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Abstract

B cell and T cell receptor repertoires compose the adaptive immune 

receptor repertoire (AIRR) of an individual. The AIRR is a unique 

collection of antigen-speci�c receptors that drives adaptive immune 

responses, which in turn is imprinted in each individual AIRR. This 

supports the concept that the AIRR could determine disease outcomes, 

for example in autoimmunity, infectious disease and cancer. AIRR 

analysis could therefore assist the diagnosis, prognosis and treatment 

of human diseases towards personalized medicine. High-throughput 

sequencing, high-dimensional statistical analysis, computational 

structural biology and machine learning are currently employed to 

study the shaping and dynamics of the AIRR as a function of time and 

antigenic challenges. This Primer provides an overview of concepts 

and state-of-the-art methods that underlie experimental and 

computational AIRR analysis and illustrates the diversity of relevant 

applications. The Primer also addresses some of the outstanding 

challenges in AIRR analysis, such as sampling, sequencing depth, 

experimental variations and computational biases, while discussing 

prospects of future AIRR analysis applications for understanding and 

predicting adaptive immune responses.
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differentiation, somatic mutations may occur within the recombined 

variable region of the BCR, namely somatic hypermutations (SHMs). 

SHM leads to the formation of a clonal lineage that expresses modi-

fied nucleotidic versions of the parental BCR, often with improved 

binding towards a specific antigen15,23,24 and therefore variations at 

the amino acid level as well (Fig. 1). Moreover, immunoglobulin class 

switching can occur in B cells upon antigen stimulation, through an 

intrachromosomal deletional recombination within the heavy chain 

constant (CH) region25–27. This allows daughter cells from the same 

parent clone to produce antibodies of different isotypes, meaning 

different C regions, that have different effector functions, without 

altering their antigen specificity.

AIRR diversity and specificity
The potential number of distinct AIRs generated in the PLOs has been 

estimated at around 1019 TCRs28,29 and 1013 BCRs30 in humans, and 

this diversity can be further increased by SHM for BCRs. Recently, 

an AIRR diversity of 1061 has been predicted by statistical modelling31. 

However, only a small fraction of the potential BCR and TCR repertoires 

are present in a given individual, because of the limited number of lym-

phocytes an organism can harbour (~8 × 1011 in humans and ~108–109 

in mice32–34). Furthermore, each AIRR is shaped by various selection 

events, in the PLOs and in the secondary lymphoid organs, following TCR 

and BCR interactions with self antigens or non-self antigens (Fig. 2). In the 

PLOs, such selection processes lead to a highly diverse AIRR, through 

the selection of B cells and T cells that can recognize non-self antigens 

and the deletion of high-affinity self-reactive lymphocytes30,35–38.

The high diversity of AIRRs is essential for developing immunity 

against pathogenic organisms and for maintaining host homeostasis1,39. 

An individual’s AIRR reveals information about ongoing immune 

responses, but also about previous antigenic encounters39,40 as those 

are reflected within the repertoire of adaptive immune memory 

cells41. Furthermore, the study of AIR specificity has led to the devel-

opment of invaluable tools for experimental research (for exam-

ple, antibody-based detection methods)42–46, diagnostics (for example, 

serum-based diagnostics)47–50, prevention of disease (vaccine design) 

and therapeutics (for example, therapies based on TCR, chimeric 

antigen receptor T cells (CAR T cells) and antibodies)51–53.

In addition to humans and mice, AIR loci description and rear-

rangement mechanisms have been studied in other vertebrates, such 

as marsupials54, Galliformes55 and sharks56, and these studies revealed 

differences among species and enabled the standardized description 

and annotation of AIR genes in several species17. Furthermore, AIRR 

analyses have been applied to explore the kinetics of B cell and T cell 

immune responses and memory formation following a viral infection 

or during a prime–boost vaccination, in rainbow trout, showing dif-

fering observations compared with humans57,58. Thus, studying the 

AIRR in a diversity of species could open new research avenues such 

as evolutionary and comparative immunology.

Nevertheless, fundamental questions about the diversity, specific-

ity and function of the AIRR have remained unresolved for more than 

half a century since the clonal selection theory was proposed59. The 

AIRR diversity in an individual at a given time point and its fluctuations 

over time, the number of distinct lymphocyte clones comprised within 

a certain AIRR, the clonal size of each clone, the number of clones that 

are specific to a given antigen and the extent of cross-reactivity are all 

points that must be resolved. In addition, it remains unclear how the 

AIRR is shaped throughout lymphocyte ontogeny, selection events, and 

external and internal perturbations. Finally, functional perspectives on 

Introduction
Adaptive immune responses are driven upon antigen recognition by 

an array of adaptive immune receptors (AIRs) that include B cell recep-

tors (BCRs) and T cell receptors (TCRs), expressed by B lymphocytes 

and T lymphocytes, respectively1. BCRs and TCRs are composed of 

combinations of two chains belonging to the immunoglobulin super-

family (IgSF). All AIR chains have two distinct regions: the variable (V) 

region at the 5′ end of the protein that contains the antigen binding 

moiety, and the constant (C) region at the 3′ end of the protein. Each 

BCR is composed of two identical immunoglobulin heavy chains (IgHs) 

anchored to the cell surface through the constant IgH region (IgHC), 

and two identical immunoglobulin light chains (IgLs), each of which 

are bound to the heavy chains through disulfide bonds2 (Fig. 1). The 

TCR contains two distinct chains that are both anchored to the cell 

surface through their respective C regions3 (Fig. 1). There are two types 

of TCR heterodimers: the α/β-chain TCR (TCRαβ) is expressed on the 

surface of the majority of T cells, whereas the γ/δ-chain TCR (TCRγδ) 

is expressed on γδ T cells4–6. The antigen binding site of each BCR and 

TCR is embedded in the three-dimensional structure that is formed by 

the V regions of their chain pairs. BCRs can recognize native antigens of 

proteic, nucleic and lipid nature (Fig. 1), whereas TCRαβ can exclusively 

bind peptides presented by major histocompatibility (MHC) molecules 

that are expressed on the cell surface of antigen-presenting cells (Fig. 1). 

TCRγδ recognizes peptides or lipids presented by various non-classical 

MHC molecules (as reviewed elsewhere7,8).

The generation of a diverse set of BCRs and TCRs within an indi-

vidual is ensured by a complex somatic recombination machinery 

that is unique to jawed vertebrates9,10. The extraordinary diversity of 

this adaptive immune receptor repertoire (AIRR) endows the immune 

system with the potential to recognize a plethora of antigens, including 

antigens stemming from pathogenic and commensal microorganisms, 

host-derived molecules and allergens.

AIRR generation
AIRRs have been extensively studied since the discovery of the ori-

gin of B cells and T cells11–13. In mammals, BCR and TCR repertoires 

are primarily generated in the primary lymphoid organs (PLOs), the 

bone marrow and the thymus for B cells and T cells, respectively14. 

The somatic recombination machinery assembles a set of functional 

immuno globulin (IG) or TCR (TR) genes from a larger pool of gene 

segments — the variable (V), diversity (D) and joining ( J) segments — all 

combined to form the V regions of the BCRs or the TCRs15,16 (Fig. 1). The 

collections of V and J gene segments of the IGL, TRA or TRG genes and 

of the V, D and J gene segments of the IGH, TRB and TRD genes are all 

encoded on different genomic loci and chromosomes17. The variable 

BCR and TCR regions that are generated through somatic recombina-

tion are subdivided into four highly conserved framework regions (FRs) 

and three complementary determining regions (CDRs), which show 

increased sequence diversity. CDR1 and CDR2 are germline-encoded 

by V gene segments, whereas the CDR3 results from stochastic inser-

tions and deletions of nucleotides between the V, (D) and J genes. 

During the recombination process, the CDR3 becomes variable in 

length and sequence18, and greatly contributes to the high diversity 

of the AIRR15,19,20 and to antigen recognition21,22. By the end of this pro-

cess, each B lymphocyte and T lymphocyte expresses on its surface 

multiple copies of a unique BCR or TCR, respectively, that features a 

specific combination of V, D and J alleles and a unique CDR3. These 

lymphocytes clonally expand upon encounter of their specific antigen 

in the secondary lymphoid organs. During the later stages of B cell 
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how individuals can establish an efficient immune response against for-

eign pathogenic antigens for which no specific B cells and T cells have 

been positively selected, all while avoiding excessive tissue damage, 

or on the extent to which the AIRR contributes to the development of 

pathological autoimmunity are needed. Answering these questions 

requires a deep quantitative deciphering of AIRRs. As such, thanks 

to technological advances, it is now possible to study the AIRR via 

sequencing (AIRR-seq) in bulk and single cells, sometimes at spatial 

CDR1 CDR2

IGHV (46)

IGLV (52) IGLJ (10) IGLC (6)

IGHV IGHD IGHJ

SHM

IgH

V
L

V
H

C
H
1

C
L

C
H
2

C
H
3

Vα Vβ

TCRβTCRα

Cα Cβ

C
H
4

IgL

IGHD (23) IGHJ (6) IGHC (9)

CSR

MHC

TCR

Peptide

B cell

T cell

FR1 FR2 FR3 FR4

CDR1 CDR2

IGλ/κJIGλ/κV

FR1 FR2 FR3 FR4CDR3

TRAV (45) TRAJ (50) TRAC (1)

CDR1 CDR2

TRAJTRAV

FR1 FR2 FR3 FR4

BCR

Antigen-presenting
cell

AIR

CDR3

TRBV (48) TRBD (2) TRBJ (13) TRBC (2)

CDR1 CDR2

TRBJTRBV TRBD

FR1 FR2 FR3 FR4CDR3

CDR3

Antigen

Fig. 1 | AIR generation and structure. B cells express receptors (B cell receptors 

(BCRs)) that can recognize native antigens of proteic, nucleic and lipid nature. 

A BCR is composed of two identical immunoglobulin heavy chains (IgHs) and 

two identical immunoglobulin light chains (IgLs). T cells express receptors (T cell 

receptors (TCRs)) that bind exclusively to peptides embedded in the major 

histocompatibility complex (MHC) expressed at the cell surface of antigen-

presenting cells. A TCR is composed of two chains, an α-chain (TCRα) and a 

β-chain (TCRβ) expressed at the surface of the majority of T cells, or a γ-chain 

(TCRγ) and a δ-chain (TCRδ) expressed on γδ T cells. BCRs and TCRs are generated 

through a random somatic recombination of immunoglobulin or TCR genes 

from a set of genes, called variable (V), diversity (D) and joining ( J), encoded on 

different genomic loci and chromosomes. The number of functional genes in 

humans, provided by IMGT449 as of 14 November 2023, are shown. The variable 

region (VH/VL for immunoglobulin and Vα/Vβ for TCR) generated through this 

process can be further subdivided into four framework regions (FRs) and three 

complementary determining regions (CDRs). Additional insertions and deletions, 

represented by white bars within CDR3, occur during the recombination process. 

Upon antigen encounter in the secondary lymphoid organs, activated B cells 

may undergo point mutations within the CDRs (represented by arrows below the 

regions), namely somatic hypermutations (SHMs), or isotype switching through 

a class-switch recombination (CSR) process within the heavy chain constant (CH) 

region. AIR, adaptive immune receptor.
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resolution60,61, combined with the application of machine learning 

approaches to AIRR-seq data for the construction of data-driven pre-

dictive models. These progresses are expected to help answer most of 

the above questions based on insights about AIRR diversity within and 

across individuals and AIRR clonal architecture.

