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Abstract. Thi s articl e reports an empirical investigation of the accuracy of rules tha t classif y example s on the

basis o f a  single attribute. O n most datasets studied, th e best o f these ver y simple rule s i s as accurat e as the

rules induced by the majorit y o f machine learning systems. Th e article explores the implication s of this findin g

for machin e learning research an d applications .
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1. Introduction

The classification rules induced by machine learning systems are judged by two criteria:

their classification accuracy on an independent test set (henceforth "accuracy"), and their

complexity. The relationship between these two criteria is , of course, o f keen interest t o

the machin e learning community.

There are in the literature some indications that very simple rule s may achieve surpris-

ingly high accuracy on many datasets. For example, Rendell occasionally remarks that many

real-world datasets have "few peaks (often jus t one)" an d so are "easy to learn" (Rendell

& Seshu, 1990, p . 256). Similarly, Shavlik et al. (1991) report that, with certain qualifica-

tions, "the accuracy of the perceptron i s hardly distinguishable from the more complicated

learning algorithms" (p. 134). Furthe r evidence is provided by studies of pruning methods

(e.g., Buntine & Niblett, 1992; Clar k & Niblett, 1989; Mingers , 1989), where accuracy

is rarely seen to decrease as pruning becomes more severe (fo r example, see table I).1 This

is so even when rules are pruned to the extreme, a s happened wit h the "Err-comp" prun-

ing method i n Mingers (1989). This method produced th e most accurate decision trees,

and in 4 of the 5 domains studied these trees had only 2 or 3 leaves (Mingers, 1989, pp .

238-239). Such small trees canno t test more than one or two attributes. The most com-

pelling initia l indication that very simple rules often perfor m well occurs i n (Weiss et al. ,

1990). In 4 of the 5 datasets studied, classification rule s involving two or fewe r attributes

outperformed mor e complex rules .

This article reports the results of experiments measuring the performance of very simple

rules on the datasets commonl y used in machine learning research. The specific kind of

rules examined in this article, called "1-rules," are rules that classify an object on the basis

of a  single attribut e (i.e. , the y are 1-level decision trees) . Section 2  describes a  system,

called 1R , whose inpu t is a se t of training examples and whose outpu t is a  1-rule. I n an

experimental comparison involvin g 16 commonly used datasets, IR's rules are only a few
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Table 1 . Results of a typical experimental study (Buntine & Niblett , 1992)— for each dataset, the error rates of

four systems ar e sorted in increasing order .

Dataset

BC
GL

HY
IR
LY
MU
VO
VI
led

pole

tumor

xd6

27.2

39.6

0.95

4.9
24.0

1.44
4.5

12.8

32.9

15.0

60.9

22.06

Error rates Correspondin g leaf count s

28.5

40.5

1.01

5.0
24.3

1.44

4.6
13.0

33.2

15.4

61.6

22.14

28.7

50.6

1.27

5.5
24.4

7.31

11.8

15.1

33.8

15.5

62.7

22.17

29.7

53.2

7.44

14.2

32.3

8.77

15.6

15.6

38.2

26.4

67.9

31.86

6.0
8.1
4.8

3.5
7.5

12.4

5.1
8.9

13.0

5.4
19.6

14.8

9.3
8.5
5.0

3.5
7.7

12.4

5.2
9.4

13.1

5.7
17.6*

14.9

10.2

8.9
5.8

3.4*

8.2
23.3

12.4

13.0

13.3

5.8
22.5

14.8*

25.4

21.8

34.0

12.1

15.5

48.7

22.9

22.9

19.4

22.8

32.8

20.1

*Entries tha t violate the rul e tha t error rate increases a s complexity (lea f count ) increases.

percentage points less accurate, o n most of the datasets, tha n the decision trees produced

by C4 (Quinlan, 1986). Section 3  examines possible improvements o f IR' s criterion fo r

selecting rules. It defines an upper bound, called IR* on the accuracy that such improvements

can produce. IR * turns out to be very similar to the accuracy of C4's decision trees. This

result has two implications. First , i t indicates that simple modifications to I R might pro-

duce a system competitive with C4, although more fundamental modifications are required

in order t o outperform C4. Second, thi s result suggests that it may be possible to use the

performance o f 1-rules t o predict the performanc e of the more complex hypotheses pro -

duced by standard learning systems. Section 4 defines a practical prediction system based

on 1-rule accuracy, compares its predictions to the accuracies of all learning systems reported

in the literature, and discusses it s uses. Section 5  considers th e practical significanc e of

these results, and sections 6  and 7 discuss the implications of the results for machine learn-

ing applications an d research .

2. IR— a program tha t learns 1-rules from examples

Program I R is ordinary i n most respects. I t ranks attributes according t o error rate (on

the training set), as opposed to the entropy-based measures used in C4. It treats all numeric-

ally valued attributes as continuous and uses a straightforward method to divide the range

of values into several disjoin t intervals. I t handles missing values by treating "missing"

as a  legitimate value. Appendi x A gives pseudocode fo r IR .

In datasets wit h continuously valued attributes, there is a risk of overfitting. In dividing

the continuou s range o f values into a  finite numbe r of intervals, i t i s tempting t o make

each interval "pure," i.e. , containing examples tha t are all of the same class. Bu t just as

overfitting may result fro m deepening a  decision tree unti l all the leaves are pure, so too

overfitting ma y result fro m subdividin g an interval unti l all the subintervals are pure . To

avoid this, IR requires all intervals (except the rightmost) to contain more than a predefined
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number o f examples i n th e same class . Base d o n the results i n Holte e t al . (1989) , th e

threshold was set at six for all datasets except fo r the datasets wit h fewes t examples (LA ,

SO) where th e threshold wa s set a t three .

A simila r difficult y sometime s arise s wit h nomina l attributes . Fo r example, conside r

a dataset in which there i s a nominal attribute that uniquely identifies each example, such

as the name of a patient in a medical dataset. Usin g this attribute, one can buil d a 1-rule

that classifies a  given training set 100% correctly : needless t o say, the rul e will not per-

form wel l o n a n independent tes t set . Althoug h this problem i s uncommon , i t did aris e

in two of the datasets i n this study (GL, HO); the problematic attributes have been manu-

ally deleted fro m th e datasets .

2.1. The  datasets used  for experimental  comparison

Sixteen datasets wer e used to compare 1 R with C4, a  state-of-the-art learnin g algorithm.

Fourteen o f the datasets wer e selected fro m th e collection o f data sets distributed by the

machine learnin g grou p a t th e Universit y of Californi a at Irvin e (see appendi x B) . Th e

selection includes many of the datasets most commonly used in machine learning research.

In addition to these 1 4 datasets, th e stud y includes a two-class version of GL (G2), and ,

following (Buntin e & Niblett , 1992) , a  version of VO in whic h the "best" attribut e has

been deleted (V1) .

Table 2 gives a  brief descriptio n o f the datasets: not e tha t they exhibi t a  wid e variety

of characteristics. "Dataset" gives the two-letter name used to refer to the dataset. If there

Table 2 . Dataset s use d i n the experiment s (blan k entries represent Os).

Dataset

BC

CH
GL(6 )

G2
HD
HE
HO
HY

IR(3 )

LA

LY(4 )

MU

SE

SO (4)

VO

VI

Size

286
3196

214

163
303
155
368

3163

150

57
141

8124

3163

47
435

435

Baseline

accuracy

70.3

52.2

35.5

53.4

54.5

79.4

63.0

95.2

33.3

64.9

56.7

51.8

90.7

36.2

61.4

61.4

Missing

values

yes
no
no

no
yes
yes
yes
yes
no

yes
no
yes
yes
no
yes

yes

Attributes .  . . numbe r of distinc t values

cont

9

9
5
6
7

7

4

8

2

7

2

3
35

3
13
2

18

3

9

5

18

13
16

15

3

2
1

3

5

5

2
1

3

4

2

5

5

5

4

5

1

2

1

6

1

1

2

>6

2

7

1

Total

9

36

9

9

13

19
22

25

4

16
18
22

25
35
16

15
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are more tha n two classes in a dataset, the numbe r o f classes is indicated i n parentheses

after th e name. "Size" give s the tota l numbe r of examples i n the dataset . "Baselin e ac -

curacy" give s th e percentage o f examples i n the mos t frequentl y occurrin g class i n th e

dataset. "Missin g values" indicates whethe r there are any examples in the dataset fo r which

the value o f some attribut e i s unknown . The remainin g columns indicat e the numbe r of

attributes havin g a given numbe r of values. To be counted, i n table 2, a s continuou s (col-

umn entitled "cont") an attribute must have more than six numerical values. The total number

of attributes in a dataset is given in the rightmost column . Th e total is the sum of the other

"Attributes" column s plu s the numbe r of attributes i n the dataset fo r whic h al l examples

have the same value. For example, i n the SO dataset there are 1 3 attributes having 2 values,

3 attribute s havin g 3 values, 4  attribute s havin g values 4 values , an d 1  attribute having

more than 6 (non-numeric ) values. This accounts fo r 21 of the 35 attribute s in the dataset:

the othe r 1 4 attribute s hav e the sam e valu e i n every example .

