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Standard economic models of criminal behavior analyze the criminal's decision in a partial 

equilibrium context. The standard model does not recognize that the probability of being 

punished is a function of the total amount of crime that occurs. As the total amount of crime 

increases, police resources become strained, courts become congested, and prisons become 

overcrowded. As a result, proportionately fewer criminals are apprehended, convicted, and 

imprisoned. The feedback effects from one criminal's decision to participate in crime to another 

criminal's decision can be highly significant. In one parameterization of the model developed 

here, the individual commits twice as many crimes for a given parameter shift than is implied 

by the standard model. The model also sheds light on other areas where criminal actions are 

interdependent such as riots, crime waves, and revolutions. (JEL K42) 

Introduction 

Crime costs Americans over $400 billion dollars a year, not including the misery 

caused by violent crime.~ Understanding of the causes and consequences of crime has 

been greatly improved by the economic theory of criminal behavior. Standard economic 

models of criminal behavior [Becker, 1968; Ehrlich, 1974], however, analyze the 

criminal's decision in a partial equilibrium context. These models do not recognize that 

the probability of being punished is a function of the total amount of crime which occurs. 

As the total amount of crime increases, police resources become strained, courts become 

congested, and prisons become overcrowded. 2 As a result, proportionately fewer 

criminals are apprehended, convicted, and imprisoned. Those who are punished may 

receive lighter sentences because the quality of investigation and prosecution is likely to 

decline as police and prosecutor caseloads increase. Furthermore, prison officials have 

little choice but to release criminals early when prisons become unreasonably 

overcrowded. Thus, when an individual commits more crimes, the probability is reduced 

that other criminals are apprehended, convicted, and imprisoned. Other criminals 

optimize their choices appropriately. Each individual is, therefore, involved in a system 

of decisions. 

This paper analyzes the general equilibrium effects of an individual's decision to 

participate in crime. The paper shows that feedbacks effects can be highly significant. In 

one parameterization, a single criminal commits twice as many crimes for a given 

parameter shift than is implied by the standard model. The aggregate effects are even 
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larger. In the same parameterization, the aggregate effect on crime is n times as large as 

that implied by the standard model (where n is the number of agents in the model). 

The model applies not only to crime strictly but also to phenomena like riots, strikes, 

and revolutions. In each of these cases, the probability of being punished is a decreasing 

function of the total amount of the activity. The probability that a rioter is apprehended 

falls the more rioters there are. The probability that a striker or a revolutionary is 

punished is less the greater the number of strikers and revolutionaries. This is true even 

if the revolution or strike fails. 

This paper is most closely related to Sah [1991] and Kuran [1989]. Sah assumes that 

agents do not know the true probability of punishment--rather they estimate this 

probability from local information. If, for example, an agent observes a lot of crime, he 

is likely to assume that the probability of punishment is lower than his prior estimate. 

Thus, the observation of significant amounts of crime can increase the amount of crime. 

Sah analyzes the dynamics of actual and estimated probabilities and the effect of these on 

crime rates. Kuran asks why major events--like revolutions--are often not anticipated. 

His explanation focuses on what he calls "preference falsification," the hiding of one's 

true preferences. A majority of the public may not be in favor of the current government 

without a majority of the public knowing that a majority is not in favor of the current 

government. Kuran analyzes a process whereby a slight parameter shift can cause one 

individual to reveal his true preferences which causes another individual to reveal his true 

preferences and so forth until a revolution occurs which appears to come "out of 

nowhere." Sah [1991] and Kuran [1989] differ from this paper in assuming that agents 

are misinformed or imperfectly informed in some important manner. In this paper, agents 

are well informed and perfectly rational. 3 

The Model 

There are n agents who are indexed by i and come in different types denoted by 0. 

Agent utility is a function of wealth, Ui(W~ I 0i), where U'(W) > O, U"(W) < 0. Higher 

values of 0 will represent a greater tendency towards crime. An agent's type could 

represent moral convictions, risk aversion, productivity in the legitimate sector of the 

economy, productivity in the criminal sector, and so forth. The particular formulation is 

not important for the purposes of this paper. 

