
78 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

review articles

MACHINE LEARNING SYSTEMS automatically learn
programs from data. This is often a very attractive
alternative to manually constructing them, and in the
last decade the use of machine learning has spread
rapidly throughout computer science and beyond.
Machine learning is used in Web search, spam filters,
recommender systems, ad placement, credit scoring,
fraud detection, stock trading, drug design, and many
other applications. A recent report from the McKinsey
Global Institute asserts that machine learning (a.k.a.
data mining or predictive analytics) will be the driver
of the next big wave of innovation.15 Several fine
textbooks are available to interested practitioners and
researchers (for example, Mitchell16 and Witten et
al.24). However, much of the “folk knowledge” that

is needed to successfully develop

machine learning applications is not

readily available in them. As a result,

many machine learning projects take

much longer than necessary or wind

up producing less-than-ideal results.

Yet much of this folk knowledge is

fairly easy to communicate. This is

the purpose of this article.

DOI:10.1145/2347736.2347755

Tapping into the “folk knowledge” needed to
advance machine learning applications.

BY PEDRO DOMINGOS

A Few Useful
Things to
Know About
Machine
Learning

 key insights

 Machine learning algorithms can figure

out how to perform important tasks

by generalizing from examples. This is

often feasible and cost-effective where

manual programming is not. As more

data becomes available, more ambitious

problems can be tackled.

 Machine learning is widely used in

computer science and other fields.

However, developing successful

machine learning applications requires a

substantial amount of “black art” that is

difficult to find in textbooks.

 This article summarizes 12 key lessons

that machine learning researchers and

practitioners have learned. These include

pitfalls to avoid, important issues to focus

on, and answers to common questions.

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 79

Many different types of machine

learning exist, but for illustration

purposes I will focus on the most

mature and widely used one: clas-

sification. Nevertheless, the issues I

will discuss apply across all of ma-

chine learning. A classifier is a sys-

tem that inputs (typically) a vector

of discrete and/or continuous fea-

ture values and outputs a single dis-

crete value, the class. For example,

a spam filter classifies email mes-

sages into “spam” or “not spam,”

and its input may be a Boolean vec-

tor x = (x1,…,xj,…,xd), where xj = 1 if

the jth word in the dictionary appears

in the email and xj = 0 otherwise. A

learner inputs a training set of ex-

amples (xi, yi), where xi = (xi,1
 , . . . ,

xi,d) is an observed input and yi is the

corresponding output, and outputs

a classifier. The test of the learner is

whether this classifier produces the

correct output yt for future examples

xt (for example, whether the spam

filter correctly classifies previously

unseen email messages as spam or

not spam).

Learning = Representation +

Evaluation + Optimization

Suppose you have an application that

you think machine learning might be

good for. The first problem facing you

is the bewildering variety of learning al-

gorithms available. Which one to use?

There are literally thousands available,

and hundreds more are published each

year. The key to not getting lost in this

huge space is to realize that it consists

of combinations of just three compo-

nents. The components are:
 ˲ Representation. A classifier must

be represented in some formal lan-

guage that the computer can handle.

Conversely, choosing a representa-

tion for a learner is tantamount to

choosing the set of classifiers that it

can possibly learn. This set is called

the hypothesis space of the learner.

If a classifier is not in the hypothesis

space, it cannot be learned. A related

question, that I address later, is how

to represent the input, in other words,

what features to use.
 ˲ Evaluation. An evaluation func-

tion (also called objective function

or scoring function) is needed to dis-

tinguish good classifiers from bad

ones. The evaluation function used

internally by the algorithm may dif-

fer from the external one that we want

the classifier to optimize, for ease of

optimization and due to the issues I

will discuss.
 ˲ Optimization. Finally, we need

a method to search among the clas-

sifiers in the language for the high-

est-scoring one. The choice of op-

timization technique is key to the

efficiency of the learner, and also

helps determine the classifier pro-

duced if the evaluation function has

more than one optimum. It is com-

mon for new learners to start out using

off-the-shelf optimizers, which are lat-

er replaced by custom-designed ones.

The accompanying table shows

common examples of each of these

three components. For example, k-

nearest neighbor classifies a test ex-

ample by finding the k most similar

training examples and predicting the

majority class among them. Hyper-

plane-based methods form a linear I
M

A
G

E
 B

Y
 A

G
S

A
N

D
R

E
W

/S
H

U
T

T
E

R
S

T
O

C
K

.C
O

M

80 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

review articles

combination of the features per class

and predict the class with the high-

est-valued combination. Decision

trees test one feature at each internal

node, with one branch for each fea-

ture value, and have class predictions

at the leaves. Algorithm 1 (above)

shows a bare-bones decision tree

learner for Boolean domains, using

information gain and greedy search.20

InfoGain(xj, y) is the mutual informa-

tion between feature xj and the class y.

MakeNode(x,c0,c1) returns a node that

tests feature x and has c0 as the child

for x = 0 and c1 as the child for x = 1.

Of course, not all combinations of

one component from each column of

the table make equal sense. For exam-

ple, discrete representations naturally

go with combinatorial optimization,

and continuous ones with continu-

ous optimization. Nevertheless, many

learners have both discrete and con-

tinuous components, and in fact the

day may not be far when every single

possible combination has appeared in

some learner!