2.2. Experiment  #1:  Comparison of  1R  and C4

The version of C4 used in these experiments i s C4.5 as distributed in May 1990. The defaul t

settings of all parameters were used, except that windowing was turne d off. The accuracie s

of C 4 an d 1 R on a  datase t ar e compute d i n th e usua l way, namely :

1. randoml y spli t th e dat a se t int o tw o parts , a  trainin g se t (2/ 3 o f th e dataset ) an d a

test set ;

2. usin g th e trainin g se t alone , generat e a  rule ;

3. measur e th e accuracy o f the rul e o n the tes t set ; an d

4. repea t step s 1- 3 2 5 times an d average th e results .

The result s o f thi s experimen t ar e give n i n table 3 .

Table 3 . Result s o f experimen t # 1 — Classificatio n accuracy .

Dataset

1R

C4

BC

68.7

72.0

CH

67.6

99.2

GL

53.8

63.2

G2

72.9

74.3

HD

73.4

73.6

HE

76.3

81.2

HO

81.0

83.6

HY

97.2

99.1

Dataset

1R

C4

IR

93.5

93.8

LA

71.5

77.2

LY

70.7

77.5

MU

98.4

100.0

SE

95.0

97.7

SO

81.0

97.5

VO

95.2

95.6

VI

86.8

89.4

Note: 1 R — average accurac y o n th e tes t se t o f th e 1-rul e produce d b y 1R .

C4— average accurac y o n th e tes t se t o f th e prune d tre e produce d b y C4 .
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2.3. Discussion  of  experiment  #1

On average, IR' s accuracy is 5.7 percentage points lower than C4's. However, this average

is quite misleading: o n 1 2 of the 1 6 data sets, the differenc e between IR' s accuracy and

C4's i s less tha n the average. Thi s skewness is caused b y the two datasets (CH , SO) on

which IR' s accuracy is extremely poor compared t o C4's. O n the other 1 4 datasets, IR' s

accuracy is an average of 3.1 percentage points lower than C4's. O n half the datasets, IR's

accuracy i s withi n 2.6 percentage points of C4's. T o summarize these result s in general

terms, one would say that on most of the datasets studied, IR's accuracy is about 3 percent-

age points lower than C4's .

These result s raise tw o related questions :

1. Wh y was C4's accurac y not muc h greater tha n IR' s on mos t of the datasets?

2. I s there anythin g special about the C H and SO datasets tha t caused 1 R to perform so
poorly?

Considering question 1 , there is no evidence that C4 missed opportunities to exploit ad-

ditional complexity i n order to improve its accuracy: C4's pruned trees were the same ac-

curacy as its unpruned ones (not shown). It is possible that C4 is overfitting, i.e. , that slightly

less complex decision trees might have been more accurate, bu t this possibility has been

explored onl y partially. Experiment s were run i n which C4 wa s forced to buil d 1-rules.

These 1-rules were never more accurat e than the pruned trees C 4 would normally have

produced: C 4 i s therefore correct i n no t pruning to the extreme. I n fact , a  survey of the

literature reveals that C4's performance on these datasets is better than most learning systems

(see appendix C  fo r details and section 4  fo r a  discussion o f this survey) .

If th e answe r t o question 1  lies no t i n th e C 4 algorithm , i t mus t li e i n th e datasets

themselves. I t may simply be a fact tha t on these particula r datasets 1-rules are almost as

accurate a s mor e complex rules . Fo r example, o n two datasets (BC , HE) , fe w learning

systems have succeeded i n finding rules of any kind whose accuracy exceeds the baseline

accuracy b y more than 2 percentage points (see appendix C).2 O n a few datasets (IR , for

example), C 4 prunes its decision tree almost t o a 1-rule, a clear indication that, on these

datasets, additiona l complexity does no t improve accuracy. Section 6  examines i n detail

the complexity o f C4's rules .

Turning to question 2, there is a characteristic of the CH and SO datasets tha t is a poten-

tial source o f difficult y fo r a  1-rule learner. I n these datasets ther e i s only one attribute

having more values than there are classes. In CH there are two classes, an d there i s one

attribute having 3 values, and 35 attributes having 2 values. In SO there are fou r classes ,
and there is one attribute having 7 values, 4 attributes having 4 values, and 30 attributes

having fewe r tha n 4  values. B y contrast, i n almost al l the other datasets ther e ar e con -

tinuous attributes (whic h can be divided int o as many intervals as necessary) o r several

attributes havin g more values than there ar e classes.

To see why this characteristic can cause 1-rules to have unusuall y low accuracies, con-

sider an extreme example—the soybean dataset used in Michalski and Chilausk y (1980).
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In this data set there are 15 classes, and there is one attribute having 10 values,
3
 one at-

tribute having 7 values, and 33 other attributes having 5 or fewer values. Assuming the

attribute with 10 values perfectly separates the examples in the 10 largest classes, a 1-rule

based on this attribute would achieve 86% accuracy. This is 11 percentage points lower

than the accuracy of the complex rules reported in Michaelski and Chilausky (1980). If

this attribute turns out to be a poor classifier, the next best accuracy possible by a 1-rule

is 76%, which happens only if the 7-valued attribute perfectly separates the samples of

the 7 largest classes. The accuracy of 1-rules based on 5-valued attributes is 66% or less

on this dataset. Of course, more complex rules can separate the examples in all of the classes,

and one would expect them to clearly outperform 1-rules on datasets such as this.

This characteristic is thus an indication that 1-rules might perform poorly. However, one

must not conclude that 1-rules will always perform poorly on datasets having this character-

istic: VO and V1 provide examples to the contrary. In fact, on half the datasets, the number

of leaves in IR's rules is within 1 of the number of classes, as the following table shows.

# leaves

# classes

BC

7

2

CH

2

2

GL

4

6

G2

4

2

HD

4

2

HE

3

2

HO

3

2

HY

5
2

IR

3
3

LA

4

2

LY

3

4

MU

9

2

SE

5

2

SO

4

4

VO

3

2

V1

3

2

The numbers in this table include the leaf for "missing," providing it is non-empty. This

is the reason that there are three leaves for the VO dataset, even though all the attributes

have two values. In the LY dataset, 2 of the 4 classes have very few examples, so relatively

high accuracy can be achieved with fewer leaves than classes.

If the poor performance of IR on CH and SO is to be explained as a consequence of

the datasets having only one attribute with more values than there are classes, it is then

necessary to address the question, "Why did IR perform well on several datasets also hav-

ing this property?" The answer to this question, like the answer to question 1, may be

that it is simply a fact about these particular datasets that classes and the values of some

attributes are almost in 1-1 correspondence.

3. An upper bound on improvements to IR's selection criterion

Given a dataset, IR generates its output, a 1-rule, in two steps. First it constructs a rela-

tively small set of candidate rules (one for each attribute), and then it selects one of these

rules. This two-step pattern is typical of many learning systems. For example, C4 consists

of two similar steps: first it constructs a large decision tree, and then, in the pruning step,

it selects one of the subtrees of the tree constructed in the first step.

In any such two-step system it is straightforward to compute an upper bound on the ac-

curacy that can be achieved by optimizing the selection step. This is done by simply bypassing

the selection step altogether and measuring the accuracy (on the test set) of all the rules

available for selection. The maximum of these accuracies is the accuracy that would be

achieved by the optimal selection method. Of course, in practice one is constrained to use

selection methods that do not have access to the final test set, so it may not be possible

to achieve the optimal accuracy. Thus, the optimal accuracy is an upper bound on the ac-

curacy that could be achieved by improving the selection step of the system being studied.
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There are at least two important uses of an upperbound computed in this way. First,

if the system's current performance is close to the upper bound on all available datasets,

then it will be impossible to experimentally detect improvements to the selection step. For

example, before doing a large-scale study of various pruning methods, such as those of

Mingers (1989), it would have been useful to compute the upper bound on accuracy

achievable by any pruning method. Such a study may have indicated that there was little

room for variation among all possible pruning methods on the datasets being considered.

The second important use of this upper bound is in comparing two systems. If the upper

bound on accuracy of one system, SI, is less than the actual accuracy of another system,

S2, then the only variations of SI that can possibly outperform S2 are ones whose first
step is different than S1's. This is the use made of the upper bound in this section: the

following experiment was undertaken to determine if modifications to IR's selection step

could possibly result in 1R equalling or exceeding C4's performance.

3.1. Experiment #2

An upper bound on the accuracy achievable by optimizing IR's selection step is computed

as follows:

1. randomly split the dataset into two parts, a training set and a test set;

2. using the training set alone, generate a set of rules;

3. measure the highest accuracy of all the generated rules on the test set; and

4. repeat 1-3 25 times and average the results.

The same training/testing sets were used as in experiment #1. The results of this experi-

ment are given in table 4. For ease of reference, the upper bound is given the name 1R*.

Table 4. Results of experiment #2— Classification accuracy.

