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MACHINE LEARNING SYSTEMS automatically learn 
programs from data. This is often a very attractive 
alternative to manually constructing them, and in the 
last decade the use of machine learning has spread 
rapidly throughout computer science and beyond. 
Machine learning is used in Web search, spam filters, 
recommender systems, ad placement, credit scoring, 
fraud detection, stock trading, drug design, and many 
other applications. A recent report from the McKinsey 
Global Institute asserts that machine learning (a.k.a. 
data mining or predictive analytics) will be the driver 
of the next big wave of innovation.15 Several fine 
textbooks are available to interested practitioners and 
researchers (for example, Mitchell16 and Witten et 
al.24). However, much of the “folk knowledge” that 

is needed to successfully develop 

machine learning applications is not 

readily available in them. As a result, 

many machine learning projects take 

much longer than necessary or wind 

up producing less-than-ideal results. 

Yet much of this folk knowledge is 

fairly easy to communicate. This is 

the purpose of this article.
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Tapping into the “folk knowledge” needed to 
advance machine learning applications.

BY PEDRO DOMINGOS

A Few Useful 
Things to 
Know About 
Machine 
Learning

 key insights

    Machine learning algorithms can figure 

out how to perform important tasks 

by generalizing from examples. This is 

often feasible and cost-effective where 

manual programming is not. As more 

data becomes available, more ambitious 

problems can be tackled.

    Machine learning is widely used in 

computer science and other fields. 

However, developing successful 

machine learning applications requires a 

substantial amount of “black art” that is 

difficult to find in textbooks.

    This article summarizes 12 key lessons 

that machine learning researchers and 

practitioners have learned. These include 

pitfalls to avoid, important issues to focus 

on, and answers to common questions. 
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Many different types of machine 

learning exist, but for illustration 

purposes I will focus on the most 

mature and widely used one: clas-

sification. Nevertheless, the issues I 

will discuss apply across all of ma-

chine learning. A classifier is a sys-

tem that inputs (typically) a vector 

of discrete and/or continuous fea-

ture values and outputs a single dis-

crete value, the class. For example, 

a spam filter classifies email mes-

sages into “spam” or “not spam,” 

and its input may be a Boolean vec-

tor x = (x1,…,xj,…,xd), where xj = 1 if 

the jth word in the dictionary appears 

in the email and xj = 0 otherwise. A 

learner inputs a training set of ex-

amples (xi, yi), where xi = (xi,1
 , . . . , 

xi,d) is an observed input and yi is the 

corresponding output, and outputs 

a classifier. The test of the learner is 

whether this classifier produces the 

correct output yt for future examples 

xt (for example, whether the spam 

filter correctly classifies previously 

unseen email messages as spam or 

not spam).

Learning = Representation + 

Evaluation + Optimization

Suppose you have an application that 

you think machine learning might be 

good for. The first problem facing you 

is the bewildering variety of learning al-

gorithms available. Which one to use? 

There are literally thousands available, 

and hundreds more are published each 

year. The key to not getting lost in this 

huge space is to realize that it consists 

of combinations of just three compo-

nents. The components are:
 ˲ Representation. A classifier must 

be represented in some formal lan-

guage that the computer can handle. 

Conversely, choosing a representa-

tion for a learner is tantamount to 

choosing the set of classifiers that it 

can possibly learn. This set is called 

the hypothesis space of the learner. 

If a classifier is not in the hypothesis 

space, it cannot be learned. A related 

question, that I address later, is how 

to represent the input, in other words, 

what features to use.
 ˲ Evaluation. An evaluation func-

tion (also called objective function 

or scoring function) is needed to dis-

tinguish good classifiers from bad 

ones. The evaluation function used 

internally by the algorithm may dif-

fer from the external one that we want 

the classifier to optimize, for ease of 

optimization and due to the issues I 

will discuss.
 ˲ Optimization. Finally, we need 

a method to search among the clas-

sifiers in the language for the high-

est-scoring one. The choice of op-

timization technique is key to the 

efficiency of the learner, and also 

helps determine the classifier pro-

duced if the evaluation function has 

more than one optimum. It is com-

mon for new learners to start out using 

off-the-shelf optimizers, which are lat-

er replaced by custom-designed ones.

The accompanying table shows 

common examples of each of these 

three components. For example, k-

nearest neighbor classifies a test ex-

ample by finding the k most similar 

training examples and predicting the 

majority class among them. Hyper-

plane-based methods form a linear I
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combination of the features per class 

and predict the class with the high-

est-valued combination. Decision 

trees test one feature at each internal 

node, with one branch for each fea-

ture value, and have class predictions 

at the leaves. Algorithm 1 (above) 

shows a bare-bones decision tree 

learner for Boolean domains, using 

information gain and greedy search.20 

InfoGain(xj, y) is the mutual informa-

tion between feature xj and the class y. 

MakeNode(x,c0,c1) returns a node that 

tests feature x and has c0 as the child 

for x = 0 and c1 as the child for x = 1.

