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While hypothesis testing is a highly formalized activity, hypothesis gen- 
eration remains largely informal. We propose a systematic procedure to gener- 
ate novel hypotheses about human behavior, which uses the capacity of machine 
learning algorithms to notice patterns people might not. We illustrate the proce- 
dure with a concrete application: judge decisions about whom to jail. We begin 

with a striking fact: the defendant’s face alone matters greatly for the judge’s jail- 
ing decision. In fact, an algorithm given only the pixels in the defendant’s mug 
shot accounts for up to half of the predictable variation. We develop a procedure 
that allows human subjects to interact with this black-box algorithm to produce 
hypotheses about what in the face influences judge decisions. The procedure gen- 
erates hypotheses that are both interpretable and novel: they are not explained 
by demographics (e.g., race) or existing psychology research, nor are they already 
known (even if tacitly) to people or experts. Though these results are specific, our 
procedure is general. It provides a way to produce novel, interpretable hypotheses 
from any high-dimensional data set (e.g., cell phones, satellites, online behavior, 
news headlines, corporate filings, and high-frequency time series). A central tenet 
of our article is that hypothesis generation is a valuable activity, and we hope this 
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encourages future work in this largely “prescientific” stage of science. JEL Codes: 
B4, C1. 

I. INTRODUCTION 

Science is curiously asymmetric. New ideas are meticulously 

tested using data, statistics, and formal models. Yet those ideas 
originate in a notably less meticulous process involving intuition, 
inspiration, and creativity. The asymmetry between how ideas are 

generated versus tested is noteworthy because idea generation 

is also, at its core, an empirical activity. Creativity begins with 

“data” (albeit data stored in the mind), which are then “analyzed”
(through a purely psychological process of pattern recognition). 
What feels like inspiration is actually the output of a data analy- 
sis run by the human brain. Despite this, idea generation largely 

happens off stage, something that typically happens before “ac- 
tual science” begins. 1 Things are likely this way because there 

is no obvious alternative. The creative process is so human and 

idiosyncratic that it would seem to resist formalism. 
That may be about to change because of two developments. 

First, human cognition is no longer the only way to notice pat- 
terns in the world. Machine learning algorithms can also find 

patterns, including patterns people might not notice themselves. 
These algorithms can work not just with structured, tabular data 

but also with the kinds of inputs that traditionally could only be 

processed by the mind, like images or text. Second, data on hu- 
man behavior is exploding: second-by-second price and volume 

data in asset markets, high-frequency cellphone data on loca- 
tion and usage, CCTV camera and police bodycam footage, news 
stories, children’s books, the entire text of corporate filings, and 

so on. The kind of information researchers once relied on for 

1. The question of hypothesis generation has been a vexing one in philosophy, 
as it appears to follow a process distinct from deduction and has been sometimes 
called “abduction” (see Schickore 2018 for an overview). A fascinating economic ex- 
ploration of this topic can be found in Heckman and Singer (2017) , which outlines 
a strategy for how economists should proceed in the face of surprising empirical 
results. Finally, there is a small but growing literature that uses machine learn- 
ing in science. In the next section we discuss how our approach is similar in some 
ways and different in others. 
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MACHINE LEARNING AS A TOOL FOR HYPOTHESIS GENERATION 753

inspiration is now machine readable: what was once solely mental 
data is increasingly becoming actual data. 2 

We suggest that these changes can be leveraged to ex- 
pand how hypotheses are generated. Currently, researchers do of 
course look at data to generate hypotheses, as in exploratory data 

analysis, but this depends on the idiosyncratic creativity of inves- 
tigators who must decide what statistics to calculate. In contrast, 
we suggest capitalizing on the capacity of machine learning al- 
gorithms to automatically detect patterns, especially ones people 

might never have considered. A key challenge is that we require 

hypotheses that are interpretable to people. One important goal 
of science is to generalize knowledge to new contexts. Predictive 

patterns in a single data set alone are rarely useful; they become 

insightful when they can be generalized. Currently, that general- 
ization is done by people, and people can only generalize things 
they understand. The predictors produced by machine learning 

algorithms are, however, notoriously opaque—hard-to-decipher 
“black boxes.” We propose a procedure that integrates these al- 
gorithms into a pipeline that results in human-interpretable hy- 
potheses that are both novel and testable. 

While our procedure is broadly applicable, we illustrate it in 

a concrete application: judicial decision making. Specifically we 

study pretrial decisions about which defendants are jailed versus 
set free awaiting trial, a decision that by law is supposed to hinge 

on a prediction of the defendant’s risk (Dobbie and Yang 2021 ). 3 

This is also a substantively interesting application in its own 

right because of the high stakes involved and mounting evidence 

that judges make these decisions less than perfectly (Kleinberg 

et al. 2018 ; Rambachan et al. 2021 ; Angelova, Dobbie, and Yang 

2023 ). 
We begin with a striking fact. When we build a deep learn- 

ing model of the judge—one that predicts whether the judge 

will detain a given defendant—a single factor emerges as hav- 
ing large explanatory power: the defendant’s face. A predictor 
that uses only the pixels in the defendant’s mug shot explains 
from one-quarter to nearly one-half of the predictable variation in 

2. See Einav and Levin (2014) , Varian (2014) , Athey (2017) , Mullainathan 

and Spiess (2017) , Gentzkow, Kelly, and Taddy (2019) , and Adukia et al. (2023) on 

how these changes can affect economics. 
3. In practice, there are a number of additional nuances, as discussed in 

Section III.A and Online Appendix A.A. 
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detention. 4 Defendants whose mug shots fall in the bottom quar- 
tile of predicted detention are 20.4 percentage points more likely 

to be jailed than those in the top quartile. By comparison, the 

difference in detention rates between those arrested for violent 
versus nonviolent crimes is 4.8 percentage points. Notice what 
this finding is and is not. We are not claiming the mug shot pre- 
dicts defendant behavior; that would be the long-discredited field 

of phrenology (Schlag 1997 ). We instead claim the mug shot pre- 
dicts judge behavior: how the defendant looks correlates strongly 

with whether the judge chooses to jail them. 5 

Has the algorithm found something new in the pixels of the 

mug shot or simply rediscovered something long known or intu- 
itively understood? After all, psychologists have been studying 

people’s reactions to faces for at least 100 years (Todorov et al. 
2015 ; Todorov and Oh 2021 ), while economists have shown that 
judges are influenced by factors (like race) that can be seen from 

someone’s face (Arnold, Dobbie, and Yang 2018 ; Arnold, Dobbie, 
and Hull 2020 ). When we control for age, gender, race, skin color, 
and even the facial features suggested by previous psychology re- 
search (dominance, trustworthiness, attractiveness, and compe- 
tence), none of these factors (individually or jointly) meaningfully 

diminishes the algorithm’s predictive power (see Figure I , Panel 
A). It is perhaps worth noting that the algorithm on its own does 
rediscover some of the signal from these features: in fact, collec- 
tively these known features explain 22 . 3% of the variation in pre- 
dicted detention (see Figure I , Panel B). The key point is that the 

algorithm has discovered a great deal more as well. 
Perhaps we should control for something else? Figuring 

out that “something else” is itself a form of hypothesis gener- 
ation. To avoid a possibly endless—and misleading—process of 

4. This is calculated for some of the most commonly used measures of pre- 
dictive accuracy, area under the curve (AUC) and R2 , recognizing that different 
measures could yield somewhat different shares of variation explained. We em- 
phasize the word predictable here: past work has shown that judges are “noisy”
and decisions are hard to predict (Kahneman, Sibony, and Sunstein 2022 ). As a 
consequence, a predictive model of the judge can do better than the judge them- 
selves (Kleinberg et al. 2018 ). 

5. In Section IV.B , we examine whether the mug shot’s predictive power can 

be explained by underlying risk differences. There, we tentatively conclude that 
the predictive power of the face likely reflects judicial error, but that working 
assumption is not essential to either our results or the ultimate goal of the article: 
uncovering hypotheses for later careful testing. 
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FIGURE I 

( Continued ) Panel A summarizes the explanatory power of a regression model 
in explaining judge detention decisions, controlling for the different explanatory 
variables indicated at left (shaded tiles), either on their own (dark circles) or to- 
gether with the algorithmic prediction of the judge decisions (triangles). Each row 

represents a different regression specification. By “other facial features,” we mean 

variables that previous psychology research suggests matter for how faces influ- 
ence people’s reactions to others (dominance, trustworthiness, competence, and 
attractiveness). Ninety-five percent confidence intervals around our R2 estimates 
come from drawing 10,000 bootstrap samples from the validation data set. Panel 
B shows the relationship between the different explanatory variables as indicated 
at left by the shaded tiles with the algorithmic prediction itself as the outcome 
variable in the regressions. Panel C examines the correlation with judge decisions 
of the two novel hypotheses generated by our procedure about what facial features 
affect judge detention decisions: well-groomed and heavy-faced. 

generating other controls, we take a different approach. We show 

mug shots to subjects and ask them to guess whom the judge will 
detain and incentivize them for accuracy. These guesses summa- 
rize the facial features people readily (if implicitly) believe influ- 
ence jailing. Although subjects are modestly good at this task, the 

algorithm is much better. It remains highly predictive even af- 
ter controlling for these guesses. The algorithm seems to have 

found something novel beyond what scientists have previously 

hypothesized and beyond whatever patterns people can even rec- 
ognize in data (whether or not they can articulate them). 

What, then, are the novel facial features the algorithm has 
discovered? If we are unable to answer that question, we will 
have simply replaced one black box (the judge’s mind) with an- 
other (an algorithmic model of the judge’s mind). We propose a 

solution whereby the algorithm can communicate what it “sees.”
Specifically, our procedure begins with a mug shot and “morphs” it 
to create a mug shot that maximally increases (or decreases) the 

algorithm’s predicted detention probability. The result is pairs of 
synthetic mug shots that can be examined to understand and ar- 
ticulate what differs within the pairs. The algorithm discovers, 
and people name that discovery. In principle we could have just 
shown subjects actual mug shots with higher versus lower pre- 
dicted detention odds. But faces are so rich that between any pair 
of actual mug shots, many things will happen to be different and 

most will be unrelated to detention (akin to the curse of dimen- 
sionality). Simply looking at pairs of actual faces can, as a result, 
lead to many spurious observations. Morphing creates counterfac- 
tual synthetic images that are as similar as possible except with 
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respect to detention odds, to minimize extraneous differences and 

help focus on what truly matters for judge detention decisions. 
Importantly, we do not generate hypotheses by looking at the 

morphs ourselves; instead, they are shown to independent study 

subjects (MTurk or Prolific workers) in an experimental design. 
Specifically, we showed pairs of morphed images and asked par- 
ticipants to guess which image the algorithm predicts to have 

higher detention risk. Subjects were given both incentives and 

feedback, so they had motivation and opportunity to learn the 

underlying patterns. While subjects initially guess the judge’s 
decision correctly from these morphed mug shots at about the 

same rate as they do when looking at “raw data,” that is, actual 
mug shots (modestly above the 50% random guessing mark), they 

quickly learn from these morphed images what the algorithm is 
seeing and reach an accuracy of nearly 70% . At the end, partic- 
ipants are asked to put words to the differences they see across 
images in each pair, that is, to name what they think are the key 

facial features the algorithm is relying on to predict judge deci- 
sions. Comfortingly, there is substantial agreement on what sub- 
jects see: a sizable share of subjects all name the same feature. 
To verify whether the feature they identify is used by the algo- 
rithm, a separate sample of subjects independently coded mug 

shots for this new feature. We show that the new feature is in- 
deed correlated with the algorithm’s predictions. What subjects 
think they’re seeing is indeed what the algorithm is also “seeing.”

Having discovered a single feature, we can iterate the 

procedure—the first feature explains only a fraction of what the 

algorithm has captured, suggesting there are many other factors 
to be discovered. We again produce morphs, but this time hold the 

first feature constant: that is, we orthogonalize so that the pairs of 
morphs do not differ on the first feature. When these new morphs 
are shown to subjects, they consistently name a second feature, 
which again correlates with the algorithm’s prediction. Both fea- 
tures are quite important. They explain a far larger share of what 
the algorithm sees than all the other variables (including race 

and skin color) besides gender. These results establish our main 

goals: show that the procedure produces meaningful communica- 
tion, and that it can be iterated. 

What are the two discovered features? The first can be 

called “well-groomed” (e.g., tidy, clean, groomed, versus unkept, 
disheveled, sloppy look), and the second can be called “heavy- 
faced” (e.g., wide facial shape, puffier face, wider face, rounder 
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face, heavier). These features are not just predictive of what the 

algorithm sees, but also of what judges actually do ( Figure I , 
Panel C). We find that both well-groomed and heavy-faced de- 
fendants are more likely to be released, even controlling for de- 
mographic features and known facial features from psychology. 
Detention rates of defendants in the top and bottom quartile of 
well-groomedness differ by 5.5 percentage points ( 24% of the base 

rate), while the top versus bottom quartile difference in heavy- 
facedness is 7 percentage points (about 30% of the base rate). 
Both differences are larger than the 4.8 percentage points deten- 
tion rate difference between those arrested for violent versus non- 
violent crimes. Not only are these magnitudes substantial, these 

hypotheses are novel even to practitioners who work in the crim- 
inal justice system (in a public defender’s office and a legal aid 

society). 
Establishing whether these hypotheses are truly causally 

related to judge decisions is obviously beyond the scope of the 

present article. But we nonetheless present a few additional find- 
ings that are at least suggestive. These novel features do not ap- 
pear to be simply proxies for factors like substance abuse, men- 
tal health, or socioeconomic status. Moreover, we carried out a 

lab experiment in which subjects are asked to make hypothetical 
pretrial release decisions as if they were a judge. They are shown 

information about criminal records (current charge, prior arrests) 
along with mug shots that are randomly morphed in the direction 

of higher or lower values of well-groomed (or heavy-faced). Sub- 
jects tend to detain those with higher-risk structured variables 
(criminal records), all else equal, suggesting they are taking the 

task seriously. These same subjects, though, are also more likely 

to detain defendants who are less heavy-faced or well-groomed, 
even though these were randomly assigned. 

Ultimately, though, this is not a study about well-groomed or 
heavy-faced defendants, nor are its implications limited to faces 
or judges. It develops a general procedure that can be applied 

wherever behavior can be predicted using rich (especially high- 
dimensional) data. Development of such a procedure has required 

overcoming two key challenges. 
First, to generate interpretable hypotheses, we must over- 

come the notorious black box nature of most machine learning 

algorithms. Unlike with a regression, one cannot simply inspect 
the coefficients. A modern deep-learning algorithm, for exam- 
ple, can have tens of millions of parameters. Noninspectability is 

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024



MACHINE LEARNING AS A TOOL FOR HYPOTHESIS GENERATION 759

especially problematic when the data are rich and high dimen- 
sional since the parameters are associated with primitives such 

as pixels. This problem of interpretation is fundamental and re- 
mains an active area of research. 6 Part of our procedure here 

draws on the recent literature in computer science that uses 
generative models to create counterfactual explanations. Most 
of those methods are designed for AI applications that seek to 

automate tasks humans do nearly perfectly, like image classi- 
fication, where predictability of the outcome (is this image of a 

dog or a cat?) is typically quite high. 7 Interpretability techniques 
are used to ensure the algorithm is not picking up on spurious 
signal. 8 We developed our method, which has similar conceptual 
underpinnings to this existing literature, for social science appli- 
cations where the outcome (human behavior) is typically more 

challenging to predict. 9 To what degree existing methods (as they 

currently stand or with some modification) could perform as well 
or better in social science applications like ours is a question we 

leave to future work. 
Second, we must overcome what we might call the Rorschach 

test problem. Suppose we, the authors, were to look at these 

morphs and generate a hypothesis. We would not know if the pro- 
cedure played any meaningful role. Perhaps the morphs, like ink 

blots, are merely canvases onto which we project our creativity. 10 

Put differently, a single research team’s idiosyncratic judgments 
lack the kind of replicability we desire of a scientific procedure. 
To overcome this problem, it is key that we use independent 

6. For reviews of the interpretability literature, see Doshi-Velez and Kim 

(2017) and Marcinkevičs and Vogt (2020) . 
7. See Liu et al. (2019) , Narayanaswamy et al. (2020) , Lang et al. (2021) , and 

Ghandeharioun et al. (2022) . 
8. For example, if every dog photo in a given training data set had been taken 

outdoors and every cat photo was taken indoors, the algorithm might learn what 
animal is in the image based in part on features of the background, which would 
lead the algorithm to perform poorly in a new data set of more representative 
images. 

9. For example, for canonical computer science applications like image classi- 
fication (does this photo contain an image of a dog or of a cat?), predictive accuracy 
(AUC) can be on the order of 0.99. In contrast, our model of judge decisions using 
the face only achieves an AUC of 0.625. 

10. Of course even if the hypotheses that are generated are the result of id- 
iosyncratic creativity, this can still be useful. For example, Swanson (1986 , 1988) 
generated two novel medical hypotheses: the possibility that magnesium affects 
migraines and that fish oil may alleviate Raynaud’s syndrome. 
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(nonresearcher) subjects to inspect the morphs. The fact that a 

sizable share of subjects all name the same discovery suggests 
that human-algorithm communication has occurred and the 

procedure is replicable, rather than reflecting some unique spark 

of creativity. 
At the same time, the fact that our procedure is not fully au- 

tomatic implies that it will be shaped and constrained by people. 
Human participants are needed to name the discoveries. So whole 

new concepts that humans do not yet understand cannot be pro- 
duced. Such breakthroughs clearly happen (e.g., gravity or prob- 
ability) but are beyond the scope of procedures like ours. People 

also play a crucial role in curating the data the algorithm sees. 
Here, for example, we chose to include mug shots. The creative 

acquisition of rich data is an important human input into this 
hypothesis generation procedure. 11 

Our procedure can be applied to a broad range of settings 
and will be particularly useful for data that are not already in- 
trinsically interpretable. Many data sets contain a few variables 
that already have clear, fixed meanings and are unlikely to lead 

to novel discoveries. In contrast, images, text, and time series are 

rich high-dimensional data with many possible interpretations. 
Just as there is an ocean of plausible facial features, these sorts 
of data contain a large set of potential hypotheses that an algo- 
rithm can search through. Such data are increasingly available 

and used by economists, including news headlines, legislative de- 
liberations, annual corporate reports, Federal Open Market Com- 
mittee statements, Google searches, student essays, résumés, 
court transcripts, doctors’ notes, satellite images, housing photos, 
and medical images. Our procedure could, for example, raise hy- 
potheses about what kinds of news lead to over- or underreaction 

of stock prices, which features of a job interview increase racial 
disparities, or what features of an X-ray drive misdiagnosis. 

Central to this work is the belief that hypothesis generation 

is a valuable activity in and of itself. Beyond whatever the value 

might be of our specific procedure and empirical application, we 

hope these results also inspire greater attention to this tradition- 
ally “prescientific” stage of science. 

11. Conversely, given a data set, our procedure has a built-in advantage: one 
could imagine a huge number of hypotheses that, while possible, are not espe- 
cially useful because they are not measurable. Our procedure is by construction 

guaranteed to generate hypotheses that are measurable in a data set. 
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II. A SIMPLE FRAMEWORK FOR DISCOVERY 

We develop a simple framework to clarify the goals of hypoth- 
esis generation and how it differs from testing, how algorithms 
might help, and how our specific approach to algorithmic hypoth- 
esis generation differs from existing methods. 12 

II.A. The Goals of Hypothesis Generation 

What criteria should we use for assessing hypothesis genera- 
tion procedures? Two common goals for hypothesis generation are 

ones that we ensure ex post. First is novelty. In our application, 
we aim to orthogonalize against known factors, recognizing that 
it may be hard to orthogonalize against all known hypotheses. 
Second, we require that hypotheses be testable (Popper 2002 ). 
But what can be tested is hard to define ex ante, in part because it 
depends on the specific hypothesis and the potential experimen- 
tal setups. Creative empiricists over time often find ways to test 
hypotheses that previously seemed untestable. 13 To these, we add 

two more: interpretability and empirical plausibility. 
What do we mean by empirically plausible? Let y be some 

outcome of interest, which for simplicity we assume is binary, 
and let h ( x ) be some hypothesis that maps the features of each 

instance, x , to [0,1]. By empirical plausibility we mean some cor- 
relation between y and h ( x ). Our ultimate aim is to uncover causal 
relationships. But causality can only be known after causal test- 
ing. That raises the question of how to come up with ideas worth 

causally testing, and how we would recognize them when we 

see them. Many true hypotheses need not be visible in raw cor- 
relations. Those can only be identified with background knowl- 
edge (e.g., theory). Other procedures would be required to surface 

those. Our focus here is on searching for true hypotheses that are 

visible in raw correlations. Of course not every correlation will 
turn out to be a true hypothesis, but even in those cases, gener- 
ating such hypotheses and then invalidating them can be a valu- 
able activity. Debunking spurious correlations has long been one 

of the most useful roles of empirical work. Understanding what 
confounders produce those correlations can also be useful. 

12. For additional discussion, see Ludwig and Mullainathan (2023a) . 
13. For example, isolating the causal effects of gender on labor market out- 

comes is a daunting task, but the clever test in Goldin and Rouse (2000) over- 
comes the identification challenges by using variation in screening of orchestra 
applicants. 
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We care about our final goal for hypothesis generation, inter- 
pretability, because science is largely about helping people make 

forecasts into new contexts, and people can only do that with 

hypotheses they meaningfully understand. Consider an uninter- 
pretable hypothesis like “this set of defendants is more likely to 

be jailed than that set,” but we cannot articulate a reason why. 
From that hypothesis, nothing could be said about a new set of 
courtroom defendants. In contrast an interpretable hypothesis 
like “skin color affects detention” has implications for other sam- 
ples of defendants and for entirely different settings. We could 

ask whether skin color also affects, say, police enforcement choices 
or whether these effects differ by time of day. By virtue of being 

interpretable, these hypotheses let us use a wider set of knowl- 
edge (police may share racial biases; skin color is not as easily 

detected at night). 14 Interpretable descriptions let us generalize 

to novel situations, in addition to being easier to communicate to 

key stakeholders and lending themselves to interpretable solu- 
tions. 

II.B. Human versus Algorithmic Hypothesis Generation 

Human hypothesis generation has the advantage of generat- 
ing hypotheses that are interpretable. By construction, the ideas 
that humans come up with are understandable by humans. But 
as a procedure for generating new ideas, human creativity has the 

drawback of often being idiosyncratic and not necessarily replica- 
ble. A novel hypothesis is novel exactly because one person no- 
ticed it when many others did not. A large body of evidence shows 
that human judgments have a great deal of “noise.” It is not just 
that different people draw different conclusions from the same 

observations, but the same person may notice different things at 
different times (Kahneman, Sibony, and Sunstein 2022 ). A large 

body of psychology research shows that people typically are not 
able to introspect and understand why we notice specific things 
those times we do notice them. 15 

14. See the clever paper by Grogger and Ridgeway (2006) that uses this source 
of variation to examine this question. 

15. This is related to what Autor (2014) called “Polanyi’s paradox,” the idea 
that people’s understanding of how the world works is beyond our capacity to 
explicitly describe it. For discussions in psychology about the difficulty for people 
to access their own cognition, see Wilson (2004) and Pronin (2009) . 
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There is also no guarantee that human-generated hypotheses 
need be empirically plausible. The intuition is related to “overfit- 
ting.” Suppose that people look at a subset of all data and look 

for something that differentiates positive ( y = 1) from negative 

( y = 0) cases. Even with no noise in y , there is randomness in 

which observations are in the data. That can lead to idiosyncratic 
differences between y = 0 and y = 1 cases. As the number of com- 
prehensible hypotheses gets large, there is a “curse of dimension- 
ality”: many plausible hypotheses for these idiosyncratic differ- 
ences. That is, many different hypotheses can look good in sample 

but need not work out of sample. 16 

In contrast, supervised learning tools in machine learn- 
ing are designed to generate predictions in new (out-of-sample) 
data. 17 That is, algorithms generate hypotheses that are em- 
pirically plausible by construction. 18 Moreover, machine learn- 
ing can detect patterns in data that humans cannot. Algorithms 
can notice, for example, that livestock all tend to be oriented 

north (Begall et al. 2008 ), whether someone is about to have a 

heart attack based on subtle indications in an electrocardiogram 

(Mullainathan and Obermeyer 2022 ), or that a piece of machinery 

is about to break (Mobley 2002 ). We call these machine learning 

prediction functions m ( x ), which for a binary outcome y map to 

[0, 1]. 

16. Consider a simple example. Suppose x = ( x1 , …, xk ) is a k -dimensional 
binary vector, all possible values of x are equally likely, and the true function in 

nature relating x to y only depends on the first dimension of x so the function h1 
is the only true hypothesis and the only empirically plausible hypothesis. Even 

with such a simple true hypothesis, people can generate nonplausible hypotheses. 
Imagine a pair of data points ( x0 , 0) and ( x1 , 1). Since the data distribution is uni- 
form, x0 and x1 will differ on 

k 
2 dimensions in expectation. A person looking at only 

one pair of observations would have a high chance of generating an empirically 
implausible hypothesis. Looking at more data, the probability of discovering an 

implausible hypothesis declines. But the problem remains. 
17. Some canonical references include Breiman et al. (1984) , Breiman (2001) , 

Hastie et al. (2009) , and Jordan and Mitchell (2015) . For discussions about how 

machine learning connects to economics, see Belloni, Chernozhukov, and Hansen 

(2014) , Varian (2014) , Mullainathan and Spiess (2017) , Athey (2018) , and Athey 
and Imbens (2019) . 

18. Of course there is not always a predictive signal in any given data ap- 
plication. But that is equally an issue for human hypothesis generation. At least 
with machine learning, we have formal procedures for determining whether there 
is any signal that holds out of sample. 
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The challenge is that most m ( x ) are not interpretable. For 
this type of statistical model to yield an interpretable hypothesis, 
its parameters must be interpretable. That can happen in some 

simple cases. For example, if we had a data set where each dimen- 
sion of x was interpretable (such as individual structured vari- 
ables in a tabular data set) and we used a predictor such as OLS 

(or LASSO), we could just read the hypotheses from the nonzero 

coefficients: which variables are significant? Even in that case, in- 
terpretation is challenging because machine learning tools, built 
to generate accurate predictions rather than apportion explana- 
tory power across explanatory variables, yield coefficients that 
can be unstable across realizations of the data (Mullainathan and 

Spiess 2017 ). 19 Often interpretation is much less straightforward 

than that. If x is an image, text, or time series, the estimated 

models (such as convolutional neural networks) can have literally 

millions of parameters. The models are defined on granular in- 
puts with no particular meaning: if we knew m ( x ) weighted a 

particular pixel, what have we learned? In these cases, the es- 
timated model m ( x ) is not interpretable. Our focus is on these 

contexts where algorithms, as black-box models, are not readily 

interpreted. 
Ideally one might marry people’s unique knowledge of what 

is comprehensible with an algorithm’s superior capacity to find 

meaningful correlations in data: to have the algorithm discover 
new signal and then have humans name that discovery. How 

to do so is not straightforward. We might imagine formalizing 

the set of interpretable prediction functions, and then focus on 

creating machine learning techniques that search over functions 
in that set. But mathematically characterizing those functions is 
typically not possible. Or we might consider seeking insight from 

a low-dimensional representation of face space, or “eigenfaces,”
which are a common teaching tool for principal components 
analysis (Sirovich and Kirby 1987 ). But those turn out not to 

provide much useful insight for our purposes. 20 In some sense it 

19. The intuition here is quite straightforward. If two predictor variables are 
highly correlated, the weight that the algorithm puts on one versus the other can 

change from one draw of the data to the next depending on the idiosyncratic noise 
in the training data set, but since the variables are highly correlated, the predicted 
outcome values themselves (hence predictive accuracy) can be quite stable. 

20. See Online Appendix Figure A.I, which shows the top nine eigenfaces for 
the data set we describe below, which together explain 62% of the variation. 
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is obvious why: the subset of actual faces is unlikely to be a linear 
subspace of the space of pixels. If we took two faces and linearly 

interpolated them the resulting image would not look like a face. 
Some other approach is needed. We build on methods in computer 
science that use generative models to generate counterfactual 
explanations. 

II.C. Related Methods 

Our hypothesis generation procedure is part of a growing 

literature that aims to integrate machine learning into the way 

science is conducted. A common use (outside of economics) is in 

what could be called “closed world problems”: situations where 

the fundamental laws are known, but drawing out predictions 
is computationally hard. For example, the biochemical rules of 
how proteins fold are known, but it is hard to predict the final 
shape of a protein. Machine learning has provided fundamen- 
tal breakthroughs, in effect by making very hard-to-compute out- 
comes computable in a feasible timeframe. 21 

Progress has been far more limited with applications where 

the relationship between x and y is unknown (“open world” prob- 
lems), like human behavior. First, machine learning here has 
been useful at generating unexpected findings, although these are 

not hypotheses themselves. Pierson et al. (2021) show that a deep- 
learning algorithm is better able to predict patient pain from an 

X-ray than clinicians can: there are physical knee defects that 
medicine currently does not understand. But that study is not 
able to isolate what those defects are. 22 Second, machine learn- 
ing has also been used to explore investigator-generated hypothe- 
ses, such as Mullainathan and Obermeyer (2022) , who examine 

whether physicians suffer from limited attention when diagnos- 
ing patients. 23 

21. Examples of applications of this type include Carleo et al. (2019) , He et al. 
(2019) , Davies et al. (2021) , Jumper et al. (2021) , and Pion-Tonachini et al. (2021) . 

22. As other examples, researchers have found that retinal images alone can 

unexpectedly predict gender of patient or macular edema (Narayanaswamy et al. 
2020 ; Korot et al. 2021 ). 

23. Sheetal, Feng, and Savani (2020) use machine learning to determine 
which of the long list of other survey variables collected as part of the World Values 
Survey best predict people’s support for unethical behavior. This application sits 
somewhat in between an investigator-generated hypothesis and the development 
of an entirely new hypothesis, in the sense that the procedure can only choose 
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Finally, a few papers take on the same problem that we do. 
Fudenberg and Liang (2019) and Peterson et al. (2021) have used 

algorithms to predict play in games and choices between lotteries. 
They inspected those algorithms to produce their insights. Simi- 
larly, Kleinberg et al. (2018) and Sunstein (2021) use algorithmic 
models of judges and inspect those models to generate hypothe- 
ses. 24 Our proposal builds on these papers. Rather than focusing 

on generating an insight for a specific application, we suggest a 

procedure that can be broadly used for many applications. Impor- 
tantly, our procedure does not rely on researcher inspection of al- 
gorithmic output. When an expert researcher with a track record 

of generating scientific ideas uses some procedure to generate an 

idea, how do we know whether the result is due to the procedure 

or the researcher? By relying on a fixed algorithmic procedure 

that human subjects can interface with, hypothesis generation 

goes from being an idiosyncratic act of individuals to a replicable 

process. 

III. APPLICATION AND DATA 

III.A. Judicial Decision Making 

Although our procedure is broadly applicable, we illustrate it 
through a specific application to the U.S. criminal justice system. 
We choose this application partly because of its social relevance. It 
is also an exemplar of the type of application where our hypoth- 
esis generation procedure can be helpful. Its key ingredients—
a clear decision maker, a large number of choices (over 10 mil- 
lion people are arrested each year in the United States) that are 

recorded in data, and, increasingly, high-dimensional data that 
can also be used to model those choices, such as mug shot im- 
ages, police body cameras, and text from arrest reports or court 
transcripts—are shared with a variety of other applications. 

Our specific focus is on pretrial hearings. Within 24–48 hours 
after arrest, a judge must decide where the defendant will 
await trial, in jail or at home. This is a consequential decision. 
Cases typically take 2–4 months to resolve, sometimes up to 

candidate hypotheses for unethical behavior from the set of variables the World 
Values Survey investigators thought to include on their questionnaire. 

24. Closest is Miller et al. (2019) , which morphs EKG output but stops at the 
point of generating realistic morphs and does not carry this through to generating 
interpretable hypotheses. 
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9–12 months. Jail affects people’s families, their livelihoods, and 

the chances of a guilty plea (Dobbie, Goldin, and Yang 2018 ). 
On the other hand, someone who is released could potentially 

reoffend. 25 

While pretrial decisions are by law supposed to hinge on the 

defendant’s risk of flight or rearrest if released (Dobbie and Yang 

2021 ), studies show that judges’ decisions deviate from those 

guidelines in a number of ways. For starters, judges seem to sys- 
tematically mispredict defendant risk (Jung et al. 2017 ; Kleinberg 

et al. 2018 ; Rambachan 2021 ; Angelova, Dobbie, and Yang 2023 ), 
partly because judges overweight the charge for which people are 

arrested (Sunstein 2021 ). Judge decisions can also depend on ex- 
tralegal factors like race (Arnold, Dobbie, and Yang 2018 ; Arnold, 
Dobbie, and Hull 2020 ), whether the judge’s favorite football team 

lost (Eren and Mocan 2018 ), weather (Heyes and Saberian 2019 ), 
the cases the judge just heard (Chen, Moskowitz, and Shue 2016 ), 
and if the hearing is on the defendant’s birthday (Chen and 

Philippe 2023 ). These studies test hypotheses that some human 

being was clever enough to think up. But there remains a great 
deal of unexplained variation in judges’ decisions. The challenge 

of expanding the set of hypotheses for understanding this varia- 
tion without losing the benefit of interpretability is the motivation 

for our own analysis here. 

III.B. Administrative Data 

We obtained data from Mecklenburg County, North Carolina, 
the second most populated county in the state (over 1 million resi- 
dents) that includes North Carolina’s largest city (Charlotte). The 

county is similar to the rest of the United States in terms of eco- 
nomic conditions (2021 poverty rates were 11 . 0% versus 11 . 4% , 
respectively), although the share of Mecklenburg County’s popu- 
lation that is non-Hispanic white is lower than the United States 
as a whole ( 56 . 6% versus 75 . 8% ). 26 We rely on three sources of 
administrative data: 27 

25. Additional details about how the system works are found in 

Online Appendix A. 
26. For Black non-Hispanics, the figures for Mecklenburg County ver- 

sus the United States were 33 . 3% versus 13 . 6% . See https://www.census.gov/
programs-surveys/sis/resources/data-tools/quickfacts.html. 

27. Details on how we operationalize these variables are found in 

Online Appendix A. 
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• The Mecklenburg County Sheriff ’s Office (MCSO) publicly 

posts arrest data for the past three years, which provides 
information on defendant demographics like age, gender, 
and race, as well as the charge for which someone was ar- 
rested. 

• The North Carolina Administrative Office of the Courts 
(NCAOC) maintains records on the judge’s pretrial deci- 
sions (detain, release, etc.). 

• Data from the North Carolina Department of Public Safety 

includes information about the defendant’s prior convic- 
tions and incarceration spells, if any. 

We also downloaded photos of the defendants from the MCSO 

public website (so-called mug shots), 28 which capture a frontal 
view of each person from the shoulders up in front of a gray back- 
ground. These images are 400 pixels wide by 480 pixels high, but 
we pad them with a black boundary to be square 512 × 512 im- 
ages to conform with the requirements of some of the machine 

learning tools. In Figure II , we give readers a sense of what these 

mug shots look like, with two important caveats. First, given 

concerns about how the overrepresentation of disadvantaged 

groups in discussions of crime can contribute to stereotyping 

(Bjornstrom et al. 2010 ), we illustrate the key ideas of the paper 
using images for non-Hispanic white males. Second, out of sensi- 
tivity to actual arrestees, we do not wish to display actual mug 

shots (which are available at the MCSO website). 29 Instead, the 

article only shows mug shots that are synthetic, generated using 

generative adversarial networks as described in Section V.B . 
These data capture much of the information the judge has 

available at the time of the pretrial hearing, but not all of it. Both 

the judge and the algorithm see structured variables about each 

defendant like defendant demographics, current charge, and prior 
record. Because the mug shot (which the algorithm uses) is taken 

not long before the pretrial hearing, it should be a reasonable 

proxy for what the judge sees in court. The additional information 

the judge has but the algorithm does not includes the narrative 

28. The mug shot seems to have originated in Paris in the 1800s ( https://law.
marquette.edu/facultyblog/2013/10/a-history-of-the-mug-shot/). The etymology of 
the term is unclear, possibly based on “mug” as slang for either the face or an “in- 
competent person” or “sucker” since only those who get caught are photographed 
by police ( https://www.etymonline.com/word/mug-shot). 