1R
1R*
C4

1R
1R*
C4

Dataset

BC

68.7

72.5
72.0

CH

67.6

69.2

99.2

GL

53.8

56.4

63.2

G2

72.9

77.0

74.3

HD

73.4

78.0

73.6

HE

76.3

85.1

81.2

HO

81.0

81.2

83.6

HY

97.2

97.2

99.1

Dataset

IR

93.5

95.9

93.8

LA

71.5

87.4

77.2

LY

70.7

77.3

77.5

MU

98.4

98.4

100.0

SE

95.0

95.0

97.7

SO

81.0

87.0

97.5

VO

95.2

95.2

95.6

V1

86.8

87.9

89.4

Note: 1R, C4— as in table 3.

1R*— the highest accuracy on the test set of all the rules constructed by 1R with greater than

baseline accuracy of the training set. This is an upper bound on the accuracy achievable by optimiz-

ing IR's selection step.
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3,2. Discussion  o f experiment  # 2

IR's accuracy cannot exceed 1R * because the rule selected by 1R is in the set of rules whose

accuracies ar e use d to compute 1R*. On average, IR' s accuracy i s 3.6 percentag e points

lower than 1R*. On five datasets the differenc e in accuracies i s negligible, and on a furthe r

five datasets th e differenc e i s not larg e (3.8 percentage point s o r less). Bearin g i n mind

that 1R * is a rather optimistic uppe r bound , one may conclude tha t changes to IR's selec-

tion criterion wil l produce only modest improvement in accuracy on most of the datasets

in thi s study.

The differenc e between C4's accuracy and 1R * is not particularl y large on most of the

datasets i n this study. On two thirds (10) o f the data set, th e differenc e is 2.7 percentag e

points or less. On average, 1R * is 2.1 percentage point s less than C4's accuracy, and only

0.28 less if the CH dataset is ignored. On half of the datasets, 1R * is higher than or negligibly

lower than C4's accuracy. For these reasons, one may conclude that the most accurate 1-rule

constructed by 1R has, on almost all the datasets studied , about the same accuracy as C4's

decision tree.

This result has two main consequences. First , i t shows that the accuracy of 1-rules can

be used to predict the accuracy of C4's decision trees. Section 4 develops a  fas t predictor ,

based on 1-rule accuracy, and discusses several differen t use s of such a predictor. Second-

ly, thi s result shows that 1 R is failin g t o select th e mos t accurate o f the 1-rules it is con-

structing. Wit h an improved selectio n criterion , 1 R might be competitive, a s a  learning

system, with C4 (except on datasets such as CH). On the other hand, it is certain that however

the selection criterio n i s improved, 1 R will never significantl y outperform C4. I f C 4 i s

to be surpassed on most datasets by a 1-rule learning system, changes of a more fundamen -

tal natur e are required .

4. Using 1-rules to predict th e accuracy o f complex rule s

An ideal predictor would be a system that made a single, rapid pass over the given dataset

and produced a n accuracy comparable t o C4's o n th e dataset. A  natura l candidate is 1R

itself, usin g the whole dataset fo r both trainin g and testing. IR w is defined to be the ac-

curacy computed i n this way:

1. ru n program 1 R with the whol e dataset as a  trainin g set to generate a  rul e (called th e

W-rule); an d

2. IR w is the accuracy o f the W-rul e on the whol e dataset .

Table 5  shows the valu e of IR w fo r th e datasets i n thi s study.

A carefu l comparison o f IR w wit h C4's accuracy involves two steps. Th e firs t ste p is

to use a  statistical test (a two-tailed t-test ) to evaluate the differenc e i n accuracy on each

individual dataset. Theis test computes the probability that the observed differenc e between

1Rw and C4's accuracy is due to sampling: "confidence" i s 1 minus this probability. Unless

confidence i s ver y high , on e ma y conclud e tha t ther e i s n o significan t difference be -

tween IR w and C4's accurac y o n th e dataset . I f confidence i s ver y high , on e proceed s
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Table 5. IRw measured on the datasets.

C4
IRw

C4
1Rw

Dataset

BC

72.0

72.7

CH

99.2

68.3

GL

63.2

62.2

G2

74.3

78.5

HD

73.6

76.6

HE

81.2

84.5

HO

83.6

81.5

HY

99.1

98.0

Dataset

IR

93.8

96.0

LA

77.2

84.2

LY

77.5

75.7

MU

100.0

98.5

SE

97.7

95.0

SO

97.5

87.2

VO

95.6

95.6

V1

89.4

98.4

Note: C4— as in table 4.

1Rw— highest accuracy of the 1 -rules produced when the whole dataset is used by 1R for both train-

ing and testing.

with the second step of the comparison in which the magnitude of the differences is con-

sidered. This step is necessary because significance tests are not directly concerned with

magnitudes: very small differences can be highly significant. For example, the difference

between C4's accuracy and IRw on the MU dataset, although it is one of the smallest in

magnitude, is much more significant than the difference on any other dataset.

The results of the t-tests are as follows (see appendix D for details). The differences

between C4's accuracy and IRw on the BC, GL, and VO datasets are not significant. The

difference on the LY dataset is significant with 95 % confidence. The differences on all

other datasets are significant with greater than 99% confidence, i.e., the probability of

observing differences of these magnitudes, if C4's accuracy is in fact equal to 1Rw, is less

than .01.
The difference between C4's accuracy and 1Rw, although statistically significant, is not

particularly large on most of the datasets in this study. On three quarters of the datasets,

the absolute difference is 3.3 percentage points or less. On average, 1Rw is 1.9 percentage

points less than C4's accuracy, and only 0.007 less if the CH dataset is ignored. For these

reasons, one may conclude that 1Rw is a good predictor of C4's accuracy on almost all

the datasets studied.

4.1. IRw as a predictor of accuracy of other machine learning systems

In order to evaluate 1Rw as a predictor of the accuracy of machine learning syterns in general,

the machine learning literature was scanned for results on the datasets used in this study.4

Appendix C lists the results that were found in this survey. The G2, HO, and SO datasets

do not appear in appendix C because there are no reported results concerning them. A

detailed comparison of the results for each dataset is impossible, because the results were

obtained under different experimental conditions. Nevertheless, a general assessment of

1Rw as a predictor of accuracy can be made by comparing it on each dataset to the median

of the accuracies for that dataset reported in the literature. 1Rw is very highly correlated

with the medians, having a correlation coefficient (r) of 99% if CH is ignored (77% if CH
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is included) . By fittin g a  line to thi s median-vs-1Rw data, one obtain s a simple means of

predicting median s given 1Rw. If this is done, the predicted valu e differ s fro m th e actual

value by only 1. 3 percentage point s on average (i f C H i s ignored) .

4.2. Uses  of  1 Rw

Predictors of accuracy, suc h as 1Rw, or of relative accuracy, suc h a s Fisher's measure of

"attribute dependence" (Fisher, 1987; Fisher & Schlimmer, 1988) are informativ e measure-

ments t o make o n a  dataset : the y ca n b e used i n a  variet y o f ways .

The most obvious use of 1Rw is as a benchmark accuracy for learnin g systems, i.e. , as a

standard against whic h to compare new results. The current benchmark is baseline accuracy,

the percentage o f examples i n a dataset in the most frequentl y occurrin g class . Fo r most

datasets, baselin e accuracy is relatively low and therefor e is not a usefu l benchmark . 1Rw

is only slightly mor e expensive t o compute an d i s often a  very challengin g benchmark .

Alternatively, on e can measure 1Rw before applying a  learning algorithm to a dataset, in

order to obtain a quick estimate of the accuracy that learned rule s wil l have. This estimate

could be compared to the accuracy required in the given circumstances. A n estimated accur -

acy that is lower than the required accuracy is an indication that learning might not produce

a rul e of the required accuracy. In this case, th e dataset shoul d be "improved" by collect-

ing or creating additional attributes for each example (e.g., compare V1 and VO), or reducing

the numbe r of classes (e.g. , compar e G L an d G2) , o r i n some othe r wa y changing the

representation. In constructive induction systems (Rendell & Seshu, 1990), 1Rw is a natural

method for evaluating new attributes, o r even whole new representations (Saxena, 1989).

5. The practical significanc e o f the experimental results

The preceding experiment s show that most of the examples in most of the datasets studied

can be classified correctly by very simple rules. The practical significance of this observa-

tion hinge s o n whethe r o r no t th e procedure s an d dataset s tha t have been use d i n th e

experiments—which are the standard procedures and datasets in machine learning—faithfully

reflect th e condition s tha t arise i n practice. O f particula r concer n ar e th e datasets. On e

does not intuitively expect "real" classification problems to be solved by very simple rules.

Consequently, on e may doubt if the datasets used in this study are "representative" o f the

datasets tha t actuall y aris e i n practice .

It is true that many of the classification problems that arise in practice do not have simple

solutions. Rendel l an d Seshu (1990) cal l suc h problem s "hard. " The best-known har d

classification problem i s protein structur e prediction , in whic h the secondary structur e of

a protein must be predicted given a description of the protein a s an amino acid sequence.