Of course, not all combinations of 

one component from each column of 

the table make equal sense. For exam-

ple, discrete representations naturally 

go with combinatorial optimization, 

and continuous ones with continu-

ous optimization. Nevertheless, many 

learners have both discrete and con-

tinuous components, and in fact the 

day may not be far when every single 

possible combination has appeared in 

some learner!

Most textbooks are organized by 

representation, and it is easy to over-

look the fact that the other compo-

nents are equally important. There is 

no simple recipe for choosing each 

component, but I will touch on some 

of the key issues here. As we will see, 

some choices in a machine learning 

project may be even more important 

than the choice of learner.

It’s Generalization that Counts

The fundamental goal of machine 

learning is to generalize beyond the 

examples in the training set. This is 

because, no matter how much data 

we have, it is very unlikely that we will 

see those exact examples again at test 

time. (Notice that, if there are 100,000 

words in the dictionary, the spam fil-

ter described above has 2100,000 pos-

sible different inputs.) Doing well on 

the training set is easy (just memorize 

the examples). The most common 

mistake among machine learning be-

ginners is to test on the training data 

and have the illusion of success. If the 

chosen classifier is then tested on new 

data, it is often no better than ran-

dom guessing. So, if you hire someone 

to build a classifier, be sure to keep 

some of the data to yourself and test 

the classifier they give you on it. Con-

versely, if you have been hired to build 

a classifier, set some of the data aside 

from the beginning, and only use it to 

test your chosen classifier at the very 

end, followed by learning your final 

classifier on the whole data.

Contamination of your classifier by 

test data can occur in insidious ways, 

for example, if you use test data to 

tune parameters and do a lot of tun-

ing. (Machine learning algorithms 

have lots of knobs, and success of-

ten comes from twiddling them a lot, 

so this is a real concern.) Of course, 

holding out data reduces the amount 

available for training. This can be mit-

igated by doing cross-validation: ran-

domly dividing your training data into 

(say) 10 subsets, holding out each one 

while training on the rest, testing each 

learned classifier on the examples it 

did not see, and averaging the results 

to see how well the particular param-

eter setting does.

In the early days of machine learn-

ing, the need to keep training and test 

data separate was not widely appreci-

ated. This was partly because, if the 

learner has a very limited representa-

tion (for example, hyperplanes), the 

difference between training and test 

error may not be large. But with very 

flexible classifiers (for example, deci-

sion trees), or even with linear classifi-

ers with a lot of features, strict separa-

tion is mandatory.

Notice that generalization being 

the goal has an interesting conse-

quence for machine learning. Unlike 

in most other optimization problems, 

we do not have access to the function 

we want to optimize! We have to use 

training error as a surrogate for test 

error, and this is fraught with dan-

ger. (How to deal with it is addressed 

later.) On the positive side, since the 

objective function is only a proxy for 

the true goal, we may not need to fully 

Table 1. The three components of learning algorithms.

Representation Evaluation Optimization

Instances Accuracy/Error rate Combinatorial optimization

   K-nearest neighbor Precision and recall    Greedy search

   Support vector machines Squared error    Beam search

Hyperplanes Likelihood    Branch-and-bound

   Naive Bayes Posterior probability Continuous optimization

   Logistic regression Information gain    Unconstrained

Decision trees K-L divergence       Gradient descent

Sets of rules Cost/Utility       Conjugate gradient

   Propositional rules Margin       Quasi-Newton methods

   Logic programs    Constrained

Neural networks       Linear programming

Graphical models       Quadratic programming

   Bayesian networks

   Conditional random fields

Algorithm 1. Decision tree induction.

LearnDT (TrainSet) 

if all examples in TrainSet have the same class y
*
 then 

return MakeLeaf(y
*
)

if no feature xj has InfoGain(xj ,y) > 0 then 

y
*
 ← Most frequent class in TrainSet  

return MakeLeaf(y
*
)

x
*
 ← argmaxxj InfoGain(xj, y)

TS0 ← Examples in TrainSet with x
*
 = 0

TS1 ← Examples in TrainSet with x
*
 = 1

return MakeNode(x
*
, LearnDT(TS0), LearnDT(TS1))
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optimize it; in fact, a local optimum 

returned by simple greedy search may 

be better than the global optimum.

Data Alone Is Not Enough

Generalization being the goal has an-

other major consequence: Data alone 

is not enough, no matter how much 

of it you have. Consider learning a 

Boolean function of (say) 100 vari-

ables from a million examples. There 

are 2100 − 106 examples whose classes 

you do not know. How do you figure 

out what those classes are? In the ab-

sence of further information, there is 

just no way to do this that beats flip-

ping a coin. This observation was first 

made (in somewhat different form) by 

the philosopher David Hume over 200 

years ago, but even today many mis-

takes in machine learning stem from 

failing to appreciate it. Every learner 

must embody some knowledge or as-

sumptions beyond the data it is given 

in order to generalize beyond it. This 

notion was formalized by Wolpert in 

his famous “no free lunch” theorems, 

according to which no learner can 

beat random guessing over all pos-

sible functions to be learned.25

This seems like rather depressing 

news. How then can we ever hope to 

learn anything? Luckily, the functions 

we want to learn in the real world are 

not drawn uniformly from the set of all 

mathematically possible functions! In 

fact, very general assumptions—like 

smoothness, similar examples hav-

ing similar classes, limited depen-

dences, or limited complexity—are 

often enough to do very well, and this 

is a large part of why machine learn-

ing has been so successful. Like de-

duction, induction (what learners do) 

is a knowledge lever: it turns a small 

amount of input knowledge into a 

large amount of output knowledge. 