Labor supply is determined by Ehrlich's [1974] state-preference model. 4 Each agent 

chooses how much time to devote to crime, c~, and how much time to devote to legitimate 

work, l~. Time spent at leisure is held constant so assume that c~ = 1 - li or c~ ~ [0,I]. If 

an agent devotes positive time to crime, then with probability p(C) he will be punished 

and with probability 1 - p(C) he will not punished. C is a measure of the total amount of 

crime, i.e., C = C(cl,..ci .... c,,) such that Ci > 0 (where the subscript denotes a partial 

derivative). It is assumed that the probability a criminal is punished decreases as the total 

amount of crime increases, p'(C) < 0. Furthermore, each criminal is small relative to 

the market and so takes p(C) as fixed. 

If an agent is punished, his wealth is written as: 
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Wp = W ° + W (c) + Wt(l ) -F(c) . 

Where Wo is initial wealth, We(c) is wealth from criminal activity as a function of c, W~ 

(l) is wealth from working in the legitimate sector of the economy, and F(c) is the fine 

or punishment (measured in monetary terms). If the individual is not punished, his wealth 

is written as: 

W p : W ° + Wc(c ) + Wt(l ) . 

Wealth increases with time spent in either the criminal activity or the legitimate activity 

but in either case at a diminishing rate. Punishment is assumed to increase with time spent 

in criminal activity at an increasing rate. These assumptions can be stated as: 

dW dW l dF d 2 W d2Wt d2F 
, , -- > 0 , , ~ < 0 and 

dc dl dc dc 2 dl 2 dc 2 

For simplicity, the paper focuses on interior solutions for all types. 

>0. 

Equilibrium 

The strategy choices (cl ,...c~ ...c, ) constitute a Nash equilibrium if for every agent i, 

ci* solves the following maximization problem: 

MaxEU, = Maxp(C) U(Wp) + (1 - p(C))U(Wp) . 

C 1 C i 

The first-order conditions for this problem are that for each agent i:i = 1...n: 

! 

= _ (w'o - w ,) (1) 
! ! 

(1 -p(C))U'(Wp) (W' c - W, - F ) 

In general, there will be many Nash equilibria. Some of these equilibria will be trivially 

identical in the sense that the aggregate amount of crime is the same but the individual 

criminals are different. These equilibria are not discussed. Other equilibria may involve 

large differences in the total amount of crime even though underlying parameters are 

identical. These types of equilibria are discussed below. 

Note that the criminal takes p(C) as given. If each criminal is small relative to the 

market, this assumption is both reasonable and innocuous. It is illegitimate, however, to 

assume that other agents ignore the effect of ci on p(C). The reason is that there are many 

other agents. Even if each of these agents makes only a marginal adjustment in his crime 

rate, the total adjustment may be large. If the total adjustment is large, agent i will 

reoptimize once the effects of his initial response make their way through the system. 

Thus, although the initial impact of a change in ci onp(C) is ignored, the model does take 



TABARROK: CRIME WAVES AND REVOLUTIONS 277 

into account the far more important indirect effects. The following results expand on 

these themes. 

Following the language of Cooper and John [1988], this game exhibits positive 

spillovers, strategic complementarity, and multiplier effects. Positive spillovers occur 

when an agent's utility is increasing in the strategic choices of the other agents. In this 

game, an agent's expected utility is increasing in the amount of crime committed by other 
agents: 6 

dEU, dp(C) dC 
- - u(wp)) > o . 

dc dC dc. 
J 1 

The game also exhibits strategic complementarity--an agent's optimal strategy, here, the 

time spent in criminal activity, is increasing in the strategy choices of other agents. 

Taking the derivative of the first-order condition with respect to the choices of the other 

agents, one finds: 

dEU, _ alp(C) dC 

dc~ cj dC dcj 

! ! 

