
Information Processing Letters 33 (1989/90) 309-311

North-Holland

A LINEAR-TIME ALGORITHM FOR CONCAVE ONE-DIMENSIONAL
DYNAMIC PROGRAMMING *

Zvi GALIL

Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA

Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Kunsoo PARK

Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA

Communicated by David Gries

Received 2 May 1989

Revised 1 September 1989

Keywords: Dynamic programming, quadrangle inequality, total monotonicity

The one-dimensional dynamic programming

problem is defined as follows: given a real-valued

function w(i, /) for integers O <i<j<n and E[0],
compute

E[j]= min (D[i]+w(i, 7)}
O<i<j

forl<j<n,

where D[i] is computed from £[i] in constant

time. The least weight subsequence problem [4] is
a special case of the problem where D[i] = E[i].

The modified edit distance problem [3], which

arises in molecular biology, geology, and speech

recognition, can be decomposed into 27 copies of

the problem.

Let A be an n Xm matrix. A[{i, j] denotes the
element in the ith row and the jth column.
Ali: i’, 7: j’] denotes the submatrix of A that is
the intersection of rows i, i+1,...,i’ and col-

umns j, j+1,..., /’. We say that the cost func-
tion w is concave if it satisfies the quadrangle
inequality [7]

w(a,c)+w(b, d)<w(b,c)+w(a, da),

fora<b<c<d.

* Work supported in part by NSF Grants CCR-86-05353 and

CCR-88-14977.

In the concave one-dimensional dynamic pro-

gramming problem w is concave as defined above.
A condition closely related to the quadrangle in-
equality was introduced by Aggarwal et al. [1]. An
n Xm matrix A is totally monotone if for all a <b

and c < d,

A[a,c]>A[b,c] = Ala,d]>Al[b,da].

Let r(j) be the smallest row index such that
A[r(/j), 7] is the minimum value in column j.

Then total monotonicity implies

r(1) <r(2)< --- <r(m). (*)
That is, the minimum row indices are nondecreas-

ing. We say that an element A[i,/] is dead if
i#r(j). A submatrix of A is dead if all of its
elements are dead. Note that the quadrangle in-

equality implies total monotonicity, but the con-
verse is not true. Aggarwal et al. [1] show that the

row maxima of a totally monotone n X m matrix
A can be found in O(n + m) time if Al[i, 7] for any

i, 7 can be computed in constant time. Their al-
gorithm is easily adapted to find the column

minima. We will refer to their algorithm as the

SMAWK algorithm.

Let Bi, j] = D[i] + wd, 7) for0 <i<j<n.We

say that B[i, j] is available if D[i}] is known and

0020-0190 /90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland) 309

Volume 33, Number 6

therefore B[i,j] can be computed in constant

time. Then the problem is to find the column

minima in the upper triangular matrix B with the

restriction that B[i, 7] is available only after the

column minima for columns 1, 2,...,7 have been

found. It is easy to see that when w satisfies the
quadrangle inequality, B also satisfies the

quadrangle inequality. For the concave problem

Hirschberg and Larmore [4] and later Galil and

Giancarlo [3] gave O(” log m) algorithms using

queues. Wilber [6] proposed an O(n) time al-

gorithm when D[i] = E[i]. However, his al-

gorithm does not work if the availability of matrix

B must be obeyed, which happens when many

copies of the problem proceed simultaneously (i.e.,

the computation is interleaved among many
copies) as in the modified edit distance problem

[3] and the mixed convex and concave cost prob-

lem [2]. Eppstein [2] extended Wilber’s algorithm

for interleaved computation. Our algorithm is more

general than Eppstein’s; it works for any totally

monotone matrix B (we use only relation (*)),

whereas Eppstein’s algorithm works only when

Bli, 7] = D{i] + wG, 7). Our algorithm is also sim-

pler than both Wilber’s and Eppstein’s. Recently,

Larmore and Schieber [5] reported another linear-

time algorithm, which is quite different from ours.

The algorithm consists of a sequence of itera-

tions. Fig. 1 shows a typical iteration. We use
N[J], 1 <j <n, to store interim column minima

 Fig. 1. Matrix B at a typical iteration.

310

INFORMATION PROCESSING LETTERS 10 February 1990

before row r; N[/j]= Bi, /] for some i<r (the

usage will be clear shortly). At the beginning of

each iteration the following invariants hold:
(a) O<r and r<c.

(b) E[j] for all 1 <j <c have been found.

(©) Ef j] for j>c is min(N[J], min,, ,Bli, /).
Invariant (b) means that D{i] for all O<i<c

are known, and therefore B[i, 7] for O<i<c and

c <j <n is available. Initially, r= 0, c= 1, and all

N[/j] are +0.