Most textbooks are organized by

representation, and it is easy to over-

look the fact that the other compo-

nents are equally important. There is

no simple recipe for choosing each

component, but I will touch on some

of the key issues here. As we will see,

some choices in a machine learning

project may be even more important

than the choice of learner.

It’s Generalization that Counts

The fundamental goal of machine

learning is to generalize beyond the

examples in the training set. This is

because, no matter how much data

we have, it is very unlikely that we will

see those exact examples again at test

time. (Notice that, if there are 100,000

words in the dictionary, the spam fil-

ter described above has 2100,000 pos-

sible different inputs.) Doing well on

the training set is easy (just memorize

the examples). The most common

mistake among machine learning be-

ginners is to test on the training data

and have the illusion of success. If the

chosen classifier is then tested on new

data, it is often no better than ran-

dom guessing. So, if you hire someone

to build a classifier, be sure to keep

some of the data to yourself and test

the classifier they give you on it. Con-

versely, if you have been hired to build

a classifier, set some of the data aside

from the beginning, and only use it to

test your chosen classifier at the very

end, followed by learning your final

classifier on the whole data.

Contamination of your classifier by

test data can occur in insidious ways,

for example, if you use test data to

tune parameters and do a lot of tun-

ing. (Machine learning algorithms

have lots of knobs, and success of-

ten comes from twiddling them a lot,

so this is a real concern.) Of course,

holding out data reduces the amount

available for training. This can be mit-

igated by doing cross-validation: ran-

domly dividing your training data into

(say) 10 subsets, holding out each one

while training on the rest, testing each

learned classifier on the examples it

did not see, and averaging the results

to see how well the particular param-

eter setting does.

In the early days of machine learn-

ing, the need to keep training and test

data separate was not widely appreci-

ated. This was partly because, if the

learner has a very limited representa-

tion (for example, hyperplanes), the

difference between training and test

error may not be large. But with very

flexible classifiers (for example, deci-

sion trees), or even with linear classifi-

ers with a lot of features, strict separa-

tion is mandatory.

Notice that generalization being

the goal has an interesting conse-

quence for machine learning. Unlike

in most other optimization problems,

we do not have access to the function

we want to optimize! We have to use

training error as a surrogate for test

error, and this is fraught with dan-

ger. (How to deal with it is addressed

later.) On the positive side, since the

objective function is only a proxy for

the true goal, we may not need to fully

Table 1. The three components of learning algorithms.

Representation Evaluation Optimization

Instances Accuracy/Error rate Combinatorial optimization

 K-nearest neighbor Precision and recall Greedy search

 Support vector machines Squared error Beam search

Hyperplanes Likelihood Branch-and-bound

 Naive Bayes Posterior probability Continuous optimization

 Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent

Sets of rules Cost/Utility Conjugate gradient

 Propositional rules Margin Quasi-Newton methods

 Logic programs Constrained

Neural networks Linear programming

Graphical models Quadratic programming

 Bayesian networks

 Conditional random fields

Algorithm 1. Decision tree induction.

LearnDT (TrainSet)

if all examples in TrainSet have the same class y
*
 then

return MakeLeaf(y
*
)

if no feature xj has InfoGain(xj ,y) > 0 then

y
*
 ← Most frequent class in TrainSet

return MakeLeaf(y
*
)

x
*
 ← argmaxxj InfoGain(xj, y)

TS0 ← Examples in TrainSet with x
*
 = 0

TS1 ← Examples in TrainSet with x
*
 = 1

return MakeNode(x
*
, LearnDT(TS0), LearnDT(TS1))

review articles

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 81

optimize it; in fact, a local optimum

returned by simple greedy search may

be better than the global optimum.

Data Alone Is Not Enough

Generalization being the goal has an-

other major consequence: Data alone

is not enough, no matter how much

of it you have. Consider learning a

Boolean function of (say) 100 vari-

ables from a million examples. There

are 2100 − 106 examples whose classes

you do not know. How do you figure

out what those classes are? In the ab-

sence of further information, there is

just no way to do this that beats flip-

ping a coin. This observation was first

made (in somewhat different form) by

the philosopher David Hume over 200

years ago, but even today many mis-

takes in machine learning stem from

failing to appreciate it. Every learner

must embody some knowledge or as-

sumptions beyond the data it is given

in order to generalize beyond it. This

notion was formalized by Wolpert in

his famous “no free lunch” theorems,

according to which no learner can

beat random guessing over all pos-

sible functions to be learned.25

This seems like rather depressing

news. How then can we ever hope to

learn anything? Luckily, the functions

we want to learn in the real world are

not drawn uniformly from the set of all

mathematically possible functions! In

fact, very general assumptions—like

smoothness, similar examples hav-

ing similar classes, limited depen-

dences, or limited complexity—are

often enough to do very well, and this

is a large part of why machine learn-

ing has been so successful. Like de-

duction, induction (what learners do)

is a knowledge lever: it turns a small

amount of input knowledge into a

large amount of output knowledge.

Induction is a vastly more powerful

lever than deduction, requiring much

less input knowledge to produce use-

ful results, but it still needs more than

zero input knowledge to work. And, as

with any lever, the more we put in, the

more we can get out.

A corollary of this is that one of the

key criteria for choosing a representa-

tion is which kinds of knowledge are

easily expressed in it. For example, if

we have a lot of knowledge about what

makes examples similar in our do-

main, instance-based methods may

be a good choice. If we have knowl-

edge about probabilistic dependen-

cies, graphical models are a good fit.

