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Subcutaneous depth-selective spectral 
imaging with mμSORS enables noninvasive 
glucose monitoring
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Chunrui Hu3, Yufei Chen1,2, Yue Shen3, Xianbiao Zhang    3, Shijia Pan    1,2, 

Hua Cao4, Ming Sun3, Jia Shi1,2, Chunhong Jiang1,2, Minghui Chen5, 

Lin Zhou    3 , Guang Ning    1,2 , Chang Chen    3,6,7  & Weiqing Wang    1,2 

Noninvasive blood glucose monitoring o�ers substantial advantages for 

patients, but current technologies are often not su�ciently accurate for 

clinical applications or require personalized calibration. Here we report 

multiple µ-spatially o�set Raman spectroscopy, which captures Raman 

signals at varying skin depths, and show that it accurately detects blood 

glucose levels in humans. In 35 individuals with or without type 2 diabetes, 

we �rst determine the optimal depth for glucose detection to be at or 

below the capillary-rich dermal–epidermal junction, where we observe 

a strong correlation between speci�c Raman bands and venous plasma 

glucose concentrations. In a second study, comprising 230 participants, we 

then improve accuracy of our regression model to reach a mean absolute 

relative di�erence of 14.6%, without personalized calibration, whereby 

99.4% of calculated glucose values fall into clinically acceptable zones 

of the consensus error grid (zones A and B). These �ndings highlight the 

ability and robustness of multiple µ-spatially o�set Raman spectroscopy for 

noninvasive blood glucose measurement in a clinical setting.

Blood glucose monitoring is critical for health management, especially 

for the over 500 million people with diabetes worldwide1,2. Patients 

with diabetes typically receive recommendations to monitor their 

blood glucose level multiple times per day3. Nevertheless, conventional 

finger pricks induce pain and risk of infection, which thereby reduced 

the patients’ quality of life and their adherence to treatment4,5. More 

recently, minimally invasive continuous blood glucose monitoring 

technologies have been developed, utilizing indwelling sensors to 

measure glucose levels in interstitial compartments6,7. However, these 

sensors require constant attachment to the user and cause inconven-

ience8. Hence, there remains a persistent need for practical solutions 

to noninvasive blood glucose monitoring9.

So far, the route to clinically applicable noninvasive blood glu-

cose monitoring remains elusive10,11. Among the various approaches, 

including iontophoresis12, transdermal impedance spectroscopy13, 

photoacoustic spectroscopy14,15 and infrared spectroscopy16,17, Raman 

spectroscopy is highly anticipated due to its direct identification of glu-

cose molecules with high specificity by spectral information18–22, along 

with its selectable wavelengths for deep penetration in human skin. 

Recently developed paraboloidal mirror Raman18, confocal Raman19 

and spatially offset Raman spectroscopy (SORS)22 have shown prom-

ising results for noninvasive blood glucose testing. However, these 

Raman spectroscopy methods require subject-specific training to 

build a proper mathematical model for each user, introducing addi-

tional procedures in practical applications. The main hindrance to 

higher robustness and accuracy in Raman spectroscopic measure-

ments is the broad and strong fluorescence background signal from 

the skin surface. Therefore, a Raman spectroscopy method to reduce 
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Fig. 1 | mµSORS system detects Raman signals from epidermis to dermis 

with depth selectivity. a, Schematic of mµSORS system. mµSORS setup (top). 

Zoomed-in layout of fibres in the fibre bundle at End A (bottom right). Typical 

intensity profile across offsets 0–4 in the fibre bundle at End B (bottom left). 

b, Schematic of mµSORS detection on thenar. Yellow dashed curve indicates 

DEJ; green hexagons show glucose molecules; cyan dots indicate Raman 

photons. Schematics of blood vessels and skin layers were adapted from ref. 47 

with permission. c, Histogram of DEJ depths from 232 human thenar samples 

identified by OCT. Roman numerals (I–IV) indicate four different depth ranges 

of DEJ, corresponding to OCT images in d. I, 250–300 µm; II, 300–400 µm; III, 

400–500 µm; IV, 575–600 µm. d, Typical OCT images of four samples with mean 

DEJ depths of 270 µm, 370 µm, 430 µm and 620 µm were selected from I–IV 

marked in c. e, mµSORS spectra from the same samples in d, along with reference 

Raman spectra taken from ex vivo epidermis and dermis samples of human skin. 

Pink and purple shades indicate characteristic Raman peaks of nucleic acid and 

collagen.
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the interference of the skin surface signal when capturing deeper glu-

cose signals is imperative for clinically applicable noninvasive blood 

glucose monitoring.

In this work, we present multiple µ-spatially offset Raman spec-

troscopy (mµSORS), a technique capable of directly measuring Raman 

signals from both epidermal and dermal layers of human skin, and thus, 

potentially feasible for clinical noninvasive blood glucose monitoring. 

Utilizing an optical probe with fibre layout at five different offsets, 

mµSORS realized depth-selective detection of Raman signals, with 

larger offsets capturing a higher proportion of signals from greater 

depths. We first conducted a preliminary basic experimental study with 

humans (BESH) involving 35 participants that demonstrated that in 

contrast to the Raman signal from the skin surface, the mµSORS signal 

from deeper layers, especially around or below the dermal–epidermal 

junction (DEJ)23, exhibits a statistically notable correlation of Raman 

glucose peaks to venous plasma glucose (VPG) levels. Based on this 

optimal detection depth, we then expanded the BESHs, monitoring the 

VPG of additional 230 participants while collecting Raman spectra from 

the optimal offsets using mµSORS. A partial least squares (PLS) regres-

sion model24 was applied to predict the blood glucose level from the 

Raman spectra. Using independent training and test dataset consisting 

of data from different individuals (individual-independent), the model 

reached a mean absolute relative difference (MARD) of 14.6%, with 99.4% 

of the predictions in clinically acceptable zones of the consensus error 

grid (CEG; A + B)25. This result indicates that mµSORS achieves a high 

accuracy in blood glucose measurement without personalized calibra-

tion and data acquisition, marking a valid demonstration of a clinically 

applicable technology for noninvasive blood glucose monitoring.

Results
mµSORS detects depth-selective Raman signals in skin layers
We tailored mµSORS for depth-selective detection of Raman signals 

from human skins. SORS is an advanced spectroscopic technology, 

known for its ability to detect Raman signals beneath surfaces26, and 

is widely applied in applications such as cargo content inspection27, 

archaeology28, cancer screening29 and pharmaceutical analysis30. Here, 

we reformed this technology at the scale of tens to hundreds of micro-

metres, aiming to obtain Raman signals from various depths of the skin 

to realize noninvasive blood glucose monitoring. An optical probe 

focused a 785-nm laser on the sample (human thenar in this work) and 

then collected the backscattered photons, directing them to a concen-

trically organized fibre bundle (Fig. 1a, top). The concentrical layers 

of fibres were designed to capture photons emitted at specific lateral 

offsets, which were 0 µm (offset 0), 50 µm (offset 1), 100 µm (offset 2), 

150 µm (offset 3) and 200 µm (offset 4) from the incident beam centre, 

respectively (Fig. 1a, bottom right). The signal intensity is notably lower 

for larger offsets (Fig. 1a, bottom left). Nevertheless, the concentric lay-

out led to more fibres at greater offsets, compensating for the decrease 

in signal intensity. We used a series of bilayer samples to assess the 

depth-selective detection capability of mµSORS26,31 (Extended Data 

Fig. 1a,b and Methods). Each offset exhibited a maximum intensity of 

the bottom layer at a different detection depth, indicating that Raman 

photons backscattered from larger offsets had a higher probability to 

have originated from greater depths (Extended Data Fig. 1c). Therefore, 

mµSORS technology proves capable of selectively collecting Raman 

signals at various depths on a sub-millimetre scale.

For the purpose of noninvasive glucose detection, the key is to 

acquire Raman signals dominated from the dermis, which is rich in 

interstitial fluid (ISF) and capillary loops and could provide direct 

evidence of blood glucose levels (Fig. 1b)32. The dermis lies under the 

DEJ, the depth of which can be identified from the optical coherence 

tomography (OCT) image (Extended Data Fig. 2). We first observed the 

biological variation in the histogram of DEJ depths from 232 samples 

(thenar from both hands of 116 individuals), which ranged from 250 

to 700 µm, with the most common depth around 350 µm (Fig. 1c). 

We then selected four typical individuals with different DEJ depths 

(labelled I–IV, in the order of increasing DEJ depth; Fig. 1d and Extended 

Data Fig. 3) and measured their mµSORS spectra (Fig. 1e, offsets 0–4). 

Compared with the reference Raman spectra taken from ex vivo human 

epidermis and dermis samples (dashed lines in Fig. 1e, Extended Data 

Fig. 4 and Methods), the shape of spectra from offsets 0–4 exhibited a 

clear transition from epidermis-like to dermis-like for all four individu-

als, with corresponding shifts in the relative intensities of the Raman 

peaks assigned to collagen and nucleic acid (Fig. 1e). It is assumed that 

the distinct spectral features within the 1,200–1,400 cm−1 range, par-

ticularly evident in the relative intensities of the collagen Raman peak 

(1,240 cm−1) and the nucleic acid Raman peak (1,320 cm−1)33–35, mainly 

result from the compositional difference. This difference is shown in 

the skin tissue cross-section, where the epidermis consists of densely 

packed cells, whereas the dermis is rich in collagen (Extended Data 

Fig. 4 and Methods).

Combining the spectral transition and the DEJ depths derived 

from OCT, we can roughly characterize the detection depth of 

mµSORS in human thenar skin. The transition of mµSORS spectra from 

epidermis-like to dermis-like occurred at smaller offsets for samples 

with shallower DEJ depths and vice versa (Fig. 1e). Based on this trend, 

Table 1 | Detection depth of each offset gauged by OCT and mμSORS spectra

Samples I II III IV

Thickness (µm) 270 370 430 620 Depth (µm) Suitable

Offset 0 Epidermis Epidermis Epidermis Epidermis <270 0

Offset 1 Mix Mix Epidermis Epidermis 270–370 46%

Offset 2 Dermis Dermis Mix Epidermis 370–430 72%

Offset 3 Dermis Dermis Dermis Mix 430–620 99%

Offset 4 Dermis Dermis Dermis Dermis >620 100%

Table 2 | Statistics of the 35 participants in the preliminary 
BESH

Statistics Preliminary BESH (n = 35)

Participants (n) With T2D (n = 20) Without diabetes 
(n = 15)

Sex, male: female (%) 17 (85.0): 3 (15.0) 8 (53.3): 7 (46.7)

Age, years (mean ± s.d., range) 47.6 ± 8.4, 30–60 35.7 ± 3.8, 30–60

BMI, kg m−2 (mean ± s.d., range) 24.5 ± 4.1, 17.7–31.8 24.3 ± 4.0, 19.2–32.7

FPG, mmol l−1 (mean ± s.d., 
range)

8.9 ± 2.0, 5.1–12.4 5.4 ± 0.4, 4.4–5.7

OGTT time, h (points) 5 (12)

Sampling point, min 0, 10, 30, 60, 90, 120, 150, 180, 210, 240, 
270, 300

VPG, mmol l−1 (range) 2.9–31.8

Data pairs, VPG and spectra 415
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we can use the DEJ depth determined by OCT as a ‘ruler’ to gauge the 

depth measured by a given offset of mµSORS. We thus roughly esti-

mated the detection depths of five mµSORS offsets: 0–270 µm for 

offset 0, 270–370 µm for offset 1, 370–430 µm for offset 2, 430–620 µm 

for offset 3 and >620 µm for offset 4 (Table 1). In addition, mµSORS 

spectra at offsets 3 and 4 displayed dermis-like shapes or at least a 

mixture of epidermis-like and dermis-like features in all samples. Even 

offset 2 showed mixed features in Sample III, where the DEJ is deeper 

than 72% of all the 232 samples (Table 1). These results indicate that 

mµSORS also has a capability for depth-selective detection in human 

skin, and it could effectively capture signals from the dermis for most 

individuals using offsets 2–4.

Dermal Raman spectra demonstrate high correlation with VPG
Having verified that mµSORS can selectively detect signals from various 

depths, including those deeper than the DEJ in human thenar skin, we 

proceeded to evaluate its capability for measuring glucose in the skin 

and predicting the blood glucose at a clinical setting. We conducted a 

preliminary BESH with 35 participants (Table 2 and Fig. 2a), in which we 

measured both mµSORS spectra from their right-hand thenar and their 
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Fig. 2 | Correlation between mµSORS spectra and blood glucose levels in the 

preliminary BESH on 35 participants. a, Distribution of age and BMI of the 35 

participants. b, VPG levels measured at 12 sampling points over the 5-h OGTT. 

c, Schematic of mµSORS spectra acquisition during OGTT. R, Right hand. d, 

Spectra averaged over all participants at each offset, zoomed in between 1,150 

and 1,400 cm−1. Solid lines indicate mean spectra. Shaded areas indicate s.d. 