The field of AIRR-seq has witnessed breakthroughs in the past 

decade. In this Primer, we focus on key concepts of experimental design 

for AIRR studies and of computational analyses, including machine 

learning. For each of the discussed concepts, we provide examples of 

applications. Moreover, we emphasize the needs for reproducibility as 

well as experimental and computational optimizations and highlight 

current limitations encountered in the field.

Experimentation
Originally, cellular biology-based approaches, particularly flow 

cytometry, were widely used to quantify the relative abundance of 

B cells and T cells expressing certain V gene segments62. The complex-

ity of the recombination machinery prompted the development of 

molecular-based methods, such as CDR3 spectratyping or immuno-

scope analysis, which enabled a descriptive, qualitative AIRR 

analysis63,64. Quantitative AIRR analyses were only introduced in 2009 

with the advent of high-throughput sequencing (HTS) approaches, 

which were designed to sequence up to millions of DNA and RNA mol-

ecules simultaneously65–67. After that, major efforts have been made 

to improve the experimental methods, to reduce technical biases and 

ensure reproducibility68–71, as well as to adopt new technologies, such as 

single-cell TCR and BCR sequencing72,73 and spatial transcriptomics60,74. 

To ensure robust and faithful experimental assessment of the AIRR, 

multiple factors must be considered, including the type of biological 

sample, the choice of the nucleic acid starting template, the library 

preparation method and the HTS protocols.

Type of biological sample
The type of sample used in an experiment depends both on its acces-

sibility and on the biological question to be addressed. B cells and T cells 

may be collected from biological fluids, or fresh and preserved tissues 

Potential repertoire

Diversity

Diversity

Diversity

Selection

Selection

~1013 BCRs ~ 109 BCRs

~ 1011 TCRs~    1019 TCRs

Somatic hypermutation
Class-switch recombination

Rearranged repertoire

Potential repertoire Rearranged repertoire Available repertoire

Available repertoire

a   Bone marrow Periphery

Peripheryb   Thymus

Fig. 2 | Shaping of AIR diversity. a,b, Variable, (diversity) and joining (V(D)J) 

recombination occurs during B cell and T cell development in the bone marrow 

(part a) and the thymus (part b), respectively. This process is the first step 

in shaping of the B cell receptor (BCR) and T cell receptor (TCR) repertoires, 

where diversity decreases drastically, going from a potential estimation based 

on the stochastic recombination process, around 1019 TCRs and 1013 BCRs in 

humans, to the rearranged repertoire. However, only a fraction of the realized 

rearrangements expressed by positively selected lymphocytes pass the central 

selection process and migrate to the periphery where they constitute the 

available peripheral repertoire. In turn, the latter is reshaped following antigen 

encounter, further reducing its diversity. The B cell repertoire is exclusively 

subjected to somatic hypermutations (SHMs) and class-switch recombinations, 

two phenomena that participate in immunoglobulin diversification in antigen-

specific cells. Although no accurate estimate has yet been made to quantify the 

peripheral diversity, upper bounds can be fixed to 1011 for TCRs and 109 for BCRS, 

which represent the number of circulating B lymphocytes and T lymphocytes in 

the periphery. AIR, adaptive immune receptor.
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and organs. Frozen and formalin-fixed paraffin-embedded (FFPE)  

samples require downstream processing (Fig. 3a).

Whereas organs and tissues can easily be collected for AIRR analy-

ses in experimental animal models, in humans it is only possible to 

recover entire tissues or organs from organ donors75–77 and biopsies 

under routine clinical care. This allows the study of tissue-resident AIRs 

in the contexts of autoimmune, inflammatory or infectious diseases, 

as well as in liquid or solid cancers, the latter capturing the tumour 

microenvironment where adaptive immune cells localize.

Blood remains the preferred sample type in most translational 

and clinical studies due to its accessibility, non-invasive collection and 

relative abundance40,78–80. It is strongly recommended, when possible, 

to start from peripheral blood mononuclear cells instead of whole 

blood, particularly when using RNA as a starting material for library 

preparation as whole blood contains around 80% of β-globin RNAs, 

which could reduce the detection of white lymphocytic transcripts81. 

Moreover, to preserve RNA quality in whole blood, stabilization and 

freezing are required, which are not compatible with cell sorting. 

Plasma can also be used considering its increased concentration in 

cell-free DNA, which has been gaining interest in cancer studies82,83. 

Alternatively, lymphocytes can be collected from other sources, such 

as synovial and cerebrospinal fluid or bronchoalveolar lavage84–87.
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Fig. 3 | AIRR collection, preparation and sequencing. a, Adaptive immune 

receptor repertoire (AIRR) composition can be studied from peripheral blood, 

tissues, solid tumour biopsies and body fluids. Collected samples can be 

handled fresh, frozen or fixed (frozen and formalin-fixed paraffin-embedded 

(FFPE)) in the case of tissues or biopsies. b, B cells or T cells can be recovered 

and studied as one whole population or sorted into subsets of interest based on 

their phenotype and functional characteristics. The latter strategy, only from 

fresh or frozen samples, is advantageous when interested in rare cell subsets 

that are present in limited numbers. Both bulk and single-cell sequencing 

techniques can be used considering the technical limitations of each of these 

methods as detailed in the text. c, Genomic DNA (gDNA) or mRNA can be 

extracted from the samples and used for library preparation, a choice that 

depends on the quantity of extracted nucleic acids and experimental goals. 

d, Commercial and in-house library preparation methods are now available 

and based on either multiplex (MTPX) PCR, compatible with both RNA and 

gDNA molecules, or rapid amplification of complementary DNA ends (RACE) 

PCR, only applicable on RNA, each with its own advantages and disadvantages. 

e, Multiple factors should be taken into consideration when selecting 

the appropriate sequencing platform, with the aim of ensuring accurate 

repertoire coverage and reducing sequencing error rate and experimental 

costs. f, Raw AIRR sequencing data (FASTQ format) are firstly aligned to the 

species-specific germline genes to extract variable, (diversity) and joining 

(V(D)J) annotations, as well as isotype classification for BCRs. Subsequently, 

AIR sequences are assembled depending on a predefined clonal sequence and 

exported in a human-readable format for downstream analysis. Quality control 

is necessary following steps in parts c, d and e to ensure that the obtained 

material can be used in the onward steps. Biological and technical replicates 

can also be included in the experiment at different steps (indicated by asterisk). 

C, constant region; UMI, unique molecular identifier.
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Starting from fresh samples is highly recommended to conserve 

the original AIRR composition. Alternatively, FFPE or frozen tissues can 

be analysed, as long as they are preserved in conditions that maintain 

cell integrity. When tissues sit in paraffin for a long time, quality is 

diminished, and frozen tissues are susceptible to loss of fragile cells 

during the thawing–unthawing cycle88,89. When handling such samples, 

nucleic quality and quantity must be checked as well as the lymphocyte 

infiltration, to ensure having the required material to perform the 

analysis (details below and elsewhere90).

Finally, it is important to consider whether to study bulk lym-

phocytes or sorted cell subsets (Fig. 3b). Most AIRR data are col-

lected via bulk-sequencing techniques from millions of total B cells 

or T cells. Although studying total cells can reduce the manipulation 

time and experimental cost, functionally relevant AIRR modifica-

tions and insights about cell subset diversity can be overlooked. For 

instance, mRNA levels in plasma cells are 10-fold to 100-fold higher 

than in naive B cells91,92, which can bias the biological interpretation of 

the obtained results. A prior cell sorting step is thus preferred to sort 

out the subsets of interest based on their phenotype and functional 

characteristics35,79,93–96. Cell sorting can also be advantageous when 

investigating the contribution of a rare cell subset to a given pathol-

ogy, and this calls for the setting up of an efficient sorting strategy 

that combines speed, efficiency and cell purity. Finally, whereas bulk 

sequencing does not allow the study of AIR chain pairing, single-cell 

technologies now offer this possibility for samples with no more than 

104 cells, such as small cell subsets97, cells from tumour biopsies98,99 or 

sorted cells with a given antigen specificity100,101.

Nucleic acid starting template
The number of lymphocytes and the origin of the sample available for 

analysis are the determining factors for selecting the most suitable 

starting material for library preparation. This material can be either 

genomic DNA (gDNA) or mRNA (Fig. 3c) for bulk/sorted cell samples. 

On the one hand, gDNA quantity is proportional to the number of 

cells with the corresponding AIR, as a single copy of each rearrange-

ment is found in a cell, which provides perfect linearity between gDNA 

molecules and cell counts102–104. Although gDNA libraries enable the 

quantification of BCR or TCR clonotypes, they require higher concen-

tration input, and this represents a hurdle when the studied sample is 

limited in size105. On the other hand, using mRNA as a starting material 

precludes quantification of the absolute abundance of clonotypes, 

but offers 10–100 times higher sensitivity as compared with gDNA 

given that each transcript is found in multiple copies in a given cell69. 

Therefore, mRNA offers greater accessibility, particularly for small 

samples with limited nucleic acid quantities103,106, provided that it is 

carefully manipulated, as RNA is sensitive to degradation. Moreover, 

using mRNA transcripts, which are more likely to be efficiently trans-

lated and give rise to functional BCRs or TCRs, reduces the background 

noise of AIR-seq data, whereas using gDNA introduces an uncertainty 

on whether a molecule will contribute or not to a productive rearrange-

ment as non-productive rearrangements of the opposite parental 

allele are also detected. Finally, mRNA allows for the identification 

of immunoglobulin isotypes, unlike gDNA, where the variable and 

constant regions are separated by introns70,107. Single-cell AIRR-seq is 

so far exclusively RNA-based, and therefore cell viability is critical to 

ensure proper encapsulation of RNA from each single cell90. Impor-

tantly, the quantity and quality of the sample’s genetic material must 

be checked, as these two factors can determine whether the chosen 

template can be used in onward steps108.

Amplification and library preparation
Benchmarking studies of DNA-based and RNA-based amplification 

methods have examined their specific advantages and disadvantages 

for bulk sequencing, highlighting the importance of methodology 

choice when developing an experimental design to study the AIRR 

composition68–71,103,109,110 (Fig. 3d). Multiplex (MTPX) PCR, which is 

suitable for both gDNA and mRNA templates, uses a combination of 

J gene primers of the variable region or a C gene primer, along with a 

mixture of primers for known V genes. A downside to this method is the 

potential competition between the vast array of primers that are used 

in the reaction, causing some genes to be preferentially represented at 

the expense of others102,105. Rapid amplification of 5′ complementary 

DNA ends (5′ RACE) can be used to overcome this issue. 5′ RACE is only 

appropriate for mRNA templates. This approach relies on the reverse 

transcriptase activity to incorporate an adaptor sequence at the 5′ end 

of the cDNA. This adaptor is then used as a target region for subsequent 

nested PCR amplifications, which allows, in combination with use of 

primers that are complementary to C regions, the targeted amplifica-

tion of transcripts in a V gene-independent manner111. Nonetheless, 

depending on the protocol using either ligation or incorporation, 

this method can come with a low adaptor incorporation efficiency112. 

Moreover, it is more prone to error as reverse transcriptase enzymes 

have higher error rates than the DNA polymerases used in gDNA-based 

MTPX methods113. Yet 5′ RACE strategies are becoming popular as they 

do not require gene-specific primers, thus allowing new allele variants 

to be captured.