And if we have knowledge about what

kinds of preconditions are required by

each class, “IF . . . THEN . . .” rules may

be the best option. The most useful

learners in this regard are those that

do not just have assumptions hard-

wired into them, but allow us to state

them explicitly, vary them widely, and

incorporate them automatically into

the learning (for example, using first-

order logic21 or grammars6).

In retrospect, the need for knowl-

edge in learning should not be sur-

prising. Machine learning is not

magic; it cannot get something from

nothing. What it does is get more

from less. Programming, like all en-

gineering, is a lot of work: we have to

build everything from scratch. Learn-

ing is more like farming, which lets

nature do most of the work. Farmers

combine seeds with nutrients to grow

crops. Learners combine knowledge

with data to grow programs.

Overfitting Has Many Faces

What if the knowledge and data we

have are not sufficient to completely

determine the correct classifier? Then

we run the risk of just hallucinating

a classifier (or parts of it) that is not

grounded in reality, and is simply en-

coding random quirks in the data.

This problem is called overfitting, and

is the bugbear of machine learning.

When your learner outputs a classi-

fier that is 100% accurate on the train-

ing data but only 50% accurate on test

data, when in fact it could have output

one that is 75% accurate on both, it

has overfit.

Everyone in machine learning

knows about overfitting, but it comes

in many forms that are not immedi-

ately obvious. One way to understand

overfitting is by decomposing gener-

alization error into bias and variance.9

Bias is a learner’s tendency to con-

sistently learn the same wrong thing.

Variance is the tendency to learn ran-

dom things irrespective of the real sig-

nal. Figure 1 illustrates this by an anal-

ogy with throwing darts at a board. A

linear learner has high bias, because

when the frontier between two classes

is not a hyperplane the learner is un-

able to induce it. Decision trees do not

have this problem because they can

represent any Boolean function, but

on the other hand they can suffer from

high variance: decision trees learned

on different training sets generated by

the same phenomenon are often very

different, when in fact they should be

80

75

70

65

60

55

50

10 100

Number of Examples

T
e

s
t-

S
e

t
A

c
c

u
ra

c
y

 (
%

)

1000 10000

Figure 2. Naïve Bayes can outperform a state-of-the-art rule learner (C4.5rules) even

when the true classifier is a set of rules.

 Bayes C4.5

Figure 1. Bias and variance in
dart-throwing.

Low

Variance

High

Variance

Low

Bias

High

Bias

82 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

review articles

the same. Similar reasoning applies

to the choice of optimization meth-

od: beam search has lower bias than

greedy search, but higher variance, be-

cause it tries more hypotheses. Thus,

contrary to intuition, a more powerful

learner is not necessarily better than a

less powerful one.

Figure 2 illustrates this.a Even

though the true classifier is a set of

rules, with up to 1,000 examples na-

ive Bayes is more accurate than a

rule learner. This happens despite

naive Bayes’s false assumption that

the frontier is linear! Situations like

this are common in machine learn-

ing: strong false assumptions can be

better than weak true ones, because

a learner with the latter needs more

data to avoid overfitting.

Cross-validation can help to com-

bat overfitting, for example by using it

to choose the best size of decision tree

to learn. But it is no panacea, since if

we use it to make too many parameter

choices it can itself start to overfit.17

Besides cross-validation, there

are many methods to combat overfit-

ting. The most popular one is adding

a regularization term to the evaluation

function. This can, for example, pe-

nalize classifiers with more structure,

thereby favoring smaller ones with

less room to overfit. Another option

is to perform a statistical significance

test like chi-square before adding new

structure, to decide whether the dis-

tribution of the class really is differ-

ent with and without this structure.

These techniques are particularly use-

ful when data is very scarce. Neverthe-

less, you should be skeptical of claims

that a particular technique “solves”

the overfitting problem. It is easy to

avoid overfitting (variance) by falling

into the opposite error of underfitting

(bias). Simultaneously avoiding both

requires learning a perfect classifier,

and short of knowing it in advance

there is no single technique that will

always do best (no free lunch).

A common misconception about

overfitting is that it is caused by noise,

a Training examples consist of 64 Boolean fea-

tures and a Boolean class computed from

them according to a set of “IF . . . THEN . . .”

rules. The curves are the average of 100 runs

with different randomly generated sets of

rules. Error bars are two standard deviations.

See Domingos and Pazzani10 for details.

like training examples labeled with

the wrong class. This can indeed ag-

gravate overfitting, by making the

learner draw a capricious frontier to

keep those examples on what it thinks

is the right side. But severe overfitting

can occur even in the absence of noise.

For instance, suppose we learn a Bool-

ean classifier that is just the disjunc-

tion of the examples labeled “true”

in the training set. (In other words,

the classifier is a Boolean formula in

disjunctive normal form, where each

term is the conjunction of the feature

values of one specific training exam-

ple.) This classifier gets all the training

examples right and every positive test

example wrong, regardless of whether

the training data is noisy or not.

The problem of multiple testing13 is

closely related to overfitting. Standard

statistical tests assume that only one

hypothesis is being tested, but mod-

ern learners can easily test millions

before they are done. As a result what

looks significant may in fact not be.

