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Abstract

This paper presents a surprising result: changing a seemingly

innocuous aspect of an experimental setup can cause a sys-

tems researcher to draw wrong conclusions from an experi-

ment. What appears to be an innocuous aspect in the exper-

imental setup may in fact introduce a significant bias in an

evaluation. This phenomenon is called measurement bias in

the natural and social sciences.

Our results demonstrate that measurement bias is signif-

icant and commonplace in computer system evaluation. By

significant we mean that measurement bias can lead to a per-

formance analysis that either over-states an effect or even

yields an incorrect conclusion. By commonplace we mean

that measurement bias occurs in all architectures that we

tried (Pentium 4, Core 2, and m5 O3CPU), both compilers

that we tried (gcc and Intel’s C compiler), and most of the

SPEC CPU2006 C programs. Thus, we cannot ignore mea-

surement bias. Nevertheless, in a literature survey of 133 re-

cent papers from ASPLOS, PACT, PLDI, and CGO, we de-

termined that none of the papers with experimental results

adequately consider measurement bias.

Inspired by similar problems and their solutions in other

sciences, we describe and demonstrate two methods, one

for detecting (causal analysis) and one for avoiding (setup

randomization) measurement bias.

Categories and Subject Descriptors C. Computer Systems

Organization [C.4 Performance of Systems]: Design studies

General Terms Experimentation, Measurement, Perfor-

mance

Keywords Measurement; Bias; Performance
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1. Introduction

Systems researchers often use experiments to drive their

work: they use experiments to identify bottlenecks and then

again to determine if their optimizations for addressing the

bottlenecks are effective. If the experiment is biased then a

researcher may draw an incorrect conclusion: she may end

up wasting time on something that is not really a problem

and may conclude that her optimization is beneficial even

when it is not.

We show that experimental setups are often biased. For

example, consider a researcher who wants to determine if

optimization O is beneficial for system S. If she measures

S and S + O in an experimental setup that favors S + O,

she may overstate the effect of O or even conclude that O

is beneficial even when it is not. This phenomenon is called

measurement bias in the natural and social sciences. This

paper shows that measurement bias is commonplace and

significant: it can easily lead to a performance analysis that

yields incorrect conclusions.

To understand the impact of measurement bias, we inves-

tigate, as an example, whether or not O3 optimizations are

beneficial to program performance when the experimental

setups differ. Specifically, we consider experimental setups

that differ along two dimensions: (i) UNIX environment size

(i.e., total number of bytes required to store the environment

variables) because it affects the alignment of stack allocated

data; and (ii) link order (the order of .o files that we give to

the linker) because it affects code and data layout. There are

numerous ways of affecting memory layout; we picked two

to make the points in this paper but we have found similar

phenomena with the others that we have tried.

We show that changing the experimental setup often leads

to contradictory conclusions about the speedup of O3. By

“speedup of O3” we mean run time with optimization level

O2 divided by run time with optimization level O3. To in-

crease the generality of our results, we present data from two

microprocessors, Pentium 4 and Core 2, and one simulator,

m5 O3CPU [2]. To ensure that our results are not limited to

gcc, we show that the same phenomena also appear when we

use Intel’s C compiler.
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We show that there are no obvious ways of avoiding mea-

surement bias because measurement bias is unpredictable.

For example, the best link order on one microprocessor is

often not the best link order on another microprocessor and

increasing the UNIX environment size does not monotoni-

cally increase (or decrease) the benefit of the O3 optimiza-

tions. Worse, because hardware manufacturers do not reveal

full details of their hardware it is unlikely that we can pre-

cisely determine the causes of measurement bias.

We show, using a literature survey of 133 recent papers

from ASPLOS, PACT, PLDI, and CGO, that prior work

does not carefully consider the effects of measurement bias.

Specifically, to avoid measurement bias, most researchers

use not a single workload, but a set of workloads (e.g., all

programs from a SPEC benchmark suite instead of a single

program) in the hope that the bias will statistically cancel

out. For this to work, we need a diverse set of workloads.

Unfortunately, most benchmark suites have biases of their

own and thus will not cancel out the effects of measurement

bias; e.g., the DaCapo group found that the memory behavior

of the SPEC JVM98 benchmarks was not representative of

typical Java applications [3]. We experimentally show that

at least the SPEC CPU2006 (CINT and CFP, C programs

only) benchmark suite is not diverse enough to eliminate the

effects of measurement bias.

Finally, this paper discusses and demonstrates one tech-

nique for avoiding measurement bias and one technique for

detecting measurement bias. Because natural and social sci-

ences routinely deal with measurement bias, we derived two

techniques directly from these sciences. The first technique,

experimental setup randomization (or setup randomization

for short), runs each experiment in many different experi-

mental setups; these experiments result in a distribution of

observations which we summarize using statistical methods

to eliminate or reduce measurement bias. The second tech-

nique, causal analysis [16], establishes confidence that the

outcome of the performance analysis is valid even in the

presence of measurement bias.

The remainder of the paper is structured as follows. Sec-

tion 2 explores the origin of measurement bias. Section 3

presents our experimental methodology. Sections 4 and 5

show that measurement bias is significant, commonplace,

and unpredictable. Section 6 shows that prior work inad-

equately addresses measurement bias. Section 7 presents

techniques for dealing with bias. Section 8 discusses what

hardware and software communities can do to help with

measurement bias. Section 9 compares this paper to related

work, and Section 10 concludes.