Another well-known hard problem i s the classification of a chess position as won or lost ,

given a description o f the position i n terms of "low-level" features . The machine learning

techniques developed fo r "easy" classification problems are, b y definition , o f limited use

for hard classification problems: th e development o f techniques appropriate t o hard prob-

lems i s a  challenging  an d relativel y ne w branc h o f machin e learning .
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However, the fact that some real problems are hard does not imply that all real problems

are hard. A dataset faithfull y represents a  real problem, providing it satisfies two condi-

tions. First, the dataset must have been drawn from a  real-life domain, as opposed to hav-

ing been constructed artificially. All the datasets in this study satisfy thi s requirement. Se-

cond, the particular examples in the dataset and the attributes used to describe them must

be typical of the examples and attributes that naturally arise in the domain. That is, the

datasets mus t not have been specially "engineered" by the machine learning community

to make them "easy." The CH dataset does not satisfy this condition: its attributes were

engineered explicitly for ID3 by a chess expert working with a version of ID3 built specially

for thi s purpose (Shapiro, 1987, pp . 71-73). Indeed, the development of CH was a case

study of one particular technique ("structured induction") for transforming a  hard classifica-

tion problem into an easy one.

Thus, the practical significance of the present study, and other studies based on these

datasets, reduces to this question: Are the examples and attributes in these datasets natural,

or have they been specially engineered b y the machine community learning (a s in CH)

in order to make induction easy? The evidence pertaining to this question varies from dataset

to dataset.

For six datasets (HY, LA, MU, SE, VO, V1), the process by which the dataset was created

from the raw data is sufficiently wel l documented5 that it can confidently be asserted that

these datasets faithfull y represen t real problems. The only instance of data adaption that

is mentioned is in connection wit h the congressional votin g data (VO, V1). In the original

form, ther e were nine possible positions a  congressman could take towards a given bill.

In the dataset, some of these possibilities ar e combined so that there are onl y three pos-

sible values for each attribute. The grouping is a natural one, and not one specially con-

trived t o improve the results o f learning.

For three datasets (BC, HO, LY), the creation of the dataset involved some "cleaning"

of the raw data. The nature of this "cleaning" is not described i n detail, but there is no

suggestion that it involves anything other than the normal activities involved in rendering

a heterogeneous collection o f records into a uniform structure suitable for machine learn-

ing experiments.6 Thus there is no reason to doubt that these datasets faithfull y represen t

real classification problems.

The preceding datasets are adaptations, involving minimal changes, of data that had already

been collected for a purpose other than machine learning. Th e SO dataset is different , i n

that it was created for the purpose of machine learning. The account given of the creation

of this dataset (Michalski & Chilausky, 1980, pp. 134-136) mentions two criteria for select-

ing attributes: 1 ) each attribute must be measurable by a layman, and 2) the dataset must

include the attributes used i n the expert system that was developed fo r comparison with

the induced classification rules. The account suggests that the development of the expert

system involved iterative refinement. Although this account does not explicitly comment

on the extent to which the attributes evolved during the expert system development, i t is

not unreasonable to suppose tha t the attributes in this dataset hav e been engineered, o r

at least selected, to ensure that accurate classification is possible with relatively simple rules.

On the creation of the remaining datasets (GL, G2, HD , HE, IR) , there is no published

information.
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In summary, only two of the datasets in this study may reasonably be judged to have been

specially engineered b y the machine learning community to be "easy." Ironically, it is these

two datasets o n whic h 1R performs most poorly. Nin e of the datasets are know n to be, o r

are very likely to be, representative o f problems tha t naturall y arise in practice. Althoug h

these datasets do not represent the entire range of "real" problems (e.g., they do not represent

"hard" problems), th e numbe r and diversity of the datasets indicate s that they represent a

class of problems that often arises. The next two sections examine the role of very simple clas-

sification rules in machine learning applications and research within this class of problems.

6. Accuracy versu s complexity i n 1R and C4

The preceding section s hav e established tha t there ar e a  significan t numbe r o f realisti c

datasets o n whic h 1-rules are only slightl y less accurate (3. 1 percentage points ) than the

complex rules created b y C4 and other machin e learning systems. I n order t o get insight

into the tradeoff between accuracy and complexity, the complexity of C4's trees was measured

in experimen t #1 . The result s ar e give n in the followin g table :

mx

dc

%> 2

BC
4

0.9
2

CH
13

4.5

59

GL

12

5.1

87

G2
9

3.7

80

HD

7

2.7

58

HE

7

2.2

26

HO
4

1.6
18

HY
7

1.2
6

IR
4

1.9

24

LA

3

1.4

5

LY
5

2.2

36

MU

6

1.6

8

SE
9

1.5
13

SO
3

2.0

18

VO

5

1.4

6

VI

7

2.2
30

The "mx" ro w gives the maximu m depth of the pruned trees buil t by C4 on each dataset .

Maximum depth corresponds t o the numbe r of attributes measured to classif y a n example

in the wors t case. O n average, th e maximu m depth o f C4's tree s i s 6.6 , compare d t o 1

for 1-rules. Maximu m depth is usually regarded a s an underestimate of the true complexity

of a  decision tree because i t does no t take into account th e complexity du e to the tree' s

shape. Fo r thi s reason , researchers normall y defin e complexity a s the numbe r of leaves

or nodes i n a  tree. B y thi s measure , C4' s tree s ar e muc h mor e comple x tha n 1-rules.

Maximum depth, or number of leaves, are measures of the "static complexity" o f a deci-

sion tree. However, considerations suc h as the speed of classification, or the cost of measur-

ing the attributes used durin g classification (Tan & Schlimmer, 1990), ar e dynami c prop-

erties o f a tree that are not accurately reflected by static complexity. The dynamic complex-

ity o f a  rule ca n be defined a s the average numbe r of attributes  measure d i n classifyin g

an example. Th e dynami c complexity o f C4's prune d tree s i s given in the "dc" ro w of

the table.7 O n datasets wher e C4's tree s involv e continuou s attributes (GL , G2 , an d IR,

for example), dynamic complexity is artificially high because C4 transforms these into binary

attributes instead o f N-ar y attribute s ( N >  2) . C4' s dynami c complexity, averaged over

the 16 datasets, i s 2.3, compared to 1 for 1-rules. Furthermore, ther e is considerable variance

in the number of attributes measured by C4's decision trees: on some datasets C4's dynamic

complexity is considerably greater tha n 2.3, an d in most datasets there are some examples,

sometimes many , for which C4's decision trees measure more than 2.3 attributes . To illus-

trate the latter kind of variation, th e third row in the table ("% >2") indicate s the percent-

age of examples i n each datase t fo r whic h classification b y C4's decisio n trees involves

measuring thre e o r mor e attributes .
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Thus i n 1 R and C 4 ther e i s a  perfec t symmetr y i n the relationshi p betwee n accurac y

and dynamic complexity. 1R's rule s are always very simple, usuall y a  littl e less accurate ,

and occasionally muc h less accurate. C4' s rule s ar e more accurate, a  littl e less simple on

average, an d occasionally muc h les s simple .

These difference s between 1 R and C 4 have practical implications . In practice , differen t

applications hav e differen t demands i n terms of accuracy and static and dynamic complex-

ity. Depending o n these demands , eithe r 1 R or C 4 wil l be the more appropriat e learnin g

system fo r the application . Fo r example, C 4 i s appropriat e fo r applications tha t demand

the highest possible accuracy, regardless o f complexity.8 And 1 R is appropriate for applica-

tions i n whic h stati c complexity i s o f paramoun t importance: fo r example, application s

in which the classification process is required to be comprehensible to the user. In applica-

tions where simplicit y and accuracy are equally important , the symmetry between 1 R and

C4 mean s tha t th e tw o systems ar e equall y appropriate .

7. Th e "simplicity first " research methodology

One goal o f machin e learnin g research i s to improve both the simplicit y and accuracy of

the rules produced b y machine learning systems. In pursui t of this goal, the research com -

munity ha s historicall y followe d a  research methodolog y whos e mai n premise i s tha t a

learning system should search in very large hypothesis spaces containing, among other things,

very complex hypotheses. According to this "traditional" methodology, progress in machine

learning occur s as researchers invent better heuristic s for navigating in these spaces towards

simple, accurat e hypotheses .

The result s o f preceding sections d o not lend suppor t t o the premis e o f the traditiona l

methodology. Comple x hypotheses nee d not be considered fo r datasets i n whic h most ex-

amples can be classified correctly o n the basis of 1 or 2 attributes. An alternative, "simplicity

first" methodolog y begin s wit h th e opposite premise : a  learnin g system shoul d search in

a relatively smal l space containin g only simpl e hypotheses. Becaus e th e space is small ,

navigating in i t is not a major problem . In this methodology, progres s occur s as research -

ers inven t ways to expand the search space to includ e slightl y more comple x hypothese s

that rectif y specifi c deficiencies .

The experiment wit h 1R * nicely illustrate s how a researcher proceeds according t o the

"simplicity first " methodology . Tha t experiment analyze d the potentia l fo r improving 1R

by optimizin g its selection criterion . Th e results showed tha t modification s to IR's selec-

tion criterio n woul d produce a t best modest increase s i n accuracy. To achieve greater in -

creases it is necessary t o change th e se t of rules tha t 1 R "searches" durin g its "construc -

tion" step . Fo r example, 1R's metho d fo r partitionin g the values of continuou s attributes

into a  set of interval s does no t consider al l possible partitions . A  method o f partitionin g

that considered differen t partition s might construct 1-rules that are more accurate than any

of the 1-rule s constructed by the curren t versio n of 1R.9 More fundamenta l change s might

extend 1R's search space to include slightly more complex rules, such as rules that measure

two attribute s o r linea r trees .