Induction is a vastly more powerful 

lever than deduction, requiring much 

less input knowledge to produce use-

ful results, but it still needs more than 

zero input knowledge to work. And, as 

with any lever, the more we put in, the 

more we can get out.

A corollary of this is that one of the 

key criteria for choosing a representa-

tion is which kinds of knowledge are 

easily expressed in it. For example, if 

we have a lot of knowledge about what 

makes examples similar in our do-

main, instance-based methods may 

be a good choice. If we have knowl-

edge about probabilistic dependen-

cies, graphical models are a good fit. 

And if we have knowledge about what 

kinds of preconditions are required by 

each class, “IF . . . THEN . . .” rules may 

be the best option. The most useful 

learners in this regard are those that 

do not just have assumptions hard-

wired into them, but allow us to state 

them explicitly, vary them widely, and 

incorporate them automatically into 

the learning (for example, using first-

order logic21 or grammars6).

In retrospect, the need for knowl-

edge in learning should not be sur-

prising. Machine learning is not 

magic; it cannot get something from 

nothing. What it does is get more 

from less. Programming, like all en-

gineering, is a lot of work: we have to 

build everything from scratch. Learn-

ing is more like farming, which lets 

nature do most of the work. Farmers 

combine seeds with nutrients to grow 

crops. Learners combine knowledge 

with data to grow programs.

Overfitting Has Many Faces

What if the knowledge and data we 

have are not sufficient to completely 

determine the correct classifier? Then 

we run the risk of just hallucinating 

a classifier (or parts of it) that is not 

grounded in reality, and is simply en-

coding random quirks in the data. 

This problem is called overfitting, and 

is the bugbear of machine learning. 

When your learner outputs a classi-

fier that is 100% accurate on the train-

ing data but only 50% accurate on test 

data, when in fact it could have output 

one that is 75% accurate on both, it 

has overfit.

Everyone in machine learning 

knows about overfitting, but it comes 

in many forms that are not immedi-

ately obvious. One way to understand 

overfitting is by decomposing gener-

alization error into bias and variance.9 

Bias is a learner’s tendency to con-

sistently learn the same wrong thing. 

Variance is the tendency to learn ran-

dom things irrespective of the real sig-

nal. Figure 1 illustrates this by an anal-

ogy with throwing darts at a board. A 

linear learner has high bias, because 

when the frontier between two classes 

is not a hyperplane the learner is un-

able to induce it. Decision trees do not 

have this problem because they can 

represent any Boolean function, but 

on the other hand they can suffer from 

high variance: decision trees learned 

on different training sets generated by 

the same phenomenon are often very 

different, when in fact they should be 
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the same. Similar reasoning applies 

to the choice of optimization meth-

od: beam search has lower bias than 

greedy search, but higher variance, be-

cause it tries more hypotheses. Thus, 

contrary to intuition, a more powerful 

learner is not necessarily better than a 

less powerful one.

Figure 2 illustrates this.a Even 

though the true classifier is a set of 

rules, with up to 1,000 examples na-

ive Bayes is more accurate than a 

rule learner. This happens despite 

naive Bayes’s false assumption that 

the frontier is linear! Situations like 

this are common in machine learn-

ing: strong false assumptions can be 

better than weak true ones, because 

a learner with the latter needs more 

data to avoid overfitting.

Cross-validation can help to com-

bat overfitting, for example by using it 

to choose the best size of decision tree 

to learn. But it is no panacea, since if 

we use it to make too many parameter 

choices it can itself start to overfit.17

Besides cross-validation, there 

are many methods to combat overfit-

ting. The most popular one is adding 

a regularization term to the evaluation 

function. This can, for example, pe-

nalize classifiers with more structure, 

thereby favoring smaller ones with 

less room to overfit. Another option 

is to perform a statistical significance 

test like chi-square before adding new 

structure, to decide whether the dis-

tribution of the class really is differ-

ent with and without this structure. 

These techniques are particularly use-

ful when data is very scarce. Neverthe-

less, you should be skeptical of claims 

that a particular technique “solves” 

the overfitting problem. It is easy to 

avoid overfitting (variance) by falling 

into the opposite error of underfitting 

(bias). Simultaneously avoiding both 

requires learning a perfect classifier, 

and short of knowing it in advance 

there is no single technique that will 

always do best (no free lunch).