-- [U'(Wp)(W' -W t-F') - U (Wnv ) (W' c -W't)] > 0 (2) 

_ dp(C) dC 1 
-- > 0 , (3) 

dC dcj p(C ) 

where inequality (3) makes use of inequality (2) and the first-order condition. 

A game exhibits multiplier effects when the aggregate response to a parameter shock 

(0) exceeds the individual's initial response and when the individual's equilibrium 

response exceeds the individual's initial response. Strategic complementarity is a 

necessary and sufficient condition for multiplier effects [Cooper and John, 1988]. 7 The 

intuition in this model is simple. An increase in 0,. increases the time agent i devotes to 

crime. As crime increases, police resources become strained at the margin and the 

probability of punishment falls, causing other criminals j ~ i to increase their criminal 

activities. As other agents turn to crime, the probability of punishment falls even further, 

giving agent i an additional reason to increase his criminal activities. 

Comparative Statics and Stability 

There are no real dynamics in this model since the first-order conditions (1) are 

assumed to hold exactly at all times. It has become traditional, however, to appeal to 

notions of stability to sign comparative static relations [Varian, 1992; Dixit, 1986]. 

Without apology, that procedure is followed here. It is convenient to assume that near the 

equilibrium, agents adjust their labor choices in the direction of increasing expected 

utility, assuming that other agents hold their choices fixed. This type of dynamic system 

corresponds to that assumed by Cournot [1838] in his analysis of duopoly. Thus, assume 

Cournot dynamics near the Cournot-Nash equilibrium. Cournot dynamics have the useful 
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property that stability conditions allow one to sign the Hessian needed for comparative 

statics. Write the first-order conditions (1) as nl(cl, c2...cn, 01) = 0 ..... gn(c~, c2...cn, On) 

= 0. The Cournot dynamic system can be written as: 

dc 1 
- t~l.~ 1 (cl, c2...c,, 0 l) 

dt 

dc I 
- [~n :¢ "]~n (el' C2""Cn' On) 

dt 

A sufficient condition for stability is that the matrix: 

A = : ""gH "" : 

"~nl "']T'ni "" nn/ 

be negative definite at the equilibrium point, s but this matrix is just the Hessian matrix 

which one needs to sign to get comparative statics. Assume that the dynamic system is 

stable at the equilibrium point. Below a sufficient condition for stability will be discussed. 

Comparative Statics 

The comparative statics of a change in 0i are of primary interest. Recall that an 

increase in 0i indicates an increase in the propensity to commit crime. In the past 20 

years, for example, legitimate earnings opportunities for low-skilled men have 

deteriorated substantially, leading to a relative increase in the attractiveness of crime as 

an occupation [Freeman, 1996]. 9 Following this interpretation, the comparative statics 

results indicate the system-wide or total effects of an exogenous decrease in 

legitimate-sector earnings for agent i. Other interpretations are, of course, possible (as 

shown below). 

It will be useful to define some terms. The partial effect, ac~/a0~ shows how much 

agent i would increase his criminal activity following an increase in 0~ if no other agents 

altered their criminal activity. The total effect, dcl/dO~ gives i's increase in criminal 

activity, taking into account the initial increase in 0~ and all of the secondary effects that 

flow from the increase in the criminal activities of other agents. 

Proposition 1 

At a stable equilibrium, the total effect is positive, dc~/dO~ > O. 
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Proof 

Using Cramer's rule, the comparative static is given by (4). From the stability 

condition, the denominator has sign (-1) ~ and the numerator has the same sign as -x,01 

(-1) n-I = xl0~ (-1) n. Since ~181 > 0 =, dcl / dO1 > 0 "1° 

dc I 

-~10] 

0 

.... ~ln 

• .71;ji .. " 

.... '~/Im 

d0, IA[ 

(4) 

Proposition 2 

At a stable equilibrium, dci/dO i > O, j, i. 

Proof 

The same reasoning as above follows. Proposition 1 indicates that the total effect of an 

increase in 0i has the same sign as the partial effect. Proposition 2 indicates that other 

agents increase their criminal activities in response to an increase in activity by agent i. 