For example, a mutual fund that beats

the market 10 years in a row looks very

impressive, until you realize that, if

there are 1,000 funds and each has a

50% chance of beating the market on

any given year, it is quite likely that

one will succeed all 10 times just by

luck. This problem can be combatted

by correcting the significance tests to

take the number of hypotheses into

account, but this can also lead to un-

derfitting. A better approach is to con-

trol the fraction of falsely accepted

non-null hypotheses, known as the

false discovery rate.3

Intuition Fails in High Dimensions

After overfitting, the biggest problem

in machine learning is the curse of

dimensionality. This expression was

coined by Bellman in 1961 to refer

to the fact that many algorithms that

work fine in low dimensions become

intractable when the input is high-

dimensional. But in machine learn-

ing it refers to much more. General-

izing correctly becomes exponentially

harder as the dimensionality (number

of features) of the examples grows, be-

cause a fixed-size training set covers a

dwindling fraction of the input space.

Even with a moderate dimension of

100 and a huge training set of a trillion

examples, the latter covers only a frac-

tion of about 10−18 of the input space.

This is what makes machine learning

both necessary and hard.

More seriously, the similarity-

based reasoning that machine learn-

ing algorithms depend on (explicitly

or implicitly) breaks down in high di-

mensions. Consider a nearest neigh-

bor classifier with Hamming distance

as the similarity measure, and sup-

pose the class is just x1 ∧ x2. If there

are no other features, this is an easy

problem. But if there are 98 irrelevant

features x3,..., x100, the noise from

them completely swamps the signal in

x1 and x2, and nearest neighbor effec-

tively makes random predictions.

Even more disturbing is that near-

est neighbor still has a problem even

if all 100 features are relevant! This

is because in high dimensions all

examples look alike. Suppose, for

instance, that examples are laid out

on a regular grid, and consider a test

example xt. If the grid is d-dimen-

sional, xt’s 2d nearest examples are

all at the same distance from it. So as

the dimensionality increases, more

and more examples become nearest

neighbors of xt, until the choice of

nearest neighbor (and therefore of

class) is effectively random.

This is only one instance of a more

general problem with high dimen-

sions: our intuitions, which come

from a three-dimensional world, of-

ten do not apply in high-dimensional

ones. In high dimensions, most of the

mass of a multivariate Gaussian dis-

tribution is not near the mean, but in

an increasingly distant “shell” around

it; and most of the volume of a high-

dimensional orange is in the skin, not

the pulp. If a constant number of ex-

amples is distributed uniformly in a

high-dimensional hypercube, beyond

some dimensionality most examples

are closer to a face of the hypercube

than to their nearest neighbor. And if

we approximate a hypersphere by in-

scribing it in a hypercube, in high di-

mensions almost all the volume of the

hypercube is outside the hypersphere.

This is bad news for machine learning,

where shapes of one type are often ap-

proximated by shapes of another.

Building a classifier in two or three

dimensions is easy; we can find a rea-

sonable frontier between examples

of different classes just by visual in-

review articles

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 83

spection. (It has even been said that if
people could see in high dimensions
machine learning would not be neces-
sary.) But in high dimensions it is dif-
ficult to understand what is happen-
ing. This in turn makes it difficult to
design a good classifier. Naively, one
might think that gathering more fea-
tures never hurts, since at worst they
provide no new information about the
class. But in fact their benefits may
be outweighed by the curse of dimen-
sionality.

Fortunately, there is an effect that
partly counteracts the curse, which
might be called the “blessing of non-
uniformity.” In most applications
examples are not spread uniformly
throughout the instance space, but
are concentrated on or near a lower-
dimensional manifold. For example,
k-nearest neighbor works quite well
for handwritten digit recognition
even though images of digits have
one dimension per pixel, because the
space of digit images is much smaller
than the space of all possible images.
Learners can implicitly take advan-
tage of this lower effective dimension,
or algorithms for explicitly reducing
the dimensionality can be used (for
example, Tenenbaum22).

Theoretical Guarantees

Are Not What They Seem

Machine learning papers are full of
theoretical guarantees. The most com-
mon type is a bound on the number of
examples needed to ensure good gen-
eralization. What should you make of
these guarantees? First of all, it is re-
markable that they are even possible.
Induction is traditionally contrasted
with deduction: in deduction you can
guarantee that the conclusions are
correct; in induction all bets are off.
Or such was the conventional wisdom
for many centuries. One of the major
developments of recent decades has
been the realization that in fact we can
have guarantees on the results of in-
duction, particularly if we are willing
to settle for probabilistic guarantees.

The basic argument is remarkably
simple.5 Let’s say a classifier is bad
if its true error rate is greater than ε.
Then the probability that a bad clas-
sifier is consistent with n random, in-
dependent training examples is less
than (1 − ε)n. Let b be the number of

bad classifiers in the learner’s hypoth-
esis space H. The probability that at
least one of them is consistent is less
than b(1 − ε)n, by the union bound. As-
suming the learner always returns a
consistent classifier, the probability
that this classifier is bad is then less
than |H|(1 − ε)n, where we have used
the fact that b ≤ |H|. So if we want this
probability to be less than δ, it suffices
to make n > ln(δ/|H|)/ ln(1 − ε) ≥ 1/ε (ln
|H| + ln 1/δ).

