at most 2n — 3 each open and 

close parentheses (from the properties of outer-planer graphs discussed earlier). The parentheses 

between the mth and the m+ lst node symbol correspond to the set of edges out of node m. 
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Let us further encode this 3-symbol string into a pair of strings of bits. First, we will record the 

sets of positions occupied by node symbols as a bit map. Term this the node map. Next, delete 

the node symbols and record the remaining parenthesis string in binary. These two strings allow 

reconstruction of the original graph, and use at most [n+ 2(2n — 3)]+ [2(2n — 3)] = 9n — 12 = O(n) 

bits. 

These two bit strings are at the heart of the linear space representation of G. Additionally, we 

will construct and employ the following optimization tools: 

e A matcher for the parentheses string. 

: @ Arank/select directory for the node-map and its complement. 

These tools will require extra space, but the total storage used will still be O(n). 

We shall use the natural numbering provided by the printing order as our indices for the nodes. 

When iterating through the edges leaving a given node, we will store an index into the parenthesis 

string as edge indices. 

Searching 

With these structures, searching around in G is little more than matching the parentheses. Each 

edge in G is associated with a pair of matching parentheses. To follow an edge, given the index of 

one of its associated parentheses, simply find the matching parenthesis. We will also make use of 

two simple macros: node-to-edge converts a node number into an index into the parenthesis string _ 

where the edges (parentheses) out of that node start, and edge-to-node takes an index into the 

parenthesis string and finds the number of the node whose block contains that edge (parenthesis): 

node-to-edge(m) = rankO( select(m) + 1) 

edge-to-node(e) = rank(selectO0(e)) 

Now we can write the algorithm to visit the neighbors of a node given by its index number: 

e+ node-to-edge(m) 
while edge-to-node(e) = m 

e' — paren-match(e) 
visit edge-to-node (e’) 
emer+l 

Algorithm NEIGHBORS: visit the neighbors of node m 
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This algorithm performs only a constant number of rank, select, and parenthesis matching 

operations between the nodes it visite. Therefore it can be used to search with only O(logn) 

bit-inspections per edge examined. 

Testing adjacency 

Another frequently desired operation is adjacency testing: is there an edge between node u and node 

v? This operation is not efficiently implemented by adjacency-lists, but with our data structure, it 

is cheap. 

First, we need an easy theorem. Say that an edge (u,v) out of node v is a forward edge if u 

comes after v in the printing order, and a backward edge otherwise. Also, let us define the length 

of an edge (u,v) to be |u — v|, where u and v are printing order numbers. 

Theorem 5.2 Let graph G = (V, BE) be embedded in one page, and let u and v be two nodes from 

V given by printing order number, with u before v. Then e = (u,v) & E tf and only if either e is 

the longest forward edge out of u or e is the longest backward edge out of v. 

Proof: The if part is trivial. To show the only if, use proof by contradiction. Assume that 

e = (u,v) € E, but that the longest forward edge out of u is not e (so it must be (u,v), for some 

v' that lies ahead of v), and that the longest backward edge out of v is not e (it must be (u’, v), for 

au’ before u). But the edge (u,v’) would have to cross the edge (u’,v), violating our stipulation 

that G be embedded in one page. oO 

Each edge (u,v) is a forward edge out of one of the nodes it impinges upon, and a backward 

edge out of the other. The forward edges correspond to the open parentheses in our string, and the 

backward edges correspond to the close parentheses. The edges out of a given node correspond to 

a contiguous block of the parenthesis string: first the backward edges appear in order of increasing 

length, and then the forward edges appear in order of decreasing length. This ordering of the edges 

out of a node makes it easy to locate the longest forward and backward edges, and theorem 5.2 tells 

us that we only need to look at these longest edges to determine adjacency in one-page graphs. 

To determine where the block of backward edges (close parentheses) ends and the block of 

forward edges (open parentheses) begins, we will need to keep an additional rank/select directory 

for the parenthesis string. This will permit us to find the next-open-paren in the string efficiently, 

using the techniques described in section 5.1, and add only linear extra storage. Here is the 
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algorithm to check the adjacency of node u with node v, assuming u precedes v in the printing 

order: 

e «~- next-open-paren(node-to-edge (u) ) 

e' — paren-match(e) 

f — next-open-paren(node-to-edge(v)) — 1 

f' — paren-match(f) 

if edge-to-node(e) = u and edge-to-node Ce =v 

or edge-to-node(f') = u and edge-to-node(f) =v 

return TRUE 

else 
return FALSE 

Algorithm ADJ: Test if (u,v) is an edge. 

Like NEIGHBOR, algorithm ADJ performs only a constant number of rank, select and match 

operations, and so it requires only O(log n) time. 

Graphs of more than one page 

In the previous section, we showed how to represent a one-page graph of n nodes in O(n) bits 

allowing searching and adjacency testing in O(log n) time. The generalization to multi-page graphs 

is direct. If graph G is a k-page graph, we simply represent each of its pages (these are one-page 

graphs) separately. All the pages share the same printing order, so node indices are common +o all 

pages. To visit all the neighbors of a particular node m, go through each of the k pages in turn, 

executing algorithm NEIGHBOR. To test two nodes for adjacency, simply use ADJ to resolve the 

question for each page, and take the OR of the results. 

So we can represent any G € G, (the class of k-page graplis) in O(kn) bits, with searching and 

adjacency testing in O(klogn) time. For any sub-class of graphs with bounded pagenumber, this 

becomes O(n) space and O(log n) time. Yannakakis[49] gives a linear-time algorithm that embeds 

any planar graph in four pages. Since we have shown the linear-space result for any class of graphs 

with bounded pagenumber, it follows for pianar grapns as well. 

Room for improvement 

The linear factor used by our planar-graph representation leaves much room for improvement. The 

constructions given were chosen to maximize clarity, rather than minimize this factor. If the reader 
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was strict in accounting the bits used, she will have counted 64 bits per node in the graph (ignoring 

the sublinear terms). This is in contrast with Turdn’s construction, which uses only 12 bits per 

node (but does not allow efficient searching). Most of the overhead comes from the inefficiency of 

the parenthesis matcher, which takes 4 extra bits per parenthesis per direction. If these extra bits 

could be eliminated, we would need only 16 bits per node, still 4 short of Turdén’s bound. 

I really don’t know if 12 bits per node is asymptotically optimal for planar graphs. I believe 

that the formula for the (asymptotic) number of nonisomorphic planar graphs on n nodes is not 

known. 
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