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A NEW VERSION OF THE EUCLIDEAN ALGORITHM 
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Introduction. Given a set of positive integers (or elements of a Euclidean 
ring), a,, a2, * , an, the Euclidean algorithm provides a method for computing 
the greatest common divisor, d, of these numbers. If the steps performed during 
the operation of the algorithm are traced back, it is possible to deduce elements 
xl, x2, , xn such that 

d-aix, + a2X2 + ***+ anxn. 

In nearly all applications, e.g., for the Chinese problem of remainders (see 
[1]), for finding the inverse of an element of a Galois field, etc., it is desired to 
find the elements xi. Although the process of untangling the steps of the algo- 
rithm to find the xi is straightforward, anyone who has ever tried it will appreci- 
ate the difficulty of deriving the necessary formulas and carrying them out with- 
out error. This paper sets forth an algorithm which, although equivalent to 
the Euclidean, is much easier to visualize, is easily programmed either on 
paper or on a computer, and, in addition, produces the x's. 

The Algorithm. We make use of the trick, well-known to the computing 
trade, of carrying along a matrix to keep track of the operations which have 
been performed. To prepare for the algorithm we first form an n by n +1 matrix 
whose first column consists of the positive integers a,, a2, . . ., an and the rest 
of which is the identity matrix, as follows: 

a, 1 0 0 ** . O 

a2 0 1 0 * . . 0 

a3 0 0 1 *.* * O 

a 0 0 * . . . 

The algorithm consists of performing elementary row operations on this matrix 
so as to reduce all but one of the elements in the first column to zero. If we 
refer to the first element of a row (at any stage of the process) as the leader of 
that row, the algorithm may be formalized as follows: 

Step 1. Select the row with the smallest nonzero leader and call it the "oper- 
ator. " 
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Step 2. Select any other row with a nonzero leader and call it the "operand." 
(When no operand can be found the process is completed.) 

Step 3. Divide the leader of the operator into the leader of the operand, ignor- 
ing the remainder. Denote the quotient by q. 

Step 4. Subtract q times the operator from the operand, recording the result 
as a new row and striking out the operand. 

Step 5. Return to step 1. 

When the process is completed (see step 2), the one remaining row whose 
leader is not zero will be 

d, X1, X2, X3y . . , 

where 

d=aix, + a2X2 + ***+ anx 

We now verify the algorithm. That the process terminates is easily seen by 
noting that every time step 4 is performed, a column leader decreases, but never 
becomes negative. Hence the sum of the column leaders is a strictly decreasing 
positive integer. Since it cannot decrease more than Eaj times, the process must 
terminate. 

We next note that elementary row operations (such as step 4) preserve the 
greatest common divisor of the leaders (or of any column); that is, 
g.c.d.(b1, b2, b * ,) = g. c. d.(b,+ abj, b2, b3, * * * bn) for any integer a and 
any j <n different from 1. When the last step is reached all the leaders are zero 
except that of the previous operand and that number must be the g.c.d. of the 
original set of leaders. 

If we denote the matrix by (a, I) where a is a column vector consisting of 
the ai, and I is the identity matrix, then since each elementary operation (in- 
cluding permutation of rows) is equivalent to multiplying by a nonsingular 
matrix, Mi, we have 

Final matrix = . . M3M2M1(a, I) 
= (Ma, M), 

where M denotes the product of the matrices Mi. Thus the last n columns of the 
final matrix consist of the matrix M, and if the nonzero leader d occurs in say 
the jth row, and we let mj be the jth row of M, then the above equation implies 
that 

d = mja, 

which was our contention. This completes the proof that the algorithm works. 
It is also useful to remember that a row of the matrix, at any stage of the 
algorithm, represents a linear equation relating the leader of that row to a 
linear combination of the original a's. 
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The following remarks, though mostly obvious, may help clarify what is going 
on, and make it evident that in the first column we are simply executing the 
Euclidean algorithm. 

a. In step 1 the operator will always be the new row adjoined during the 
previous pass, unless its leader was zero. 

b. In step 2, it will usually be most convenient to select the previous oper- 
ator as the new operand. 

c. In step 4, the leader of the new row will always be the remainder result- 
ing from the division in step 3. 

d. The process will still work for any selection of operand in step 1, pro- 
vided only that its leader is not zero and that there is a row available with a 
larger leader. (Sometimes the work can be shortened by exercising judgment 
here). 

e. In step 4, although the quotient q is the optimum multiplier to use and 
guarantees convergence, a different choice of multiplier does not cause an error, 
but perhaps lengthens the process. 