29. See https://mecksheriffweb.mecklenburgcountync.gov/. 
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FIGURE II 

Illustrative Facial Images 

This figure shows facial images that illustrate the format of the mug shots 
posted publicly on the Mecklenberg County, North Carolina, sheriff ’s office web- 
site. These are not real mug shots of actual people who have been arrested, but 
are synthetic. Moreover, given concerns about how the overrepresentation of dis- 
advantaged groups in discussions of crime can exacerbate stereotyping, we illus- 
trate the our key ideas using images for non-Hispanic white men. However, in our 
human intelligence tasks that ask participants to provide labels (ratings for differ- 
ent image features), we show images that are representative of the Mecklenberg 
County defendant population as a whole. 

arrest report from the police and what happens in court. While 

pretrial hearings can be quite brief in many jurisdictions (often 

not more than just a few minutes), the judge may nonetheless 
hear statements from police, prosecutors, defense lawyers, and 

sometimes family members. Defendants usually have their 
lawyers speak for them and do not say much at these hearings. 
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We downloaded 81,166 arrests made between January 18, 
2017, and January 17, 2020, involving 42,353 unique defen- 
dants. We apply several data filters, like dropping cases with- 
out mugshots ( Online Appendix Table A.I), leaving 51,751 obser- 
vations. Because our goal is inference about new out-of-sample 

(OOS) observations, we partition our data as follows: 

• A train set of N = 22,696 cases, constructed by tak- 
ing arrests through July 17, 2019, grouping arrests by 

arrestee, 30 randomly selecting 70% to the training-plus- 
validation data set, then randomly selecting 70% of those 

arrestees for the training data specifically. 
• A validation set of N = 9,604 cases used to report OOS per- 

formance in the article’s main exhibits, consisting of the 

remaining 30% in the combined training-plus-validation 

data frame. 
• A lock-box hold-out set of N = 19,009 cases that we did 

not touch until the article was accepted for final publica- 
tion, to avoid what one might call researcher overfitting: 
we run lots of models over the course of writing the arti- 
cle, and the results on the validation data set may over- 
state our findings. This data set consists of the N = 4,759 

valid cases for the last six months of our data period (July 

17, 2019, to January 17, 2020) plus a random sample of 
30% of those arrested before July 17, 2019, so that we 

can present results that are OOS with respect to individ- 
uals and time. Once this article was officially accepted, we 

replicated the findings presented in our main exhibits (see 

Online Appendix D and Online Appendix Tables A.XVIII–
A.XXXII). We see that our core findings are qualitatively 

similar. 31 

Descriptive statistics are shown in Table I . Relative to 

the county as a whole, the arrested population substantially 

30. We partition the data by arrestee, not arrest, to ensure people show up in 

only one of the partitions to avoid inadvertent information “leakage” across data 
partitions. 

31. As the Online Appendix tables show, while there are some changes to a 
few of the coefficients that relate the algorithm’s predictions to factors known from 

past research to shape human decisions, the core findings and conclusions about 
the importance of the defendant’s appearance and the two specific novel facial 
features we identify are similar. 
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overrepresents men ( 78 . 7% ) and Black residents ( 69 . 4% ). The av- 
erage age of arrestees is 31.8 years. Judges detain 23 . 3% of cases, 
and in 25 . 1% of arrests the person is rearrested before their case 

is resolved (about one-third of those released). Randomization 

of arrestees to the training versus validation data sets seems to 

have been successful, as shown in Table I . None of the pairwise 

comparisons has a p -value below .05 (see Online Appendix Table 

A.II). A permutation multivariate analysis of variance test of the 

joint null hypothesis that the training-validation differences for 
all variables are all zero yields p = .963. 32 A test for the same 

joint null hypothesis for the differences between the training 

sample and the lock-box hold-out data set (out of sample by 

individual) yields a test statistic of p = .537. 

III.C. Human Labels 

The administrative data capture many key features of each 

case but omit some other important ones. We solve these data in- 
sufficiency problems through a series of human intelligence tasks 
(HITs), which involve having study subjects on one of two possi- 
ble platforms (Amazon’s Mechanical Turk or Prolific) assign la- 
bels to each case from looking at the mug shots. More details 
are in Online Appendix Table A.III. We use data from these 

HITs mostly to understand how the algorithm’s predictions relate 

to already-known determinants of human decision making, and 

hence the degree to which the algorithm is discovering something 

novel. 
One set of HITs filled in demographic-related data: ethnic- 

ity; skin tone (since people are often stereotyped on skin color, or 
“colorism”; Hunter 2007 ), reported on an 18-point scale; the de- 
gree to which defendants appear more stereotypically Black on 

a 9-point scale (Eberhardt et al. 2006 show this affects crimi- 
nal justice decisions); and age, to compare to administrative data 

for label quality checks. 33 Because demographics tend to be easy 

32. Using the data on arrests up to July 17, 2019, we randomly reassign ar- 
restees to three groups of similar size to our training, validation, and lock-box 
hold-out data sets, convert the data to long format (with one row for each arrest- 
and-variable) and calculate an F -test statistic for the joint null hypothesis that 
the difference in baseline characteristics are all zero, clustering standard errors 
by arrestee. We store that F -test statistic, rerun this procedure 1,000 times, and 
then report the share of splits with an F -statistic larger than the one observed for 
the original data partition. 

33. For an example HIT task, see Online Appendix Figure A.II. 
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for people to see in images, we collect just one label per image for 
each of these variables. To confirm one label is enough, we re- 
peated the labeling task for 100 images but collected 10 labels for 
each image; we see that additional labels add little information. 34 

Another data quality check comes from the fact that the distribu- 
tions of skin color ratings do systematically differ by defendant 
race ( Online Appendix Figure A.III). 

A second type of HIT measured facial features that previ- 
ous psychology research has shown affect human judgments. The 

specific set of facial features we focus on come from the influential 
study by Oosterhof and Todorov (2008) of people’s perceptions of 
the facial features of others. When subjects are asked to provide 

descriptions of different faces, principal components analysis sug- 
gests just two dimensions account for about 80% of the variation: 
(i) trustworthiness and (ii) dominance. We also collected data on 

two other facial features shown to be associated with real-world 

decisions like hiring or whom to vote for: (iii) attractiveness and 

(iv) competence (Frieze, Olson, and Russell 1991 ; Little, Jones, 
and DeBruine 2011 ; Todorov and Oh 2021 ). 35 

We asked subjects to rate images for each of these psycho- 
logical features on a nine-point scale. Because psychological fea- 
tures may be less obvious than demographic features, we collected 

three labels per training–data set image and five per validation–
data set image. 36 There is substantial variation in the ratings 
that subjects assign to different images for each feature (see 

Online Appendix Figure A.VI). The ratings from different sub- 
jects for the same feature and image are highly correlated: in- 
terrater reliability measures (Cronbach’s α) range from 0.87 to 

0.98 ( Online Appendix Figure A.VII), similar to those reported in 

34. For age and skin tone, we calculated the average pairwise correlation 

between two labels sampled (without replacement) from the 10 possibilities, re- 
peated across different random pairs. The Pearson correlation was 0.765 for skin 

tone, 0.741 for age, and between age assigned labels versus administrative data, 
0.789. The maximum correlation between the average of the first k labels collected 
and the k + 1 label is not all that much higher for k = 1 than k = 9 (0.733 versus 
0.837). 

35. For an example of the consent form and instructions given to labelers, see 
Online Appendix Figures A.IV and A.V. 

36. We actually collected at least three and at least five, but the averages 
turned out to be very close to the minimums, equal to 3.17 and 5.07, respectively. 
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studies like Oosterhof and Todorov (2008) . 37 The information gain 

from collecting more than a few labels per image is modest. 38 For 
summary statistics, see Online Appendix Table A.IV. 

Finally, we also tried to capture people’s implicit or tacit un- 
derstanding of the determinants of judges’ decisions by asking 

subjects to predict which mug shot out of a pair would be de- 
tained, with images in each pair matched on gender, race, and 

five-year age brackets. 39 We incentivized study subjects for cor- 
rect predictions and gave them feedback over the course of the 

50 image pairs to facilitate learning. We treat the first 10 re- 
sponses per subject as a “learning set” that we exclude from our 
analysis. 

IV. THE SURPRISING IMPORTANCE OF THE FACE 

The first step of our hypothesis generation procedure is to 

build an algorithmic model of some behavior, which in our case is 
the judge’s detention decision. A sizable share of the predictable 

variation in judge decisions comes from a surprising source: the 

defendant’s face. Facial features implicated by past research ex- 
plain just a modest share of this predictable variation. The algo- 
rithm seems to have found a novel discovery. 

IV.A. What Drives Judge Decisions? 

We begin by predicting judge pretrial detention decisions 
( y = 1 if detain, y = 0 if release) using all the inputs available ( x ). 
We use the training data set to construct two separate models 
for the two types of data available. We apply gradient-boosted 

decision trees to predict judge decisions using the structured 

administrative data (current charge, prior record, age, gender), 
ms ( x ); for the unstructured data (raw pixel values from the mug 

shots), we train a convolutional neural network, mu ( x ). Each 

model returns an estimate of y (a predicted detention probability) 
for a given x . Because these initial steps of our procedure use 

37. For example, in Oosterhof and Todorov (2008) , Supplemental Materials 
Table S2, they report Cronbach’s α values of 0.95 for attractiveness, and 0.93 for 
both trustworthy and dominant. 

38. See Online Appendix Figure A.VIII, which shows that the change in the 
correlation between the ( k + 1)th label with the mean of the first k labels declines 
after three labels. 

39. For an example, see Online Appendix Figure A.IX. 
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standard machine learning methods, we relegate their discussion 

to the Online Appendix. 
We pool the signal from both models to form a single 

weighted-average model mp (x ) = [ ˆ βs ms (x ) + ˆ βu mu (x )] using a so- 
called stacking procedure where the data are used to estimate the 

relevant weights. 40 Combining structured and unstructured data 

is an active area of deep-learning research, often called fusion 

modeling (Yuhas, Goldstein, and Sejnowski 1989 ; Lahat, Adali, 
and Jutten 2015 ; Ramachandram and Taylor 2017 ; Baltrušaitis, 
Ahuja, and Morency 2019 ). We have tried several of the latest 
fusion architectures; none improve on our ensemble approach. 

Judge decisions do have some predictable structure. We re- 
port predictive performance as the area under the receiver op- 
erating characteristic curve, or AUC, which is a measure of 
how well the algorithm rank-orders cases with values from 

0.5 (random guessing) to 1.0 (perfect prediction). Intuitively, AUC 

can be thought of as the chance that a uniformly randomly se- 
lected detained defendant has a higher predicted detention likeli- 
hood than a uniformly randomly selected released defendant. The 

algorithm built using all candidate features, mp ( x ), has an AUC 

of 0.780 (see Online Appendix Figure A.X). 
What is the algorithm using to make its predictions? A single 

type of input captures a sizable share of the total signal: the de- 
fendant’s face. The algorithm built using only the mug shot image, 
mu ( x ), has an AUC of 0.625 (see Online Appendix Figure A.X). 
Since an AUC of 0.5 represents random prediction, in AUC terms 
the mug shot accounts for 0 . 625 −0 . 5 

0 . 780 −0 . 5 = 44 . 6% of the predictive sig- 
nal about judicial decisions. 

Another common way to think about predictive accuracy is in 

R2 terms. While our data are high dimensional (because the facial 
image is a high-dimensional object), the algorithm’s prediction of 
the judge’s decision based on the facial image, mu ( x ), is a scalar 
and can be easily included in a familiar regression framework. 
Like AUC, measures like R2 and mean squared error capture how 

well a model rank-orders observations by predicted probabilities, 

40. We use the validation data set to estimate ˆ β and then evaluate the accu- 
racy of mp ( x ). Although this could lead to overfitting in principle, since we are only 
estimating a single parameter, this does not matter much in practice; we get very 
similar results if we randomly partition the validation data set by arrestee, use 
a random 30% of the validation data set to estimate the weights, then measure 
predictive performance in the other random 70% of the validation data set. 
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but R2 , unlike AUC, also captures how close predictions are 

to observed outcomes (calibration). 41 The R2 from regressing y 

against ms ( x ) and mu ( x ) in the validation data is 0.11. Regressing 

y against mu ( x ) alone yields an R2 of 0.03. So depending on how 

we measure predictive accuracy, around a quarter ( 0 . 03 
0 . 11 = 27 . 3%) 

to a half ( 44 . 6% ) of the predicted signal about judges’ decisions is 
captured by the face. 

Average differences are another way to see what drives 
judges’ decisions. For any given feature xk , we can calculate the 

average detention rate for different values of the feature. For 
example, for the variable measuring whether the defendant is 
male ( xk = 1) versus female ( xk = 0), we can calculate and plot 
E [ y | xk = 1] versus E [ y | xk = 0]. As shown in Online Appendix
Figure A.XI, the difference in detention rates equals 4.8 percent- 
age points for those arrested for violent versus nonviolent crimes, 
10.2 percentage points for men versus women, and 4.3 percent- 
age points for bottom versus top quartile of skin tone, which are 

all sizable relative to the baseline detention rate of 23 . 3% in our 
validation data set. By way of comparison, average detention 

rates for the bottom versus top quartile of the mug shot algo- 
rithm’s predictions, mu ( x ), differ by 20.4 percentage points. 

In what follows, we seek to understand more about the mug 

shot–based prediction of the judge’s decision, which we refer to 

simply as m ( x ) in the remainder of the article. 

IV.B. Judicial Error? 

So far we have shown that the face predicts judges’ behavior. 
Are judges right to use face information? To be precise, by “right”
we do not mean a broader ethical judgment; for many reasons, one 

could argue it is never ethical to use the face. But suppose we take 

a rather narrow (exceedingly narrow) formulation of “right.” Re- 
call the judge is meant to make jailing decisions based on the de- 
fendant’s risk. Is the use of these facial characteristics consistent 
with that objective? Put differently, if we account for defendant 
risk differences, do these facial characteristics still predict judge 

decisions? The fact that judges rely on the face in making deten- 
tion decisions is in itself a striking insight regardless of whether 

41. The mean squared area for a linear probability model’s predictions is re- 
lated to the Brier score (Brier 1950 ). For a discussion of how this relates to AUC 

and calibration, see Murphy (1973) . 
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the judges use appearance as a proxy for risk or are committing a 

cognitive error. 
At first glance, the most straightforward way to answer this 

question would be to regress rearrest against the algorithm’s mug 

shot–based detention prediction. That yields a statistically sig- 
nificant relationship: The coefficient (and standard error) for the 

mug shot equals 0.6127 (0.0460) with no other explanatory vari- 
ables in the regression versus 0.5735 (0.0521) with all the ex- 
planatory variables (as in the final column, Table III ). But the 

interpretation here is not so straightforward. 
The challenge of interpretation comes from the fact that we 

have only measured crime rates for the released defendants. The 

problem with having measured crime, not actual crime, is that 
whether someone is charged with a crime is itself a human choice, 
made by police. If the choices police make about when to make an 

arrest are affected by the same biases that might afflict judges, 
then measured rearrest rates may correlate with facial charac- 
teristics simply due to measurement bias. The problem created by 

having measures of rearrest only for released defendants is that 
if judges have access to private information (defendant character- 
istics not captured by our data set), and judges use that informa- 
tion to inform detention decisions, then the released and detained 

defendants may be different in unobservable ways that are rele- 
vant for rearrest risk (Kleinberg et al. 2018 ). 

With these caveats in mind, at least we can perform a 

bounding exercise. We created a predictor of rearrest risk (see 

Online Appendix B) and then regress judges’ decisions on pre- 
dicted rearrest risk. We find that a one-unit change in predicted 

rearrest risk changes judge detention rates by 0.6103 (standard 

error 0.0213). By comparison, we found that a one-unit change 

in the mug shot (by which we mean the algorithm’s mug shot–
based prediction of the judge detention decision) changes judge 

detention rates by 0.6963 (standard error 0.0383; see Table III , 
column (1)). That means if the judges were reacting to the defen- 
dant’s face only because the face is a proxy for rearrest risk, the 

difference in rearrest risk for those with a one-unit difference in 

the mug shot would need to be 

0 . 6963 
0 . 6103 = 1 . 141 . But when we di- 

rectly regress rearrest against the algorithm’s mug shot–based 

detention prediction, we get a coefficient of 0.6127 (standard er- 
ror 0.0460). Clearly 0.6127 < 1.141; that is, the mug shot does not 
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seem to be strongly related enough to rearrest risk to explain the 

judge’s use of it in making detention decisions. 42 

Of course this leaves us with the second problem with our 
data: we only have crime data on the released. It is possible the 

relationship between the mug shot and risk could be very differ- 
ent among the 23 . 3% of defendants who are detained (which we 

cannot observe). Put differently, the mug shot–risk relationship 

among the 76 . 7% of the defendants who are released is 0.6127; 
and let A be the (unknown) mug shot–risk relationship among 

the jailed. What we really want to know is the mug shot–risk re- 
lationship among all defendants, which equals (0.767 · 0.6127) + 

(0.233 · A ). For this mug shot–risk relationship among all defen- 
dants to equal 1.141, A would need to be 2.880, nearly five times 
as great among the detained defendants as among the released. 
This would imply an implausibly large effect of the mug shot on 

rearrest risk relative to the size of the effects on rearrest risk of 
other defendant characteristics. 43 

In addition, the results from Section VI.B call into question 

that these characteristics are well-understood proxies for risk. As 
we show there, experts who understand pretrial (public defenders 
and legal aid society staff) do not recognize the signal about judge 

decision making that the algorithm has discovered in the mug 

shot. These considerations as a whole—that measured rearrest 
is itself biased, the bounding exercise, and the failure of experts 
to recreate this signal—together lead us to tentatively conclude 

that it is unlikely that what the algorithm is finding in the face is 
merely a well-understood proxy for risk, but reflects errors in the 

judicial decision-making process. Of course, that presumption is 
not essential for the rest of the article, which asks: what exactly 

has the algorithm discovered in the face? 

42. Note how this comparison helps mitigate the problem that police arrest 
decisions could depend on a person’s face. When we regress rearrest against the 
mug shot, that estimated coefficient may be heavily influenced by how police ar- 
rest decisions respond to the defendant’s appearance. In contrast when we regress 
judge detention decisions against predicted rearrest risk, some of the variation 

across defendants in rearrest risk might come from the effect of the defendant’s 
appearance on the probability a police officer makes an arrest, but a great deal of 
the variation in predicted risk presumably comes from people’s behavior. 

43. The average mug shot–predicted detention risk for the bottom and top 
quartiles equal 0.127 and 0.332; that difference times 2.880 implies a rearrest 
risk difference of 59.0 percentage points. By way of comparison, the difference in 

rearrest risk between those who are arrested for a felony crime rather than a less 
serious misdemeanor crime is equal to just 7.8 percentage points. 
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IV.C. Is the Algorithm Discovering Something New? 

Previous studies already tell us a number of things about 
what shapes the decisions of judges and other people. For exam- 
ple, we know people stereotype by gender (Avitzour et al. 2020 ), 
age (Neumark, Burn, and Button 2016 ; Dahl and Knepper 2020 ), 
and race or ethnicity (Bertrand and Mullainathan 2004 ; Arnold, 
Dobbie, and Yang 2018 ; Arnold, Dobbie, and Hull 2020 ; Fryer 
2020 ; Hoekstra and Sloan 2022 ; Goncalves and Mello 2021 ). Is 
the algorithm just rediscovering known determinants of people’s 
decisions, or discovering something new? We address this in two 

ways. We first ask how much of the algorithm’s predictions can 

be explained by already-known features ( Table II ). We then ask 

how much of the algorithm’s predictive power in explaining actual 
judges’ decisions is diminished when we control for known factors 
( Table III ). We carry out both analyses for three sets of known 

facial features: (i) demographic characteristics, (ii) psychological 
features, and (iii) incentivized human guesses. 44 

Table II , columns (1)–(3) show the relationship of the algo- 
rithm’s predictions to demographics. The predictions vary enor- 
mously by gender (men have predicted detention likelihoods 
11.9 percentage points higher than women), less so by age, 45 and 

by different indicators of race or ethnicity. With skin tone scored 

on a 0 −1 continuum, defendants whom independent raters judge 

to be at the lightest end of the continuum are 4.4 percentage 

points less likely to be detained than those rated to have the dark- 
est skin tone (column (3)). Conditional on skin tone, Black defen- 
dants have a 1.9 percentage point lower predicted likelihood of 
detention compared with whites. 46 

44. In our main exhibits, we impose a simple linear relationship between the 
algorithm’s predicted detention risk and known facial features like age or psycho- 
logical variables, for ease of presentation. We show our results are qualitatively 
similar with less parametric specifications in Online Appendix Tables A.VI, A.VII, 
and A.VIII. 

45. With a coefficient value of 0.0006 on age (measured in years), the algo- 
rithm tells us that even a full decade’s difference in age has 5% the impact on 

detention likelihood compared to the effects of gender (10 × 0.0006 = 0.6 percent- 
age point higher likelihood of detention, versus 11.9 percentage points). 

46. Online Appendix Table A.V shows that Hispanic ethnicity, which we mea- 
sure from subject ratings from looking at mug shots, is not statistically signif- 
icantly related to the algorithm’s predictions. Table II , column (2) showed that 
conditional on gender, Black defendants have slightly higher predicted deten- 
tion odds than white defendants (0.3 percentage points), but this is not quite 
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TABLE II 
IS THE ALGORITHM REDISCOVERING KNOWN FACIAL FEATURES? 

Dependent variable 
Algorithmic judge detain prediction 

(1) (2) (3) (4) (5) 

Male 0 .1186*** 0 .1179*** 0 .1153*** 0 .1138*** 0 .1140*** 

(0 .0025) (0 .0025) (0 .0025) (0 .0025) (0 .0025) 
Age 0 .0006*** 0 .0006*** 0 .0003*** 0 .0003*** 

(0 .0001) (0 .0001) (0 .0001) (0 .0001) 
Black 0 .0029 −0 .0185*** −0 .0168*** −0 .0171*** 

(0 .0023) (0 .0037) (0 .0036) (0 .0036) 
Asian −0 .0204* −0 .0232** −0 .0210* −0 .0216* 

(0 .0115) (0 .0115) (0 .0114) (0 .0114) 
Indigenous American 0 .0103 0 .0061 0 .0135 0 .0126 

(0 .0241) (0 .0240) (0 .0238) (0 .0238) 
Skin tone −0 .0441*** −0 .0411*** −0 .0417*** 

(0 .0059) (0 .0058) (0 .0058) 
Attractiveness −0 .0055*** −0 .0051*** 

(0 .0016) (0 .0016) 
Competence −0 .0091*** −0 .0087*** 

(0 .0017) (0 .0017) 
Dominance 0 .0037*** 0 .0030** 

(0 .0012) (0 .0012) 
Trustworthiness −0 .0048*** −0 .0041** 

(0 .0016) (0 .0016) 
Human guess 0 .0399*** 

(0 .0062) 
Constant 0 .1595*** 0 .1391*** 0 .1771*** 0 .2393*** 0 .2173*** 

(0 .0022) (0 .0039) (0 .0064) (0 .0089) (0 .0095) 

Observations 9,604 9,604 9,604 9,604 9,604 
Adjusted R2 0 .1954 0 .1992 0 .2038 0 .2195 0 .2228 

Notes. The table presents the results of regressing an algorithmic prediction of judge detention decisions 
against each of the different explanatory variables as listed in the rows, where each column represents a 
different regression specification (the specific explanatory variables in each regression are indicated by the 
filled-in coefficients and standard errors in the table). The algorithm was trained using mug shots from the 
training data set; the regressions reported here are carried out using data from the validation data set. Data 
on skin tone, attractiveness, competence, dominance, and trustworthiness comes from asking subjects to as- 
sign feature ratings to mug shot images from the Mecklenburg County, NC, Sheriff ’s Office public website 
(see the text). The human guess about the judges’ decision comes from showing workers on the Prolific plat- 
form pairs of mug shot images and asking them to report which defendant they believe the judge would be 
more likely to detain. Regressions follow a linear probability model and also include indicators for unknown 
race and unknown gender. * p < .1; ** p < .05; *** p < .01. 

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024



782 THE QUARTERLY JOURNAL OF ECONOMICS
T

A
B

L
E
 
II

I 
D

O
E

S
 
T

H
E
 
A

L
G

O
R

IT
H

M
 
P

R
E

D
IC

T
 
JU

D
G

E
 
B

E
H

A
V

IO
R
 
A

F
T

E
R
 
C

O
N

T
R

O
L

L
IN

G
 
F

O
R
 
K

N
O

W
N
 
F

A
C

T
O

R
S
? 

D
ep

en
d

en
t 

va
ri

ab
le

: 
Ju

dg
e 

de
ta

in
 
de

ci
si

on
 

(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

(7
) 

A
lg

o 
ju

dg
e 

de
ta

in
 
pr

ed
ic

ti
on

 
0 .

69
63

**
* 

0 .
62

62
**

* 
0 .

61
71

**
* 

(0
 .0

38
3)

 
(0

 .0
43

3)
 

(0
 .0

43
4)

 

M
al

e 
0 .

10
40

**
* 

0 .
09

78
**

* 
0 .

09
40

**
* 

0 .
02

28
* 

0 .
02

44
**
 

(0
 .0

10
5)

 
(0

 .0
10

6)
 

(0
 .0

10
8)

 
(0

 .0
11

7)
 

(0
 .0

11
7)

 

A
ge

 
−0

 .0
00

8**
 

−0
 .0

00
9**

 

−0
 .0

01
3**

* 
−0

 .0
01

5**
* 

−0
 .0

01
5**

* 

(0
 .0

00
4)

 
(0

 .0
00

4)
 

(0
 .0

00
4)

 
(0

 .0
00

4)
 

(0
 .0

00
4)

 

B
la

ck
 

−0
 .0

13
9 

−0
 .0

65
1**

* 
−0

 .0
61

8**
* 

−0
 .0

51
3**

* 
−0

 .0
52

1**
* 

(0
 .0

09
8)

 
(0

 .0
15

6)
 

(0
 .0

15
6)

 
(0

 .0
15

4)
 

(0
 .0

15
4)

 

A
si

an
 

−0
 .0

75
3 

−0
 .0

81
8* 

−0
 .0

75
4 

−0
 .0

62
3 

−0
 .0

63
8 

(0
 .0

49
0)

 
(0

 .0
49

0)
 

(0
 .0

48
9)

 
(0

 .0
48

4)
 

(0
 .0

48
4)

 

In
di

ge
n

ou
s 

A
m

er
ic

an
 

0 .
06

26
 

0 .
05

24
 

0 .
06

70
 

0 .
05

85
 

0 .
05

68
 

(0
 .1

02
4)

 
(0

 .1
02

3)
 

(0
 .1

02
1)

 
(0

 .1
01

1)
 

(0
 .1

01
0)

 

S
ki

n
 
to

n
e 

−0
 .1

05
9**

* 
−0

 .1
00

4**
* 

−0
 .0

74
7**

* 
−0

 .0
76

2**
* 

(0
 .0

25
1)

 
(0

 .0
25

1)
 

(0
 .0

24
9)

 
(0

 .0
24

9)
 

A
tt

ra
ct

iv
en

es
s 

−0
 .0

01
7 

−0
 .0

05
3 

−0
 .0

01
9 

−0
 .0

01
1 

(0
 .0

06
3)

 
(0

 .0
06

7)
 

(0
 .0

06
7)

 
(0

 .0
06

7)
 

C
om

pe
te

n
ce

 
−0

 .0
19

2**
* 

−0
 .0

20
7**

* 
−0

 .0
15

0**
 

−0
 .0

14
4**

 

(0
 .0

07
3)

 
(0

 .0
07

2)
 

(0
 .0

07
2)

 
(0

 .0
07

2)
 

D
om

in
an

ce
 

0 .
01

60
**

* 
0 .

00
95

* 
0 .

00
71

 
0 .

00
57

 

(0
 .0

05
0)

 
(0

 .0
05

1)
 

(0
 .0

05
1)

 
(0

 .0
05

1)
 

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024



MACHINE LEARNING AS A TOOL FOR HYPOTHESIS GENERATION 783

T
A

B
L

E
 
II

I 
C

O
N

T
IN

U
E

D
 

D
ep

en
d

en
t 

va
ri

ab
le

: 
Ju

dg
e 

de
ta

in
 
de

ci
si

on
 

(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

(7
) 

T
ru

st
w

or
th

in
es

s 
−0

 .0
19

0**
* 

−0
 .0

13
5* 

−0
 .0

10
5 

−0
 .0

09
2 

(0
 .0

07
0)

 
(0

 .0
07

1)
 

(0
 .0

07
0)

 
(0

 .0
07

0)
 

H
u

m
an

 
gu

es
s 

0 .
08

52
**

* 

(0
 .0

26
5)

 

C
on

st
an

t 
0 .

05
76

**
* 

0 .
18

68
**

* 
0 .

27
80

**
* 

0 .
30

54
**

* 
0 .

39
28

**
* 

0 .
24

29
**

* 
0 .

19
81

**
* 

(0
 .0

10
6)

 
(0

 .0
16

5)
 

(0
 .0

27
2)

 
(0

 .0
25

8)
 

(0
 .0

38
1)

 
(0

 .0
39

1)
 

(0
 .0

41
5)

 

N
ai

ve
-A

U
C
 

0 .
62

5 
0 .

56
 

0 .
57

1 
0 .

54
9 

0 .
58

6 
0 .

63
3 

0 .
63

5 
O

bs
er

va
ti

on
s 

9,
60

4 
9,

60
4 

9,
60

4 
9,

60
4 

9,
60

4 
9,

60
4 

9,
60

4 
A

dj
u

st
ed

 
R

2 
0 .

03
31

 
0 .

01
01

 
0 .

01
19

 
0 .

00
49

 
0 .

01
62

 
0 .

03
70

 
0 .

03
80

 

N
ot

es
. 

T
h

is
 
ta

bl
e 

re
po

rt
s 

th
e 

re
su

lt
s 

of
 
es

ti
m

at
in

g 
a 

li
n

ea
r 

pr
ob

ab
il

it
y 

sp
ec

ifi
ca

ti
on
 
of
 
ju

dg
es

’ d
et

ai
n
 
de

ci
si

on
s 

ag
ai

n
st
 
di

ff
er

en
t 

ex
pl

an
at

or
y 

va
ri

ab
le

s 
in
 
th

e 
va

li
da

ti
on
 
se

t 
de

sc
ri

be
d 

in
 
T

ab
le
 
I .
 
E

ac
h
 
ro

w
 
re

pr
es

en
ts
 
a 

di
ff

er
en

t 
ex

pl
an

at
or

y 
va

ri
ab

le
 
fo

r 
th

e 
re

gr
es

si
on

, 
w

h
il

e 
ea

ch
 
co

lu
m

n
 
re

po
rt

s 
th

e 
re

su
lt

s 
of
 
a 

se
pa

ra
te
 
re

gr
es

si
on
 
w

it
h
 
di

ff
er

en
t 

co
m

bi
n

at
io

n
s 

of
 
ex

pl
an

at
or

y 
va

ri
ab

le
s 

(a
s 

in
di

ca
te

d 
by
 
th

e 
fi

ll
ed

-i
n
 
co

ef
fi

ci
en

ts
 
an

d 
st

an
da

rd
 
er

ro
rs
 
in
 
th

e 
ta

bl
e)

. 
T

h
e 

al
go

ri
th

m
ic
 
pr

ed
ic

ti
on

s 
of
 
th

e 
ju

dg
es

’ 
de

ta
in
 
de

ci
si

on
 

co
m

e 
fr

om
 
ou

r 
co

n
vo

lu
ti

on
al
 
n

eu
ra

l 
n

et
w

or
k 

al
go

ri
th

m
 
bu

il
t 

u
si

n
g 

th
e 

de
fe

n
da

n
ts

’ f
ac

e 
im

ag
e 

as
 
th

e 
on

ly
 
fe

at
u

re
, u

si
n

g 
da

ta
 
fr

om
 
th

e 
tr

ai
n

in
g 

da
ta
 
se

t.
 
M

ea
su

re
s 

of
 
de

fe
n

da
n

t 
de

m
og

ra
ph

ic
s 

an
d 

cu
rr

en
t 

ar
re

st
 
ch

ar
ge
 
co

m
e 

fr
om

 
go

ve
rn

m
en

t 
ad

m
in

is
tr

at
iv

e 
da

ta
 
ob

ta
in

ed
 
fr

om
 
a 

co
m

bi
n

at
io

n
 
of
 
M

ec
kl

en
bu

rg
 
C

ou
n

ty
, N

C
, a

n
d 

st
at

e 
ag

en
ci

es
. M

ea
su

re
s 

of
 
sk

in
 

to
n

e,
 
at

tr
ac

ti
ve

n
es

s,
 
co

m
pe

te
n

ce
, d

om
in

an
ce

, a
n

d 
tr

u
st

w
or

th
in

es
s 

co
m

e 
fr

om
 
su

bj
ec

t 
ra

ti
n

gs
 
of
 
m

u
g 

sh
ot
 
im

ag
es
 
(s

ee
 
th

e 
te

xt
).
 
H

u
m

an
 
gu

es
s 

va
ri

ab
le
 
co

m
es
 
fr

om
 
sh

ow
in

g 
su

bj
ec

ts
 

pa
ir

s 
of
 
m

u
g 

sh
ot
 
im

ag
es
 
an

d 
as

ki
n

g 
su

bj
ec

ts
 
to
 
id

en
ti

fy
 
th

e 
de

fe
n

da
n

t 
th

ey
 
th

in
k 

th
e 

ju
dg

e 
w

ou
ld
 
be
 
m

or
e 

li
ke

ly
 
to
 
de

ta
in

. R
eg

re
ss

io
n
 
sp

ec
ifi

ca
ti

on
s 

al
so
 
in

cl
u

de
 
in

di
ca

to
rs
 
fo

r 
u

n
kn

ow
n
 
ra

ce
 
an

d 
u

n
kn

ow
n
 
ge

n
de

r.
* 

p 
<
 
.1

;**
 

p 
<
 
.0

5;
**

* 
p 

<
 
.0

1.
 

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024



784 THE QUARTERLY JOURNAL OF ECONOMICS

Table II , column (4) shows how the algorithm’s predictions 
relate to facial features implicated by past psychological stud- 
ies as shaping people’s judgments of one another. These features 
also help explain the algorithm’s predictions of judges’ detention 

decisions: people judged by independent raters to be one stan- 
dard deviation more attractive, competent, or trustworthy have 

lower predicted likelihood of detention equal to 0.55, 0.91, and 

0.48 percentage points, respectively, or 2 . 2% , 3 . 6% , and 1 . 8% of 
the base rate. 47 Those whom subjects judge are one standard de- 
viation more dominant-looking have a higher predicted likelihood 

of detention of 0.37 percentage points (or 1 . 5%) . 
How do we know we have controlled for everything rele- 

vant from past research? The literature on what shapes human 

judgments in general is vast; perhaps there are things that are 

relevant for judges’ decisions specifically that we have inadver- 
tently excluded? One way to solve this problem would be to do a 

comprehensive scan of past studies of human judgment and deci- 
sion making, and then decide which results from different non–
criminal justice contexts might be relevant for criminal justice. 
But that itself is a form of human-driven hypothesis generation, 
bringing us right back to where we started. 

To get out of this box, we take a different approach. Instead of 
enumerating individual characteristics, we ask people to embody 

their beliefs in a guess, which ought to be the compound of all 
these characteristics. Then we can ask whether the algorithm has 
rediscovered this human guess (and later whether it has discov- 
ered more). We ask independent subjects to look at pairs of mug 

shots matched by gender, race, and five-year age bins and fore- 
cast which defendant is more likely to be detained by a judge. We 

provide a financial incentive for accurate guesses to increase the 

significant ( t = 1.3). Online Appendix Table A.V, column (1) shows that condi- 
tioning on Hispanic ethnicity and having stereotypically Black facial features—as 
measured in Eberhardt et al. (2006) —increases the size of the Black-white differ- 
ence in predicted detention odds (now equal to 0.8 percentage points) as well as 
the difference’s statistical significance ( t = 2.2). 