Pink and purple shades show characteristic Raman peaks of nucleic acid and 

collagen. e, Mean mµSORS spectra from ten VPG bins with group number from 

1 to 10. Offset 0 (top); offset 3 (bottom). f, Zoomed-in spectra around glucose 

peak (red rectangle in e) after normalized by the phenylalanine band. Offset 0 

(left). Offset 3 (right). g, Normalized glucose Raman band (f) against VPG levels 

for each offset. Dashed lines, linear fittings. Inset shows Pearson correlation 

coefficients and slopes of linear fittings. h, Schematic of the leave-one-subject-

out cross-validation scheme for the PLS model. i, Metrics of model performance 

in h at different offsets. R2, coefficient of determination. j, Averaged regression 

coefficients obtained from h (light blue, offset 0; red, offset 3) and Raman 

spectrum of glucose solution (black). Black dashed lines indicate that the 

regression coefficients of offset 3 captured important spectral peaks of glucose.
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VPG concentrations during a 5-h oral glucose tolerance test (OGTT) 

(Fig. 2b,c). Their VPG levels ranged from 2.9 to 31.8 mmol l−1, covering 

the physiological to pathological blood glucose region (Table 2 and 

Fig. 2b). Individuals were free to take their hands off the setup or walk 

around in the sampling intervals (Fig. 2c). A total of 415 mµSORS spectra 

sets (offsets 0–4) were acquired (Fig. 2d), each corresponding to VPG 

levels measured at the same time points, yielding 415 VPG–spectra 

data pairs. Consistent with before (Fig. 1e), the average spectra from 

the preliminary BESH exhibited a transition from epidermis-like to 

dermis-like with increasing offsets. Moreover, offsets 2–4 displayed 

highly similar spectral shapes and dermis-like spectral features between 

1,150 and 1,400 cm−1, indicating that all these three offsets are capable 

of detecting dermal signals (Fig. 2d).

To analyse Raman spectra across different glucose levels at dif-

ferent offsets, we categorized all the 415 VPG–spectra data pairs into 

ten groups based on the VPG level (equal binning; Fig. 2e and Sup-

plementary Table 1). To account for variations in absolute spectrum 

intensity across groups, we normalized the glucose Raman band using 

the phenylalanine Raman band at 1,001 cm−1, because phenylalanine 

is abundant in solid skin tissue compartments such as lipids, proteins 

and collagen. With a larger offset that can detect dermal signals, such 

as offset 3, the normalized glucose Raman peak increased notably 
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with VPG across the ten groups, exhibiting a trend not seen at offset 0 

(Fig. 2f and Extended Data Fig. 5). Linear correlation analysis revealed 

a high correlation (with a Pearson correlation coefficient (CORR) of 

0.94–0.97) between VPG and the normalized glucose Raman band at 

offsets 2–4, much higher than the correlation at offset 0 (CORR = 0.63) 

and offset 1 (CORR = 0.85) (Fig. 2g). The normalized glucose Raman 

band at offsets 2–4 also demonstrated notably greater sensitivity to 

VPG, as indicated by the steeper slopes in the linear fit (Fig. 2g, inset), 

suggesting that Raman spectra from dermal skin layers offer more 

relevant information about blood glucose levels. Both correlation 

and sensitivity to VPG are very similar for offsets 2–4 (Fig. 2g, inset), 

consistent with the highly similar shapes of average spectra observed 

at these three offsets (Fig. 2d).

To further determine the optimal offsets for individual- 

independent blood glucose monitoring, we built a PLS regression 

model to fit the VPG–spectra pairs from each offset individually, 

taking advantage of Raman features across the full spectral range. A 

leave-one-subject-out cross-validation scheme (Fig. 2h) was applied24. 

The results indicated that offset 3 yielded the highest accuracy, closely 

followed by offset 4 and offset 2 (Fig. 2i). Notably, these offsets encom-

pass the DEJ depths in the majority of individuals (Figs. 1c–e and 2d), 

supporting our hypothesis that signals from below the DEJ are more 

suitable for noninvasive blood glucose monitoring. In addition, 

our data analysis algorithm provided direct evidence of leveraging 

glucose-specific Raman spectral information. The PLS regression coef-

ficients trained on spectra from offset 3 (Fig. 2j, red curve) aligned well 

with the characteristic Raman bands of glucose solution (Fig. 2j, black 

curve), a distinctive feature absent at offset 0 (Fig. 2j, blue curve). This 

alignment suggests that while analysing Raman signals from offset 3, 

we can leverage more directly relevant spectroscopic information of 

glucose molecules than other biomolecules in human skin. In contrast, 

at offset 0, neither glucose nor other biomolecular signals could be 

clearly identified.

Accurate and individual-independent glucose predictions
With the preliminary BESH, we identified direct evidence of glucose 

molecules in mµSORS spectra, and determined that the optimal offsets 

to detect blood glucose Raman signals were offsets 2–4. However, 

due to the small sample size, the prediction accuracy remained low 

(MARD = 28.0% for offset 3) and failed to meet the clinical standards. To 

further improve the prediction accuracy, we initiated expanded BESHs 

of 230 individuals with two major improvements: (1) Raman spectra 

were collected from thenar of both hands to augment the dataset and 

eliminate hand-specificity; (2) spectra from offsets 2 and 3 were com-

bined as the input to the PLS model according to the results of the pre-

liminary BESH (Fig. 2i), whereas offset 4 was removed from the device 

due to its high spatial cost (requiring more fibres than other offsets; 

Fig. 1a) despite its high prediction accuracy. The 230 participants cov-

ered a wide range of age (18–80 years) and body mass indices (BMIs; 

16.2–38.1 kg m−2) (Fig. 3a and Table 3). A relatively balanced represen-

tation of sex (91 female and 139 male; Table 3) and varied skin colours 

were also achieved (Fig. 3b). VPG levels of individuals ranged between 

2.94 to 31.64, effectively covering the entire extent of physiological to 

pathological blood glucose levels (Fig. 3c and Table 3).

At each sampling point of the OGTT, we measured VPG and two 

mµSORS spectra from the two hands of the participant, yielding a total 

of 5,308 VPG–spectra data pairs, ~13 times larger than the dataset in the 

preliminary BESH. Each of these spectra was averaged over 60 frames 

(8 s per frame), providing a database with 318,480 single spectra in 

total. Spectra from offsets 2–3 and both hands were simultaneously 

used for model training and testing (with more details in Methods), 

generating separate predicted glucose concentrations for the left and 

right hands. Practically, this hand-independent approach allows users 

to freely choose either hand for blood glucose monitoring, thereby 

adding flexibility in the clinical use.

We employed a subject-wise tenfold cross-validation scheme 

(Fig. 3d)36 to evaluate the prediction accuracy of mµSORS for 

individual-independent blood glucose monitoring. Similar to the 

leave-one-subject-out scheme used in the preliminary BESH (Fig. 2), 

this approach simulated a scenario where a user’s blood glucose levels 

can be directly measured and monitored without the need for personal-

ized pre-calibration, validating the applicability of mµSORS in real-life 

clinical settings and distinguishing it from various other works in the 

field19. Consequently, a total of 5,308 predicted glucose concentration 

values were generated, with each VPG value corresponding to two 

predicted concentration values, one from the left hand and the other 

from the right hand. Overall, 99.4% of these points fell within the clini-

cally acceptable range (CEG A + B), achieving a MARD value of 14.3% 

(Fig. 3e). No significant difference in accuracy between female and male 

participants (13.43 ± 5.79% versus 14.98 ± 6.23%; P = 0.06, two-sample 

t-test) or between left and right hand (14.62 ± 6.65% versus 14.12 ± 7.16%; 

P = 0.247, paired sample t-test) was observed (Extended Data Figs. 6–8). 

For each participant, the predictions from the left-hand and right-hand 

spectra exhibited good consistency with each other, closely aligning 

with the VPG values and trends (Extended Data Figs. 6–8). Furthermore, 

the MARD value consistently remained below 20%, and the CEG A + B 

exceeded 99% across nearly all VPG intervals (Fig. 3f). In summary, 

mµSORS provides real noninvasive blood glucose monitoring that 

is both accurate and flexible in clinical settings, without the need for 

personalized calibration.

Practical glucose monitoring on an independent test set
To mimic the conditions of clinical blood glucose monitoring even 

more closely and further validate the clinical applicability of mµSORS, 

we performed model training and testing on two independent data-

sets. Overall, 30 participants (25 with type 2 diabetes (T2D) and 5 with-

out diabetes) recruited at the end of each BESH were selected as an 

independent test set, while the rest 200 participants comprised the 

training set (Fig. 4a, Supplementary Table 2 and Extended Data Fig. 9). 

This generated 4,618 VPG–spectra data pairs in the training set and 

690 in the test set, with diverse blood glucose trends and broad VPG 

distributions in both datasets. A PLS model was exclusively trained 

on the training set, after which the resulting regression coefficients 

were locked, and then used to predict the blood glucose level in the 

test set (Fig. 4a). A MARD value of 14.6% was achieved in the test set 

with 99.4% of predictions within the CEG A + B zone (Fig. 4b). Examin-

ing the prediction accuracy across different VPG concentrations, the 

Table 3 | Statistics of the 230 participants in expanded 
BESHs

Statistics Expanded BESHs (n = 230)

Participants (n) With T2D (n = 200) Without diabetes 
(n = 30)

Sex, male: female (%) 124 (62): 76 (38) 15 (50): 15 (50)

Age, years (mean ± s.d., 
range)

55.1 ± 11.4, 18–80 36.1 ± 11.3, 22–59

BMI, kg m−2 (mean ± s.d., 
range)

24.8 ± 3.8, 16.2–38.1 22.5 ± 2.5, 21.6–25.5

FPG, mmol l−1 (mean ± s.d., 
range)

8.50 ± 2.18, 4.82–17.84 5.15 ± 0.32, 4.37–5.98

OGTT time, h (points) 3 (12) 4 (9)

Sampling, min 0, 15, 30, 45, 60, 75, 90, 
105, 120, 135, 150, 180

0, 30, 60, 90, 120, 
150, 180, 210, 240

VPG, mmol l−1 (range) 3.9–31.2 2.94–11.48

Data pairs, VPG and 
spectra

4,768 540

Statistics Total data pairs (n = 5,308)
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CEG A + B ratio consistently reached 100% in 25 out of 28 VPG intervals 

(1 mmol l−1 each), and the MARD value was lower than 20% in 26 out of 

28 VPG intervals (Fig. 4c). These results in the independent test dataset 

again underscored the prominent capability of mµSORS for noninvasive 

blood glucose monitoring.

For both hands, the predicted trends of blood glucose during 

OGTT closely matched the VPG trends, regardless of whether the indi-

viduals had diabetes (Fig. 4d). For participants with T2D, both VPG 

and predictions depicted monophasic OGTT response curves typical 

of T2D patients, in which the blood glucose level increases after the 

ingest of glucose and then decreases after reaching a peak37. On the 

other hand, the flat response curves observed in participants without 

diabetes reflected the capability of mµSORS to generate accurate trend 

predictions even within the normal VPG range.

When it comes to every individual, the predicted glucose concen-

trations still demonstrated high accuracy and good alignment with the 

VPG, regardless of which hand the predictions came from (Fig. 5). This 

confirms the robustness of our system and offers users the flexibility 

to choose either hand for blood glucose measurements. In greater 

detail, participant D190 with the most accurate predictions in the 

test set showed a MARD value for both hands as small as 7.6%. Most 

participants showed typical prediction accuracy with MARD values 

d

ba

c

D001 D005

D171 D175

D176 D180

N001 N005

N021 N025

N026 N030

D196 D200

W/ T2D

W/o diabetes

Training set
(n = 200)

Test set
(n = 30)

CEG: A + BMARD CEG: A

99.4%82.2%14.6%

99.9%92.2%10.1%Training

Test

P
re

d
ic

te
d

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
m

o
l 

l–
1 )

Reference concentration (mmol l–1)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

D

C

B

A

ABCDE

100

80

60

40

20

M
e

tr
ic

s 
(%

)

Reference concentration (mmol l–1)

105 15 20 25 30

40

30

20

10

N
o

. c
o

u
n

t

60

50

MARD CEG: A CEG: A + B

G
lu

c
o

se
 c

o
n

c
e

n
tr

a
ti

o
n

(m
m

o
l 

l–
1 )

10

20

30

10

20

30

0 30 60 90 120 150 180 0 30 60 90 120 150 180 210 240

Time (min)

VPG Pred. (L) Pred. (R)

W/ T2D W/o diabetes

Independent test
CEG

Time (min)

Fig. 4 | Blood glucose predictions on an independent test dataset. a, Schematic 

of model training (n = 200) and testing (n = 30) on independent datasets (top). 

Metrics of model performance on the training and test sets, respectively 

(bottom). b, CEG of predictions from the PLS regression model on the test set. 
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between 10% and 15%. Even for the participant with the highest MARD 

in the test set (D193, MARD = 26.5%), the predictions demonstrated a 

clear trend of increasing blood glucose concentration, consistent with 

the change of VPG, as well as a close proximity between predictions 

given by the two hands (Fig. 5). In summary, with the more rigorous 

validation provided by the independent test set, mµSORS once again 

proved itself of high accuracy and solid practical viability in clinical 

blood glucose monitoring.