2. Origin of Measurement Bias

Program performance is sensitive to the experimental setup

in which we measure the performance. For example, we

measured the execution time of the code in Figure 1(a) while

changing an innocuous part of the experimental setup; the

UNIX environment size. Figure 1(b) shows the outcome of

this experiment. A point (x, y) says that when the UNIX

environment size is x bytes, the execution time is y cycles on

a Core 2 workstation.1 Each point represents the mean of five

runs and the whiskers represent the 95% confidence interval

of the mean. We see that something external and orthogonal

to the program, i.e., changing the size (in bytes) of an unused

environment variable, can dramatically (frequently by about

33% and once by almost 300%) change the performance of

our program. This phenomenon occurs because the UNIX

environment is loaded into memory before the call stack.

Thus, changing the UNIX environment size changes the

location of the call stack which in turn affects the alignment

of local variables in various hardware structures.

This simple example demonstrates that computer sys-

tems are sensitive: an insignificant and seemingly irrele-

vant change can dramatically affect the performance of the

system. As a consequence of this sensitivity, we will find

that different experimental setups will produce different out-

comes and thus cause measurement bias.

3. Experimental Methodology

In a comparison between two systems, S1 and S2, measure-

ment bias arises whenever the experimental setup favors S1

over S2 or vice versa. Thus, measurement bias can make it

appear that one system (e.g., S1) is superior to another sys-

tem (e.g., S2) even when it is not.

Measurement bias is well known to medical and other sci-

ences. For example, Ioannidis [9] reports that in a survey

of 49 highly-cited medical articles, later work contradicted

16% of the articles and found another 16% had made overly

strong claims. The studies that contradicted the original stud-

ies used more subjects and random trials and thus probably

suffered less from measurement bias.

This paper considers two sources of measurement bias:

(i) the UNIX environment size which affects the start ad-

dress of the stack and thus stack allocated data alignment;

and (ii) link order which affects code and data layout. We

picked these sources because it is well known that program

performance is sensitive to memory layout and thus anything

that affects memory layout is also likely to exhibit measure-

ment bias.

There are numerous other sources of measurement bias.

For example the room temperature affects the CPU clock

speed and thus whether the CPU is more efficient in execut-

ing memory-intensive codes or computationally-intensive

codes [6]. As another example, the selection of benchmarks

also introduces measurement bias; a benchmark suite whose

codes have tiny working sets will benefit from different op-

timizations than codes that have large working sets. It is

1 We disabled all optimizations for this kernel to keep it simple; this is

why the compiler does not eliminate the loop as dead code. A slightly

more complex version of this example exhibits the same phenomenon with

optimizations enabled.
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static int i = 0, j = 0, k = 0;

int main() {

int g = 0, inc = 1;

for (; g<65536; g++) {

i += inc;

j += inc;

k += inc;

}

return 0;

}

(a) C code for micro-kernel
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(b) Effect of environment variable size on performance.

Figure 1. A micro-kernel that shows extreme sensitivity

Suite Benchmark Cycles Seconds

gcc 3,142,640,332 1.3

libquantum 7,690,324,238 3.2

perlbench 12,752,930,486 5.3

bzip 13,840,302,589 5.8

CINT h264ref 46,785,473,888 19.5

mcf 59,250,579,566 25.0

gobmk 180,491,870,344 75.2

hmmer 246,974,548,791 102.9

sjeng 419,892,937,630 175.0

sphinx3 35,238,100,682 14.7

CFP milc 57,414,647,507 23.9

lbm 232,213,767,693 96.8

Table 1. Benchmarks used in our experiments.

not the goal of our paper to expose all sources of measure-

ment bias; instead, the goal is to show that measurement

bias exists and one needs to use techniques such as the ones

described in Section 7 to deal with it.

In the sections that follow we explore the speedup of gcc’s

O3 optimizations over O2. We should stress that it is not the

point of the paper to evaluate whether one optimization level

is better than another, rather we use this experiment to show

how easily measurement bias can affect our conclusions. The

remainder of this section describes our experimental setup.

3.1 Benchmarks

Table 1 shows the benchmarks from the SPEC CPU2006

V1.0 [17] benchmark suite we use to explore measurement

bias. We use all the C benchmarks from the CINT (integer)

and CFP (floating point) components of SPEC CPU2006.

We did not consider the non-C programs because the opti-

mization levels would not be comparable between the com-

pilers for different programming languages. All of these

benchmarks are single-threaded applications. To generate

the data for the figures in this paper, we ran each bench-

mark 5,940 times. To ensure that we could collect this data

in a timely manner, we used the train input for all experi-

ments. For each benchmark, the “Cycles” column in the ta-

ble gives the mean runtime (in cycles) of 15 runs using an

empty UNIX environment and default link order. Even with

the train input, it took us 12 days to generate the needed data

for our longest running benchmark, sjeng.

3.2 Measurement infrastructure

We conducted our experiments on two machines: a Pen-

tium 4 and a Core 2 workstation (Table 2). On both ma-

chines we ran Linux and used PAPI [5] to extract hard-

ware performance monitor information. We added all our

instrumentation that accesses PAPI in an inter-loper (a

shared library that overloads libc start main via

LD PRELOAD). The inter-loper sets up the data collection

before main executes and reads out the collected data after

main exits, ensuring that measurement overhead is mini-

mized. Adding instrumentation in this way does not alter

the static memory layout of a program as it does not require

source instrumentation or recompilation of a benchmark.