47. This comes from multiplying the effect of each 1 unit change in our 9-point 
scale associated, equal to 0.55, 0.91, and 0.48 percentage points, respectively, with 

the standard deviation of the average label for each psychological feature for each 

image, which equal 0.923, 0.911, and 0.844, respectively. 
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chances that subjects take the exercise seriously. 48 We also pro- 
vide subjects with an opportunity to learn by showing subjects 50 

image pairs with feedback after each pair about which defendant 
the judge detained. We treat the first 10 image pairs from each 

subject as learning trials and only use data from the last 40 image 

pairs. This approach is intended to capture anything that influ- 
ences judges’ decisions that subjects could recognize, from subtle 

signs of things like socioeconomic status or drug use or mood, to 

things people can recognize but not articulate. 
It turns out subjects are modestly good at this task ( Table II ). 

Participants guess which mug shot is more likely to be detained at 
a rate of 51 . 4% , which is different to a statistically significant de- 
gree from the 50% random-guessing threshold. When we regress 
the algorithm’s predicted detention rate against these subject 
guesses, the coefficient is 3.99 percentage points, equal to 17 . 1% 

of the base rate. 
The findings in Table II are somewhat remarkable. The only 

input the algorithm had access to was the raw pixel values of 
each mug shot, yet it has rediscovered findings from decades of 
previous research and human intuition. 

Interestingly, these features collectively explain only a frac- 
tion of the variation in the algorithm’s predictions: the R2 is only 

0.2228. That by itself does not necessarily mean the algorithm 

has discovered additional useful signal. It is possible that the re- 
maining variation is prediction error—components of the predic- 
tion that do not explain actual judges’ decisions. 

In Table III , we test whether the algorithm uncovers any ad- 
ditional signal for actual judge decisions, above and beyond the 

influence of these known factors. The algorithm by itself produces 
an R2 of 0.0331 (column (1)), substantially higher than all pre- 
viously known features taken together, which produce an R2 of 
0.0162 (column (5)), or the human guesses alone which produce 

an R2 of 0.0025 (so we can see the algorithm is much better at pre- 
dicting detention from faces than people are). Another way to see 

that the algorithm has detected signal above and beyond these 

known features is that the coefficient on the algorithm predic- 
tion when included alone in the regression, 0.6963 (column (1)), 

48. As discussed in Online Appendix Table A.III, we offer subjects a $3.00 
base rate for participation plus an incentive of 5 cents per correct guess. With 

50 image pairs shown to each participant, they could increase their earnings by 
another $2.50, or up to 83% above the base compensation. 
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changes only modestly when we condition on everything else, now 

equal to 0.6171 (column (7)). The algorithm seems to have discov- 
ered some novel source of signal that better predicts judge deten- 
tion decisions. 49 

V. ALGORITHM-HUMAN COMMUNICATION 

The algorithm has made a discovery: something about the de- 
fendant’s face explains judge decisions, above and beyond the fa- 
cial features implicated by existing research. But what is it about 
the face that matters? Without an answer, we are left with a dis- 
covery of an unsatisfying sort. We have simply replaced one black 

box hypothesis generation procedure (human creativity) with 

another (the algorithm). In what follows we demonstrate how 

existing methods like saliency maps cannot solve this challenge 

in our application and then discuss our solution to that problem. 

V.A. The Challenge of Explanation 

The problem of algorithm-human communication stems from 

the fact that we cannot simply look inside the algorithm’s “black 

box” and see what it is doing because m ( x ), the algorithmic pre- 
dictor, is so complicated. A common solution in computer science 

is to forget about looking inside the algorithmic black box and fo- 
cus instead on drawing inferences from curated outputs of that 
box. Many of these methods involve gradients: given a prediction 

function m ( x ), we can calculate the gradient ∇m (x ) = d m 

d x (x ) . This 
lets us determine, at any input value, what change in the input 
vector maximally changes the prediction. 50 The idea of gradients 
is useful for image classification tasks because it allows us to tell 

49. Table III gives us another way to see how much of previously known 

features are rediscovered by the algorithm. That the algorithm’s prediction plus 
all previously known features yields an R2 of just 0.0380 (column (7)), not much 

larger than with the algorithm alone, suggests the algorithm has discovered most 
of the signal in these known features. But not necessarily all: these other known 

features often do remain statistically significant predictors of judges’ decisions 
even after controlling for the algorithm’s predictions (last column). One possible 
reason is that, given finite samples, the algorithm has only imperfectly recon- 
structed factors such as “age” or “human guess.” Controlling for these factors di- 
rectly adds additional signal. 

50. Imagine a linear prediction function like m (x1 , x2 ) = ̂ β1 x1 + ̂ β2 x2 . If our 
best estimates suggested ̂ β2 = 0 , the maximum change to the prediction comes 
from incrementally changing x1 . 
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which pixel image values are most important for changing the 

predicted outcome. 
For example, a widely used method known as saliency 

maps uses gradient information to highlight the specific pixels 
that are most important for predicting the outcome of interest 
(Baehrens et al. 2010 ; Simonyan, Vedaldi, and Zisserman 2014 ). 
This approach works well for many applications like determin- 
ing whether a given picture contains a given type of animal, a 

common task in ecology (Norouzzadeh et al. 2018 ). What distin- 
guishes a cat from a dog? A saliency map for a cat detector might 
highlight pixels around, say, the cat’s head: what is most cat-like 

is not the tail, paws, or torso, but the eyes, ears, and whiskers. 
But more complicated outcomes of the sort social scientists study 

may depend on complicated functions of the entire image. 
Even if saliency maps were more selective in highlighting 

pixels in applications like ours, for hypothesis generation they 

also suffer from a second limitation: they do not convey enough 

information to enable people to articulate interpretable hypothe- 
ses. In the cat detector example, a saliency map can tell us that 
something about the cat’s (say) whiskers are key for distinguish- 
ing cats from dogs. But what about that feature matters? Would 

a cat look more like a dog if its whiskers were longer? Or shorter? 
More (or less?) even in length? People need to know not just what 
features matter but how they must change to change the predic- 
tion. For hypothesis generation, the saliency map undercommu- 
nicates with humans. 

To test the ability of saliency maps to help with our appli- 
cation, we focused on a facial feature that people already under- 
stand and can easily recognize from a photo: age. We first build 

an algorithm that predicts each defendant’s age from their mug 

shot. For a representative image, as in the top left of Figure III , 
we can highlight which pixels are most important for predicting 

age, shown in the top right. 51 A key limitation of saliency maps 
is easy to see: because age (like many human facial features) is a 

function of almost every part of a person’s face, the saliency map 

highlights almost everything. 

51. As noted already, to avoid contributing to the stereotyping of minorities 
in discussions of crime, in our exhibits we show images for non-Hispanic white 
men, although in our HITs we use images representative of the larger defendant 
population. 
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(C)

(A) (B)

(D)

FIGURE III 

Candidate Algorithm-Human Communication Vehicles for a Known Facial 
Feature: Age 

Panel A shows a randomly selected point in the GAN latent space for a non- 
Hispanic white male defendant. Panel B shows a saliency map that highlights 
the pixels that are most important for an algorithmic model that predicts the 
defendant’s age from the mug shot image. Panel C shows an image changed or 
“morphed” in the direction of older age, based on the gradient of the image-based 
age prediction, using the “naive” morphing procedure that does not constrain the 
new image to lie on the face manifold (see the text). Panel D shows the image 
morphed to the maximum age using our actual preferred morphing procedure. 

An alternative to simply highlighting high-leverage pixels is 
to change them in the direction of the gradient of the predicted 

outcome, to—ideally—create a new face that now has a differ- 
ent predicted outcome, what we call “morphing.” This new image 
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FIGURE IV 

Hypothesis Generation Pipeline 

The diagram illustrates all the algorithmic components in our procedure by pre- 
senting a full pipeline for algorithmic interpretation. 

answers the counterfactual question: “How would this person’s 
face change to increase their predicted outcome?” Our approach 

builds on the ability of people to comprehend ideas through com- 
parisons, so we can show morphed image pairs to subjects to have 

them name the differences that they see. Figure IV summarizes 
our semiautomated hypothesis generation pipeline. (For more de- 
tails see Online Appendix B.) The benefit of morphed images over 
actual mug shot images is to isolate the differences across faces 
that matter for the outcome of interest. By reducing noise, mor- 
phing also reduces the risk of spurious discoveries. 

Figure V illustrates how this morphing procedure works in 

practice and highlights some of the technical challenges that 
arise. Let the box in the top panel represent the space of all pos- 
sible images—all possible combinations of pixel values for, say, a 

512 × 512 image. Within this space, we can apply our mug shot–
based predictor of the known facial feature, age, to identify all im- 
ages with the same predicted age, as shown by the contour map 

of the prediction function. Imagine picking some random initial 
mug shot image. We could follow the gradient to find an image 

with a higher predicted value of the outcome y . 
The challenge is that most points in this image space are not 

actually face images. Simply following the gradient will usually 

take us off the data distribution of face images, as illustrated 

abstractly in the top panel of Figure V . What this means in 

practice is shown in the bottom left panel of Figure III : the result 
is an image that has a different predicted outcome (in the figure, 
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FIGURE V 

Morphing Images for Detention Risk On and Off the Face Manifold 
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FIGURE V 

( Continued ) The figure shows the difference between an unconstrained (naive) 
morphing procedure and our preferred new morphing approach. In both panels, 
the background represents the image space (set of all possible pixel values) and 
the blue line (color version available online) represents the set of all pixel values 
that correspond to any face image (the face manifold). The orange lines show all 
images that have the same predicted outcome (isoquants in predicted outcome). 
The initial face (point on the outermost contour line) is a randomly selected face 
in GAN face space. From there we can naively follow the gradients of an algo- 
rithm that predicts some outcome of interest from face images. As shown in Panel 
A, this takes us off the face manifold and yields a nonface image. Alternatively, 
with a model of the face manifold, we can follow the gradient for the predicted 
outcome while ensuring that the new image is again a realistic instance as shown 

in Panel B. 

illustrated for age) but no longer looks like a real instance—that 
is, no longer looks like a realistic face image. This “naive” morph- 
ing procedure will not work without some way to ensure the new 

point we wind up on in image space corresponds to a realistic 
face image. 

V.B. Building a Model of the Data Distribution 

To ensure morphing leads to realistic face images, we need 

a model of the data distribution p ( x )—in our specific application, 
the set of images that are faces. We rely on an unsupervised learn- 
ing approach to this problem. 52 Specifically, we use generative 

adversarial networks (GANs), originally introduced to generate 

realistic new images for a variety of tasks (see Goodfellow et al. 
2014 ). 53 

A GAN is built by training two algorithms that “com- 
pete” with each another, the generator G and the classifier C : 
the generator creates synthetic images and the classifier (or 
“discriminator”), presented with synthetic or real images, tries 
to distinguish which is which. A good discriminator pressures the 

generator to produce images that are harder to distinguish from 

real; in turn, a good generator pressures the classifier to get better 
at discriminating real from synthetic images. Data on actual faces 

52. Modeling p ( x ) through a supervised learning task would involve assem- 
bling a large set of images, having subjects label each image for whether they 
contain a realistic face, and then predicting those labels using the image pixels as 
inputs. But this supervised learning approach is costly because it requires exten- 
sive annotation of a large training data set. 

53. Kaji, Manresa, and Pouliot (2020) and Athey et al. (2021 , 2022) are recent 
uses of GANs in economics. 
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are used to train the discriminator, which results in the generator 
being trained as it seeks to fool the discriminator. With machine 

learning, the performance of C and G improve with successive it- 
erations of training. A perfect G would output images where the 

classifier C does no better than random guessing. Such a gener- 
ator would by definition limit itself to the same input space that 
defines real images, that is, the data distribution of faces. (Addi- 
tional discussion of GANs in general and how we construct our 
GAN specifically are in Online Appendix B.) 

To build our GAN and evaluate its expressiveness we use 

standard training metrics, which turn out to compare favorably 

to what we see with other widely used GAN models on other data 

sets (see Online Appendix B.C for details). A more qualitative way 

to judge our GAN comes from visual inspection; some examples of 
synthetic face images are in Figure II . Most importantly, the GAN 

we build (as is true of GANs in general) is not generic. GANs are 

specific. They do not generate “faces” but instead seek to match 

the distribution of pixel combinations in the training data. For 
example, our GAN trained using mug shots would never generate 

generic Facebook profile photos or celebrity headshots. 
Figure V illustrates how having a model such as the GAN 

lets morphing stay on the data distribution of faces and produce 

realistic images. We pick a random point in the space of faces 
(mug shots) and then use the algorithmic predictor of the outcome 

of interest m ( x ) to identify nearby faces that are similar in all 
respects except those relevant for the outcome. Notice this proce- 
dure requires that faces closer to one another in GAN latent space 

should look relatively more similar to one another to a human in 

pixel space. Otherwise we might make a small movement along 

the gradient and wind up with a face that looks different in all 
sorts of other ways that are irrelevant to the outcome. That is, we 

need the GAN not just to model the support of the data but also 

to provide a meaningful distance metric. 
When we produce these morphs, what can possibly change as 

we morph? In principle there is no limit. The changes need not 
be local: features such as skin color, which involves many pixels, 
could change. So could features such as attractiveness, where the 

pixels that need to change to make a face more attractive vary 

from face to face: the “same” change may make one face more 

attractive and another less so. Anything represented in the face 

could change, as could anything else in the image beyond the face 

that matters for the outcome (if, for example, localities varied in 
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both detention rates and the type of background they have some- 
one stand in front of for mug shots). 

In practice, though, there is a limit. What can change de- 
pends on how rich and expressive the estimated GAN is. If the 

GAN fails to capture a certain kind of face or a dimension of the 

face, then we are unlikely to be able to morph on that dimen- 
sion. The morphing procedure is only as complete as the GAN is 
expressive. Assuming the GAN expresses a feature, then if m ( x ) 
truly depends on that feature, morphing will likely display it. Nor 
is there any guarantee that in any given application the classifier 
m ( x ) will find novel signal for the outcome y , or that the GAN suc- 
cessfully learns the data distribution (Nalisnick et al. 2018 ), or 
that subjects can detect and articulate whatever signal the classi- 
fier algorithm has discovered. Determining the general conditions 
under which our procedure will work is something we leave to fu- 
ture research. Whether our procedure can work for the specific 
application of judge decisions is the question to which we turn 

next. 54 

V.C. Validating the Morphing Procedure 

We return to our algorithmic prediction of a known facial 
feature—age—and see what morphing by age produces as a way 

to validate or test our procedure. When we follow the gradient 
of the predicted outcome (age), by constraining ourselves to stay 

on the GAN’s latent space of faces we wind up with a new age- 
morphed face that does indeed look like a realistic face image, as 
shown in the bottom right of Figure III . We seem to have suc- 
cessfully developed a model of the data distribution and a way to 

move around on that surface to create realistic new instances. 

54. Some ethical issues are worth considering. One is bias. With human hy- 
pothesis generation there is the risk people “see” an association that impugns 
some group yet has no basis in fact. In contrast our procedure by construction only 
produces empirically plausible hypotheses. A different concern is the vulnerabil- 
ity of deep learning to adversarial examples: tiny, almost imperceptible changes 
in an image changing its classification for the outcome y , so that mug shots that 
look almost identical (that is, are very “similar” in some visual image metric) have 
dramatically different m ( x ). This is a problem because tiny changes to an image 
don’t change the nature of the object; see Szegedy et al. (2013) and Goodfellow, 
Shlens, and Szegedy (2014) . In practice such instances are quite rare in nature, 
indeed, so rare they usually occur only if intentionally (maliciously) generated. 
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To figure out if algorithm-human communication occurs, we 

run these age-morphed image pairs through our experimen- 
tal pipeline ( Figure IV ). Our procedure is only useful if it is 
replicable—that is, if it does not depend on the idiosyncratic in- 
sights of any particular person. For that reason, the people look- 
ing at these images and articulating what they see should not 
be us (the investigators) but a sample of external, independent 
study subjects. In our application, we use Prolific workers (see 

Online Appendix Table A.III). Reliability or replicability is indi- 
cated by the agreement in the subject responses: lots of subjects 
see and articulate the same thing in the morphed images. 

We asked subjects to look at 50 age-morphed image pairs 
selected at random from a population of 100 pairs, and told them 

the images in each pair differ on some hidden dimension but 
did not tell them what that was. 55 We asked subjects to guess 
which image expresses that hidden feature more, gave them 

feedback about the right answer, treated the first 10 image pairs 
as learning examples, and calculated accuracy on the remaining 

40 images. Subjects correctly selected the older image 97 . 8% of 
the time. 

The final step was to ask subjects to name what differs 
in image pairs. Making sense of these responses requires some 

way to group them into semantic categories. Each subject com- 
ment could include several concepts (e.g., “wrinkles, gray hair, 
tired”). We standardized these verbal descriptions by remov- 
ing punctuation, using only lowercase characters, and removing 

stop words. We gave three research assistants not otherwise in- 
volved in the project these responses and asked them to create 

their own categories that would capture all the responses (see 

Online Appendix Figure A.XIII). We also gave them an illus- 
trative subject comment and highlighted the different “types” of 
categories (descriptive physical features, i.e., “thick eyebrows,”
descriptive impression category, i.e., “energetic,” but also an illus- 
tration of a category of comment that is too vague to lend itself to 

55. Online Appendix Figure A.XII gives an example of this task and the in- 
structions given to participating subjects to complete it. Each subject was tested 
on 50 image pairs selected at random from a population of 100 images. Subjects 
were told that for every pair, one image was higher in some unknown feature, but 
not given details as to what the feature might be. As in the exercise for predicting 
detention, feedback was given immediately after selecting an image, and a 5 cent 
bonus was paid for every correct answer. 
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useful measurement, i.e., “ears”). In our validation exercise 81 . 5% 

of subject reports fall into the semantic categories of either age or 
the closely related feature of hair color. 56 

V.D. Understanding the Judge Detention Predictor 

Having validated our algorithm-human communication pro- 
cedure for the known facial feature of age, we are ready to apply it 
to generate a new hypothesis about what drives judge detention 

decisions. To do this we combine the mug shot algorithm predic- 
tor of judges’ detention decisions, m ( x ), with our GAN of the data 

distribution of mug shot images, then create new synthetic im- 
age pairs morphed with respect to the likelihood the judge would 

detain the defendant (see Figure IV ). 
The top panel of Figure VI shows a pair of such images. Un- 

derneath we show an “image strip” of intermediate steps, along 

with each image’s predicted detention rate. With an overall de- 
tention rate of 23 . 3% in our validation data set, morphing takes 
us from about one-half the base rate ( 13% ) up to nearly twice the 

base rate ( 41% ). Additional examples of morphed image pairs are 

shown in Figure VII . 
We showed 54 subjects 50 detention-risk-morphed image 

pairs each, asked them to predict which defendant would be de- 
tained, offered them financial incentives for correct answers, 57 

and gave them feedback on the right answer. Online Appendix
Figure A.XV shows how accurate subjects are as they get more 

practice across successive morphed image pairs. With the ini- 
tial image-pair trials, subjects are not much better than random 

guessing, in the range of what we see when subjects look at pairs 
of actual mugshots (where accuracy is 51 . 4% across the final 40 

mug shot pairs people see). But unlike what happens when sub- 
jects look at actual images, when looking at morphed image pairs 
subjects seem to quickly learn what the algorithm is trying to 

communicate to them. Accuracy increased by over 10 percentage 

points after 20 morphed image pairs and reached 67% after 30 im- 
age pairs. Compared to looking at actual mugshots, the morphing 

56. In principle this semantic grouping could be carried out in other ways, for 
example, with automated procedures involving natural-language processing. 

57. See Online Appendix Table A.III for a high-level description of this human 

intelligence task, and Online Appendix Figure A.XIV for a sample of the task and 
the subject instructions. 

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjad055#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjad055#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjad055#supplementary-data


796 THE QUARTERLY JOURNAL OF ECONOMICS

(A)

(B)

(C)

FIGURE VI 

Illustration of Morphed Faces along the Detention Gradient 

Panel A shows the result of selecting a random point on the GAN latent face 
space for a white non-Hispanic male defendant, then using our new morphing pro- 
cedure to increase the predicted detention risk of the image to 0.41 (left) or reduce 
the predicted detention risk down to 0.13 (right). The overall average detention 

rate in the validation data set of actual mug shot images is 0.23 by comparison. 
Panel B shows the different intermediate images between these two end points, 
while Panel C shows the predicted detention risk for each of the images in the 
middle panel. 

procedure accomplished its goal of making it easier for subjects to 

see what in the face matters most for detention risk. 
We asked subjects to articulate the key differences they saw 

across morphed image pairs. The result seems to be a reliable 

hypothesis—a facial feature that a sizable share of subjects 
name. In the top panel of Figure VIII , we present a histogram 
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FIGURE VII 

Examples of Morphing along the Gradients of the Face-Based Detention 

Predictor 
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(A)

(B)

FIGURE VIII 

Subject Reports of What They See between Detention-Risk-Morphed Image Pairs 

Panel A shows a word cloud of subject reports about what they see as the key 
difference between image pairs where one is a randomly selected point in the 
GAN latent space and the other is morphed in the direction of a higher predicted 
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FIGURE VIII 

( Continued ) detention risk. Words are approximately proportionately sized to the 
frequency of subject mentions. Panel B shows the frequency of semantic groupings 
of those open-ended subject reports (see the text for additional details). 

of individual tokens (cleaned words from worker comments) in 

“word cloud” form, where word size is approximately proportional 
to frequency. 58 Some of the most common words are “shaved,”
“cleaner,” “length,” “shorter,” “moustache,” and “scruffy.” To form 

semantic categories, we use a procedure similar to what we de- 
scribe for our validation exercise for the known feature of age. 59 

Grouping tokens into semantic categories, we see that nearly 

40% of the subjects see and name a similar feature that they 

think helps explain judge detention decisions: how well-groomed 

the defendant is (see the bottom panel of Figure VIII ). 60 

Can we confirm that what the subjects think the algorithm 

is seeing is what the algorithm actually sees? We asked a sepa- 
rate set of 343 independent subjects (MTurk workers) to label the 

32,881 mug shots in our combined training and validation data 

sets for how well-groomed each image was perceived to be on a 

nine-point scale. 61 For data sets of our size, these labeling costs 

58. We drop every token of just one or two characters in length, as well as con- 
nector words without real meaning for this purpose, like “had,” “the,” and “and,”
as well as words that are relevant to our exercise but generic, like “jailed,” “judge,”
and “image.”

59. We enlisted three research assistants blinded to the findings of this study 
and asked them to come up with semantic categories that captured all subject 
comments. Since each assistant mapped each subject comment to 5% of semantic 
categories on average, if the assistant mappings were totally uncorrelated, we 
would expect to see agreement of at least two assistant categorizations about 5% 

of the time. What we actually see is if one research assistant made an association, 
60% of the time another assistant would make the same association. We assign a 
comment to a semantic category when at least two of the assistants agree on the 
categorization. 

60. Moreover what subjects see does not seem to be particularly sensitive to 
which images they see. (As a reminder, each subject sees 50 morphed image pairs 
randomly selected from a larger bank of 100 morphed image pairs). If we start 
with a subject who says they saw “well-groomed” in the morphed image pairs they 
saw, for other subjects who saw 21 or fewer images in common (so saw mostly 
different images) they also report seeing well-groomed 31% of the time, versus 
35% among the population. We select the threshold of 21 images because this is 
the smallest threshold in which at least 50 pairs of raters are considered. 

61. See Online Appendix Table A.III and Online Appendix Figure A.XVI. This 
comes to a total of 192,280 individual labels, an average of 3.2 labels per image 
in the training set and an average of 10.8 labels per image in the validation set. 
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are fairly modest, but in principle those costs could be much more 

substantial (or even prohibitive) in some applications. 
Table IV suggests algorithm-human communication has suc- 

cessfully occurred: our new hypothesis, call it h1 ( x ), is correlated 

with the algorithm’s prediction of the judge, m ( x ). If subjects were 

mistaken in thinking they saw well-groomed differences across 
images, there would be no relationship between well-groomed 

and the detention predictions. Yet what we actually see is the R2 

from regressing the algorithm’s predictions against well-groomed 

equals 0.0247, or 11% of the R2 we get from a model with all the 

explanatory variables (0.2361). In a bivariate regression the coef- 
ficient ( −0.0172) implies that a one standard deviation increase 

in well-groomed (1.0118 points on our 9-point scale) is associ- 
ated with a decline in predicted detention risk of 1.74 percentage 

points, or 7 . 5% of the base rate. Another way to see the explana- 
tory power of this hypothesis is to note that this coefficient hardly 

changes when we add all the other explanatory variables to the 

regression (equal to −0.0153 in the final column) despite the sub- 
stantial increase in the model’s R2 . 

V.E. Iteration 

Our procedure is iterable. The first novel feature we discov- 
ered, well-groomed, explains some—but only some—of the varia- 
tion in the algorithm’s predictions of the judge. We can iterate our 
procedure to generate hypotheses about the remaining residual 
variation as well. Note that the order in which features are dis- 
covered will depend on how important each feature is in explain- 
ing the judge’s detention decision and on how salient each feature 

is to the subjects who are viewing the morphed image pairs. So ex- 
planatory power for the judge’s decisions need not monotonically 

decline as we iterate and discover new features. 
To isolate the algorithm’s signal above and beyond what is 

explained by well-groomed, we wish to generate a new set of 
morphed image pairs that differ in predicted detention but hold 

well-groomed constant. That would help subjects see other novel 
features that might differ across the detention-risk-morphed 

images, without subjects getting distracted by differences in 

Sampling labels from different workers on the same image, these ratings have a 
correlation of 0.14. 
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well-groomed. 62 But iterating the procedure raises several tech- 
nical challenges. To see these challenges, consider what would in 

principle seem to be the most straightforward way to orthogonal- 
ize, in the GAN’s latent face space: 

• use training data to build predictors of detention risk, 
m ( x ), and the facial features to orthogonalize against, 
h1 ( x ); 

• pick a point on the GAN latent space of faces; 
• collect the gradients with respect to m ( x ) and h1 ( x ); 
• use the Gram-Schmidt process to move within the latent 

space toward higher predicted detention risk m ( x ), but or- 
thogonal to h1 ( x ); and 

• show new morphed image pairs to subjects, have them 

name a new feature. 

The challenge with implementing this playbook in practice 

is that we do not have labels for well-groomed for the GAN- 
generated synthetic faces. Moreover, it would be infeasible to 

collect this feature for use in this type of orthogonalization 

procedure. 63 That means we cannot orthogonalize against well- 
groomed, only against predictions of well-groomed. And orthog- 
onalizing with respect to a prediction is an error-prone process 
whenever the predictor is imperfect (as it is here). 64 The errors in 

the process accumulate as we take many morphing steps. Worse, 

62. It turns out that skin tone is another feature that is correlated with well- 
groomed, so we orthogonalize on that as well as well-groomed. To simplify the 
discussion, we use “well-groomed” as a stand-in for both features we orthogonalize 
against, well-groomed plus skin tone. 

63. To see why, consider the mechanics of the procedure. Since we orthogonal- 
ize as we create morphs, we would need labels at each morphing step. This would 
entail us producing candidate steps (new morphs), collecting data on each of the 
candidates, picking one that has the same well-groomed value, and then repeat- 
ing. Moreover, until the labels are collected at a given step, the next step could not 
be taken. Since producing a final morph requires hundreds of such intermediate 
morphing steps, the whole process would be so time- and resource-consuming as 
to be infeasible. 

64. While we can predict demographic features like race and age (above/below 

median age) nearly perfectly, with AUC values close to 1, for predicting well- 
groomed, the mean absolute error of our OOS prediction is 0.63, which is plus 
or minus over half a slider value for this 9-point-scaled variable. One reason it 
is harder to predict well-groomed is because the labels, which come from human 

subjects looking at and labeling mug shots, are themselves noisy, which introduces 
irreducible error. 
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that accumulated error is not expected to be zero on average. Be- 
cause we are morphing in the direction of predicted detention and 

we know predicted detention is correlated with well-groomed, the 

prediction error will itself be correlated with well-groomed. 
Instead we use a different approach. We build a new 

detention-risk predictor with a curated training data set, limited 

to pairs of images matched on the features to be orthogonalized 

against. For each detained observation i (such that yi = 1), we find 

a released observation j (such that yj = 0) where h1 ( xi ) = h1 ( xj ). 
In that training data set y is now orthogonal to h1 ( x ), so we 

can use the gradient of the orthogonalized detention risk pre- 
dictor to move in GAN latent space to create new morphed im- 
ages with different detention odds but are similar with respect to 

well-groomed. 65 We call these “orthogonalized morphs,” which we 

then feed into the experimental pipeline shown in Figure IV . 66 An 

open question for future work is how many iterations are possible 

before the dimensionality of the matching problem required for 
this procedure would create problems. 

Examples from this orthogonalized image-morphing proce- 
dure are in Figure IX . Changes in facial features across morphed 

images are notably different from those in the first iteration of 
morphs as in Figure VI . From these examples, it appears possi- 
ble that orthogonalization may be slightly imperfect; sometimes 
they show subtle differences in “well-groomed” and perhaps age. 
As with the first iteration of the morphing procedure, the second 

(orthogonalized) iteration of the procedure again generates im- 
ages that vary substantially in their predicted risk, from 0.07 up 

to 0.27 (see Online Appendix Figure A.XVIII). 
Still, there is a salient new signal: when presented to sub- 

jects they name a second facial feature, as shown in Figure X . 
We showed 52 subjects (Prolific workers) 50 orthogonalized mor- 
phed image pairs and asked them to name the differences they 

see. The word cloud shown in the top panel of Figure X shows 
that some of the most common terms reported by subjects include 

65. For additional details see Online Appendix Figure A.XVII and 
Online Appendix B. 

66. There are a few additional technical steps required, discussed in 

Online Appendix B. For details on the HIT we use to get subjects to name the 
new hypothesis from looking at orthogonalized morphs, and the follow-up HIT 

to generate independent labels for that new hypothesis or facial feature, see 
Online Appendix Table A.III. 
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FIGURE IX 

Examples of Morphing along the Orthogonal Gradients of the Face-Based 
Detention Predictor 
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(A)

(B)

FIGURE X 

Subject Reports of What They See between Detention-Risk-Morphed Image 
Pairs, Orthogonalized to the First Novel Feature Discovered (Well-Groomed) 

Panel A shows a word cloud of subject reports about what they see as the key 
difference between image pairs, where one is a randomly selected point in the 
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FIGURE X 

( Continued ) GAN latent space and the other is morphed in the direction of a 
higher predicted detention risk, where we are moving along the detention gradi- 
ent orthogonal to well-groomed and skin tone (see the text). Panel B shows the 
frequency of semantic groupings of these open-ended subject reports (see the text 
for additional details). 

“big,” “wider,” “presence,” “rounded,” “body,” “jaw,” and “head.”
When we ask independent research assistants to group the sub- 
ject tokens into semantic groups, we can see as in the bottom of 
the figure that a sizable share of subject comments (around 22% ) 
refer to a similar facial feature, h2 ( x ): how “heavy-faced” or “full- 
faced” the defendant is. 

This second facial feature (like the first) is again related to 

the algorithm’s prediction of the judge. When we ask a separate 

sample of subjects (343 MTurk workers, see Online Appendix
Table A.III) to independently label our validation images for 
heavy-facedness, we can see the R2 from regressing the algo- 
rithm’s predictions against heavy-faced yields an R2 of 0.0384 

( Table V , column (1)). With a coefficient of −0.0182 (0.0009), the 

results imply that a one standard deviation change in heavy- 
facedness (1.1946 points on our 9-point scale) is associated with 

a reduced predicted detention risk of 2.17 percentage points, or 
9 . 3% of the base rate. Adding in other facial features implicated 

by past research substantially boosts the adjusted R2 of the re- 
gression but barely changes the coefficient on heavy-facedness. 

In principle, the procedure could be iterated further. After 
all, well-groomed, heavy-faced plus previously known facial fea- 
tures all together still only explain 27% of the variation in the 

algorithm’s predictions of the judges’ decisions. As long as there 

is residual variation, the hypothesis generation crank could be 

turned again and again. Because our goal is not to fully explain 

judges’ decisions but to illustrate that the procedure works and is 
iterable, we leave this for future work (ideally done on data from 

other jurisdictions as well). 

VI. EVALUATING THESE NEW HYPOTHESES 

Here we consider whether the new hypotheses our procedure 

has generated meet our final criterion: empirical plausibility. We 

show that these facial features are new not just to the scientific 
literature but also apparently to criminal justice practitioners, 
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before turning to whether these correlations might reflect some 

underlying causal relationship. 

VI.A. Do These Hypotheses Predict What Judges Actually Do? 

Empirical plausibility need not be implied by the fact that 
our new facial features are correlated with the algorithm’s pre- 
dictions of judges’ decisions. The algorithm, after all, is not a per- 
fect predictor. In principle, well-groomed and heavy-faced might 
be correlated with the part of the algorithm’s prediction that is 
unrelated to judge behavior, or m ( x ) − y . 

In Table VI , we show that our two new hypotheses are indeed 

empirically plausible. The adjusted R2 from regressing judges’ de- 
cisions against heavy-faced equals 0.0042 (column (1)), while for 
well-groomed the figure is 0.0021 (column (2)) and for both to- 
gether the figure equals 0.0061 (column (3)). As a benchmark, the 

adjusted R2 from all variables (other than the algorithm’s overall 
mug shot–based prediction) in explaining judges’ decisions equals 
0.0218 (column (6)). So the explanatory power of our two novel 
hypotheses alone equals about 28% of what we get from all the 

variables together. 
For a sense of the magnitude of these correlations, the co- 

efficient on heavy-faced of −0.0234 (0.0036) in column (1) and 

on well-groomed of −0.0198 (0.0043) in column (2) imply that 
one standard deviation changes in each variable are associated 

with reduced detention rates equal to 2.8 and 2.0 percentage 

points, respectively, or 12 . 0% and 8 . 9% of the base rate. Inter- 
estingly, column (7) shows that heavy-faced remains statistically 

significant even when we control for the algorithm’s prediction. 
The discovery procedure led us to a facial feature that, when mea- 
sured independently, captures signal above and beyond what the 

algorithm found. 67 

VI.B. Do Practitioners Already Know This? 

Our procedure has identified two hypotheses that are new to 

the existing research literature and to our study subjects. Yet the 

study subjects we have collected data from so far likely have rela- 
tively little experience with the criminal justice system. A reader 
might wonder: do experienced criminal justice practitioners al- 
ready know that these “new” hypotheses affect judge decisions? 

67. See Online Appendix Figure A.XIX. 
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The practitioners might have learned the influence of these facial 
features from day-to-day experience. 

To answer this question, we carried out two smaller-scale 

data collections with a sample of N = 15 staff at a public de- 
fender’s office and a legal aid society. We first asked an open- 
ended question: on what basis do judges decide to detain versus 
release defendants pretrial? Practitioners talked about judge mis- 
understandings of the law, people’s prior criminal records, and 

judge underappreciation for the social contexts in which criminal 
records arise. Aside from the defendant’s race, nothing about the 

appearance of defendants was mentioned. 
We showed practitioners pairs of actual mug shots and asked 

them to guess which person is more likely to be detained by a 

judge (as we had done with MTurk and Prolific workers). This 
yields a sample of 360 detention forecasts. After seeing these mug 

shots practitioners were asked an open-ended question about 
what they think matters about the defendant’s appearance for 
judge detention decisions. There were a few mentions of well- 
groomed and one mention of something related to heavy-faced, 
but these were far from the most frequently mentioned features, 
as seen in Online Appendix Figure A.XX. 

The practitioner forecasts do indeed seem to be more accu- 
rate than those of “regular” study subjects. Table VII , column 

(5) shows that defendants whom the practitioners predict will 
be detained are 29.2 percentage points more likely to actually be 

detained, even after controlling for the other known determinants 
of detention from past research. This is nearly four times the ef- 
fect of forecasts made by Prolific workers, as shown in the last 
column of Table VI . The practitioner guesses (unlike the regular 
study subjects) are even about as accurate as the algorithm; the 

R2 from the practitioner guess (0.0165 in column (1)) is similar to 

the R2 from the algorithm’s predictions (0.0166 in column (6)). 
Yet practitioners do not seem to already know what the 

algorithm has discovered. We can see this in several ways in 

Table VII . First, the sum of the adjusted R2 values from the bi- 
variate regressions of judge decisions against practitioner guesses 
and judge decisions against the algorithm mug shot–based pre- 
diction is not so different from the adjusted R2 from including 

both variables in the same regression (0.0165 + 0.0166 = 0.0331 

from columns (1) plus (6), versus 0.0338 in column (7)). We see 

something similar for the novel features of well-groomed and 
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heavy-faced specifically as well. 68 The practitioners and the al- 
gorithm seem to be tapping into largely unrelated signal. 