Several commercial and in-house methods are now available 

for bulk AIRR-seq. MTPX-based kits are increasingly being offered 

by commercial providers, among which iRepertoire114 and Adaptive 

Biotechnologies66 pioneered the field, whereas Illumina, Archer, 

Cellecta and probably others are emerging in the field. 5′ RACE-based 

protocols are also provided by several commercial companies, 

although less so than MTPX. 5′ RACE kits are currently available, for 

example, from Takara Bio, NEB and BGI. Milaboratories now offers vari-

ous MTPX and 5′ RACE products, for application in human and mouse 

samples. Validated in-house protocols have also been designed, based 

on either RACE108,115–117 or MTPX80,102,118,119.

Protocols for single-cell immune repertoire sequencing use the 

same library preparation techniques as those applied for bulk sequenc-

ing, but differ in their cell isolation strategy, which dictates the num-

ber of cells that can be studied per run120. For instance, plate-based 

methods, which sort single cells into 96-well or 384-well plates, enable 

reliable single-cell profiling, albeit at high costs for a limited number of 

cells per run121. In comparison, the widely used droplet-based approach 

proposed by 10x Genomics Chromium122 and inDrop by Illumina123 

owes its popularity to the fact that it permits the encapsulation of up 

to 104–105 single cells in individual droplets, each containing reagents 

for cell lysis, reverse transcription and molecular tagging. Although 

the cost per cell is relatively lower for the droplet-based method as 

compared with other approaches, this comes at the expense of reduced 

sensitivity and increased probability of generating cell doublets124,125. 

Deeper throughput is now achievable through recently launched TCR 

repertoire profiling protocols126,127 that allow the analysis of up to one 

million cells in a single experiment. These technologies, provided by 

Parse Biosciences and Omniscope, add barcodes to each transcript 

using four split-pool combinatorial barcoding steps, thus detaching 

from microfluidic approaches.

Although PCR reagents and protocols have been highly improved 

in recent years, allowing mostly unbiased amplification, biases can 
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still occur during library preparation, including a biased amplification 

of sequences with a particular composition128; a stochastic ampli-

fication of the DNA molecules; and technical artefacts generating 

erroneous sequences, also known as jackpot mutations129. Jackpot 

mutations may occur during the early cycles of PCR, leading to expo-

nential amplification of the erroneous sequence. Artefacts can also 

stem from PCR template switching between similar sequences, pro-

ducing hybrid sequences130. Experimental and computational error 

correction strategies102,105,108,131–133, performed independently or com-

bined, can help detect and eliminate these distortions. For example, 

the use of spike-in controls, which refer to biological or synthetic AIR 

sequences with defined characteristics such as clonal sequences and 

frequencies102,109,134, can aid the detection of enzymatic efficiencies 

and amplification biases. Other strategies include the introduction 

of unique molecular identifiers (UMIs)18,135 in RNA-based amplification 

methods. UMIs are short sequence barcodes that can be attached to 

each genetic template during cDNA synthesis, so that each molecule 

is tagged with a unique barcode. This makes it possible to identify 

duplicate sequences initially derived from the same template molecule, 

allowing an accurate quantification of each clonotype abundance and 

the correction of amplification errors109,119,136,137.

Characterizing the obtained libraries to ensure successful ampli-

fication, purification and size selection of the desired product is the 

final checkpoint before sequencing. Libraries with a single clear peak 

at the appropriate fragment length, which depends on the amplifica-

tion method and the type of the analysed AIR chain, are expected138. 

This can be analysed using gel-based systems along with the provider 

protocols, such as the ones proposed by Agilent (Bioanalyzer or 

TapeStation).

High-throughput sequencing
The selection of an appropriate HTS platform depends on the desired 

read length (short read versus long read), read type (single-end read 

for a partial amplicon coverage or paired-end read for full amplicon 

coverage) and sequencing depth, namely the number of transcripts 

that should be detected per sample, which depends on the diversity of 

the studied cell populations (Fig. 3e). The most appropriate sequencing 

platform would ensure accurate and sufficient repertoire coverage of 

the studied cell populations, while effectively managing error rate and 

experimental costs.

To perform reliable haplotyping of variable and constant regions, 

dedicated long-read (>1 kb) sequencing platforms are available139–143. 

Short-read sequencing, defined here as sequencing producing reads 

150–300 bp long, can cover the full length of the CDR3 region and 

variable V(D)J region. For short-read platforms, base call quality is 

usually poor at the sequence ends, which may lead to sequencing 

errors. Reduction of sequencing error may be achieved by perform-

ing paired-end sequencing, which allows alignment of overlapping 

regions, at the expense of the clonotype depth when one of the reads 

is of poor quality. For example, paired-end short-reading sequencing 

with 2 × 300 bp permits a reliable V gene and V allele assignment as it 

covers the complete rearrangement by detecting the full CDR1 and 

CDR2 sequences (see Fig. 1) with SHMs. The position of the sequenc-

ing primers determines, in large part, the proportion of the V gene 

and C region that can be covered (C region coverage is only critical for 

immunoglobulin isotype determination144,145).

Alternatively, UMIs can be used to enable the correction of 

sequencing errors109,119,136,137, which is particularly important when stud-

ying immunoglobulin intraclonal diversity and antibody evolution109. 

However, choosing the right cutoff for reads per UMI is a critical step, 

as a stringent threshold could result in a drastic decrease in repertoire 

coverage and the filtering out of potentially informative low-frequency 

reads35,69,135,136. Combining UMIs with deep sequencing can reduce 

such loss, a strategy that could be challenging when the studied cell 

population is quantitatively rare69.

Sequencing depth diminishes as the number and concentration 

of libraries increase, owing to a finite read capacity per sequencing 

run. Moreover, over-sequencing has been shown to alter the clonal 

distribution of small samples and to generate noise146. Hence, the 

sequencing depth should be adjusted depending on the sample size 

and their diversity, as well as the number of sequenced samples in a 

single run. Conversely, although deeper sequencing is more appropri-

ate when analysing large samples, sequencing replicates can ensure 

a higher coverage of the true repertoire richness and exploration of 

clonal overlap35,46,147,148. MTPX sequencing platforms that can sequence 

a higher number of samples with deep coverage in a single run reduce 

the cost but increase the risk of cross-sample contamination. How-

ever, this can be addressed via the use of unique dual indexes incorpo-

rated into library adaptors. These ensure accurate demultiplexing by 

filtering out reads resulting from index-hopping, a switch of unique 

dual indexes between libraries that is common in currently used HTS 

techniques149–151.

Altogether, the choice of the biological sample type, starting tem-

plate material, library preparation method and sequencing platform 

are all important considerations when planning an AIRR-seq experi-

ment. Although no gold standards are yet established for any of these 

steps, it is recommended to process samples within the same project 

as uniformly as possible for a minimally biased experiment105,131. First, 

it is recommended that the same sample type is used across all samples 

of the same experiment, as the sample type affects the quality and 

quantity of the collected cells and nucleic material, possibly resulting in 

diversity variations between identical samples processed differently152.  

Second, abiding by a single sequencing protocol will help reduce vari-

ations due to sequencing errors and depth, and therefore ensure accu-

rate comparison and interpretation of the AIRR-seq data, as both are 

often platform-dependent and technology-dependent69,103,133. Strate-

gies such as the implementation of mixed cell populations as in-parallel 

biological controls have been proposed to detect and correct batch 

effects in AIRR-seq experiments105,131. For instance, by using a lymphoid 

cell (B cell or T cell) line mixture with predefined V(D)J rearrangements, 

the relative abundance can be compared with their predefined ones 

across different sample batches and sequencing runs153.

Results
AIRR data preprocessing and analysis, starting from raw files provided 

as sequencing outputs to biological interpretation of the computa-

tional results obtained, are discussed in this section. The analysis part 

will be described by incremental level of granularity and complexity, 

and the extraordinary number of published tools for AIRR-seq data 

analysis are summarized in Supplementary Tables 1 and 2.

Data preprocessing
The main sequencing platforms usually produce FASTA or FASTQ 

output files that contain the unprocessed AIRR-seq data154.

The main objectives of AIRR data preprocessing are to control 

sequencing data quality and correct PCR and sequencing errors, anno-

tate germline alleles, assemble clonotypes based on a predefined 

sequence feature (for example, a specific V(D)J sequence) and export 
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the output in a human-readable tabular format where columns are 

sequence features (germline genes or alleles, FRs and CDR sequences) 

and rows are usually unique clonotypes (Fig. 3f). An elaborate listing 

of available tools for performing each of these steps is presented in 

Supplementary Table 1, with a mention of whether the tool supports 

bulk and/or single-cell AIRR data.

First, the error correction step consists of either filtering reads 

of low quality based on Phred scores (a measure of base call quality), 

clustering reads based on sequencing similarity or aggregating reads 

by UMI109,136,155. UMI-based aggregation can be performed by many 

processing software suites (Supplementary Table 1) and is used par-

ticularly to separate true mutations introduced by SHM from PCR 

and sequencing errors in BCR data. Gupta et al. provide a detailed 

UMI-based correction workflow for BCR sequencing data using 

pRESTO138. Second, after (or at times along with) error correction, 

germline gene or germline allele annotation is performed. Here, 

error-corrected reads are aligned to a species-specific germline data-

base in order to identify, for each read, germline genes, FRs and CDRs, 

as well as SHMs (SHM count and SHM type) for BCR data. Whereas a 

single germline gene reference database is generally used, for all AIRR 

data from across donors, it is now becoming common practice to 

build reference databases for each donor in order to most accurately 

represent BCR and TCR germline alleles. Such germline allele-specific 

annotation can be of importance for downstream comparisons across 

individuals and for accurate representation of SHMs in BCR data, as 

individual-specific polymorphisms could be otherwise incorrectly 

identified as SHMs156–162. Although germline polymorphisms have been 

extensively studied for BCR genes163–169, the allele analysis of TCRs is 

just starting140,159. Third, sequencing reads that share the predefined 

assembly feature are aggregated into a single clonotype, for which the 

abundance is extracted. Fourth, error-corrected and standardized data 

are output for downstream analysis. The standard output format is 

the MiAIRR format as developed by members of the AIRR Community 

(AIRR-C)170,171. Of note, AIRR data may also be reconstructed from bulk 

and scRNA-seq data, albeit with lower efficiency172–174. However, such 

workflows are not a focus of this Primer.

AIRR data exploration and analysis
AIRR data analysis encompasses different levels of granularity, from 

descriptive analysis to predictive modelling and inference of AIR 

specificities. The first step of AIRR data analysis involves the calcula-

tion of AIRR summary statistics, which mostly describe germline and 

clonal count information. Subsequently, more detailed analyses are 

performed focusing on AIRR diversity, AIRR composition similarity, 

clonal architecture and machine learning-assisted AIRR inference 

or predictions. A general overview of AIRR data analysis is provided 

in Fig. 4a and the different approaches and a non-exhaustive list of 

analytical tools are found in Supplementary Table 2. All tools listed in 

Supplementary Table 2 (except those listed in the single-cell analysis 

category) are applicable to bulk sequence data. Some tools outside 

the single-cell analysis category may also be used with single cells, 

although it remains an open question as to how to treat paired-chain 

data diversity, phylogenetics, clustering and machine learning 

method analyses.