Unless we state otherwise, all data in this paper is for

the Core 2 workstation. We picked the Core 2 because it

is a widely deployed state-of-the-art processor. The Core 2

workstation we used was a quad core; however, our single

threaded benchmarks only used a single core at any given

time. We report selected data for the Pentium 4 workstation

and the m5 simulator using the O3CPU model [2] to demon-

strate the generality of our results.

For each configuration, or experimental setup, we run

the benchmark multiple times, back-to-back. If there is OS

activity that persists for all the runs of a configuration, it may

bias our results. However, we are certain this is not the case

for two reasons. First, in several cases we did run additional

runs of a configuration to explore some phenomenon in

more detail and got reproducible results; if OS activity was

causing bias this would not have been the case. Second, even

for our shortest running benchmark the OS activity would

have to persist for over 6.5 seconds to bias our results and

much longer (minutes) for the longer running benchmarks;

this is unlikely.
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Parameter Core 2 Pentium 4 m5 O3CPU

Operating System Linux 2.6.25 Linux 2.4.21 NA

Tool Chain gcc 4.1.3, icc 10.1 gcc 4.2.1 gcc 4.1.0

Measurement papi-3.5.1 / perfmon-2.8 papi-3.0.8 / perfctr-5.2.16 NA

Micro-architecture Core NetBurst Alpha

Clock Frequency 2.4 GHz 2.4 GHz 1GHz

memory 8G 2G 512M

L1 32K Ins., 32K Data 12K Ins. 8K Data 32K Ins. 64K Data

L2 128K Unified 512K Unified 2M Unified

L3 4096K NA NA

TLB entries 512 64 48 Ins. 64 Data

Table 2. Description of the machines used in our study to show the effects of measurement bias.

3.3 Following best practices

With all aspects of our measurements we attempted to be

as careful as possible. In other words, the measurement bias

that we demonstrate later in the paper is present despite our

following best practices.

• Except in the experiments where we add environment

variables, we conducted our experiments in a minimal

environment (i.e., we unset all environment variables that

were inessential).

• We conducted all our experiments on minimally-loaded

machines, used only local disks, and repeated each ex-

periment multiple times to ensure that our data was rep-

resentative and repeatable.

• We conducted our experiments on two different sets of

hardware and (when possible) one simulator. This way

we ensured that our data was not an artifact of the partic-

ular machine that we were using.

• Some Linux kernels (e.g., on our Core 2) randomize the

starting address of the stack (for security purposes). This

feature can make experiments hard to repeat and thus we

disabled it for our experiments.

4. Measurement Bias is Significant and

Commonplace

This section shows that measurement bias is significant and

commonplace. By significant we mean that measurement

bias is large enough to lead to incorrect conclusions. By

commonplace we mean that it is not an isolated phenomenon

but instead occurs for all benchmarks and architectures that

we tried.

We quantify measurement bias with respect to the fol-

lowing question: how effective are the O3 optimizations in

gcc? By “O3 optimizations” we mean optimizations that O3

introduces (i.e., it does not include optimizations that carry

over from O2 ).

4.1 Measurement bias due to link order

We first show the measurement bias due to link order for all

benchmarks and then discuss one potential cause for it on

one benchmark.

linking order
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Figure 2. The effect of link order on Core 2.

4.1.1 The extent of measurement bias

Figure 2 (a) explores the effect of link order on the speedup

of O3 for perlbench. To obtain this data, we compiled perl-

bench 33 times; the first time we used the default link order

(as specified by the make file), the second time we used an

alphabetical link order (i.e., the .o files appeared in alpha-

betical order), and the remaining times we used a randomly

generated link order. A point (x, y) in Figure 2 (a) says that

for the xth link order we tried, the speedup of O3 was y. For

each point, we conducted five runs each with O2 and O3 ;

the whiskers give the 95% confidence intervals of the mean.
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There are three important points to take away from this

graph. First, depending on link order, the magnitude of our

conclusion (height of y-axis) can significantly fluctuate (0.92

vs 1.10). Second, depending on link order, O3 either gives

a speedup over O2 (i.e., y value is greater than 1.0) or a

slow down over O2 (i.e., y value is less than 1.0). Third,

some randomly picked link orders outperform both the de-

fault and alphabetical link orders. Because we repeated the

experiment for each data point multiple times, these points

are not anomalies but true, reproducible behavior.

Figure 2 (b) uses a violin plot to summarize similar data

for all benchmarks. Each violin summarizes data for all the

link orders for one benchmark; e.g., the perlbench violin

summarizes Figure 2 (a). The white dot in each violin gives

the median and the thick line through the white dot gives

the inter-quartile range. The width of a violin at y-value y is

proportional to the number of times we observed y. The “+”

and “×” points in each violin give the data for the default

and alphabetical link orders respectively.

From Figure 2 (b) we see that the violins for five bench-

marks (libquantum, perlbench, bzip2, sphinx and lbm)

straddle 1.0; thus, for these benchmarks, we may arrive at

conflicting conclusions about the benefit of the O3 opti-

mizations depending on the link order that we use. On the

Pentium 4 the results are more dramatic: all of the violins

for the non-FP benchmarks straddle 1.02.