The two methodologies hav e as thei r ai m the same goal : improvin g both th e accuracy

and th e simplicit y o f the rule s produce d b y machine learnin g systems. Bu t they provide
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different starting points, emphases, an d styles of research towards this goal. The main prac-

tical difference s i n th e methodologies ar e th e following .

1. System s designed usin g the "simplicity first' ' methodolog y are guaranteed to produce

rules tha t ar e near-optima l wit h respec t t o simplicity . I f th e accurac y o f th e rul e i s

unsatisfactory , the n there does no t exist a satisfactory simple rule , s o to improve ac-

curacy one mus t increase th e complexity of the rules bein g considered. B y contrast ,

systems designed using the traditional methodology may produce rules that are signifi -

cantly sub-optimal wit h respect to both simplicity and accuracy. For example, o n the

VO dataset Buntin e and Niblett (1992) report a  learning system that produces a  deci-

sion tree having 12 leaves and an accuracy of 88.2% . This rule is neither accurate nor

simple.10 I f this accuracy i s unsatisfactory, there may exist a simple r rule that is more

accurate. Or there may not. In the traditional methodology one must simply guess where

to search fo r mor e accurate rule s i f a n unsatisfactor y rule i s initiall y produced .

2. Analysis , suc h a s forma l learnabilit y analysis , o f simple hypothesi s spaces an d th e

associated simple learning algorithms is easier than the corresponding analysis for com-

plex hypothesis spaces. Iba and Langley (1992) give an initia l analysis of 1-rule learn-

ing behavior. In this regard, the "simplicity first" methodology for studying and designing

learning systems parallels the normal methodology i n mathematics of proceeding fro m
simple, easily understood problems through progressively mor e difficul t ones, with the

solutions to later problems building upon the results, or using the methods, of the earlier

ones. Because the methodologies ar e parallel, the theory and practice of machine learn-

ing may progress together .

3. Simpl e hypothesis spaces are so much smaller tha t algorithms can be used that would

be impractical i n a larger space. Fo r example, i n an acceptably shor t amount of time,

PVM (Weiss et al. , 1990) ca n search thoroughly (although no t exhaustively) throug h

its relatively small hypothesis space. As a result, PVM is able to find rules of maximal

accuracy, a t least fo r thei r length. 11

4. Finally , man y of the same issues arise when using a simple hypothesis space as when

using a complex one. Fo r example, Weiss et al. (1990) address the issues of accuracy-

estimation an d partitioning continuou s attributes into intervals. Other issues that arise

equally with simple and complex hypothesis spaces are overfilling, tie-breaking (choosing

between rule s that score equally well on the training data) , and the handling of small

disjuncts and missing values. Such issues are more easily studied in the smaller, simpler

context, an d th e knowledge derived i n this wa y is, fo r the mos t part , transferabl e to
the large r context .

As these differences illustrate, th e "simplicity first " methodology i s a promising altern-

ative t o the existin g methodology.

8. Conclusion

This article presented th e result s of an investigation into the classificatio n accuracy of

very simple rules ("1-rules," or 1-level decision trees)—ones that classify examples on the
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basis of a single attribute. A  program, called 1R , that learns 1-rules from examples was

compared t o C4 on 1 6 datasets commonly used i n machin e learning research .

The main result of comparing 1R and C4 is insight into the tradeoff between simplicity

and accuracy. IR' s rules are only a little less accurate (3. 1 percentage points ) tha n C4' s

pruned decision trees o n almost all of the datasets. C4' s trees are considerably larger in

size ("static complexity") than 1-rules, but not much larger in terms of the number of attri-

butes measured t o classify the average example ("dynamic complexity") .

The fact that, o n many datasets, 1-rules are almost as accurate as more complex rules

has numerous implications fo r machine learning research an d applications. The firs t im -

plication i s that 1 R can b e used to predict th e accuracy of the rule s produced b y more

sophisticated machine learning systems. In research, this prediction can be used as a bench-

mark accuracy, giving a reasonable estimate of how one learning system would compare

with others . I n applications, i t can b e used t o determine i f learning i s likely to achieve

the required accuracy.

A more important implication is that simple-rule learning systems are often a  viable altern-

ative to systems that learn more complex rules. If a complex rule is induced, its additional

complexity must be justified by its being correspondingly more accurate than a simple rule.

In research, thi s observation leads t o a new research methodology tha t differ s fro m th e

traditional methodology i n significant ways. In applications, the accuracy and complexity

demands of each particular application dictate the choice between the two kinds of system.

The practical significanc e of this research wa s assessed by examining whether or no t

the datasets used in this study are representative of datasets tha t arise in practice. I t was

found that most of these datasets are typical of the data available in a commonly occurring

class of "real" classification problems. Very simple rules can be expected to perform well

on most datasets i n this class.

APPENDIX A . A  brief description of the program 1R

1R and 1R * are implemented i n one program: they are identical except for about two lines

of code, which, if executed, produces lR*output in addition to 1R-output (see step 5 below).

The user sets a flag to select 1 R or 1R*. The user also sets SMALL, the "small disjunct"

threshold (Holt e e t al. , 1989).

Top-level pseudocode

1. I n the training set, count the number of examples in class C having value V for attribute

A: store thi s informatio n in a  3-D array, COUNT[C,V,A].

2. Th e default class is the one having the most examples in the training set. The accuracy

of the defaul t class i s the numbe r of training examples in the defaul t class divided by

the total numbe r of training examples.

3. FO R EACH NUMERICAL ATTRIBUTE, A, create a  nominal version of A by defin-

ing a finite number of intervals of values. These intervals become the "values" of the

nominal version of A. For example, i f A's numerical values are partitioned into three

intervals, the nominal version of A will have three values: "interval 1, " "interval 2, "
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and "interval 3. " COUNT[C,V,A] reflects this transformation : COUNT[C,"interval I",A]

is th e su m o f COUNT[C,V,A ] fo r al l V  i n interva l I .

Definitions :

Class C  i s optimal fo r attribut e A, valu e V , i f i t maximize s COUNT[C,V,A] .

Class C  i s optima l fo r attribut e A, ipnterva l I , i f i t maximize s COUNT[C ,

"interva l I",A] .

Values ar e partitione d int o interval s s o tha t ever y interva l satisfie s th e followin g

constraints:

(a) ther e is at least one class tha t is "optimal " fo r mor e tha n SMALL of th e values

in th e interva l (thi s constrain t does no t appl y t o th e rightmos t interval) ; and

(b) i f V[I] is the smallest valu e for attribut e A i n the trainin g set that i s larger tha n

the value s in interva l I, the n there i s no class C  that is optimal both fo r V[I] and

for interva l I .

4. FO R EAC H ATTRIBUTE , A , (us e the nomina l version o f numerica l attributes) :

(a) construc t a  hyposthesi s involvin g attribute A by selecting , fo r each valu e V o f A

(and also fo r "missing") , a n optima l class for V (if several classe s are optimal fo r

a value , choose amon g the m randomly) ; an d

(b) ad d the constructed hypothesi s to a set called HYPOTHESES, whic h will ultimately

contain on e hypothesi s fo r each attribute .

5. 1R : choose th e rul e fro m th e se t HYPOTHESES havin g the highes t accurac y on th e

training se t (i f there ar e severa l "best" rules , choose amon g the m a t random) .

1R*: choose al l the rule s fro m HYPOTHESE S havin g an accuracy on th e trainin g set

greater tha n th e accuracy o f the defaul t class .

APPENDIX B . Source o f the datasets used i n this stud y

All datasets ar e fro m th e collection distribute d by the Universit y of Californi a at Irvin e

(current contac t person : Pa y Murphy (pmurphy@ics.uci.edu)) . Except as note d below, I

used th e datasets exactly a s the y ar e foun d i n th e Apri l 1990 distribution .

Datasets BC and LY were originally collected a t the Universit y Medical Center, Institute

of Oncology, Ljubljana , Slovenia, by M. Soklic and M. Zwitter , and converted int o easy-

to-use experimental material by Igor Kononenko, Faculty of Electrical Engineering, Ljubljan a

University.

BC: breast-cancer/breast-cancer.dat a

CH: chess-end-games/king-rook-vs-king-pawn/kr-vs-kp.dat a

GL: glass/glass.data . Firs t attribute deleted. This dataset is sometimes described as hav-

ing seven classes, bu t ther e ar e n o examples o f class 4 .

G2: G L wit h classes 1  and 3  combined an d classes 4  throug h 7  deleted .

HD: heart-disease/cleve.mod . Las t attribut e deleted t o give a  two-class problem .

HE: hepatitis/hepatitis.dat a

HO: undocumented/taylor/horse-colic.dat a +  horse-colic.tes t

Attribute V24 is used as the class. Attribute s V3, V25, V26, V27, V28 deleted.