Discussion
Depth-selectable sensing is critical to robust measurement of chemical 

levels in the blood. Based on the SORS technology22,38, we developed the 

mµSORS system, in which the specially designed optical probe allows 

lateral offsets at the scale of tens of micrometres (Fig. 1a,b). Tested on 

a bilayer sample with tunable thickness of the surface layer, mµSORS 

achieved a depth resolution of 50–100 µm (Extended Data Fig. 1c), 

which is a notable improvement from the millimetre resolution of the 

traditional SORS technology. Furthermore, combining the Raman 

spectral features and the DEJ depth estimated from the OCT data, we 

can conclude that the depth resolution of mµSORS in human skin is 

around 100–200 µm (Fig. 1d,e and Table 1) and that for the majority 

of participants, the Raman signals from dermis layer can be captured 

with offsets 2–4 (Table 1), which is well suited for noninvasive blood 

glucose sensing. In our preliminary BESH, a clear distinction emerged 

that Raman signals from the skin surface exhibited a much weaker cor-

relation to VPG, whereas those from deeper depths corresponding to 

larger offsets displayed a precise linear correlation. In the expanded 

BESHs, utilizing spectra from offsets 2–3, our PLS model achieved high 

prediction accuracy for individual-independent and noninvasive blood 

glucose monitoring, with a MARD less than 15% and more than 99% 

predictions falling within the A + B zone of the CEG plot. Therefore, 

the critical and irreplaceable advantage of mµSORS in noninvasive 

blood glucose monitoring becomes evident. Meanwhile, it also offers 

a practical solution to systemic study on subsurface sensing.

Offsets 2–4 emerged as the most critical offsets with the highest 

relevance to the VPG concentration in the preliminary BESH (Fig. 2i). 

Combining OCT images and mµSORS spectra, we concluded that 

these offsets measured signals deeper than 370 µm and up to over 

620 µm, beyond the DEJ in most participants (Fig. 1c and Table 1). This 

observation reaffirms our conclusion that DEJ is a critical depth for 

blood glucose monitoring, where both ISF and capillaries contribute 

to the detection of glucose Raman signals by mµSORS (Fig. 1b). Despite 

offset 4 having the deepest detection depth, its prediction accuracy 

was slightly lower than offset 3. This suggests that excessive detection 
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Fig. 5 | Blood glucose prediction results for 30 participants in the test set with independent model testing. Dark blue shows reference glucose concentration 

during OGTT. Orange triangles show predictions from the left hand. Yellow circles show predictions from the right hand.
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depths may actually reduce the accuracy of blood glucose measure-

ment, likely due to the low signal-to-noise ratio caused by intensity 

decay in deeper layers. Therefore, considering the trade-off between 

human skin composition and the signal-to-noise ratio, the optimal 

depth for blood glucose monitoring could be just below the DEJ. Recent 

experiments of noninvasive blood glucose measurements in mice also 

targeted this depth, agreeing with our results that the signal from the 

DEJ is highly related to the VPG level15.

mµSORS-based blood glucose monitoring is characterized 

by its exceptional robustness, which provides great flexibility for 

the users. First, the depth-specificity of the signal and the high 

signal-to-noise ratio of the optical system enabled a completely 

noninvasive approach, effectively substituting traditional needles 

with laser technology. Second, users can freely move away from the 

device during sampling intervals. This design highlights an important 

advantage of our technology: it is highly robust to the reposition of 

hands which is usually considered as a difficult challenge in previous 

work. With this unique feature, there is no need to constantly attach 

the device on the patient, providing more convenience and comfort 

of using noninvasive glucose measurements. Most notably, mµSORS 

allows for individual-independent blood glucose monitoring. It elimi-

nates the need for user-specific device calibration or model training, 

while still reaching clinically valuable MARD lower than 15%. Last but 

not least, a high accuracy was consistently achieved across the vast 

majority of VPG levels, covering nearly the entire physiological to 

pathological blood glucose range (Figs. 3f and 4c). It was also inde-

pendent of the sex of the user and from which hand the spectra were 

measured. Therefore, mµSORS-based blood glucose monitoring 

can be applied to most random participants without any previous 

preparation and instantaneously acquire reliable predictions, a dis-

tinctive feature not achieved by many other recent technologies in  

the field18,19.

Despite substantial technological advances and clinical applicabil-

ity, mµSORS is still faced with several challenges. First, the prediction 

accuracy is still limited for a small percentage of participants. Second, 

mµSORS requires a relatively long acquisition time to reduce noise and 

distinguish Raman bands from the background signal. This potentially 

limits the model’s accuracy to capture rapid glucose fluctuations, such 

as those during immediate correction of hypoglycaemia episodes 

caused by antidiabetic medication. Another important shortcoming 

is that mµSORS is still a large setup with a size comparable to a desk-

top computer. Moreover, thenar is the only measuring site so far due 

to its flat, large and soft surface, and we lack data for other possible 

areas of human skin. Finally, given that our BESHs were performed in 

China, additional local datasets are to be built when using mµSORS 

in other countries, considering potential physiological differences 

across ethnicities.

Future technological advances are expected to improve mµSORS 

from multiple aspects and address the challenges above. With the 

accumulation of more cases in further BESH or clinical studies, our 

PLS model could be refined to cover the physiological diversity of the 

population. More complicated algorithms, especially deep neural 

networks39, are also expected to enhance the prediction accuracy 

of mµSORS and make it effective for a broader spectrum of users. 

The cause of the long acquisition time is that fluorescence from the 

tissue is still dominating, forming a strong optical background and 

also introducing considerable shot noise. Multiple newly developed 

technologies, such as time-gating technology, are promising to reduce 

the fluorescence background40. Incorporating these technologies 

may reduce the time and laser power required for spectra collec-

tion, and even enable noninvasive monitoring of other chemicals in 

human bodies. Efforts are underway to transform this machine into 

a portable or even wearable device. This involves miniaturizing the 

Raman spectrometer to a chip level using spatial heterodyne spec-

troscopy that can be fabricated in a 200 mm CMOS compatible silicon 

photonics platform41. Such chip technology may also reduce the cost 

of mµSORS, making it more affordable to the general public. Further-

more, packing mµSORS into a wearable device could extend its capabil-

ity to measure various sites on human skin, some of which may have 

a thinner epidermis compared with the thenar region (for example, 

neck, abdomen, wrist or thigh)42. Glucose Raman spectra measured 

at these sites may attain higher signal-to-noise ratios due to shallower  

DEJ depths.

To sum up, we presented mµSORS technology, which is capable of 

measuring a depth-selective Raman signal, including glucose-related 

spectra from the dermis of human skin. This detection capability ena-

bles mµSORS to realize noninvasive blood glucose monitoring with 

high accuracy, without the need for personalized calibration.

Methods
mµSORS system design and setup
As shown in the overall schematic (Fig. 1a), a 65-mW laser was generated 

using a 785-nm diode multimode laser source (Cobolt 08-NLD) and 

directed through an optical probe to focus on the sample in a ~40-µm 

spot. The scattered photons were collected using the same probe, 

filtered with a long-pass filter and then directed to a fibre bundle. The 

fibre bundle directed the signal to a near-infrared spectrometer (Blaze 

400HR, LS785, Teledyne Princeton Instruments) equipped with an 

electrically cooled charge-coupled device.

To distinguish photons emitted with different offsets from the 

incident beam, at End A of the fibre bundle, the optical fibres were 

arranged in concentric ring structures (Fig. 1a). Each ring corresponded 

to a different offset between 0 µm and 200 µm at the surface of the 

sample, with a spacing of 50 µm between adjacent offsets. This spacing 

step matches the distance between adjacent fibres of 125 µm, after the 

2.5-fold magnification by the lens (Fig. 1a). At End B of the fibre bundle, 

the fibres were arranged linearly and grouped according to their offsets 

before being directed to the spectrometer (Fig. 1a).

mµSORS system characterization with bilayer samples
0–15 Scotch tapes with 50-µm thickness were layered on silicon sub-

strate to create 16 bilayer samples, with the total tape thicknesses 

(top layer) ranging from 0 µm to 750 µm. We tested each sample three 

times at different locations with an acquisition time of 6 s. The Raman 

band area of Si was calculated with the integrals within the range of 

500–540 cm−1 (Extended Data Fig. 1). For each offset, the areas of Si 

band from all 16 bilayer samples were normalized by their maximal 

value (Extended Data Fig. 1c).

Spectral calibration
After the acquisition of mµSORS spectra, a spectral calibration was 

performed using a neon–argon lamp (IntelliCal, Princeton Instrument). 

For each fibre, the pixels corresponding to ten standard neon–argon 

peaks were identified, and a four-order polynomial function was fitted 

between these identified pixels and the corresponding wavelengths for 

each fibre independently, thereby establishing the desired correspond-

ence between spectrometer pixels and wavelengths. The wavelengths 

were then converted to the wavenumbers, which were later interpo-

lated to the same abscissa for the spectra from all the fibres.

Human DEJ depth determination with OCT imaging
We performed OCT (Ganymede SD-OCT System, Thorlabs) on 232 

thenars of both hands for n = 116 participants. For each hand, an area of 

3 mm (x) × 3 mm (y) was scanned up to a maximal depth (z) of 1.95 mm. 

The spatial resolution was 3.81 µm in x and z dimensions and 12 µm in 

the y dimension (Extended Data Fig. 2a). The refractive index of the 

target was set to 1.3. An intensity profile along the z dimension was cal-

culated by averaging all the pixels along both x and y dimensions. The 

DEJ depth of the skin was manually annotated from the intensity profile 

using the characteristic points (Fig. 1d and Extended Data Fig. 2b).
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Measurements on ex vivo human skin samples
After obtaining human skin tissue via punch biopsy, the sample was 

immediately fixed in 10% formaldehyde to preserve its architecture. It 

was then dehydrated through a gradient of alcohol, cleared with xylene 

and infiltrated with paraffin wax to form a solid block. The paraffin 

block was sliced into thin sections using a microtome and affixed to 

glass slides. These slides were subsequently analysed under bright-field 

microscopy using a WITec alpha 300 imaging system.

Ex vivo fresh human skin tissue from a participant was cut manu-

ally to prepare epidermal and dermal samples, which were diluted 

with phosphate-buffered saline (Hyclone), placed on a glass slide and 

sealed with a cover glass for Raman spectra measurements (WITec 

alpha 300) with a laser power of 75 mW and acquisition time of 120 s. 

Ex vivo human skin tissues used in this study have been sourced from 

the study approved by the Institutional Review Board of Ruijin Hospital 

(no. 2023-166) and Human Genetic Resource Administration of China. 

Both participants have provided written informed consent, which 

include a written description authorizing the use of his/her samples 

for other research.

Raman spectrum of glucose solution
The 1,000 mmol l−1 glucose stock solution (Macklin, G885129) was 

loaded onto the probe with a pipette and its mµSORS spectra were 

measured with an acquisition time of 8 s. The Raman spectra of glu-

cose solution detected by offset 0 of mµSORS system was used in this 

work (Fig. 2j).

Basic experimental study with humans
In the preliminary BESH, 20 participants with T2D and 15 participants 

without diabetes were selected. For the expanded BESHs, 200 par-

ticipants with T2D and 30 participants without diabetes were included 

(Supplementary Table 2). The statistics of their age, sex (determined 

based on self-report and government-issued personal identity card) 

and fasting plasma glucose (FPG) levels are given in Tables 2 and 3. The 

study protocols were approved by the Institutional Review Board of 

Ruijin Hospital, affiliated with Shanghai Jiao Tong University School 

of Medicine, according to the Declaration of Helsinki. The studies are 

registered at ClinicalTrials.gov (NCT05504005, NCT05921344 and 

NCT06512077). All BESHs were open, and data collection and analysis 

were not performed blind to the conditions of the experiments. All the 

participants provided written informed consent and were compen-

sated for their travel reimbursement and sampling.

The individuals were screened 1–7 days before the experiment. In 

the preliminary BESH, the recruiting criteria for participants without 

diabetes were that the FPG should be lower than 6.1 mmol l−1 and the 

glycosylated haemoglobin (HbA1c) should be less than 5.7%. For par-

ticipants with T2D, their FPG levels were between 6.1–13.3 mmol l−1. 

For the enrolment of T2D participants, it was required that no acute 

complications of diabetes within 3 months before enrolment, or severe 

chronic complications of diabetes and comorbidities (including severe 

structural heart disease, chronic congestive heart failure (NYHA ≥ III) 

and history of severe liver or kidney dysfunction) were observed. All 

participants had no scars, pigmentation and other factors interfering 

with the test on the tested part of palm skin. Baseline physical exami-

nation, blood biochemistry test and a pregnancy test were conducted 

to confirm that no clinically notable abnormality was found for any of 

the participants.

All individuals had been fasted for at least 10 h before an OGTT with 

75 g (50 g for individuals without diabetes in the expanded BESHs) glu-

cose was given. Both mµSORS spectra and the VPG concentration were 

taken for each participant at 12 (9 for individuals without diabetes in the 

expanded BESHs) sampling points, where individuals were allowed to 

move freely between sampling points. In the preliminary BESH, the 12 

sampling points spanned across 5 h (0, 10, 30, 60, 90, 120, 150, 180, 210, 

240, 270 and 300 min after glucose administration). In the expanded 

BESHs, for individuals with T2D, the 12 sampling points spanned across 

3 h (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 180 min after glucose 

administration); for individuals without diabetes, the 9 sampling points 

spanned across 4 h (0, 30, 60, 90, 120, 150, 180, 210 and 240 min after 

glucose administration) (Tables 2 and 3 and Supplementary Table 2). 