Further assumptions on the structure of the model can be used to strengthen and illustrate 

Propositions 1 and 2. Let P0 = 7to/~i~ ~/i,j. (Note that Po < 0.) Po is the slope of agent 

i's reaction function with respect to agentj's actions. Now assume that every individual 

contributes equally, on the margin, to the aggregate measure of crime, i.e., an increase 

in cj has the same effect on p(C) as an increase in c~. This implies C = C(q + c2 + ... 

cn). It follows that agent i reacts the same way to an increase in crime by any other agent 

orPu=piVj. 

A sufficient condition for stability is that pg ~ -1 /n V i (see the Appendix). An increase 

in crime by agent i reduces the probability that agentj is punished, which causes agent 

j to increase his criminal activities, which causes agent i to increase his criminal activity. 

In order for the equilibrium to be stable, this process must be damped. The condition Pi 

-1/n V i is a sufficient condition for the process to be damped. A necessary condition 

for stability (see the Appendix) is that -2E~=~ pi/1 - pi < 1. The necessary condition 

indicates that some agents can have highly reactive reaction functions, p~ > -1 /n, so long 

as other agents have sufficiently damped reaction functions, p~ < -1/n. The sufficient 

condition is easier to work with, however. For the next set of results, assume that p~ = 

-1/nVi. 

The difference between agent i's total and partial effects, dc~/dO~ - 3c~/30~, is the own 

contagion effect, the increase in i's criminal activity which occurs because other criminals 

increase their activity in response to i's increased activity. The author also defines the 

general contagion effect as the increase in agent i's criminal activity when agent j 

increases criminal activity, dc~/dOj. Finally, the aggregate effect of a change in 0~ is the 

change in the aggregate amount of crime, which is found by summing up all of the 

individual total effects. 
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Using the above stability condition, it is shown in the Appendix that the total effect is 

nearly twice as large as the partial effect: 

d% n Oct 
- 2 (5) 

dO t n + 1 dO t 

By definition, the direct effect can be decomposed into the partial and own contagion 

effects so the above can also be written as dci/dOi = aci/OOi + (n - 1/n + 1) Oci/OOi. 

It can also be shown that the general contagion effect, the increase in i's criminal activity 

when agentj increases criminal activity, is nearly as large as the own partial effect: 

dci n dct 

dO. n + 1 c30. (6) 
1 J 

Noting that acj/ aoj = Oci/ OOi, rewrite this as dci/ dOj = (n/ n + 1) aci/ OOv The above 

results can be put together to give Proposition 3. 

Proposition 3 

For large n, the aggregate increase in crime is n times the initial increase in crime. 

Proof 

The aggregate effect of an increase in 0i is the total effect aggregating over all agents. 

Thus: 

dC acJ (n-l) aci + (n_l) n cqci 

dO, O0 t + ~+1 dO, n+l 00, 

or: 

dC Oci 
- n (7) 

dO, O0 i 

Proposition 3 indicates that a small increase in a parameter can cause large changes in the 

aggregate amount of crime because of the overwhelming influence of the contagion effect. 

The contagion effect is often ignored. It is well known, for example, that age-specific 

arrest rates tend to peak between 16 and 18 years of age. u Blumstein et al. [19801 use this 

fact in combination with predictable demographic changes to predict future crime rates. 

Unfortunately, they treat arrest, conviction, and imprisonment rates as exogenous, 

estimating the future values of these parameters by simple extrapolation. Proposition 3 

indicates that such a procedure may greatly underestimate changes in crime. As crime 

increases due to an increase in the number of young men, for example, arrest, conviction, 

and imprisonment rates will fall, causing crime rates to be higher than demographic 

factors alone would predict. Similarly, a fall in the crime rate will be underpredicted 
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because as crime rates fall, arrest, conviction, and imprisonment rates will rise, causing 

crime rates to fall further than the initial prediction. 