In Figure 2 (b) the differences between the maximum and

minimum points of a violin (the height of the violin) are par-

ticularly instructive because they give an indication of the

range of bias one can end up with. On the Core 2 for bench-

mark perlbench, the difference between the maximum and

minimum points of the violin is 0.15. In other words we may

think we have a 7% slowdown when in fact we have a 8%

speedup! To generalize these results, the median difference

between the minimum and maximum points is 0.02 while on

the Pentium 4 the median difference is 0.08. Thus, the mea-

surement bias due to link order is significant: we can arrive

at significantly different (on average 2% for Core 2 and 8%

for Pentium 4, depending on our experimental setup.

We repeated a selection of the above experiments on the

m5 simulator using the O3CPU model [2]. We used smaller

inputs for the m5 experiments because the train inputs took

too long to simulate. We found that changing link order also

caused measurement bias on the simulator; for example for

bzip2 the speedup of O3 ranged from 0.8 to 1.1 as a result

of different link orders. Thus, measurement bias due to link

order is commonplace: we found it on all three machines

(one simulated) and all the benchmarks that we tried.

4.1.2 The potential causes of measurement bias

What causes measurement bias due to link order on the

Core 2? Changing a program’s link order can affect per-

2 We did not collect the data for the three SPEC CPU2006 CFP benchmarks

on the Pentium 4.

formance in a number of ways. For example, link order af-

fects the alignment of code, causing conflicts within various

hardware buffers (e.g. caches) and hardware heuristics (e.g.

branch prediction). The link order may affect different pro-

grams differently; in one program it may affect the alignment

of code in the instruction queue and in another program it

may affect conflict misses in the instruction cache.

To investigate why we see these effects we used the m5

simulator (O3CPU model) as we have full knowledge of its

internals (via its source code). We investigated the bzip2

benchmark and found that whether or not a particular hot

loop fit in a single cache line determined the performance of

the program. If the loop fit entirely in a cache line, the m5

O3CPU simulator latches it in the instruction queue and thus

avoids any i-cache accesses for the duration of the loop; thus

the loop executes faster than if it did not fit in a single cache

line.

To understand if the fluctuations on the real hardware also

had the same explanation, we tried to identify features on

real hardware that would also avoid i-cache accesses for such

loops. We found that at least the Core2 has such a feature:

the loop-stream detector (LSD).

While we know that alignment of code can affect whether

or not a hot loop fits in the LSD and that the alignment of

code changes when we change the link order, three reasons

prevent us from confirming this explanation. First, Intel does

not release the full description of the LSD so we cannot look

at a loop and know for sure whether or not it would benefit

from the LSD. Second, Intel does not provide any hardware

performance monitors that directly measure the behavior of

the LSD. Third, since the LSD is always on (e.g., we cannot

disable it as we can disable some hardware features such

as prefetching) we cannot simply turn it off and see if the

performance fluctuations disappear.

More generally, we find that inadequate information from

hardware manufacturers and from the hardware severely

cripples our ability to (i) understand the performance of a

system and to (ii) fully exploit the capabilities of the hard-

ware.

4.2 Measurement bias due to UNIX environment size

We first show the measurement bias due to environment

variables and then discuss two potential causes for it.

4.2.1 The extent of the measurement bias

Figure 3 (a) shows the effect of UNIX environment size

for perlbench on the speedup of O3. The leftmost point is

for a shell environment of 0 bytes (the null environment);

all subsequent points add 63 bytes to the environment. To

increase the UNIX environment size, we simply extend the

string value of a dummy environment variable that is not

used by the program.

A point (x, y) says that when the UNIX environment size

is x bytes, the speedup of O3 is y. We computed each point

using five runs each with O2 and O3 ; the error bars give
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Figure 3. The effect of UNIX environment size on the

speedup of O3 on Core 2.

the 95% confidence intervals around the mean. The tight

confidence intervals mean that these points are not anomalies

but true reproducible behavior.

The most important point to take away from this graph

is that depending on the shell environment size we may

conclude that (i) the O3 optimizations are beneficial (i.e., the

y value is greater than 1.0); (ii) the O3 optimizations degrade

performance; and (iii) increasing the UNIX environment

size does not predict the O3 speedup because as the size

increases speedup increases and decreases, ranging from

0.91 to 1.07.

Figure 3 (b) summarizes similar data across all bench-

marks. Each violin plot gives the data for one benchmark

and plots all the points for the benchmark (each point corre-

sponds to a particular UNIX environment size).

In Figure 3 (b), we see that four of the violins (libquantum,

perlbench, sphinx and lbm) straddle 1.0: this means that de-

pending on the experimental setup, one can end up with

contradictory conclusions about the speedup of O3. On the

Pentium 4, our results are more dramatic: the violins of six

of the 9 CINT benchmarks straddle 1.0.

The perlbench violin summarizes Figure 3 (a). The differ-

ence between the maximum and minimum points of a violin

are particularly instructive because they give an indication of

the range of bias one can end up with. The most extreme is

lbm which ranges from 0.88 (i.e., a significant slowdown due

to O3 optimizations) to 1.09 (i.e., a healthy O3 speedup).

The median difference between the extreme points on the

Core 2 is 0.01 and on the Pentium 4 is 0.04. Thus, while

smaller than measurement bias due to link order, the mea-

surement bias due to UNIX environment size is still large

enough (on average 1% for Core 2 and 4% for Pentium 4) to

obfuscate experimental results.

To summarize, measurement bias due to UNIX environ-

ment size can severely impact the results of our experiment—

both in the magnitude of any effect we are measuring and

even forcing a researcher to draw an incorrect conclusion.

Using lbm as an example we may think we have a 12%

slowdown when in fact we have a 9% speedup!