To measure the VPG concentration in both studies, 2 ml venous blood 

was taken and the plasma glucose concentration was measured by the 

biochemistry laboratory using the glucose oxidation method on an 

autoanalyser (AU5800, BECKMAN).

In the preliminary BESH, mµSORS spectra (offsets 0–4) were taken 

from right hand with a total time of 8 min, a spectral range of 214 cm−1 

and 2,400 cm−1, an integration time of 8 s and 60 frames averaged for 

each sampling point. Then, 415 valid VPG–mµSORS spectra data pairs 

were acquired and used for data analysis (Fig. 2), while 5 pairs were 

discarded due to technical problems. In the expanded BESHs, different 

from before, mµSORS spectra were taken from both hands simultane-

ously with two mµSORS setups. A break was set at 4 min for participants 

to adjust their hand positions during the 8 min measurement. Overall, 

5,308 VPG–mµSORS spectra (offsets 0, 2 and 3, 0–2,450 cm−1) data 

pairs were available for data analysis (Figs. 3 and 4), after excluding par-

ticipant D016 who dropped out of the BESH and eight sampling points 

of participant D119’s left hand due to technical problems. The skin 

colour of participants was measured using colorimeters (Colormeter 

Max, CHN Spec) and saved as coordinates in the CIELAB colour space 

(Fig. 3b). No substantial improvement was found when skin colour was 

included in the PLS models.

Evaluation of the correlation between mµSORS spectra and 
VPG
In the preliminary BESH, we divided the 415 VPG–spectra data pairs into 

ten groups based on equal binning of the VPG level (Supplementary 

Table 1). For each of the ten groups of spectra corresponding to dif-

ferent VPG, the average spectra for each offset were calculated (Fig. 2e 

and Extended Data Fig. 5). The glucose Raman band was defined as the 

area under the curve between 1,115 cm−1 and 1,142 cm−1 after removing 

the baseline (the straight line between the two end points) while that of 

phenylalanine was defined in the same way but between 990 cm−1 and 

1,020 cm−1 (Extended Data Fig. 5)21. The ratio between these two was 

defined as the normalized glucose Raman band. The Pearson correla-

tion coefficient (CORR) between the normalized glucose Raman band 

and the VPG was calculated to quantify the relevance of the spectra to 

the VPG (Fig. 2g). The slopes of linear fitting between the normalized 

glucose Raman band and the VPG were calculated to quantify the sen-

sitivity of the spectra to the VPG (Fig. 2g, inset).

PLS cross-validation
We applied a PLS regression model43 to predict the VPG concentrations 

from the Raman spectra in the BESHs. In the preliminary BESH, mµSORS 

spectra between 400 cm−1 and 1,600 cm−1 from each offset were used as 

the input to the PLS model. Model cross-validation was conducted in 

the leave-one-subject-out procedure, where data from one participant 

was left to be predicted with the model trained on all the other data 

points, and this process was iterated to cover all participants once in 

the prediction (Fig. 2h). In the expanded BESHs, different from before, 

mµSORS spectra between 320 cm−1 and 2,000 cm−1 from offsets 2 and 

3 were concatenated into a single vector as the input to the PLS model. 

The model performance was evaluated using subject-wise tenfold 

cross-validation (Fig. 3d), where the dataset of all VPG–spectra pairs 

was partitioned into ten subsets (‘tenfold’) based on the last digit of the 

participant ID (‘subject-wise’). In each iteration, one subset was selected 

as the validation set, while the remaining subsets were combined as 

the training set to train the PLS model. This process was iterated ten 

times, ensuring that every data point was included in the validation set 

once and only once (Fig. 3e,f). Considering that mµSORS measures the 

spectra of the skin, where the glucose level is reported to have a time 

http://www.nature.com/natmetab
https://clinicaltrials.gov/ct2/show/NCT05504005
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lag (∆t) from the VPG44,45, backtracked VPG concentrations were used 

as the reference for the PLS model (Extended Data Fig. 10).

PLS modelling and independent test
In the expanded BESHs, the PLS model was also tested with independ-

ent training and test sets (Fig. 4). Overall, 175 individuals with T2D 

(D001–D175) and 25 individuals without diabetes (N001–N025) were 

selected as the training set, while the rest (D176–D200 and N026–N030) 

were used as the test set (Fig. 4a). As before, mµSORS spectra between 

320 cm−1 and 2,000 cm−1 from offsets 2 and 3 were concatenated into 

a single vector as the input to the PLS model. Backtracked VPG con-

centrations with a time lag (∆t) were used as the reference for the PLS 

model (Extended Data Fig. 10 and ‘Calculation of backtracked VPG 

concentration’). The optimal number of PLS factors was selected using 

the subject-wise tenfold cross-validation within the training set. This 

number of factors was then used to fit the model on the whole training 

set. Box plot was used to display the overall trend of predicted and refer-

ence glucose concentration (Fig. 4d). In the box plot, box boundaries 

indicate Q1 (25th percentile) and Q3 (75th percentile), whiskers indicate 

Q1 − 1.5 × interquartile range (IQR) and Q3 + 1.5 × IQR, and the central 

line indicates the median.

Performance evaluation of PLS model for glucose prediction
The performance of a glucose prediction model was evaluated by the 

coefficient of determination (R2), the MARD as well as the CEG-related 

metrics (CEG A and CEG A + B). A better model corresponds to a higher 

R2, a lower MARD and higher CEG A and CEG A + B.

The metrics of R2 and MARD can be expressed as:
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where N is the total number of VPG–spectra pairs in the test set, indexed 

by i. yi and ̂

y

ι

 are the reference and the predicted glucose concentration 

of the ith VPG–spectra pair, respectively. y  is the mean of all the yi.

Calculation of backtracked VPG concentrations
Backtracked VPGs were calculated with polynomial fit (order adjusted 

manually between 3 and 7) of the OGTT measurements for each par-

ticipant. Assuming that the ∆t was the same for all the individuals, we 

varied its value from 0 min to −25 min with a step size of 1 min to find 

the optimum, with which the minimal root mean square error (r.m.s.e.) 

between the backtracked VPGs and the predictions was achieved. The 

r.m.s.e. was defined as
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where N denotes the number of data points (VPG–spectra pairs, indexed 

by i), yi and ̂

y

ι

 are the backtracked and predicted VPG concentrations. 

Among all the offsets, the minimal r.m.s.e. was achieved by offset 3 with 

a time lag of −16 min in the preliminary BESH and −13 min in the 

expanded BESHs (Extended Data Fig. 10). Backtracked VPG concentra-

tions were used in PLS model training and validation instead of the 

original measurements.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the 

corresponding authors upon reasonable request. Source data are 

provided with this paper.

Code availability
Custom Python code has been applied for data analysis in this work. The 

code necessary for reanalysing the data presented in this paper is avail-

able in Zenodo at https://doi.org/10.5281/zenodo.14605629 (ref. 46).
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Extended Data Fig. 1 | Bilayer sample characterizes depth selectivity of 

mµSORS. a, Top view and side view of the Si-tape bilayer sample. b, Raman 

spectra of the bilayer sample displayed in three dimensions. Shade and box 

indicate characteristic Raman peaks at 520 cm−1 (Si) and 1041 cm−1 (Scotch 

tape), respectively. The depth of Si in 15 different phantoms increased from 

50 µm to 750 µm with a step of 50 µm. c, Normalized Si (520 cm−1) Raman band 

intensity varying with its depth for each offset. Error bars indicate mean and 

standard deviation (SD) over n = 3 measurements. Lines are derived from 9-order 

polynomial fitting of the measured points.

http://www.nature.com/natmetab
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Extended Data Fig. 2 | Acquisition and analysis of OCT scans. a, The 3D image acquired by OCT (the left hand of D132 as an example). b, The intensity profile along 

the z (depth) dimension of Subject D132’s left hand (same as a). z = 0 corresponds to the skin surface. Yellow dot indicates the characteristic points that were manually 

annotated and corresponded to the DEJ depth.

http://www.nature.com/natmetab
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Extended Data Fig. 3 | Intensity profiles of four typical thenar OCT images. I–IV 

marked samples from a single hand of four typical subjects. The shades indicate 

the standard deviation (see Methods). Yellow dots indicate the characteristic 

points that were manually annotated and corresponded to the DEJ depth. Insets: 

three-dimensional OCT images constructed from a volume of 3 mm (x) * 3 mm (y) 

* 1.95 mm (z).
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Extended Data Fig. 4 | Anatomical and spectral characterization of epidermis 

and dermis of human skin samples. a, Bright field image of a processed ex-vivo 

human skin cross-section. A forearm cross-section from one woman of 29 years 

old were imaged and repeated independently five times with similar results, the 

zoom-in region of interest was shown. Epidermis is rich in cells, and thus, nucleic 

acid, while dermis is rich in collagen. The yellow dashed curve indicates the DEJ. 

Green dots indicate the distribution of glucose molecules, predominantly within 

the dermis. Scale bar: 250 µm. b, Reference Raman spectra taken from ex-vivo 

epidermis (black) and dermis (blue) samples of human skin. An ex-vivo fresh 

upper back tissue from one man of 28 years old was obtained and cut manually 

to prepare epidermal and dermal samples, five spectra were collected from 

different region of interest for each sample and the mean spectra were shown as 

reference spectra. Pink and purple shades indicate characteristic Raman peaks of 

nucleic acid and collagen.
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Extended Data Fig. 5 | mµSORS spectra of 10 groups partitioned by equal 

binning of VPG levels. a, Average spectra in the range of 800–1,500 cm−1 for 

each of the 10 VPG-spectra groups (Fig. 2e) at different offsets in the preliminary 

BESH of 35 subjects. The black arrow indicates the phenylalanine Raman peak 

at 1001 cm−1, while the red box indicates the characteristic glucose Raman peak 

at 1,125 cm−1. b, Normalized Raman spectra (glucose Raman band divided by 

phenylalanine Raman band) of different offsets averaged over each of the 10 VPG-

spectra groups (Fig. 2f), zoomed in around the glucose Raman peak at 1125 cm−1.
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Extended Data Fig. 6 | Blood glucose prediction results for 78 subjects with 

type 2 diabetes (D001-D078) in all 230 subjects of expanded BESHs. Dark 

Blue lines: reference concentration (VPG, Fig. 3c). Orange triangles: glucose 

concentration predicted from left-hand spectra. Yellows circles: glucose 

concentration predicted from the right-hand spectra. All predictions were 

generated using subject-wise tenfold cross-validation (Fig. 3d).
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Extended Data Fig. 7 | Blood glucose prediction results for 78 subjects with 

type 2 diabetes (D079-D156) in all 230 subjects of expanded BESHs. Dark 

Blue lines: reference concentration (VPG, Fig. 3c). Orange triangles: glucose 

concentration predicted from left-hand spectra. Yellows circles: glucose 

concentration predicted from the right-hand spectra. All predictions were 

generated using subject-wise tenfold cross-validation (Fig. 3d).
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Extended Data Fig. 8 | Blood glucose prediction results for 48 subjects with 

type 2 diabetes (D157-D200) and 30 subjects without diabetes (N001-N030) 

in all 230 subjects of expanded BESHs. Dark Blue lines: reference concentration 

(VPG, Fig. 3c). Orange triangles: glucose concentration predicted from left-hand 

spectra. Yellows circles: glucose concentration predicted from the right-hand 

spectra. All predictions were generated using subject-wise tenfold cross-

validation (Fig. 3d).
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Extended Data Fig. 9 | PLS model training for independent test. a, Consensus 

error grid (CEG) of the predictions obtained from the PLS regression model 

on the training set (n = 4,618). b, Model performance metrics plotted 

against reference glucose concentration in the training set. Orange: MARD. 