Of course, this paper too misses an endogenous factor--as crime increases, more 

resources will be put into crime prevention. Two responses to this point may be noted. 

First, public reaction to increased crime appears to be slow. Second--and more 

importantly--one needs to know how the criminal system works before analyzing the 

appropriate response of the law enforcement system. If law enforcement uses the standard 

model to predict the demand for their services, they are likely to be woefully unprepared 

when demographic changes interact with the contagion effect to produce a large increase 

in crime. 

Multiple Equilibria 

The set of n first-order conditions (1) can have more than one solution. Thus, multiple 

Nash equilibria with very different aggregate crime rates are possible. Suppose there are 

two stable equilibria--one with high crime rates and the other with low crime rates. 

Which equilibrium is played will depend on factors outside of the model. Agents may 

look for events, which may or may not be rationally connected to the underlying game, 

to coordinate their actions. Thus, a huge increase in crime may take place because of the 

occurrence of a seemingly minor event. In different contexts, such huge increases in 

crime are called riots or revolutions. 

Revolutions, riots, and crime are often said to come in waves. The 1989 revolutions 

in Poland, Hungary, East Germany, Czechoslovakia, Bulgaria, and Romania are but the 

most recent example of a revolutionary wave. One reason that revolutions come in waves 

is that underlying parameters shift at the same time. In this case, the weakening of the 

Soviet Union probably played a role. Another reason may be that a revolution in one 

country acts as a signal that helps to coordinate revolutionaries in another country. 

Communication among revolutionaries is costly. An exogenous signal can coordinate 

action even without communication. Riots may be transmitted from borough to borough 

and city to city in much the same way. 

Standard comparative statics results can be seriously misleading in models with 

multiple equilibria. The impact of anti-crime measures, for example, can be strikingly 

different depending on whether the underlying system has a unique equilibrium or 

multiple equilibria. The governor of Indiana, for example, sent state troopers into Gary, 

Indiana to try to control the rampant crime in that city. It was widely acknowledged that 

the political will did not exist to keep the state police in Gary permanently. The governor, 

therefore, was widely criticized for adopting what his critics concluded could only be a 

temporary solution. The critics implicitly assumed that the high crime equilibrium was 

the unique equilibrium and that once the troops left then the crime rate would return to 

its previous level. Temporary measures can have permanent effects when there are 

multiple equilibria. Once controlled, crime in Gary may stabilize at a new, lower level. 

In New York City, piecemeal efforts to erase the graffiti on subway cars proved 

ineffective. As soon as a car was cleaned, it was vandalized again. A big push, however, 
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which cleaned nearly all of the cars in a short amount of time, proved to be more 

effective and long-lasting. Thus, although New York's crime rate was locally stable, the 

big push drove the system to a new equilibrium at a lower level of crime. 

Conclusions 

The standard model of crime analyzes a criminal's decisions as if they were unrelated 

to the decisions of other criminals. The game-theoretic approach, adopted in this paper, 

examines the entire system of criminal decisions. The comparative statics of the game 

theoretic model are considerably different than those of the standard model. Small 

changes in parameters, for example, have much larger effects on total crime rates. Unlike 

the standard model, the game-theoretic model allows for such phenomena as riots, 

revolutions, and crime waves--all of which may be triggered by seemingly minor events. 

The game-theoretic model also provides a better understanding of the difficulties and 

potentials of anti-crime efforts, History matters in models with multiple equilibria because 

of its importance in establishing signals or sunspots that coordinate criminal behavior. 

Once a community is stuck in a high crime equilibrium, it may be very difficult to exit 

without a large increase in resources. A low crime equilibrium can be sustained if 

anti-crime forces are perceived to be alert and responsive to any potential shocks to the 

system. 

APPENDIX 

Proposition A 1" proof that dc i / dOi = 2 (n / n + 1) aci / aOi. Let the payoff functions be 

written x(cl, c2...cn, 01) ... x(cl, c2...cn, 0n). The first-order conditions are, therefore: 

n I (cl, c2...Cn, 01) = 0 

re,, (cl,%...c,,, O) = 0 . 