AIRR summary statistics. Germline V, D and J gene usage (the fre-

quency with which a given germline gene is used in a given AIRR) and 

CDR3 count information within a given AIRR represent fundamental 

AIRR descriptors. They can be studied with or without sequencing-read 

based weighting, which can add frequency-based information (if pro-

perly corrected for by UMI or other controls69). Except for minor varia-

tions, germline gene usage is usually stable in the naive compartment 

across individuals35,175. Germline gene usage has also been shown to 

be similar across different immune states at the peripheral blood 

mononuclear cell level176. However, differences have been observed 

across some B cell35 and T cell subpopulations and cell development 

stages177,178. Stark differences in germline gene usage across individ-

uals usually point to technical problems in the library preparation 

process179,180. Whereas germline gene usage is usually similar across 

individuals in a comparable state, CDR3 counts may vary extensively 

across samples due to technical biases, or, for example, when compar-

ing cell populations of differing sizes (as, for example, naive versus 

antigen-experienced cells). Strong variation of CDR3 counts among 

samples where similar counts are expected are worth investigating 

and being adjusted prior to downstream data analysis as they might 

impact the biological conclusions drawn.

AIRR diversity. AIRR diversity is typically calculated using diversity 

measures that were first developed in ecology (to count and com-

pare animal and plant abundances). These diversity measures both 

take species (for example, clonotype) richness (unique number of 

different species) and species abundance distribution into account. 

Briefly, the diversity of an AIRR of n clonotypes is calculated using the 

Hill diversity formula (the exponential of the Rényi entropy), which 

includes many of the commonly used diversity measures as special 

cases, defined as:

( )∑D f f( ) =α

i

n

i

α α

=1

1

1−

where f is the clonal frequency distribution and fi is the frequency of 

each single clonotype, α is any real number greater than or equal to zero 

and n is the total number of clonotypes in the repertoire181. The higher 

the value of α, the higher the influence of the higher abundance clono-

types on diversity. Special cases of the Hill function relate to diversity 

indices in the AIRR field: the species richness index, the exponential 

Shannon–Wiener index, the inverse of the Simpson index, the Gini 

index, the Pielou index and the Berger–Parker index182–189. Two AIRRs 

may yield qualitatively different αD values depending on the diversity 

index used, due to the mathematical properties of the Hill diversity 

function (Schur concavity) (see ref. 181). Diversity profiles, which con-

tain several diversity indices, are suggested to be more accurate com-

pared with single diversity indices181. Estimating total AIRR diversity 

given an experimental sample remains an outstanding challenge to 

which no satisfying solutions have been proposed so far19,155,190–192. Diver-

sity indices may also be used to measure the state of clonal expansion 

of an AIRR. For this, the Hill diversity values are divided by the sample’s 

species richness, which results in a measure called ‘evenness’. Evenness 

ranges between near zero and one, and quantifies to what extent the 

clonal frequency distribution (vector of clonal frequencies of an AIRR) 

is away from a uniform distribution.

Cross-sample diversity estimation can be performed using 

entropy-based diversity indices181,190,193–195. Such approaches revealed, 

for instance, that naive cell populations have high evenness, whereas 

antigen-experienced AIRRs have comparatively lower evenness35,181.

AIRR clonal architecture. AIRR architecture defines the many-to-

many sequence similarity landscape between all AIRs within an AIRR. 

Given the large sequence diversity of AIRRs, AIRR architecture analysis 
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enables identifying low and high sequence similarity regions of the 

AIRR and relate those to, for instance, antigen binding. Architecture 

is mathematically based on the all clonotypes versus all clonotypes 

distance matrix. This distance matrix may be transformed into a net-

work in which nodes are clones and edges represent a chosen sequence 

similarity cutoff. This cutoff can be calculated using global similarity 

approaches across the whole sequence. These include the Levenshtein 

and the Hamming distances, with a default score usually set to one 

nucleotide or one amino acid difference, although larger distances have 

been explored196,197. It becomes computationally expensive to calculate 

distance matrices that exceed 105 clonotypes, which is the order of 

magnitude of state-of-the-art experimental AIRR data sets35,49,148. For the 

tasks of large-scale clonal network calculation, the imNet pipeline was 

developed196. Networks of a few thousand nodes may be visualized 

using software suites such as igraph198, NetworkX199, Gephi200 and 

Cytoscape201. Graph properties and network analysis quantify AIRR 

architecture properties196,202,203. Architecture properties may be ana-

lysed at the AIRR level (generally one coefficient per AIRR network) or 

describe the AIRR at the AIR (clonotype) level (one coefficient per AIR 

per AIRR)196. AIRR-level coefficients include degree distribution, clus-

tering coefficient, diameter and assortativity196. The degree of a node 

is the number of its edges (that is, the number of similar clonotypes to a 

given clonotype), and an AIR’s degree distribution quantifies the abun-

dance of node degrees (that is, clonal similarities) across clonotypes 

of a repertoire. For example, power law networks have a few highly 

connected clonotypes and many clonotypes with few connections, 

a  AIRR data analysis

b   Representation of AIRR data for 
machine learning

c   AIRR machine learning tasks d   Simulation of AIRRs

Germline gene usage Diversity profiles

Usage (%)
0 10 15 20

V1

V3

V5

255

V2

V4

V6

V7

Similarity index

E

F

D

C

B

A

B A C  D E  F

Repertoire similarity

S
H

M
 c

o
u

n
t

5

10

15

20

25

CDR1 CDR2 FRs

Mutation analysis

Germline

Phylogenetic analysis

BCRs only

= a clone

Repertoire

R
e

p
e

rto
ire

Clonal networks and clustering

Cluster 1

Cluster 2

Cluster 3

56 2 32 12 87.....

7 76 12 4 3.....

8 9 1 23 43.....

32 2 44 17 35.....

8 42 14 63 15.....

29 82 15 64 21.....

24 49 77 25 29.....

Representation approaches

Clonal frequency
One-hot encoding
Physicochemical properties
k-mer based 
Structure based
Protein language model
...

• 
• 
• 
• 
• 
•
•  

Healthy

Binders

Non-binders

Antigen
Machine

learning algorithm

AIRR 1

AIRR 2

AIR 1

AIR 2

AIR n

Diseased

Machine
learning algorithm

Antigen-specific
signatures

S
e
q
u
e
n
c
e
 c
la
s
s
if
ic
a
ti
o
n

R
e
p
e
rt
o
ir
e
 c
la
s
s
if
ic
a
ti
o
n

Abundant clone 
Rare clone 
Pairwise distance

Simulation input

F
re

q
u

e
n

c
y

1 2 3 4 5

2

3

4

5

Clone

Clonal frequencies V(D)J statistics 

Immune signal 

Simulation output

Sequence (nt/aa) 

actgggccatgtcaa...

cgtatgcatggccatt...

Count

1337

1200

V gene 

IGHV1

IGHV3

D gene 

IGHD2

IGHD3

Species and receptor
specifications 

Motif sequence
+/– position 

V(D)J identities

(P)gens

Deletion Insertion

α

Repertoire 2
Repertoire 1

0 1 2 3 4 5

2

3

4

5

D
iv

e
rs

it
y
 (
α
D

)

Repertoire features
k-mers
Immune signals 

actgcttagcta
......atcgtctat

Fig. 4 | Bioinformatic downstream analyses of AIRR-seq data. a, Preprocessed 

adaptive immune receptor repertoire (AIRR) data harbour valuable information 

that can be exploited to conduct downstream comparative studies. This 

can include descriptive analyses (for example, V gene usage), repertoire 

similarity analyses (for example, clonal overlap) and diversity analyses 

(for example, diversity profiles and clonal networks). Mutational analysis 

and somatic hypermutation (SHM)-based phylogenetic studies can also be 

conducted on B cell receptor (BCR) sequencing data. The results of these 

analyses are highly dependent on the germline reference used. b, AIRR data 

representation in machine learning. Prior to machine learning analysis, AIRR 

sequence data require encoding in machine learning-readable format. Several 

encodings exist, which may take clonal frequency, sequence composition and 

physicochemical properties into account. c, Machine learning algorithms 

may be implemented on AIRR data to perform classification tasks including 

sequence classification (for example, antigen binding prediction) and repertoire 

classification (for example, immune state prediction; health/disease). d, Tunable 

simulation parameters can be implemented to generate synthetic adaptive 

immune receptor (AIR) sequences in silico. CDR, complementary determining 

region; FR, framework region; IgH, immunoglobulin heavy chain; V(D)J, variable, 

(diversity) and joining.
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and this network architecture may relate to antigen-driven clonal 

expansion, whereas exponential networks have a rather even degree 

distribution across clonotypes more reflective of naive repertoires196.

Complementarily, AIR-level parameters such as PageRank196 quan-

tify the importance of the similarity between two CDR3 clonotypes 

within a clonal network. Extensive mathematical descriptions of net-

work parameters may be found elsewhere196,204,205. Of note, AIR-level 

similarity measures may be generalized to identifying short amino 

acid motifs. The rationale behind this approach is that short stretches 

of amino acids, also known as k-mers, contribute to the epitope bind-

ing affinity206,207. Clustering of similar AIRs, for instance, by shared 

k-mers, has thus become a popular method to attempt to identify 

antigen or epitope-specific receptors208,209, recently also by including 

transcriptome information210–213.

B cell phylogenetics. When exposed to antigens, B cells undergo 

expansion and hypermutation in their BCR variable regions. This pro-

cess leads to the development of a B cell lineage, ranging from naive 

unmutated B cells to memory B cells and plasma cells that have under-

gone SHM. Studying the evolution of antibody repertoires provides 

valuable insights into how vaccines and pathogens influence the body’s 

humoral immune response214,215.

To deduce the ancestral evolutionary connections among indi-

vidual B cells, lineage trees are created using sequences from a clonal 

lineage. A clonal lineage is determined by the number of receptor 

sequences originating from the same recombination event, indi-

cating shared ancestry. When constructing a lineage tree, a typical 

preprocessing step involves grouping sequences with identical V 

and J genes and CDR3 length. However, the specifics of this pro-

cess may vary depending on lineage and clone definitions24. Lineage 

trees may also be identified in a data-driven fashion216,217. Standard 

algorithms for inferring phylogenetic trees that use maximum par-

simony and maximum likelihood are often employed in B cell phy-

logenetic analyses, but it remains challenging to ascertain that a 

given method has inferred the biologically accurate tree192,218–220 

To account for the unique biology of B cells, more context-aware (for 

example, favouring hot spots, disfavouring cold spots221) phyloge-

netic methods such as IgPhyML222 have been developed. Furthermore, 

BCR repertoires often contain hundreds of independent clones, and 

standard phylogenetic models consider clonal lineages individually, 

which can compromise efficiency. The use of repertoire-wide mod-

els, which allow some parameters to be shared among the multiple 

clonal lineages, can improve model precision222. Recently, a statistical 

framework was developed to characterize migration, differentia-

tion and isotype switching along B cell phylogenetic trees, and this 

framework is implemented in the R package entitled Dowser223, which 

now enables inference of B cell phylogenies from paired heavy and 

light chain BCR sequences, along with other tools224–226. Third, B cell 

Glossary

Adaptive immune receptor 

repertoire

(AIRR). The collection of adaptive 

immune receptors in a single 

individual at a single point in time.

Adaptive immune receptors

(AIRs). B cell receptors, antibodies and 

T cell receptors.

Class-switch recombinations

Processes by which proliferating B cells 

change their antibody production by 

rearranging the constant region genes 

in the immunoglobulin heavy chain 

(IgH) locus to switch from expressing 

one class of immunoglobulin to 

another. The produced isotype retains 

the same antigen specificity but has 

di�erent e�ector properties.