Unfortunately, guarantees of this
type have to be taken with a large grain
of salt. This is because the bounds ob-
tained in this way are usually extreme-
ly loose. The wonderful feature of the
bound above is that the required num-
ber of examples only grows logarith-
mically with |H| and 1/δ. Unfortunate-
ly, most interesting hypothesis spaces
are doubly exponential in the number
of features d, which still leaves us
needing a number of examples expo-
nential in d. For example, consider
the space of Boolean functions of d
Boolean variables. If there are e pos-
sible different examples, there are
2e possible different functions, so
since there are 2d possible examples,
the total number of functions is 22d

.
And even for hypothesis spaces that
are “merely” exponential, the bound
is still very loose, because the union
bound is very pessimistic. For exam-
ple, if there are 100 Boolean features
and the hypothesis space is decision
trees with up to 10 levels, to guarantee
δ = ε = 1% in the bound above we need
half a million examples. But in prac-
tice a small fraction of this suffices for
accurate learning.

Further, we have to be careful
about what a bound like this means.
For instance, it does not say that, if
your learner returned a hypothesis
consistent with a particular training
set, then this hypothesis probably
generalizes well. What it says is that,
given a large enough training set, with
high probability your learner will ei-
ther return a hypothesis that general-
izes well or be unable to find a consis-
tent hypothesis. The bound also says
nothing about how to select a good
hypothesis space. It only tells us that,
if the hypothesis space contains the
true classifier, then the probability
that the learner outputs a bad classi-
fier decreases with training set size.

One of the major
developments of
recent decades has
been the realization
that we can have
guarantees on the
results of induction,
particularly if we
are willing to settle
for probabilistic
guarantees.

84 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

review articles

If we shrink the hypothesis space, the

bound improves, but the chances that

it contains the true classifier shrink

also. (There are bounds for the case

where the true classifier is not in the

hypothesis space, but similar consid-

erations apply to them.)

Another common type of theoreti-

cal guarantee is asymptotic: given in-

finite data, the learner is guaranteed

to output the correct classifier. This

is reassuring, but it would be rash to

choose one learner over another be-

cause of its asymptotic guarantees. In

practice, we are seldom in the asymp-

totic regime (also known as “asymp-

topia”). And, because of the bias-vari-

ance trade-off I discussed earlier, if

learner A is better than learner B given

infinite data, B is often better than A

given finite data.

The main role of theoretical guar-

antees in machine learning is not as

a criterion for practical decisions,

but as a source of understanding and

driving force for algorithm design. In

this capacity, they are quite useful; in-

deed, the close interplay of theory and

practice is one of the main reasons

machine learning has made so much

progress over the years. But caveat

emptor: learning is a complex phe-

nomenon, and just because a learner

has a theoretical justification and

works in practice does not mean the

former is the reason for the latter.

Feature Engineering Is The Key

At the end of the day, some machine

learning projects succeed and some

fail. What makes the difference? Eas-

ily the most important factor is the

features used. Learning is easy if you

have many independent features that

each correlate well with the class. On

the other hand, if the class is a very

complex function of the features, you

may not be able to learn it. Often, the

raw data is not in a form that is ame-

nable to learning, but you can con-

struct features from it that are. This

is typically where most of the effort in

a machine learning project goes. It is

often also one of the most interesting

parts, where intuition, creativity and

“black art” are as important as the

technical stuff.

First-timers are often surprised by

how little time in a machine learning

project is spent actually doing ma-

A dumb algorithm
with lots and lots
of data beats
a clever one
with modest
amounts of it.

chine learning. But it makes sense if

you consider how time-consuming it

is to gather data, integrate it, clean it

and preprocess it, and how much trial

and error can go into feature design.

Also, machine learning is not a one-

shot process of building a dataset and

running a learner, but rather an itera-

tive process of running the learner,

analyzing the results, modifying the

data and/or the learner, and repeat-

ing. Learning is often the quickest

part of this, but that is because we

have already mastered it pretty well!

Feature engineering is more diffi-

cult because it is domain-specific,

while learners can be largely general

purpose. However, there is no sharp

frontier between the two, and this is

another reason the most useful learn-

ers are those that facilitate incorpo-

rating knowledge.

Of course, one of the holy grails

of machine learning is to automate

more and more of the feature engi-

neering process. One way this is often

done today is by automatically gener-

ating large numbers of candidate fea-

tures and selecting the best by (say)

their information gain with respect

to the class. But bear in mind that

features that look irrelevant in isola-

tion may be relevant in combination.

For example, if the class is an XOR of

k input features, each of them by it-

self carries no information about the

class. (If you want to annoy machine

learners, bring up XOR.) On the other

hand, running a learner with a very

large number of features to find out

which ones are useful in combination

may be too time-consuming, or cause

overfitting. So there is ultimately no

replacement for the smarts you put

into feature engineering.

More Data Beats

a Cleverer Algorithm

Suppose you have constructed the

best set of features you can, but the

classifiers you receive are still not ac-

curate enough. What can you do now?

There are two main choices: design a

better learning algorithm, or gather

more data (more examples, and pos-

sibly more raw features, subject to

the curse of dimensionality). Machine

learning researchers are mainly con-

cerned with the former, but pragmati-

cally the quickest path to success is

review articles

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 85

ers are seductive, but they are usually

harder to use, because they have more

knobs you need to turn to get good re-

sults, and because their internals are

more opaque.