4.2.2 The potential causes of the measurement bias

What causes the measurement bias due to environment vari-

ables on the Core 2? So far we have uncovered two high-

level reasons.

The first reason is that the UNIX environment size af-

fects the starting address of the C stack. Thus, by changing

the UNIX environment size, we are effectively changing the

address and thus the alignment of stack variables in various

hardware buffers; also many algorithms in hardware (e.g., to

detect conflicts between loads and stores) depend on align-

ments of code or data. We verified our explanation by always

starting the stack at the same location while changing the

UNIX environment size; we got the same O3 speedup (for

all benchmarks except perlbench) with different UNIX envi-

ronment sizes, thus confirming that it was the stack starting

location that affected O3 speedup.

The second reason (which applies only to perlbench) is

that when perlbench starts up, it copies contents of the UNIX

environment to the heap. Thus, using different UNIX en-

vironment sizes effectively changes the alignment of heap-

allocated structures in various hardware buffers in addition

to the alignment of stack allocated variables. We confirmed

this explanation by always fixing the start address of the heap

so that all of our different UNIX environments would fit be-

low it. With these experimental setups, we found that dif-

ferent UNIX environment sizes had a much smaller impact

on the speedup of O3. The first reason described above (i.e.,

UNIX environment size affects stack start address) causes

the residual bias.

While the above two reasons provide a high-level causal

analysis, we would like to understand the underlying causes

in more detail. In particular we would like to know which

hardware structure interacted poorly with which stack vari-

ables. For this study we intervened on the code of perlbench

and fixed the heap start address so as to focus entirely on

the effects due to shifting the stack address. We picked the

two UNIX environment sizes that lead to the fastest and the

slowest execution time. For both of these UNIX environ-
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ments we ran perlbench multiple times in order to capture all

the Core 2 performance events provided by perfmon. Out of

these 340 events, 42 events differed by more than 25%. One

event stood out with a 10-fold increase in its event count:

LOAD BLOCK:OVERLAP STORE, the number of loads

blocked due to various reasons, among them loads blocked

by preceding stores.

At a high level, we found that the alignment of stack

variables was probably causing measurement bias. At a low

level, we found that the LOAD BLOCK:OVERLAP STORE

was probably causing measurement bias. What is the con-

nection? The hardware uses conservative heuristics based

on alignment and other factors to determine load-store over-

laps. By changing the alignment of stack variables, we have

probably affected the outcome of the hardware heuristics,

and thus the number of load-store overlaps.

To increase our confidence in the hypothesis that the load-

store overlap is responsible for the measurement bias, we

would need further support from the hardware. In particu-

lar, if we could map events to program locations, we could

determine whether these load blocks happen due to stack ac-

cesses, and we would be able to point out which stack loca-

tions are responsible for these conflicts. The Core 2 already

provides such support through precise event based sampling

(PEBS). Unfortunately, PEBS supports only a very limited

set of events, and LOAD BLOCK:OVERLAP STORE is

not part of that set.

4.3 Did gcc cause measurement bias?

So far our experiments all used the gcc compiler. If gcc does

not take the alignment preferences of the hardware into con-

sideration, perhaps because the hardware manufacturers do

not reveal these preferences, then code compiled with gcc

may be more vulnerable to measurement bias. Thus, we re-

peated our experiments with Intel’s ICC compiler; we ex-

pected that the Intel compiler would exhibit little measure-

ment bias. We were wrong.

Figure 4 (a) presents data similar to Figure 2 (b) and

Figure 4 (b) presents data similar to Figure 3 (b) except

that it uses Intel’s C compiler instead of gcc. We see that

we get measurement bias also with Intel’s C compiler. For

our experiments with link order, the violins for 10 (6 for

gcc) of the benchmarks straddle 1.0 and the median height of

the violins is 0.03 (0.02 for gcc). For our experiments with

UNIX environment size, 6 (4 for gcc) of the violins straddle

1.0 and the median height of the violins is 0.006 (it was 0.01

with gcc). Thus, code compiled with Intel’s C compiler also

exhibits measurement bias.

4.4 Summary

We have shown that measurement bias is significant and

commonplace.

Measurement bias is significant because it can easily mis-

lead a performance analyst into believing that one configura-

tion is better than another whereas if the performance analyst
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Figure 4. Bias in Intel’s C compiler on Core 2.

had conducted the experiments in a slightly different exper-

imental setup she would have concluded the exact opposite.

Measurement bias is commonplace because we have ob-

served it for all of our benchmark programs, on three micro-

processors (one of them simulated), and using both the Intel

and the GNU C compilers.

5. Measurement Bias is Unpredictable

If measurement bias is predictable then it should be easy to

avoid. Unfortunately, we found that measurement bias is not

easily predictable.

In Figure 3 (a) we saw for perlbench that increasing

the UNIX environment size can make O3 appear better or

worse. Thus, increasing the UNIX environment size does not

always translate to consistently more (or less) bias.

Moreover, Figure 5 shows for perlbench that measure-

ment bias on one machine does not predict measurement bias

on another machine. Figure 5 (a) presents data for link or-

der. A point (x,y) says that there is a link order that gives

an execution time x on the Pentium 4 and an execution time

y on the Core 2. The two circled points represent the best

link order for each of the machines: The leftmost circled

point represents the best link order for Pentium 4 and the
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Figure 5. Measurement bias in perlbench.

bottom-most circled point represents the best link order for

the Core 2. Because the points are not the same, the best link

order for one machine is not the best link order for the other.