VI.C. Exploring Causality 

Are these novel features actually causally related to judge 

decisions? Fully answering that question is clearly beyond the 

scope of the present article. But we can present some additional 
evidence that is at least suggestive. 

For starters we can rule out some obvious potential con- 
founders. With the specific hypotheses in hand, identifying the 

most important concerns with confounding becomes much easier. 
In our application, well-groomed and heavy-faced could in princi- 
ple be related to things like (say) the degree to which the defen- 
dant has a substance-abuse problem, is struggling with mental 
health, or their socioeconomic status. But as shown in a series 
of Online Appendix tables, we find that when we have study 

subjects independently label the mug shots in our validation data 

set for these features and then control for them, our novel hy- 
potheses remain correlated with the algorithmic predictions of 
the judge and actual judge decisions. 69 We might wonder whether 
heavy-faced is simply a proxy for something that previous mock- 
trial-type studies suggest might matter for criminal justice deci- 
sions, “baby-faced” (Berry and Zebrowitz-McArthur 1988 ). 70 But 
when we have subjects rate mug shots for baby-facedness, our 
full-faced measure remains strongly predictive of the algorithm’s 

68. The adjusted R2 of including the practitioner forecasts plus well-groomed 
and heavy-facedness together (column (3), equal to 0.0246) is not that differ- 
ent from the sum of the R2 values from including just the practitioner forecasts 
(0.0165 in column (1)) plus that from including just well-groomed and heavy-faced 
(equal to 0.0131 in Table VII , column (2)). 

69. In Online Appendix Table A.IX we show that controlling for one obvious 
indicator of a substance abuse issue—arrest for drugs—does not seem to sub- 
stantially change the relationship between full-faced or well-groomed and the 
predicted detention decision. Online Appendix Tables A.X and A.XI show a qual- 
itatively similar pattern of results for the defendant’s mental health and socioe- 
conomic status, which we measure by getting a separate sample of subjects to 
independently rate validation–data set mug shots. We see qualitatively similar 
results when the dependent variable is the actual rather than predicted judge 
decision; see Online Appendix Tables A.XIII, A.XIV, and A.XV. 

70. Characteristics of having a baby face included large eyes, narrow chin, 
small nose, and high, raised eyebrows. For a discussion of some of the larger lit- 
erature on how that feature shapes the reactions of other people generally, see 
Zebrowitz et al. (2009) . 
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predictions and actual judge decisions; see Online Appendix
Tables A.XII and A.XVI. 

In addition, we carried out a laboratory-style experiment 
with Prolific workers. We randomly morphed synthetic mug shot 
images in the direction of either higher or lower well-groomed 

(or full-faced), randomly assigned structured variables (current 
charge and prior record) to each image, explained to subjects 
the detention decision judges are asked to make, and then asked 

them which from each pair of subjects they would be more likely 

to detain if they were the judge. The framework from Mobius and 

Rosenblat (2006) helps clarify what this lab experiment gets us: 
appearance might affect how others treat us because others are 

reacting to something about our own appearance directly, because 

our appearance affects our own confidence, or because our appear- 
ance affects our effectiveness in oral communication. The exper- 
iment’s results shut down these latter two mechanisms and iso- 
late the effects of something about appearance per se, recognizing 

it remains possible well-groomed and heavy-faced are correlated 

with some other aspect of appearance. 71 

The study subjects recommend for detention those subjects 
with higher-risk structured variables (like current charge and 

prior record), which at the very least suggests they are tak- 
ing the task seriously. Holding these other case characteristics 
constant, we find that the subjects are more likely to recommend 

for detention those defendants who are less well-groomed or less 
heavy-faced (see Online Appendix Table A.XVII). Qualitatively, 
these results support the idea that well-groomed and heavy-faced 

could have a causal effect. It is not clear that the magnitudes in 

these experiments necessarily have much meaning: the subjects 
are not actual judges, and the context and structure of choice 

is very different from real detention decisions. Still, it is worth 

noting that the magnitudes implied by our results are nontrivial. 
Changing well-groomed or heavy-faced has the same effect on 

subject decisions as a movement within the predicted rearrest 
risk distribution of 4 and 6 percentile points, respectively (see 

Online Appendix C for details). Of course only an actual field ex- 
periment could conclusively determine causality here, but carry- 
ing out that type of field experiment might seem more worthwhile 

to an investigator in light of the lab experiment’s results. 

71. For additional details, see Online Appendix C. 
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Is this enough empirical support for these hypotheses to jus- 
tify incurring the costs of causal testing? The empirical basis for 
these hypotheses would seem to be at least as strong as (or per- 
haps stronger than) the informal standard currently used to de- 
cide whether an idea is promising enough to test, which in our 
experience comes from some combination of observing the world, 
brainstorming, and perhaps some exploratory investigator-driven 

correlational analysis. 
What might such causal testing look like? One possibility 

would follow in the spirit of Goldin and Rouse (2000) and com- 
pare detention decisions in settings where the defendant is more 

versus less visible to the judge to alter the salience of appearance. 
For example, many jurisdictions have continued to use some ver- 
sion of virtual hearings even after the pandemic. 72 In Chicago 

the court system has the defendant appear virtually but every- 
one else is in person, and the court system of its own volition has 
changed the size of the monitors used to display the defendant 
to court participants. One could imagine adding some planned 

variation to screen size or distance or angle to the judge. These 

video feeds could in principle be randomly selected for AI ad- 
justment to the defendant’s level of well-groomedness or heavy- 
facedness (this would probably fall into a legal gray area). In the 

case of well-groomed, one could imagine a field experiment that 
changed this aspect of the defendant’s actual appearance prior 
to the court hearing. We are not claiming these are the right de- 
signs but intend only to illustrate that with new hypotheses in 

hand, economists are positioned to deploy the sort of creativity 

and rigorous testing that have become the hallmark of the field’s 
efforts at causal inference. 

VII. CONCLUSION 

We have presented a new semi-automated procedure for hy- 
pothesis generation. We applied this new procedure to a concrete, 
socially important application: why judges jail some defendants 
and not others. Our procedure suggests two novel hypotheses: 
some defendants appear more well-groomed or more heavy-faced 

than others. 

72. See https://www.nolo.com/covid-19/virtual-criminal-court-appearances-
in-the-time-of-the-covid-19.html. 
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Beyond the specific findings from our illustrative application, 
our empirical analysis also illustrates a playbook for other ap- 
plications. Start with a high-dimensional predictor m ( x ) of some 

behavior of interest. Build an unsupervised model of the data dis- 
tribution, p ( x ). Then combine the models for m ( x ) and p ( x ) in a 

morphing procedure to generate new instances that answer the 

counterfactual question: what would a given instance look like 

with higher or lower likelihood of the outcome? Show morphed 

pairs of instances to participants and get them to name what they 

see as the differences between morphed instances. Get others to 

independently rate instances for whatever the new hypothesis is; 
do these labels correlate with both m ( x ) and the behavior of inter- 
est, y ? If so, we have a new hypothesis worth causal testing. This 
playbook is broadly applicable whenever three conditions are met. 

The first condition is that we have a behavior we can sta- 
tistically predict. The application we examine here fits because 

the behavior is clearly defined and measured for many cases. A 

study of, say, human creativity would be more challenging be- 
cause it is not clear that it can be measured (Said-Metwaly, Van 

den Noortgate, and Kyndt 2017 ). A study of why U.S. presidents 
use nuclear weapons during wartime would be challenging be- 
cause there have been so few cases. 

The second condition relates to what input data are avail- 
able to predict behavior. Our procedure is likely to add only mod- 
est value in applications where we only have traditional struc- 
tured variables, because those structured variables already make 

sense to people. Moreover the structured variables are usually 

already hypothesized to affect different behaviors, which is why 

economists ask about them on surveys. Our procedure will be 

more helpful with unstructured, high-dimensional data like im- 
ages, language, and time series. The deeper point is that the col- 
lection of such high-dimensional data is often incidental to the 

scientific enterprise. We have images because the justice system 

photographs defendants during booking. Schools collect text from 

students as part of required assignments. Cellphones create lo- 
cation data as part of cell tower “pings.” These high-dimensional 
data implicitly contain an endless number of “features.”

Such high-dimensional data have already been found to 

predict outcomes in many economically relevant applications. 
Student essays predict graduation. Newspaper text predicts 
political slant of writers and editors. Federal Open Market Com- 
mittee notes predict asset returns or volatility. X-ray images or 
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EKG results predict doctor diagnoses (or misdiagnoses). Satellite 

images predict the income or health of a place. Many more rela- 
tionships like these remain to be explored. From such prediction 

models, one could readily imagine human inspection of morphs 
leading to novel features. For example, suppose high-frequency 

data on volume and stock prices are used to predict future excess 
returns, for example, to understand when the market over- or 
undervalues a stock. Morphs of these time series might lead us to 

discover the kinds of price paths that produce overreaction. After 
all, some investors have even named such patterns (e.g., “head 

and shoulders,” “double bottom”) and trade on them. 
The final condition is to be able to morph the input data to 

create new cases that differ in the predicted outcome. This re- 
quires some unsupervised learning technique to model the data 

distribution. The good news is that a number of such techniques 
are now available that work well with different types of high- 
dimensional data. We happen to use GANs here because they 

work well with images. But our procedure can accomodate a va- 
riety of unsupervised models. For example for text we can use 

other methods like Bidirectional Encoder Representations from 

Transformers (Devlin et al. 2018 ), or for time series we could use 

variational auto-encoders (Kingma and Welling 2013 ). 
An open question is the degree to which our experimental 

pipeline could be changed by new technologies, and in particu- 
lar by recent innovations in generative modeling. For example, 
several recent models allow people to create new synthetic im- 
ages from text descriptions, and so could perhaps (eventually) 
provide alternative approaches to the creation of counterfactual 
instances. 73 Similarly, recent generative language models appear 
to be able to process images (e.g., GPT-4), although they are only 

recently publicly available. Because there is inevitably some un- 
certainty in forecasting what those tools will be able to do in the 

future, they seem unlikely to be able to help with the first stage 

of our procedure’s pipeline—build a predictive model of some be- 
havior of interest. To see why, notice that methods like GPT-4 

are unlikely to have access to data on judge decisions linked to 

mug shots. But the stage of our pipeline that GPT-4 could poten- 
tially be helpful for is to substitute for humans in “naming” the 

contrasts between the morphed pairs of counterfactual instances. 

73. See https://stablediffusionweb.com/ and https://openai.com/product/
dall-e-2. 
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Though speculative, such innovations potentially allow for more 

of the hypothesis generation procedure to be automated. We leave 

the exploration of these possibilities to future work. 
Finally, it is worth emphasizing that hypothesis generation 

is not hypothesis testing. Each follows its own logic, and one pro- 
cedure should not be expected to do both. Each requires different 
methods and approaches. What is needed to creatively produce 

new hypotheses is different from what is needed to carefully test 
a given hypothesis. Testing is about the curation of data, an effort 
to compare comparable subsets from the universe of all observa- 
tions. But the carefully controlled experiment’s focus on isolating 

the role of a single prespecified factor limits the ability to generate 

new hypotheses. Generation is instead about bringing as much 

data to bear as possible, since the algorithm can only consider 
signal within the data available to it. The more diverse the data 

sources, the more scope for discovery. An algorithm could have 

discovered judge decisions are influenced by football losses, as in 

Eren and Mocan (2018) , but only if we thought to merge court 
records with massive archives of news stories as for example as- 
sembled by Leskovec, Backstrom, and Kleinberg (2009) . For gen- 
erating ideas, creativity in experimental design useful for testing 

is replaced with creativity in data assembly and merging. 
More generally, we hope to raise interest in the curious asym- 

metry we began with. Idea generation need not remain such an 

idiosyncratic or nebulous process. Our framework hopefully illus- 
trates that this process can also be modeled. Our results illus- 
trate that such activity could bear actual empirical fruit. At a 

minimum, these results will hopefully spur more theoretical and 

empirical work on hypothesis generation rather than leave this 
as a largely “prescientific” activity. 

UNIVERSITY OF CHICAGO AND NATIONAL BUREAU OF ECONOMIC 

RESEARCH, UNITED STATES 
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SUPPLEMENTARY MATERIAL 

An Online Appendix for this article can be found at 
The Quarterly Journal of Economics online. 
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DATA AVAILABILITY 

The data underlying this article are available in the Harvard 

Dataverse, https://doi.org/10.7910/DVN/ILO46V (Ludwig and 

Mullainathan 2023b ). 
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Marcinkevičs, Ričards , and Julia E. Vogt, “Interpretability and Explainability: A 

Machine Learning Zoo Mini-Tour,” arXiv preprint arXiv:2012.01805, 2020. 
https://doi.org/10.48550/arXiv.2012.01805

Miller, Andrew , Ziad Obermeyer, John Cunningham, and Sendhil Mullainathan, 
“Discriminative Regularization for Latent Variable Models with Applications 
to Electrocardiography,” paper presented at the International Conference on 

Machine Learning, 2019. 
Mobius, Markus M. , and Tanya S. Rosenblat, “Why Beauty Matters,”

American Economic Review , 96 (2006), 222–235. https://doi.org/10.1257/
000282806776157515

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024

https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.2139/ssrn.2919024
https://doi.org/10.2139/ssrn.3706365
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1093/qje/qjx032
https://doi.org/10.1038/s41598-021-89743-x
https://doi.org/10.1109/JPROC.2015.2460697
https://doi.org/10.1109/ICCV48922.2021.00073
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.1098/rstb.2010.0404
https://doi.org/10.1109/GlobalSIP45357.2019.8969491
https://doi.org/10.3386/w31017
https://doi.org/10.7910/DVN/ILO46V
https://doi.org/10.48550/arXiv.2012.01805
https://doi.org/10.1257/000282806776157515


826 THE QUARTERLY JOURNAL OF ECONOMICS

Mobley, R. Keith , An Introduction to Predictive Maintenance (Amsterdam: Else- 
vier, 2002). 

Mullainathan, Sendhil , and Ziad Obermeyer, “Diagnosing Physician Error: A Ma- 
chine Learning Approach to Low-Value Health Care,” Quarterly Journal of 
Economics , 137 (2022), 679–727. https://doi.org/10.1093/qje/qjab046

Mullainathan, Sendhil , and Jann Spiess, “Machine Learning: an Applied Econo- 
metric Approach,” Journal of Economic Perspectives , 31 (2017), 87–106. 
https://doi.org/10.1257/jep.31.2.87

Murphy, Allan H. , “A New Vector Partition of the Probability Score,” Journal of 
Applied Meteorology and Climatology , 12 (1973), 595–600. https://doi.org/10.
1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2

Nalisnick, Eric , Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji 
Lakshminarayanan, “Do Deep Generative Models Know What They Don’t 
Know?,” arXiv preprint arXiv:1810.09136, 2018. https://doi.org/10.48550/
arXiv.1810.09136

Narayanaswamy, Arunachalam , Subhashini Venugopalan, Dale R. Webster, Lily 
Peng, Greg S. Corrado, Paisan Ruamviboonsuk, Pinal Bavishi, Michael 
Brenner, Philip C. Nelson, and Avinash V. Varadarajan, “Scientific Dis- 
covery by Generating Counterfactuals Using Image Translation,” in Inter- 
national Conference on Medical Image Computing and Computer-Assisted 

Intervention, (Berlin: Springer, 2020), 273–283. https://doi.org/10.1007/
978-3-030-59710-8_27

Neumark, David , Ian Burn, and Patrick Button, “Experimental Age Discrimina- 
tion Evidence and the Heckman Critique,” American Economic Review , 106 
(2016), 303–308. https://doi.org/10.1257/aer.p20161008

Norouzzadeh, Mohammad Sadegh , Anh Nguyen, Margaret Kosmala, Alexandra 
Swanson, Meredith S. Palmer, Craig Packer, and Jeff Clune, “Automatically 
Identifying, Counting, and Describing Wild Animals in Camera-Trap Images 
with Deep Learning,” Proceedings of the National Academy of Sciences , 115 
(2018), E5716–E5725. https://doi.org/10.1073/pnas.1719367115

Oosterhof, Nikolaas N. , and Alexander Todorov, “The Functional Basis of Face 
Evaluation,” Proceedings of the National Academy of Sciences , 105 (2008), 
11087–11092. https://doi.org/10.1073/pnas.0805664105

Peterson, Joshua C. , David D. Bourgin, Mayank Agrawal, Daniel Reichman, and 
Thomas L. Griffiths, “Using Large-Scale Experiments and Machine Learning 
to Discover Theories of Human Decision-Making,” Science , 372 (2021), 1209–
1214. https://doi.org/10.1126/science.abe2629

Pierson, Emma , David M. Cutler, Jure Leskovec, Sendhil Mullainathan, and Ziad 
Obermeyer, “An Algorithmic Approach to Reducing Unexplained Pain Dis- 
parities in Underserved Populations,” Nature Medicine , 27 (2021), 136–140. 
https://doi.org/10.1038/s41591-020-01192-7

Pion-Tonachini, Luca , Kristofer Bouchard, Hector Garcia Martin, Sean Peisert, 
W. Bradley Holtz, Anil Aswani, Dipankar Dwivedi, Haruko Wainwright, 
Ghanshyam Pilania, and Benjamin Nachman et al.“Learning from Learning 
Machines: A New Generation of AI Technology to Meet the Needs of Science,”
arXiv preprint arXiv:2111.13786, 2021. https://doi.org/10.48550/arXiv.2111.
13786

Popper, Karl , The Logic of Scientific Discovery (London: Routledge, 2nd ed. 2002). 
https://doi.org/10.4324/9780203994627

Pronin, Emily , “The Introspection Illusion,” Advances in Experimental Social Psy- 
chology , 41 (2009), 1–67. https://doi.org/10.1016/S0065-2601(08)00401-2

Ramachandram, Dhanesh , and Graham W. Taylor, “Deep Multimodal Learning: A 

Survey on Recent Advances and Trends,” IEEE Signal Processing Magazine , 
34 (2017), 96–108. https://doi.org/10.1109/MSP.2017.2738401

Rambachan, Ashesh , “Identifying Prediction Mistakes in Observational Data,”
Harvard University Working Paper, 2021. www.nber.org/system/files/
chapters/c14777/c14777.pdf

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024

https://doi.org/10.1093/qje/qjab046
https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.48550/arXiv.1810.09136
https://doi.org/10.1007/978-3-030-59710-8_27
https://doi.org/10.1257/aer.p20161008
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1073/pnas.0805664105
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1038/s41591-020-01192-7
https://doi.org/10.48550/arXiv.2111.13786
https://doi.org/10.4324/9780203994627
https://doi.org/10.1016/S0065-2601(08)00401-2
https://doi.org/10.1109/MSP.2017.2738401
https://www.nber.org/system/files/chapters/c14777/c14777.pdf


MACHINE LEARNING AS A TOOL FOR HYPOTHESIS GENERATION 827

Said-Metwaly, Sameh , Wim Van den Noortgate, and Eva Kyndt, “Approaches 
to Measuring Creativity: A Systematic Literature Review,” Creativity: 
Theories–Research-Applications , 4 (2017), 238–275. https://doi.org/10.1515/
ctra-2017-0013

Schickore, Jutta , “Scientific Discovery,” in The Stanford Encyclopedia of 
Philosophy, Edward N. Zalta, ed. (Stanford, CA: Stanford University, 
2018). 

Schlag, Pierre , “Law and Phrenology,” Harvard Law Review , 110 (1997), 877–921. 
https://doi.org/10.2307/1342231

Sheetal, Abhishek , Zhiyu Feng, and Krishna Savani, “Using Machine Learning 
to Generate Novel Hypotheses: Increasing Optimism about COVID-19 Makes 
People Less Willing to Justify Unethical Behaviors,” Psychological Science , 31 
(2020), 1222–1235. https://doi.org/10.1177/0956797620959594

Simonyan, Karen , Andrea Vedaldi, and Andrew Zisserman, “Deep Inside Con- 
volutional Networks: Visualising Image Classification Models and Saliency 
Maps,” paper presented at the Workshop at International Conference on 

Learning Representations, 2014. 
Sirovich, Lawrence , and Michael Kirby, “Low-Dimensional Procedure for the 

Characterization of Human Faces,” Journal of the Optical Society of America 
A , 4 (1987), 519–524. https://doi.org/10.1364/JOSAA.4.000519

Sunstein, Cass R. , “Governing by Algorithm? No Noise and (Potentially) Less 
Bias,” Duke Law Journal , 71 (2021), 1175–1205. https://doi.org/10.2139/ssrn.
3925240

Swanson, Don R. , “Fish Oil, Raynaud’s Syndrome, and Undiscovered Public 
Knowledge,” Perspectives in Biology and Medicine , 30 (1986), 7–18. https:
//doi.org/10.1353/pbm.1986.0087

———, “Migraine and Magnesium: Eleven Neglected Connections,” Perspectives 
in Biology and Medicine , 31 (1988), 526–557. https://doi.org/10.1353/pbm.
1988.0009

Szegedy, Christian , Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er- 
han, Ian Goodfellow, and Rob Fergus, “Intriguing Properties of Neural Net- 
works,” arXiv preprint arXiv:1312.6199, 2013. https://doi.org/10.48550/arXiv.
1312.6199

Todorov, Alexander , and DongWon Oh, “The Structure and Perceptual Basis of 
Social Judgments from Faces. in Advances in Experimental Social Psychology , 
B. Gawronski, ed. (Amsterdam: Elsevier, 2021), 189–245. 

Todorov, Alexander , Christopher Y. Olivola, Ron Dotsch, and Peter Mende- 
Siedlecki, “Social Attributions from Faces: Determinants, Consequences, 
Accuracy, and Functional Significance,” Annual Review of Psychol- 
ogy , 66 (2015), 519–545. https://doi.org/10.1146/annurev-psych-113011-
143831

Varian, Hal R. , “Big Data: New Tricks for Econometrics,” Journal of Economic 
Perspectives , 28 (2014), 3–28. https://doi.org/10.1257/jep.28.2.3

Wilson, Timothy D. , Strangers to Ourselves (Cambridge, MA: Harvard University 
Press, 2004). 

Yuhas, Ben P. , Moise H. Goldstein, and Terrence J. Sejnowski, “Integration 

of Acoustic and Visual Speech Signals Using Neural Networks,” IEEE 

Communications Magazine , 27 (1989), 65–71. https://doi.org/10.1109/35.
41402

Zebrowitz, Leslie A. , Victor X. Luevano, Philip M. Bronstad, and Itzhak Aharon, 
“Neural Activation to Babyfaced Men Matches Activation to Babies,” Social 
Neuroscience , 4 (2009), 1–10. https://doi.org/10.1080/17470910701676236

© The Author(s) 2024. Published by Oxford University Press on behalf of the President 
and Fellows of Harvard College. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/139/2/751/7515309 by W

ake AH
EC

 user on 25 M
ay 2024

https://doi.org/10.1515/ctra-2017-0013
https://doi.org/10.2307/1342231
https://doi.org/10.1177/0956797620959594
https://doi.org/10.1364/JOSAA.4.000519
https://doi.org/10.2139/ssrn.3925240
https://doi.org/10.1353/pbm.1986.0087
https://doi.org/10.1353/pbm.1988.0009
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.1146/annurev-psych-113011-143831
https://doi.org/10.1257/jep.28.2.3
https://doi.org/10.1109/35.41402
https://doi.org/10.1080/17470910701676236
mailto:journals.permissions@oup.com


Online Appendix
Machine Learning as a Tool for Hypothesis Generation

Jens Ludwig and Sendhil Mullainathan

A Appendix A: Data and Institutional Details
A.A. Pre-Trial Detention Decisions
When someone is arrested in the United States, they must be brought in front of a judge
(usually within 24–28 hours) to decide what should happen to the defendant as they await
resolution of their case. This decision under the law is supposed to hinge on the defendant’s
risk of flight (skipping future court hearings) or public safety risk (re-arrest). That is, it is
supposed to hinge on a prediction. In most jurisdictions, the decision options available to the
judge at this hearing include:

• Release the defendant outright, often known as released on recognizance (ROR),
• Release the defendant conditional on their providing some collateral, such as cash bail,

with the intention of ensuring re-appearance at future court dates,
• Release the defendant with the requirement that they be monitored by some electronic

location tracking device,
• Order the defendant detained.
One implication is that defendants can wind up in jail awaiting trial for at least two rea-

sons, first because the judge explicitly ordered them to jail, and second because the defendant
cannot come up with the required collateral for release. While judges are supposed to set
collateral requirements that defendants can come up with to get released, in practice (from
our own observations of court proceedings in different jurisdictions) it would appear that
judges sometimes intentionally set bail at a level that the defendant cannot make, as a sort
of back-door way to ensure detention. In our own analysis, we follow Kleinberg et al. (2018)
and abstract from the nuances of this range of choices and just focus on the binary outcome
of whether the defendant was detained (either because they were remanded by the judge
outright, or had a cash bail set above what they could pay) versus were released (regardless
of whether they were ROR’d or assigned a bail they were able to post).

This process can vary somewhat across different jurisdictions within the US. For example,
in some places, judges do not have the option of explicitly ordering a defendant sent to jail
without the possibility of posting collateral for release. (That is, the judge cannot order
detention directly.) Some jurisdictions allow judges to release defendants under an order to
participate in pre-trial services, which can include periodic reporting to a pre-trial services
officer. Some jurisdictions are beginning to prohibit judges from requiring they post collateral
or bail to get released, either just for selected offenses or for all cases across the board. Some
jurisdictions require judges to consider only flight risk, not safety risk.

In the specific jurisdiction from which we have obtained data here, Mecklenburg County,
North Carolina, the very first hearing for the defendant is overseen not by a judge, but by
a “magistrate” (who is like a judge, but is not elected). Defendants not released by the
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magistrate are booked into jail and see a judge the next day (Redcross, Henderson, Miratrix
and Valentine, 2019). Starting in 2014, judges were given access to a pre-trial risk prediction
tool developed by the Arnold Foundation called the Public Safety Assessment (Redcross et
al., 2019). The PSA gives judges predictions from a logistic regression for three separate
outcomes: (1) risk of failure to appear (FTA) in court at a required future hearing; (2) risk of
any new criminal activity (NCA); and (3) risk of any new violent criminal activity (NVCA).
The PSA makes these predictions using factors like age, current charge, and prior record.74

Because defendants can only be detained if the magistrate and judge agree on detention, and
because the magistrate’s decision is made in the shadow of the judge, and because (more
pragmatically) the data we have do not separately identify the magistrate’s decision from
that of the judge, we follow Redcross et al. (2019) and combine both decisions into a single
detain-versus-release outcome.

How do these cases get resolved? A large share will simply wind up being dropped (see
for example Agan, Doleac and Harvey (2021)). Among those cases that result in a finding
of guilt, the large majority will be resolved through a plea deal rather than through a trial.
The decision about what the punishment should be for a guilty defendant depends on a
wider range of factors than does the pre-trial detention decision. Beyond recidivism risk (key
for pre-trial detention decisions), sentencing decisions also depend on considerations such as
society’s sense of just desserts, the defendant’s remorse, and impacts on victims.

A.B. Mecklenburg County Criminal Justice Data
We downloaded a total of 81, 166 arrest records from the public MCSO website. We apply
a number of filters to these data to form our final analysis data sets that exclude cases that
are missing some key information needed for our analysis, contain some obvious data error,
or capture cases that are not subject to a normal pre-trial detention decision by the judge.
The complete list of filters are described in Table A.A.I and include:

• We drop cases that are missing at least one piece of key information, such as the
defendant’s mugshot (a key input to predicting judge decisions), the court case ID
(which we need to link the criminal justice data sets together), the charge for which the
defendant was arrested (which we need to predict defendant re-arrest risk), and bond
information or jail stay information (which is part of determining whether defendants
are detained versus released).

• The case is listed as a “non-arrest,” which often means this is related to a probation or
parole violation or a case related to a federal warrant. We exclude these because the
pre-trial detention decisions are typically quite different from “normal” cases.

• There is clearly some error in the data, for example, the arrest date is listed as coming
after the date the case was resolved in court.

• The arrest was disposed of within three days. These are excluded since the magistrate or
judge decision may be quite different in these cases; that is, if the strength or weakness
of the case is observable to magistrates and judges, they might automatically release
the case if they realize it will just be dropped very quickly.

The filters taken together eliminate about one-third of the arrests that occurred during
our observation period.

74See https://advancingpretrial.org/psa/factors/.
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We also apply one final filter to the lock-box hold-out data set as well. Part of this hold-
out data set consists of arrests made in the last 6 months of our data period, so that we
can test the predictive accuracy of our models in a new time period. To avoid inadvertent
information leakage, we drop cases for people who were arrested during this time period and
also show up as having been arrested in the training data set.

To construct our measure of “release,” we count everyone who left jail not more than three
days after arrest. This will include everyone who was released on their own recognizance
(RORd) by the judge, as well as people who are assigned cash bail by the judge (they are
required to post collateral to get released) and are able to make that bail fairly quickly. In
the data, we see only a modest share of people get released much more than three days after
the date of the arrest, so our results should not be very sensitive to adjusting this threshold
out further.

Our measure of “re-arrest” combines information from the MCSO data on all arrests,
together with the NCAOC data set on when each case (past arrest) gets resolved. So for a
given arrest, we can see whether the defendant has a new arrest that shows up in the MCSO
data set that is filed prior to resolution of the initial arrest according to the NCAOC data.

Unfortunately, our data do not allow us to construct a usable measure of whether the
defendant skips court (or “failure to appear,” FTA). In principle, that could create an omitted
variable bias concern, if the defendant characteristics we examine in this paper were correlated
with FTA. But since the defendant characteristics are facial features, we think this risk of
bias (in the econometric sense of the term) is not serious.

From the raw data we construct features corresponding to:
• The type of charge for which the defendant has been arrested (violent crimes, property

crimes, drug crimes, or other offenses), and
• Detailed measures of whether the defendant has been convicted of these different types

of crimes at different points in the past 1, 3, 5 and 10 years.
In nearly half of all arrests, the defendant is charged with more than one offense. We

follow the usual approach within criminology and classify each case by the most serious charge
using the FBI’s Uniform Crime Reporting system hierarchy. We then group crimes into our
four broad categories of crime types (violent, property, drug and other), combining arrests for
both more and less serious versions of each type of crime in each category. (So, for example,
assaults that fall into the FBI “part 1” or more serious category would get counted as violent
crimes alongside assaults that are counted as “part 2” crimes.) For predicting defendant
risk, we also experiment with providing the algorithm access to more detailed current charge
descriptions (like “possession of less than 0.5 ounces of marijuana,” “larceny” and “armed
robbery”) as well as higher-level aggregations of charges (drug, property or violent crime
charges).

Because the MCSO’s website makes arrest data (and hence mugshots) available for the
past 3 years on a rolling basis, other researchers can use the code we post to scrape mugshots
off the MCSO website and carry out a similar analysis to what is reported here.

The mugshot photos are taken from a standard distance with the defendant standing
in front of a flat gray wall looking at the camera. There are no side-view facial images in
this dataset. Defendants are presumably asked to remove glasses or hats, since none of the
images include those accoutrements. It is usually possible to see part of the defendant’s
shirt. Most defendants are wearing whatever they had on when they were arrested, although
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some defendants look to be wearing jumpsuits of the sort that many correctional facilities
issue to inmates. These may be defendants who were charged with an offense they allegedly
committed while in detention, or with an offense they allegedly committed prior to being
detained but where sufficient evidence for charging was not possible to accumulate until after
the defendant was already detained for some other offense.

B Appendix B: Methods
In this appendix, we discuss our methods for predicting judges’ decisions and defendant risk,
generating mugshots using GANs, and our procedure for generating morphed image pairs,
including how we iterate our procedure and orthogonalize subsequent image morphings for
the hypotheses discovered during earlier morphing cycles.

B.A. Predicting Judges’ Decisions and Defendant Risk
The data we have downloaded from North Carolina include both structured variables (age,
current charge, etc.) and unstructured, high-dimensional data sources like mugshot images.
As noted in the text, we build separate types of models for the structured data (gradient
boosted decision trees) and unstructured data (convolutional neural networks, or CNNs). For
our models that rely on both structured and unstructured data, we use a stacking procedure
that forms new predictions that are weighted averages of the structured data predictor and
unstructured data predictor, with the data used to select the weight. Since we are using
standard machine learning methods at this stage of our analysis, we focus our discussion here
on high-level descriptions.75

A decision tree recursively partitions the data through a series of top-down “splits” of the
data by values of the features, x, where each split is selected to minimize some loss function
L(y,m(x)) (for example, likelihood for binary outcomes or squared error for continuous out-
comes). The result is a tree with M terminal nodes, where each terminal node is internally
as similar as possible with respect to y. If each node i covers a region of the feature space
Ri, then the prediction within each node is ci = P(y = 1|x ∈ Ri), and the prediction from
this decision tree is given by

ms(x) =
M∑

i=1
ci · 1{x ∈ Ri},

where 1 is the indicator function, which is 1 if the argument is true, and zero otherwise. The
“deeper” the tree (the more levels of splits), the better the tree is at fitting the relationship
between x and y, but the more unstable (sensitive to small changes in the data) the tree
can be. This challenge is often overcome by generating multiple versions of the predictor by
perturbing either the training data set or the algorithm construction method and then com-
bining them, what Breiman (1998) calls “perturbing and combining.” A different approach

75For excellent overviews of decision trees and gradient boosting methods at various levels of technical
detail, see for example Freund, Schapire and Abe (1999), Breiman (2001), Bishop and Nasrabadi (2006),
Hastie et al. (2009), James, Witten, Hastie and Tibshirani (2013), and Breiman et al. (2017). Examples of
excellent discussions of deep-learning methods at various levels of technical complexity include Yegnanarayana
(2009), LeCun, Kavukcuoglu and Farabet (2010), Krizhevsky, Sutskever and Hinton (2012), LeCun, Bengio
and Hinton (2015), Nielsen (2015), Rawat and Wang (2017), and Gurney (2018).
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(the one we use here) is to build a series of “shallower” trees that are less unstable, but at the
cost of fitting the data less well than a deeper tree would. To reduce bias in the statistical
sense of the term, we use boosting to build a series of trees iteratively, which increasingly
up-weight the observations most poorly predicted to that point.

The logic behind the CNN method is perhaps easiest to see by considering its alternatives.
To an algorithm, a 512×512 black-and-white image is essentially just 262, 144 pixel values.76

It is clear that a simple linear function would be of little use, since the meaning of any one
pixel’s shading depends on other pixels. But estimating a regression that tried to allow every
one of the 262, 144 pixel values to interact with every other pixel becomes intractable. This
approach would also ignore the topography of the data; in an image, the shading of a pixel
will be correlated with that of nearby pixels. This helps us see why early AI attempts to go
directly from the “raw” image to prediction led to poor performance.

The basic idea behind a deep-learning neural network is to construct a series of interme-
diate layers between the inputs and the final classification outputs where the earliest layers
try to learn the most concrete concepts (for images this would be, for example, edges or
corners), and each subsequent layer learns increasingly abstract, complicated concepts (such
as what combination of edges, corners, etc. make up an eye, and then what combination
of eye-like, nose-like and mouth-like concepts, in what relation to one another, make up a
face, etc.). Because some of the early intermediate features are not specific to any given
image application, it is possible to improve a CNN’s performance through “pre-training” and
learning some of these intermediate concepts from other data sources. A convolutional neural
network (CNN) is a specific version of a neural network designed to work particularly well
with image processing tasks. The specific version of a CNN that we estimate here is known
as a residual network, which enables the estimation of more accurate deeper networks; see
He, Zhang, Ren and Sun (2016).

The main binary outcome variable (y) we seek to predict in this classification exercise
is an indicator for whether the judge detains rather than releases a given defendant as they
await resolution of their case. For purposes of being able to morph faces with our generative
adversarial network (GAN) for basic demographic features, we estimate a “multi-head” CNN
that predicts four outcomes simultaneously:

• Release (released versus detained),
• Gender (male versus female),
• Race (Black versus white or other race),
• Age (above or below the sample median age of 29).
As noted above, what slightly complicates our analysis here is the fact that our “inputs” to

predicting the judges’ decision (x) include both image data (the red, green and blue shading
values for each pixel in the images) and standard structured variables. Estimating a single
residual network using both types of data creates estimation challenges because the network
can “learn” the signal in the structured data much more easily than it can from the image
data, and so winds up under-optimizing the available signal from the images. To address
that problem, we estimate the stacked ensemble algorithm described in the main text and
above.