HY: thyroid-disease/hypothyroi d .data

IR: iris/iris.dat a
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LA: labor-negotiations . Th e dataset i n the April-1990 distributio n was in an unusable

format . I  obtained a usable version—which I believe is now in the UCI collection—

from th e origina l source : Sta n Matwin , Universit y of Ottawa.

LY: lymphography/lymphography.dat a
MU: mushroom/agaricus-lepiota.dat a

SE: thyroid-disease/sick-euthyroid.dat a

SO: soybean/soybean-small.dat a

VO: voting-records/house-votes-84.data

VI: V O with the "physician-fe e freeze" attribut e deleted.

APPENDIX C . Survey o f results fo r each dataset

The results included in this survey were produced under a very wide variety of experimen-

tal conditions, and therefore it is impossible to compare them in any detailed manner. Most

of the result s are averages over a  numbe r of runs , wher e each ru n involve s splitting the

dataset int o disjoin t training and test sets and usin g the test se t to estimate th e accuracy

of the rul e produced give n the trainin g set. Bu t the numbe r of run s varies considerably,

as does the rati o of the sizes o f the trainin g and tes t set , and differen t method s o f "ran -

domly" splittin g have sometimes been used (e.g., cross-validation, stratifie d sampling, and

unstratified sampling). Furthermore, i t is virtually certain that some papers reporting results

on a  dataset have used slightl y differen t versions of the dataset tha n others, i t being com-

mon practic e t o mak e "small " change s t o a  datase t fo r th e purpose s o f a  particula r

experiment.

Dataset BC

62.0, "B " (Schoenaue r &  Sebag, 1990 )

62.0, Assistan t (no pruning ) (Clark &  Niblett , 1987 , 1989 )

65.0, Baye s (Clar k & Niblett , 1987 , 1989 )

65.1, CN 2 (ordered.laplace) (Clark &  Boswell, 1991 )

65.3, neares t neighbo r (Weis s &  Kapouleas, 1989 )

65.6, Bayes(secon d order ) (Weis s &  Kapouleas , 1989 )

65.6, quadrati c discriminan t (Weiss &  Kapouleas, 1989 )

66.0, AQTT1 5 (Michalski , 1990 )

66.3, I D unprune d (Peter Clark , personal communication )

66.8, CN 2 ordered (Pete r Clark , persona l communication )

66.8, G-R , Min-er r (Mingers , 1989 )

66.9, C 4 unprune d (Peter Clark , persona l communciation )

67.0, Assistan t (no pruning ) (Michalski , 1990 )

67.4, Prob , Min-er r (Mingers , 1989 )

68.0, AQ11/1 5 (Ta n &  Eshelman , 1988 )

68.0, AQ1 5 (Salzberg , 1991 )

68.0, AQTT1 5 (bigges t disjuncts ) (Michalski, 1990 )

68.0, AQTT1 5 (uniqu e > 1 ) (Michalski, 1990 )

68.0, Assistan t (pruning ) (Clark &  Niblett , 1987, 1989 )
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68.3, G-stat , Min-er r [Mingers , 1989 )
68.7, IR

68.7, Marsh , Min-er r (Mingers , 1989 )
69.0, CN 2 (ordered.entropy ) (Clar k &  Boswell , 1991)

69.2, Gai n Rati o (Lope z d e Mantaras , 1991 )
69.3, G-R , Critica l (Mingers , 1989 )
69.3, ID 3 (Ta n &  Eschelman , 1988 )
69.6, G-stat , Critica l (Mingers , 1989 )
69.7, G-R , Err-com p (Mingers , 1989 )
70.0, Assistan t (no pruning ) (Cestni k e t al. , 1987) )

70.3, BASELIN E ACCURAC Y
70.4, rando m (Buntin e & Niblett , 1992 )
70.6, Distanc e (Lope z d e Mantara , 1991 )

70.8, G-R , reduc e (Mingers , 1989 )
71.0, CN2(99 ) (Clar k &  Niblett , 1987 , 1989 )
71.0, Prob e Critica l (Mingers , 1989 )
71.5, C 4 prune d (Pete r Clark , persona l communciation )
71.5, EAC H withou t featur e adjustmen t (Salzberg , 1991 )

71.5, Inf o Gai n (Buntin e & Niblett , 1992)

71.5, Prob , Err-com p (Mingers , 1989 )
71.5, neura l ne t (Weiss &  Kapouleas , 1989)
71.6, G-R , Pessi m (Mingers , 1989 )
71.6, linea r discriminan t (Weiss &  Kapouleas , 1989 )

71.8, Baye s (Weiss &  Kapouleas , 1989 )
71.9, Marsh , Pessi m (Mingers , 1989 )
71.9, Prob , Pessi m (Mingers , 1989 )
72.0, AQ1 5 (Michalsk i e t al. , 1986 )
72.0, AQ R (Clar k &  Niblett , 1987 , 1989 )

72.0, Assistan t (pruning ) (Michalski , 1990)
72.0, C 4 (pruned ) (this paper)
72.0, G-stat , Err-com p (Mingers , 1989 )
72.1, C 4 (Clar k &  Boswell , 1991 )
72.3, GIN I (Buntin e & Niblett , 1992 )

72.3, Marsh , Critica l (Mingers , 1989 )
72.3, Marsh , Err-com p (Mingers, 1989 )
72.5, G-stat , Pessi m (Mingers , 1989 )
72.7, IRw
72.8, IR *
72.8, Prob , Reduc e (Mingers, 1989 )
72.9, G-stat , Reduc e (Mingers , 1989 )

72.9, Mars h (Buntin e & Niblett , 1992 )
73.0, CN 2 (unordered,laplace ) (Clar k &  Boswell , 1991 )
73.1, Marsh , Reduc e (Mingers , 1989 )
73.4, IWN(add-or ) (Ta n &  Eshelman , 1988 )
73.5, IWN(max-or ) (Ta n &  Eshelman , 1988 )

74.3, ID 3 (pruned ) (Buntine , 1989)
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75.0, "C2" (Schoenauer & Sebag, 1990)
75.6, Bayes/N (Buntine, 1989)
76.1, Bayes (Buntine, 1989)
76.2, ID 3 (averaged) (Buntine,  1989)

77.0, Assistan t (pre-pruning ) (Cestnik e t al. , 1987 )

77.1, CAR T (Weiss &  Kapouleas , 1989 )

77.1, PV M (Weiss &  Kapouleas, 1989 )

77.6, EAC H wit h featur e adjustment (Salzberg, 1991 )

78.0, "D3 " (Schoenaue r &  Sebag, 1990 )
78.0, Assistan t (post-pruning ) (Cestnik e t al. , 1987 )

78.0, Baye s (Cestnik e t al. , 1987 )

Dataset C H

67.6, 1R
68.3, IRw
69.2, 1R*
85.4, Baye s (Buntine, 1989)
91.0, CN 2 (Holte e t al. , 1989 )

93.9, perceptro n (Shavli k e t al. , 1991 )

96.3, bac k propagation (Shavli k et al. , 1991 )

96.4, ID 3 (pruned) (Buntine , 1989)

96.9, ID 3 (unpruned ) (Buntine , 1989)

97.0, ID 3 (Shavlik et al. , 1991 )
99.2, C 4 (pruned) (thi s paper)

Dataset GL
45.5, NTgrowt h (d e la Maza, 1991 )
46.8, rando m (Buntin e & Niblett , 1992 )

48.0, Proto-T O (de la Maza, 1991 )

49.4, Inf o Gai n (Buntin e & Niblett , 1992 )

53.8, 1R
56.3, 1R*
59.5, Mars h (Buntin e & Niblett , 1992 )

60.0. GIN I (Buntine & Niblett. 1992 )

62.2, IRw
63.2, C 4 (pruned) (thi s paper)

65.5, C 4 (de la Maza , 1991 )

Dataset HD

60.5, perceptro n (Shavli k et al. , 1991 )

70.5, growt h (Aha & Kibler , 1989)
71.1, K-neares t neighbor growt h (K=3 ) (Ah a & Kibler , 1989)

71.2, ID S (Savliketal. , 1991 )
71.3, disjunctiv e spannin g (Ah a & Kibler, 1989 )

71.4, growt h (Kibler &  Aha , 1988)

73.4, 1R
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73.6, C 4 (pruned ) (thi s paper )

74.8, C 4 (Kible r & Aha , 1988 )

75.4, C 4 (Ah a & Kibler , 1989)

76.2, proximit y (Ah a &  Kibler , 1989 )

76.4, IR T (Jensen,  1992 )

76.6. IRw
77.0, NTgrowt h (Kible r &  Aha , 1988 )

77.9, NTgrowt h (Ah a &  Kibler, 1989 )

78.0, 1R*
78.7, N T disjunctiv e spanning (Ah a & Kibler , 1989)

79.2, K-neares t neighbo r (K=3 ) (Ah a & Kibler , 1989 )

79.4, N T K-nearest neighbo r growt h (K=3 ) (Ah a & Kibler , 1989 )

80.6, bac k propagation (Shavli k et al. , 1991 )

Dataset H E
38.7, NTgrowt h (de l a Maza , 1991 )