This insight is of particular interest to the software ven-

dors who distribute their software already linked. If they tune

link order for a particular machine, there is no guarantee that

the link order will provide the best performance on a differ-

ent machine.

Figure 5 (b) presents data for UNIX environment size. A

point (x,y) says that there is a UNIX environment size that

gives an execution time x on the Pentium 4 and an execution

time y on the Core 2. The two circled points represent the

best UNIX environment size for each of the machines: the

leftmost circled point represents the best for Pentium 4 and

the bottom-most circled point represents the best for the

Core 2. Because the points are not the same, the best UNIX

environment size for one machine is not the best for the

other.

In summary, the UNIX environment size does not predict

performance. Furthermore, the best link order or best UNIX

environment size on one machine is not necessarily the best

on another machine.

6. Literature Review

Researchers in computer systems either do not know about

measurement bias or do not realize how severe it can be. For

example, we found that none of the papers in APLOS 2008,

PACT 2007, PLDI 2007, and CGO 2007 address measure-

ment bias satisfactorily.

We picked these conferences because they are all highly

selective outlets for experimental computer science work. Of

the 133 papers published in the surveyed conference pro-

ceedings, 88 had at least one section dedicated to experi-

mental methodology and evaluation. The remainder of this

review focuses on these 88 papers. When something was not

clear in a paper, we always gave the benefit of the doubt to a

paper’s methodology.

6.1 Papers that use simulations

Many researchers use simulations because simulators enable

them to try out hypothetical architectures. 36 of the 88 pa-

pers we reviewed used simulations. As we have shown in

Section 4.1, even simulations suffer from measurement bias.

6.2 Papers that report speedups

If the ideas in a paper result in huge (e.g., many-fold) im-

provements, then one may argue that the improvements are

a result of the ideas and not artifacts of measurement bias.

However, we found that the median speedup reported by

these papers was 10%; in Section 4 shows a measurement

bias large enough to easily obsfucate a 10% speedup.

6.3 Papers that acknowledge measurement bias

In this paper, we focus on two specific instances of mea-

surement bias (UNIX environment size and link order) and

demonstrate that they can cause invalid conclusions. Al-

though none of the papers we reviewed said anything about

measurement bias due to UNIX environment size or link or-

der, most (83) papers used more than one benchmark (with

a mean number of benchmarks being 10.6 ± 1.8) or input

sets for their evaluation. If we use a sufficiently diverse set

of workloads along with careful statistical methods, most

measurement bias should get factored out. However, as we

show in Section 7.1.1, this is a partial solution; significant

measurement bias may remain even with a large benchmark

suite. Indeed even with our 12 benchmarks we still see large

measurement bias.

7. Solutions: Detecting and Avoiding

Measurement Bias

Measurement bias is not a new phenomenon and it is not

limited to computer science. To the contrary, other sciences

have routinely dealt with it. For example, consider a study

that predicts the outcome of a nationwide election by polling

only a small town. Such a study would lack all credibility be-

cause it is biased: it represents only the opinions of a set of

(probably) like-minded people. This is analogous to evalu-
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Figure 6. Distribution of speedup due to O3 as we change

the experimental setup.

ating an optimization in only one or a small number of ex-

perimental setups. Given that our problem is an instance of

something that other sciences already deal with, our solu-

tions are also direct applications of solutions in other sci-

ences.

7.1 Evaluate innovations in many experimental setups

The most obvious solution to the polling-a-small-town prob-

lem is to poll a diverse cross section of the population. In

computer systems we can do this by using a diverse set of

benchmarks or by using a large set of experimental setups or

both.

7.1.1 Using a large benchmark suite

If we use a sufficiently diverse set of workloads along with

careful statistical methods, most measurement bias should

get factored out. Unfortunately, there is no reason to believe

that our benchmark suites are diverse; indeed there is some

reason to believe that they themselves are biased. For ex-

ample, the designers of the DaCapo benchmark suite found

that the commonly used benchmark suite, SPEC JVM98,

was less memory intensive than Java workloads in recent

years [3]. As a consequence, the SPEC JVM98 benchmarks

may be biased against virtual machines with sophisticated

memory managers.

Figure 6 evaluates whether or not our benchmark suite

(see Table 1) is diverse enough to factor out measurement

bias due to memory layout. To generate this figure, we mea-

sured the speedup of O3 for all benchmarks in 66 different

experimental setups; these setups differ in their memory lay-

outs. For each setup we generated one number: this num-

ber is the average speedup of the entire suite for that experi-

mental setup. Figure 6 plots the distribution of these average

speedups; specifically the height of a bar at x-value x gives

the number of experimental setups when we observed the

average speedup x.
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Figure 7. Using setup randomization to determine the

speedup of O3 for perlbench. At a 95% confidence interval,

we estimate the speedup to be 1.007 ± 0.003.

If our benchmark suite was diverse enough to factor out

measurement bias, we would see a tight distribution; in other

words, varying the experimental setup would have had little

impact on the average speedup across the benchmark suite.

Instead, we see that there is a 7% variation in speedup be-

tween different experimental setups. Thus, our benchmark

suite is not diverse enough to factor out measurement bias

due to memory layout.

While our results are disappointing, they do not preclude

the possibility that a well designed benchmark suite may

factor out measurement bias due to memory layout. While

we may be tempted to create such a suite by combining

existing benchmark suites, we should point out that it is not

the size of the benchmark suite that is important; it is the

diversity of the suite that determines whether or not the suite

can factor our measurement bias.