Using Cramer's rule: 

dc I 

dO l 

-'~101 .... '~ln 

0 .... ~nr. 

T[~II .... "J'~ I n 

: "'~it'" : 

"Kn I .... ~nn 
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Let pq = nq/niz V i,j. (Note that Po = ~iJ/~ii <~ 0). To simplify, assume that C = 

C(c~ +c2+...c,), which says that every individual contributes equally, on the margin, to 

the aggregate measure of crime, i.e., an increase in c: has the same effect on p(C) as an 

increase in q. It follows that Pij = Pz Vj. 

Dividing each row by r% and using standard results on determinants the denominator 

can be written as: 

,l .... :in I 
: "'~ii "" : 

7~n 1 .... nn I 

= "/~11 ~22 "'" ~nn 

Dividing each row by p~, this can be rewritten as: 

1 .... Pl .... Pl 

: ..1.. : 

p. ... p,.. 1 

"~11 ~22 "" g,,,,, Pl P2 .... P.* 

1 

Pl 

i 
: ..m.. : 

P~ 

1 
.... -- 

P, 

A standard formula from Berck and Sydsaeter [1993] indicates that: 

a I ..1.. 

• ..a t.. 

1 ..1.. 

1 

1 = (a x 

a n 

- 1) (a 2 - 1) .... (a - 1) 

i=l a~-I 

Using this formula, the determinant of the above expression is equal to: 

(') {1 )/ 
(~II~22""~,,) (PlP2 .... p,), ( I _i),... ~-1 *... ~ I 

* I+~ I 

l I 
-- -- I 

Pi 

The first three terms have sign (-I) ". For stability, this is the sign needed in the 

denominator. Thus, the final term must be positive or rewriting that 1 > -]~7=) Pi / I - Pi. 
n 

A sufficient condition for I > -~i=) p~/I - p~ is p~ ~ -I/NV i. The determinant of the 

numerator is: 
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-'r~l 01 .... "/~ln 

0 .... l"Cnm 

= -~101 
71: i i 7"~ m"n:-" 

i 

., ." .. 

The determinant of the numerator, following the above, can be rewritten (where the 

previous 2 × 2 matrix has been expanded to a 3 × 3 matrix for easier readability): 

Thus: 

-nlo,*(n22"'n ),(p2 .... P.) * 

: -nlO,(n~2...n..) (P2 .... P.) * 

n-I 

1 + ~ 1 

1 1 

P, 

I 

-- °oo° I 

P2 

I 
: ..B.. : 

Pi 

I .... 

I 

P. 

/,: 1,, •/' )) 
P2 ... -~--l * 

dc 1 -11;I0~ (11;22"" X,,.) (P2 .... P,,) * 

dOl (7"~ll'J'l~22""'l'~.n) (PlP2 .... P,,) * 

, ... (!p. _ 1)) • 

) • ... -1) * 
P. 

| + i=I 

,i:l 

1 
-- -- 1 

P, 

1 
-- -- 1 

Pi 
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dCl _ -'/1;10~ 1 1 

Using the fact that OC I /001 = "'l'~lO 1 

equal to: 

1 
1 + ~"-2..,7:, 1 

1 
-- -- 1 

Pi 

1 +~" 1 
i=1 

1 
-- -- 1 

Pj 

/'J'[~ll and evaluating at Pi = - (1/n) the above is 

0cl 1 1 

001 
n 1 

n 

Zn -I 
1 + i=1 

1 + 

1 
1 

-1 

n 

1 

-1 

n-1 
1 + 

0Cl n -1 - n 0c I /'/ 
= 2 -- 

001 -1 -n 1 + n 001 n + 1 

-1 -n 

Thus: 

dCl n 0Cl 
-2 

dO 1 n + 1 001 

Proposition A2: proof that dcl IdOj = (n/n + 1) acj/aej. Using Cramer's rule, the 

comparative statics of dcl ~dO2, for example, is given by: 
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dc 1 

dO 2 

0 

--'J~2 0 2 

0 

TUll .... 