A common misconception about 

overfitting is that it is caused by noise, 

a Training examples consist of 64 Boolean fea-

tures and a Boolean class computed from 

them according to a set of “IF . . . THEN . . .” 

rules. The curves are the average of 100 runs 

with different randomly generated sets of 

rules. Error bars are two standard deviations. 

See Domingos and Pazzani10 for details.

like training examples labeled with 

the wrong class. This can indeed ag-

gravate overfitting, by making the 

learner draw a capricious frontier to 

keep those examples on what it thinks 

is the right side. But severe overfitting 

can occur even in the absence of noise. 

For instance, suppose we learn a Bool-

ean classifier that is just the disjunc-

tion of the examples labeled “true” 

in the training set. (In other words, 

the classifier is a Boolean formula in 

disjunctive normal form, where each 

term is the conjunction of the feature 

values of one specific training exam-

ple.) This classifier gets all the training 

examples right and every positive test 

example wrong, regardless of whether 

the training data is noisy or not.

The problem of multiple testing13 is 

closely related to overfitting. Standard 

statistical tests assume that only one 

hypothesis is being tested, but mod-

ern learners can easily test millions 

before they are done. As a result what 

looks significant may in fact not be. 

For example, a mutual fund that beats 

the market 10 years in a row looks very 

impressive, until you realize that, if 

there are 1,000 funds and each has a 

50% chance of beating the market on 

any given year, it is quite likely that 

one will succeed all 10 times just by 

luck. This problem can be combatted 

by correcting the significance tests to 

take the number of hypotheses into 

account, but this can also lead to un-

derfitting. A better approach is to con-

trol the fraction of falsely accepted 

non-null hypotheses, known as the 

false discovery rate.3

Intuition Fails in High Dimensions

After overfitting, the biggest problem 

in machine learning is the curse of 

dimensionality. This expression was 

coined by Bellman in 1961 to refer 

to the fact that many algorithms that 

work fine in low dimensions become 

intractable when the input is high-

dimensional. But in machine learn-

ing it refers to much more. General-

izing correctly becomes exponentially 

harder as the dimensionality (number 

of features) of the examples grows, be-

cause a fixed-size training set covers a 

dwindling fraction of the input space. 

Even with a moderate dimension of 

100 and a huge training set of a trillion 

examples, the latter covers only a frac-

tion of about 10−18 of the input space. 

This is what makes machine learning 

both necessary and hard.

More seriously, the similarity-

based reasoning that machine learn-

ing algorithms depend on (explicitly 

or implicitly) breaks down in high di-

mensions. Consider a nearest neigh-

bor classifier with Hamming distance 

as the similarity measure, and sup-

pose the class is just x1 ∧ x2. If there 

are no other features, this is an easy 

problem. But if there are 98 irrelevant 

features x3,..., x100, the noise from 

them completely swamps the signal in 

x1 and x2, and nearest neighbor effec-

tively makes random predictions.

Even more disturbing is that near-

est neighbor still has a problem even 

if all 100 features are relevant! This 

is because in high dimensions all 

examples look alike. Suppose, for 

instance, that examples are laid out 

on a regular grid, and consider a test 

example xt. If the grid is d-dimen-

sional, xt’s 2d nearest examples are 

all at the same distance from it. So as 

the dimensionality increases, more 

and more examples become nearest 

neighbors of xt, until the choice of 

nearest neighbor (and therefore of 

class) is effectively random.

This is only one instance of a more 

general problem with high dimen-

sions: our intuitions, which come 

from a three-dimensional world, of-

ten do not apply in high-dimensional 

ones. In high dimensions, most of the 

mass of a multivariate Gaussian dis-

tribution is not near the mean, but in 

an increasingly distant “shell” around 

it; and most of the volume of a high-

dimensional orange is in the skin, not 

the pulp. If a constant number of ex-

amples is distributed uniformly in a 

high-dimensional hypercube, beyond 

some dimensionality most examples 

are closer to a face of the hypercube 

than to their nearest neighbor. And if 

we approximate a hypersphere by in-

scribing it in a hypercube, in high di-

mensions almost all the volume of the 

hypercube is outside the hypersphere. 

This is bad news for machine learning, 

where shapes of one type are often ap-

proximated by shapes of another.

Building a classifier in two or three 

dimensions is easy; we can find a rea-

sonable frontier between examples 

of different classes just by visual in-
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spection. (It has even been said that if 
people could see in high dimensions 
machine learning would not be neces-
sary.) But in high dimensions it is dif-
ficult to understand what is happen-
ing. This in turn makes it difficult to 
design a good classifier. Naively, one 
might think that gathering more fea-
tures never hurts, since at worst they 
provide no new information about the 
class. But in fact their benefits may 
be outweighed by the curse of dimen-
sionality.

Fortunately, there is an effect that 
partly counteracts the curse, which 
might be called the “blessing of non-
uniformity.” In most applications 
examples are not spread uniformly 
throughout the instance space, but 
are concentrated on or near a lower-
dimensional manifold. For example, 
k-nearest neighbor works quite well 
for handwritten digit recognition 
even though images of digits have 
one dimension per pixel, because the 
space of digit images is much smaller 
than the space of all possible images. 
Learners can implicitly take advan-
tage of this lower effective dimension, 
or algorithms for explicitly reducing 
the dimensionality can be used (for 
example, Tenenbaum22).