Magenta: CEG: A. Red: CEG: A + B. Cyan shade: histogram of reference glucose 

concentration (VPG).
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Extended Data Fig. 10 | Optimizing the time delay in the PLS model for 

glucose prediction. a, The VPG data of a typical subject with diabetes during 

the 5-h OGTT in the preliminary BESH. Measured VPGs (dots) were fitted with 

polynomials and the backtracked VPG with a certain time lag (stars) were used 

as reference in PLS models. b, RMSE between the model predictions and the 

reference VPGs, varying with the time lag from −25 to 0 min. The optimized time 

lag was at −16 min. The models were trained and tested with spectra from offset 

3 in the preliminary BESH. Model predictions were generated using leave-one-

subject-out cross-validation scheme (Fig. 2h). c, Counterpart of b for offset 2 and 

3 as well as the concatenation (offset 2–3) of these two offsets in the expanded 

BESHs of 230 subjects. The optimal time lag was at −13 min for both two offsets 

and the concatenation. Model predictions were generated using subject-wise 

tenfold cross-validation scheme (Fig. 3d). d, Counterpart of the black curve in c in 

the training set comprised of 200 subjects in the expanded BESHs (Fig. 4a). The 

optimal time lag was at −13 min.
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Subcutaneous depth-selective spectral 
imaging with mμSORS enables noninvasive 
glucose monitoring

 

Yifei Zhang    1,2,8, Lili Zhang3,8, Long Wang    1,2,8, Shuai Shao    3,8, Bei Tao1,2, 

Chunrui Hu3, Yufei Chen1,2, Yue Shen3, Xianbiao Zhang    3, Shijia Pan    1,2, 

Hua Cao4, Ming Sun3, Jia Shi1,2, Chunhong Jiang1,2, Minghui Chen5, 

Lin Zhou    3 , Guang Ning    1,2 , Chang Chen    3,6,7  & Weiqing Wang    1,2 

Noninvasive blood glucose monitoring o�ers substantial advantages for 

patients, but current technologies are often not su�ciently accurate for 

clinical applications or require personalized calibration. Here we report 

multiple µ-spatially o�set Raman spectroscopy, which captures Raman 

signals at varying skin depths, and show that it accurately detects blood 

glucose levels in humans. In 35 individuals with or without type 2 diabetes, 

we �rst determine the optimal depth for glucose detection to be at or 

below the capillary-rich dermal–epidermal junction, where we observe 

a strong correlation between speci�c Raman bands and venous plasma 

glucose concentrations. In a second study, comprising 230 participants, we 

then improve accuracy of our regression model to reach a mean absolute 

relative di�erence of 14.6%, without personalized calibration, whereby 

99.4% of calculated glucose values fall into clinically acceptable zones 

of the consensus error grid (zones A and B). These �ndings highlight the 

ability and robustness of multiple µ-spatially o�set Raman spectroscopy for 

noninvasive blood glucose measurement in a clinical setting.

Blood glucose monitoring is critical for health management, especially 

for the over 500 million people with diabetes worldwide1,2. Patients 

with diabetes typically receive recommendations to monitor their 

blood glucose level multiple times per day3. Nevertheless, conventional 

finger pricks induce pain and risk of infection, which thereby reduced 

the patients’ quality of life and their adherence to treatment4,5. More 

recently, minimally invasive continuous blood glucose monitoring 

technologies have been developed, utilizing indwelling sensors to 

measure glucose levels in interstitial compartments6,7. However, these 

sensors require constant attachment to the user and cause inconven-

ience8. Hence, there remains a persistent need for practical solutions 

to noninvasive blood glucose monitoring9.

So far, the route to clinically applicable noninvasive blood glu-

cose monitoring remains elusive10,11. Among the various approaches, 

including iontophoresis12, transdermal impedance spectroscopy13, 

photoacoustic spectroscopy14,15 and infrared spectroscopy16,17, Raman 

spectroscopy is highly anticipated due to its direct identification of glu-

cose molecules with high specificity by spectral information18–22, along 

with its selectable wavelengths for deep penetration in human skin. 

Recently developed paraboloidal mirror Raman18, confocal Raman19 

and spatially offset Raman spectroscopy (SORS)22 have shown prom-

ising results for noninvasive blood glucose testing. However, these 

Raman spectroscopy methods require subject-specific training to 

build a proper mathematical model for each user, introducing addi-

tional procedures in practical applications. The main hindrance to 

higher robustness and accuracy in Raman spectroscopic measure-

ments is the broad and strong fluorescence background signal from 

the skin surface. Therefore, a Raman spectroscopy method to reduce 
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Fig. 1 | mµSORS system detects Raman signals from epidermis to dermis 

with depth selectivity. a, Schematic of mµSORS system. mµSORS setup (top). 

Zoomed-in layout of fibres in the fibre bundle at End A (bottom right). Typical 

intensity profile across offsets 0–4 in the fibre bundle at End B (bottom left). 

b, Schematic of mµSORS detection on thenar. Yellow dashed curve indicates 

DEJ; green hexagons show glucose molecules; cyan dots indicate Raman 

photons. Schematics of blood vessels and skin layers were adapted from ref. 47 

with permission. c, Histogram of DEJ depths from 232 human thenar samples 

identified by OCT. Roman numerals (I–IV) indicate four different depth ranges 

of DEJ, corresponding to OCT images in d. I, 250–300 µm; II, 300–400 µm; III, 

400–500 µm; IV, 575–600 µm. d, Typical OCT images of four samples with mean 

DEJ depths of 270 µm, 370 µm, 430 µm and 620 µm were selected from I–IV 

marked in c. e, mµSORS spectra from the same samples in d, along with reference 

Raman spectra taken from ex vivo epidermis and dermis samples of human skin. 

Pink and purple shades indicate characteristic Raman peaks of nucleic acid and 

collagen.
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the interference of the skin surface signal when capturing deeper glu-

cose signals is imperative for clinically applicable noninvasive blood 

glucose monitoring.

In this work, we present multiple µ-spatially offset Raman spec-

troscopy (mµSORS), a technique capable of directly measuring Raman 

signals from both epidermal and dermal layers of human skin, and thus, 

potentially feasible for clinical noninvasive blood glucose monitoring. 

Utilizing an optical probe with fibre layout at five different offsets, 

mµSORS realized depth-selective detection of Raman signals, with 

larger offsets capturing a higher proportion of signals from greater 

depths. We first conducted a preliminary basic experimental study with 

humans (BESH) involving 35 participants that demonstrated that in 

contrast to the Raman signal from the skin surface, the mµSORS signal 

from deeper layers, especially around or below the dermal–epidermal 

junction (DEJ)23, exhibits a statistically notable correlation of Raman 

glucose peaks to venous plasma glucose (VPG) levels. Based on this 

optimal detection depth, we then expanded the BESHs, monitoring the 

VPG of additional 230 participants while collecting Raman spectra from 

the optimal offsets using mµSORS. A partial least squares (PLS) regres-

sion model24 was applied to predict the blood glucose level from the 

Raman spectra. Using independent training and test dataset consisting 

of data from different individuals (individual-independent), the model 

reached a mean absolute relative difference (MARD) of 14.6%, with 99.4% 

of the predictions in clinically acceptable zones of the consensus error 

grid (CEG; A + B)25. This result indicates that mµSORS achieves a high 

accuracy in blood glucose measurement without personalized calibra-

tion and data acquisition, marking a valid demonstration of a clinically 

applicable technology for noninvasive blood glucose monitoring.

Results
mµSORS detects depth-selective Raman signals in skin layers
We tailored mµSORS for depth-selective detection of Raman signals 

from human skins. SORS is an advanced spectroscopic technology, 

known for its ability to detect Raman signals beneath surfaces26, and 

is widely applied in applications such as cargo content inspection27, 

archaeology28, cancer screening29 and pharmaceutical analysis30. Here, 

we reformed this technology at the scale of tens to hundreds of micro-

metres, aiming to obtain Raman signals from various depths of the skin 

to realize noninvasive blood glucose monitoring. An optical probe 

focused a 785-nm laser on the sample (human thenar in this work) and 

then collected the backscattered photons, directing them to a concen-

trically organized fibre bundle (Fig. 1a, top). The concentrical layers 

of fibres were designed to capture photons emitted at specific lateral 

offsets, which were 0 µm (offset 0), 50 µm (offset 1), 100 µm (offset 2), 

150 µm (offset 3) and 200 µm (offset 4) from the incident beam centre, 

respectively (Fig. 1a, bottom right). The signal intensity is notably lower 

for larger offsets (Fig. 1a, bottom left). Nevertheless, the concentric lay-

out led to more fibres at greater offsets, compensating for the decrease 

in signal intensity. We used a series of bilayer samples to assess the 

depth-selective detection capability of mµSORS26,31 (Extended Data 

Fig. 1a,b and Methods). Each offset exhibited a maximum intensity of 

the bottom layer at a different detection depth, indicating that Raman 

photons backscattered from larger offsets had a higher probability to 

have originated from greater depths (Extended Data Fig. 1c). Therefore, 

mµSORS technology proves capable of selectively collecting Raman 

signals at various depths on a sub-millimetre scale.

For the purpose of noninvasive glucose detection, the key is to 

acquire Raman signals dominated from the dermis, which is rich in 

interstitial fluid (ISF) and capillary loops and could provide direct 

evidence of blood glucose levels (Fig. 1b)32. The dermis lies under the 

DEJ, the depth of which can be identified from the optical coherence 

tomography (OCT) image (Extended Data Fig. 2). We first observed the 

biological variation in the histogram of DEJ depths from 232 samples 

(thenar from both hands of 116 individuals), which ranged from 250 

to 700 µm, with the most common depth around 350 µm (Fig. 1c). 

We then selected four typical individuals with different DEJ depths 

(labelled I–IV, in the order of increasing DEJ depth; Fig. 1d and Extended 

Data Fig. 3) and measured their mµSORS spectra (Fig. 1e, offsets 0–4). 

Compared with the reference Raman spectra taken from ex vivo human 

epidermis and dermis samples (dashed lines in Fig. 1e, Extended Data 

Fig. 4 and Methods), the shape of spectra from offsets 0–4 exhibited a 

clear transition from epidermis-like to dermis-like for all four individu-

als, with corresponding shifts in the relative intensities of the Raman 

peaks assigned to collagen and nucleic acid (Fig. 1e). It is assumed that 

the distinct spectral features within the 1,200–1,400 cm−1 range, par-

ticularly evident in the relative intensities of the collagen Raman peak 

(1,240 cm−1) and the nucleic acid Raman peak (1,320 cm−1)33–35, mainly 

result from the compositional difference. This difference is shown in 

the skin tissue cross-section, where the epidermis consists of densely 

packed cells, whereas the dermis is rich in collagen (Extended Data 

Fig. 4 and Methods).

Combining the spectral transition and the DEJ depths derived 

from OCT, we can roughly characterize the detection depth of 

mµSORS in human thenar skin. The transition of mµSORS spectra from 

epidermis-like to dermis-like occurred at smaller offsets for samples 

with shallower DEJ depths and vice versa (Fig. 1e). Based on this trend, 

Table 1 | Detection depth of each offset gauged by OCT and mμSORS spectra

Samples I II III IV

Thickness (µm) 270 370 430 620 Depth (µm) Suitable

Offset 0 Epidermis Epidermis Epidermis Epidermis <270 0

Offset 1 Mix Mix Epidermis Epidermis 270–370 46%

Offset 2 Dermis Dermis Mix Epidermis 370–430 72%

Offset 3 Dermis Dermis Dermis Mix 430–620 99%

Offset 4 Dermis Dermis Dermis Dermis >620 100%

Table 2 | Statistics of the 35 participants in the preliminary 
BESH

Statistics Preliminary BESH (n = 35)

Participants (n) With T2D (n = 20) Without diabetes 
(n = 15)

Sex, male: female (%) 17 (85.0): 3 (15.0) 8 (53.3): 7 (46.7)

Age, years (mean ± s.d., range) 47.6 ± 8.4, 30–60 35.7 ± 3.8, 30–60

BMI, kg m−2 (mean ± s.d., range) 24.5 ± 4.1, 17.7–31.8 24.3 ± 4.0, 19.2–32.7

FPG, mmol l−1 (mean ± s.d., 
range)

8.9 ± 2.0, 5.1–12.4 5.4 ± 0.4, 4.4–5.7

OGTT time, h (points) 5 (12)

Sampling point, min 0, 10, 30, 60, 90, 120, 150, 180, 210, 240, 
270, 300

VPG, mmol l−1 (range) 2.9–31.8

Data pairs, VPG and spectra 415
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we can use the DEJ depth determined by OCT as a ‘ruler’ to gauge the 

depth measured by a given offset of mµSORS. We thus roughly esti-

mated the detection depths of five mµSORS offsets: 0–270 µm for 

offset 0, 270–370 µm for offset 1, 370–430 µm for offset 2, 430–620 µm 

for offset 3 and >620 µm for offset 4 (Table 1). In addition, mµSORS 

spectra at offsets 3 and 4 displayed dermis-like shapes or at least a 

mixture of epidermis-like and dermis-like features in all samples. Even 

offset 2 showed mixed features in Sample III, where the DEJ is deeper 

than 72% of all the 232 samples (Table 1). These results indicate that 

mµSORS also has a capability for depth-selective detection in human 

skin, and it could effectively capture signals from the dermis for most 

individuals using offsets 2–4.

Dermal Raman spectra demonstrate high correlation with VPG
Having verified that mµSORS can selectively detect signals from various 

depths, including those deeper than the DEJ in human thenar skin, we 

proceeded to evaluate its capability for measuring glucose in the skin 

and predicting the blood glucose at a clinical setting. We conducted a 

preliminary BESH with 35 participants (Table 2 and Fig. 2a), in which we 

measured both mµSORS spectra from their right-hand thenar and their 
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Fig. 2 | Correlation between mµSORS spectra and blood glucose levels in the 

preliminary BESH on 35 participants. a, Distribution of age and BMI of the 35 

participants. b, VPG levels measured at 12 sampling points over the 5-h OGTT. 

c, Schematic of mµSORS spectra acquisition during OGTT. R, Right hand. d, 

Spectra averaged over all participants at each offset, zoomed in between 1,150 

and 1,400 cm−1. Solid lines indicate mean spectra. Shaded areas indicate s.d. 

