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The one-dimensional dynamic programming 

problem is defined as follows: given a real-valued 

function w(i, /) for integers O <i<j<n and E[0], 
compute 

E[j]= min (D[i]+w(i, 7)} 
O<i<j 

forl<j<n, 

where D[i] is computed from £[i] in constant 

time. The least weight subsequence problem [4] is 
a special case of the problem where D[i] = E[i]. 

The modified edit distance problem [3], which 

arises in molecular biology, geology, and speech 

recognition, can be decomposed into 27 copies of 

the problem. 

Let A be an n Xm matrix. A[{i, j] denotes the 
element in the ith row and the jth column. 
Ali: i’, 7: j’] denotes the submatrix of A that is 
the intersection of rows i, i+1,...,i’ and col- 

umns j, j+1,..., /’. We say that the cost func- 
tion w is concave if it satisfies the quadrangle 
inequality [7] 

w(a,c)+w(b, d)<w(b,c)+w(a, da), 

fora<b<c<d. 

* Work supported in part by NSF Grants CCR-86-05353 and 

CCR-88-14977. 

In the concave one-dimensional dynamic pro- 

gramming problem w is concave as defined above. 
A condition closely related to the quadrangle in- 
equality was introduced by Aggarwal et al. [1]. An 
n Xm matrix A is totally monotone if for all a <b 

and c < d, 

A[a,c]>A[b,c] = Ala,d]>Al[b,da]. 

Let r(j) be the smallest row index such that 
A[r(/j), 7] is the minimum value in column j. 

Then total monotonicity implies 

r(1) <r(2)< --- <r(m). (*) 
That is, the minimum row indices are nondecreas- 

ing. We say that an element A[i,/] is dead if 
i#r(j). A submatrix of A is dead if all of its 
elements are dead. Note that the quadrangle in- 

equality implies total monotonicity, but the con- 
verse is not true. Aggarwal et al. [1] show that the 

row maxima of a totally monotone n X m matrix 
A can be found in O(n + m) time if Al[i, 7] for any 

i, 7 can be computed in constant time. Their al- 
gorithm is easily adapted to find the column 

minima. We will refer to their algorithm as the 

SMAWK algorithm. 

Let Bi, j] = D[i] + wd, 7) for0 <i<j<n.We 

say that B[i, j] is available if D[i}] is known and 
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therefore B[i,j] can be computed in constant 

time. Then the problem is to find the column 

minima in the upper triangular matrix B with the 

restriction that B[i, 7] is available only after the 

column minima for columns 1, 2,...,7 have been 

found. It is easy to see that when w satisfies the 
quadrangle inequality, B also satisfies the 

quadrangle inequality. For the concave problem 

Hirschberg and Larmore [4] and later Galil and 

Giancarlo [3] gave O(” log m) algorithms using 

queues. Wilber [6] proposed an O(n) time al- 

gorithm when D[i] = E[i]. However, his al- 

gorithm does not work if the availability of matrix 

B must be obeyed, which happens when many 

copies of the problem proceed simultaneously (i.e., 

the computation is interleaved among many 
copies) as in the modified edit distance problem 

[3] and the mixed convex and concave cost prob- 

lem [2]. Eppstein [2] extended Wilber’s algorithm 

for interleaved computation. Our algorithm is more 

general than Eppstein’s; it works for any totally 

monotone matrix B (we use only relation (*)), 

whereas Eppstein’s algorithm works only when 

Bli, 7] = D{i] + wG, 7). Our algorithm is also sim- 

pler than both Wilber’s and Eppstein’s. Recently, 

Larmore and Schieber [5] reported another linear- 

time algorithm, which is quite different from ours. 

The algorithm consists of a sequence of itera- 

tions. Fig. 1 shows a typical iteration. We use 
N[J], 1 <j <n, to store interim column minima 

  Fig. 1. Matrix B at a typical iteration. 
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before row r; N[/j]= Bi, /] for some i<r (the 

usage will be clear shortly). At the beginning of 

each iteration the following invariants hold: 
(a) O<r and r<c. 

(b) E[j] for all 1 <j <c have been found. 