Clonotypes

Definitions range from the exact amino 

acid complementary determining 

region 3 (CDR3) to clusters of 

sequences to the sequence of entire 

variable chain regions. The debate on 

what constitutes a clonotype is ongoing 

and beyond the scope of this Primer.

Epitope

The specific part of an antigen that 

is contacted and recognized by an 

adaptive immune receptor (AIR).

Generation probability

Probability for observing a given 

recombined adaptive immune receptor 

sequence.

Germline alleles

Variants of variable (V), diversity (D) 

and joining (J) genes, representing the 

building blocks of recombined variable 

regions of a B cell receptor/T cell 

receptor.

Ground truth

An environment where any parameter 

(and the value thereof) that contributed 

to training data generation is known and 

controlled.

Paratope

The set of amino acids in an adaptive 

immune receptor (AIR) that contribute 

to antigen/epitope binding and are in 

direct contact with the epitope during 

binding.

Peptide–MHC complex

(pMHC). The major histocompatibility 

complex (MHC) is a highly polymorphic 

region of the genome that encodes 

MHC cell surface proteins that present 

antigenic peptides. T cell receptors 

recognize and bind peptides that are 

presented by the MHC. We denote a 

peptide when presented by the MHC 

as a pMHC.

Private clonotypes

Adaptive immune receptor sequences 

that occur exclusively in the adaptive 

immune receptor repertoire of a single 

individual.

Public clonotypes

Adaptive immune receptor (AIR) 

sequences that occur more than 

n times (n > 1) across a set of adaptive 

immune receptor repertoires (AIRRs) 

collected from di�erent individuals.

Sequencing depth

The number of sequencing reads for a 

given sample.

Somatic hypermutations

(SHMs). Processes that lead to 

mutation(s) in the variable, (diversity) 

and joining (V(D)J) recombined 

B cell receptor (BCR) sequences, 

taking place predominantly in 

anatomical locales called germinal 

centres, and may be associated 

with the selection for improved BCR 

binding of a specific antigen.

Unique dual indexes

Unique pairs of i5 and i7 index primers 

used for filtering out index-hopped or 

misassigned reads post sequencing.

Unique molecular identifiers

(UMIs). Short sequences added 

to DNA/RNA fragments in some 

high-throughput sequencing 

library preparation protocols 

to identify the input DNA/RNA 

molecule, used to reduce errors 

and quantitative bias introduced 

by PCR amplification.
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population data have variable clonal abundances, and incorporat-

ing clone abundance may be important for accurate tree inference. 

A few tools use sequence abundance information for phylogenetic 

tree analysis227,228. Finally, visualization of immunoglobulin trees may 

be performed by various existing tools229–231. For more information 

on immunoglobulin phylogenetic tree analysis, please refer to the 

following articles191,192,215,223,232.

Similarity of AIRR composition. Comparison of AIRR composition, 

at the level of germline gene or CDR3 sequences, is of major interest for 

the identification of clonotypes that are shared across cell popu lations 

or tissues of a given individual or across individuals The presence 

of such clonotypes, commonly termed public clonotypes, in naive 

repertoires can be, in part, causally linked to V(D)J recombination 

statistics46,233 or convergent recombination234,235. For instance, shorter 

CDR3s tend to have higher generation probability and are thus more 

likely to be generated and observed46,236. Public clonotypes may also 

reflect preferential central selection37, or antigen-driven selection, 

hence the observation of shared clonotypes between individuals in the 

context of the same immunological encounter49,237,238 or disease80,239. 

Approaches for repertoire comparison include the measurement 

of clonal overlap with indices that exclusively consider the pres-

ence/absence of the compared repertoire level (such as the Jaccard 

index240)241,242, or additionally consider the frequency information 

(such as the Morisita–Horn index243 or the Jensen–Shannon divergence 

index)244,245. Fast identification of public clonotypes, especially across 

large data sets, can be performed with the tool CompAIRR, which 

also enables fast identification of similar sequences, that is, clono-

types that differ in a few amino acids across samples242. Of interest, 

structure-based analyses suggest that structure-based similarity may 

be higher than sequence-based similarity across AIRRs246.

Recently, basic repertoire statistics and diversity measures have 

been augmented with sequence-based similarity information195,247 to 

account for the highly similar sequences when measuring inter-AIRR 

and intra-AIRR similarity. Even more generally, immuneREF has been 

introduced as a tool to measure inter-AIRR similarity by integrating 

multiple AIRR and sequence and frequency features including gene 

usage, clonal expansion and clonal overlap. These features allow 

researchers to interpret differences between immune repertoires 

using in silico and experimental immunologically interpretable ground 

truth176. However, given that small differences in sequence similarity 

may lead to differences in antigen binding, such measures may not 

accurately represent AIRR diversity if considered from the antigen 

binding perspective.

With the advent of deep learning approaches over the past few 

years, antibody structure predictions based on the sequence alone 

have become more commonplace248,249. Specifically, there now exist 

antibody-specific (and to lesser extent TCR-specific) structure predic-

tion tools that enable large-scale prediction of hundreds of thousands 

or even millions of antibody structures enabling the repertoire-scale 

structure-based comparison of AIRRs250–253. Structure-based AIRR 

comparison is of heightened interest as the three-dimensional struc-

ture of an AIR determines the interaction with an antigen, governing 

its binding properties254–256. AIRs with similar sequences can adopt 

different conformations and vice versa257,258. Of note, although AIR 

structure prediction methods are steadily improving in performance249, 

prediction performance decreases with CDR3 length248,259 or may suffer 

from structural inaccuracies such as incorrect cis-amide bonds, wrong 

stereochemistry or clashes260.

AIRR data-based predictive analysis
AIRRs are both determinants and sensors of health and disease, but 

their complex architecture hinders straightforward access to features 

that are associated with antigen binding or the resulting immune 

response and thereby determine immunity-related outcomes. These 

AIRR features are collectively referred to, here, as AIRR motifs261–263. 

These immune signals are usually situated in the CDR3 region. Machine 

learning tools employ pattern recognition and function approximation 

techniques to identify patterns within groups in (large amounts of) data 

and were proposed for predictive AIRR analysis more than a decade 

ago264,265. Machine learning can discover statistical associations, for 

example between AIRR data and immune status or epitope binding, and 

these associations ideally enable generalizable predictions, aiming not 

only at developing a model with high predictive performance but also 

at obtaining biological insights into AIR biology. Therefore, there is a 

desire for machine learning models to be interpretable. There has been 

a surge in machine and deep learning methods that can be applied to 

investigate how immune signal information is encoded in the AIRR261,266. 

Figure 4b–d illustrate these approaches.

Sequence-based and repertoire-based machine learning appli-

cations. AIRR-based machine learning may be roughly divided into 

repertoire-based and sequence-based machine learning tasks. A few of 

these tools are mentioned non-exhaustively in Supplementary Table 2. 

Machine learning techniques based on sequence analysis concen-

trate on classifying AIR sequences using sequence-level labels, such as 

antigen (epitope) specificity or shared occurrence at the population 

level. Sequence-based machine learning predictions may be applied 

for drug discovery, for the in silico design of antigen therapeutics, 

antibody therapeutics and TCR therapeutics261,267,268 or, potentially, 

also for repertoire-wide antigen-specific sequence annotation269,270. 

Repertoire-based machine learning methods and applications empha-

size AIRR-based classification and predicting donor immune status. 

This includes identifying factors such as disease presence, recent 

vaccinations or prior exposure to specific pathogens. These techniques 

find significant utility in the field of immunodiagnostics. Nevertheless, 

repertoire-based machine learning may also be used to infer disease 

status-associated AIRs or AIR sequence motifs49,271,272.

AIRR data encoding and embedding for AIRR machine learning 

analysis. AIR sequences are chains of amino acids of different lengths. 

Data encoding is the process of assigning a numerical value to each 

amino acid of a protein sequence, to convert the sequence into a 

format that can be used by a machine learning algorithm. There are 

several ways to perform encoding, including one-hot based273, k-mer 

based207,233, amino acid-scale based274 or even whole-sequence based49. 

More recently, neural networks were applied to produce data encod-

ings that are called embeddings and represent sequential data in a 

high-dimensional vector space. The process of creating an embed-

ding involves mapping each sequence to a point in this vector space, 

such that similar sequences are close to each other in the space, and 

dissimilar sequences are far apart (similarity here may not be defined 

by sequence similarity such as edit distance but, for example, a func-

tion, such as binding similarity). Embeddings are commonly used 

in natural language processing to represent words or phrases in a 

continuous vector space. In this context, the embedding represents 

the meaning or context of the word or phrase. One of the most popu-

lar methods for creating embeddings is training a neural network to 

predict a certain variable based on the categorical or discrete input. 
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Recently, protein language models, which are trained on millions of 

protein or AIR sequences, have shown great promise for embedding, 

clustering, predicting and generating protein/AIR function275–282 as they 

seem to capture long-range dependencies well beyond conventional 

sequence similarity. Of interest, joint encoding of sequence and struc-

ture has been shown to improve the prediction of paratope and epitope 

interaction both for antibodies206,273 and TCRs283. Analogously, joint 

embedding of the AIR sequence and transcriptome profile was sug-

gested to reveal interdependencies between the TCR sequence and 

transcriptome, allowing for the identification of T cell clusters with 

previously unidentified disease specificity284.

AIRR machine learning basic workflow. After having opted between 

repertoire-based and sequence-based machine learning methods, 

the basic workflow for AIRR machine learning (AIRR-ML) consistently 

involves a data preparation step, where the data are gathered and 

cleaned, and split into a training set, a validation set and a test set. The 

data preparation step is followed by feature engineering and selection. 

Feature engineering is the process of creating representations of data 

that increase the effectiveness of a model285. This may include select-

ing important variables (feature selection), scaling, normalization and 

encoding of the data. Then, the machine learning model is trained on 

the training data, with the aim of minimizing the difference between the 

predicted output and the actual output. Model evaluation is performed 

on the validation data, using metrics such as accuracy, precision, recall 

and F1 score286. Based on validation results, the model may be fine-tuned 

to improve performance. Model optimization could involve adjusting 

the hyperparameters of the model, changing the learning rate or using 

a different algorithm. Once the model is optimized, it is evaluated on 

the test data to check its generalization performance. This step helps 

ensure that the model is not overfitting to the training data and can 

perform well on new, unseen data, and may involve cross-validation. 

The AIRR-ML basic workflow is iterative and may involve going back to 

previous steps to make adjustments based on the evaluation results (for 

example, nested cross-validation). To streamline the AIRR-ML workflow, 

immuneML was developed. This tool is an open-source software ecosys-

tem comprising fully specified and shareable workflows. immuneML is 

available as a command-line tool, is provided through an intuitive Galaxy 

web interface and contains extensive documentation of workflows, 

all to promote its widespread use287. Specifically, it allows large-scale 

benchmarking of AIRR-ML methods, which can uncover current blank 

spots in AIRR-ML development that warrant further investigation288,289.

Applications
AIRR analyses are currently applied to address various basic and bio-

medical questions. In this section, the applications are illustrated fol-

lowing the type of analysis methods detailed in the Results section. 

A synthetic illustration is depicted in Fig. 5.

AIRR diversity
The mechanisms that underlie generation of the large AIRR diversity 

remain incompletely understood. Nevertheless, the probability with 

which a given AIR sequence can be generated by V(D)J recombina-

tion, also called the generation probability (Pgen), can be quantified290. 