Pink and purple shades show characteristic Raman peaks of nucleic acid and 

collagen. e, Mean mµSORS spectra from ten VPG bins with group number from 

1 to 10. Offset 0 (top); offset 3 (bottom). f, Zoomed-in spectra around glucose 

peak (red rectangle in e) after normalized by the phenylalanine band. Offset 0 

(left). Offset 3 (right). g, Normalized glucose Raman band (f) against VPG levels 

for each offset. Dashed lines, linear fittings. Inset shows Pearson correlation 

coefficients and slopes of linear fittings. h, Schematic of the leave-one-subject-

out cross-validation scheme for the PLS model. i, Metrics of model performance 

in h at different offsets. R2, coefficient of determination. j, Averaged regression 

coefficients obtained from h (light blue, offset 0; red, offset 3) and Raman 

spectrum of glucose solution (black). Black dashed lines indicate that the 

regression coefficients of offset 3 captured important spectral peaks of glucose.
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VPG concentrations during a 5-h oral glucose tolerance test (OGTT) 

(Fig. 2b,c). Their VPG levels ranged from 2.9 to 31.8 mmol l−1, covering 

the physiological to pathological blood glucose region (Table 2 and 

Fig. 2b). Individuals were free to take their hands off the setup or walk 

around in the sampling intervals (Fig. 2c). A total of 415 mµSORS spectra 

sets (offsets 0–4) were acquired (Fig. 2d), each corresponding to VPG 

levels measured at the same time points, yielding 415 VPG–spectra 

data pairs. Consistent with before (Fig. 1e), the average spectra from 

the preliminary BESH exhibited a transition from epidermis-like to 

dermis-like with increasing offsets. Moreover, offsets 2–4 displayed 

highly similar spectral shapes and dermis-like spectral features between 

1,150 and 1,400 cm−1, indicating that all these three offsets are capable 

of detecting dermal signals (Fig. 2d).

To analyse Raman spectra across different glucose levels at dif-

ferent offsets, we categorized all the 415 VPG–spectra data pairs into 

ten groups based on the VPG level (equal binning; Fig. 2e and Sup-

plementary Table 1). To account for variations in absolute spectrum 

intensity across groups, we normalized the glucose Raman band using 

the phenylalanine Raman band at 1,001 cm−1, because phenylalanine 

is abundant in solid skin tissue compartments such as lipids, proteins 

and collagen. With a larger offset that can detect dermal signals, such 

as offset 3, the normalized glucose Raman peak increased notably 
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with VPG across the ten groups, exhibiting a trend not seen at offset 0 

(Fig. 2f and Extended Data Fig. 5). Linear correlation analysis revealed 

a high correlation (with a Pearson correlation coefficient (CORR) of 

0.94–0.97) between VPG and the normalized glucose Raman band at 

offsets 2–4, much higher than the correlation at offset 0 (CORR = 0.63) 

and offset 1 (CORR = 0.85) (Fig. 2g). The normalized glucose Raman 

band at offsets 2–4 also demonstrated notably greater sensitivity to 

VPG, as indicated by the steeper slopes in the linear fit (Fig. 2g, inset), 

suggesting that Raman spectra from dermal skin layers offer more 

relevant information about blood glucose levels. Both correlation 

and sensitivity to VPG are very similar for offsets 2–4 (Fig. 2g, inset), 

consistent with the highly similar shapes of average spectra observed 

at these three offsets (Fig. 2d).

To further determine the optimal offsets for individual- 

independent blood glucose monitoring, we built a PLS regression 

model to fit the VPG–spectra pairs from each offset individually, 

taking advantage of Raman features across the full spectral range. A 

leave-one-subject-out cross-validation scheme (Fig. 2h) was applied24. 

The results indicated that offset 3 yielded the highest accuracy, closely 

followed by offset 4 and offset 2 (Fig. 2i). Notably, these offsets encom-

pass the DEJ depths in the majority of individuals (Figs. 1c–e and 2d), 

supporting our hypothesis that signals from below the DEJ are more 

suitable for noninvasive blood glucose monitoring. In addition, 

our data analysis algorithm provided direct evidence of leveraging 

glucose-specific Raman spectral information. The PLS regression coef-

ficients trained on spectra from offset 3 (Fig. 2j, red curve) aligned well 

with the characteristic Raman bands of glucose solution (Fig. 2j, black 

curve), a distinctive feature absent at offset 0 (Fig. 2j, blue curve). This 

alignment suggests that while analysing Raman signals from offset 3, 

we can leverage more directly relevant spectroscopic information of 

glucose molecules than other biomolecules in human skin. In contrast, 

at offset 0, neither glucose nor other biomolecular signals could be 

clearly identified.

Accurate and individual-independent glucose predictions
With the preliminary BESH, we identified direct evidence of glucose 

molecules in mµSORS spectra, and determined that the optimal offsets 

to detect blood glucose Raman signals were offsets 2–4. However, 

due to the small sample size, the prediction accuracy remained low 

(MARD = 28.0% for offset 3) and failed to meet the clinical standards. To 

further improve the prediction accuracy, we initiated expanded BESHs 

of 230 individuals with two major improvements: (1) Raman spectra 

were collected from thenar of both hands to augment the dataset and 

eliminate hand-specificity; (2) spectra from offsets 2 and 3 were com-

bined as the input to the PLS model according to the results of the pre-

liminary BESH (Fig. 2i), whereas offset 4 was removed from the device 

due to its high spatial cost (requiring more fibres than other offsets; 

Fig. 1a) despite its high prediction accuracy. The 230 participants cov-

ered a wide range of age (18–80 years) and body mass indices (BMIs; 

16.2–38.1 kg m−2) (Fig. 3a and Table 3). A relatively balanced represen-

tation of sex (91 female and 139 male; Table 3) and varied skin colours 

were also achieved (Fig. 3b). VPG levels of individuals ranged between 

2.94 to 31.64, effectively covering the entire extent of physiological to 

pathological blood glucose levels (Fig. 3c and Table 3).

At each sampling point of the OGTT, we measured VPG and two 

mµSORS spectra from the two hands of the participant, yielding a total 

of 5,308 VPG–spectra data pairs, ~13 times larger than the dataset in the 

preliminary BESH. Each of these spectra was averaged over 60 frames 

(8 s per frame), providing a database with 318,480 single spectra in 

total. Spectra from offsets 2–3 and both hands were simultaneously 

used for model training and testing (with more details in Methods), 

generating separate predicted glucose concentrations for the left and 

right hands. Practically, this hand-independent approach allows users 

to freely choose either hand for blood glucose monitoring, thereby 

adding flexibility in the clinical use.

We employed a subject-wise tenfold cross-validation scheme 

(Fig. 3d)36 to evaluate the prediction accuracy of mµSORS for 

individual-independent blood glucose monitoring. Similar to the 

leave-one-subject-out scheme used in the preliminary BESH (Fig. 2), 

this approach simulated a scenario where a user’s blood glucose levels 

can be directly measured and monitored without the need for personal-

ized pre-calibration, validating the applicability of mµSORS in real-life 

clinical settings and distinguishing it from various other works in the 

field19. Consequently, a total of 5,308 predicted glucose concentration 

values were generated, with each VPG value corresponding to two 

predicted concentration values, one from the left hand and the other 

from the right hand. Overall, 99.4% of these points fell within the clini-

cally acceptable range (CEG A + B), achieving a MARD value of 14.3% 

(Fig. 3e). No significant difference in accuracy between female and male 

participants (13.43 ± 5.79% versus 14.98 ± 6.23%; P = 0.06, two-sample 

t-test) or between left and right hand (14.62 ± 6.65% versus 14.12 ± 7.16%; 

P = 0.247, paired sample t-test) was observed (Extended Data Figs. 6–8). 

For each participant, the predictions from the left-hand and right-hand 

spectra exhibited good consistency with each other, closely aligning 

with the VPG values and trends (Extended Data Figs. 6–8). Furthermore, 

the MARD value consistently remained below 20%, and the CEG A + B 

exceeded 99% across nearly all VPG intervals (Fig. 3f). In summary, 

mµSORS provides real noninvasive blood glucose monitoring that 

is both accurate and flexible in clinical settings, without the need for 

personalized calibration.

Practical glucose monitoring on an independent test set
To mimic the conditions of clinical blood glucose monitoring even 

more closely and further validate the clinical applicability of mµSORS, 

we performed model training and testing on two independent data-

sets. Overall, 30 participants (25 with type 2 diabetes (T2D) and 5 with-

out diabetes) recruited at the end of each BESH were selected as an 

independent test set, while the rest 200 participants comprised the 

training set (Fig. 4a, Supplementary Table 2 and Extended Data Fig. 9). 

This generated 4,618 VPG–spectra data pairs in the training set and 

690 in the test set, with diverse blood glucose trends and broad VPG 

distributions in both datasets. A PLS model was exclusively trained 

on the training set, after which the resulting regression coefficients 

were locked, and then used to predict the blood glucose level in the 

test set (Fig. 4a). A MARD value of 14.6% was achieved in the test set 

with 99.4% of predictions within the CEG A + B zone (Fig. 4b). Examin-

ing the prediction accuracy across different VPG concentrations, the 

Table 3 | Statistics of the 230 participants in expanded 
BESHs

Statistics Expanded BESHs (n = 230)

Participants (n) With T2D (n = 200) Without diabetes 
(n = 30)

Sex, male: female (%) 124 (62): 76 (38) 15 (50): 15 (50)

Age, years (mean ± s.d., 
range)

55.1 ± 11.4, 18–80 36.1 ± 11.3, 22–59

BMI, kg m−2 (mean ± s.d., 
range)

24.8 ± 3.8, 16.2–38.1 22.5 ± 2.5, 21.6–25.5

FPG, mmol l−1 (mean ± s.d., 
range)

8.50 ± 2.18, 4.82–17.84 5.15 ± 0.32, 4.37–5.98

OGTT time, h (points) 3 (12) 4 (9)

Sampling, min 0, 15, 30, 45, 60, 75, 90, 
105, 120, 135, 150, 180

0, 30, 60, 90, 120, 
150, 180, 210, 240

VPG, mmol l−1 (range) 3.9–31.2 2.94–11.48

Data pairs, VPG and 
spectra

4,768 540

Statistics Total data pairs (n = 5,308)
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CEG A + B ratio consistently reached 100% in 25 out of 28 VPG intervals 

(1 mmol l−1 each), and the MARD value was lower than 20% in 26 out of 

28 VPG intervals (Fig. 4c). These results in the independent test dataset 

again underscored the prominent capability of mµSORS for noninvasive 

blood glucose monitoring.

For both hands, the predicted trends of blood glucose during 

OGTT closely matched the VPG trends, regardless of whether the indi-

viduals had diabetes (Fig. 4d). For participants with T2D, both VPG 

and predictions depicted monophasic OGTT response curves typical 

of T2D patients, in which the blood glucose level increases after the 

ingest of glucose and then decreases after reaching a peak37. On the 

other hand, the flat response curves observed in participants without 

diabetes reflected the capability of mµSORS to generate accurate trend 

predictions even within the normal VPG range.

When it comes to every individual, the predicted glucose concen-

trations still demonstrated high accuracy and good alignment with the 

VPG, regardless of which hand the predictions came from (Fig. 5). This 

confirms the robustness of our system and offers users the flexibility 

to choose either hand for blood glucose measurements. In greater 

detail, participant D190 with the most accurate predictions in the 

test set showed a MARD value for both hands as small as 7.6%. Most 

participants showed typical prediction accuracy with MARD values 
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between 10% and 15%. Even for the participant with the highest MARD 

in the test set (D193, MARD = 26.5%), the predictions demonstrated a 

clear trend of increasing blood glucose concentration, consistent with 

the change of VPG, as well as a close proximity between predictions 

given by the two hands (Fig. 5). In summary, with the more rigorous 

validation provided by the independent test set, mµSORS once again 

proved itself of high accuracy and solid practical viability in clinical 

blood glucose monitoring.

Discussion
Depth-selectable sensing is critical to robust measurement of chemical 

levels in the blood. Based on the SORS technology22,38, we developed the 

mµSORS system, in which the specially designed optical probe allows 

lateral offsets at the scale of tens of micrometres (Fig. 1a,b). Tested on 

a bilayer sample with tunable thickness of the surface layer, mµSORS 

achieved a depth resolution of 50–100 µm (Extended Data Fig. 1c), 

which is a notable improvement from the millimetre resolution of the 

traditional SORS technology. Furthermore, combining the Raman 

spectral features and the DEJ depth estimated from the OCT data, we 

can conclude that the depth resolution of mµSORS in human skin is 

around 100–200 µm (Fig. 1d,e and Table 1) and that for the majority 

of participants, the Raman signals from dermis layer can be captured 

with offsets 2–4 (Table 1), which is well suited for noninvasive blood 

glucose sensing. In our preliminary BESH, a clear distinction emerged 

that Raman signals from the skin surface exhibited a much weaker cor-

relation to VPG, whereas those from deeper depths corresponding to 

larger offsets displayed a precise linear correlation. In the expanded 

BESHs, utilizing spectra from offsets 2–3, our PLS model achieved high 

prediction accuracy for individual-independent and noninvasive blood 

glucose monitoring, with a MARD less than 15% and more than 99% 

predictions falling within the A + B zone of the CEG plot. Therefore, 

the critical and irreplaceable advantage of mµSORS in noninvasive 

blood glucose monitoring becomes evident. Meanwhile, it also offers 

a practical solution to systemic study on subsurface sensing.