(©) Ef j] for j>c is min(N[ J], min,, ,Bli, /). 
Invariant (b) means that D{i] for all O<i<c 

are known, and therefore B[i, 7] for O<i<c and 

c <j <n is available. Initially, r= 0, c= 1, and all 

N[/j] are +0. 

Let p= min(2c —r, n), and let G be the union 

of N[c: p] and B[r:c—1, c: p], N[c: p] as its 

first row and B[r:c-—1, c: p] as the other rows. 

G isa(c—r+1)xX(c—r+1) matrix unless 2c — 

r>n. Let F[j], c<xj<p, denote the column 

minima of G. Since matrix G is totally monotone, 
we use the SMAWK algorithm to find the column 

minima of G. Once F[c: p] are found, we com- 

pute E[j] for j=c, c+1,... as follows. Obvi- 

ously, E[c] = F[c]. For c+1<j <p, assume in- 

ductively that B[c: j;—2,7: p] (B in Fig. 1) is 

dead and B[j—1,/: n] is available. It is trivially 

‘true when j=c+1. By the assumption E[/]= 

(1) If BLj-1y]<Fls], then E[j]= BL — 
1,j], and by relation (1) B[r: j-—2,/j: 7] 

(a, B, y, and the part of G above B in Fig. 

1) and N[j: n] are dead. We start a new 

iteration with c=j+1 and r= j—-1. 

(2) If F[ 7] < Bj — 1, J], then E[j]= Fj]. We 
compare B[j—1, p] with F[ p]. 

(2.1) If B[j-—1l,p])<F[p], Br: j-—2,p+ 

1:n] (a and y in Fig. 1) is dead by 

relation (*). Bic: j-—2,j: p] (8 in 

Fig. 1) is dead by the assumption. 

Thus only F[j+1: p] among B[0: j 

—2,j+1:n] may become column 

minima in the future computation. We 

store F[ 7+1: p] in N[j+1: p] and 

start a new iteration with c=7+ 1 and 

r=j-1., 

(2.2) If Flpl<Blj-Lph BLi-Ls: pl 
(6 in Fig. 1) is dead by relation (*) in 

submatrix B[r: j—1,/: p] (B, 6, and 

the part of G above 8). Since B[ j, 7 + 

1:n] is available from E[/], the as- 

sumption holds at 7+ 1. We go on to 

column j +1.
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procedure concave 1D 

c+; 

r — 0; 

N[L: n] — +00; 
while ¢c <n do 

p — min(2c — r, n); 
use SMAWK to find column minima F{e: p] of G; 

Ele] — Fle}; 
for j++ c+1 to p do 

if Bij - 1,7] < Fj] then 

EY] — BD - 1,3]; 
break 

else 

EU] — FO); 
if B[j —1,p] < F[p] then 

Nj +1: p] — Fly + lp); 
break 

end if 
end if 

end for 
if j < p then 

e+ jt); 

e+ pt]; 
r — max(r, row of F[p]) 

end if 
end while 

end 

Fig. 2. The algorithm for concave 1D dynamic programming. 

If case (2.2) is repeated until 7 = p, we have found 

E[j] for c<j<p. We start a new iteration with 

c=p+1. If the row of F[p] is greater than r, it 

becomes the new r (it may be smaller than r if it 

is the row of N[ p]). Note that the three invariants 

hold at the beginning of new iterations. Figure 2 

shows the algorithm, where the break statement 

causes the innermost enclosing loop to be excited 

immediately. 
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Each iteration takes time O(c—vr). If either 

case (1) or case (2.1) happens, we charge the time 

to rows r,...,c—1 because r is increased by 

(j-1)-r2c—r. If case (2.2) is repeated until 

j =p, there are two cases. If p <n, we charge the 

time to columns c,..., p because c is increased by 

(p+l)-—c2>c—r+1. If p=n, we have finished 

the whole computation, and rows r,...,c —1(<n) 

have not been charged yet; we charge the time to 

the rows. Since c and r never decrease, only 

constant time is charged to each row or column. 

Thus the total time of the algorithm is linear in n. 
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