71.3, CN 2 (ordered.entropy) (Clar k &  Boswell , 1991 )

76.3, 1R
77.6, CN 2 (ordered.laplace) (Clar k &  Boswell , 1991 )

77.8, I D unprune d (Peter Clark , persona l communication )

78.6, Gai n Rati o (Lopez d e Mantaras , 1991 )

79.3, C 4 (Clar k &  Boswell , 1991 )

79.3. Distanc e fLooe z d e Mantaras . 1991 )

79.4, BASELINE ACCURAC Y

79.8, C 4 (de l a Maza , 1991 )

79.8, m=0. 0 (Cestnik &  Bratko , 1991 )

79.8, m=0.0 1 (Cestni k &  Bratko, 1991 )

79.9, Proto-T O (d e la Maza , 1991 )

80.0, (cite d i n the UC I files) (Diaconis &  Efron , 1983)

80.0, Assistan t (n o pruning ) (Cestnik e t al. , 1987 )

80.1, CN 2 (unordered.laplace) (Clar k &  Boswell , 1991 )

81.1, m= l (Cestni k &  Bratko , 1991 )

81.2, C 4 (pruned ) (this paper )

81.5, m=0. 5 (Cestnik &  Bratko, 1991 )

82.0, Assistan t (post-pruning ) (Cestnik e t al. , 1987 )

82.1, laplac e (Cestnik &  Bratko , 1991 )

83.0, Assistan t (pre-pruning ) (Cestni k e t al. , 1987 )

83.6, m= 3 (Cestni k &  Bratko , 1991 )

83.8, m=12 8 (Cestni k &  Bratko, 1991 )

83.8, m=3 2 (Cestni k &  Bratko , 1991 )

83.8, m=6 4 (Cestnik &  Bratko , 1991 )

83.8, m=99 9 (Cestnik &  Bratko, 1991 )

84.0, Baye s (Cestnik e t al. , 1987 )

84.0, m= 8 (Cestni k &  Bratko , 1991 )

84.5, IRw
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84.5, m= 4 (Cestni k & Bratko , 1991 )

85.5, m=1 2 (Cestni k &  Bratko , 1991 )

85.5, m=1 6 (Cestni k & Bratko, 1991 )

85.8, 1R*

Dataset HY

88.4, quadrati c discriminan t (Weiss &  Kapouleas, 1989 )

92.4, Bayes(secon d order ) (Weiss &  Kapouleas , 1989 )

92.6, rando m (Buntin e & Niblett , 1992 )

93.9, linea r discriminan t (Weiss & Kapouleas, 1989 )

95.3, neares t neighbo r (Weis s &  Kapouleas , 1989 )

96.1, Baye s (Weiss &  Kapouleas , 1989 )

97.1, growt h (Kibler &  Aha , 1988 )

97.2, 1R
97.4, 1R*
97.7, NTgrowt h (Kible r & Aha , 1988 )

98.0, IRw
98.2, C 4 (Kible r &  Aha , 1988)

98.5, neura l net (Weiss &  Kapouleas , 1989 )

98.7, Mars h (Buntin e & Niblett , 1992 )

99.0, GIN I (Buntin e & Niblett , 1992 )

99.1, C 4 (pruned) (thi s paper )

99.1, Inf o Gai n (Buntin e & Niblett , 1992 )

99.1, PT 2 (Utgof f &  Brodley , 1990 )

99.3, C4-rule s (Quinlan , 1987)

99.3, PV M (Weiss &  Kapouleas, 1989 )

99.4, C 4 (Quinlan , 1987 )

99.4, CAR T (Weiss &  Kapouleas, 1989 )

99.7, C 4 (Quinla n et al. , 1986 )

Dataset I R

84.0, Bayes(secon d order) , (cross-validation ) (Weis s & Kapouleas , 1989)
85.8, rando m (Buntin e &  Niblett , 1992 )

89.3, Prob , Reduc e (Mingers , 1989 )

90.5, Prob , Err-com p (Mingers , 1989 )

91.1, Marsh , Critical (Mingers , 1989 )

91.2, Marsh , Pessim (Mingers , 1989 )

91.3, Prob , Critica l (Mingers , 1989 )

92.2, Marsh , Min-er r (Mingers , 1989 )

92.3, NTgrowt h (d e la Maza , 1991 )

92.4, Marsh , Err-com p (Mingers , 1989 )

92.4, Marsh , Reduc e (Mingers , 1989 )

92.4, Prob , Pessi m (Mingers , 1989 )

92.4, growt h (Kibler & Aha , 1988 )

92.5, G-R , Critica l (Mingers , 1989 )
92.5, G-R , Err-com p (Mingers , 1989 )
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92.5, G-R , Pessi m (Mingers , 1989 )

92.5, G-R , reduc e (Mingers , 1989 )

92.6, EAC H withou t feature adjustmen t (Salzberg , 1991 )

92.8, G-stat , Critica l (Mingers , 1989 )

92.8, G-stat , Err-com p (Mingers , 1989 )

92.8, G-stat , Min-er r (Mingers , 1989 )

92.8, G-stat , Pessi m (Mingers , 1989 )

92.8, G-stat , Reduce (Mingers, 1989 )

93.0, CAR T (Salzberg , 1991 )

93.2, G-R , Min-er r (Mingers , 1989 )

93.3, Bayes , (cross-validation ) (Weis s &  Kapouleas, 1989 )

93.3, Prob . Min-er r (Mingers , 1989 )

93.5, 1R

93.8, C 4 (pruned) (thi s paper)

94.0, ID 3 (prune d (Buntine , 1989)

94.2, C 4 (de l a Maza , 1991 )

94.2, ID 3 (Catlett , 199la )

94.2, ID 3 (ne w version (Catlett , 1991a )

94.4, C 4 (Kibler &Aha , 1988 )

94.4, ID 3 (averaged) (Buntine , 1989)

94.5, Mars h (Buntin e & Niblett , 1992 )

94.7, Dasarath y (Hirsh , 1990 )

95.0, GIN I (Buntin e & Niblett , 1992 )

95.1, Inf o Gai n (Buntin e & Niblett , 1992)
95.3, CART , (cross-validation ) (Weiss &  Kapouleas , 1989 )

95.3, EAC H wit h featur e adjustmen t (Salzberg,  1991 )

95.4, NTgrowt h (Kible r &  Aha , 1988)

95.5, Baye s (Buntine , 1989)

95.5, Bayes/ N (Buntine , 1989)

95.9, 1R*

96.0, IRw

96.0, PVM , (cross-validation) (Weis s &  Kapouleas , 1989)

96.0, Proto-T O (de la Maza , 1991 )

96.0, neares t neighbor , (cross-validation ) (Weis s &  Kapouleas , 1989 )

96.7, IVSM , (Hirsh , 1990 )

96.7, neura l net , (cross-validation ) (Weiss &  Kapouleas, 1989 )

97.3, quadrati c discriminant , (cross-validation ) (Weis s &  Kapouleas , 1989 )

98.0, linea r discriminant , (cross-validation ) (Weis s &  Kapouleas , 1989)

Dataset LA
71.5, 1R
77.0, 1-neares t neighbo r (Bergadan o et al. , 1992 )

77.3, C 4 (pruned) (thi s paper )

80.0, 5-neares t neighbo r (Bergadan o et al. , 1992 )

80.0, AQ1 5 (stric t o f flexibl e matching ) (Bergadano e t al. , 1992 )
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83.0, 3-neares t neighbo r (Bergadano e t al. , 1992 )

83.0, AQ1 5 ("to p rule " truncation ) (Bergadano e t al. , 1992 )

83.0, AQ1 5 (TRUNC-SG,flexibl e matching) (Bergadano e t al. , 1992 )

84.2, IRw
86.0, Assistan t (wit h pruning ) (Bergadano e t al. , 1992 )

87.4, 1R*
90.0, AQ1 5 (TRUNC-SG,deductiv e matching ) (Bergadano e t al. , 1992 )

Dataset L Y

56.1, m=99 9 (Cestnik &  Bratko , 1991 )

67.7, rando m (Buntin e & Niblett , 1992)

69.1, m=12 8 (Cestnik &  Bratko, 1991 )

70.7, 1R
71.5, CN 2 (ordered.entropy) (Clar k &  Boswell , 1991)

74.8, m=6 4 (Cestnik &  Bratko, 1991 )

75.0, m=1 6 (Cestnik & Bratko, 1991 )

75.6, GIN I (Buntine & Niblett , 1992 )

75.7, IRw

75.7, Mars h (Buntin e & Niblett , 1992 )

75.9, m=1 2 (Cestni k &  Bratko, 1991 )

75.9, m=3 2 (Cestnik & Bratko, 1991 )

76.0, AQ R (Clark &  Niblett , 1987 , 1989 )

76.0, Assistan t (no pruning ) (Cestnik e t al. , 1987 )

76.0, Assistan t (no pruning) (Michalski, 1990)

76.0, Assistan t (post-pruning) (Cestnik e t al. , 1987 )

76.0, Assistan t (pre-pruning ) (Cestnik e t al. , 1987 )

76.0, Inf o Gai n (Buntin e & Niblett , 1992)