Learners can be divided into two

major types: those whose representa-

tion has a fixed size, like linear classi-

fiers, and those whose representation

can grow with the data, like decision

trees. (The latter are sometimes called

nonparametric learners, but this is

somewhat unfortunate, since they

usually wind up learning many more

parameters than parametric ones.)

Fixed-size learners can only take ad-

vantage of so much data. (Notice how

the accuracy of naive Bayes asymptotes

at around 70% in Figure 2.) Variable-

size learners can in principle learn any

function given sufficient data, but in

practice they may not, because of limi-

tations of the algorithm (for example,

greedy search falls into local optima)

or computational cost. Also, because

of the curse of dimensionality, no ex-

isting amount of data may be enough.

For these reasons, clever algorithms—

those that make the most of the data

and computing resources available—

often pay off in the end, provided you

are willing to put in the effort. There

is no sharp frontier between design-

ing learners and learning classifiers;

rather, any given piece of knowledge

could be encoded in the learner or

learned from data. So machine learn-

ing projects often wind up having a

significant component of learner de-

sign, and practitioners need to have

some expertise in it.12

In the end, the biggest bottleneck

is not data or CPU cycles, but human

often to just get more data. As a rule

of thumb, a dumb algorithm with lots

and lots of data beats a clever one with

modest amounts of it. (After all, ma-

chine learning is all about letting data

do the heavy lifting.)

This does bring up another prob-

lem, however: scalability. In most of

computer science, the two main lim-

ited resources are time and memory.

In machine learning, there is a third

one: training data. Which one is the

bottleneck has changed from decade

to decade. In the 1980s it tended to

be data. Today it is often time. Enor-

mous mountains of data are avail-

able, but there is not enough time

to process it, so it goes unused. This

leads to a paradox: even though in

principle more data means that more

complex classifiers can be learned, in

practice simpler classifiers wind up

being used, because complex ones

take too long to learn. Part of the an-

swer is to come up with fast ways to

learn complex classifiers, and indeed

there has been remarkable progress

in this direction (for example, Hulten

and Domingos11).

Part of the reason using cleverer

algorithms has a smaller payoff than

you might expect is that, to a first ap-

proximation, they all do the same.

This is surprising when you consider

representations as different as, say,

sets of rules and neural networks. But

in fact propositional rules are readily

encoded as neural networks, and sim-

ilar relationships hold between other

representations. All learners essen-

tially work by grouping nearby exam-

ples into the same class; the key dif-

ference is in the meaning of “nearby.”

With nonuniformly distributed data,

learners can produce widely different

frontiers while still making the same

predictions in the regions that matter

(those with a substantial number of

training examples, and therefore also

where most test examples are likely to

appear). This also helps explain why

powerful learners can be unstable but

still accurate. Figure 3 illustrates this

in 2D; the effect is much stronger in

high dimensions.

As a rule, it pays to try the simplest

learners first (for example, naïve Bayes

before logistic regression, k-nearest

neighbor before support vector ma-

chines). More sophisticated learn-

cycles. In research papers, learners

are typically compared on measures

of accuracy and computational cost.

But human effort saved and insight

gained, although harder to measure,

are often more important. This favors

learners that produce human-under-

standable output (for example, rule

sets). And the organizations that make

the most of machine learning are

those that have in place an infrastruc-

ture that makes experimenting with

many different learners, data sources,

and learning problems easy and effi-

cient, and where there is a close col-

laboration between machine learning

experts and application domain ones.

Learn Many Models, Not Just One

In the early days of machine learn-

ing, everyone had a favorite learner,

together with some a priori reasons

to believe in its superiority. Most ef-

fort went into trying many variations

of it and selecting the best one. Then

systematic empirical comparisons

showed that the best learner varies

from application to application, and

systems containing many different

learners started to appear. Effort now

went into trying many variations of

many learners, and still selecting just

the best one. But then researchers

noticed that, if instead of selecting

the best variation found, we combine

many variations, the results are bet-

ter—often much better—and at little

extra effort for the user.

Creating such model ensembles is

now standard.1 In the simplest tech-

nique, called bagging, we simply gen-

erate random variations of the train-

ing set by resampling, learn a classifier

on each, and combine the results by

voting. This works because it greatly

reduces variance while only slightly

increasing bias. In boosting, training

examples have weights, and these are

varied so that each new classifier fo-

cuses on the examples the previous

ones tended to get wrong. In stacking,

the outputs of individual classifiers

become the inputs of a “higher-level”

learner that figures out how best to

combine them.

Many other techniques exist, and

the trend is toward larger and larger

ensembles. In the Netflix prize, teams

from all over the world competed to

build the best video recommender

Figure 3. Very different frontiers can yield

similar predictions. (+ and – are training

examples of two classes.)

N. Bayes

kNN
SVM

D. Tree

86 COMMUNICATIONS OF THE ACM | OCTOBER 2012 | VOL. 55 | NO. 10

review articles

continues to improve by adding clas-

sifiers even after the training error has

reached zero. Another counterexam-

ple is support vector machines, which

can effectively have an infinite num-

ber of parameters without overfitting.

Conversely, the function sign(sin(ax))

can discriminate an arbitrarily large,

arbitrarily labeled set of points on the

x axis, even though it has only one pa-

rameter.23 Thus, contrary to intuition,

there is no necessary connection be-

tween the number of parameters of a

model and its tendency to overfit.