7.1.2 Experimental setup randomization

In this approach, we generate a large number of experimental

setups by varying parameters that we know to cause mea-

surement bias. Thus we measure the systems being com-

pared, S1 and S2, in each of these experimental setups. This

process results in two distributions: one for S1 and one for

S2. Finally, we use statistical methods, such as the t-test, to

compare the distributions to determine if S1 is better than

S2.

Figure 7 shows the distributions we get when we vary

link order and UNIX environment size for the perlbench

benchmark. For this figure we used 484 measurement setups

(using a cross product of 22 linking orders and 22 environ-

ment variable sizes). We conducted 3 runs for each combi-

nation of experimental setup and benchmark to mitigate the

effects of inter-run variation. We then used the t-test to see if

there is any statistically significant difference in the means
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between the two distributions3. Using this test we found that

at the 95% confidence interval the mean speedup ratio was

1.007 ± 0.003; in other words, O3 optimizations speed up

the program.

While this approach is certainly better than using just a

single experimental setup, it is not perfect: if we do not vary

the experimental setup adequately then we may still end up

with measurement bias for a different bias. This is one of

the reasons why in other sciences it is not uncommon to

find contradictions. For example Ioannidis [9] reports that

as many has 32% of the most high-profile studies (more

than 1,000 citations) in medicine were later found to be

either incorrect or exaggerated; the later studies used larger

sample sizes and thus, because they used randomized trials,

presumably less bias.

7.2 Using causal analysis

Causal analysis is a general technique for determining if we

have reached an incorrect conclusion from our data [16]. The

conclusion may be incorrect because our data is tainted or

because we arrived at the conclusions using faulty reasoning.

At an abstract level, let’s suppose we arrive at the fol-

lowing conclusion: X caused Y . Now, it may be the case

that there are many other possible causes of Y (e.g., Z); so

we wish to check whether or not our conclusion is valid. To

achieve this, causal analysis takes the following steps:

1. Intervene: We devise an intervention that affects X while

having a minimal effect on everything else.

2. Measure: We change our system with the intervention

and measure the changed system.

3. Confirm: If Y changed as we would expect if X had

caused Y then we have reason to believe that our con-

clusion is valid.

Earlier in the paper we have already seen examples of

such reasoning. For example, we had arrived at the con-

clusion: Changing UNIX environment size causes a change

in start address of the stack which causes a change in O3

speedup.

We were easily able to verify the first “causes” by noting

that when we changed UNIX environment size by b bytes,

the address of stack variables also shifted by b bytes (modulo

appropriate alignment). For the second “causes” we had to

use causal analysis as follows:

1. Intervene: We fixed the starting address of the stack so

that regardless of the UNIX environment size (up to 4096

bytes) the stack always started at the same address.

2. Measure: We varied the UNIX environment size (up to

4096 bytes) and calculated the O3 speedups for each

environment size.

3 See Georges et. al [7] or most statistics texts for a description of this

calculation.

3. Confirm: We confirmed that the UNIX environment size

did not affect O3 speedup, thus giving credibility to our

conclusion.

Using the above analysis, we were able to confirm our

conclusions for all benchmarks except perlbench. For perl-

bench our causal analysis rejected our conclusion and we

had to come up with a different conclusion which we then

confirmed. There are typically many ways of conducting a

causal analysis. For example, we could have picked a dif-

ferent intervention: change the starting address of the stack

while always using the same environment variables. Also,

while causal analysis gives us confidence that our conclu-

sions are correct, it does not guarantee them; this is a fact of

life that all experimental sciences have to contend with.

In contrast to setup randomization, causal analysis is not

an attempt to get “untainted” data; instead it is a way to gain

confidence that the conclusions that we have drawn from our

data are valid even in the presence of measurement bias.

In the context of this paper, the conclusions that we have

been exploring are of the form: “O3 optimizations improve

performance”. To apply causal analysis we may need to

modify the optimizations so that we can determine if the

performance improvement is due to the optimization; and

not due to a lucky interaction between the optimization and

the experimental setup.

7.3 Summary

We have described and demonstrated two approaches: one

for avoiding and one for detecting measurement bias. Our

first approach is to collect data in not one but many (var-

ied) experimental setups and then use statistical techniques

to factor out measurement bias from the data. This approach

actually tries to avoid measurement bias. Our second ap-

proach is to use causal analysis to check the validity of con-

clusions we draw from the data. This approach detects when

measurement bias has led us to an incorrect conclusion.

Neither of these techniques are perfect. For example, even

if we use a large number of experimental setups we may

still not adequately cover the space of possible experimental

setups. This problem, however, is not surprising: natural and

social sciences also routinely deal with measurement bias

using the same techniques we propose and they too find that

occasionally even with the best methodology they end up

with incorrect conclusions.

8. A Call to Action

We have shown that measurement bias poses a severe prob-

lem for computer systems research. While we have also pre-

sented approaches for detecting and avoiding measurement

bias, these techniques are not easy to apply; this section dis-

cusses what the software and hardware communities can do

to make these techniques more easily and widely applicable.
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8.1 Diverse Evaluation Workloads

If we conduct our measurements over diverse workloads and

use statistical methods to draw conclusions from these mea-

surements we will reduce or perhaps even avoid measure-

ment bias in our data. Section 7.1.1 shows that at least the

C programs in the SPEC CPU2006 benchmark suite are not

diverse enough to avoid measurement bias. Efforts, such as

the Dacapo benchmarks [3], go to some length to ensure di-

versity within the suite; we need more efforts like this for

different problem domains and programming languages.