An Example. We illustrate with n=3, a1=99, a2= 77, a3-63, and of course, 
d= 1. In the following chart we have numbered the rows chronologically and 
show, for expository purposes, the ordinal numbers of the rows used to compute 
each new row. Instead of striking out old operands we have written x's in the 
column marked "validity." 

Row Operator Operand q Validity 
I x 99 1 0 0 
2 x 77 0 1 0 
3 x 63 0 0 1 
4 3 2 1 x 14 0 1 -1 
5 4 3 4 x 7 0 -4 5 
6 5 4 2 0 0 9 -11 
7 5 1 14 1 1 56 -70 
8 7 5 7 0 -7 -396 495 

Row 7 is to be interpreted to mean 

1 = 1 X 99 + 56 X 77 - 70 X 63, 

as indeed it is. 

Application to the Problem of Chinese Remainders. Given the residues 
mln, Mn2, *, in of a number, i, modulo a number of distinct primes, pi, P2, 

pn, respectively, it is required to find m. If we take ai =pX lIlnpj and solve 
for the xi as before, then d = 1 and we have 

=aix, + a2x2 + * * * + anXn. 

Multiplying this equation by i and noting that aim -aimi (modulo Hlpj), we ob- 
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tain 

i- aiximi + a2x2m2 + * + acxrnnn (modulo HIpj). 

In this case the value of xi need only be known modulo pi and this fact may be 
used throughout the algorithm by reducing all numbers in a given column 
modulo the appropriate prime. When this is done, an additional check on the 
calculations is provided in that any row with a zero leader must consist entirely 
of zeroes. 

The example in the last section illustrates the Chinese problem of remainders 
when pi=7, P2=9, p3s11. The result 

1 99 + 56 X 77 - 70 X 63 

implies that 

1 99 + 2 X 77 + 7 X 63 (modulo 693) 

or 

m 99m1 + 154n2 + 441m3 (modulo 693). 

Now if we wished to know the smallest number m whose remainders modulo 7, 
9, and 11 are, say, 6, 2, and 5, respectively, we simply substitute in the above 
formula: 

m = 99 X 6 + 154 X 2 + 441 X 5 = 3107 = 335 (modulo 693). 

Application to Polynomial Rings. The algorithm works equally well for any 
Euclidean ring provided we interpret "smaller" and "larger" in terms of the 
ring's norm. Thus for polynomials over a field we would rephrase step 1 to 
read "Select the row with the leader of lowest degree and call it the operator." 
In addition, due to the freedom in the choice of a multiplier for step 4 (as noted 
in remark e), we can incorporate the division algorithm into our process, simply 
by replacing step 3 by "Divide the leading term of the leader of the operator into 
the leading term of the leader of the operand, calling the result q." Thus q will 
always be a monomial. If we represent a polynomial by the vector consisting 
of its coefficients, the algorithm goes very nicely, particularly if the coefficients 
are in GF (2), since step 4 will consist of merely shifting and adding. 

The reader is invited to apply the algorithm to the following problem: Find 
the inverse of the polynomial x3+x+1 modulo x5+x2+1, where the coefficients 
are taken modulo 2. Note that if these polynomials are relatively prime, the 
algorithm yields polynomials p(x) and q(x) such that p(x)(x3 + x + 1) 
+q(x)(x5+x2+1) = 1. Reading this modulo x5+x2+1 yields the interpretation 

p(x) = (x3 + x + 1)-1 modulo x5 + X2 + 1. 
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