The image data are fed into a 50-layer residual network (“resnet50”) that consists of 4
76For a color image, there are three times as many values, since pixels have red, blue and green shadings.
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convolutional blocks and 2048 output neurons, using a gentle decay learning rate schedule
(see He et al. (2016)). Because the more basic features of images are not specific to the types
of images being analyzed, we can improve performance of this network by pre-training it on
a separate set of images. The resnet50 we use here was pre-trained on ImageNet data77 with
an ACC@1 score of 76.130 and ACC@5 of 92.862. We also tried a 15-layer residual network,
or ‘resnet15,’ and a Mobile Net V2, and selected the resnet50 as best given its out-of-sample
predictive accuracy.

To estimate defendant risk of re-arrest, we use only the sample of defendants who are
released by the judge as our training data set. The reason is that re-arrest is defined as having
a new arrest in between the original or focal arrest and resolution of that case (dismissal, a
finding of innocence or guilt, etc.), since the judge’s release decision is supposed to hinge on
risk of re-arrest through case resolution. Defendants who are detained through the end of their
case are missing data on whether they would have been re-arrested had they been released.
Using this subsample as our training data set, we build a gradient boosted tree algorithm
whose inputs are the structured data we have from Mecklenburg County. Specifically, we give
the algorithm access to detailed current charge information (we partition 824 unique charge
descriptions into four categories: violent, drug, property, and gun-crime charges) prior record
information, and demographic variables. The AUC of this algorithm in the validation set of
released defendants equals 0.735, which is comparable to other risk predictors such as the
proof-of-concept model built using New York City data in Kleinberg et al. (2018), which
had an AUC of 0.707 in predicting FTA risk (the outcome judges are asked to consider in
New York State). For purposes of the analysis presented in the main exhibits, we can assign
predicted re-arrest risk values to everyone in the validation data set (since that prediction
is a function of structured covariates available for everyone) that enables us to, for example,
regress detention outcomes against predicted risk and other variables.

B.B. Alternative Methods for Algorithmic Interpretability
The problem we face—understanding what our algorithm sees in the face—has emerged as a
central challenge in machine learning research. A variety of techniques have been developed
for interpreting or explaining how machine learning algorithms form their predictions (see
Marcinkevičs and Vogt (2020) for a recent review).78 Here, we give a high-level overview of
how those techniques relate to our work.

A first major divide in the literature is whether we are seeking explanations that are
already measured. One category of explanability methods can only provide explanations
using measured high-level features. For example, Li, Liu, Chen and Rudin (2018), Zhang,
Wu and Zhu (2018), Ghorbani, Wexler, Zou and Kim (2019), and Chen, Li, Tao, Barnett,
Rudin and Su (2019) among others develop interpretability tools that highlight not individual
pixels that are important for classification, as in saliency maps, but higher-level concepts or
prototypical parts within these images, such as wheels helping classify the presence of a van
in an image. But all these approaches require the explanatory features to already be coded:
the data must contain for each image, for example, information on whether “wheel” was

77https://www.image-net.org/
78For simplicity, we will use the phrase “explanations” to describe what we seek from the model. In the

literature, some use the phrase “explanations” and “interpretations” differently.
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present or not.79 In these examples, the goal is typically not discovery but instead either
to explain the model to people to aid in decisions, sometimes as required by explanation
(Wachter, Mittelstadt and Russell, 2018), or to assess the robustness of models, such as
whether a breast cancer detector is looking in the right place (Bai, Wang, Liu, Liu, Song,
Sebe and Kim, 2021). Moreover, since the potential explanations are already in the data set,
one could go further: rather than building a black-box model and explaining it, build one
that is explainable to begin with.80 All these techniques can be used for unstructured data,
such as images or text, but only when the potential explanations are already coded in the
data.

In the same category, closer to our approach is work on controllable generation (Lee and
Seok, 2019). This work also relies on an unsupervised model (often a GAN), but the goal
here is to be able to generate images with certain characteristics, which are once again the
features already measured in the data. For example, rather than generating synthetic faces,
the goal would be to generate an old face, and this is done when age is measured in the data
during training.81

By way of contrast, our data do not already have “heavy-faced” or “well-groomed” defined.
Without these annotations, the previous methods cannot work. To make them work, one
could imagine collecting labels on an extremely large set of facial features and then apply
one of the approaches described above. The challenge in doing this is the enormous effort
needed to codify so many different facial features.82 In some sense, it is akin to the problem
of hypothesis generation: what features should we annotate?

More recent work on interpretability has focused on situations where the potential ex-
planation is not already coded in the data (some of it referred to as “counterfactual expla-

79In our example, our mugshots do not begin with any annotations. Moreover, if we were to choose what
to annotate, we would choose the features we already believe are important, such as competence and trust-
worthiness. The discovered features (e.g., “heavy-faced” or “well-groomed”) were discovered from the pixels
not because we had already chosen to measure them. We annotate them in the data once they have been
discovered as part of the validation exercise.

80See, for example, Holte (1993), Rudin, Passonneau, Radeva, Dutta, Ierome and Isaac (2010), Freitas
(2014), Letham, Rudin, McCormick and Madigan (2015), Angelino, Larus-Stone, Alabi, Seltzer and Rudin
(2018), Jung et al. (2017), Chen and Rudin (2018), Ustun and Rudin (2019), Rudin (2019), and the references
therein.

81One could think of our approach, in spirit, as controllable generation but for situations where rather than
generating for a known feature (e.g., age), we are generating according to a predictor (e.g., predicted detention
probability). While conceptually these are the same, in implementation, we take a slightly different approach.
Typically, for controllable generation, the GAN itself is trained differently so that individual dimensions of
interest (e.g., age) are represented individually in the latent space. We instead built a generic mugshot GAN
and morph. The reason we chose that approach is that, unlike age, the prediction of detention itself is a very
"noisy" label, an imperfect judgment of detention risk. So while the differences between faces in age is quite
dramatic, the differences in detention probability can be more subtle.

82A recent ambitious paper has tried to tackle this problem. Peterson, Uddenberg, Griffiths, Todorov and
Suchow (2022) collected millions of labels on hundreds of facial features and then created a predictive model
of them for synthetic faces. The challenge, however, is that this model is built on synthetic faces, whereas
we would need such a model for actual images (mugshots). Deep learning models are known to not transfer
across distributions. In fact, when we attempt to use the results of this paper, we find our mugshots do not
map into these synthetic faces in any meaningful way. The failure is a reminder that while humans tend to
think of “faces” in the abstract, algorithms model very specific distributions of pixel combinations. It is why
we must build our own generative model of mugshots rather than use extremely well-developed generative
models of “faces.”
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nations”). Here, the idea is to morph input images, as we are doing, rather than simply
highlight regions. We are far from the first to combine the idea of a generative model with
a predictive model to provide explanations (Chang, Creager, Goldenberg and Duvenaud,
2018). In a different context, Miller et al. (2019) introduces an idea much like our procedure,
where a Variational Autoencoder is used as the generative model. More recent work in this
same vein can be found in Liu et al. (2019); Lang et al. (2021) and Ghandeharioun et al.
(2022). Our approach firmly fits in this last category of approaches. Some of these recent
attempts to generate counterfactual images use an approach that trains the GAN and the
predictor m(x) together at the same time (Lang et al., 2021; Ghandeharioun et al., 2022).
The ability of these alternative methods for generating counterfactual instances, or entirely
new technologies that could be used for that task, we leave to future work. For our purposes
the key point is that our own procedure appears to be capable of generating sufficiently high-
quality morphed pairs of counterfactual instances to enable a sizable share of study subjects
to articulate the same novel feature, which in turn is correlated both with the algorithm’s
predictions and actual judge decisions (as discussed in the text).

B.C. Generative Adversarial Networks
Generative adversarial networks (GANs) were developed initially as procedures for creating
realistic, but fake, images (see for example Goodfellow et al. (2014b), Goodfellow, Pouget-
Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville and Bengio (2020)).

As noted in the text, a GAN is built by training two algorithms that “compete” with each
other, the generator G and the classifier C: the generator creates synthetic images and the
classifier (or “discriminator”), presented with synthetic or real images, tries to distinguish
which is which. A good discriminator pressures the generator to produce images that are
harder to distinguish from real, and in turn, a good generator pressures the classifier to get
better at discriminating real from synthetic images. Data on actual faces is used to train
the discriminator, which then results in the generator being trained as it seeks to fool the
discriminator.

Specifically, the generator is a function that maps a (typically multivariate) random vari-
able z to the target space of images in Rk. That is, the generator produces random images
G(z) that seek to follow the distribution of the actual data set of real images, p(x). The
discriminator outputs the probability a given image x is a real image, C(x) ∈ [0, 1], seeking
to maximize this probability for real images and minimizing the probability for generated
images G(z). The loss function for C given generator G equals:

LC = −Ex∼p(x)[logC(x)]− Ez∼pz [log(1− C(G(z)))].
The generator seeks to increase the chances the discriminator incorrectly classifies generated
images as real images, or C(G(z)). The loss function for the generator is Ez∼pz [log(1 −
C(G(z)))], although in other applications variations of this function are often used instead.
The two algorithms essentially “play” against one other trying to create fake images that
pass as real ones, and detect which images are fake. The objective function for the GAN is:

min
G

max
D

Ex∼p(x)[logC(x)] + Ez∼pz [log(1− C(G(z)))].

With machine learning, the performance of both C and G improve with successive iterations
of training. A perfect G would output images where the classifier C does no better than
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random guessing. Such a generator would by definition limit itself to the same input space
that defines real images; that is, the manifold of faces.

We use a StyleGAN2 developed by Karras, Laine and Aila (2019), which is widely regarded
as one of the most successful GAN architectures to date. Our GAN is trained on 33,100
mugshot images, each of which is structured as 512 pixels by 512 pixels, with a black boundary
and centered faces.

One common measure for assessing a GAN’s quality is the Frechet inception distance
(FID) (Heusel, Ramsauer, Unterthiner, Nessler and Hochreiter, 2017), which is a measure
of the difference between the distribution of GAN-generated images relative to the original
images used to train the GAN.83 On our subsample of male arrestees in the Mecklenburg
data set, we obtain an FID of 1.71. By way of comparison, StyleGAN2 trained on the flicker-
faces HQ data set (FFHQ), which contains 70,000 high-quality, high-resolution (1024x1024)
images, equals 2.84.84 We likely do better because the space of mugshots is a smaller, less
rich space than the space of faces in the Flickr dataset.

Another pair of performance measures we use are precision and recall (Sajjadi, Bachem,
Lucic, Bousquet and Gelly, 2018), which are analogous to, but distinct from, common metrics
of the same name used in predictive modeling. Precision measures the chance that a randomly
generated image from the GAN is close to some real image from the training data, while
recall measures the chance that a random image from the training data is close to some
image generated by the GAN. Or, roughly speaking, precision is how often images with a
positive pp(x) look like a face, while recall measures how much of the training data is assigned
a positive pp(x) by the GAN. Our GAN has a precision of 0.7784 and a recall of 0.5741; by
comparison, a StyleGAN or StyleGAN2 trained on the FFHQ dataset can achieve a precision
up to 0.721 and a recall of 0.492 (Karras, Laine, Aittala, Hellsten, Lehtinen and Aila, 2020)
(higher values are better for both precision and recall).

To calculate the gradient for predicted judge detention risk in face-space, for any given
point in the latent face space (that is, for any given GAN-generated face), we identify the
set of GAN-generated images in the neighborhood of the selected point and apply our judge
decision predictor (discussed above) to the target face as well as each of the nearby face
images. We identify the direction of the gradient in face space, then, as being in the direction
of those GAN-generated images that have the largest change in predicted detention likelihood.

B.D. Morphing
The goal of morphing is to produce two images, x− and x+, which have very different pre-
dicted probabilities of detention while having very similar visual appearance. Our morphing
process uses gradient descent to find these images, and we introduce some variations to this
process to produce orthogonalized morphs.

83Calculation of the FID measure begins with a general off-the-shelf image CNN (an Inception V3 classifier)
and then uses the final layer of that classifier as a way to represent images. We then calculate the distribution
of real and synthetic images in this representation space. The FID metric is the square of the Wasserstein
distance between these two distributions, with lower values indicating better performance.

84As noted above, to avoid stereotyping in discussions of crime and criminal justice, we illustrate the key
ideas in our paper using images just for non-Hispanic white males. So the GAN performance statistics we
report here are from a StyleGAN2 trained just on males in our mugshot data set, which as shown in Table I
accounts for the large majority of our sample.
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To produce a collection of morph pairs, we first fix a small positive constant α for the
step size, and the constants qm and pm required by the definition of the algorithmic hypothesis
procedure Pm. We set α = 0.1, as this was sufficiently small to ensure that all gradient descent
updates decrease the predicted outcome variable when producing x− (or increased, in for the
case of x+). We set qm = 0.1 and pm = 0.35, since these values fall in the bottom and top deciles
of the predicted values of detention, respectively. To produce a single morph pair (x−, x+),
we first sample a random seed z0 from the GAN’s latent space. We sampled z0 following the
default approach used by (Karras et al., 2020), including setting the truncation parameter
ψ = 0.5, as this avoids sampling values for z0 that are excessively unlikely. To calculate the
first image x−, we let z− = z0. Given the point z−, the corresponding synthetic mugshot is
G(z−), and the corresponding predicted detention risk is m(G(z−)). By completing a single
forward and backward pass through the composition of both m and G, we can calculate
∇m(G(z−)), the gradient of predicted detention risk with respect to our current value of z−.
We can then update the value of z− by subtracting the gradient scaled by the step size:

z− ← z− − α · ∇m(G(z−)).
Since both m and G are differentiable, this reduces the predicted detention risk, provided
α is small enough. That is, m(G(z−)) < m(G(z0)) after a single iteration of the above
process. This very similar to the standard gradient descent-based training procedure used
for many deep learning models, except that we are updating the input value z− and keeping
the coefficients of m and G fixed. By iterating this process, the value of z− eventually satisfies
m(G(z−)) ≤ qm. Once this condition is satisfied, we terminate the gradient descent process,
and set x− = G(z−). We employ a similar process to calculate x+: We set z+ = z0, reverse the
direction of morphing by making the update α← −α, and iterate the same gradient descent
process until m(G(z+)) ≥ pm. We then set x+ = G(z+). The end result is a morphing pair
(x−, x+) that satisfies the requirements of Pm.

To produce our orthogonal morphs, we make two variations to the above morphing pro-
cess. The goal of these variations is to produce a morphing pair (x−, x+) that vary by a
maximal margin in the outcome dimension (detention risk), while varying by a minimal mar-
gin in the x′ covariates (well-groomed and skin tone). For the first variation, when running
the morphing process, we replace the original model m with a CNN trained on a data set
restricted to a sample of observation pairs that match on x′ but are discordant in their values
of y (which we refer to as our “x′-matched data set”). We also extend the labelling process
for skin tone and well-groomed labels by having subjects independently rate the training data
set (most of our previous labeling was for images in the validation data set only, since up to
this point we did not need labels for training), so that this new CNN can predict both skin
tone and well-groomed. We then calculate the values of our morphed points z− and z+ in
the same manner as above. Since these points are produced with a model that is matched on
the x′ covariates, G(z−) and G(z+) have a smaller difference in predicted covariate values.

However, because of the noise in some of our measures of x′, we make an additional
variation. For this second variation, given the final values of z− and z+, we do a random
search in the neighborhood of the new points. We set ε to be one-tenth of the Euclidean
distance between z− and z+, and sample a series of points z′ that are multivariate random
normal variables with mean z+ and standard deviation ε (where each dimension of z′ is
independent). We continue this sampling until a value of z′ is found whose predicted detention

66



risk matches that of z+ and whose predicted covariate values match those of z− to a tolerance
of 0.001. We then set x− = G(z−) and x+ = G(z′). This gives us a morphing pair (x−, x+)
with a large separation in predicted detention risk, but a small separation in the predicted
covariate values. Note that for the first procedure, we use the CNN trained on the x′-matched
data set, and for the second procedure we use the original predictive model m. The final
result is a pair of mugshots, G(z−) and G(z+), one having a high probability of detention,
the other a low probability of detention, and each having similar predicted skin tone and
similar predicted well-groomed scores. We also address one final subtlety of the specific GAN
we use here (styleGAN2). Because this model also infuses some Gaussian noise into various
layers of the generator, there are additional free latent variables that can be considered during
the morphing process. However, the final stages include a huge number of Gaussian noise
variables (up to 512 × 512 variables). Morphing over all of these variables would allow us
to effectively morph the image away from the manifold of images. To solve this, we morph
over these noise layers, but with a step size that is reduced by a factor of 100, to avoid large
changes. We also use an exponentially decaying step size, to prevent the parameters in these
layers from drifting too far from their original values. Finally, we also morph over only the
final 7 noise layers, keeping the initial 8 noise layers fixed, since early noise layers can have a
larger influence over the appearance of the final face.

B.D..1 A Pseudocode for Morphing

A summary of our morphing algorithm is outlined below in pseudocode format:
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Algorithm 1 Targeted face morphing algorithm
Require: StyleGAN2 generator g : R512 → R3×512×512

Require: Detention predictor m : R3×512×512 → R
Require: Covariate predictor h : R3×512×512 → R
Require: Initial input z ∈ R512

Require: Step size α ∈ (0, 1)
Require: Bound y+ ∈ R

Ensure: Final output z ∈ R512 satisfies m(g(z)) ≥ y+

function Morph(g, m, h, z, α, y+)
repeat

// Collect predictions
x← g(z)
py ← m(x)
ph← h(x)

// Collect gradients
ηy = ∇z py

ηh = ∇z
ph

// Orthogonalize first argument against the second
η = Orthogonalize(ηy,ηh)

// Update latent vector
z ← z + αη

until py ≥ y+

return z
end function

C Appendix C: Randomized Lab Experiment
In this appendix we describe the randomized lab experiment we carry out to test the causal
relationship between detention decisions and well-groomed and heavy-faced.

The causal interpretation of our new hypotheses is that heavy-faced or well-groomed
defendants are released more often because these facial characteristics directly affect how
judges form judgments (consciously or unconsciously). Potential confounding arises from the
fact that the judge has information that our algorithm does not (as we describe in Section
III), mainly what happens in the hearing itself. Mobius and Rosenblat (2006) show that
people’s appearance can shape how confident they act, as well as their oral communication
skills. Carrying that logic over to our application, it is possible that people who are more
heavy-faced or well-groomed either act more confident in court (as signaled by for example
their body language, eye contact with the judge or prosecutor, etc.), or are better able to
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explain themselves to either the judge or (more likely, since most defendants say little in court
at pre-trial detention hearings) their own defense lawyer. These alternate mechanisms are
interesting because they suggest different psychologies (and even implicate the psychologies
of different people, e.g., the prosecutor or public defender rather than the judge).

We carry out a laboratory experiment that shuts down these two potential channels
of confounding to isolate the independent causal effect of defendant appearance on judicial
assessments of each defendant’s pre-trial risk. At a very high level we carried out two versions
of the following experiment, once morphing with respect to well-groomed and once morphing
with respect to heavy-faced:

• Describe to subjects the pre-trial system and how the judge must make a decision about
who to detain awaiting trial based on a prediction of risk. We then ask them to imagine
they are the judge, from different pairs of defendants, which would they be more likely
to recommend for detention?

• Subjects are shown 15 defendant pairs as a training period. In this stage they are shown
actual pairs of mugshots along with structured attributes of each defendant: age, race
/ ethnicity, the current charge for which the person was arrested, and prior record.
After each selection the subject is given feedback about whether the subject chose the
defendant at higher risk.

• Subjects are then given 5 minutes to make detention selections without feedback during
the testing period, and shown information for up to 45 morphed defendant pairs for the
well-groomed experiment (randomly selected from a bank of 49 morphed pairs) and
similarly up to 45 morphed pairs for the heavy-faced experiment (randomly selected
from a bank of 48 morphed pairs). The information shown for each defendant includes
the structured variables as described above, as well as synthetic images morphed with
respect to either well-groomed or heavy-faced in the direction of higher- or lower risk as
described further below. The time limit is intended to mirror the actual decision-making
environment of many bond-court environments, where there is not endless amounts of
time available to hear each case.

Additional details about the experimental paradigm and analysis include:
• First, we randomly selected 100 synthetic face images from the GAN’s latent space
• Second, we randomly assign each synthetic face some values for the structured variables.

This is done by extracting real structured-variable values from the actual Mecklenberg
dataset (demographics plus current charge plus prior record). We then randomly as-
sign structured variables to synthetic images conditional on the demographics of the
structured variables matching the demographics of the synthetic face image. Note this
implies that current charge and prior record is not truly random across all face images,
but that does not pose a problem given our experimental design.

• We randomly pair up the synthetic defendants. We do this by randomly ordering the
synthetic images and their associated structured variables and pairing them up in that
order. Let (s) index synthetic pairs. The outcome variable we will analyze below has
yis = 1 if the study subject (i) chooses to detain the defendant that has the lower of the
randomly-assigned order numbers within pair (s); for convenience call that the “top”
defendant and the defendant ranked below in the pair the “bottom” defendant.

• For each novel facial feature (well-groomed and heavy-faced), we create two variants
of each synthetic image pair (s). One variant morphs the top defendant’s image along
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the gradient of our feature in the direction towards lower risk, and morphs the bottom
defendant’s image along the gradient of the feature towards higher risk, indicated by
vs = 1. For the second variant, vs = 0, we do the reverse: morph the top image towards
higher risk and the bottom image towards lower risk.

• For each study subject, we randomly select 45 of the 50 defendant pairs to show them
(randomly ordered on a per-subject basis), and for each defendant pair, we randomize
which variant of the defendant pair they are shown.

We enrolled a total of 500 study subjects on the Prolific platform for the well-groomed ex-
periment, and another 500 subjects for the heavy-faced experiment. We limited participation
to US-based study subjects and limited our release for data collection to business hours (US
time zones). We offered subjects $2.00 up-front participation incentive plus $0.05 incentive
per correct guess during the main evaluation data collection stage. On average subjects in
the well-groomed experiment considered 36.5 morphed pairs each, while the figure is 37.1
for the heavy-faced version of the experiment. Our dataset is structured at the level of the
respondent-and-defendant-pair, so this leaves us with a total of 18, 269 observations for the
well-groomed experiment and 18, 548 observations for the heavy-faced experiment.

Our estimating equation is given as follows, with δs a set of defendant-pair fixed effects:
yis = γ0 + γ1vis+ δs + ϵis

For our statistical analysis, we cluster the standard errors by respondent (similar results
hold if we cluster by respondent and image-pair using the approach from Cameron, Gelbach
and Miller (2011)). Conditioning on participant fixed effects yields very similar results.

We find that subjects use the structured variables in a way that is consistent with both
selecting defendants at higher risk for re-arrest and also consistent with the judge’s own use
of those variables. The share of subjects who select the defendant within each pair whose
structured variables put them at higher risk for re-arrest was 65.6% in the well-groomed
version of the experiment and 58.7% in the heavy-faced experiment (as a reminder 50% is
the random guessing benchmark). The share of subjects who select the defendant whose
structured variables put them at elevated odds of having been detained by the judge equals
70.1% in the well-groomed experiment and 63.1% in the heavy-faced experiment. This tells
us not only that the study subjects are taking the task seriously on average (they are not
all just guessing randomly), but also that they are making sensible use of the structured
variables in this experimental paradigm.

At the same time we also find subjects respond to the random morphings of the defendant
faces, above and beyond the effects of the structured variables, as seen in Appendix Table
A.XVII. Defendants are 1.3 percentage points more likely to recommend for detention the
relatively more well-groomed defendant’s image (p = 0.055) and 1.9 percentage points more
likely for the more heavy-faced image (p < 0.01). The table shows that the results are not
sensitive to conditioning on study subject fixed effects, which if anything slightly increase
the magnitude of our point estimates while shrinking slightly our standard errors (and so
together reducing the p-values for our estimates).

It is important to understand what our causal experiment is and is not isolating. Our
morphs try to hold other features of these faces constant besides heavy-faced and well-
groomed, but visual inspection makes clear that these two novel facial features are also
unavoidably correlated to some degree with other aspects of a defendant’s face. Given our
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data, making such distinctions is difficult; fully teasing these apart might require something
like a field experiment inside a local jail that provides grooming assistance to defendants
before they walk into court, which is beyond the scope of our analysis here. But from a
pragmatic perspective, the exact mechanism may be less relevant given the inequity of the
outcome.85 These mechanisms—aspects of appearance correlated with heavy-facedness or
well-groomedness—do sit in a similar orbit with each other. These are “confounders” but
they do not suggest radically different explanations for the larger pattern of results.

Other caveats worth keeping in mind include the fact that our study subjects are Prolific
workers, not judges. Moreover our subjects are making these decisions in a very different
context from which the judges make actual detention decisions. These results should not be
considered a substitute for a full-fledged randomized field experiment, but rather might be
considered instead another input into the decision a researcher might make about whether
to incur the costs of causal testing for our two novel hypotheses.

While these findings are mainly intended to qualitatively establish some relationship, it is
perhaps worth noting that the magnitudes implied by our analysis are not trivial. With our
randomized morphing procedure, the contrast between the two images the subject sees is on
average 3.7 standard deviations different with respect to well-groomed (where the standard
deviation in well-groomed is calculated for the validation subsample). For the full-faced
version of the experiment, the average image contrast is 4.4 standard deviations. So the
subject is essentially selecting which defendant to detain comparing images at the bottom
versus the top of the well-groomed (or heavy-faced) distributions. As a benchmark, we can
compare the effect of the image to that of the structured variables (current charge, prior
record), which as a reminder were randomly assigned to images conditional on race, sex,
and age. We statistically relate these structured variables to re-arrest risk among the actual
sample of Mecklenburg County defendants, so for each hypothetical defendant in the causal
experiment we can calculate the predicted re-arrest risk implied by their structured variables.
We calculate that a defendant with structured variables that put them at the top decile of
the predicted re-arrest risk distribution is 31 percentage points more likely to be selected
for detention by the subjects compared to a defendant in the bottom decile of the predicted
re-arrest distribution. So moving along the full distribution of well-groomed or heavy-faced
has 4.2% and 6.1% of the effect of moving along the full distribution of re-arrest risk, or
equivalently, equal to about a 4 and 6 percentile point movement within the re-arrest risk
distribution.86

85Recall the discussion in Section IV.B. argues against the possibility that these facial characteristics are
proxies for risk.

86We calculate the effect of re-arrest risk on the subject’s detention recommendation through a separate
analysis where we assign a +1 value if the LHS image is in the top decile of predicted re-arrest risk or the RHS
image is in the bottom decile of predicted re-arrest risk, and −1 if the reverse situation is true, 0 else. The
effect on subject decisions from moving across the entire predicted risk distribution is twice the coefficient on
this variable.
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D Appendix D: Hold-out dataset results
As discussed in the main text, we downloaded data on 81, 166 arrests made between January
18, 2017, and January 17, 2020, involving 42, 353 unique defendants. We applied several
data filters, such as dropping cases without mugshots (Appendix Table A.I.), which leaves us
with 51, 751 observations. Because our goal is inference about new—that is, out-of-sample
(OOS)–observations, we partitioned our data as follows:

• A train set of N = 22, 696 cases, constructed by taking arrests through July 17, 2019,
grouping arrests by arrestee,87 randomly selecting 70% to the training-plus-validation
dataset, then randomly selecting 70% of those arrestees for the training data specifically.

• A validation set of N = 9, 604 cases used to report out-of-sample performance in this
paper’s main exhibits, consisting of the remaining 30% in the combined training-plus-
validation data frame.

• A hold-out set of N = 19, 009 cases that we did not touch until the paper was accepted
for final publication, to avoid inadvertently overfitting the OOS data as we respond to
seminar or referee suggestions, etc. This consists of the N = 4, 759 valid cases for the
last 6 months of our data period (July 17, 2019, to January 17, 2020) plus a random
sample of 30% of those arrested before July 17, 2019.

The main exhibits in the paper report results from machine learning models built using the
train set; results in the tables come from applying that machine learning model to observations
in the validation dataset.

While this split-sample approach helps address concerns about over-fitting, there is nonethe-
less always a natural concern that we may still have inadvertently overfit the data over the
course of writing the paper since we inevitably have built many machine learning models
with the training dataset and evaluated their results with the validation dataset. To guard
against that possibility, we replicated our analysis using the hold-out dataset, which we did
not touch until this paper had been accepted for final publication.

The first step of this hold-out analysis was to collect new subject-assigned labels for the
mugshot images in the hold-out dataset. We carried that out as follows:

• For subject guesses about detention likelihood (which of two mugshots will the judge be
more likely to detain), our procedure for the hold-out dataset was exactly the same as
for the validation dataset. We recruited 1, 144 participants from the Prolific platform
and had them make guesses for a total of 56, 688 mugshot pairs (35, 110 unique pairs).
Participants were paid a $1.80 base-rate to participate, plus an incentive of $0.05 per
correct guess. We collected an average of 5.6 guesses per image in the hold-out dataset.

• To measure the other explanatory variables not captured by administrative data (such
as skin tone as well as facial features that previous psychological research suggests
may shape the behavior of other people towards someone, like trustworthiness, domi-
nance, competence and attractiveness) as well as the novel features that our discovery
procedure identified (heavy-faced and well-groomed), we recruited 2, 321 subjects on
Prolific. Subjects were asked to first label 50 images for the explanatory variables plus
well-groomed and heavy-faced (with a payment of $0.10 per image) then given another
50 images and asked to provide labels for just well-groomed and heavy-faced (with a

87We partition the data by arrestee, not arrest, to ensure people show up in only one of the partitions to
avoid inadvertent information “leakage” across data partitions.
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payment of $0.05 per image). We collected an average of 3 labels per image for the ex-
planatory variables (with a minimum of 2 labels per image) and an average of 5.7 labels
per image for our two novel facial features (with a minimum of 5 labels per image).

The second step was to apply our convolutional neural network’s (CNN) estimates to
images in the hold-out dataset to calculate predicted detention likelihood for each image.
One complication is that over the course of the project the code and model parameters of
the original CNN we used for the main exhibits were lost. However we do have the predicted
probabilities from that CNN for the validation dataset, and we built two new CNNs that
each have identical explanatory power in the validation dataset as the original model (AUC of
0.6246). We use those new CNNs to calculate predicted detention probabilities for each image
in the hold-out dataset for use as explanatory variables in the various regression exercises
shown in the tables.

We then replicate the results in our main tables (Tables II through VI) three ways using
our hold-out dataset:

• Using the entire hold-out dataset;
• Using just the part of the hold-out dataset that consists of the random sample of the

30% of people who had been arrested prior to July 17, 2019;
• using just the out-of-time partition of our hold-out dataset (the N = 4, 759 valid cases

for the last 6 months of our data period, from July 17, 2019, to January 17, 2020).
As shown in Appendix Tables A.XVIII to A.XXXII, our core findings about the influ-

ence of facial features on judge decisions and which specific facial features matter most are
qualitatively similar to those shown in the main tables.
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Table A.I: Sample construction steps and data missingness filters

Procedure / Data Relevant
Sample Size

Notes

Raw Data 81166 Total number of arrests downloaded from Mecklenburg County, NC Sheriff’s Office public website from January 18, 2017
through January 17, 2020

Filters

Non-arrest (8312) These arrest cases either pertain to probation and parole violations that do not result in new bookings, or can reflect more
serious apprehensions pursuant to federal warrants. They do not involve any local pre-trial detention adjudications.

Missing case info (6238) Arrests without court case IDs on at least one arrest charge, which means we cannot link arrests to judge pre-trial detention
decisions.

Outside observation window (4737) The arrest data is matched with inmate data and court record data. These all come from different observation windows. We
only consider arrests that fall within the observation window of all three datasets.

Arrested during jail term (3218) The arrest date occurs at a time when the individual is already in jail (e.g., due to an offense against another inmate or guard),
which typically means pre-trial hearing results in detention – so the judge decision is quite different from out-of-jail arrests.

All cases disposed within 3 days (2229) Court cases which are disposed very quickly (within three days). For cases dismissed within such a relatively short time frame,
it is likely that judge detention decisions are influenced by a knowledge that dismissal is likely.

Arrested after disposal (1072) Arrests with a disposal date occurring earlier than arrest date. This appears to arise from a data recording error.

Charges missing (542) These records have no charges listed on the MCSO website in the arrest search. We omit them because we cannot define all
outcomes without charges.

Missing inmate dates (266) Arrests with a linked inmate record that has missing committed and released date fields. These entries are removed, as we
cannot produce all outcomes reliably.

Missing mugshot (71) The records with a missing mugshot on MCSO website.

Missing charge flags (18) Rows for which we are missing a categorization of charge descriptions.

Prisoner level separation (2712) Since partitioning is implemented at the arrest level, we avoid data spillage at the prisoner level by removing prisoners in the
lock-box set who also have an arrest record in the training set or the validation set.

Relevant Sample 51751

Sample Partitioning

Train Set 22696 This is the set on which we trained our judge prediction algorithm.
Validation Set 10046 We use this set to report out-of-sample performance in this paper’s main exhibits.88

Lock-box Hold-Out Set 19009 The data we have set aside for measuring the model’s final performance, composed of a combined out-of-sample by
individual subset and an out-of-sample by time subset.

Notes: The table above reports how we construct our working data sets by applying various filters during the pre-processing stage.
88An additional 442 observations were removed from the validation set after our CNN failed to generate predictions for these mugshots, so results on the validation set are
reported on a sample size of 9604 throughout this paper.
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Table A.II: Test of balance between training dataset, validation dataset and out-of-sample by
individual testing dataset

Train Set Validation
Set

Lock-Box
Hold-Out

Data (OOS
by

individual)

Comparison
p-value

Sample Size 22696 9604 14250

Outcome
Judge detains defendant 0.232 0.233 0.235 0.883
Defendant re-arrested before trial 0.251 0.251 0.255 0.876

Defendant Characteristics
Age 31.849 31.631 32.171 0.110
Male 0.789 0.782 0.778 0.245
White 0.278 0.274 0.285 0.478
Black 0.694 0.695 0.687 0.686
Other Race 0.028 0.031 0.027

Arrest Charge
Violent 0.343 0.343 0.339 0.727
Property 0.324 0.317 0.319 0.614
Drug 0.204 0.207 0.198 0.403
Gun 0.079 0.084 0.078 0.352
Other charge 0.262 0.264 0.272 0.155

Arrest Charge Severity
Felony 0.421 0.428 0.410 0.073∗

Non-Felony 0.579 0.572 0.590

Defendant Prior Record
Any Prior Conviction 0.461 0.458 0.452 0.575
Prior Felony Conviction 0.333 0.328 0.323 0.569
Prior Non-Felony Conviction 0.316 0.318 0.313 0.898

Notes: This table reports descriptive statistics for our full data set and analysis subsets, which covers the period
January 18, 2017, through January 17, 2020, from Mecklenburg County, NC. The lock-box hold-out hold-out data set
(OOS by individual) consists of data from a subset of cases through July 16, 2019, selected by randomly selecting
arrestees, excluding the last 6 months of our study period (July 17, 2019, through January 17, 2019), which is kept for
the lock-box hold-out data (OOS by time). The remainder of the data set is then randomly assigned by arrestee to
our training data set (used to build our algorithms) or our validation set (which we use to report results in our paper’s
main exhibits). For additional details of our data filters and partitioning procedures, see Table A.I. We define pre-trial
release as being released on the defendant’s own recognizance (ROR) or having been assigned and then posting cash
bail requirements within three days of arrest. We define re-arrest as experiencing a new arrest before adjudication of
the focal arrest, with detained defendants being assigned 0 values for purposes of this table. The comparison p-value
comes from calculating an F-test statistic for the null hypothesis of equivalence of means for a given variable (described
by each row label) between the training data set, validation data set and the lock-box hold-out data set (OOS by
individual only), with standard errors clustered by arrestee.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.III: Human Intelligence Tasks

Common Name Survey
Number

Short Description Final Dataset Subjects Compensation Additional Notes

Qualifying task 1 Subjects label 25 images across known variables, in order to
identify high-quality raters.