Offsets 2–4 emerged as the most critical offsets with the highest 

relevance to the VPG concentration in the preliminary BESH (Fig. 2i). 

Combining OCT images and mµSORS spectra, we concluded that 

these offsets measured signals deeper than 370 µm and up to over 

620 µm, beyond the DEJ in most participants (Fig. 1c and Table 1). This 

observation reaffirms our conclusion that DEJ is a critical depth for 

blood glucose monitoring, where both ISF and capillaries contribute 

to the detection of glucose Raman signals by mµSORS (Fig. 1b). Despite 

offset 4 having the deepest detection depth, its prediction accuracy 

was slightly lower than offset 3. This suggests that excessive detection 
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Fig. 5 | Blood glucose prediction results for 30 participants in the test set with independent model testing. Dark blue shows reference glucose concentration 

during OGTT. Orange triangles show predictions from the left hand. Yellow circles show predictions from the right hand.
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depths may actually reduce the accuracy of blood glucose measure-

ment, likely due to the low signal-to-noise ratio caused by intensity 

decay in deeper layers. Therefore, considering the trade-off between 

human skin composition and the signal-to-noise ratio, the optimal 

depth for blood glucose monitoring could be just below the DEJ. Recent 

experiments of noninvasive blood glucose measurements in mice also 

targeted this depth, agreeing with our results that the signal from the 

DEJ is highly related to the VPG level15.

mµSORS-based blood glucose monitoring is characterized 

by its exceptional robustness, which provides great flexibility for 

the users. First, the depth-specificity of the signal and the high 

signal-to-noise ratio of the optical system enabled a completely 

noninvasive approach, effectively substituting traditional needles 

with laser technology. Second, users can freely move away from the 

device during sampling intervals. This design highlights an important 

advantage of our technology: it is highly robust to the reposition of 

hands which is usually considered as a difficult challenge in previous 

work. With this unique feature, there is no need to constantly attach 

the device on the patient, providing more convenience and comfort 

of using noninvasive glucose measurements. Most notably, mµSORS 

allows for individual-independent blood glucose monitoring. It elimi-

nates the need for user-specific device calibration or model training, 

while still reaching clinically valuable MARD lower than 15%. Last but 

not least, a high accuracy was consistently achieved across the vast 

majority of VPG levels, covering nearly the entire physiological to 

pathological blood glucose range (Figs. 3f and 4c). It was also inde-

pendent of the sex of the user and from which hand the spectra were 

measured. Therefore, mµSORS-based blood glucose monitoring 

can be applied to most random participants without any previous 

preparation and instantaneously acquire reliable predictions, a dis-

tinctive feature not achieved by many other recent technologies in  

the field18,19.

Despite substantial technological advances and clinical applicabil-

ity, mµSORS is still faced with several challenges. First, the prediction 

accuracy is still limited for a small percentage of participants. Second, 

mµSORS requires a relatively long acquisition time to reduce noise and 

distinguish Raman bands from the background signal. This potentially 

limits the model’s accuracy to capture rapid glucose fluctuations, such 

as those during immediate correction of hypoglycaemia episodes 

caused by antidiabetic medication. Another important shortcoming 

is that mµSORS is still a large setup with a size comparable to a desk-

top computer. Moreover, thenar is the only measuring site so far due 

to its flat, large and soft surface, and we lack data for other possible 

areas of human skin. Finally, given that our BESHs were performed in 

China, additional local datasets are to be built when using mµSORS 

in other countries, considering potential physiological differences 

across ethnicities.

Future technological advances are expected to improve mµSORS 

from multiple aspects and address the challenges above. With the 

accumulation of more cases in further BESH or clinical studies, our 

PLS model could be refined to cover the physiological diversity of the 

population. More complicated algorithms, especially deep neural 

networks39, are also expected to enhance the prediction accuracy 

of mµSORS and make it effective for a broader spectrum of users. 

The cause of the long acquisition time is that fluorescence from the 

tissue is still dominating, forming a strong optical background and 

also introducing considerable shot noise. Multiple newly developed 

technologies, such as time-gating technology, are promising to reduce 

the fluorescence background40. Incorporating these technologies 

may reduce the time and laser power required for spectra collec-

tion, and even enable noninvasive monitoring of other chemicals in 

human bodies. Efforts are underway to transform this machine into 

a portable or even wearable device. This involves miniaturizing the 

Raman spectrometer to a chip level using spatial heterodyne spec-

troscopy that can be fabricated in a 200 mm CMOS compatible silicon 

photonics platform41. Such chip technology may also reduce the cost 

of mµSORS, making it more affordable to the general public. Further-

more, packing mµSORS into a wearable device could extend its capabil-

ity to measure various sites on human skin, some of which may have 

a thinner epidermis compared with the thenar region (for example, 

neck, abdomen, wrist or thigh)42. Glucose Raman spectra measured 

at these sites may attain higher signal-to-noise ratios due to shallower  

DEJ depths.

To sum up, we presented mµSORS technology, which is capable of 

measuring a depth-selective Raman signal, including glucose-related 

spectra from the dermis of human skin. This detection capability ena-

bles mµSORS to realize noninvasive blood glucose monitoring with 

high accuracy, without the need for personalized calibration.

Methods
mµSORS system design and setup
As shown in the overall schematic (Fig. 1a), a 65-mW laser was generated 

using a 785-nm diode multimode laser source (Cobolt 08-NLD) and 

directed through an optical probe to focus on the sample in a ~40-µm 

spot. The scattered photons were collected using the same probe, 

filtered with a long-pass filter and then directed to a fibre bundle. The 

fibre bundle directed the signal to a near-infrared spectrometer (Blaze 

400HR, LS785, Teledyne Princeton Instruments) equipped with an 

electrically cooled charge-coupled device.

To distinguish photons emitted with different offsets from the 

incident beam, at End A of the fibre bundle, the optical fibres were 

arranged in concentric ring structures (Fig. 1a). Each ring corresponded 

to a different offset between 0 µm and 200 µm at the surface of the 

sample, with a spacing of 50 µm between adjacent offsets. This spacing 

step matches the distance between adjacent fibres of 125 µm, after the 

2.5-fold magnification by the lens (Fig. 1a). At End B of the fibre bundle, 

the fibres were arranged linearly and grouped according to their offsets 

before being directed to the spectrometer (Fig. 1a).

mµSORS system characterization with bilayer samples
0–15 Scotch tapes with 50-µm thickness were layered on silicon sub-

strate to create 16 bilayer samples, with the total tape thicknesses 

(top layer) ranging from 0 µm to 750 µm. We tested each sample three 

times at different locations with an acquisition time of 6 s. The Raman 

band area of Si was calculated with the integrals within the range of 

500–540 cm−1 (Extended Data Fig. 1). For each offset, the areas of Si 

band from all 16 bilayer samples were normalized by their maximal 

value (Extended Data Fig. 1c).

Spectral calibration
After the acquisition of mµSORS spectra, a spectral calibration was 

performed using a neon–argon lamp (IntelliCal, Princeton Instrument). 

For each fibre, the pixels corresponding to ten standard neon–argon 

peaks were identified, and a four-order polynomial function was fitted 

between these identified pixels and the corresponding wavelengths for 

each fibre independently, thereby establishing the desired correspond-

ence between spectrometer pixels and wavelengths. The wavelengths 

were then converted to the wavenumbers, which were later interpo-

lated to the same abscissa for the spectra from all the fibres.

Human DEJ depth determination with OCT imaging
We performed OCT (Ganymede SD-OCT System, Thorlabs) on 232 

thenars of both hands for n = 116 participants. For each hand, an area of 

3 mm (x) × 3 mm (y) was scanned up to a maximal depth (z) of 1.95 mm. 

The spatial resolution was 3.81 µm in x and z dimensions and 12 µm in 

the y dimension (Extended Data Fig. 2a). The refractive index of the 

target was set to 1.3. An intensity profile along the z dimension was cal-

culated by averaging all the pixels along both x and y dimensions. The 

DEJ depth of the skin was manually annotated from the intensity profile 

using the characteristic points (Fig. 1d and Extended Data Fig. 2b).
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Measurements on ex vivo human skin samples
After obtaining human skin tissue via punch biopsy, the sample was 

immediately fixed in 10% formaldehyde to preserve its architecture. It 

was then dehydrated through a gradient of alcohol, cleared with xylene 

and infiltrated with paraffin wax to form a solid block. The paraffin 

block was sliced into thin sections using a microtome and affixed to 

glass slides. These slides were subsequently analysed under bright-field 

microscopy using a WITec alpha 300 imaging system.

Ex vivo fresh human skin tissue from a participant was cut manu-

ally to prepare epidermal and dermal samples, which were diluted 

with phosphate-buffered saline (Hyclone), placed on a glass slide and 

sealed with a cover glass for Raman spectra measurements (WITec 

alpha 300) with a laser power of 75 mW and acquisition time of 120 s. 

Ex vivo human skin tissues used in this study have been sourced from 

the study approved by the Institutional Review Board of Ruijin Hospital 

(no. 2023-166) and Human Genetic Resource Administration of China. 

Both participants have provided written informed consent, which 

include a written description authorizing the use of his/her samples 

for other research.

Raman spectrum of glucose solution
The 1,000 mmol l−1 glucose stock solution (Macklin, G885129) was 

loaded onto the probe with a pipette and its mµSORS spectra were 

measured with an acquisition time of 8 s. The Raman spectra of glu-

cose solution detected by offset 0 of mµSORS system was used in this 

work (Fig. 2j).

Basic experimental study with humans
In the preliminary BESH, 20 participants with T2D and 15 participants 

without diabetes were selected. For the expanded BESHs, 200 par-

ticipants with T2D and 30 participants without diabetes were included 

(Supplementary Table 2). The statistics of their age, sex (determined 

based on self-report and government-issued personal identity card) 

and fasting plasma glucose (FPG) levels are given in Tables 2 and 3. The 

study protocols were approved by the Institutional Review Board of 

Ruijin Hospital, affiliated with Shanghai Jiao Tong University School 

of Medicine, according to the Declaration of Helsinki. The studies are 

registered at ClinicalTrials.gov (NCT05504005, NCT05921344 and 

NCT06512077). All BESHs were open, and data collection and analysis 

were not performed blind to the conditions of the experiments. All the 

participants provided written informed consent and were compen-

sated for their travel reimbursement and sampling.

The individuals were screened 1–7 days before the experiment. In 

the preliminary BESH, the recruiting criteria for participants without 

diabetes were that the FPG should be lower than 6.1 mmol l−1 and the 

glycosylated haemoglobin (HbA1c) should be less than 5.7%. For par-

ticipants with T2D, their FPG levels were between 6.1–13.3 mmol l−1. 

For the enrolment of T2D participants, it was required that no acute 

complications of diabetes within 3 months before enrolment, or severe 

chronic complications of diabetes and comorbidities (including severe 

structural heart disease, chronic congestive heart failure (NYHA ≥ III) 

and history of severe liver or kidney dysfunction) were observed. All 

participants had no scars, pigmentation and other factors interfering 

with the test on the tested part of palm skin. Baseline physical exami-

nation, blood biochemistry test and a pregnancy test were conducted 

to confirm that no clinically notable abnormality was found for any of 

the participants.

All individuals had been fasted for at least 10 h before an OGTT with 

75 g (50 g for individuals without diabetes in the expanded BESHs) glu-

cose was given. Both mµSORS spectra and the VPG concentration were 

taken for each participant at 12 (9 for individuals without diabetes in the 

expanded BESHs) sampling points, where individuals were allowed to 

move freely between sampling points. In the preliminary BESH, the 12 

sampling points spanned across 5 h (0, 10, 30, 60, 90, 120, 150, 180, 210, 

240, 270 and 300 min after glucose administration). In the expanded 

BESHs, for individuals with T2D, the 12 sampling points spanned across 

3 h (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 180 min after glucose 

administration); for individuals without diabetes, the 9 sampling points 

spanned across 4 h (0, 30, 60, 90, 120, 150, 180, 210 and 240 min after 

glucose administration) (Tables 2 and 3 and Supplementary Table 2). 

To measure the VPG concentration in both studies, 2 ml venous blood 

was taken and the plasma glucose concentration was measured by the 

biochemistry laboratory using the glucose oxidation method on an 

autoanalyser (AU5800, BECKMAN).

In the preliminary BESH, mµSORS spectra (offsets 0–4) were taken 

from right hand with a total time of 8 min, a spectral range of 214 cm−1 

and 2,400 cm−1, an integration time of 8 s and 60 frames averaged for 

each sampling point. Then, 415 valid VPG–mµSORS spectra data pairs 

were acquired and used for data analysis (Fig. 2), while 5 pairs were 

discarded due to technical problems. In the expanded BESHs, different 

from before, mµSORS spectra were taken from both hands simultane-

ously with two mµSORS setups. A break was set at 4 min for participants 

to adjust their hand positions during the 8 min measurement. Overall, 

5,308 VPG–mµSORS spectra (offsets 0, 2 and 3, 0–2,450 cm−1) data 

pairs were available for data analysis (Figs. 3 and 4), after excluding par-

ticipant D016 who dropped out of the BESH and eight sampling points 

of participant D119’s left hand due to technical problems. The skin 

colour of participants was measured using colorimeters (Colormeter 

Max, CHN Spec) and saved as coordinates in the CIELAB colour space 

(Fig. 3b). No substantial improvement was found when skin colour was 

included in the PLS models.

