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Abstract 

Li, M. and P.M.B. Vitlnyi, Average case complexity under the universal distribution equals worst-case complexity, 

Information Processing Letters 42 (1992) 145-149. 

The average complexity of any algorithm whatsoever under the universal distribution is of the same order of magnitude as 
the worst-case complexity. This holds both for time complexity and for space complexity. To focus our discussion, we use as 

illustrations the particular case of sorting algorithms, and the general case of the average case complexity of NP-complete 

problems. 
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1. Introduction 

For many algorithms the average case running 
time under some distributions on the inputs is 
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less than the worst-case running time. For in- 
stance, using Quicksort on a list of II items to be 
sorted gives under the Uniform Distribution on 
the inputs an average running time of O(n log n) 
while the worst-case running time is CI(n’>. The 
worst-case running time of Quicksort is typically 
reached if the list is already sorted or almost 
sorted, that is, exactly in cases where we actually 
should not have to do much work at all. Since in 
practice the lists to be sorted occurring in com- 
puter computations are very likely to be sorted or 
almost sorted, programmers implementing sys- 
terns involving sorting algorithms tend to resort to 
fast sorting algorithms of which the provable av- 

34-39. erage run-time is of equal order of magnitude as 
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the worst-case run-time, even though this average 
running time can only be proved to be O(n log2n) 
under the Uniform Distribution as in the case of 
Shellsort, or to some randomized version of 
Quicksort. 

In the case of NP-complete problems the ques- 
tion arises whether there are algorithms that solve 
them in polynomial time “on the average”. 
Whether this phenomenon occurs must depend 
on the combination of the particular NP-com- 
plete problem to be solved and the distribution of 
the instances. Obviously, some combinations are 
easy on the average, and some combinations are 
hard on the average, by tailoring the distribution 
to the ease or hardness of the individual in- 
stances of the problem. This raises the question 
of a meaningful definition of a “hard on the 
average” problem. 

Levin [4] has shown that for the Tiling problem 
with uniform distribution of instances there is no 
polynomial on the average algorithm, unless there 
exists such an algorithm for each combination of 
an NP-complete problem and polynomial time 
computable probability distribution. 

Here we show that under the “Universal Dis- 
tribution” on the inputs all algorithms run in 
average case time (space) which is of the order of 
magnitude of the worst-case time (space). It is 
shown that if a probability distribution P is com- 
putable or even enumerable, then the P-probabil- 
ity of an object is close to its universal probability 
with high P-expectation. Hence, the average 
complexity with respect to the universal distribu- 
tion seems much more meaningful an indicator 
for practical considerations than the average with 
respect to the uniform distribution. Since the 
former corresponds to the worst-case complexity, 
the worst-case complexity of an algorithm would 
appear to be of considerable practical importance 
after all. 

The consequence for the previously mentioned 
examples is as follows. If the inputs are dis- 
tributed according to the Universal Distribution, 
then 
1. Quicksort runs in average case time 0(n2), 

and 
2. all NP-complete problems are hard to com- 

pute on the average unless P = NP. 
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2. The universal distribution 

Let N, Q, and R denote the set of nonnega- 
tive integers, nonnegative rational numbers, and 
nonnegative real numbers, respectively. A super- 
script “ +” excludes zero. We consider countably 
infinite sample spaces, say S = N U {u}, where u 
is an “undefined” element not in N. A function 
P from S into R, such that C,,,P(x) = 1 de- 
fines a probability distribution on S. (This allows 
us to consider defective probability distributions 
on the natural numbers, which sum to less than 
one, by concentrating the surplus probability on 
u.) A probability distribution P is called enumer- 

able, if the set of points 

((x, Y): xgN, Y EQ, f’(x) >Y}, 

is recursively enumerable. That is, P(x) can be 
approximated from below by a Turing machine, 
for all x E N. (P(u) can be approximated from 
above. A probability distribution P is recursive if 
P(n) can be approximated both from below and 
above by a Turing machine, for all x.) 

