A LINEAR-TIME ALGORITHM FOR CONCAVE ONE-DIMENSIONAL DYNAMIC PROGRAMMING *

Zvi GALIL
Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Kunsoo PARK
Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA
Communicated by David Gries
Received 2 May 1989
Revised 1 September 1989

Keywords: Dynamic programming, quadrangle inequality, total monotonicity

The one-dimensional dynamic programming problem is defined as follows: given a real-valued function $w(i, j)$ for integers $0 \leqslant i \leqslant j \leqslant n$ and $E[0]$, compute
$E[j]=\min _{0 \leqslant i<j}\{D[i]+w(i, j)\} \quad$ for $1 \leqslant j \leqslant n$,
where $D[i]$ is computed from $E[i]$ in constant time. The least weight subsequence problem [4] is a special case of the problem where $D[i]=E[i]$. The modified edit distance problem [3], which arises in molecular biology, geology, and speech recognition, can be decomposed into $2 n$ copies of the problem.

Let A be an $n \times m$ matrix. $A[i, j]$ denotes the element in the i th row and the j th column. $A\left[i: i^{\prime}, j: j^{\prime}\right]$ denotes the submatrix of A that is the intersection of rows $i, i+1, \ldots, i^{\prime}$ and columns $j, j+1, \ldots, j^{\prime}$. We say that the cost function w is concave if it satisfies the quadrangle inequality [7]
$w(a, c)+w(b, d) \leqslant w(b, c)+w(a, d)$,
for $a \leqslant b \leqslant c \leqslant d$.

[^0]In the concave one-dimensional dynamic programming problem w is concave as defined above. A condition closely related to the quadrangle inequality was introduced by Aggarwal et al. [1]. An $n \times m$ matrix A is totally monotone if for all $a<b$ and $c<d$,
$A[a, c]>A[b, c] \Rightarrow A[a, d]>A[b, d]$.
Let $r(j)$ be the smallest row index such that $A[r(j), j]$ is the minimum value in column j. Then total monotonicity implies

$$
\begin{equation*}
r(1) \leqslant r(2) \leqslant \cdots \leqslant r(m) \tag{*}
\end{equation*}
$$

That is, the minimum row indices are nondecreasing. We say that an element $A[i, j]$ is dead if $i \neq r(j)$. A submatrix of A is dead if all of its elements are dead. Note that the quadrangle inequality implies total monotonicity, but the converse is not true. Aggarwal et al. [1] show that the row maxima of a totally monotone $n \times m$ matrix A can be found in $\mathrm{O}(n+m)$ time if $A[i, j]$ for any i, j can be computed in constant time. Their algorithm is easily adapted to find the column minima. We will refer to their algorithm as the SMAWK algorithm.

Let $B[i, j]=D[i]+w(i, j)$ for $0 \leqslant i<j \leqslant n$. We say that $B[i, j]$ is available if $D[i]$ is known and
therefore $B[i, j]$ can be computed in constant time. Then the problem is to find the column minima in the upper triangular matrix B with the restriction that $B[i, j]$ is available only after the column minima for columns $1,2, \ldots, i$ have been found. It is easy to see that when w satisfies the quadrangle inequality, B also satisfies the quadrangle inequality. For the concave problem Hirschberg and Larmore [4] and later Galil and Giancarlo [3] gave $\mathrm{O}(n \log n)$ algorithms using queues. Wilber [6] proposed an $\mathrm{O}(n)$ time algorithm when $D[i]=E[i]$. However, his algorithm does not work if the availability of matrix B must be obeyed, which happens when many copies of the problem proceed simultaneously (i.e., the computation is interleaved among many copies) as in the modified edit distance problem [3] and the mixed convex and concave cost problem [2]. Eppstein [2] extended Wilber's algorithm for interleaved computation. Our algorithm is more general than Eppstein's; it works for any totally monotone matrix B (we use only relation (*)), whereas Eppstein's algorithm works only when $B[i, j]=D[i]+w(i, j)$. Our algorithm is also simpler than both Wilber's and Eppstein's. Recently, Larmore and Schieber [5] reported another lineartime algorithm, which is quite different from ours.

The algorithm consists of a sequence of iterations. Fig. 1 shows a typical iteration. We use $N[j], 1 \leqslant j \leqslant n$, to store interim column minima

Fig. 1. Matrix B at a typical iteration.
before row $r ; N[j]=B[i, j]$ for some $i<r$ (the usage will be clear shortly). At the beginning of each iteration the following invariants hold:
(a) $0 \leqslant r$ and $r<c$.
(b) $E[j]$ for all $1 \leqslant j<c$ have been found.
(c) $E[j]$ for $j \geqslant c$ is $\min \left(N[j], \min _{i \geqslant r} B[i, j]\right)$.

Invariant (b) means that $D[i]$ for all $0 \leqslant i<c$ are known, and therefore $B[i, j]$ for $0 \leqslant i<c$ and $c \leqslant j \leqslant n$ is available. Initially, $r=0, c=1$, and all $N[j]$ are $+\infty$.