Theoretical Guarantees  

Are Not What They Seem

Machine learning papers are full of 
theoretical guarantees. The most com-
mon type is a bound on the number of 
examples needed to ensure good gen-
eralization. What should you make of 
these guarantees? First of all, it is re-
markable that they are even possible. 
Induction is traditionally contrasted 
with deduction: in deduction you can 
guarantee that the conclusions are 
correct; in induction all bets are off. 
Or such was the conventional wisdom 
for many centuries. One of the major 
developments of recent decades has 
been the realization that in fact we can 
have guarantees on the results of in-
duction, particularly if we are willing 
to settle for probabilistic guarantees.

The basic argument is remarkably 
simple.5 Let’s say a classifier is bad 
if its true error rate is greater than ε. 
Then the probability that a bad clas-
sifier is consistent with n random, in-
dependent training examples is less 
than (1 − ε)n. Let b be the number of 

bad classifiers in the learner’s hypoth-
esis space H. The probability that at 
least one of them is consistent is less 
than b(1 − ε)n, by the union bound. As-
suming the learner always returns a 
consistent classifier, the probability 
that this classifier is bad is then less 
than |H|(1 − ε)n, where we have used 
the fact that b ≤ |H|. So if we want this 
probability to be less than δ, it suffices 
to make n > ln(δ/|H|)/ ln(1 − ε) ≥ 1/ε (ln 
|H| + ln 1/δ).

Unfortunately, guarantees of this 
type have to be taken with a large grain 
of salt. This is because the bounds ob-
tained in this way are usually extreme-
ly loose. The wonderful feature of the 
bound above is that the required num-
ber of examples only grows logarith-
mically with |H| and 1/δ. Unfortunate-
ly, most interesting hypothesis spaces 
are doubly exponential in the number 
of features d, which still leaves us 
needing a number of examples expo-
nential in d. For example, consider 
the space of Boolean functions of d 
Boolean variables. If there are e pos-
sible different examples, there are 
2e possible different functions, so 
since there are 2d possible examples, 
the total number of functions is 22d

. 
And even for hypothesis spaces that 
are “merely” exponential, the bound 
is still very loose, because the union 
bound is very pessimistic. For exam-
ple, if there are 100 Boolean features 
and the hypothesis space is decision 
trees with up to 10 levels, to guarantee 
δ = ε = 1% in the bound above we need 
half a million examples. But in prac-
tice a small fraction of this suffices for 
accurate learning.

Further, we have to be careful 
about what a bound like this means. 
For instance, it does not say that, if 
your learner returned a hypothesis 
consistent with a particular training 
set, then this hypothesis probably 
generalizes well. What it says is that, 
given a large enough training set, with 
high probability your learner will ei-
ther return a hypothesis that general-
izes well or be unable to find a consis-
tent hypothesis. The bound also says 
nothing about how to select a good 
hypothesis space. It only tells us that, 
if the hypothesis space contains the 
true classifier, then the probability 
that the learner outputs a bad classi-
fier decreases with training set size. 

One of the major 
developments of 
recent decades has 
been the realization 
that we can have 
guarantees on the 
results of induction, 
particularly if we 
are willing to settle 
for probabilistic 
guarantees.
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If we shrink the hypothesis space, the 

bound improves, but the chances that 

it contains the true classifier shrink 

also. (There are bounds for the case 

where the true classifier is not in the 

hypothesis space, but similar consid-

erations apply to them.)

Another common type of theoreti-

cal guarantee is asymptotic: given in-

finite data, the learner is guaranteed 

to output the correct classifier. This 

is reassuring, but it would be rash to 

choose one learner over another be-

cause of its asymptotic guarantees. In 

practice, we are seldom in the asymp-

totic regime (also known as “asymp-

topia”). And, because of the bias-vari-

ance trade-off I discussed earlier, if 

learner A is better than learner B given 

infinite data, B is often better than A 

given finite data.

The main role of theoretical guar-

antees in machine learning is not as 

a criterion for practical decisions, 

but as a source of understanding and 

driving force for algorithm design. In 

this capacity, they are quite useful; in-

deed, the close interplay of theory and 

practice is one of the main reasons 

machine learning has made so much 

progress over the years. But caveat 

emptor: learning is a complex phe-

nomenon, and just because a learner 

has a theoretical justification and 

works in practice does not mean the 

former is the reason for the latter.

Feature Engineering Is The Key

At the end of the day, some machine 

learning projects succeed and some 

fail. What makes the difference? Eas-

ily the most important factor is the 

features used. Learning is easy if you 

have many independent features that 

each correlate well with the class. On 

the other hand, if the class is a very 

complex function of the features, you 

may not be able to learn it. Often, the 

raw data is not in a form that is ame-

nable to learning, but you can con-

struct features from it that are. This 

is typically where most of the effort in 

a machine learning project goes. It is 

often also one of the most interesting 

parts, where intuition, creativity and 

“black art” are as important as the 

technical stuff.