Levin has shown that we can effectively enu- 
merate all enumerable probability distributions, 

P,) P,) . . . . In particular, there exists a uniaersal 

enumerable probability distribution, denoted by, 
say, m, such that 

V’~EN+~C>OVXEN [cm(x) aPk(x)]. (1) 

That is, m dominates each Pk multiplicatively. It 
is convenient to define 

m(x) = 2-K(*), (2) 

where K(x) is the prefix variant of Kolmogorov 
complexity [2]. In equation (l), the constant c can 

be set to 

c = 2K(fk)fO(i) = 2K(k)+o(‘) = O(k 1ogQ). (3) 

This means that we can take c to be exponential 
in the length of the shortest self-delimiting binary 
program to compute Pk. 

The universal distribution (rather, its continu- 
ous version) was originally discovered by R.J. 
Solomonoff in 1964, with the aim of predicting 
continuations of finite prefixes of infinite binary 
sequences. We can view the discrete probability 
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density m as the a priori probability ’ of finite for all k > 0. In this sense, with high P-probabil- 

objects in absence of any knowledge about them ity, P(x) is close to m(x), for each enumerable P. 
[S]. Levin has shown that Solomonoff’s definition, The distribution m is the unique (up to multi- 
and the two definitions (1) and (2) given above, plicative constant) distribution which has that 
are equivalent up to a multiplicative constant. property. If the problem instances are generated 
Thus, three very different formalizations turn out algorithmically, then the distribution is enumer- 

to define the same notion of universal probabil- able. In absence of any a priori knowledge of the 
ity. Such a circumstance is often taken as evi- actual distribution therefore, apart from that it is 
dence that we are dealing with a fundamental enumerable, studying the average behavior under 
concept. See [9] for the analogous notions in m is considerably more meaningful than studying 
continuous sample spaces, [31, and [51 or [61 for the average behavior under any other particular 
elaboration of the cited facts and proofs. enumerable distribution (like the uniform one). 

This universal distribution has many important 
properties. Under m, easily describable objects 
have high probability, and complex or random 
objects have 109~ probability. Other things being 
equal, it embodies Occam’s Razor, which says we 
should prefer simple explanations over compli- 
cated ones. To give an example, with x = 2” we 
have K(x) =G log II + 2 log log IZ + O(1) and 
m(x) = 0(1/n log*n). If we generate the binary 
representation of y by n tosses of a fair coin, 
apart from the leading “l”, then for the over- 
whelming majority of outcomes we shall have 
K(y) > n and m(y) = 0(2-“1. 

3. Average case complexity 

Let x EN. Let l(x) denote the length of the 
binary representation of x. Let t(x) be the run- 
ning time of algorithm A on problem instance x. 
Define the worst-case time complexity of A as 
T(n) = max{t(x): Z(x) = n}. Define the average 
time complexity of A with respect to a probability 
distribution P on the sample space S by 

By Markov’s inequality, for any two probability 
distributions P and Q, for all k, we have Q(x) < 
P(x)/k with P-probability at least 1 - l/k. By 
equations (1) and (3) therefore, for each enumer- 
able probability distribution P(x) we have 

c fYx)t(x) 
T&&z) = Hx)=n c P(x) . 

I(x)=n 

E{P( x): 2 K(P)m(x) >P(x) &m(x)/k} 

2 1 - l/k, (4) 

’ Consider an enumeration T,, T,, . of Turing ma- 

chines with a separate binary one-way input tape. Let T be 

such a machine. If T halts with output x, then T has scanned 

a finite initial segment of the input, say p, and we define 

T(p) = x. The set of such p for which T halts is a prefix code: 

no such input is a proper prefix of another one. Assume the 
input is provided by tosses of a fair coin. The probability that 

T halts with output x is P,(x) = &tpj_x2-‘(p), where I(p) 
denotes the length of p. Then C,,,P,(X)G 1, the deficit 
from one being the probability that T does not halt. Concen- 

trate this surplus probability on P,(U), such that Z, E sPT(x) 

= 1. It can be shown that P is an enumerable probability 
distribution iff P = @(P,) for some T. In particular, P,(x) = 

@(m(x)) for a universal machine U. From this, properties (l), 

(2), and (3) can be derived. 

Example (Quicksort). Let us compare the average 
time complexity for Quicksort under the Uniform 
Distribution L(x) and the one under the Univer- 
sal Distribution m(x). Define L(x) = 2-2’(X), such 
that the conditional probability L(x I l(x) = n) = 
2-“. We encode the list of elements to be sorted 
as nonnegative integers in some standard way. 