A more sophisticated view instead

equates complexity with the size of

the hypothesis space, on the basis that

smaller spaces allow hypotheses to be

represented by shorter codes. Bounds

like the one in the section on theoreti-

cal guarantees might then be viewed

as implying that shorter hypotheses

generalize better. This can be further

refined by assigning shorter codes to

the hypotheses in the space we have

some a priori preference for. But

viewing this as “proof” of a trade-off

between accuracy and simplicity is

circular reasoning: we made the hy-

potheses we prefer simpler by design,

and if they are accurate it is because

our preferences are accurate, not be-

cause the hypotheses are “simple” in

the representation we chose.

A further complication arises from

the fact that few learners search their

hypothesis space exhaustively. A

learner with a larger hypothesis space

that tries fewer hypotheses from it

is less likely to overfit than one that

tries more hypotheses from a smaller

space. As Pearl18 points out, the size of

the hypothesis space is only a rough

guide to what really matters for relat-

ing training and test error: the proce-

dure by which a hypothesis is chosen.

Domingos7 surveys the main argu-

ments and evidence on the issue of

Occam’s razor in machine learning.

The conclusion is that simpler hy-

potheses should be preferred because

simplicity is a virtue in its own right,

not because of a hypothetical connec-

tion with accuracy. This is probably

what Occam meant in the first place.

Representable Does Not

Imply Learnable

Essentially all representations used in

variable-size learners have associated

Just because
a function can
be represented
does not mean
it can be learned.

system (http://netflixprize.com). As

the competition progressed, teams

found they obtained the best results

by combining their learners with oth-

er teams’, and merged into larger and

larger teams. The winner and runner-

up were both stacked ensembles of

over 100 learners, and combining the

two ensembles further improved the

results. Doubtless we will see even

larger ones in the future.

Model ensembles should not be

confused with Bayesian model av-

eraging (BMA)—the theoretically

optimal approach to learning.4 In

BMA, predictions on new examples

are made by averaging the individual

predictions of all classifiers in the

hypothesis space, weighted by how

well the classifiers explain the train-

ing data and how much we believe

in them a priori. Despite their su-

perficial similarities, ensembles and

BMA are very different. Ensembles

change the hypothesis space (for ex-

ample, from single decision trees to

linear combinations of them), and

can take a wide variety of forms. BMA

assigns weights to the hypotheses in

the original space according to a fixed

formula. BMA weights are extremely

different from those produced by

(say) bagging or boosting: the latter

are fairly even, while the former are

extremely skewed, to the point where

the single highest-weight classifier

usually dominates, making BMA ef-

fectively equivalent to just selecting

it.8 A practical consequence of this is

that, while model ensembles are a key

part of the machine learning toolkit,

BMA is seldom worth the trouble.

Simplicity Does Not

Imply Accuracy

Occam’s razor famously states that

entities should not be multiplied be-

yond necessity. In machine learning,

this is often taken to mean that, given

two classifiers with the same training

error, the simpler of the two will likely

have the lowest test error. Purported

proofs of this claim appear regularly

in the literature, but in fact there are

many counterexamples to it, and the

“no free lunch” theorems imply it can-

not be true.

We saw one counterexample previ-

ously: model ensembles. The gener-

alization error of a boosted ensemble

review articles

OCTOBER 2012 | VOL. 55 | NO. 10 | COMMUNICATIONS OF THE ACM 87

More often than not, the goal

of learning predictive models is to

use them as guides to action. If we

find that beer and diapers are often

bought together at the supermar-

ket, then perhaps putting beer next

to the diaper section will increase

sales. (This is a famous example in

the world of data mining.) But short

of actually doing the experiment it is

difficult to tell. Machine learning is

usually applied to observational data,

where the predictive variables are not

under the control of the learner, as

opposed to experimental data, where

they are. Some learning algorithms

can potentially extract causal infor-

mation from observational data, but

their applicability is rather restrict-

ed.19 On the other hand, correlation

is a sign of a potential causal connec-

tion, and we can use it as a guide to

further investigation (for example,

trying to understand what the causal

chain might be).

Many researchers believe that cau-

sality is only a convenient fiction. For

example, there is no notion of causal-

ity in physical laws. Whether or not

causality really exists is a deep philo-

sophical question with no definitive

answer in sight, but there are two

practical points for machine learn-

ers. First, whether or not we call them

“causal,” we would like to predict the

effects of our actions, not just corre-

lations between observable variables.

Second, if you can obtain experimen-

tal data (for example by randomly as-

signing visitors to different versions of

a Web site), then by all means do so.14

Conclusion

Like any discipline, machine learn-

ing has a lot of “folk wisdom” that can

be difficult to come by, but is crucial

for success. This article summarized

some of the most salient items. Of

course, it is only a complement to the

more conventional study of machine

learning. Check out http://www.

cs.washington.edu/homes/pedrod/

class for a complete online machine

learning course that combines formal

and informal aspects. There is also a

treasure trove of machine learning

lectures at http://www.videolectures.

net. A good open source machine

learning toolkit is Weka.24

Happy learning!

References
1. Bauer, E. and Kohavi, R. An empirical comparison of

voting classification algorithms: Bagging, boosting
and variants. Machine Learning 36 (1999), 105–142.

2. Bengio, Y. Learning deep architectures for AI.
Foundations and Trends in Machine Learning 2, 1
(2009), 1–127.

3. Benjamini, Y. and Hochberg, Y. Controlling the false
discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical
Society, Series B, 57 (1995), 289–300.