Let p= min(2c —r, n), and let G be the union

of N[c: p] and B[r:c—1, c: p], N[c: p] as its

first row and B[r:c-—1, c: p] as the other rows.

G isa(c—r+1)xX(c—r+1) matrix unless 2c —

r>n. Let F[j], c<xj<p, denote the column

minima of G. Since matrix G is totally monotone,
we use the SMAWK algorithm to find the column

minima of G. Once F[c: p] are found, we com-

pute E[j] for j=c, c+1,... as follows. Obvi-

ously, E[c] = F[c]. For c+1<j <p, assume in-

ductively that B[c: j;—2,7: p] (B in Fig. 1) is

dead and B[j—1,/: n] is available. It is trivially

‘true when j=c+1. By the assumption E[/]=

(1) If BLj-1y]<Fls], then E[j]= BL —
1,j], and by relation (1) B[r: j-—2,/j: 7]

(a, B, y, and the part of G above B in Fig.

1) and N[j: n] are dead. We start a new

iteration with c=j+1 and r= j—-1.

(2) If F[7] < Bj — 1, J], then E[j]= Fj]. We
compare B[j—1, p] with F[p].

(2.1) If B[j-—1l,p])<F[p], Br: j-—2,p+

1:n] (a and y in Fig. 1) is dead by

relation (*). Bic: j-—2,j: p] (8 in

Fig. 1) is dead by the assumption.

Thus only F[j+1: p] among B[0: j

—2,j+1:n] may become column

minima in the future computation. We

store F[7+1: p] in N[j+1: p] and

start a new iteration with c=7+ 1 and

r=j-1.,

(2.2) If Flpl<Blj-Lph BLi-Ls: pl
(6 in Fig. 1) is dead by relation (*) in

submatrix B[r: j—1,/: p] (B, 6, and

the part of G above 8). Since B[j, 7 +

1:n] is available from E[/], the as-

sumption holds at 7+ 1. We go on to

column j +1.

Volume 33, Number 6

procedure concave 1D

c+;

r — 0;

N[L: n] — +00;
while ¢c <n do

p — min(2c — r, n);
use SMAWK to find column minima F{e: p] of G;

Ele] — Fle};
for j++ c+1 to p do

if Bij - 1,7] < Fj] then

EY] — BD - 1,3];
break

else

EU] — FO);
if B[j —1,p] < F[p] then

Nj +1: p] — Fly + lp);
break

end if
end if

end for
if j < p then

e+ jt);

e+ pt];
r — max(r, row of F[p])

end if
end while

end

Fig. 2. The algorithm for concave 1D dynamic programming.

If case (2.2) is repeated until 7 = p, we have found

E[j] for c<j<p. We start a new iteration with

c=p+1. If the row of F[p] is greater than r, it

becomes the new r (it may be smaller than r if it

is the row of N[p]). Note that the three invariants

hold at the beginning of new iterations. Figure 2

shows the algorithm, where the break statement

causes the innermost enclosing loop to be excited

immediately.

INFORMATION PROCESSING LETTERS 10 February 1990

Each iteration takes time O(c—vr). If either

case (1) or case (2.1) happens, we charge the time

to rows r,...,c—1 because r is increased by

(j-1)-r2c—r. If case (2.2) is repeated until

j =p, there are two cases. If p <n, we charge the

time to columns c,..., p because c is increased by

(p+l)-—c2>c—r+1. If p=n, we have finished

the whole computation, and rows r,...,c —1(<n)

have not been charged yet; we charge the time to

the rows. Since c and r never decrease, only

constant time is charged to each row or column.

Thus the total time of the algorithm is linear in n.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R.

Wilber, Geometric applications of a matmx-searching al-

gorithm, Algorithmica 2 (1987) 195-208.

‘{2] D. Eppstein, Sequence comparison with mixed convex and

concave costs, J. Algorithms, to appear.

{3] Z. Galil and R. Giancarlo, Speeding up dynamic program-

ming with applications to molecular biology, Theoret. Com-

put. Sci. 64 (1989) 107-118.

[4] D.S. Hirschberg and L.L. Larmore, The least weight subse-

quence problem, SIAM J. Comput. 16 (4) (1987) 628-638.

[5] L.L. Larmore and B. Schieber, On-line dynamic program-

ming with applications to the prediction of RNA secondary

structure, to be presented at Jst Ann. ACM-SIAM Symp.

on Discrete Algorithms.

(6] R. Wilber, The concave least-weight subsequence problem

revisited, J. Algorithms 9 (1988) 418-425.

[7] F.F. Yao, Speed-up in dynamic programming, SIAM J.

Algebraic Discrete Methods 3 (1982) 532-540.

311