Evaluation of the correlation between mµSORS spectra and 
VPG
In the preliminary BESH, we divided the 415 VPG–spectra data pairs into 

ten groups based on equal binning of the VPG level (Supplementary 

Table 1). For each of the ten groups of spectra corresponding to dif-

ferent VPG, the average spectra for each offset were calculated (Fig. 2e 

and Extended Data Fig. 5). The glucose Raman band was defined as the 

area under the curve between 1,115 cm−1 and 1,142 cm−1 after removing 

the baseline (the straight line between the two end points) while that of 

phenylalanine was defined in the same way but between 990 cm−1 and 

1,020 cm−1 (Extended Data Fig. 5)21. The ratio between these two was 

defined as the normalized glucose Raman band. The Pearson correla-

tion coefficient (CORR) between the normalized glucose Raman band 

and the VPG was calculated to quantify the relevance of the spectra to 

the VPG (Fig. 2g). The slopes of linear fitting between the normalized 

glucose Raman band and the VPG were calculated to quantify the sen-

sitivity of the spectra to the VPG (Fig. 2g, inset).

PLS cross-validation
We applied a PLS regression model43 to predict the VPG concentrations 

from the Raman spectra in the BESHs. In the preliminary BESH, mµSORS 

spectra between 400 cm−1 and 1,600 cm−1 from each offset were used as 

the input to the PLS model. Model cross-validation was conducted in 

the leave-one-subject-out procedure, where data from one participant 

was left to be predicted with the model trained on all the other data 

points, and this process was iterated to cover all participants once in 

the prediction (Fig. 2h). In the expanded BESHs, different from before, 

mµSORS spectra between 320 cm−1 and 2,000 cm−1 from offsets 2 and 

3 were concatenated into a single vector as the input to the PLS model. 

The model performance was evaluated using subject-wise tenfold 

cross-validation (Fig. 3d), where the dataset of all VPG–spectra pairs 

was partitioned into ten subsets (‘tenfold’) based on the last digit of the 

participant ID (‘subject-wise’). In each iteration, one subset was selected 

as the validation set, while the remaining subsets were combined as 

the training set to train the PLS model. This process was iterated ten 

times, ensuring that every data point was included in the validation set 

once and only once (Fig. 3e,f). Considering that mµSORS measures the 

spectra of the skin, where the glucose level is reported to have a time 
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lag (∆t) from the VPG44,45, backtracked VPG concentrations were used 

as the reference for the PLS model (Extended Data Fig. 10).

PLS modelling and independent test
In the expanded BESHs, the PLS model was also tested with independ-

ent training and test sets (Fig. 4). Overall, 175 individuals with T2D 

(D001–D175) and 25 individuals without diabetes (N001–N025) were 

selected as the training set, while the rest (D176–D200 and N026–N030) 

were used as the test set (Fig. 4a). As before, mµSORS spectra between 

320 cm−1 and 2,000 cm−1 from offsets 2 and 3 were concatenated into 

a single vector as the input to the PLS model. Backtracked VPG con-

centrations with a time lag (∆t) were used as the reference for the PLS 

model (Extended Data Fig. 10 and ‘Calculation of backtracked VPG 

concentration’). The optimal number of PLS factors was selected using 

the subject-wise tenfold cross-validation within the training set. This 

number of factors was then used to fit the model on the whole training 

set. Box plot was used to display the overall trend of predicted and refer-

ence glucose concentration (Fig. 4d). In the box plot, box boundaries 

indicate Q1 (25th percentile) and Q3 (75th percentile), whiskers indicate 

Q1 − 1.5 × interquartile range (IQR) and Q3 + 1.5 × IQR, and the central 

line indicates the median.

Performance evaluation of PLS model for glucose prediction
The performance of a glucose prediction model was evaluated by the 

coefficient of determination (R2), the MARD as well as the CEG-related 

metrics (CEG A and CEG A + B). A better model corresponds to a higher 

R2, a lower MARD and higher CEG A and CEG A + B.

The metrics of R2 and MARD can be expressed as:
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where N is the total number of VPG–spectra pairs in the test set, indexed 

by i. yi and ̂
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 are the reference and the predicted glucose concentration 

of the ith VPG–spectra pair, respectively. y  is the mean of all the yi.

Calculation of backtracked VPG concentrations
Backtracked VPGs were calculated with polynomial fit (order adjusted 

manually between 3 and 7) of the OGTT measurements for each par-

ticipant. Assuming that the ∆t was the same for all the individuals, we 

varied its value from 0 min to −25 min with a step size of 1 min to find 

the optimum, with which the minimal root mean square error (r.m.s.e.) 

between the backtracked VPGs and the predictions was achieved. The 

r.m.s.e. was defined as
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where N denotes the number of data points (VPG–spectra pairs, indexed 

by i), yi and ̂

y

ι

 are the backtracked and predicted VPG concentrations. 

Among all the offsets, the minimal r.m.s.e. was achieved by offset 3 with 

a time lag of −16 min in the preliminary BESH and −13 min in the 

expanded BESHs (Extended Data Fig. 10). Backtracked VPG concentra-

tions were used in PLS model training and validation instead of the 

original measurements.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the 

corresponding authors upon reasonable request. Source data are 

provided with this paper.

Code availability
Custom Python code has been applied for data analysis in this work. The 

code necessary for reanalysing the data presented in this paper is avail-

able in Zenodo at https://doi.org/10.5281/zenodo.14605629 (ref. 46).
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Extended Data Fig. 1 | Bilayer sample characterizes depth selectivity of 

mµSORS. a, Top view and side view of the Si-tape bilayer sample. b, Raman 

spectra of the bilayer sample displayed in three dimensions. Shade and box 

indicate characteristic Raman peaks at 520 cm−1 (Si) and 1041 cm−1 (Scotch 

tape), respectively. The depth of Si in 15 different phantoms increased from 

50 µm to 750 µm with a step of 50 µm. c, Normalized Si (520 cm−1) Raman band 

intensity varying with its depth for each offset. Error bars indicate mean and 

standard deviation (SD) over n = 3 measurements. Lines are derived from 9-order 

polynomial fitting of the measured points.
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Extended Data Fig. 2 | Acquisition and analysis of OCT scans. a, The 3D image acquired by OCT (the left hand of D132 as an example). b, The intensity profile along 

the z (depth) dimension of Subject D132’s left hand (same as a). z = 0 corresponds to the skin surface. Yellow dot indicates the characteristic points that were manually 

annotated and corresponded to the DEJ depth.
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Extended Data Fig. 3 | Intensity profiles of four typical thenar OCT images. I–IV 

marked samples from a single hand of four typical subjects. The shades indicate 

the standard deviation (see Methods). Yellow dots indicate the characteristic 

points that were manually annotated and corresponded to the DEJ depth. Insets: 

three-dimensional OCT images constructed from a volume of 3 mm (x) * 3 mm (y) 

* 1.95 mm (z).
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Extended Data Fig. 4 | Anatomical and spectral characterization of epidermis 

and dermis of human skin samples. a, Bright field image of a processed ex-vivo 

human skin cross-section. A forearm cross-section from one woman of 29 years 

old were imaged and repeated independently five times with similar results, the 

zoom-in region of interest was shown. Epidermis is rich in cells, and thus, nucleic 

acid, while dermis is rich in collagen. The yellow dashed curve indicates the DEJ. 

Green dots indicate the distribution of glucose molecules, predominantly within 

the dermis. Scale bar: 250 µm. b, Reference Raman spectra taken from ex-vivo 

epidermis (black) and dermis (blue) samples of human skin. An ex-vivo fresh 

upper back tissue from one man of 28 years old was obtained and cut manually 

to prepare epidermal and dermal samples, five spectra were collected from 

different region of interest for each sample and the mean spectra were shown as 

reference spectra. Pink and purple shades indicate characteristic Raman peaks of 

nucleic acid and collagen.
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Extended Data Fig. 5 | mµSORS spectra of 10 groups partitioned by equal 

binning of VPG levels. a, Average spectra in the range of 800–1,500 cm−1 for 

each of the 10 VPG-spectra groups (Fig. 2e) at different offsets in the preliminary 

BESH of 35 subjects. The black arrow indicates the phenylalanine Raman peak 

at 1001 cm−1, while the red box indicates the characteristic glucose Raman peak 

at 1,125 cm−1. b, Normalized Raman spectra (glucose Raman band divided by 

phenylalanine Raman band) of different offsets averaged over each of the 10 VPG-

spectra groups (Fig. 2f), zoomed in around the glucose Raman peak at 1125 cm−1.
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Extended Data Fig. 6 | Blood glucose prediction results for 78 subjects with 

type 2 diabetes (D001-D078) in all 230 subjects of expanded BESHs. Dark 

Blue lines: reference concentration (VPG, Fig. 3c). Orange triangles: glucose 

concentration predicted from left-hand spectra. Yellows circles: glucose 

concentration predicted from the right-hand spectra. All predictions were 

generated using subject-wise tenfold cross-validation (Fig. 3d).
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Extended Data Fig. 7 | Blood glucose prediction results for 78 subjects with 

type 2 diabetes (D079-D156) in all 230 subjects of expanded BESHs. Dark 

Blue lines: reference concentration (VPG, Fig. 3c). Orange triangles: glucose 

concentration predicted from left-hand spectra. Yellows circles: glucose 

concentration predicted from the right-hand spectra. All predictions were 

generated using subject-wise tenfold cross-validation (Fig. 3d).
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Extended Data Fig. 8 | Blood glucose prediction results for 48 subjects with 

type 2 diabetes (D157-D200) and 30 subjects without diabetes (N001-N030) 

in all 230 subjects of expanded BESHs. Dark Blue lines: reference concentration 

(VPG, Fig. 3c). Orange triangles: glucose concentration predicted from left-hand 

spectra. Yellows circles: glucose concentration predicted from the right-hand 

spectra. All predictions were generated using subject-wise tenfold cross-

validation (Fig. 3d).
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Extended Data Fig. 9 | PLS model training for independent test. a, Consensus 

error grid (CEG) of the predictions obtained from the PLS regression model 

on the training set (n = 4,618). b, Model performance metrics plotted 

against reference glucose concentration in the training set. Orange: MARD. 

Magenta: CEG: A. Red: CEG: A + B. Cyan shade: histogram of reference glucose 

concentration (VPG).
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Extended Data Fig. 10 | Optimizing the time delay in the PLS model for 

glucose prediction. a, The VPG data of a typical subject with diabetes during 

the 5-h OGTT in the preliminary BESH. Measured VPGs (dots) were fitted with 

polynomials and the backtracked VPG with a certain time lag (stars) were used 

as reference in PLS models. b, RMSE between the model predictions and the 

reference VPGs, varying with the time lag from −25 to 0 min. The optimized time 

lag was at −16 min. The models were trained and tested with spectra from offset 

3 in the preliminary BESH. Model predictions were generated using leave-one-

subject-out cross-validation scheme (Fig. 2h). c, Counterpart of b for offset 2 and 

3 as well as the concatenation (offset 2–3) of these two offsets in the expanded 

BESHs of 230 subjects. The optimal time lag was at −13 min for both two offsets 

and the concatenation. Model predictions were generated using subject-wise 

tenfold cross-validation scheme (Fig. 3d). d, Counterpart of the black curve in c in 

the training set comprised of 200 subjects in the expanded BESHs (Fig. 4a). The 

optimal time lag was at −13 min.
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Supplementary Table 1 | Equal binning of 415 data pairs into 10 groups based on 

VPG levels. 

Group Number VPG range 

(mmol/L) 

Mean VPG 

(mmol/L) 

Number of  

mμSORS spectra 

#1 2.8 - 5.7 4.6 110 

#2 5.7 - 8.6 7.1 96 

#3 8.6 - 11.5 9.8 54 

#4 11.5 - 14.4 12.9 44 

#5 14.4 - 17.3 15.7 30 

#6 17.3 - 20.2 18.7 40 

#7 20.2 - 23.1 21.4 24 

#8 23.1 - 26.0 24.7 12 

#9 26.0 - 28.9 26.9 3 

#10 28.9 - 31.8 31.1 2 
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Supplementary Table 2 | Details about 3 BESHs and data division. 

 
Preliminary BESH 

(n=35) 

Expanded BESHs (n=230) 

Expanded BESH I Expanded BESH II 

Registration number NCT05504005 NCT05921344 NCT06512077 

Subjects 
20 with T2D 

15 without diabetes 
200 with T2D (D) 30 without diabetes (N) 

OGTT duration 5 h 3 h 4 h 

VPG sampling points 12 points 12 points 9 points 

Spectral acquisition Right hand Dual hands Dual hands 

PLS cross validation 
Leave-one-subject-out 

(n=35) (Fig. 2h-j) 

Subject-wise 10-fold cross validation (n=230) 

(Fig. 3d-f, Extended Data Fig. 6) 

PLS independent test N. A. 

Training (n=200): 175D + 25N subjects 

(Fig. 4a, Extended Data Fig. 7) 

Independent test (n=30): 25D + 5N subjects 

(Fig. 4, Fig. 5) 
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