First-timers are often surprised by 

how little time in a machine learning 

project is spent actually doing ma-

A dumb algorithm 
with lots and lots  
of data beats  
a clever one  
with modest 
amounts of it.

chine learning. But it makes sense if 

you consider how time-consuming it 

is to gather data, integrate it, clean it 

and preprocess it, and how much trial 

and error can go into feature design. 

Also, machine learning is not a one-

shot process of building a dataset and 

running a learner, but rather an itera-

tive process of running the learner, 

analyzing the results, modifying the 

data and/or the learner, and repeat-

ing. Learning is often the quickest 

part of this, but that is because we 

have already mastered it pretty well! 

Feature engineering is more diffi-

cult because it is domain-specific, 

while learners can be largely general 

purpose. However, there is no sharp 

frontier between the two, and this is 

another reason the most useful learn-

ers are those that facilitate incorpo-

rating knowledge.

Of course, one of the holy grails 

of machine learning is to automate 

more and more of the feature engi-

neering process. One way this is often 

done today is by automatically gener-

ating large numbers of candidate fea-

tures and selecting the best by (say) 

their information gain with respect 

to the class. But bear in mind that 

features that look irrelevant in isola-

tion may be relevant in combination. 

For example, if the class is an XOR of 

k input features, each of them by it-

self carries no information about the 

class. (If you want to annoy machine 

learners, bring up XOR.) On the other 

hand, running a learner with a very 

large number of features to find out 

which ones are useful in combination 

may be too time-consuming, or cause 

overfitting. So there is ultimately no 

replacement for the smarts you put 

into feature engineering.

More Data Beats  

a Cleverer Algorithm

Suppose you have constructed the 

best set of features you can, but the 

classifiers you receive are still not ac-

curate enough. What can you do now? 

There are two main choices: design a 

better learning algorithm, or gather 

more data (more examples, and pos-

sibly more raw features, subject to 

the curse of dimensionality). Machine 

learning researchers are mainly con-

cerned with the former, but pragmati-

cally the quickest path to success is 



review articles

OCTOBER 2012  |   VOL.  55  |   NO.  10  |   COMMUNICATIONS OF THE ACM     85

ers are seductive, but they are usually 

harder to use, because they have more 

knobs you need to turn to get good re-

sults, and because their internals are 

more opaque.

Learners can be divided into two 

major types: those whose representa-

tion has a fixed size, like linear classi-

fiers, and those whose representation 

can grow with the data, like decision 

trees. (The latter are sometimes called 

nonparametric learners, but this is 

somewhat unfortunate, since they 

usually wind up learning many more 

parameters than parametric ones.) 

Fixed-size learners can only take ad-

vantage of so much data. (Notice how 

the accuracy of naive Bayes asymptotes 

at around 70% in Figure 2.) Variable-

size learners can in principle learn any 

function given sufficient data, but in 

practice they may not, because of limi-

tations of the algorithm (for example, 

greedy search falls into local optima) 

or computational cost. Also, because 

of the curse of dimensionality, no ex-

isting amount of data may be enough. 

For these reasons, clever algorithms—

those that make the most of the data 

and computing resources available—

often pay off in the end, provided you 

are willing to put in the effort. There 

is no sharp frontier between design-

ing learners and learning classifiers; 

rather, any given piece of knowledge 

could be encoded in the learner or 

learned from data. So machine learn-

ing projects often wind up having a 

significant component of learner de-

sign, and practitioners need to have 

some expertise in it.12

In the end, the biggest bottleneck 

is not data or CPU cycles, but human 

often to just get more data. As a rule 

of thumb, a dumb algorithm with lots 

and lots of data beats a clever one with 

modest amounts of it. (After all, ma-

chine learning is all about letting data 

do the heavy lifting.)

This does bring up another prob-

lem, however: scalability. In most of 

computer science, the two main lim-

ited resources are time and memory. 

In machine learning, there is a third 

one: training data. Which one is the 

bottleneck has changed from decade 

to decade. In the 1980s it tended to 

be data. Today it is often time. Enor-

mous mountains of data are avail-

able, but there is not enough time 

to process it, so it goes unused. This 

leads to a paradox: even though in 

principle more data means that more 

complex classifiers can be learned, in 

practice simpler classifiers wind up 

being used, because complex ones 

take too long to learn. Part of the an-

swer is to come up with fast ways to 

learn complex classifiers, and indeed 

there has been remarkable progress 

in this direction (for example, Hulten 

and Domingos11).

Part of the reason using cleverer 

algorithms has a smaller payoff than 

you might expect is that, to a first ap-

proximation, they all do the same. 

This is surprising when you consider 

representations as different as, say, 

sets of rules and neural networks. But 

in fact propositional rules are readily 

encoded as neural networks, and sim-

ilar relationships hold between other 

representations. All learners essen-

tially work by grouping nearby exam-

ples into the same class; the key dif-

ference is in the meaning of “nearby.” 