A probabilistic model that learns on non-productive rearrangements 

was developed to estimate the generation probability of each rearrange-

ment event, encompassing segment choice, gene trimming, nucleo-

tide insertions and chain pairing29,290. This model was implemented 

in OLGA (Optimized Likelihood estimate of immunoGlobulin Amino 

acid sequences), a tool that allows the attribution of a Pgen value to any 

given TCR or BCR CDR3 sequence29,236,290,291. Use of OLGA showed that all 

rearrangements are not generated with equal probabilities, with some 

highly probable rearrangements that are specific to viral epitopes. 

Consistently, the thymus was shown to preferentially generate TCRs 

that are able to interact with multiple and unrelated human viruses76. 

These observations suggest that the AIRR is not stochastically diverse 

but, rather, skewed towards a highly protective and balanced entity. 

More recently, the immunoglobulin V(D)J recombination rules and 

sequence generation probabilities were shown to differ in monozygotic 

twins or in inbred mice, and this suggested that non-genetic factors, 

such as epigenetics, influence the recombination process292. These 

observations are additional indicators of the complexity of the AIRRs. 

Of note, current models of repertoire generation do not account for 

the recently observed impact of germline AIR gene polymorphisms 

on V(D)J gene usage and the functional B cell and T cell repertoire167,293.

AIRR diversity is shaped by selection events in the thymus for 

T cells and in the bone marrow for B cells, and further accentuated by 

antigen exposure in the periphery. In mice, repertoire diversity was 

shown to largely differ between antigen-experienced plasma cells and 

antigen-inexperienced pre-B cells and splenic naive B cells, highlighting 

the impact of antigenic encounters on the clonal distribution35. Such 

differences in the BCR repertoires can stem from B cell clonal expan-

sions, but also from class-switch recombinations or SHMs. Indeed, 

although most of the top expanded clonotypes were shown to be 

antigen-specific, antigen binding and non-binding clonotypes are 

evenly distributed among the rest of the repertoire294. Furthermore, 

antibody–antigen binding affinity did not correlate with clonal expan-

sion or SMH, when analysed at a polyclonal and a clonal lineage level. 

Although SHMs do not occur in the TCR repertoire, the study of naive 

and activated regulatory T cell repertoires in mice in a physiological 

context revealed different levels of clonal diversity, mainly caused by 

increased clonal expansions upon activation93.

In a pathological context, investigating the AIRR diversity can 

shed light on the dynamics of the various adaptive immune cell subsets 

and their implication in particular diseases, and help monitor patient 

responses to treatment. For instance, studies reported increased clonal 

expansions within the CD8+TRB rearrangement repertoire in cerebro-

spinal fluid and peripheral blood of patients with multiple sclerosis295. 

Similar observations were described in the context of type 1 diabetes, 

particularly showing decreased TCRβ chain repertoire diversity in the 

pancreatic islets and lymph nodes of patients with type 1 diabetes296,297. 

These results could reconcile over the idea that the disease patho-

genesis is T cell-dependent and driven by potential tissue-specific 

antigens. Increased clonal expansion has also been reported for the 

BCR repertoire in patients with Crohn’s disease and systemic lupus, 

but not in patients with ANCA-associated vasculitis or IgA vasculitis 

when compared with healthy individuals80.

Clonal architecture
Studying the AIR sequence similarity can reveal information about the 

repertoire clonal architecture in health, as well as its dynamics under 

pathological conditions. AIRs can be clustered based on sequence simi-

larity, shared amino acid motifs and/or physicochemical properties. 

Naive B cell and T cell repertoires were found to form highly connected 

networks around conserved public sequences196,202, which have been 

linked to skewed repertoire generation and selection76,95,177,196. Con-

versely, repertoires of antigen-experienced cells were shown to exhibit 

a lower level of sequence similarities across individuals, and this reflects 
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an individual’s history of antigenic stimulations and ongoing immune 

responses178,298. Changes in clonal architecture have been observed fol-

lowing antigenic challenge196, infection with human immunodeficiency 

virus (HIV) or SARS-CoV-2 (refs. 299,300) and therapeutic antibody 

treatment203,241, as well as during tumour development301. Moreover, 

evaluating sequence connectivity relative to the baseline expecta-

tion from V(D)J recombination statistics enabled the identification of 

responding or contracting clonotypes in the peripheral blood of patients 

receiving cancer immunotherapy302 and of individuals with SARS-CoV-2 

infection303. Furthermore, studies have demonstrated that similar 

sequences are highly likely to recognize the same peptide–MHC complex 

(pMHC) ligand202,258,304,305 and may, thus, form specificity groups. There-

fore, matching the sequences of specificity groups identified based 

on sequence similarity with antigen-annotated public data sets might 

help infer antigen specificity for these groups. This strategy has ena-

bled the identification of groups of sequences enriched in individuals 

with viral infections209,306, autoimmune disease307,308 and cancer309,310 

compared with healthy donors. To summarize, the study of the AIRR 

sequence architecture in a pathological context, alone or combined with 

functionally tested antigen-specific sequences from public databases, 

helps identify motifs across immune responses or AIR specificities and 

affinities that are implicated in a particular disease.

Repertoire ARepertoire B

Public clones

Identifying  common AIRs

in health and disease

Identifying biomarkers of

treatment monitoring and

relapse prevention

Developing precision

vaccines/therapeutic

antibodies

AIRR analysis

Clinical
sample 

Machine learning 

Autoimmune diseases
Acute infections

Chronic infections
Cancer

α

Repertoire 2
Repertoire 1

0 1 2 3

2

3

4

5

D
iv

e
rs

it
y
 (
α
D

)

4 5

Unlabelled 
AIRs

Developing

immunotherapies

Developing

immunodiagnostics

Identifying the immune

state through clonal

architecture

Labelled
AIRs

SARS-CoV-2
specific

HIV
specific

Machine
learning

Clone

Germline

Increased antigen
a�inity

Naive
repertoire

Antigen-specificity
information
Cluster-unique motifs

Antigen 
experienced

repertoire 

Ph
ylo

ge
ne

tic
s Diversity

S
im

ila
rity

Clo
na

l a
rch

ite
ct
ur
e

M
a
c
h
in
e
 learn

ing

Fig. 5 | Applications of AIRR analysis towards disease diagnostics 

and immunotherapy development. Different applications of adaptive 

immune receptor repertoire via sequencing (AIRR-seq) analysis are shown 

for the development and set-up of novel diagnostics tools as well for the 

immunotherapy development. Most of the applications can indistinctly arise 

from B cell receptor (BCR) sequencing and T cell receptor (TCR) sequencing, 

except phylogenetics given the absence of somatic hypermutations (SHMs) 

in TCRs. Importantly, all the applications can benefit from the sequencing of 

functionally distinct cell subsets, which increases the precision/targeting of the 

treatment approach, for instance. AIR, adaptive immune receptor.
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B cell phylogenetics
The construction of phylogenetic lineage trees can help address ques-

tions about B cell clonal expansion, SHM and antigen-driven selection. 

For example, B cell phylogenetics has been applied to the analysis of dif-

ferentiation of B cell subtypes during infection with HIV or on sequential 

isotype switching in the context of food allergy223. Moreover, a phylo-

genetic test of measurable immunoglobulin sequence evolution has 

identified measurable evolution specifically in germinal centre B cells 

following influenza vaccination and invalidated the assumption that 

the inability to induce influenza-specific B cell evolution underlies the 

generally poor efficacy of seasonal influenza vaccination311.

In addition, phylogenetic methods that identify sequences that 

share a common unmutated ancestor have been used to predict anti-

body affinities and key affinity-increasing mutations165. A phylogenetic 

approach that quantifies tree dissimilarity (Unifrac) has been applied 

to the repertoires of young and older individuals at baseline and during 

influenza vaccination, and immunosenescence — the ageing of B cell 

repertoires — has been demonstrated to be associated with a contracted 

naive repertoire and diminished intra-lineage diversification312.

In another example, the parental clones of B cells that reside in the 

central nervous system of patients with multiple sclerosis were found 

to arise in the periphery, a finding that raises the question of whether 

lymphocytes activated in the periphery could be the main drivers 

of the disease313. Understanding such a process could help elucidate 

how therapeutics that target peripheral B cells can impact B cells that 

populate the tissues that are affected in a particular disease313.

Similarity of AIRR composition
As described above, public clonotypes are commonly found across 

repertoires within and across individuals, and their presence can be 

due to preferential recombination and/or central selection, and a 

peripheral antigen-specific selection following an infection or in the 

context of a chronic disease. Thus, identifying and characterizing public 

clonotypes could reveal common receptor selection patterns in health 

and disease35,38,314. For instance, CDR3β overlap within the most abun-

dant TCR sequences of thymocytes was found to increase after thymic 

selection38. This observation highlighted the role of thymic selection in 

preferentially selecting certain sequences, regardless of the cell subset 

in which they are found. Public clonotypes are also found in unrelated 

individuals, although twins tend to share higher proportions of their 

repertoires. Importantly, public clonotypes are a core component of 

immune responses to vaccination237,315,316 and infection49,238,317,318 or in 

the context of autoimmune diseases80,239,297,319,320 and malignancies321,322. 

For example, humans exposed to the same antigen showed convergent 

BCR evolution315, resulting in the establishment of public clonotypes 

that harboured protective antibodies, potentially specific against the 

challenging antigen. These findings could eventually be used for 

the development of therapeutic antibodies.

Although it has been recognized that both BCR and TCR diversity 

decreases with age312,323,324, there are only a few studies exploring the 

dynamics of repertoires over shorter or longer periods of time325. A high 

degree of clonal persistence has been demonstrated in individual 

memory B cell subsets across a time span of several months326. Fur-

thermore, the identification of some SARS-CoV-2-reactive T cell clones 

in the memory compartment at a pre-infection time point has indicated 

the participation of pre-existing cross-reactive memory T cells in the 

immune response to SARS-CoV-2 (ref. 303). More generally, analysis 

of BCR repertoires in healthy individuals over the course of 1 month 

has revealed considerable variation within and across individuals327.

AIRR-ML applications
The high AIRR diversity and the non-negligible AIR sequence similar-

ity across individuals led immunologists to suggest that convergent 

AIRR features may contribute to the overall maintenance of health 

status and that eventual enrichment or loss of such features might 

contribute to loss of homeostasis. Machine learning approaches can 

be used to identify such features On the repertoire level, one of the 

first convincing proofs of principle that AIRRs may be used for disease 

classification was provided upon the identification of a public TCRβ 

chain signature from peripheral blood of a cohort of approximately 600 

individuals who were CMV+ and CMV–49. A similar pattern was identified 

for memory CD4+ T cells in an independent cohort, providing evidence 

that public TCRs are closely involved in the pathogen-specific T cell 

response328. Interestingly, the CMV-specific TCRβ chain signature was 

only composed of 164 sequences, and classification accuracy dropped 

from >90% to nearly random (≈50%) when only one third of the original 

data were used, demonstrating that large-scale data sets are necessary 

for detecting immune status-associated immune signals49,287. Indeed, 

a machine learning analysis of ~1,000 synthetic AIRR data sets compris-

ing ≈250,000 AIRRs across different parameters, such as signal occur-

rences and repertoire size, showed that comparatively simple machine 

learning algorithms such as L1-penalized logistic regression are able 

to achieve high prediction accuracy even when a public clonotype 

occurs only in 1 out of 50,000 AIR sequences. So far, there exist only 

a few large-scale AIRR data sets. Such large-scale AIRR data sets from 

of 877 patients with systemic lupus erythematosus and 206 patients 

with rheumatoid arthritis could be used to differentiate between these 

autoimmune conditions based on TCRβ chain repertoires329, whereas 

AIRR data from patients with COVID-19 (n = 1,815) and healthy indi-

viduals (n = 3,500)330 revealed patterns specific to COVID-19 both early 

after diagnosis and after recovery. Whereas these approaches only 

relied on detection of immune status (in other words, detection of 

disease) based on sharing of public clonotypes, a more recent method 

leveraged three different machine learning representations, namely 

overall AIRR composition, convergent clustering of antigen-specific 

sequences by edit distance and language model feature extraction 

from BCR and TCR sequences, to classify individuals with SARS-CoV-2 

(n = 63), HIV (n = 95) and systemic lupus erythematosus (n = 86) and 

healthy controls (n = 217)331.