For Quicksort, Ta4._Jn) = O(n log n). We 
may expect that Tayerage(n) = Nn log n). But the 
Theorem will tell us much more, namely, 

Cerage (n) = fl(n*)! Let us give some intuition 
why this is the case. With the low average time- 
complexity under the Uniform Distribution, there 
can only be o((log n)2”/n) strings x of length IZ 
with t(x) = CL(n*). Therefore, given n, each such 
string can be described by its sequence number in 
this small set, and hence for each such x we find 
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K(x I n) G n - log n + 3 log log n. (Since n is 
known, we can find each n - k by coding k 
self-delimiting in 2 log k bits. The inequality fol- 
lows by setting k = log n - log log n.) Therefore, 
no really random x’s, with K(x In> an, can 
achieve the worst-case run-time fi(n’). Only 
strings x which are non-random, with K(x I n) < 
n, among which are the sorted or almost sorted 
lists, and lists exhibiting other regularities, can 
have 0(n2) running time. Such lists x have rela- 
tively low Kolmogorov complexity K(x) since they 
are regular (can be shortly described), and there- 
fore m(x) = 2-kcx) is very high. Therefore, the 
contribution of these strings to the average run- 
ning time is weighted very heavily. This intuition 
can be made precise in a much more general 
form. We assume that all inputs to an algorithm 
are coded as integers according to some standard 
encoding. 

Theorem. Let A be any algorithm, procided it 
terminates for all inputs in N. Let the inputs to A 
be distributed according to m. Then the acerage 
case time complexity is of the same order of magni- 
tude as the corresponding worst-case time complex- 
ity. 

Proof. We define a probability distribution P(x) 
on the inputs that assigns high probability to the 
inputs for which the worst-case complexity is 
reached, and zero probability for other cases. 

Let A be the algorithm involved. Let T(n) be 
the worst-case time complexity of A. Clearly, 
T(n) is recursive (for instance by running A on 
all x’s of length n). Define the probability distri- 
bution P(x) by: 
1. For each n = 1, 2, . . . , define a,, := 

CICx)=,lm(x); 
2. if I(x) = n and x is lexicographically least with 

t(x) = T(n), then P(x) := a,,, else P(x) := 0. 
It is easy to see that a, is enumerable since 

m(x) is enumerable. Therefore, P(x) is enumer- 
able. Setting P(u) = m(u), we have defined P(x) 
such that C,,,P(x)= CIEsm(x>, and P(x) is 
an enumerable probability distribution. The aver- 
age case time complexity TOM,,,,, with respect 
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to the m(x) distribution on the inputs, using 
c,m(x) > P(x) by (1) is obtained by: 

C m(x>W 
Ta~Erup,( n) = ‘(‘)=’ 

c m(x) 
I(x)=n 

c’ = P(x) 
a-- 

p I(x)=n 
C m(x) T(n) 

I(x)=n 

,’ =- c ff ;qx, T(n) 
p /(x)=n 

I(x)=12 

= tT(n), 
where 

I(x)=n 

a= c m(x) =l. 
l(x)=n 

The proof of the theorem is finished by the 
observation that 

T(n) a Zera&) 

holds vacuously. 13 

If P in the proof is Pk in the standard effec- 
tive enumeration I’,, P,, . . . of enumerable 
semimeasures, then we can set cP G k log2k by 
equation (3). Namely, considering the binary rep- 
resentations of positive integers, c(k) = I( k)k is 
a prefix code with l(c(k)) = log k + 2 log log k. 
Since there is a Turing machine halting with 
output k iff the input is c(k), the length K(k) of 
the shortest prefix free program for k does not 
exceed l(c(k)). This gives an interpretation to the 
constant of proportionality between the m-aver- 
age complexity and the worst-case complexity: if 
the algorithm to approximate P(x) from below is 
the kth algorithm in the standard effective enu- 
meration of all algorithms, then: 

T(n) 
CL-ugrW 2- ~ k log2k’ 
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Hence we must code the algorithm to compute P a polynomial time computable probability distri- 

as compact as possible to get the most significant bution such that all algorithms in a restricted 

lower bound. That is, the ease with which we can class (like polynomial time) have an average case 

describe (algorithmically) the strings which pro- running time of the same order of magnitude as 

duce a worst-case running time determines the the worst-case running time? Following the work 

closeness of the average time complexity to the reported here, these and related problems are 

worst-case time complexity. studied by Milterson [7]. 

4. Conclusion 
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