With nonuniformly distributed data, 

learners can produce widely different 

frontiers while still making the same 

predictions in the regions that matter 

(those with a substantial number of 

training examples, and therefore also 

where most test examples are likely to 

appear). This also helps explain why 

powerful learners can be unstable but 

still accurate. Figure 3 illustrates this 

in 2D; the effect is much stronger in 

high dimensions.

As a rule, it pays to try the simplest 

learners first (for example, naïve Bayes 

before logistic regression, k-nearest 

neighbor before support vector ma-

chines). More sophisticated learn-

cycles. In research papers, learners 

are typically compared on measures 

of accuracy and computational cost. 

But human effort saved and insight 

gained, although harder to measure, 

are often more important. This favors 

learners that produce human-under-

standable output (for example, rule 

sets). And the organizations that make 

the most of machine learning are 

those that have in place an infrastruc-

ture that makes experimenting with 

many different learners, data sources, 

and learning problems easy and effi-

cient, and where there is a close col-

laboration between machine learning 

experts and application domain ones.

Learn Many Models, Not Just One

In the early days of machine learn-

ing, everyone had a favorite learner, 

together with some a priori reasons 

to believe in its superiority. Most ef-

fort went into trying many variations 

of it and selecting the best one. Then 

systematic empirical comparisons 

showed that the best learner varies 

from application to application, and 

systems containing many different 

learners started to appear. Effort now 

went into trying many variations of 

many learners, and still selecting just 

the best one. But then researchers 

noticed that, if instead of selecting 

the best variation found, we combine 

many variations, the results are bet-

ter—often much better—and at little 

extra effort for the user.

Creating such model ensembles is 

now standard.1 In the simplest tech-

nique, called bagging, we simply gen-

erate random variations of the train-

ing set by resampling, learn a classifier 

on each, and combine the results by 

voting. This works because it greatly 

reduces variance while only slightly 

increasing bias. In boosting, training 

examples have weights, and these are 

varied so that each new classifier fo-

cuses on the examples the previous 

ones tended to get wrong. In stacking, 

the outputs of individual classifiers 

become the inputs of a “higher-level” 

learner that figures out how best to 

combine them.

Many other techniques exist, and 

the trend is toward larger and larger 

ensembles. In the Netflix prize, teams 

from all over the world competed to 

build the best video recommender 

Figure 3. Very different frontiers can yield 

similar predictions.  (+ and – are training 

examples of two classes.)

N. Bayes

kNN
SVM

D. Tree
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continues to improve by adding clas-

sifiers even after the training error has 

reached zero. Another counterexam-

ple is support vector machines, which 

can effectively have an infinite num-

ber of parameters without overfitting. 

Conversely, the function sign(sin(ax)) 

can discriminate an arbitrarily large, 

arbitrarily labeled set of points on the 

x axis, even though it has only one pa-

rameter.23 Thus, contrary to intuition, 

there is no necessary connection be-

tween the number of parameters of a 

model and its tendency to overfit.

A more sophisticated view instead 

equates complexity with the size of 

the hypothesis space, on the basis that 

smaller spaces allow hypotheses to be 

represented by shorter codes. Bounds 

like the one in the section on theoreti-

cal guarantees might then be viewed 

as implying that shorter hypotheses 

generalize better. This can be further 

refined by assigning shorter codes to 

the hypotheses in the space we have 

some a priori preference for. But 

viewing this as “proof” of a trade-off 

between accuracy and simplicity is 

circular reasoning: we made the hy-

potheses we prefer simpler by design, 

and if they are accurate it is because 

our preferences are accurate, not be-

cause the hypotheses are “simple” in 

the representation we chose.

A further complication arises from 

the fact that few learners search their 

hypothesis space exhaustively. A 

learner with a larger hypothesis space 

that tries fewer hypotheses from it 

is less likely to overfit than one that 

tries more hypotheses from a smaller 

space. As Pearl18 points out, the size of 

the hypothesis space is only a rough 

guide to what really matters for relat-

ing training and test error: the proce-

dure by which a hypothesis is chosen.

Domingos7 surveys the main argu-

ments and evidence on the issue of 

Occam’s razor in machine learning. 

The conclusion is that simpler hy-

potheses should be preferred because 

simplicity is a virtue in its own right, 

not because of a hypothetical connec-

tion with accuracy. This is probably 

what Occam meant in the first place.

Representable Does Not 

Imply Learnable

Essentially all representations used in 

variable-size learners have associated 

Just because  
a function can  
be represented  
does not mean  
it can be learned.

system (http://netflixprize.com). As 

the competition progressed, teams 

found they obtained the best results 

by combining their learners with oth-

er teams’, and merged into larger and 

larger teams. The winner and runner-

up were both stacked ensembles of 

over 100 learners, and combining the 

two ensembles further improved the 

results. Doubtless we will see even 

larger ones in the future.