Sequence-based prediction of AIR–antigen binding may be per-

formed at the sequence level or at the structure level (or with a hybrid 

approach). Most sequence-based approaches have been applied to 

the problem of predicting AIR–antigen binding (such as antibody–

antigen prediction or TCR–pMHC prediction). Extensive reviews 

have been published for both antibody–antigen binding261,267,332,333 

and TCR–pMHC predictions28,334,335. As T cell epitopes are mostly linear, 

TCR–pMHC binding prediction approaches have mainly involved 

sequence-based prediction28,334–339, with only a few more recent cluster-

ing and machine learning approaches also exploring the incorporation 

of structural data283,340,341. In addition to sequence-based AIR–antigen 

binding prediction, simulation tools based on AIRR sequences, such 

as IGoR290, OLGA342 and immuneSIM180, enable the generation of large 

numbers of AIRR sequences with moderate computational resources. 

These tools offer the advantage of generating native-like sequence data 

that are nearly identical to experimental data. ImmuneSIM, simAIRR 

and LIgO, in particular, allow the incorporation of sequence motifs 

into the generated sequences, enabling the modelling of motifs asso-

ciated with antigen binding. Consequently, these simulated data can 

be employed for tasks related to predicting AIR specificity, either in 
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a binary or multi-class fashion. These predictions involve classifying 

sequences based on their antigen binding behaviour (see Use Cases 1 

and 2 in ref. 273) or for AIRR-based machine learning with applications 

to immunodiagnostics287,288,343.

However, although sequence-based data sets are comparatively 

easier to generate than structural data sets344–348, sequence-based 

machine learning often lacks granularity on paratope and confor-

mational epitope binding, and this makes it challenging to resolve 

conformational antibody–antigen binding254. Structural information is 

used either implicitly in the construction of the features by facilitating 

epitope identification, using for example gapped k-mer encoding, or 

explicitly by direct incorporation into the machine learning task. More 

fine-grained information about residue-wise influence on binding 

may also be gained via deep mutational scanning, which unravels an 

incredibly complex AIR–antigen binding landscape51,349–352. A key future 

application for AIR–antigen binding prediction is the in silico annota-

tion of AIRR data sets with antigen binding information. This enables 

quantitative diagnostic profiling for antigen or epitope specificity, and 

comparison across individuals, antigens and immune states270,353–356. 

In addition to AIR–antigen binding predictions, sequence-based 

AIRR-ML approaches can be applied to design new AIR sequences. 

This may find application to simulations357, design of improved 

immunotherapy agents358,359 or antibody drug development360.

Reproducibility and data deposition
The accumulation and promising potential of AIRR-seq data spurred 

scientists and industrialists to define common experimental and com-

putational standards and controls for conducting AIRR studies170,361, 

as well as for harmonizing data storage and sharing361–363. The AIRR-C 

was established in 2015 as a research-driven group that organizes and 

coordinates the use of HTS technologies to streamline AIRR-seq study 

design. Its primary mission is to develop guidelines and standards for 

the generation, annotation and storage of AIRR-seq data to facilitate 

its use by the larger research community.

Experimental reproducibility
As any emerging field of research, the experimental procedures 

involved in AIRR studies were developed at a fast pace without initial 

standardization, which later hindered performing comparative analysis 

across studies and data sets105. Additionally, the high complexity of 

the experimental work involved — including biological sample pres-

ervation, cellular cytometry, (targeted) nucleic acid isolation, primer 

design and concentration, PCR reaction, sequencing technology and 

others — highlighted the several possible biases and errors that can 

arise during AIRR-seq library preparation and data analysis131. Thus, 

standards and controls are needed for AIRR-seq data generation to 

provide a key level of reproducibility and minimize experimental errors. 

This pressing need led to the establishment of the Biological Resources 

Working Group within the AIRR-C, which aims to develop controls and 

strategies to streamline AIRR-seq research105,170,361.

These strategies (further detailed in ref. 105), although not rel-

evant to all experimental platforms or scenarios, include the use of 

sample-specific barcodes to detect sample crosstalk, the use of stand-

ardized sample preparation kits, be they commercial or custom-made, 

when available as they offer standardized analytical materials and 

optimized experimental procedures, and the integration of spike-in 

control sequences within the AIRR-seq library. Although promising, 

the latter strategy is most effective only when the control sequences 

model the natural diversity and complexity of AIRRs, while still being 

distinguishable from the AIRRs of study samples105. The implemen-

tation of in-parallel biological controls, such as a human lymphoid 

cell mixture which better captures the diversity of AIRs, provides 

step-by-step quality monitoring for AIRR-seq library generation and 

sequencing105,131,364. Nevertheless, the identity of genetic rearrange-

ments in this control are not predefined, which can be problematic in 

the case of PCR and/or sample contamination.

Data sharing and computational reproducibility
As the quantity of AIRR-seq data is growing, providing the community 

with the raw data sets and their corresponding metadata can facilitate 

their reuse for secondary analysis or their integration into compara-

ble data sets for greater statistical power. This can support advances 

in computational strategies, particularly machine learning-based 

methods, and drive novel scientific discoveries. AIRR-seq data sharing 

under the FAIR principle (Findability, Accessibility, Interoperability, 

and Reusability) is a way to ensure reliable and accurate data quality365. 

Although more peer-reviewed journals require raw data to be made 

publicly available, there is still a long way to go as, for example, until 

2022 only 38.1% of TCR sequencing studies have made the raw data 

available366. Standardization of metadata formats could be the key 

for encouraging researchers to share their raw data, by creating a 

straightforward ecosystem of databases that can be interchangeably 

used for data input and output reading. In this context, the AIRR-C 

has developed data standards (MiAIRR; AIRR file format)170,171, that 

uphold reproducibility, standard quality control and data deposition 

in a shared repository. These standards guide the publication, cura-

tion and sharing of AIRR-seq data and metadata. Metadata columns 

include study and subject information, details about sample collec-

tion, processing, sequencing, raw sequences, sequence data process-

ing and processed AIRR sequences170. Notably, it is possible to submit 

AIRR-seq data in the AIRR file format standard to the National Center 

for Biotechnology Information (NCBI) (see Guide for submission 

of AIRR-seq data to NCBI)367. Additionally, to facilitate data sharing, 

the AIRR-C has established the AIRR Data Commons (ADC)368, compris-

ing geographically dispersed AIRR-compliant repositories adhering to 

AIRR Standards363. The ADC interface operates as a web-based query 

API, making AIRR-seq studies and their associated annotated sequence 

data in the ADC easily discoverable and accessible. By employing 

MiAIRR Standards170 and AIRR file formats171, the ADC enhances 

interoperability and data reuse, promoting reproducibility and ena-

bling meta-analysis. The ADC can be explored interactively using 

the iReceptor gateway web user interface362. Apart from large-scale 

databases, which mostly contain antigen non-annotated data, there 

are smaller databases with antigen annotation for TCRs347,348,369 or 

BCRs344,346,347,370 (see Supplementary Table 3).

The AIRR-C has also implemented standards for AIRR software 

tools to ensure that AIRR data standards can be used seamlessly. Tools 

that comply with the established standards, detailed on the AIRR-C 

website, can be labelled as AIRR compliant (guidance for AIRR software 

tools). Currently, there exist nine AIRR-compliant software tools.

Limitations and optimizations
The field of AIRR-seq has been evolving rapidly in the past few years, 

increasing our understanding of the effect of diseases on our adaptive 

immune responses. Nevertheless, several technological limitations cur-

rently remain (Fig. 6). Limitations are defined as broad-scope shortcom-

ings in data generation and interpretation. The Outlook section below 

outlines how specific limitations can be addressed in the AIRR field.

https://docs.airr-community.org/en/stable/miairr/introduction_miairr.html
https://docs.airr-community.org/en/stable/miairr/guide_miairr_ncbi.html
https://docs.airr-community.org/en/stable/miairr/guide_miairr_ncbi.html
https://gateway.ireceptor.org/login
https://docs.airr-community.org/en/stable/swtools/airr_swtools_standard.html
https://docs.airr-community.org/en/stable/swtools/airr_swtools_standard.html
https://docs.airr-community.org/en/stable/swtools/airr_swtools_compliant.html
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Experimental biases and data normalization
Technical and biological biases render repertoire cross-comparisons 

challenging, and inevitable biological heterogeneity exists between 

samples depending on their source (different individuals, biologi-

cal compartments, cell subsets)69,103,105,155,371–373. As mentioned in 

‘Experimentation’, experimental biases can be introduced during 

the sequencing workflow (Fig. 3), for example, during the RNA extrac-

tion, reverse transcription and PCR amplification steps. Errors intro-

duced during reverse transcription and PCR amplification steps, 

such as nucleotide misincorporations and amplification biases, 

may affect the quantification and AIR diversity estimation105,108. 

To identify and mitigate these biases, several strategies can be 

applied, such as incorporating spike-in controls and UMIs during 

library preparation105,135,136. The use of bioinformatic algorithms such 

as NoisET374 can also help reduce amplification biases in AIRR-seq 

experiments192,372.

Different protocols may introduce different types of experimental 

biases, and protocol inconsistencies lead to low reproducibility within 

and across data sets69,105, thereby hindering AIRR data comparisons and 

integration. The preferential use of commercial kits over homebrew 

methods could help minimize experimental inconsistencies. Biases 

may also be corrected computationally. For example, the iROAR372 

tool was developed with the vision of generating evergreen data sets 

that can be merged and compared across. AIRR-ML approaches have 

been shown to rely on large sample numbers for optimal prediction 

accuracy287 as well as well-annotated metadata343. Therefore, being 

able to correct batch effects to combine and utilize existing public data 

sets would be invaluable for training these machine learning models. 

Mathematical and statistical methods to correct experimental biases 

are currently lacking in AIRR-seq studies. A method that accurately dis-

cards uninformative sequenced TCR reads based on the Shannon index 

has been proposed146, but it does not perform read count corrections. 
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Fig. 6 | Current limitations and their workarounds in the field of AIRR-seq. 

The major limitations that the field of adaptive immune receptor repertoire 

sequencing (AIRR-seq) is currently facing are represented (solid red hexagons). 

Major limitations can exacerbate others (dashed red hexagons), as indicated by 

a red arrow. Potential/possible workarounds are shown (blue hexagon) for the 

neighbouring limitation (red hexagon). AIRR-ML, AIRR machine learning.
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Normalization strategies developed for other HTS data, such as tran-

scriptome or microbiome sequencing375, could be considered. Indeed, 

AIRR data exhibit high species diversity, data sparsity and little overlap 

between samples, compared with microbiome data.