Ratings from several MTurk workers, used to identify
a qualified subpopulation of 343 MTurk workers.

600 MTurk
Workers

8¢ per image This survey was periodically re-run
when a larger or updated
population of raters was required.
In total, 343 qualified MTurk
Workers were identified across all
qualification surveys.

Data collection
labelling task
part A

2 Subjects label 25 images on sliders for attractiveness,
dominance, competence, trustworthiness and well-groomed, a
free text input for age, a swatch for skin tone, and a selection
for race.

Labels for 32881 images. Includes at least one label
for age, race, and skin tone for all images in training
and validation, at least three labels for all sliders in
training dataset, and at least five labels for all sliders
in validation dataset.

343 Qualified
MTurk Workers

8¢ per image The results from all labelling
surveys was combined to produce a
single image-label dataset.

Data collection
labelling task
part B

3 Subjects label 25 images on sliders for attractiveness,
dominance, competence, trustworthiness, well-groomed,
heavy-faced, and potentially other features.

See above. 343 Qualified
MTurk Workers

5¢ per image The results from this survey were
merged with the other image label
datasets.

Afro-centric
features

4 Format is similar to survey 3, but sliders shown are for
afrocentric features.

See above. 35 MTurk
Workers from
qualified
population

5¢ per image Workers were informed that the
HIT contained "sensitive material".
The results from this survey were
merged with the other image label
datasets.

Labelling quality
check

5 Format is identical to survey 2, but each hit is repeated with
multiple subjects.

100 images each with 10 labels. 40 MTurk
Workers from
qualified
population

5¢ per image The results from this survey were
merged with the other image label
datasets.

Human guess
labelling task

6 Subjects are presented with 50 pairs of mugshots, and
instructed to select which person they believe was detained.
They are given feedback after each selection (so they can
learn to identify patterns), and paid a 5 cent incentive for
every correct guess. Each pair is matched to contain the
same age bin, race, and sex.

Human guesses for 29,750 image pairs. The final
dataset has at least three guesses for 8,001 images,
with average of 7.4 guesses per image. Coverage is
79% for images.

595 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Because image pairs are matched
on age bins, race, and sex, about
21 percent of our validation images
do not have a proper match, and
hence do not receive a human
guess feature.

Morph labelling
(along detention
gradients)

7 Format and incentive is identical to survey 6, but image
pairs shown are all morphed pairs with a high/low detain
probability.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global masurement
of accuracy.

54 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Morph labelling
(along residual
gradients)

8 Format and incentive is identical to survey 6, but image pairs
shown are all morph pairs with a high/low detain probability,
and a similar estimated skin tone and well-groomed score.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global
measurement of accuracy.

52 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Morph labelling
(along age
gradients)

9 Format and incentive is identical to survey 6, but image
pairs shown are all morph pairs with a high/low estimated
age. Participants are not told what the "hidden
characteristic" is, and must identify it from feedback.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global masurement
of accuracy.

52 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Data collection
labelling task
part C

10 Similar to Surveys 2 and 3; subjects label 25 images on slides
for mental illness, socioeconomic status, and baby-faced

Labels for 9604 images. Includes at least three labels
per image for all images in the validation set.

42 MTurk
Workers from
qualified
population

4.8¢ - 5¢ per
image, depending
on number of
sliders

The results from this survey were
merged with the other image label
data sets.

Laboratory
experiment
(well-groomed
and heavy-faced)

11 Subjects are presented with pairs of arrest records containing
mugshots and information about the defendant’s criminal
history, charges, age and race. They select which person
should be detained based on their risk of re-arrest. After a
training phase of 15 pairs with feedback, subjects complete
up to 48 selections without feedback within a 5-minute time
limit as an evaluation phase. During the evaluation phase,
each pair has been morphed so that one randomly selected
mugshot exhibits a novel feature (well-groomed or
heavy-faced) more strongly, with the other mugshot morphed
in the opposite direction.

During the evaluation phase, we collected a total of
18268 and 18548 selections for well-groomed and
heavy-faced respectively, based on 96 different pairs
of arrest records. The 96 pairs come from 48 different
pairs of arrest records, with two variations depending
on which mugshot is selected for morphing up versus
down.

1000 Prolific
Workers (500 per
feature)

$2.00 base rate,
plus a bonus of 5¢
for every selection
that matches a
linear regression
predicting the
riskier defendant.

Notes: The table above provides a short description of different rounds of data collection via human intelligence tasks. It specifies the objectives and the procedure of each task as well as its
incentive structure.
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Table A.IV: Summary statistics for human-labeled known facial features from existing psychological
research

Mean Label Value

Population Attractiveness Competence Dominance Trustworthiness Human Guess
Full Sample 3.827 3.792 4.255 3.221 0.496

Race:
Black 3.831 3.810 4.318 3.245 0.496
White 3.786 3.728 4.106 3.137 0.494
Asian 3.708 3.801 3.819 3.312 0.500
Indian 4.388 4.024 4.012 3.600 0.500
Unknown 4.251 4.031 4.299 3.443 0.505

Age Groups:
< 25 4.167 3.902 4.193 3.363 0.495
25 < X < 34 3.904 3.833 4.284 3.202 0.497
> 34 3.451 3.657 4.284 3.108 0.496

Detained:
True 3.753 3.704 4.283 3.124 0.511
False 3.850 3.819 4.246 3.250 0.491

Notes: This table shows mean values for each sample sub-group defined at left (row labels) for each human-rated
psychological feature indicated in the column heading. Rating ranges were from 1 (low) to 9 (high). Standard
deviations of the above labels measured on the full sample size are as follows: attractiveness (0.923), competence
(0.911), dominance (0.947), and trustworthiness (0.844). Ratings were conducted on face images (mugshots) taken
from Mecklenburg County, NC Sheriff’s Office public website. Ratings of attractiveness, competence, dominance and
trustworthiness come from subject ratings of mugshot images (see text). Human guess variable comes from showing
subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more
likely to detain.
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Table A.V: Human labeled features for ethnicity and stereotypically Black appearance

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

(1) (2) (3) (4)
Male .1168∗∗∗ .1149∗∗∗ .1022∗∗∗ .0260∗∗

(.0025) (.0025) (.0106) (.0117)
Age .0006∗∗∗ .0003∗∗∗ −.0008∗∗ −.0014∗∗∗

(.0001) (.0001) (.0004) (.0004)
Asian .0048 .0028 −.0086 −.0146

(.0045) (.0045) (.0193) (.0191)
Black .0080∗∗ .0034 −.0013 −.0135

(.0036) (.0036) (.0152) (.0153)
Hispanic .0061 .0045 −.0175 −.0241

(.0043) (.0043) (.0184) (.0182)
Indigenous American .0089 .0063 .0097 .0003

(.0095) (.0094) (.0403) (.0398)
Stereotypically Black Appearance .0004 −.0018∗∗ .0001 −.0037

(.0006) (.0008) (.0027) (.0034)
Skin-Tone −.0288∗∗∗ −.0466∗

(.0062) (.0262)
Attractiveness −.0050∗∗∗ −.0011

(.0016) (.0067)
Competence −.0087∗∗∗ −.0146∗∗

(.0017) (.0072)
Dominance .0030∗∗ .0058

(.0012) (.0051)
Trustworthiness −.0042∗∗ −.0094

(.0016) (.0070)
Human Guess .0407∗∗∗ .0851∗∗∗

(.0062) (.0265)
Algo Judge Detain Prediction .6240∗∗∗

(.0434)
Constant .1347∗∗∗ .2059∗∗∗ .1803∗∗∗ .1761∗∗∗

(.0042) (.0103) (.0180) (.0446)
Observations 9,604 9,604 9,604 9,604
Adjusted R2 .2014 .2222 .0097 .0369

Notes: The table above presents a summary of the results of main paper Tables II and III using an additional
feature introduced in the literature that measures the degree to which a person’s facial appearance resembles
that of a stereotypically Black person which has been found to be closely connected to sentencing decisions
(see Eberhardt et al. (2006)). Moreover, the administrative records of MCSO on race are replaced with
human labels which capture perceived racial ethnicity of defendants based on their faces. The data on racial
ethnicity and stereotypically Black appearance come from subject ratings of mugshot images (see text).
Stereotypically Black appearance is coded from 1 (perceived least stereotypically Black) to 9 (perceived
most stereotypically Black). For descriptions of other variables, refer to Tables II and III. Regressions follow
a linear probability model and also include indicators for unknown racial ethnicity and unknown gender.
The base factor levels for gender and ethnicity are female and Caucasian.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VI: Sensitivity analysis: Non-parametric specifications for skin-tone and known psycho-
logical features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

(1) (2) (3) (4) (5)
Heavy-Faced −.0180∗∗∗ −.0220∗∗∗ −.0118∗∗∗

(.0008) (.0037) (.0037)
Well-Groomed −.0134∗∗∗ −.0109∗∗ −.0033

(.0011) (.0051) (.0051)
Algo Judge Detain Prediction .6065∗∗∗ .5699∗∗∗

(.0443) (.0458)
Male .1133∗∗∗ .1120∗∗∗ .0246∗∗ .0912∗∗∗ .0274∗∗

(.0025) (.0024) (.0118) (.0108) (.0119)
Age .0003∗∗∗ .0004∗∗∗ −.0014∗∗∗ −.0011∗∗∗ −.0013∗∗∗

(.0001) (.0001) (.0004) (.0004) (.0004)
Black −.0223∗∗∗ −.0243∗∗∗ −.0557∗∗∗ −.0716∗∗∗ −.0578∗∗∗

(.0040) (.0039) (.0174) (.0175) (.0174)
Asian −.0238∗∗ −.0166 −.0639 −.0714 −.0620

(.0112) (.0109) (.0487) (.0490) (.0487)
Indigenous American .0107 .0011 .0645 .0578 .0571

(.0234) (.0226) (.1014) (.1022) (.1014)
Human Guess .0387∗∗∗ .0275∗∗∗ .0840∗∗∗ .0959∗∗∗ .0803∗∗∗

(.0061) (.0059) (.0266) (.0268) (.0267)
Constant .0958∗∗∗ .2731∗∗∗ .0118 .2536∗∗∗ .0980∗∗

(.0076) (.0108) (.0333) (.0487) (.0499)
Indicators for Skin-Tone? YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES

Observations 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .2496 .2987 .0371 .0224 .0379
Notes: The above table replicates the richest specifications of main paper Tables II, III, V and VI, but now relaxing the linearity
assumption for skin tone and known psychological features. The table shows results of estimating a linear probability specification
regressing algorithmic prediction of judge detain decision (columns (1) and (2)) and actual judges’ detain decision (columns (3)
through (5)) against different explanatory variables, using data from the validation set separately for male and female defendants.
The Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the training data set
to validation set observations. Measures of defendant demographics and current arrest charge come from Mecklenburg County
administrative data. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance and trustworthiness
come from subject ratings of mugshot images (see text). Human guess variable comes from showing subjects pairs of mugshot
images and asking subjects to identify the defendant they think the judge would be more likely to detain. The base factor levels
for gender and race are female and white. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VII: Cross gender sensitivity analysis: Non-parametric specification for skin-tone and known psychological features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

Male Defendants Female Defendants Male Defendants Female Defendants

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −.0193∗∗∗ −.0106∗∗∗ −.0191∗∗∗ −.0078∗ −.0277∗∗∗ −.0232∗∗∗

(.0010) (.0014) (.0043) (.0044) (.0066) (.0067)
Well-Groomed −.0128∗∗∗ −.0174∗∗∗ −.0072 .0002 −.0254∗∗∗ −.0179∗

(.0013) (.0020) (.0060) (.0059) (.0097) (.0098)
Algo Judge Detain Prediction .6027∗∗∗ .5814∗∗∗ .5376∗∗∗ .4297∗∗∗

(.0505) (.0523) (.1020) (.1054)
Age .0004∗∗∗ .0006∗∗∗ −.0003∗ −.0004∗∗ −.0014∗∗∗ −.0010∗∗ −.0014∗∗∗ −.0012 −.0016∗ −.0014∗

(.0001) (.0001) (.0002) (.0002) (.0005) (.0005) (.0005) (.0008) (.0008) (.0008)
Black −.0028 −.0068 −.0786∗∗∗ −.0761∗∗∗ −.0441∗∗ −.0494∗∗ −.0455∗∗ −.1018∗∗∗ −.1394∗∗∗ −.1067∗∗∗

(.0048) (.0046) (.0065) (.0062) (.0209) (.0211) (.0209) (.0309) (.0298) (.0308)
Asian −.0091 −.0025 −.0625∗∗∗ −.0544∗∗∗ −.0536 −.0543 −.0528 −.0915 −.1106 −.0872

(.0129) (.0124) (.0209) (.0202) (.0560) (.0565) (.0561) (.0963) (.0962) (.0960)
Indigenous American .0173 .0087 −.0169 −.0251 −.0782 −.0780 −.0831 .3193∗∗ .2876∗∗ .2984∗∗

(.0300) (.0290) (.0316) (.0306) (.1307) (.1318) (.1307) (.1456) (.1458) (.1452)
Human Guess .0348∗∗∗ .0247∗∗∗ .0438∗∗∗ .0281∗∗ .0678∗∗ .0809∗∗∗ .0665∗∗ .1573∗∗∗ .1512∗∗∗ .1391∗∗

(.0069) (.0067) (.0120) (.0117) (.0303) (.0306) (.0303) (.0556) (.0558) (.0556)
Constant .1849∗∗∗ .3630∗∗∗ .1516∗∗∗ .3190∗∗∗ .0484 .3024∗∗∗ .0914 −.0064 .3863∗∗∗ .2492∗∗∗

(.0089) (.0126) (.0133) (.0189) (.0399) (.0572) (.0598) (.0630) (.0902) (.0959)
Indicators for Skin-Tone? YES YES YES YES YES YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES YES YES YES YES YES

Observations 7,511 7,511 2,092 2,092 7,511 7,511 7,511 2,092 2,092 2,092
Adjusted R2 .0783 .1395 .1990 .2542 .0264 .0106 .0266 .0482 .0477 .0550
Notes: The above table replicates the richest specifications of main paper Tables II, III, V, and VI, but now relaxing the linearity assumption for skin tone and psychological features
while introducing low-level interactions with defendant’s gender. The table shows results of estimating a linear probability specification regressing algorithmic prediction of judges’ detain
decision (columns (1) through (4)) and actual judges’ detain decision (columns (5) through (10)) against different explanatory variables, using data from the validation set separately
for male and female defendants. Algorithmic predictions of judges’ decisions come from applying algorithm built with face images in the training data set to validation set observations.
Data on well-groomed, skin tone, and psychological features (i.e., attractiveness, competence, dominance, and trustworthiness) come from subject ratings of mugshot images (see text).
Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression
specifications also include indicators for unknown race.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VIII: Cross race sensitivity analysis: Non-parametric specification for skin-tone and known psychological features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

Black Defendants Non-Black Defendants Black Defendants Non-Black Defendants

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −.0174∗∗∗ −.0166∗∗∗ −.0210∗∗∗ −.0112∗∗ −.0214∗∗∗ −.0126∗

(.0010) (.0014) (.0044) (.0045) (.0067) (.0068)
Well-Groomed −.0184∗∗∗ −.0046∗∗ −.0111∗ −.0008 −.0114 −.0090

(.0014) (.0019) (.0062) (.0063) (.0090) (.0090)
Algo Judge Detain Prediction .5915∗∗∗ .5602∗∗∗ .5690∗∗∗ .5270∗∗∗

(.0532) (.0553) (.0852) (.0874)
Male .1442∗∗∗ .1415∗∗∗ .0592∗∗∗ .0607∗∗∗ .0435∗∗∗ .1245∗∗∗ .0453∗∗∗ −.0086 .0276 −.0045

(.0031) (.0030) (.0040) (.0039) (.0154) (.0135) (.0155) (.0189) (.0183) (.0190)
Age .0005∗∗∗ .0005∗∗∗ −.0002 −.00003 −.0013∗∗∗ −.0010∗∗ −.0013∗∗∗ −.0015∗∗ −.0015∗ −.0015∗

(.0001) (.0001) (.0002) (.0002) (.0005) (.0005) (.0005) (.0008) (.0008) (.0008)
Human Guess .0328∗∗∗ .0224∗∗∗ .0467∗∗∗ .0349∗∗∗ .0737∗∗ .0846∗∗∗ .0720∗∗ .1037∗∗ .1124∗∗ .0940∗

(.0072) (.0070) (.0111) (.0109) (.0312) (.0315) (.0313) (.0510) (.0515) (.0513)
Constant .0514∗∗∗ .2545∗∗∗ .1445∗∗∗ .2632∗∗∗ .2020∗∗∗ .4109∗∗∗ .2683∗∗∗ .0250 .2961∗∗∗ .1574∗

(.0172) (.0191) (.0121) (.0182) (.0745) (.0865) (.0870) (.0567) (.0858) (.0884)
Indicators for Skin-Tone? YES YES YES YES YES YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES YES YES YES YES YES

Observations 6,673 6,673 2,931 2,931 6,673 6,673 6,673 2,931 2,931 2,931
Adjusted R2 .3146 .3649 .1423 .1850 .0407 .0266 .0413 .0303 .0194 .0313
Notes: The above table replicates the richest specifications of main paper Tables II, III, V, and VI, but now relaxing the linearity assumption for skin tone and psychological features while
introducing low-level interactions with defendant’s race. The table shows results of estimating a linear probability specification regressing algorithmic prediction of judges’ detain decision
(columns (1) through (4)) and actual judges’ detain decision (columns (5) through (10)) against different explanatory variables, using data from the validation set separately for Black and
non-Black defendants. Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the training data set to validation set observations. Data on
well-groomed, skin tone, and psychological features (i.e., attractiveness, competence, dominance and trustworthiness) come from subject ratings of mugshot images (see text). Human guess
variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression specifications
also include indicators for unknown race.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.IX: Relationship between novel features and algorithm’s prediction controlling for indicators of defendant drug involvement
Dependent variable:

Algo Judge Detain Prediction
Drug Possession Charge No Drug Possession Charge

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0181∗∗∗ −0.0189∗∗∗ −0.0182∗∗∗ −0.0167∗∗∗ −0.0184∗∗∗

(0.0009) (0.0008) (0.0008) (0.0021) (0.0009)
Well-Groomed −0.0172∗∗∗ −0.0153∗∗∗ −0.0133∗∗∗ −0.0098∗∗∗ −0.0141∗∗∗

(0.0011) (0.0012) (0.0012) (0.0028) (0.0013)
Male 0.1117∗∗∗ 0.1155∗∗∗ 0.1130∗∗∗ 0.0980∗∗∗ 0.1151∗∗∗

(0.0024) (0.0025) (0.0024) (0.0069) (0.0026)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0004∗∗∗ 0.0002 0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0003) (0.0001)
Black −0.0187∗∗∗ −0.0168∗∗∗ −0.0183∗∗∗ −0.0119 −0.0194∗∗∗

(0.0035) (0.0036) (0.0035) (0.0087) (0.0038)
Asian −0.0187∗ −0.0160 −0.0140 0.0088 −0.0184

(0.0111) (0.0113) (0.0110) (0.0292) (0.0119)
Indigenous American −0.0006 0.0172 0.0040 0.0167 0.0002

(0.0232) (0.0236) (0.0230) (0.0527) (0.0255)
Skin-Tone −0.0453∗∗∗ −0.0440∗∗∗ −0.0472∗∗∗ −0.0387∗∗∗ −0.0489∗∗∗

(0.0057) (0.0058) (0.0056) (0.0139) (0.0062)
Attractiveness −0.0086∗∗∗ 0.0008 −0.0033∗∗ −0.0068∗ −0.0028

(0.0015) (0.0016) (0.0016) (0.0038) (0.0017)
Competence −0.0085∗∗∗ −0.0060∗∗∗ −0.0061∗∗∗ −0.0093∗∗ −0.0055∗∗∗

(0.0016) (0.0017) (0.0016) (0.0040) (0.0018)
Dominance 0.0059∗∗∗ 0.0031∗∗∗ 0.0058∗∗∗ 0.0064∗∗ 0.0057∗∗∗

(0.0012) (0.0012) (0.0012) (0.0028) (0.0013)
Trustworthiness −0.0014 −0.0024 0.00001 0.0018 −0.0002

(0.0016) (0.0016) (0.0016) (0.0040) (0.0017)
Human Guess 0.0336∗∗∗ 0.0339∗∗∗ 0.0286∗∗∗ 0.0170 0.0308∗∗∗

(0.0061) (0.0062) (0.0060) (0.0143) (0.0067)
Drug Possession 0.0049 −0.0020 0.0073∗∗ −0.0006 −0.0027

(0.0031) (0.0027) (0.0031) (0.0028) (0.0027)
Constant 0.3474∗∗∗ 0.3122∗∗∗ 0.3335∗∗∗ 0.2570∗∗∗ 0.3430∗∗∗ 0.3480∗∗∗ 0.3429∗∗∗

(0.0051) (0.0102) (0.0054) (0.0099) (0.0104) (0.0262) (0.0114)
Observations 9,604 9,604 9,604 9,604 9,604 1,442 8,162
Adjusted R2 0.0385 0.2627 0.0251 0.2360 0.2727 0.2014 0.2828

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention decisions, with
some control for an indicator of the defendant’s drug involvement. Specifically we control for whether the defendant’s current charge is for drug possession in columns (1) through (5), which use the full
validation (test set) sample. In column (7) we re-run the analysis using just those defendants who have some indication of drug involvement, while column (8) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.X: Relationship between novel features and algorithm’s prediction controlling for indicator of defendant’s mental health
Dependent variable:

Algo Judge Detain Prediction
MI ≥ Median(MI) MI < Median(MI)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0175∗∗∗ −0.0183∗∗∗ −0.0177∗∗∗ −0.0190∗∗∗ −0.0162∗∗∗

(0.0009) (0.0008) (0.0008) (0.0011) (0.0012)
Well-Groomed −0.0157∗∗∗ −0.0141∗∗∗ −0.0126∗∗∗ −0.0143∗∗∗ −0.0109∗∗∗

(0.0011) (0.0012) (0.0012) (0.0016) (0.0017)
Male 0.1129∗∗∗ 0.1168∗∗∗ 0.1139∗∗∗ 0.1132∗∗∗ 0.1142∗∗∗

(0.0024) (0.0025) (0.0024) (0.0033) (0.0036)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0004∗∗∗ 0.0006∗∗∗ −0.00003

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0179∗∗∗ −0.0160∗∗∗ −0.0178∗∗∗ −0.0172∗∗∗ −0.0189∗∗∗

(0.0035) (0.0036) (0.0035) (0.0049) (0.0050)
Asian −0.0174 −0.0148 −0.0132 −0.0285 −0.0048

(0.0111) (0.0113) (0.0110) (0.0174) (0.0141)
Indigenous American 0.0004 0.0175 0.0045 −0.0312 0.0318

(0.0231) (0.0235) (0.0230) (0.0362) (0.0296)
Skin-Tone −0.0443∗∗∗ −0.0428∗∗∗ −0.0463∗∗∗ −0.0468∗∗∗ −0.0462∗∗∗

(0.0057) (0.0058) (0.0056) (0.0079) (0.0081)
Attractiveness −0.0076∗∗∗ 0.0013 −0.0029∗ −0.0012 −0.0055∗∗

(0.0015) (0.0016) (0.0016) (0.0022) (0.0022)
Competence −0.0077∗∗∗ −0.0053∗∗∗ −0.0056∗∗∗ −0.0072∗∗∗ −0.0040∗

(0.0016) (0.0017) (0.0016) (0.0023) (0.0024)
Dominance 0.0053∗∗∗ 0.0025∗∗ 0.0054∗∗∗ 0.0063∗∗∗ 0.0050∗∗∗

(0.0012) (0.0012) (0.0012) (0.0016) (0.0017)
Trustworthiness −0.0011 −0.0021 0.0002 0.0001 0.0001

(0.0016) (0.0016) (0.0016) (0.0023) (0.0022)
Human Guess 0.0311∗∗∗ 0.0313∗∗∗ 0.0270∗∗∗ 0.0210∗∗ 0.0346∗∗∗

(0.0061) (0.0062) (0.0060) (0.0085) (0.0086)
Mental Illness (MI) 0.0061∗∗∗ 0.0048∗∗∗ 0.0044∗∗∗ 0.0056∗∗∗ 0.0037∗∗∗

(0.0009) (0.0008) (0.0009) (0.0008) (0.0008)
Constant 0.3207∗∗∗ 0.2850∗∗∗ 0.3099∗∗∗ 0.2262∗∗∗ 0.3201∗∗∗ 0.3425∗∗∗ 0.3279∗∗∗

(0.0064) (0.0110) (0.0074) (0.0108) (0.0114) (0.0144) (0.0154)
Observations 9,604 9,604 9,604 9,604 9,604 5,068 4,536
Adjusted R2 0.0433 0.2656 0.0270 0.2399 0.2743 0.2746 0.2644

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for an indicator of the defendant’s mental health. Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test
set) sample for their perceptions of the mental health of the person, and then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set)
sample. In column (6) we re-run the analysis using just those defendants who are above median in their mental illness ratings, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XI: Relationship between novel features and algorithm’s prediction controlling for defendant’s perceived socio-economic status (SES)
Dependent variable:

Algo Judge Detain Prediction
SES ≥ Median(SES) SES < Median(SES)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Face −0.0172∗∗∗ −0.0180∗∗∗ −0.0175∗∗∗ −0.0168∗∗∗ −0.0186∗∗∗

(0.0009) (0.0008) (0.0008) (0.0011) (0.0013)
Well-Groomed −0.0135∗∗∗ −0.0131∗∗∗ −0.0116∗∗∗ −0.0097∗∗∗ −0.0159∗∗∗

(0.0011) (0.0012) (0.0012) (0.0015) (0.0018)
Male 0.1121∗∗∗ 0.1157∗∗∗ 0.1132∗∗∗ 0.1067∗∗∗ 0.1237∗∗∗

(0.0024) (0.0025) (0.0024) (0.0031) (0.0039)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0003∗∗∗ 0.0002 0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0228∗∗∗ −0.0211∗∗∗ −0.0218∗∗∗ −0.0198∗∗∗ −0.0222∗∗∗

(0.0035) (0.0036) (0.0035) (0.0043) (0.0062)
Asian −0.0195∗ −0.0175 −0.0153 −0.0074 −0.0359∗

(0.0110) (0.0112) (0.0110) (0.0130) (0.0204)
Indigenous American 0.0001 0.0166 0.0039 0.0115 −0.0269

(0.0230) (0.0234) (0.0229) (0.0258) (0.0482)
Skin-Tone −0.0397∗∗∗ −0.0381∗∗∗ −0.0422∗∗∗ −0.0438∗∗∗ −0.0434∗∗∗

(0.0057) (0.0058) (0.0057) (0.0070) (0.0095)
Attractiveness −0.0063∗∗∗ 0.0021 −0.0021 −0.0035∗ −0.0023

(0.0015) (0.0016) (0.0016) (0.0020) (0.0026)
Competence −0.0076∗∗∗ −0.0055∗∗∗ −0.0056∗∗∗ −0.0040∗ −0.0081∗∗∗

(0.0016) (0.0017) (0.0016) (0.0021) (0.0026)
Dominance 0.0054∗∗∗ 0.0027∗∗ 0.0054∗∗∗ 0.0048∗∗∗ 0.0068∗∗∗

(0.0012) (0.0012) (0.0012) (0.0015) (0.0018)
Trustworthiness −0.0014 −0.0026 −0.0002 −0.0020 0.0023

(0.0016) (0.0016) (0.0016) (0.0020) (0.0026)
Human Guess 0.0299∗∗∗ 0.0307∗∗∗ 0.0262∗∗∗ 0.0309∗∗∗ 0.0207∗∗

(0.0060) (0.0062) (0.0060) (0.0078) (0.0095)
Socioeconomic Status (SES) −0.0146∗∗∗ −0.0098∗∗∗ −0.0128∗∗∗ −0.0100∗∗∗ −0.0083∗∗∗

(0.0010) (0.0009) (0.0010) (0.0009) (0.0009)
Constant 0.4087∗∗∗ 0.3448∗∗∗ 0.3744∗∗∗ 0.2896∗∗∗ 0.3662∗∗∗ 0.3239∗∗∗ 0.3492∗∗∗

(0.0064) (0.0105) (0.0062) (0.0103) (0.0107) (0.0132) (0.0171)
Observations 9,604 9,604 9,604 9,604 9,604 5,651 3,953
Adjusted R2 0.0608 0.2714 0.0408 0.2449 0.2786 0.2504 0.2847

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for the defendant’s socio-economic status (SES). Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test
set) sample for their perceptions of the defendant’s SES, then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set) sample. In
columns (6) we re-run the analysis using just those defendants who are above median in their rated SES, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XII: Relationship between novel features and algorithm’s prediction controlling for defendant’s baby-faced feature
Dependent variable:

Algo Judge Detain Prediction
BF ≥ Median(BF) BF < Median(BF)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Face −0.0156∗∗∗ −0.0177∗∗∗ −0.0172∗∗∗ −0.0136∗∗∗ −0.0212∗∗∗

(0.0009) (0.0009) (0.0009) (0.0011) (0.0013)
Well-Groomed −0.0140∗∗∗ −0.0140∗∗∗ −0.0128∗∗∗ −0.0121∗∗∗ −0.0137∗∗∗

(0.0011) (0.0012) (0.0012) (0.0015) (0.0018)
Male 0.1103∗∗∗ 0.1128∗∗∗ 0.1118∗∗∗ 0.1165∗∗∗ 0.1053∗∗∗

(0.0024) (0.0025) (0.0024) (0.0030) (0.0041)
Age 0.0003∗∗∗ −0.0001 0.0002∗∗ −0.0004∗∗∗ 0.0008∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0176∗∗∗ −0.0151∗∗∗ −0.0175∗∗∗ −0.0237∗∗∗ −0.0094∗

(0.0035) (0.0036) (0.0035) (0.0045) (0.0056)
Asian −0.0178 −0.0145 −0.0134 −0.0159 −0.0093

(0.0111) (0.0112) (0.0110) (0.0139) (0.0175)
Indigenous American 0.0007 0.0176 0.0048 0.0287 −0.0284

(0.0231) (0.0234) (0.0230) (0.0271) (0.0407)
Skin-Tone −0.0455∗∗∗ −0.0446∗∗∗ −0.0473∗∗∗ −0.0462∗∗∗ −0.0463∗∗∗

(0.0057) (0.0058) (0.0056) (0.0071) (0.0091)
Attractiveness −0.0082∗∗∗ 0.0005 −0.0033∗∗ −0.0036∗ −0.0019

(0.0015) (0.0016) (0.0016) (0.0020) (0.0025)
Competence −0.0084∗∗∗ −0.0062∗∗∗ −0.0061∗∗∗ −0.0046∗∗ −0.0068∗∗∗

(0.0016) (0.0017) (0.0016) (0.0021) (0.0026)
Dominance 0.0054∗∗∗ 0.0025∗∗ 0.0054∗∗∗ 0.0062∗∗∗ 0.0052∗∗∗

(0.0012) (0.0012) (0.0012) (0.0015) (0.0018)
Trustworthiness −0.0009 −0.0015 0.0003 −0.0001 −0.0010

(0.0016) (0.0016) (0.0016) (0.0020) (0.0025)
Human Guess 0.0327∗∗∗ 0.0322∗∗∗ 0.0281∗∗∗ 0.0241∗∗∗ 0.0317∗∗∗

(0.0061) (0.0062) (0.0060) (0.0077) (0.0095)
Baby-Faced (BF) −0.0133∗∗∗ −0.0052∗∗∗ −0.0141∗∗∗ −0.0092∗∗∗ −0.0042∗∗∗

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
Constant 0.3897∗∗∗ 0.3325∗∗∗ 0.3770∗∗∗ 0.3006∗∗∗ 0.3578∗∗∗ 0.3264∗∗∗ 0.3510∗∗∗

(0.0058) (0.0108) (0.0061) (0.0109) (0.0110) (0.0136) (0.0161)
Observations 9,604 9,604 9,604 9,604 9,604 5,250 4,354
Adjusted R2 0.0563 0.2650 0.0446 0.2433 0.2741 0.2957 0.2256

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for the defendant’s degree of baby-facedness. Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test set)
sample based on their relative baby-faced looks, then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set) sample. In columns (6)
we re-run the analysis using just those defendants who are above median in their baby-faced ratings, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XIII: Relationship between novel features and judge decision controlling for indicators of defendant drug involvement
Dependent variable:

Judge Detain Decision
Drug Possession Charge No Drug Possession Charge

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −0.0237∗∗∗ −0.0227∗∗∗ −0.0221∗∗∗ −0.0179∗ −0.0225∗∗∗

(0.0036) (0.0036) (0.0037) (0.0094) (0.0040)
Well-Groomed −0.0199∗∗∗ −0.0128∗∗ −0.0103∗∗ −0.0117 −0.0100∗

(0.0043) (0.0051) (0.0051) (0.0128) (0.0056)
Algo Judge Detain Prediction 0.6172∗∗∗ 0.3612∗∗∗ 0.6552∗∗∗

(0.0434) (0.1163) (0.0467)
Male 0.0935∗∗∗ 0.0975∗∗∗ 0.0945∗∗∗ 0.0259∗∗ −0.0038 −0.0396 0.1090∗∗∗ 0.0350∗∗∗

(0.0108) (0.0108) (0.0108) (0.0117) (0.0312) (0.0331) (0.0115) (0.0126)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0013∗∗∗ −0.0016∗∗∗ 0.0014 0.0013 −0.0016∗∗∗ −0.0019∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0012) (0.0012) (0.0004) (0.0004)
Black −0.0646∗∗∗ −0.0624∗∗∗ −0.0643∗∗∗ −0.0521∗∗∗ −0.1003∗∗ −0.0966∗∗ −0.0547∗∗∗ −0.0411∗∗

(0.0155) (0.0156) (0.0155) (0.0154) (0.0392) (0.0391) (0.0169) (0.0168)
Asian −0.0742 −0.0730 −0.0705 −0.0643 −0.2187∗ −0.2381∗ −0.0503 −0.0390

(0.0487) (0.0489) (0.0488) (0.0483) (0.1321) (0.1312) (0.0525) (0.0520)
Indigenous American 0.0495 0.0691 0.0530 0.0575 0.0833 0.0723 0.0468 0.0554

(0.1019) (0.1020) (0.1019) (0.1010) (0.2380) (0.2374) (0.1125) (0.1114)
Skin-Tone −0.1059∗∗∗ −0.1036∗∗∗ −0.1074∗∗∗ −0.0759∗∗∗ −0.1075∗ −0.0911 −0.1054∗∗∗ −0.0712∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0628) (0.0628) (0.0273) (0.0270)
Attractiveness −0.0082 0.0009 −0.0041 −0.0009 0.0097 0.0109 −0.0072 −0.0037

(0.0067) (0.0070) (0.0070) (0.0067) (0.0173) (0.0165) (0.0077) (0.0073)
Competence −0.0199∗∗∗ −0.0180∗∗ −0.0181∗∗ −0.0148∗∗ −0.0403∗∗ −0.0382∗∗ −0.0135∗ −0.0101

(0.0072) (0.0073) (0.0073) (0.0072) (0.0183) (0.0182) (0.0079) (0.0078)
Dominance 0.0113∗∗ 0.0079 0.0113∗∗ 0.0060 0.0120 0.0076 0.0108∗ 0.0055

(0.0052) (0.0051) (0.0052) (0.0051) (0.0129) (0.0127) (0.0056) (0.0056)
Trustworthiness −0.0088 −0.0106 −0.0077 −0.0095 −0.0193 −0.0224 −0.0053 −0.0068

(0.0071) (0.0071) (0.0071) (0.0070) (0.0183) (0.0181) (0.0077) (0.0076)
Human Guess 0.1032∗∗∗ 0.1057∗∗∗ 0.0993∗∗∗ 0.0861∗∗∗ 0.0723 0.0746 0.1051∗∗∗ 0.0886∗∗∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0648) (0.0643) (0.0294) (0.0290)
Drug Possession −0.0206∗ −0.0330∗∗∗ −0.0174 −0.0310∗∗ −0.0336∗∗∗ −0.0304∗∗