76.4, C 4 (Clark &  Boswell, 1991 )

76.8, m= 8 (Cestni k &  Bratko, 1991 )

77.0, Assistan t (pruning ) (Michalski , 1990 )

77.1, laplac e (Cestnik &  Bratko, 1991 )

77.1, m= 4 (Cestnik & Bratko, 1991 )

77.3, 1R*

77.3, m=0.0 1 (Cestnik &  Bratko, 1991 )

77.3, m=0. 5 (Cestnik &  Bratko, 1991 )

77.3, m= l (Cestni k &  Bratko, 1991 )

77.3, m= 2 (Cestni k &  Bratko, 1991 )

77.3, m= 3 (Cestni k &  Bratko, 1991 )

77.5, C 4 (pruned) (thi s paper )

77.5, m=0. 0 (Cestnik & Bratko, 1991 )

78.0, Assistan t (pruning ) (Clark &  Niblett , 1987 , 1989 )

78.4, ID 3 (averaged) (Buntine , 1989 )

79.0, Assistan t (no pruning ) (Clark &  Niblett , 1987 , 1989 )

79.0, Baye s (Cestnik e t al. , 1987 )

79.6, CN 2 (ordered.laplace) (Clark &  Boswell, 1991 )
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80.0, AQTT15 (unique> 1) (Michalski, 1990)

81.0, AQTT15 (Michalski, 1990)

81.7, CN2 (unordered.laplace) (Clark & Boswell, 1991)

82.0, AQ15 (Michalski et al., 1986)

82.0, AQTT15 (biggest disjuncts) (Michalski, 1990)

82.0, Bayes/N (Buntine, 1989)

82.0, CN2(99) (Clark & Niblett, 1987, 1989)

83.0, Bayes (Clark & Niblett, 1987, 1989)

85.1, Bayes (Buntine, 1989)

Dataset MU

91.2, random (Buntine & Niblett, 1992)

92.7, Marsh (Buntine & Niblett, 1992)

95.0, HILLARY (Iba et al., 1988)

95.0, STAGGER (Schlimmer, 1987)

98.4, 1R
98.4, 1R*
98.5, IRw

98.6, GINI (Buntine & Niblett, 1992)

98.6, Info Gain (Buntine & Niblett, 1992)

99.1, neural net (Yeung, 1991)

99.9, ID3, C4 (Wirth & Catlett, 1988)

100.0, C4 (pruned) (this paper)

Dataset SE

91.8, growth (Kibbler & Aha, 1988)

95.0, 1R
95.0, 1R*
95.0, IRw

95.0, RAF (Quinlan, 1989)

95.2, RUU (Quinlan, 1989)

95.4, RSS (Quinlan, 1989)

95.9, NTgrowth (Kibler & Aha, 1988)

96.1, RPF (Quinlan, 1989)

96.2, RFF (Quinlan, 1989)

96.3, RIF (Quinlan, 1989)

96.8, RCF (Quinlan, 1989)

97.3, C4 (Kibler & Aha, 1988)

97.7, C4 (pruned) (this paper)

99.2, C4 (Quinlan et al., 1986)

Dataset VO
84.0, 3-nearest neighbor (Bergadano et al., 1992)

84.0, 5-nearest neighbor (Bergadano et al., 1992)

84.6, random (Buntine & Niblett, 1992)
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85.0, AQ15 ("top rule" truncation) (Bergadano et al., 1992)

85.2, NT K-nearest neighbor growth (K=3) (Aha & Kibler, 1989)

86.0, 1-nearest neighbor (Bergadano et al., 1992)

86.0, AQ15 (strict or flexible matching) (Bergadano et al., 1992)

86.0, Assistant (with pruning) (Bergadano et al., 1992)

86.2, K-nearest neighbor (K=3) (Aha & Kibler, 1989)

86.4, K-nearest neighbor growth (K=3) (Aha & Kibler, 1989)

88.2, Marsh (Buntine & Niblett, 1992)

90.4, Proto-TO (de la Maza, 1991)

90.6, NTgrowth (de la Maza, 1991)

90.7, growth (Aha & Kibler, 1989)

90.8, IWN(add-or) (Tan & Eshelman, 1988)

91.7, proximity. (Aha & Kibler, 1989)

91.9, NTgrowth (Aha & Kibler, 1989)

92.0, AQ15 (TRUNC-SG,deductive matching) (Bergadano et al., 1992)

92.0, AQ15 (TRUNC-SG,flexible matching) (Bergadano et al., 1992)

92.9, NT disjunctive spanning (Aha & Kibler, 1989)

93.6, CN2 (ordered,entropy) (Clark & Boswell, 1991)

93.9, IWN(max-or) (Tan & Eshelman, 1988)

94.0, ID3 (Fisher & McKusick, 1989)

94.3, IWN(add-or) (Tan & Eshelman, 1988)

94.5, C4 (Aha & Kibler, 1989)

94.8, CN2 (ordered,laplace) (Clark & Boswell, 1991)

94.8, CN2 (unordered,laplace) (Clark & Boswell, 1991)
95.0, IRT (Jensen, 1991)

95.0, STAGGER (Schlimmer, 1987)

95.2, 1R
95.2, 1R*

95.3, C4 (de la Maza, 1991)

95.3, neural net (Yeung, 1991)

95.4, Info Gain (Buntine & Niblett, 1992)

95.5, GINI (Buntine & Niblett, 1992)

95.6, IRw
95.6, C4 (Clark & Boswell, 1991)

95.6, C4 (pruned) (this paper)

Oataset V1

84.4, random (Buntine & Niblett, 1992)

84.9, Marsh (Buntine & Niblett, 1992)

86.8, 1R
87.0, Info Gain (Buntine & Niblett, 1992)

87.2, GINI (Buntine & Niblett, 1992)

87.4, IRw

87.9, 1R*
89.4, C4 (pruned) (this paper)
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APPENDIX D. Data fro m th e 25 runs on each dataset .

IR*

Dataset

BC
CH
GL
02
HD
HE

HO

HY
IR

LA

LY
MU
SE
SO
vo
V1

mean

72.46

69.24
56.44

77.02

78.00
85.14

81.18
97.20
95.92

87.37

77.28

98.44
95.00

87.00
95.18

87.93

std. dev.

4.23

0.95
5.06

3.88

2.68
6.23

1.95
0.67
1.55

4.48

3.75

0.20
0.54

6.62
1.52

2.22

C4

mean

71.96

99.19
63.16

74.26
73.62
81.23

83.61

99.13
93.76

77.25

77.52

100.0

97.69

97.51
95.57

89.36

std. dev.

4.36

0.27
5.71

6.61
4.44

5.12
3.41

0.27

2.96

5.89

4.46
0.0
0.40

3.94
1.31

2.45

IRw

72.7
'68. 3

62.2

78.5
76.57

84.5
81.5

98.0

96.0

84.2

75.7

98.5

95.0

87.2
95.6

87.4

C4-1R*

-0.82

134.7
4.98

-1.93

-5.18
-2.69

4.05

13.44
-3.61

-7.11

0.21

37.47

30.3

6.55
1.59

3.93

t-values

!R*-lR w

-0.27
4.85

-5.53

-1.90
2.62

0.51
-0.86

-5.88

-0.25

3.47
2.07

-1.44

0.04

-0.15
-1.34

1.17

C4-lR w

-0.83

571
0.86

-3.17

-3.26

-3.13
3.01

20.59
-3.71

-5.78
2.00
00

32.8

12.81
-0.12

3.92
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Notes

1. Condition s unde r which pruning leads to a decrease i n accuracy hav e been investigate d by Schaffe r (1992 ;

in press ) an d Fishe r an d Schlimme r (1988) .
2. Clar k an d Boswell (1991) offe r som e discussio n of thi s phenomenon .

3. I n th e versio n of thi s datase t i n th e Irvin e collection, thi s attribut e has onl y 4 values.

4. I t is not always possible t o be certain that a dataset described i n the literatur e is identical to the dataset with
the same name on which 1Rw was measured. Th e survey includes all results for which there i s no evidence
that th e datasets differ .

5. HY , SE: Quinla n et al . (1986) . LA : Bergadan o e t al . (1992) . MU , V O (V1): Schlimmer (1987) .

6. HO : McLeis h and Cecile (1990). BC , LY: Cestnik et al. (1987) . For LY, some grouping of values was done,

as i n VO.

7. Th e dynami c complexity of the BC dataset i s less than 1  because C 4 occasionally produces a  decision tree
that consist s of nothing but a  leaf  (all examples are classifie d the sam e withou t testing a singl e attribute).

8. Fo r example , the space shuttl e applicatio n described i n Catlet t (1991a) .
9. A  recursive partitionin g algorithm similar to Catlett's (1991b) creates partition s that are differen t tha n IR's ,

and n o less accurate .
10. 1R produces a  rul e havin g three leaves and a n accurac y of 95.2% .
11. O n two datasets Weiss et al. (1990) , searche d exhaustivel y through all rules up to a certain lengt h (2 in one

case, 3  i n the other) . I f longer , mor e accurate rule s exist , n o on e ha s ye t foun d them .
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