Experimental cost
The high costs of single-cell AIRR-seq might explain the lack of adap-

tation of single-cell AIRR-seq studies in academic research and the 

scant paired-chain AIRR with assigned specificities available in public 

databases376. To this end, mathematical approaches are being devel-

oped to acquire TCR paired-chain information based on clonal fre-

quency estimations and observational likelihoods of given pairs from 

semi-bulk sequencing377,378. To further improve this approach, scien-

tists have been investigating the underlying rules of chain pairing29,376, 

although no general rules of AIR pairing have been revealed so far379–382.

High experimental costs in bulk sequencing, particularly in 

RNA-based approaches, which require higher sequencing depths, 

could lead to undersampling, namely insufficient read coverage per 

sample. Increasing the sequencing depth is not the best solution as this 

can increase sequencing errors, resulting in skewed clone size or, in the 

case of BCR, skewed SHM profiles, and/or alter the clonal distribution 

of small samples by generating noise. The best alternative proposed 

so far is to incorporate technical and/or biological replicates to assist 

rare clone detection and noise correction46,292,373,374.

Predicting the antigenic epitopes that are recognized by a given 

AIR is of interest for the development of immunotherapies. As most 

of the current prediction approaches are sequence based, the lim-

ited number of antigen-annotated sequences in the curated public 

databases compared with the high diversity of all possible receptor–

epitope pairs represents a hurdle for the training of accurate machine 

learning models. Possible workarounds to this challenge include 

the use of generic AIR–epitope recognition models to reveal bind-

ing patterns and rules258,338,383
. Nevertheless, a single mutation in the 

epitope sequence can impact the binding range and receptor affin-

ity, which requires the training of a specific model for each available 

epitope269,270,287. Yet the imbalanced epitope distribution in these 

databases makes it a challenging approach. Recently, deep muta-

tional scanning experiments were introduced to model the paratope–

epitope interactions and gain insight into the complex AIR–antigen 

binding landscape51,349–352.

Validation of biological causality
AIRR-seq data analysis has been providing correlations with clinical 

conditions49,207,329,384 or underlying genetic background385–387, but has 

so far failed to establish causal links343. Approaches for biology-based 

encoding of AIRR data277 and causal modelling of AIRR data are pro bably 

needed to overcome this limitation. A fundamental impediment to 

larger-scale causality-driven studies is the lack of large-scale cohorts 

with complete metadata information388, which would enable controlling 

for sample selection and confounder variables such as age and sex343.

AIRR-ML optimization
Both sequence-based and repertoire-based machine learning bench-

marking efforts have indicated that further optimization is needed. 

The lowest bound of sample size required remains to be evaluated287,288, 

AIRR-biology adapted machine learning methods must be developed to 

identify more complex AIRR patterns271,288, optimal negative data sets 

still need to be defined337,389,390 and unbiased approaches to estimate 

prediction accuracy will be needed383,391.

Furthermore, interpretation of both sequence-based and 

repertoire-based AIRR-ML results remains challenging. Strong predic-

tion accuracy indicates that there is an immune signal in the AIRR data 

set that differs between two labels (such as health and disease, or bind-

ers and non-binders). The next step is to understand what underlying 

AIRR features contribute to the high prediction accuracy (such as the 

binding rules273,392). Interpretability is tied to the encoding of the data 

and architecture of the AIRR-ML model. For example, by decomposing 

AIRR data into k-mers, one may remove existing amino acid interactions 

within the sequence, thus potentially removing biological information. 

Moreover, it becomes increasingly difficult to establish a link between 

data features and data set labels when complex AIRR-ML models are 

used. Therefore, simpler machine learning architectures may be pref-

erable for interpretability purposes. Indicatively, models based on 

amino acid 3-mers with distinct biophysicochemical characteristics 

and enriched V and J genes have been sufficient to distinguish between 

patients with coeliac disease and healthy individuals384. Models using 

only specific sub-regions in the CDRH3 have been able to drive clas-

sification of public clonotypes and private clonotypes233, and models 

based on specific germline V genes could demonstrate how CDR3 varies 

across immune status and rank sequences based on their likelihood of 

being associated with a given immune state331.

It has been shown that the analysis of interpretability results may 

be complicated by confirmation bias393, which describes a phenom-

enon where the researcher unconsciously injects pre-existing beliefs 

and hypotheses into the analysis. To address this, it is crucial to verify 

with ground truth (which in most cases would involve synthetic data394) 

that hypotheses drawn from the candidate explanation reflect the 

intended logic395.

Outlook
Integrating antibody proteomics into AIRR studies
Proteomics methods, such as mass spectrometry, can be applied to 

analyse the diversity of antibodies in the blood or mucosal tissues396,397. 

Combining bulk and single-cell BCR sequencing with antibody profiling 

has the potential to capture humoral immunity in its entirety47,145,396–399. 

De novo protein sequencing, fuelled by deep learning advances, has 

the potential to revolutionize antibody profiling and, unlike mass 

spectrometry analyses, does not involve profile deconvolution based 

on potentially biased BCR sequencing databases400,401.

Understanding pathophysiology
High-throughput antigen annotation and antigen binding predic-

tion. Although current public databases of AIR sequences and struc-

tures are expanding rapidly in size, the majority of the stored data have 

not been annotated for antigen binding. This limits our knowledge 

about the variation of antigen specificities across individuals and 

immune states, as well as about the frequency of antigen-specific AIR 

for different antigens156,157.

Antigen-specific AIR-sequencing and structural biology 

technologies51,250,268,402–407 as well as growing interdisciplinary exper-

tise in systems immunology, statistics and machine learning are now 

beginning to offer the opportunity to resolve these questions. Par-

ticularly, single-cell sequencing has helped characterize T cells that 

express multiple TCR chains408–410, estimated to represent up to 20% 

of all T cells411, potentially unravelling the mechanisms underlying 

multiple TCR chain expression, and predicting epitope specificities412.

Large-scale antigen-annotated AIRR data may soon enable the 

development of computational and machine learning methods that 
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predict antigen specificity from the AIR sequence or structure, unlock-

ing the currently inaccessible antigen-specific information in publicly 

available AIRR data268,332. Importantly, these approaches will further 

our understanding of AIRR cross-reactivity76,349,413–416.

In the past decade, numerous competitions have arisen with the 

aim of addressing unresolved research questions about protein struc-

ture, interaction and function prediction, such as Critical Assessment of 

Structure Prediction (CASP)417 or Critical Assessment of PRediction 

of Interactions (CAPRI)418, or for artificial intelligence-based image 

reco gnition, such as ImageNet challenge419, among others. These 

competitions have facilitated groundbreaking discoveries such as 

AlphaFold420 and may help sharpen our currently insufficient tools for 

predicting antigen-specific adaptive immunity391,421.

Integration of AIRR data with transcriptomic data. Integrating AIRR 

with transcriptomics has recently been employed to understand better 

how the transcriptional profile of a cell is correlated to AIR–antigen 

binding. To that end, several groups have reported methods that inte-

grate AIRR and transcriptomics211–213,284. Preliminary results suggest 

that antigen binding specificity and the transcriptional profile may be 

linked213,284, and that transcriptomic information may increase pMHC–

TCR epitope prediction accuracy. In the future, it remains to be under-

stood to what extent the MHC background influences the interplay of 

transcriptome and TCR sequence specificity.

The genotype–phenotype link in adaptive immunity. Recently, 

the link between the germline gene repertoire and humoral immune 

response has been investigated in depth. For example, immunogens 

that activate specific germline precursors that have a high likelihood 

of affinity maturing into broadly neutralizing antibodies have shown 

promise for development of precision vaccines against major human 

pathogens422,423. The magnitude of the response to germline gene tar-

geting vaccines could be explained to a large degree by the frequencies 

of the various immunoglobulin genotypes and corresponding B cells 

rather than by the immunogen dose157,424,425. Thus, immunoglobulin 

allelic variations must be considered when designing and testing germ 

line-targeting immunogens in clinical trials. Immunologically, these 

results suggest that genetic variation of the host can modulate the 

strength of vaccine-induced broadly neutralizing antibody responses. 

It will be important to understand the evolution and selection of 

germline gene variants in order to design more targeted vaccines.

The HLA genotype has been associated with various disease 

susceptibilities426. Moreover, the HLA genotype shapes the TCR 

repertoire of a given individual427–429. As recently observed, HLA alleles 

can influence the composition of the TCRβ chain387, and HLA type can 

be predicted based on the presence of some unique TCRs49,385. Yet we 

recently found that TCRs previously known to be restricted to a given 

HLA type could recognize antigen presented by unmatched HLAs76. 

Although progress in transgenic mice is being made, increasing the 

number of deep sequencing data sets from paired or unpaired TCRα 

and TCRβ chain repertoires combined with HLA genotype is needed to 

provide more accurate knowledge on the association of HLA genotype 

and TCR repertoires430.

Translational perspective
AIRR-seq combining advanced statistical and mathematical modelling, 

including machine learning, can now provide toolkits for the identification 

of AIRR signatures associated with disease, serological status or response 

to treatment49,78,329,331,384,431,432. This has been shown in various disease 

indications (cancer, autoimmune disease, transplantation and infection) 

as well as in response to different therapeutic approaches40. Now, the 

future challenge in the field would be to turn these research-oriented 

approaches towards clinical application. In the field of B cell and T cell 

malignancies, the EuroClonality Consortium has already made major 

progress towards diagnosis and prognosis evaluation through AIRR-seq in 

clinics118,153,364. Both stakeholder support in patient care and collaborative 

interdisciplinary efforts are essential to achieve success.

Bulk and single-cell approaches are now being employed to mine 

AIRRs for antigen-specific antibodies250,294,433 that are as close to human 

antibody repertoires as possible434. Recently, generative machine 

learning approaches, which involve learning antibody language277 and 

antigen-specific binding patterns, are used to generate novel358,435 or 

improved280,436 antibodies, thus replacing experimental with compu-

tational antibody discovery. Furthermore, over the past decade adop-

tive T cell therapy, such as adoptive T cell therapy with CAR T cells or 

engineered T cells, has gained insight. In non-solid tumour cancers, 

adoptive T cell therapies targeting well-known cell surface antigens 

expressed by lymphoma cells, such as CD20 or CD19, are already in 

clinics437–439. Such approaches could be expanded to solid cancers, 

when AIRR-seq combined with antigen prediction identifies tumour 

targets that can specifically drive the engineered T cell or the CAR T cell 

to the tumour440,441. Alternatively, AIRR-seq, especially at the single-cell 

level, could help track CAR T cells in patients and better understand 

treatment efficacy or failure442. Similarly, regulatory CAR T cells are 

being developed for the treatment of autoimmune diseases443. Regula-

tory T cell-based therapies would also benefit from AIRR-seq analyses 

aiming at increasing targeting efficacy444.

To summarize, in our view, there is a need for the AIRR field to go 

beyond the current predominantly antigen-agnostic analysis of AIRR 

sequence data. The next frontier is fully antigen-annotated AIRR data 

analysis. Only when this goal is reached can we really begin to under-

stand the specificity and function of adaptive immunity in health and 

disease. To achieve this goal, novel breakthroughs in high-throughput 

AIRR data generation and computational analysis are necessary. 

Furthermore, whereas the AIRR field has been successful in integrating 

long-established concepts from other fields, such as diversity analysis 

from ecology187,445, there is a need for richer perspectives. For example, 

given the current findings on extensive and immunity-relevant ger-

mline gene diversity156,158,161, understanding how evolution has shaped 

the human immune system may lead to evolutionary medicine-driven 

AIRR-based therapeutics and diagnostics design156,446–448.

Published online: xx xx xxxx
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