Let $p=\min (2 c-r, n)$, and let G be the union of $N[c: p]$ and $B[r: c-1, c: p], N[c: p]$ as its first row and $B[r: c-1, c: p]$ as the other rows. G is a $(c-r+1) \times(c-r+1)$ matrix unless $2 c-$ $r>n$. Let $F[j], c \leqslant j \leqslant p$, denote the column minima of G. Since matrix G is totally monotone, we use the SMAWK algorithm to find the column minima of G. Once $F[c: p]$ are found, we compute $E[j]$ for $j=c, c+1, \ldots$ as follows. Obviously, $E[c]=F[c]$. For $c+1 \leqslant j \leqslant p$, assume inductively that $B[c: j-2, j: p]$ (β in Fig. 1) is dead and $B[j-1, j: n]$ is available. It is trivially true when $j=c+1$. By the assumption $E[j]=$ $\min (F[j], B[j-1, j])$.
(1) If $B[j-1, j]<F[j]$, then $E[j]=B[j-$ $1, j$], and by relation (1) $B[r: j-2, j: n]$ (α, β, γ, and the part of G above β in Fig. 1) and $N[j: n]$ are dead. We start a new iteration with $c=j+1$ and $r=j-1$.
(2) If $F[j] \leqslant B[j-1, j]$, then $E[j]=F[j]$. We compare $B[j-1, p]$ with $F[p]$.
(2.1) If $B[j-1, p]<F[p], B[r: j-2, p+$ $1: n]$ (α and γ in Fig. 1) is dead by relation (*). $B[c: j-2, j: p]$ (β in Fig. 1) is dead by the assumption. Thus only $F[j+1: p]$ among $B[0: j$ $-2, j+1: n]$ may become column minima in the future computation. We store $\mathrm{F}[j+1: p]$ in $N[j+1: p]$ and start a new iteration with $c=j+1$ and $r=j-1$.
(2.2) If $F[p] \leqslant B[j-1, p], \quad B[j-1, j: p]$ (δ in Fig. 1) is dead by relation (*) in submatrix $B[r: j-1, j: p](\beta, \delta$, and the part of G above β). Since $B[j, j+$ $1: n$] is available from $E[j$, the assumption holds at $j+1$. We go on to column $j+1$.

```
procedure concave \(1 D\)
    \(c \leftarrow 1 ;\)
    \(r \leftarrow 0 ;\)
    \(N[1: n] \leftarrow+\infty\);
    while \(c \leq n\) do
        \(p \leftarrow \min (2 c-r, n) ;\)
        use SMAWK to find column minima \(F[c: p]\) of \(G\);
        \(E[c] \leftarrow F[c] ;\)
        for \(j \leftarrow c+1\) to \(p\) do
            if \(B[j-1, j]<F[j]\) then
                    \(E[j] \leftarrow B[j-1, j] ;\)
                break
            else
                \(E[j] \leftarrow F[j] ;\)
                if \(B[j-1, p]<F[p]\) then
                \(N[j+1: p] \leftarrow F[j+1: p] ;\)
                    break
                    end if
            end if
        end for
        if \(j \leq p\) then
            \(c \leftarrow j+1 ;\)
            \(r \leftarrow j-1\)
        else
            \(c \leftarrow p+1 ;\)
            \(r \leftarrow \max (r\), row of \(F[p])\)
        end if
    end while
end
```

Fig. 2. The algorithm for concave $1 D$ dynamic programming.

If case (2.2) is repeated until $j=p$, we have found $E[j]$ for $c \leqslant j \leqslant p$. We start a new iteration with $c=p+1$. If the row of $F[p]$ is greater than r, it becomes the new r (it may be smaller than r if it is the row of $N[p])$. Note that the three invariants hold at the beginning of new iterations. Figure 2 shows the algorithm, where the break statement causes the innermost enclosing loop to be excited immediately.

Each iteration takes time $\mathrm{O}(c-r)$. If either case (1) or case (2.1) happens, we charge the time to rows $r, \ldots, c-1$ because r is increased by $(j-1)-r \geqslant c-r$. If case (2.2) is repeated until $j=p$, there are two cases. If $p<n$, we charge the time to columns c, \ldots, p because c is increased by $(p+1)-c \geqslant c-r+1$. If $p=n$, we have finished the whole computation, and rows $r, \ldots, c-1(<n)$ have not been charged yet; we charge the time to the rows. Since c and r never decrease, only constant time is charged to each row or column. Thus the total time of the algorithm is linear in n.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R. Wilber, Geometric applications of a matrix-searching algorithm, Algorithmica 2 (1987) 195-208.
[2] D. Eppstein, Sequence comparison with mixed convex and concave costs, J. Algorithms, to appear.
[3] Z. Galil and R. Giancarlo, Speeding up dynamic programming with applications to molecular biology, Theoret. Comput. Sci. 64 (1989) 107-118.
[4] D.S. Hirschberg and L.L. Larmore, The least weight subsequence problem, SIAM J. Comput. 16 (4) (1987) 628-638.
[5] L.L. Larmore and B. Schieber, On-line dynamic programming with applications to the prediction of RNA secondary structure, to be presented at Ist Ann. ACM-SIAM Symp. on Discrete Algorithms.
[6] R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms 9 (1988) 418-425.
[7] F.F. Yao, Speed-up in dynamic programming, SIAM J. Algebraic Discrete Methods 3 (1982) 532-540.

[^0]: * Work supported in part by NSF Grants CCR-86-05353 and CCR-88-14977.