Model ensembles should not be 

confused with Bayesian model av-

eraging (BMA)—the theoretically 

optimal approach to learning.4 In 

BMA, predictions on new examples 

are made by averaging the individual 

predictions of all classifiers in the 

hypothesis space, weighted by how 

well the classifiers explain the train-

ing data and how much we believe 

in them a priori. Despite their su-

perficial similarities, ensembles and 

BMA are very different. Ensembles 

change the hypothesis space (for ex-

ample, from single decision trees to 

linear combinations of them), and 

can take a wide variety of forms. BMA 

assigns weights to the hypotheses in 

the original space according to a fixed 

formula. BMA weights are extremely 

different from those produced by 

(say) bagging or boosting: the latter 

are fairly even, while the former are 

extremely skewed, to the point where 

the single highest-weight classifier 

usually dominates, making BMA ef-

fectively equivalent to just selecting 

it.8 A practical consequence of this is 

that, while model ensembles are a key 

part of the machine learning toolkit, 

BMA is seldom worth the trouble.

Simplicity Does Not 

Imply Accuracy

Occam’s razor famously states that 

entities should not be multiplied be-

yond necessity. In machine learning, 

this is often taken to mean that, given 

two classifiers with the same training 

error, the simpler of the two will likely 

have the lowest test error. Purported 

proofs of this claim appear regularly 

in the literature, but in fact there are 

many counterexamples to it, and the 

“no free lunch” theorems imply it can-

not be true.

We saw one counterexample previ-

ously: model ensembles. The gener-

alization error of a boosted ensemble 
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More often than not, the goal 

of learning predictive models is to 

use them as guides to action. If we 

find that beer and diapers are often 

bought together at the supermar-

ket, then perhaps putting beer next 

to the diaper section will increase 

sales. (This is a famous example in 

the world of data mining.) But short 

of actually doing the experiment it is 

difficult to tell. Machine learning is 

usually applied to observational data, 

where the predictive variables are not 

under the control of the learner, as 

opposed to experimental data, where 

they are. Some learning algorithms 

can potentially extract causal infor-

mation from observational data, but 

their applicability is rather restrict-

ed.19 On the other hand, correlation 

is a sign of a potential causal connec-

tion, and we can use it as a guide to 

further investigation (for example, 

trying to understand what the causal 

chain might be).

Many researchers believe that cau-

sality is only a convenient fiction. For 

example, there is no notion of causal-

ity in physical laws. Whether or not 

causality really exists is a deep philo-

sophical question with no definitive 

answer in sight, but there are two 

practical points for machine learn-

ers. First, whether or not we call them 

“causal,” we would like to predict the 

effects of our actions, not just corre-

lations between observable variables. 

Second, if you can obtain experimen-

tal data (for example by randomly as-

signing visitors to different versions of 

a Web site), then by all means do so.14

Conclusion

Like any discipline, machine learn-

ing has a lot of “folk wisdom” that can 

be difficult to come by, but is crucial 

for success. This article summarized 

some of the most salient items. Of 

course, it is only a complement to the 

more conventional study of machine 

learning. Check out http://www.

cs.washington.edu/homes/pedrod/

class for a complete online machine 

learning course that combines formal 

and informal aspects. There is also a 

treasure trove of machine learning 

lectures at http://www.videolectures.

net. A good open source machine 

learning toolkit is Weka.24 

Happy learning! 
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theorems of the form “Every function 

can be represented, or approximated 

arbitrarily closely, using this repre-

sentation.” Reassured by this, fans of 

the representation often proceed to 

ignore all others. However, just be-

cause a function can be represented 

does not mean it can be learned. For 

example, standard decision tree learn-

ers cannot learn trees with more leaves 

than there are training examples. In 

continuous spaces, representing even 

simple functions using a fixed set of 

primitives often requires an infinite 

number of components. Further, if 

the hypothesis space has many local 

optima of the evaluation function, as 

is often the case, the learner may not 

find the true function even if it is rep-

resentable. Given finite data, time and 

memory, standard learners can learn 

only a tiny subset of all possible func-

tions, and these subsets are different 

for learners with different represen-

tations. Therefore the key question is 

not “Can it be represented?” to which 

the answer is often trivial, but “Can it 

be learned?” And it pays to try different 

learners (and possibly combine them).

Some representations are exponen-

tially more compact than others for 

some functions. As a result, they may 

also require exponentially less data to 

learn those functions. Many learners 

work by forming linear combinations 

of simple basis functions. For exam-

ple, support vector machines form 

combinations of kernels centered at 

some of the training examples (the 

support vectors). Representing parity 

of n bits in this way requires 2n basis 

functions. But using a representation 

with more layers (that is, more steps 

between input and output), parity can 

be encoded in a linear-size classifier. 

Finding methods to learn these deeper 

representations is one of the major re-

search frontiers in machine learning.2

Correlation Does Not 

Imply Causation

The point that correlation does not 

imply causation is made so often that 

it is perhaps not worth belaboring. 

But, even though learners of the kind 

we have been discussing can only 

learn correlations, their results are 

often treated as representing causal 

relations. Isn’t this wrong? If so, then 

why do people do it?