8.2 Identify more ways of randomizing experimental

setup

It is well known that memory layout impacts performance;

this is why we varied the memory layout to generate differ-

ent experimental setups. However, there are other features

of the experimental setup that also cause measurement bias;

indeed Section 9 points out that each problem domain in-

troduces its own sources of measurement bias[18, 4, 1]. The

natural and social sciences, based on long experience, have

identified many sources of measurement bias in their do-

mains; e.g., gender and education are both sources of mea-

surement bias when we are trying to predict the outcome

of a presidential election. We need to go through the same

process and use that knowledge to build tools that automat-

ically generate randomized experimental setups; this way a

systems researcher can start from a good baseline when con-

ducting her experiments.

8.3 More information from the hardware

manufacturers

If we do not know the internal details of a microprocessor, it

can be nearly impossible to (i) fully understand the perfor-

mance of even a micro-kernel running on the microproces-

sor; and (ii) fully exploit the microprocessor to obtain peak

performance. Sun Microsystems has already taken the lead

by releasing all details of one of their microprocessors (the

OpenSparc project); we hope other manufacturers will fol-

low.

8.4 More cooperation from the hardware

Especially for causal analysis it is helpful if we can (i) collect

data from major components of the microprocessor (e.g.,

caches); (ii) enable and disable optional hardware features;

and (iii) map hardware events back to software.

Regarding (i), all modern microprocessors support hard-

ware performance monitors, which allow us to collect data

from some components of the hardware. Unfortunately,

these metrics are often inadequate: for example, the Core 2

literature advertises the LSD as a significant innovation but

fails to include any support for directly collecting data on

the performance of this feature. We hope that in the future

hardware will include metrics for at least all of the major

components of the hardware.

Regarding (ii), some microprocessors allow us to enable

or disable certain features. For example, the Core 2 allows us

to enable and disable some forms of prefetching. However,

there are many features that we cannot control in this way;

for example there is no way to disable the LSD. We hope

that in the future hardware will allow us to disable many

more features.

Regarding (iii), precise event based sampling (PEBS) is

invaluable: it enables us to map certain events to specific

instructions. However, PEBS support is still overly limited;

for example, Table 18.16 of Intel’s Software Developer’s

manual [8] lists only nine events that PEBS supports. We

hope that in the future hardware will allow us to map all

events to specific instructions.

9. Related Work

Prior work has looked at various sources of faulty perfor-

mance analysis.

Korn et al. [12] evaluate the perturbation due to counter

readouts by comparing the values measured on a MIPS

R12000 with results from SimpleScalar’s sim-outorder sim-

ulator and with analytical information based on the structure

of their micro-benchmarks. Their evaluation is based on a

small number of simple micro-benchmarks on a simple pro-

cessor. Maxwell et al. [14] extends this work to three new

platforms, POWER3, IA-64, and Pentium. Moore [15] dis-

cusses accuracy issues when using PAPI for counting events

(PAPI is the infrastructure we use for collecting hardware

metrics). In contrast to these papers which focus on per-

formance counter accuracy using micro-kernels, our paper

studies different sources of faulty performance analysis us-

ing real programs.

Most fields of experimental science use inferential statis-

tics [10] to determine whether a specific factor (e.g. drug

dosage) significantly affects a response variable (e.g. pa-

tient mortality). Recent work in our field strongly highlights

the absence of this practice in our area and advocates for

the use of statistical rigor in software performance evalua-

tion [7, 11].

Tsafrir et al. [18] describe “input shaking”, a technique

for determining the sensitivity of their simulations of paral-

lel systems. Blackburn et al. [4] demonstrate that it is im-

portant to evaluate garbage collectors using many and not

just a single heap size. Alameldeen and Wood[1] introduce

variability in the latency of cache misses in order to alter

thread-scheduling bias introduced by simulators that execute

multi-threaded workloads. These techniques are examples

of additional methods we could use (in addition to link or-

der and environment variables) to generate different experi-

mental setups. Each of these papers present sources of mea-

surement bias that are specific to particular domains (simu-

lations of parallel systems and garbage collected systems re-

spectively); indeed each problem domain may have its own

sources of measurement bias. This underlines our point that
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measurement bias is not something that we can just elimi-

nate: we may be able to eliminate some kinds of bias (e.g.,

by aligning loops in certain ways) but we will never be able

to eliminate all kinds of bias. Thus, the techniques in Sec-

tion 7 are not stop-gap measures to be used until we elimi-

nate this problem; indeed the problem of measurement bias

is here to stay and techniques such as those presented in this

paper will be useful in dealing with it.

10. Conclusions

Would you believe us if we told you: “we can predict a

national election by polling only a small town?” You should

not: a small town probably contains a biased sample of the

national population and thus one cannot draw nationwide

conclusions from it.

Would you believe us if we told you: “we can predict the

benefit of our optimization, O, by evaluating it in one or a

few experimental setups using a handful of benchmarks?”

Again, you should not: we all know that computer systems

are highly sensitive and there is no reason to believe that the

improvement with O is actually due to O; it may be a result

of a biased experimental setup.

This paper demonstrates that measurement bias is signif-

icant, commonplace, and unpredictable. Moreover measure-

ment bias is not something that we can just work around: just

as with natural and social sciences, we have to take measures

to avoid and detect measurement bias.
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