(0.0121) (0.0121) (0.0121) (0.0121) (0.0121) (0.0119)
Constant 0.3616∗∗∗ 0.4521∗∗∗ 0.3310∗∗∗ 0.3713∗∗∗ 0.4759∗∗∗ 0.2042∗∗∗ 0.5334∗∗∗ 0.3313∗∗∗ 0.4538∗∗∗ 0.1743∗∗∗

(0.0198) (0.0447) (0.0210) (0.0430) (0.0463) (0.0416) (0.1186) (0.1088) (0.0502) (0.0449)
Naive-AUC 0.546 0.605 0.533 0.596 0.605 0.637 0.615 0.624 0.609 0.645
Observations 9,604 9,604 9,604 9,604 9,604 9,604 1,442 1,442 8,162 8,162
Adjusted R2 0.0044 0.0222 0.0022 0.0189 0.0225 0.0385 0.0210 0.0251 0.0252 0.0439

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction of
judge detention decisions, to actual judge detention decisions, with some control for an indicator of the defendant’s drug involvement. Specifically we control for whether the
defendant’s current charge is for drug possession in columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis
using just those defendants who have some indication of drug involvement, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XIV: Relationship between novel features and judge decision controlling for indicator of defendant’s mental health

Dependent variable:
Judge Detain Decision

MI ≥ Median(MI) MI < Median(MI)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −0.0223∗∗∗ −0.0214∗∗∗ −0.0210∗∗∗ −0.0229∗∗∗ −0.0190∗∗∗

(0.0036) (0.0037) (0.0037) (0.0051) (0.0054)
Well-Groomed −0.0168∗∗∗ −0.0106∗∗ −0.0087∗ −0.0135∗ −0.0039

(0.0044) (0.0052) (0.0052) (0.0072) (0.0075)
Algo Judge Detain Prediction 0.6109∗∗∗ 0.4845∗∗∗ 0.7695∗∗∗

(0.0436) (0.0602) (0.0632)
Male 0.0939∗∗∗ 0.0981∗∗∗ 0.0946∗∗∗ 0.0266∗∗ 0.0897∗∗∗ 0.0352∗∗ 0.1010∗∗∗ 0.0145

(0.0108) (0.0108) (0.0108) (0.0118) (0.0147) (0.0161) (0.0159) (0.0173)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0012∗∗∗ −0.0015∗∗∗ −0.0011∗ −0.0014∗∗∗ −0.0014∗∗ −0.0014∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0006) (0.0005) (0.0006) (0.0006)
Black −0.0634∗∗∗ −0.0611∗∗∗ −0.0633∗∗∗ −0.0514∗∗∗ −0.0484∗∗ −0.0409∗ −0.0793∗∗∗ −0.0640∗∗∗

(0.0156) (0.0156) (0.0156) (0.0154) (0.0219) (0.0218) (0.0222) (0.0218)
Asian −0.0718 −0.0707 −0.0689 −0.0623 −0.0484 −0.0385 −0.0850 −0.0807

(0.0488) (0.0489) (0.0488) (0.0484) (0.0775) (0.0772) (0.0625) (0.0615)
Indigenous American 0.0505 0.0687 0.0533 0.0575 0.0472 0.0596 0.0551 0.0387

(0.1019) (0.1020) (0.1019) (0.1010) (0.1614) (0.1607) (0.1308) (0.1287)
Skin-Tone −0.1047∗∗∗ −0.1019∗∗∗ −0.1061∗∗∗ −0.0754∗∗∗ −0.0810∗∗ −0.0554 −0.1354∗∗∗ −0.0994∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0352) (0.0351) (0.0357) (0.0352)
Attractiveness −0.0070 0.0012 −0.0037 −0.0002 −0.0048 −0.0045 −0.0029 0.0043

(0.0068) (0.0070) (0.0070) (0.0067) (0.0100) (0.0095) (0.0099) (0.0093)
Competence −0.0183∗∗ −0.0165∗∗ −0.0169∗∗ −0.0136∗ −0.0222∗∗ −0.0201∗∗ −0.0110 −0.0072

(0.0072) (0.0073) (0.0073) (0.0072) (0.0102) (0.0101) (0.0104) (0.0102)
Dominance 0.0101∗ 0.0067 0.0101∗ 0.0052 0.0178∗∗ 0.0123∗ 0.0016 −0.0032

(0.0052) (0.0052) (0.0052) (0.0051) (0.0072) (0.0071) (0.0075) (0.0074)
Trustworthiness −0.0081 −0.0099 −0.0072 −0.0088 −0.0058 −0.0086 −0.0099 −0.0103

(0.0071) (0.0071) (0.0071) (0.0070) (0.0102) (0.0101) (0.0099) (0.0097)
Human Guess 0.0986∗∗∗ 0.1009∗∗∗ 0.0958∗∗∗ 0.0824∗∗∗ 0.0991∗∗∗ 0.0957∗∗ 0.0929∗∗ 0.0672∗

(0.0268) (0.0268) (0.0268) (0.0266) (0.0380) (0.0378) (0.0378) (0.0373)
Mental Illness (MI) 0.0103∗∗∗ 0.0073∗∗ 0.0088∗∗ 0.0088∗∗ 0.0065∗ 0.0055

(0.0033) (0.0035) (0.0034) (0.0035) (0.0035) (0.0034)
Constant 0.3099∗∗∗ 0.4032∗∗∗ 0.2783∗∗∗ 0.3165∗∗∗ 0.4276∗∗∗ 0.1724∗∗∗ 0.4530∗∗∗ 0.2076∗∗∗ 0.4560∗∗∗ 0.1821∗∗∗

(0.0248) (0.0486) (0.0285) (0.0469) (0.0507) (0.0445) (0.0643) (0.0593) (0.0680) (0.0582)
Naive-AUC 0.548 0.602 0.535 0.594 0.602 0.636 0.598 0.613 0.605 0.663
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,068 5,068 4,536 4,536
Adjusted R2 0.0051 0.0219 0.0027 0.0188 0.0220 0.0381 0.0200 0.0277 0.0212 0.0498

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction
of judge detention decisions, to actual judge detention decisions, with some control for an indicator of the defendant’s mental health. Specifically we have a separate sample
of study subjects independently rate mugshots in the validation (test set) sample for their perceptions of the mental health of the person, and then control for that in the
regressions shown in columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who
are above median in their mental illness ratings, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XV: Relationship between novel features and judge decision controlling for defendant’s perceived socioeconomic status (SES)

Dependent variable:
Judge Detain Decision

SES ≥ Median(SES) SES < Median(SES)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Face −0.0220∗∗∗ −0.0208∗∗∗ −0.0205∗∗∗ −0.0163∗∗∗ −0.0267∗∗∗

(0.0036) (0.0037) (0.0037) (0.0047) (0.0058)
Well-Groomed −0.0143∗∗∗ −0.0086∗ −0.0067 −0.0053 −0.0114

(0.0044) (0.0052) (0.0052) (0.0066) (0.0083)
Algo Judge Detain Prediction 0.6012∗∗∗ 0.6809∗∗∗ 0.5040∗∗∗

(0.0438) (0.0564) (0.0690)
Male 0.0927∗∗∗ 0.0963∗∗∗ 0.0934∗∗∗ 0.0267∗∗ 0.0890∗∗∗ 0.0168 0.1001∗∗∗ 0.0408∗∗

(0.0107) (0.0107) (0.0107) (0.0118) (0.0135) (0.0147) (0.0177) (0.0196)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0012∗∗∗ −0.0015∗∗∗ −0.0016∗∗∗ −0.0018∗∗∗ −0.0009 −0.0011∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0006)
Black −0.0713∗∗∗ −0.0698∗∗∗ −0.0707∗∗∗ −0.0572∗∗∗ −0.0504∗∗∗ −0.0368∗∗ −0.1046∗∗∗ −0.0915∗∗∗

(0.0156) (0.0157) (0.0156) (0.0155) (0.0187) (0.0185) (0.0278) (0.0278)
Asian −0.0750 −0.0751 −0.0725 −0.0649 −0.1278∗∗ −0.1233∗∗ 0.0499 0.0663

(0.0487) (0.0488) (0.0488) (0.0483) (0.0570) (0.0562) (0.0919) (0.0915)
Indigenous America 0.0501 0.0673 0.0524 0.0570 0.1625 0.1587 −0.3077 −0.2893

(0.1018) (0.1020) (0.1018) (0.1010) (0.1136) (0.1122) (0.2171) (0.2163)
Skin-Tone −0.0969∗∗∗ −0.0936∗∗∗ −0.0984∗∗∗ −0.0705∗∗∗ −0.0794∗∗∗ −0.0492 −0.1419∗∗∗ −0.1119∗∗∗

(0.0251) (0.0252) (0.0251) (0.0249) (0.0308) (0.0305) (0.0430) (0.0427)
Attractiveness −0.0046 0.0027 −0.0022 0.0012 −0.0098 −0.0059 0.0052 0.0083

(0.0068) (0.0070) (0.0071) (0.0067) (0.0088) (0.0083) (0.0118) (0.0112)
Competence −0.0180∗∗ −0.0167∗∗ −0.0168∗∗ −0.0135∗ −0.0059 −0.0030 −0.0322∗∗∗ −0.0286∗∗

(0.0072) (0.0073) (0.0073) (0.0072) (0.0094) (0.0092) (0.0115) (0.0115)
Dominance 0.0100∗ 0.0069 0.0100∗ 0.0053 0.0101 0.0061 0.0117 0.0055

(0.0052) (0.0051) (0.0052) (0.0051) (0.0067) (0.0066) (0.0081) (0.0080)
Trustworthiness −0.0086 −0.0107 −0.0079 −0.0092 −0.0111 −0.0103 −0.0032 −0.0072

(0.0071) (0.0071) (0.0071) (0.0070) (0.0089) (0.0088) (0.0116) (0.0115)
Human Guess 0.0963∗∗∗ 0.0995∗∗∗ 0.0941∗∗∗ 0.0812∗∗∗ 0.1098∗∗∗ 0.0895∗∗∗ 0.0749∗ 0.0719∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0343) (0.0339) (0.0427) (0.0425)
Socioeconomic Status (SES) −0.0204∗∗∗ −0.0162∗∗∗ −0.0188∗∗∗ −0.0174∗∗∗ −0.0153∗∗∗ −0.0115∗∗∗

(0.0038) (0.0041) (0.0039) (0.0041) (0.0041) (0.0040)
Constant 0.4410∗∗∗ 0.4984∗∗∗ 0.3862∗∗∗ 0.4211∗∗∗ 0.5108∗∗∗ 0.2456∗∗∗ 0.3829∗∗∗ 0.1426∗∗∗ 0.5578∗∗∗ 0.2803∗∗∗

(0.0250) (0.0467) (0.0241) (0.0449) (0.0476) (0.0447) (0.0582) (0.0518) (0.0770) (0.0693)
Naive-AUC 0.557 0.604 0.545 0.596 0.604 0.636 0.6 0.647 0.604 0.619
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,651 5,651 3,953 3,953
Adjusted R2 0.0072 0.0230 0.0044 0.0200 0.0231 0.0387 0.0194 0.0421 0.0226 0.0300

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction of
judge detention decisions, to actual judge detention decisions, with some control for the defendant’s socio-economic status (SES). Specifically we have a separate sample of
study subjects independently rate mugshots in the validation (test set) sample for their perceptions of the defendant’s SES, then control for that in the regressions shown in
columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who are above median in
their rated SES, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XVI: Relationship between novel features and judge decision controlling for defendant’s baby-faced feature

Dependent variable:
Judge Detain Decision

BF ≥ Median(BF) BF < Median(BF)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Face −0.0213∗∗∗ −0.0207∗∗∗ −0.0204∗∗∗ −0.0170∗∗∗ −0.0253∗∗∗

(0.0037) (0.0038) (0.0038) (0.0050) (0.0057)
Well-Groomed −0.0170∗∗∗ −0.0107∗∗ −0.0093∗ −0.0042 −0.0155∗∗

(0.0043) (0.0052) (0.0052) (0.0069) (0.0078)
Algo Judge Detain Prediction 0.6092∗∗∗ 0.6493∗∗∗ 0.5768∗∗∗

(0.0437) (0.0617) (0.0624)
Male 0.0902∗∗∗ 0.0925∗∗∗ 0.0913∗∗∗ 0.0235∗∗ 0.1036∗∗∗ 0.0297∗ 0.0779∗∗∗ 0.0154

(0.0108) (0.0108) (0.0108) (0.0117) (0.0137) (0.0153) (0.0176) (0.0185)
Age −0.0014∗∗∗ −0.0017∗∗∗ −0.0014∗∗∗ −0.0017∗∗∗ −0.0012∗ −0.0011∗ −0.0013∗∗ −0.0019∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0006) (0.0006) (0.0006) (0.0006)
Black −0.0631∗∗∗ −0.0602∗∗∗ −0.0630∗∗∗ −0.0510∗∗∗ −0.0531∗∗∗ −0.0364∗ −0.0755∗∗∗ −0.0701∗∗∗

(0.0156) (0.0156) (0.0156) (0.0154) (0.0205) (0.0203) (0.0240) (0.0238)
Asian −0.0724 −0.0706 −0.0693 −0.0625 −0.0731 −0.0610 −0.0639 −0.0646

(0.0488) (0.0489) (0.0488) (0.0484) (0.0641) (0.0635) (0.0752) (0.0746)
Indigenous American 0.0507 0.0688 0.0536 0.0574 0.1277 0.1196 −0.0646 −0.0541

(0.1019) (0.1020) (0.1019) (0.1010) (0.1251) (0.1238) (0.1745) (0.1732)
Skin-Tone −0.1064∗∗∗ −0.1045∗∗∗ −0.1078∗∗∗ −0.0771∗∗∗ −0.0816∗∗ −0.0503 −0.1379∗∗∗ −0.1106∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0327) (0.0324) (0.0389) (0.0387)
Attractiveness −0.0080 0.00004 −0.0044 −0.0010 −0.0003 0.0058 −0.0095 −0.0104

(0.0067) (0.0070) (0.0070) (0.0067) (0.0093) (0.0087) (0.0108) (0.0103)
Competence −0.0194∗∗∗ −0.0178∗∗ −0.0177∗∗ −0.0144∗∗ −0.0181∗ −0.0144 −0.0146 −0.0128

(0.0072) (0.0073) (0.0073) (0.0072) (0.0098) (0.0096) (0.0110) (0.0108)
Dominance 0.0103∗∗ 0.0069 0.0103∗∗ 0.0053 0.0132∗ 0.0077 0.0076 0.0028

(0.0052) (0.0051) (0.0052) (0.0051) (0.0070) (0.0069) (0.0077) (0.0076)
Trustworthiness −0.0079 −0.0091 −0.0070 −0.0085 −0.0064 −0.0075 −0.0102 −0.0115

(0.0071) (0.0071) (0.0071) (0.0070) (0.0094) (0.0093) (0.0109) (0.0107)
Human Guess 0.1012∗∗∗ 0.1027∗∗∗ 0.0978∗∗∗ 0.0839∗∗∗ 0.0817∗∗ 0.0653∗ 0.1172∗∗∗ 0.1070∗∗∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0356) (0.0352) (0.0408) (0.0404)
Baby-Faced (BF) −0.0108∗∗∗ −0.0069 −0.0122∗∗∗ −0.0120∗∗∗ −0.0061 −0.0066

(0.0039) (0.0043) (0.0039) (0.0041) (0.0043) (0.0041)
Constant 0.3902∗∗∗ 0.4709∗∗∗ 0.3645∗∗∗ 0.4215∗∗∗ 0.4892∗∗∗ 0.2339∗∗∗ 0.3636∗∗∗ 0.1195∗∗ 0.5714∗∗∗ 0.2987∗∗∗

(0.0229) (0.0477) (0.0239) (0.0472) (0.0488) (0.0470) (0.0625) (0.0549) (0.0691) (0.0644)
Naive-AUC 0.547 0.601 0.539 0.595 0.602 0.636 0.602 0.639 0.604 0.631
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,250 5,250 4,354 4,354
Adjusted R2 0.0050 0.0217 0.0031 0.0191 0.0219 0.0381 0.0201 0.0383 0.0215 0.0351

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction
of judge detention decisions, to actual judge detention decisions, with some control for the defendant’s perceived baby-facedness. Specifically we have a separate sample of
study subjects independently rate mugshots in the validation (test set) sample based on their relative baby-faced looks, and then control for that in the regressions shown in
columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who are above median in
their baby-faced ratings, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XVII: Laboratory experiment summary of results

(1) (2) (3) (4)
Well-Groomed -0.013∗ -0.014∗∗

(0.007) (0.007)
Heavy-Faced -0.019∗∗∗ -0.020∗∗∗

(0.007) (0.007)
Image Pair Fixed Effects? YES YES YES YES

Participant Fixed Effects? NO YES NO YES

Number of Subjects 500 500 500 500
Number of Subjects by Image Pair 18,268 18,268 18,548 18,548
Adjusted R2 0.400 0.401 0.344 0.348

Notes: The table shows the results of two separate randomized lab experiments that randomly morphs pairs of synthetic
GAN-generated images in the direction of one of the novel features produced by our hypothesis generation procedure,
either well-groomed or heavy-faced; that is, one image within each pair is morphed in the direction of a higher value of
the novel feature, and the other image within each pair is morphed in the other direction towards a lower value of the
novel feature. We then ask subjects to recommend which of the two defendants they would recommend for detention.
Defendants within each pair are also randomly assigned structured variables related to the current charge for which
the person was arrested, and their prior criminal record. The table shows the results on the subject’s detention choice
of seeing an image that is more versus less well-groomed (the average difference is 3.7 standard deviations with respect
to the distribution of our main GAN-generated mugshot data set) or more versus less heavy-faced (average difference
is 4.4 standard deviations). Standard errors are clustered by respondent and image pair. See appendix test for main
estimating equation and additional details.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XVIII: Is the algorithm rediscovering known facial features? (complete lock-box hold-out)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5)
Male 0.0734∗∗∗ 0.0723∗∗∗ 0.0713∗∗∗ 0.0710∗∗∗ 0.0708∗∗∗

(0.0013) (0.0013) (0.0013) (0.0014) (0.0014)
Age −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗

(0.00005) (0.00005) (0.0001) (0.0001)
Black 0.0207∗∗∗ 0.0138∗∗∗ 0.0143∗∗∗ 0.0140∗∗∗

(0.0012) (0.0015) (0.0015) (0.0015)
Asian −0.0023 −0.0053 −0.0029 −0.0029

(0.0064) (0.0064) (0.0063) (0.0063)
Indigenous American −0.0024 −0.0051 −0.0055 −0.0046

(0.0146) (0.0146) (0.0145) (0.0145)
Skin-Tone −0.0240∗∗∗ −0.0239∗∗∗ −0.0242∗∗∗

(0.0031) (0.0031) (0.0031)
Attractiveness 0.0004 0.0005

(0.0005) (0.0005)
Competence −0.0037∗∗∗ −0.0036∗∗∗

(0.0007) (0.0007)
Dominance −0.0004 −0.0006

(0.0005) (0.0005)
Trustworthiness −0.0047∗∗∗ −0.0044∗∗∗

(0.0006) (0.0006)
Human Guess 0.0257∗∗∗

(0.0033)
Constant 0.1508∗∗∗ 0.1436∗∗∗ 0.1630∗∗∗ 0.1975∗∗∗ 0.1838∗∗∗

(0.0012) (0.0021) (0.0033) (0.0042) (0.0046)
Observations 19,009 19,009 19,009 19,009 19,009
Adjusted R2 0.1360 0.1506 0.1533 0.1656 0.1681

Notes: This table replicates the analysis from Table II but applies it to the complete lock-box hold-out
data set. The table presents the results of regressing an algorithmic prediction of judge detention decisions
against each of the different explanatory variables as listed in the rows, where each column represents a
different regression specification. The algorithm was trained using mugshots from the training data set,
and evaluated on pooled hold-out data including both in-time (randomly selected arrested prior to July 17,
2019) and out-of-time partitions (valid arrests from the last 6 months of the data period). Data on skin tone,
attractiveness, competence, dominance, and trustworthiness comes from asking subjects to assign feature
ratings to mugshot images from the Mecklenburg County, NC Sheriff’s Office public website. The human
guess about the judges’ decision comes from showing workers on the Prolific platform pairs of mugshot
images and asking them to report which defendant they believe the judge would be more likely to detain.
Regressions follow a linear probability model and also include indicators for unknown race and unknown
gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XIX: Does algorithm predict judge behavior after controlling for known factors? (complete
lock-box hold-out)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Algo Judge Detain Prediction 0.9226∗∗∗ 0.8761∗∗∗ 0.8756∗∗∗

(0.0349) (0.0381) (0.0382)
Male 0.0910∗∗∗ 0.0908∗∗∗ 0.0877∗∗∗ 0.0255∗∗∗ 0.0255∗∗∗

(0.0071) (0.0071) (0.0072) (0.0076) (0.0076)
Age −0.0003 −0.0003 −0.0006∗∗ −0.0005∗ −0.0005∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Black −0.0177∗∗∗ −0.0192∗∗ −0.0183∗∗ −0.0308∗∗∗ −0.0308∗∗∗

(0.0066) (0.0081) (0.0081) (0.0080) (0.0080)
Asian −0.1173∗∗∗ −0.1179∗∗∗ −0.1128∗∗∗ −0.1103∗∗∗ −0.1103∗∗∗

(0.0337) (0.0337) (0.0337) (0.0332) (0.0332)
Indigenous American −0.0038 −0.0044 −0.0044 0.0004 0.0006

(0.0774) (0.0774) (0.0773) (0.0762) (0.0762)
Skin-Tone −0.0053 −0.0031 0.0179 0.0178

(0.0163) (0.0163) (0.0161) (0.0161)
Attractiveness −0.0079∗∗∗ −0.0064∗∗ −0.0068∗∗ −0.0068∗∗

(0.0026) (0.0028) (0.0028) (0.0028)
Competence −0.0065∗ −0.0087∗∗ −0.0054 −0.0054

(0.0035) (0.0036) (0.0035) (0.0035)
Dominance 0.0043∗ 0.0003 0.0007 0.0006

(0.0024) (0.0024) (0.0024) (0.0024)
Trustworthiness −0.0108∗∗∗ −0.0080∗∗ −0.0039 −0.0039

(0.0033) (0.0033) (0.0033) (0.0033)
Human Guess 0.0044

(0.0176)
Constant 0.0230∗∗∗ 0.1677∗∗∗ 0.1720∗∗∗ 0.2911∗∗∗ 0.2722∗∗∗ 0.0992∗∗∗ 0.0969∗∗∗

(0.0078) (0.0113) (0.0174) (0.0142) (0.0224) (0.0233) (0.0250)
Naive-AUC 0.63 0.559 0.558 0.546 0.576 0.637 0.637
Observations 19,009 19,009 19,009 19,009 19,009 19,009 19,009
Adjusted R2 0.0354 0.0092 0.0092 0.0045 0.0129 0.0396 0.0395

Notes: This table replicates the analysis from Table III but applies it to the complete lock-box hold-out data set. The table
reports the results of estimating a linear probability specification of judges’ detain decisions against different explanatory
variables, including both the in-time (randomly selected arrested prior to July 17, 2019) and out-of-time partitions (valid
arrests from the last 6 months of the data period). The algorithmic predictions of the judges’ detain decision come from
our convolutional neural network algorithm built using the defendants’ face image as the only feature, using data from the
training data set. Measures of defendant demographics and current arrest charge come from government administrative
data obtained from a combination of Mecklenburg County, NC and state agencies. Measures of skin tone, attractiveness,
competence, dominance, and trustworthiness come from subject ratings of mugshot images. Human guess variable comes
from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would
be more likely to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XX: Correlation between well-groomed (first novel feature) and algorithm’s prediction
(complete lock-box hold-out)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6)
Well-Groomed −0.0073∗∗∗ −0.0076∗∗∗ −0.0085∗∗∗ −0.0085∗∗∗ −0.0067∗∗∗ −0.0065∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005) (0.0006) (0.0006)
Male 0.0737∗∗∗ 0.0728∗∗∗ 0.0718∗∗∗ 0.0718∗∗∗ 0.0716∗∗∗

(0.0013) (0.0013) (0.0013) (0.0014) (0.0014)
Age −0.0004∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗

(0.00005) (0.00005) (0.0001) (0.0001)
Black 0.0203∗∗∗ 0.0134∗∗∗ 0.0138∗∗∗ 0.0135∗∗∗

(0.0012) (0.0015) (0.0015) (0.0015)
Asian −0.0001 −0.0030 −0.0018 −0.0019

(0.0063) (0.0063) (0.0063) (0.0063)
Indigenous American −0.0055 −0.0082 −0.0081 −0.0072

(0.0145) (0.0145) (0.0144) (0.0144)
Skin-Tone −0.0241∗∗∗ −0.0244∗∗∗ −0.0247∗∗∗

(0.0031) (0.0031) (0.0030)
Attractiveness 0.0022∗∗∗ 0.0022∗∗∗

(0.0005) (0.0005)
Competence −0.0024∗∗∗ −0.0023∗∗∗

(0.0007) (0.0007)
Dominance −0.0001 −0.0003

(0.0005) (0.0005)
Trustworthiness −0.0036∗∗∗ −0.0035∗∗∗

(0.0006) (0.0006)
Human Guess 0.0232∗∗∗

(0.0033)
Constant 0.2392∗∗∗ 0.1839∗∗∗ 0.1870∗∗∗ 0.2065∗∗∗ 0.2123∗∗∗ 0.1993∗∗∗

(0.0022) (0.0023) (0.0032) (0.0040) (0.0044) (0.0047)
Observations 19,009 19,009 19,009 19,009 19,009 19,009
Adjusted R2 0.0117 0.1487 0.1654 0.1681 0.1716 0.1737
Notes: This table replicates the analysis from Table IV but applies it to the complete lock-box hold-out data set,
including both in-time (randomly selected arrested prior to July 17, 2019) and out-of-time partitions (valid arrests from
the last 6 months of the data period). The table shows the results of estimating a linear probability specification regressing
algorithmic prediction of judges’ detain decision against different explanatory variables. Algorithmic predictions of judges’
decisions come from applying an algorithm built with face images in the training data set to hold-out set observations.
Data on well-groomed, skin tone, attractiveness, competence, dominance, and trustworthiness come from subject ratings
of mugshot images. Human guess variable comes from showing subjects pairs of mugshot images and asking subjects
to identify the defendant they think the judge would be more likely to detain. Regression specifications also include
indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

94



Table A.XXI: Correlation between heavy-faced (second novel feature) and algorithm’s prediction
(complete lock-box hold-out)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0145∗∗∗ −0.0138∗∗∗ −0.0131∗∗∗ −0.0135∗∗∗ −0.0137∗∗∗ −0.0139∗∗∗ −0.0138∗∗∗

(0.0004) (0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Well-Groomed −0.0051∗∗∗ −0.0056∗∗∗ −0.0063∗∗∗ −0.0062∗∗∗ −0.0045∗∗∗ −0.0043∗∗∗

(0.0005) (0.0004) (0.0005) (0.0005) (0.0006) (0.0006)
Male 0.0725∗∗∗ 0.0713∗∗∗ 0.0701∗∗∗ 0.0687∗∗∗ 0.0685∗∗∗

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013)
Age −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗

(0.00005) (0.00005) (0.00005) (0.00005)
Black 0.0230∗∗∗ 0.0147∗∗∗ 0.0145∗∗∗ 0.0143∗∗∗

(0.0012) (0.0015) (0.0015) (0.0015)
Asian 0.0056 0.0021 0.0031 0.0029

(0.0061) (0.0061) (0.0061) (0.0061)
Indigenous American 0.0016 −0.0015 −0.0009 −0.0003

(0.0141) (0.0141) (0.0141) (0.0141)
Skin-Tone −0.0288∗∗∗ −0.0279∗∗∗ −0.0281∗∗∗

(0.0030) (0.0030) (0.0030)
Attractiveness −0.0008 −0.0008

(0.0005) (0.0005)
Competence −0.0024∗∗∗ −0.0023∗∗∗

(0.0007) (0.0007)
Dominance 0.0021∗∗∗ 0.0019∗∗∗

(0.0004) (0.0004)
Trustworthiness −0.0009 −0.0007

(0.0006) (0.0006)
Human Guess 0.0191∗∗∗

(0.0032)
Constant 0.2807∗∗∗ 0.2994∗∗∗ 0.2420∗∗∗ 0.2433∗∗∗ 0.2675∗∗∗ 0.2674∗∗∗ 0.2563∗∗∗

(0.0023) (0.0029) (0.0029) (0.0035) (0.0043) (0.0046) (0.0049)
Observations 19,009 19,009 19,009 19,009 19,009 19,009 19,009
Adjusted R2 0.0522 0.0577 0.1903 0.2092 0.2130 0.2153 0.2167
Notes: This table replicates the analysis from Table V but applies it to the complete lock-box hold-out data set, including both
in-time (randomly selected arrested prior to July 17, 2019) and out-of-time partitions (valid arrests from the last 6 months of
the data period). The table shows the results of estimating a linear probability specification regressing algorithmic prediction of
judges’ detain decision against different explanatory variables. Algorithmic predictions of judges’ decisions come from applying
an algorithm built with face images in the training data set to hold-out set observations. Data on heavy-faced, well-groomed, skin
tone, attractiveness, competence, dominance, and trustworthiness come from subject ratings of mugshot images. Human guess
variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge
would be more likely to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXII: Do well-groomed and heavy-faced (first and second novel features) correlate with
judge decisions? (complete lock-box hold-out)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0257∗∗∗ −0.0229∗∗∗ −0.0242∗∗∗ −0.0226∗∗∗ −0.0113∗∗∗

(0.0023) (0.0023) (0.0023) (0.0023) (0.0024)
Well-Groomed −0.0238∗∗∗ −0.0202∗∗∗ −0.0208∗∗∗ −0.0172∗∗∗ −0.0137∗∗∗

(0.0024) (0.0024) (0.0031) (0.0031) (0.0030)
Algo Judge Detain Prediction 0.8168∗∗∗

(0.0393)
Male 0.0825∗∗∗ 0.0901∗∗∗ 0.0851∗∗∗ 0.0291∗∗∗

(0.0072) (0.0072) (0.0072) (0.0077)
Age −0.0008∗∗∗ −0.0009∗∗∗ −0.0010∗∗∗ −0.0007∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)
Black −0.0175∗∗ −0.0201∗∗ −0.0188∗∗ −0.0305∗∗∗

(0.0081) (0.0081) (0.0081) (0.0080)
Asian −0.1038∗∗∗ −0.1094∗∗∗ −0.1016∗∗∗ −0.1040∗∗∗

(0.0336) (0.0337) (0.0336) (0.0332)
Indigenous American 0.0072 −0.0118 −0.0005 −0.0002

(0.0770) (0.0772) (0.0770) (0.0761)
Skin-Tone −0.0096 −0.0049 −0.0104 0.0125

(0.0163) (0.0163) (0.0163) (0.0161)
Attractiveness −0.0106∗∗∗ −0.0010 −0.0058∗∗ −0.0052∗

(0.0029) (0.0029) (0.0030) (0.0029)
Competence −0.0078∗∗ −0.0045 −0.0045 −0.0026

(0.0035) (0.0036) (0.0036) (0.0035)
Dominance 0.0042∗ 0.0011 0.0047∗ 0.0031

(0.0025) (0.0024) (0.0025) (0.0024)
Trustworthiness −0.0024 −0.0047 −0.0002 0.0004

(0.0034) (0.0034) (0.0034) (0.0034)
Human Guess 0.0183 0.0188 0.0122 −0.0034

(0.0177) (0.0178) (0.0178) (0.0176)
Constant 0.3444∗∗∗ 0.3180∗∗∗ 0.4180∗∗∗ 0.3671∗∗∗ 0.3077∗∗∗ 0.4011∗∗∗ 0.1918∗∗∗

(0.0118) (0.0109) (0.0147) (0.0264) (0.0253) (0.0271) (0.0286)
Naive-AUC 0.558 0.549 0.572 0.595 0.584 0.6 0.643
Observations 19,009 19,009 19,009 19,009 19,009 19,009 19,009
Adjusted R2 0.0068 0.0051 0.0103 0.0186 0.0154 0.0202 0.0419
Notes: This table replicates the analysis from Table VI but applies it to the complete lock-box hold-out data set, including both
in-time (randomly selected arrested prior to July 17, 2019) and out-of-time partitions (valid arrests from the last 6 months of
the data period). The table reports the results of estimating a linear probability specification of judges’ detain decisions against
different explanatory variables. The algorithmic predictions of the judges’ detain decision come from a convolutional neural network
algorithm built using the defendants’ face image as the only feature, using data from the training data set. Measures of defendant
demographics and current arrest charge come from Mecklenburg County administrative data. Data on heavy-faced, well-groomed,
skin tone, attractiveness, competence, dominance, and trustworthiness come from subject ratings of mugshot images. Human
guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the
judge would be more likely to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXIII: Is the algorithm rediscovering known facial features? (lock-box hold-out data, OOS
by individual)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5)
Male 0.0761∗∗∗ 0.0747∗∗∗ 0.0735∗∗∗ 0.0728∗∗∗ 0.0726∗∗∗

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Age −0.0001∗∗ −0.0001∗∗ −0.0002∗∗ −0.0001∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0211∗∗∗ 0.0120∗∗∗ 0.0127∗∗∗ 0.0125∗∗∗

(0.0015) (0.0018) (0.0018) (0.0018)
Asian −0.0030 −0.0069 −0.0034 −0.0036

(0.0079) (0.0079) (0.0078) (0.0078)
Indigenous American 0.0027 −0.0020 −0.0008 −0.0005

(0.0185) (0.0185) (0.0183) (0.0183)
Skin-Tone −0.0332∗∗∗ −0.0328∗∗∗ −0.0331∗∗∗

(0.0037) (0.0037) (0.0037)
Attractiveness 0.0007 0.0008

(0.0006) (0.0006)
Competence −0.0039∗∗∗ −0.0037∗∗∗

(0.0008) (0.0008)
Dominance −0.0001 −0.0003

(0.0005) (0.0005)
Trustworthiness −0.0054∗∗∗ −0.0051∗∗∗

(0.0008) (0.0008)
Human Guess 0.0274∗∗∗

(0.0040)
Constant 0.1589∗∗∗ 0.1495∗∗∗ 0.1762∗∗∗ 0.2121∗∗∗ 0.1972∗∗∗

(0.0014) (0.0026) (0.0039) (0.0050) (0.0055)
Observations 14,250 14,250 14,250 14,250 14,250
Adjusted R2 0.1320 0.1453 0.1501 0.1634 0.1660

Notes: This table replicates the analysis from Table II but applies it to the in-time hold-out data. The
table presents the results of regressing an algorithmic prediction of judge detention decisions against each of
the different explanatory variables as listed in the rows, where each column represents a different regression
specification. The algorithm was trained using mugshots from the training data set, and evaluated on in-
time (randomly selected arrested prior to July 17, 2019) partition of the hold-out set. Data on skin tone,
attractiveness, competence, dominance, and trustworthiness comes from asking subjects to assign feature
ratings to mugshot images from the Mecklenburg County, NC Sheriff’s Office public website. The human
guess about the judges’ decision comes from showing workers on the Prolific platform pairs of mugshot
images and asking them to report which defendant they believe the judge would be more likely to detain.
Regressions follow a linear probability model and also include indicators for unknown race and unknown
gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXIV: Does algorithm predict judge behavior after controlling for known factors? (lock-
box hold-out data, OOS by individual)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Algo Judge Detain Prediction 0.8635∗∗∗ 0.8170∗∗∗ 0.8176∗∗∗

(0.0402) (0.0438) (0.0439)
Male 0.0923∗∗∗ 0.0917∗∗∗ 0.0879∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(0.0085) (0.0086) (0.0087) (0.0092) (0.0092)
Age −0.0005 −0.0005 −0.0008∗∗ −0.0007∗∗ −0.0007∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Black −0.0259∗∗∗ −0.0305∗∗∗ −0.0294∗∗∗ −0.0397∗∗∗ −0.0397∗∗∗

(0.0079) (0.0096) (0.0096) (0.0095) (0.0095)
Asian −0.1457∗∗∗ −0.1476∗∗∗ −0.1396∗∗∗ −0.1368∗∗∗ −0.1368∗∗∗

(0.0413) (0.0414) (0.0414) (0.0409) (0.0409)
Indigenous American 0.0134 0.0111 0.0167 0.0173 0.0173