4. Bernardo, J.M. and Smith, A.F.M. Bayesian Theory.
Wiley, NY, 1994.

5. Blumer, A., Ehrenfeucht, A., Haussler, D. and
Warmuth, M.K. Occam’s razor. Information
Processing Letters 24 (1987), 377–380.

6. Cohen, W.W. Grammatically biased learning:
Learning logic programs using an explicit antecedent
description language. Artificial Intelligence 68
(1994), 303–366.

7. Domingos, P. The role of Occam’s razor in knowledge
discovery. Data Mining and Knowledge Discovery 3
(1999), 409–425.

8. Domingos, P. Bayesian averaging of classifiers and
the overfitting problem. In Proceedings of the 17th
International Conference on Machine Learning
(Stanford, CA, 2000), Morgan Kaufmann, San Mateo,
CA, 223–230.

9. Domingos, P. A unified bias-variance decomposition
and its applications. In Proceedings of the 17th
International Conference on Machine Learning
(Stanford, CA, 2000), Morgan Kaufmann, San Mateo,
CA, 231–238.

10. Domingos, P. and Pazzani, M. On the optimality of
the simple Bayesian classifier under zero-one loss.
Machine Learning 29 (1997), 103–130.

11. Hulten, G. and Domingos, P. Mining complex models
from arbitrarily large databases in constant time. In
Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(Edmonton, Canada, 2002). ACM Press, NY, 525–531.

12. Kibler, D. and Langley, P. Machine learning as an
experimental science. In Proceedings of the 3rd
European Working Session on Learning (London, UK,
1988). Pitman.

13. Klockars, A.J. and Sax, G. Multiple Comparisons.
Sage, Beverly Hills, CA, 1986.

14. Kohavi, R., Longbotham, R., Sommerfield, D. and
Henne, R. Controlled experiments on the Web:
Survey and practical guide. Data Mining and
Knowledge Discovery 18 (2009), 140–181.

15. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs,
R., Roxburgh, C. and Byers, A. Big data: The next
frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute, 2011.

16. Mitchell, T.M. Machine Learning. McGraw-Hill,
NY, 1997.

17. Ng, A.Y. Preventing “overfitting” of cross-validation
data. In Proceedings of the 14th International
Conference on Machine Learning (Nashville, TN,
1997). Morgan Kaufmann, San Mateo, CA, 245–253.

18. Pearl, J. On the connection between the complexity
and credibility of inferred models. International
Journal of General Systems 4 (1978), 255–264.

19. Pearl, J. Causality: Models, Reasoning, and
Inference. Cambridge University Press, Cambridge,
UK, 2000.

20. Quinlan, J.R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

21. Richardson, M. and P. Domingos. Markov logic
networks. Machine Learning 62 (2006), 107–136.

22. Tenenbaum, J., Silva, V. and Langford, J. A global
geometric framework for nonlinear dimensionality
reduction. Science 290 (2000), 2319–2323.

23. Vapnik, V.N. The Nature of Statistical Learning
Theory. Springer, NY, 1995.

24. Witten, I., Frank, E. and Hall, M. Data Mining:
Practical Machine Learning Tools and Techniques,
3rd Edition. Morgan Kaufmann, San Mateo, CA, 2011.

25. Wolpert, D. The lack of a priori distinctions between
learning algorithms. Neural Computation 8 (1996),
1341–1390.

Pedro Domingos (pedrod@cs.washington.edu) is a
professor in the Department of Computer Science and
Engineering at the University of Washington, Seattle.

© 2012 ACM 0001-0782/12/10 $15.00

theorems of the form “Every function

can be represented, or approximated

arbitrarily closely, using this repre-

sentation.” Reassured by this, fans of

the representation often proceed to

ignore all others. However, just be-

cause a function can be represented

does not mean it can be learned. For

example, standard decision tree learn-

ers cannot learn trees with more leaves

than there are training examples. In

continuous spaces, representing even

simple functions using a fixed set of

primitives often requires an infinite

number of components. Further, if

the hypothesis space has many local

optima of the evaluation function, as

is often the case, the learner may not

find the true function even if it is rep-

resentable. Given finite data, time and

memory, standard learners can learn

only a tiny subset of all possible func-

tions, and these subsets are different

for learners with different represen-

tations. Therefore the key question is

not “Can it be represented?” to which

the answer is often trivial, but “Can it

be learned?” And it pays to try different

learners (and possibly combine them).

Some representations are exponen-

tially more compact than others for

some functions. As a result, they may

also require exponentially less data to

learn those functions. Many learners

work by forming linear combinations

of simple basis functions. For exam-

ple, support vector machines form

combinations of kernels centered at

some of the training examples (the

support vectors). Representing parity

of n bits in this way requires 2n basis

functions. But using a representation

with more layers (that is, more steps

between input and output), parity can

be encoded in a linear-size classifier.

Finding methods to learn these deeper

representations is one of the major re-

search frontiers in machine learning.2

Correlation Does Not

Imply Causation

The point that correlation does not

imply causation is made so often that

it is perhaps not worth belaboring.

But, even though learners of the kind

we have been discussing can only

learn correlations, their results are

often treated as representing causal

relations. Isn’t this wrong? If so, then

why do people do it?