: ..nil.. 

"~n l .... 

• - TUIi.. Tl~ln 

"" "lT'n l'" ~nn 

nn [ 

To solve for this comparative static, use the following lemma: 

LemmaAl" a~llim (al_ 1)(a2_ 1).... (an_ 1)[I+E~.=,_ a,-ll ] =(a2-1).,..(an-1). 

Proof: let k = (a2 - 1) .... (an - 1). Then upon rewriting the above, it is clear that: 

lira 

al- 1 
((a;- 1)k + k + (a]- 1)k[ ~ lj=2 a,-I ) = k. 

The numerator of the comparative static can be written (where the author has 

eliminated the first column and second row in the usual manner but then expanded the 

resulting 2 × 2 matrix to a 3 × 3 matrix for easier readability): 

"/~12 "" Tl~li'" 

~202 * : .. ']'l;it .. 

"l~ n n .. '~T, n i . . 

')T, l n 

: = TU202 * (TUII "~33 ""~nn ) * 

lT, n n 

: x20~ * (~;; ~33"'n.n) *(Pl P3""P,) * 

1 ..1.. 1 

1 

P1 

1 ..1.. 1 

P, 

Using Lemma A1 and placing the result over the denominator: 

Pl "'Pl'" Pl 

: ..1.. : 

P~ "'On" 1 
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(1 _ 

Pl 

dc I _ X202 (7~ll'Tg33""'J~nn) (PIP3 .... P.) * 

dO 2 (~:: 7r2~ ...'~..) (P: P2 .... P. ) * 

(1 _ 1) * ...(1 _ 1) * ...( 1..1_ _ 1)) 

P3 P, P,, 

n 1) *...(1-1) *...(--~1 _1) * 1 + E,:, 

Pi P. 1 
-- -- 1 

Pt 

dc I ~202  1/I 
~22P~-* -1) -1) * 1 + ~=l "T-- 

P1 P2 

P, 

Using the fact that 0c2/002 = -~202/~r22 and evaluating at Pi = - (1/n), the above is equal 

to: 

dc 1 

d0 2 -1 

/1 

Oc 2 

802 

( l_ln -1)( 1_1n -1)] * 1 + ~7=1 1 1 
-1 

n 

d¢l n at2 

dO 2 n + 1 002 

Footnotes 

1. The figure is a calculation of losses and expenditures made by Business Week [Mandel, 1993]. 

2. Sherman [1995] notes that every arrest takes police off the street to do paperwork and, thus, 
reduces police visibility and effectiveness. In New York City, arrest paperwork can take one 

or two police officers off the street for an entire shift. Blumstein [1995] discusses how 

overcrowding can lead to reduced sentences. 
3. This paper also differs from Sah [1991] and Kuran [1989] in setting up the problem explicitly 

as a well-specified game. 

4. Pyle [1983] gives a concise exposition of the model. 
5. Subscripts have been dropped for notational ease. 
6. In Cooper and John [1988], positive spiUovers and strategic complementarity are defined at a 

symmetric Nash equilibrium. In this model, these effects are global. 
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7. Strategic complementarity is required only for the more important part (a) of the multiplier 

definition. Part (b) occurs under much weaker conditions. 
8. The matrix being negative definite is equivalent to the real portion of the characteristic roots 

being negative. 
9. In this context, 0i could represent (the inverse of) the individual's wage in the legitimate sector 

or (the inverse of) a parameter indicating individual productivity in the legitimate sector. 

10. An increase in 0~ represents an (ceteris paribus) increased tendency towards crime, so the 

partial derivative act/aOi = - (~io i /~ii) > 0 by assumption. Since ~ < 0, it follows that ~0~ 

>0. 
11. Sixteen- to 18-year-olds, for example, commit about twice as many aggravated assaults and 

murders and about five times as many robberies and burglaries as those twice their age 

[Blumstein, 1995]. 
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