(0.0971) (0.0971) (0.0970) (0.0958) (0.0958)
Skin-Tone −0.0167 −0.0135 0.0132 0.0133

(0.0194) (0.0194) (0.0193) (0.0193)
Attractiveness −0.0066∗∗ −0.0060∗ −0.0066∗∗ −0.0066∗∗

(0.0031) (0.0034) (0.0033) (0.0033)
Competence −0.0065 −0.0084∗∗ −0.0053 −0.0053

(0.0042) (0.0042) (0.0042) (0.0042)
Dominance 0.0041 0.0008 0.0009 0.0010

(0.0029) (0.0029) (0.0029) (0.0029)
Trustworthiness −0.0125∗∗∗ −0.0094∗∗ −0.0050 −0.0051

(0.0040) (0.0040) (0.0040) (0.0040)
Human Guess −0.0050

(0.0212)
Constant 0.0470∗∗∗ 0.1964∗∗∗ 0.2098∗∗∗ 0.3148∗∗∗ 0.3102∗∗∗ 0.1369∗∗∗ 0.1395∗∗∗

(0.0094) (0.0136) (0.0207) (0.0169) (0.0265) (0.0278) (0.0299)
Naive-AUC 0.618 0.561 0.558 0.544 0.573 0.628 0.628
Observations 14,250 14,250 14,250 14,250 14,250 14,250 14,250
Adjusted R2 0.0313 0.0093 0.0093 0.0043 0.0129 0.0364 0.0363

Notes: This table replicates the analysis from Table III but applies it to the in-time hold-out data. The table reports the
results of estimating a linear probability specification of judges’ detain decisions against different explanatory variables in
the in-time (randomly selected arrested prior to July 17, 2019) partition of the hold-out set. The algorithmic predictions
of the judges’ detain decision come from our convolutional neural network algorithm built using the defendants’ face image
as the only feature, using data from the training data set. Measures of defendant demographics and current arrest charge
come from government administrative data obtained from a combination of Mecklenburg County, NC and state agencies.
Measures of skin tone, attractiveness, competence, dominance, and trustworthiness come from subject ratings of mugshot
images. Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify the
defendant they think the judge would be more likely to detain. Regression specifications also include indicators for unknown
race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXV: Correlation between well-groomed (first novel feature) and algorithm’s prediction
(lock-box hold-out data, OOS by individual)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6)
Well-Groomed −0.0072∗∗∗ −0.0076∗∗∗ −0.0083∗∗∗ −0.0083∗∗∗ −0.0061∗∗∗ −0.0058∗∗∗

(0.0006) (0.0005) (0.0006) (0.0006) (0.0007) (0.0007)
Male 0.0764∗∗∗ 0.0753∗∗∗ 0.0740∗∗∗ 0.0738∗∗∗ 0.0735∗∗∗

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Age −0.0003∗∗∗ −0.0003∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0209∗∗∗ 0.0118∗∗∗ 0.0123∗∗∗ 0.0121∗∗∗

(0.0015) (0.0018) (0.0018) (0.0018)
Asian −0.0006 −0.0044 −0.0026 −0.0028

(0.0078) (0.0078) (0.0078) (0.0078)
Indigenous American 0.0015 −0.0032 −0.0028 −0.0025

(0.0184) (0.0183) (0.0183) (0.0182)
Skin-Tone −0.0330∗∗∗ −0.0332∗∗∗ −0.0334∗∗∗

(0.0037) (0.0037) (0.0037)
Attractiveness 0.0023∗∗∗ 0.0023∗∗∗

(0.0007) (0.0007)
Competence −0.0028∗∗∗ −0.0026∗∗∗

(0.0008) (0.0008)
Dominance 0.0001 −0.0001

(0.0005) (0.0005)
Trustworthiness −0.0044∗∗∗ −0.0042∗∗∗

(0.0008) (0.0008)
Human Guess 0.0252∗∗∗

(0.0040)
Constant 0.2493∗∗∗ 0.1917∗∗∗ 0.1919∗∗∗ 0.2183∗∗∗ 0.2250∗∗∗ 0.2107∗∗∗

(0.0026) (0.0027) (0.0038) (0.0048) (0.0052) (0.0057)
Observations 14,250 14,250 14,250 14,250 14,250 14,250
Adjusted R2 0.0104 0.1437 0.1586 0.1633 0.1679 0.1701
Notes: This table replicates the analysis from Table IV but applies it to the in-time hold-out data, consisting of randomly
selected cases arrested prior to July 17, 2019. The table shows the results of estimating a linear probability specification
regressing algorithmic prediction of judges’ detain decision against different explanatory variables. Algorithmic predictions
of judges’ decisions come from applying an algorithm built with face images in the training data set to hold-out set
observations. Data on well-groomed, skin tone, attractiveness, competence, dominance, and trustworthiness come from
subject ratings of mugshot images. Human guess variable comes from showing subjects pairs of mugshot images and
asking subjects to identify the defendant they think the judge would be more likely to detain. Regression specifications
also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXVI: Correlation between heavy-faced (second novel feature) and algorithm’s prediction
(lock-box hold-out data, OOS by individual)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0149∗∗∗ −0.0142∗∗∗ −0.0136∗∗∗ −0.0142∗∗∗ −0.0145∗∗∗ −0.0147∗∗∗ −0.0146∗∗∗

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)
Well-Groomed −0.0049∗∗∗ −0.0054∗∗∗ −0.0060∗∗∗ −0.0059∗∗∗ −0.0037∗∗∗ −0.0035∗∗∗

(0.0006) (0.0005) (0.0005) (0.0005) (0.0007) (0.0007)
Male 0.0754∗∗∗ 0.0739∗∗∗ 0.0724∗∗∗ 0.0707∗∗∗ 0.0705∗∗∗

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Age −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0245∗∗∗ 0.0142∗∗∗ 0.0139∗∗∗ 0.0138∗∗∗

(0.0015) (0.0018) (0.0018) (0.0018)
Asian 0.0060 0.0017 0.0033 0.0032

(0.0076) (0.0076) (0.0076) (0.0076)
Indigenous American 0.0101 0.0049 0.0056 0.0058

(0.0179) (0.0178) (0.0178) (0.0178)
Skin-Tone −0.0379∗∗∗ −0.0369∗∗∗ −0.0371∗∗∗

(0.0036) (0.0036) (0.0036)
Attractiveness −0.0007 −0.0007

(0.0007) (0.0007)
Competence −0.0028∗∗∗ −0.0028∗∗∗

(0.0008) (0.0008)
Dominance 0.0025∗∗∗ 0.0023∗∗∗

(0.0005) (0.0005)
Trustworthiness −0.0015∗∗ −0.0014∗

(0.0008) (0.0008)
Human Guess 0.0212∗∗∗

(0.0039)
Constant 0.2929∗∗∗ 0.3108∗∗∗ 0.2515∗∗∗ 0.2497∗∗∗ 0.2810∗∗∗ 0.2813∗∗∗ 0.2689∗∗∗

(0.0028) (0.0035) (0.0035) (0.0042) (0.0052) (0.0054) (0.0059)
Observations 14,250 14,250 14,250 14,250 14,250 14,250 14,250
Adjusted R2 0.0505 0.0552 0.1849 0.2030 0.2092 0.2125 0.2140
Notes: This table replicates the analysis from Table V but applies it to the in-time hold-out data, consisting of randomly selected
cases arrested prior to July 17, 2019. The table shows the results of estimating a linear probability specification regressing
algorithmic prediction of judges’ detain decision against different explanatory variables. Algorithmic predictions of judges’ decisions
come from applying an algorithm built with face images in the training data set to hold-out set observations. Data on heavy-
faced, well-groomed, skin tone, attractiveness, competence, dominance, and trustworthiness come from subject ratings of mugshot
images. Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant
they think the judge would be more likely to detain. Regression specifications also include indicators for unknown race and
unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXVII: Do well-groomed and heavy-faced (first and second novel features) correlate with
judge decisions? (lock-box hold-out data, OOS by individual)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0240∗∗∗ −0.0212∗∗∗ −0.0223∗∗∗ −0.0207∗∗∗ −0.0095∗∗∗

(0.0027) (0.0027) (0.0028) (0.0028) (0.0029)
Well-Groomed −0.0233∗∗∗ −0.0200∗∗∗ −0.0206∗∗∗ −0.0173∗∗∗ −0.0146∗∗∗

(0.0029) (0.0029) (0.0036) (0.0037) (0.0036)
Algo Judge Detain Prediction 0.7693∗∗∗

(0.0452)
Male 0.0837∗∗∗ 0.0909∗∗∗ 0.0866∗∗∗ 0.0324∗∗∗

(0.0087) (0.0087) (0.0087) (0.0092)
Age −0.0009∗∗∗ −0.0010∗∗∗ −0.0011∗∗∗ −0.0009∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)
Black −0.0272∗∗∗ −0.0307∗∗∗ −0.0284∗∗∗ −0.0390∗∗∗

(0.0096) (0.0096) (0.0096) (0.0095)
Asian −0.1301∗∗∗ −0.1370∗∗∗ −0.1285∗∗∗ −0.1310∗∗∗

(0.0413) (0.0413) (0.0413) (0.0408)
Indigenous American 0.0284 0.0098 0.0216 0.0172

(0.0968) (0.0969) (0.0967) (0.0957)
Skin-Tone −0.0196 −0.0149 −0.0202 0.0083

(0.0194) (0.0194) (0.0194) (0.0193)
Attractiveness −0.0096∗∗∗ −0.0006 −0.0048 −0.0043

(0.0034) (0.0035) (0.0035) (0.0035)
Competence −0.0079∗ −0.0045 −0.0047 −0.0026

(0.0042) (0.0043) (0.0043) (0.0042)
Dominance 0.0045 0.0016 0.0050∗ 0.0032

(0.0029) (0.0029) (0.0029) (0.0029)
Trustworthiness −0.0044 −0.0060 −0.0020 −0.0009

(0.0041) (0.0041) (0.0041) (0.0040)
Human Guess 0.0099 0.0096 0.0039 −0.0124

(0.0214) (0.0214) (0.0214) (0.0212)
Constant 0.3558∗∗∗ 0.3366∗∗∗ 0.4283∗∗∗ 0.3979∗∗∗ 0.3488∗∗∗ 0.4315∗∗∗ 0.2247∗∗∗

(0.0140) (0.0129) (0.0175) (0.0313) (0.0301) (0.0321) (0.0340)
Naive-AUC 0.551 0.544 0.565 0.589 0.58 0.593 0.632
Observations 14,250 14,250 14,250 14,250 14,250 14,250 14,250
Adjusted R2 0.0055 0.0046 0.0087 0.0173 0.0151 0.0187 0.0383
Notes: This table replicates the analysis from Table VI but applies it to the in-time hold-out data, consisting of randomly selected
cases arrested prior to July 17, 2019. The table reports the results of estimating a linear probability specification of judges’
detain decisions against different explanatory variables. The algorithmic predictions of the judges’ detain decision come from a
convolutional neural network algorithm built using the defendants’ face image as the only feature, using data from the training
data set. Measures of defendant demographics and current arrest charge come from Mecklenburg County administrative data.
Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance, and trustworthiness come from subject
ratings of mugshot images. Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to
identify the defendant they think the judge would be more likely to detain. Regression specifications also include indicators for
unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXVIII: Is the algorithm rediscovering known facial features? (lock-box hold-out data,
OOS by time)

Algo Judge Detain Prediction
(1) (2) (3) (4) (5)

Male 0.0611∗∗∗ 0.0608∗∗∗ 0.0601∗∗∗ 0.0606∗∗∗ 0.0604∗∗∗

(0.0019) (0.0019) (0.0019) (0.0019) (0.0019)
Age −0.0001∗ −0.0001∗∗ −0.0001 −0.0001

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0144∗∗∗ 0.0101∗∗∗ 0.0099∗∗∗ 0.0096∗∗∗

(0.0018) (0.0023) (0.0023) (0.0023)
Asian 0.0016 −0.0002 0.0004 0.0004

(0.0086) (0.0087) (0.0086) (0.0086)
Indigenous American −0.0102 −0.0109 −0.0138 −0.0122

(0.0189) (0.0189) (0.0188) (0.0187)
Skin-Tone −0.0133∗∗∗ −0.0143∗∗∗ −0.0146∗∗∗

(0.0046) (0.0046) (0.0046)
Attractiveness 0.0006 0.0006

(0.0008) (0.0008)
Competence −0.0033∗∗∗ −0.0033∗∗∗

(0.0010) (0.0010)
Dominance −0.0005 −0.0007

(0.0007) (0.0007)
Trustworthiness −0.0026∗∗∗ −0.0024∗∗∗

(0.0009) (0.0009)
Human Guess 0.0183∗∗∗

(0.0048)
Constant 0.1296∗∗∗ 0.1250∗∗∗ 0.1360∗∗∗ 0.1606∗∗∗ 0.1512∗∗∗

(0.0016) (0.0031) (0.0049) (0.0063) (0.0068)
Observations 4,759 4,759 4,759 4,759 4,759
Adjusted R2 0.1785 0.1916 0.1929 0.2026 0.2049

Notes: This table replicates the analysis from Table II but applies it to the out-of-time hold-out data. The
table presents the results of regressing an algorithmic prediction of judge detention decisions against each of
the different explanatory variables as listed in the rows, where each column represents a different regression
specification. The algorithm was trained using mugshots from the training data set, and evaluated on the
out-of-time partition of the hold-out set, including all valid arrests from the last 6 months of the data period
(from July 17, 2019, to January 17, 2020). Data on skin tone, attractiveness, competence, dominance, and
trustworthiness comes from asking subjects to assign feature ratings to mugshot images from the Mecklenburg
County, NC Sheriff’s Office public website. The human guess about the judges’ decision comes from showing
workers on the Prolific platform pairs of mugshot images and asking them to report which defendant they
believe the judge would be more likely to detain. Regressions follow a linear probability model and also
include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXIX: Does algorithm predict judge behavior after controlling for known factors? (lock-
box hold-out data, OOS by time)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Algo Judge Detain Prediction 0.9032∗∗∗ 0.8056∗∗∗ 0.8003∗∗∗

(0.0817) (0.0915) (0.0916)
Male 0.0788∗∗∗ 0.0791∗∗∗ 0.0776∗∗∗ 0.0288∗∗ 0.0288∗∗

(0.0119) (0.0120) (0.0124) (0.0135) (0.0135)
Age 0.0004 0.0004 0.0002 0.0003 0.0003

(0.0004) (0.0004) (0.0005) (0.0005) (0.0005)
Black −0.0044 −0.0026 −0.0025 −0.0105 −0.0110

(0.0112) (0.0146) (0.0147) (0.0146) (0.0146)
Asian −0.0396 −0.0388 −0.0395 −0.0398 −0.0397

(0.0546) (0.0548) (0.0547) (0.0543) (0.0543)
Indigenous American −0.0323 −0.0320 −0.0434 −0.0323 −0.0296

(0.1194) (0.1194) (0.1192) (0.1183) (0.1183)
Skin-Tone 0.0054 0.0051 0.0166 0.0160

(0.0290) (0.0291) (0.0289) (0.0289)
Attractiveness −0.0115∗∗ −0.0065 −0.0070 −0.0069

(0.0045) (0.0050) (0.0049) (0.0049)
Competence −0.0060 −0.0095 −0.0068 −0.0067

(0.0061) (0.0062) (0.0062) (0.0062)
Dominance 0.0048 −0.0001 0.0003 0.0001

(0.0042) (0.0043) (0.0042) (0.0042)
Trustworthiness −0.0055 −0.0043 −0.0022 −0.0019

(0.0057) (0.0058) (0.0057) (0.0057)
Human Guess 0.0317

(0.0302)
Constant −0.0068 0.0824∗∗∗ 0.0779∗∗ 0.2157∗∗∗ 0.1689∗∗∗ 0.0395 0.0239

(0.0152) (0.0194) (0.0308) (0.0252) (0.0400) (0.0423) (0.0448)
Naive-AUC 0.629 0.568 0.568 0.557 0.592 0.64 0.64
Observations 4,759 4,759 4,759 4,759 4,759 4,759 4,759
Adjusted R2 0.0248 0.0089 0.0087 0.0044 0.0119 0.0276 0.0276

Notes: This table replicates the analysis from Table III but applies it to the out-of-time hold-out data. The table reports
the results of estimating a linear probability specification of judges’ detain decisions against different explanatory variables
in the out-of-time partition of the hold-out set, including all valid arrests from the last 6 months of the data period (from
July 17, 2019, to January 17, 2020). The algorithmic predictions of the judges’ detain decision come from our convolutional
neural network algorithm built using the defendants’ face image as the only feature, using data from the training data
set. Measures of defendant demographics and current arrest charge come from government administrative data obtained
from a combination of Mecklenburg County, NC and state agencies. Measures of skin tone, attractiveness, competence,
dominance, and trustworthiness come from subject ratings of mugshot images. Human guess variable comes from showing
subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely
to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXX: Correlation between well-groomed (first novel feature) and algorithm’s prediction
(lock-box hold-out data, OOS by time)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6)
Well-Groomed −0.0067∗∗∗ −0.0068∗∗∗ −0.0075∗∗∗ −0.0076∗∗∗ −0.0073∗∗∗ −0.0071∗∗∗

(0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0008)
Male 0.0611∗∗∗ 0.0610∗∗∗ 0.0602∗∗∗ 0.0610∗∗∗ 0.0609∗∗∗

(0.0019) (0.0019) (0.0019) (0.0019) (0.0019)
Age −0.0003∗∗∗ −0.0003∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0140∗∗∗ 0.0094∗∗∗ 0.0091∗∗∗ 0.0089∗∗∗

(0.0017) (0.0023) (0.0023) (0.0023)
Asian 0.0031 0.0012 0.0021 0.0020

(0.0085) (0.0085) (0.0085) (0.0085)
Indigenous American −0.0167 −0.0175 −0.0174 −0.0160

(0.0187) (0.0186) (0.0186) (0.0186)
Skin-Tone −0.0141∗∗∗ −0.0150∗∗∗ −0.0152∗∗∗

(0.0045) (0.0045) (0.0045)
Attractiveness 0.0025∗∗∗ 0.0025∗∗∗

(0.0008) (0.0008)
Competence −0.0017∗ −0.0017∗

(0.0010) (0.0010)
Dominance −0.0002 −0.0004

(0.0007) (0.0007)
Trustworthiness −0.0016∗ −0.0015∗

(0.0009) (0.0009)
Human Guess 0.0153∗∗∗

(0.0048)
Constant 0.2048∗∗∗ 0.1594∗∗∗ 0.1640∗∗∗ 0.1759∗∗∗ 0.1777∗∗∗ 0.1693∗∗∗

(0.0034) (0.0033) (0.0046) (0.0060) (0.0065) (0.0070)
Observations 4,759 4,759 4,759 4,759 4,759 4,759
Adjusted R2 0.0170 0.1959 0.2118 0.2133 0.2150 0.2166
Notes: This table replicates the analysis from Table IV but applies it to the out-of-time hold-out data, including all
valid arrests from the last 6 months of the data period (from July 17, 2019, to January 17, 2020). The table shows the
results of estimating a linear probability specification regressing algorithmic prediction of judges’ detain decision against
different explanatory variables. Algorithmic predictions of judges’ decisions come from applying an algorithm built with
face images in the training data set to hold-out set observations. Data on well-groomed, skin tone, attractiveness,
competence, dominance, and trustworthiness come from subject ratings of mugshot images. Human guess variable comes
from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would
be more likely to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXXI: Correlation between heavy-faced (second novel feature) and algorithm’s prediction
(lock-box hold-out data, OOS by time)

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0107∗∗∗ −0.0100∗∗∗ −0.0093∗∗∗ −0.0093∗∗∗ −0.0094∗∗∗ −0.0095∗∗∗ −0.0094∗∗∗

(0.0007) (0.0007) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)
Well-Groomed −0.0052∗∗∗ −0.0053∗∗∗ −0.0061∗∗∗ −0.0061∗∗∗ −0.0057∗∗∗ −0.0056∗∗∗

(0.0007) (0.0007) (0.0007) (0.0007) (0.0008) (0.0008)
Male 0.0601∗∗∗ 0.0599∗∗∗ 0.0589∗∗∗ 0.0586∗∗∗ 0.0585∗∗∗

(0.0018) (0.0018) (0.0018) (0.0019) (0.0019)
Age −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Black 0.0143∗∗∗ 0.0086∗∗∗ 0.0084∗∗∗ 0.0082∗∗∗

(0.0017) (0.0022) (0.0022) (0.0022)
Asian 0.0057 0.0034 0.0037 0.0036

(0.0083) (0.0083) (0.0083) (0.0083)
Indigenous American −0.0136 −0.0146 −0.0143 −0.0132

(0.0182) (0.0182) (0.0182) (0.0182)
Skin-Tone −0.0177∗∗∗ −0.0172∗∗∗ −0.0173∗∗∗

(0.0044) (0.0044) (0.0044)
Attractiveness 0.0001 0.0001

(0.0008) (0.0008)
Competence −0.0016 −0.0015

(0.0010) (0.0010)
Dominance 0.0011∗ 0.0010

(0.0007) (0.0007)
Trustworthiness 0.0004 0.0004

(0.0009) (0.0009)
Human Guess 0.0122∗∗∗

(0.0046)
Constant 0.2306∗∗∗ 0.2498∗∗∗ 0.2019∗∗∗ 0.2061∗∗∗ 0.2216∗∗∗ 0.2194∗∗∗ 0.2124∗∗∗

(0.0036) (0.0044) (0.0043) (0.0053) (0.0065) (0.0069) (0.0074)
Observations 4,759 4,759 4,759 4,759 4,759 4,759 4,759
Adjusted R2 0.0515 0.0612 0.2338 0.2497 0.2520 0.2522 0.2531
Notes: This table replicates the analysis from Table V but applies it to the out-of-time hold-out data, including all valid arrests
from the last 6 months of the data period (from July 17, 2019, to January 17, 2020). The table shows the results of estimating a
linear probability specification regressing algorithmic prediction of judges’ detain decision against different explanatory variables.
Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the training data set to hold-
out set observations. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance, and trustworthiness
come from subject ratings of mugshot images. Human guess variable comes from showing subjects pairs of mugshot images and
asking subjects to identify the defendant they think the judge would be more likely to detain. Regression specifications also
include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.XXXII: Do well-groomed and heavy-faced (first and second novel features) correlate with
judge decisions? (lock-box hold-out data, OOS by time)

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0256∗∗∗ −0.0230∗∗∗ −0.0241∗∗∗ −0.0227∗∗∗ −0.0162∗∗∗

(0.0039) (0.0039) (0.0040) (0.0040) (0.0041)
Well-Groomed −0.0233∗∗∗ −0.0198∗∗∗ −0.0187∗∗∗ −0.0150∗∗∗ −0.0111∗∗

(0.0042) (0.0043) (0.0054) (0.0054) (0.0054)
Algo Judge Detain Prediction 0.6922∗∗∗

(0.0944)
Male 0.0712∗∗∗ 0.0785∗∗∗ 0.0727∗∗∗ 0.0322∗∗

(0.0124) (0.0124) (0.0124) (0.0135)
Age −0.00004 −0.00003 −0.0002 −0.00004

(0.0005) (0.0005) (0.0005) (0.0005)
Black −0.0055 −0.0051 −0.0069 −0.0125

(0.0146) (0.0147) (0.0146) (0.0145)
Asian −0.0345 −0.0351 −0.0312 −0.0337

(0.0545) (0.0546) (0.0545) (0.0542)
Indigenous American −0.0343 −0.0494 −0.0427 −0.0335

(0.1188) (0.1191) (0.1188) (0.1181)
Skin-Tone −0.0013 0.0026 −0.0024 0.0096

(0.0290) (0.0291) (0.0290) (0.0289)
Attractiveness −0.0115∗∗ −0.0016 −0.0073 −0.0074

(0.0050) (0.0051) (0.0052) (0.0052)
Competence −0.0080 −0.0053 −0.0048 −0.0038

(0.0062) (0.0063) (0.0063) (0.0063)
Dominance 0.0033 0.0003 0.0037 0.0030

(0.0043) (0.0043) (0.0043) (0.0043)
Trustworthiness 0.0016 −0.0015 0.0033 0.0030

(0.0058) (0.0058) (0.0059) (0.0058)
Human Guess 0.0367 0.0386 0.0310 0.0226

(0.0303) (0.0304) (0.0304) (0.0302)
Constant 0.2837∗∗∗ 0.2541∗∗∗ 0.3569∗∗∗ 0.2649∗∗∗ 0.1926∗∗∗ 0.2965∗∗∗ 0.1495∗∗∗

(0.0207) (0.0193) (0.0260) (0.0473) (0.0451) (0.0486) (0.0523)
Naive-AUC 0.575 0.563 0.588 0.618 0.603 0.622 0.651
Observations 4,759 4,759 4,759 4,759 4,759 4,759 4,759
Adjusted R2 0.0088 0.0062 0.0131 0.0194 0.0145 0.0208 0.0316
Notes: This table replicates the analysis from Table VI but applies it to the out-of-time hold-out data, including all valid arrests
from the last 6 months of the data period (from July 17, 2019, to January 17, 2020). The table reports the results of estimating
a linear probability specification of judges’ detain decisions against different explanatory variables. The algorithmic predictions
of the judges’ detain decision come from a convolutional neural network algorithm built using the defendants’ face image as the
only feature, using data from the training data set. Measures of defendant demographics and current arrest charge come from
Mecklenburg County administrative data. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance,
and trustworthiness come from subject ratings of mugshot images. Human guess variable comes from showing subjects pairs of
mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression
specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix Figures
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Figure A.I: Eigenfaces

Notes: Eigenfaces method adequately reduces statistical complexity in face image representation but does
not provide any interpretable insights for our analysis.
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Figure A.II: Example of subject labeling exercise for skin-tone, age, and other features

Notes: The mugshot in the above exhibit is a synthetic computer-generated image used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.
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Figure A.III: Distribution of skin-tone categories for full validation sample, and by defendant race

Notes: This figure shows the distribution of skin tone labels from our human intelligence task. These figures come from having human labelers
examine face images (mugshots) from Mecklenburg County, NC and recording the skin tone that is closest to the image in the raters view. The
top panel shows the histogram of skin tone values reported for the full validation sample; the middle panel is for African American defendants,
specifically, while the histogram for white defendants is at the bottom. We collected a total of 10,555 skin tone labels from a total of 77 human
raters.

110



(a) The consent screen presented to M-turkers before commencing

(b) The instructions given to Prolific workers for the human guess tasks

Figure A.IV: Examples of consent and instructions shown to M-Turk and Prolific workers for
incentivized selection tasks
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Figure A.V: Example of instructions given to M-turkers for one of a labelling task
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Figure A.VI: Distribution of human ratings of psychological features based on face images

Notes: The standard deviations of these features (calculated on the average label per mugshot) are as follows: attractiveness (0.923), competence
(0.911), dominance (0.947), trustworthiness (0.844), well-groomed (1.012), and heavy-faced (1.195).
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Figure A.VII: Reliability measures for human-rated psychological features

Notes: This figure shows the estimates of Cronbach’s alpha (left panel) and Intraclass Correlation Coefficients
(right panel) for human ratings of psychological features taken from face images (mugshots) from Mecklenburg
County, NC Sheriff’s Office public website. Cronbach’s alpha (or Tau-equivalent reliability) is a coefficient
used to measure the reliability, or internal consistency, of a set of scale or test items. Cronbach’s alpha
coefficients above 0.80 and 0.90 are considered to be reliable and highly reliable, respectively. Intraclass
Correlation Coefficient (ICC) is a continuous inter-rater reliability measure which works for any number of
raters giving ratings to a fixed number of items. It provides an estimate of the extent to which the observed
amount of agreement among raters exceeds what would be expected if all raters made their ratings at random.
ICC values above 0.80 are considered as an indication of perfect agreement among subjects on the choices
of categories. In the above exhibit, Cronbach’s alpha coefficients are measured on a bespoke quality check
sample while Intraclass Correlation Coefficients are estimated on the entire population of observations.

114



Figure A.VIII: Signal vs. noise in human ratings by number of ratings provided

Notes: The figure shows the results of taking the average of the first K labels provided by human raters for that psychological feature from looking
at a face image, and using that to predict the value of the next (K+ 1) human rating of that same image on the same psychological feature, reported
in root mean squared error terms. For each curve relating prediction error and number of labels, we also report the 95% confidence interval.
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(a) The screen presented to workers when selecting an image.

(b) The screen presented to workers after selecting an image. In addition to the green outline, a popup
window appeared informing candidates if their selection was correct.

Figure A.IX: Example of human intelligence task assessing human performance at picking candi-
dates more likely to be detained.

Notes: The mugshots in the above exhibits are synthetic computer-generated images used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.
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Figure A.X: Accuracy of algorithmic models of judge decisions

Notes: The figure above shows predictive accuracy measures for two separate algorithms built to predict
judges’ detention decisions, one built using all of the variables available to us from the Mecklenburg County,
NC data set (structured variables like current charge, prior record, gender, age, etc.—see text and appendix—
as well as unstructured data from defendant’s mugshot) and the second built using just the face images alone.
The algorithms are built using data from the training data set. We then calculate prediction accuracy out-of-
sample on the validation data set (see Table 1 and text). The receiver operating characteristic (ROC) curve
plots the true positive rate and false positive rate for all possible classification thresholds; models that are
more predictively accurate will have ROC curves that lie relatively further to the northwest. AUC integrates
under the ROC curve and can be interpreted as the likelihood that a randomly selected positive (detained)
example would be assigned a higher detention likelihood by the algorithm than a randomly selected negative
(released) case; random guessing would produce an AUC of 0.5 and perfect prediction would correspond to
an AUC of 1.0. The shaded areas correspond to 95% confidence intervals computed using 2,000 stratified
bootstrap replicates that sample at the arrestee level.
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Figure A.XI: Relationship between detention rates and defendant characteristics

Notes: The figure above shows the average validation set detention rates for defendants by different defendant
characteristics: crime charge is violent vs. non-violent (first panel), defendant is male versus female (second
panel), defendant is in the lightest (Q4) versus darkest (Q1) skin tone shade according to independent subject
ratings of mugshots (third panel), and defendant is in lowest quartile of predicted risk (Q1) versus highest
quartile (Q4) according to mugshot-based predictor of judge detention decision (final panel). 95% confidence
intervals are shown at the top of each bar; overall average detention rate in the validation dataset is 23.3%.
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(a) The screen presented to workers when selecting an image.

(b) The screen presented to workers after selecting an image. In addition to the green outline, a popup
window appeared informing candidates if their selection was correct.

Figure A.XII: Example of unknown characteristic guessing exercise with predicted-age-morphed
pairs

Notes: Subjects were shown age-risk-morphed image pairs and asked to make a guess about the image
that exhibited that hidden characteristic more strongly. After completing this guessing exercise on 50 image
pairs, subjects were asked to write down the facial features that they believed were related to the algorithm’s
predictions. 119



Context: we ran a survey in which several subjects looked at two pictures. One of the pictures was "correct", the 

other was "incorrect", and the subjects had to guess which was which. After each selection, a popup told them if 

they were correct or incorrect, and they saw the next pair of photos. We then asked these people to describe how 

they were selecting the correct answer. That's the data you can see in the Google Doc! 

Task: I need you to go through each comment, and "categorize" or "tag" all the comments. You will have to read 

the comments to discover what categories might exist, and you will have to find every category each comment lies 

in. 

Example: Consider the comment "People with thicker eyebrows were correct, and people who looked energetic, 

and the ears". There are three different types of categories: a descriptive physical one ('thick eyebrows'), a 

descriptive impression category ('energetic'), and a vague one ('ears'). We want to tag each of these! The first two 

are good (this is something specific & measurable), and the last one is bad (not something that can be measured), 

but we still want the tag. 

Challenges: You'll notice they talk about lots of different features, and not always the same ones. Your task: we 

want to know every different feature mentioned by the subjects, and we want to know how many answers mention 

each feature. For example, the first response mentioned "a relaxed face". So I went down the entire list of 

comments, and made a note of every comment that talked about a "relaxed face", or "stressed face", or "relaxed 

expression", or something similar. The first response also mentioned a "neutral expression", so I went down the 

list and noted every response that mentioned this, or the opposite. We need to do this for all possible features. 

Final state: So, this should be fairly obvious, but our goal is to fill all of the columns with all of the features 

anybody mentions, and for every feature, we want to note which comments refer to that feature. 

 

Notes: 

We want to include opposites as the same feature. For example, stressed face / relaxed face is the same feature, 

since they are opposites; long hair / short hair are the same feature, but not the same feature as curly hair / straight 

hair; neutral face / happy face are not really the same feature, since the opposite of neutral might be anything. 

Features can be something physical (big eyes, crooked nose, long hair) OR something abstract (trustworthy, 

dangerous looking, competent). Physical features are easy to understand, but abstract features can be complicated. 

A good rule of thumb here might be: if I asked "based on their face, is this person [trustworthy]?", do you think 

people would have an answer? 

We are looking for features that are specific and measurable. A good rule of thumb is: good features are 

something about a face, bad features are just parts of a face.  

For example, "pursed lips" is good (specific, can be measured as true / false); "looks dangerous" is also good: it's 

specific (sort of), "short hair" and "long hair" are a single feature; "eyes" is bad (not specific, just a part of a face), 

so we wouldn't bother tracking this. There are plenty of typos. I think the person who mentioned a bear is really 

talking about a beard. 

Figure A.XIII: Instructions shown to independent RAs for the comment categorization task
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(a) Instructions shown to subjects before beginning the task.

(b) The screen presented to workers when selecting an image.

Figure A.XIV: Example of guessing exercise with detention-risk-morphed pairs

Notes: Subjects were shown detention-risk-morphed image pairs such as above and asked to predict which
artificial defendant would be more likely to face pre-trial detention. After completing this guessing exercise
on 50 image pairs, subjects were asked to write down the facial features that they believed were related to
the algorithm’s predictions.
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Figure A.XV: Subject performance guessing relative detention risk across morphed image pairs as
a function of number of images seen

Notes: The figure above shows subject accuracy rates in guessing which morphed image pair has a higher
detention risk, and how that changes as the subjects see more images. Each subject was shown 50 image
pairs matched on race, skin tone, age and gender; in our analysis, we treat the data from the first 10 images
each subject sees as learning examples and carry out our analyses using the last 40 image-pair results from
each subject.
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Figure A.XVI: An example of the M-turk labelling exercise

Notes: The mugshot in the above exhibit is a synthetic computer-generated image used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.
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Figure A.XVII: Orthogonalization pipeline
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(a) Side-by-side mugshot orthogonal detention morphs with detention probabilities of 0.27 and 0.07 respectively

(b) Transformations of the face along selected steps of the orthogonal morphing process

(c) Detention-probabilities for images in panel (b)

Figure A.XVIII: Illustration of morphed faces along orthogonal gradients of detention predictor

Notes: The top panel shows the result of selecting a random point on the GAN latent face space for a white Hispanic
male defendant, then using our orthogonal morphing procedure to increase the predicted detention risk of the image
to 0.27 (at left) or reduce the predicted detention risk down to 0.07 (at right); the overall average detention rate
in the validation dataset of actual mugshot images is 0.23 by comparison. The second panel shows the different
intermediate images between these two end points, while the third panel underneath shows the predicted detention
risk for each of the images in the middle panel.
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Figure A.XIX: Relative magnitude of the algorithm’s discoveries on detention

Notes: The figure above shows the average validation set detention rates among different groups of defendants
using charge types, the demographic data of arrestees, and human ratings of our algorithmically generated
novel features. The set of bar charts compares the average detention rates for defendants by types of crime
charge (violent versus non-violent), by gender (male versus female), and similarly the average detention rates
for defendants across top (Q4) and bottom (Q1) quartiles of well-groomed and heavy-faced separately.
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(a) A word cloud of practitioners’ comments

(b) Frequencies of comments by theme

Figure A.XX: Criminal justice practitioner descriptions of contrast between released and detained
actual defendant faces

Notes: The top panel shows a word cloud of subject reports about what they see as the key difference between
image pairs, where one is a randomly selected actual mugshot and the other is another actual mugshot which
is selected to be congruous in race and gender but discordant in detention outcome. The bottom panel shows
the frequency of semantic groupings of these open-ended subject reports (see text for additional detail).
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