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Abstract

The promise of unsupervised learning meth-
ods lies in their potential to use vast amounts
of unlabeled data to learn complex, highly
nonlinear models with millions of free param-
eters. We consider two well-known unsuper-
vised learning models, deep belief networks
(DBNs) and sparse coding, that have recently
been applied to a flurry of machine learning
applications (Hinton & Salakhutdinov, 2006;
Raina et al., 2007). Unfortunately, current
learning algorithms for both models are too
slow for large-scale applications, forcing re-
searchers to focus on smaller-scale models, or
to use fewer training examples.

In this paper, we suggest massively paral-
lel methods to help resolve these problems.
We argue that modern graphics processors
far surpass the computational capabilities of
multicore CPUs, and have the potential to
revolutionize the applicability of deep unsu-
pervised learning methods. We develop gen-
eral principles for massively parallelizing un-
supervised learning tasks using graphics pro-
cessors. We show that these principles can
be applied to successfully scaling up learning
algorithms for both DBNs and sparse coding.
Our implementation of DBN learning is up to
70 times faster than a dual-core CPU imple-
mentation for large models. For example, we
are able to reduce the time required to learn a
four-layer DBN with 100 million free param-
eters from several weeks to around a single
day. For sparse coding, we develop a simple,
inherently parallel algorithm, that leads to a
5 to 15-fold speedup over previous methods.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

1. Introduction

We consider two well-known unsupervised learning
models, deep belief networks (DBNs) and sparse cod-
ing, that can learn hierarchical representations of their
input (Olshausen & Field, 1996; Hinton & Salakhutdi-
nov, 2006). With the invention of increasingly efficient
learning algorithms over the past decade, these mod-
els have been applied to a number of machine learning
applications, including computer vision, text modeling
and collaborative filtering, among others. These mod-
els are especially well-suited to problems with high-
dimensional inputs, over which they can learn rich
models with many latent variables or layers. When
applied to images, these models can easily have tens
of millions of free parameters, and ideally, we would
want to use millions of unlabeled training examples
to richly cover the input space. Unfortunately, with
current algorithms, parameter learning can take weeks
using a conventional implementation on a single CPU.
Partly due to such daunting computational require-
ments, typical applications of DBNs and sparse cod-
ing considered in the literature generally contain many
fewer free parameters (e.g., see Table 1), or are trained
on a fraction of the available input examples.

In our view, if the goal is to deploy better machine
learning applications, the difficulty of learning large
models is a severe limitation. To take a specific case
study, for two widely-studied statistical learning tasks
in natural language processing—language modeling
and spelling correction—it has been shown that sim-
ple, classical models can outperform newer, more com-
plex models, just because the simple models can be
tractably learnt using orders of magnitude more input
data (Banko & Brill, 2001; Brants et al., 2007).

Analogously, in our view, scaling up existing DBN and
sparse coding models to use more parameters, or more
training data, might produce very significant perfor-
mance benefits. For example, it has been shown that
sparse coding exhibits a qualitatively different and
highly selective behavior called “end-stopping” when
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Table 1. A rough estimate of the number of free parame-
ters (in millions) in some recent deep belief network appli-
cations reported in the literature, compared to our desired
model. To pick the applications, we looked through several
research papers and picked the ones for which we could re-
liably tell the number of parameters in the model. All the
models do not implement exactly the same algorithm, and
the applications cited may not have used the largest-scale
models possible, so this is not an exact comparison; but the
order of magnitude difference between our desired model
and recent work is striking.

Published source Application Params
Hinton et al., 2006 Digit images 1.6mn
Hinton & Salakhutdinov Face images 3.8mn
Salakhutdinov & Hinton Sem. hashing 2.6mn
Ranzato & Szummer Text 3mn

Our model 100mn

the model is large, but not otherwise (Lee et al., 2006).
There has been a lot of recent work on scaling up DBN
and sparse coding algorithms, sometimes with entire
research papers devoted to ingenious methods devised
specifically for each of these models (Hinton et al.,
2006; Bengio et al., 2006; Murray & Kreutz-Delgado,
2006; Lee et al., 2006; Kavukcuoglu et al., 2008).

Meanwhile, the raw clock speed of single CPUs has
begun to hit a hardware power limit, and most of
the growth in processing power is increasingly ob-
tained by throwing together multiple CPU cores, in-
stead of speeding up a single core (Gelsinger, 2001;
Frank, 2002). Recent work has shown that several
popular learning algorithms such as logistic regres-
sion, linear SVMs and others can be easily imple-
mented in parallel on multicore architectures, by hav-
ing each core perform the required computations for a
subset of input examples, and then combining the re-
sults centrally (Dean & Ghemawat, 2004; Chu et al.,
2006). However, standard algorithms for DBNs and
sparse coding are difficult to parallelize with such
“data-parallel” schemes, because they involve itera-
tive, stochastic parameter updates, where any update
depends on the previous updates. This makes the up-
dates hard to massively parallelize at a coarse, data-
parallel level (e.g., by computing the updates in par-
allel and summing them together centrally) without
losing the critical stochastic nature of the updates. It
appears that fine-grained parallelism might be needed
to successfully parallelize these tasks.

In this paper, we exploit the power of modern graph-
ics processors (GPUs) to tractably learn large DBN
and sparse coding models. The typical graphics card
shipped with current desktops contains over a hun-
dred processing cores, and has a peak memory band-
width several times higher than modern CPUs. The
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Figure 1. Simplified schematic for the Nvidia GeForce
GTX 280 graphics card, with 240 total cores (30 multi-
processors with 8 stream processors each).

hardware can work concurrently with thousands of
threads, and is able to schedule these threads on the
available cores with very little overhead. Such fine-
grained parallelism makes GPUs increasingly attrac-
tive for general-purpose computation that is hard to
parallelize on other distributed architectures.

There is of course a tradeoff—this parallelism is ob-
tained by devoting many more transistors to data pro-
cessing, rather than to caching and control flow, as
in a regular CPU core. This puts constraints on the
types of instructions and memory accesses that can be
efficiently implemented. Thus, the main challenge in
successfully applying GPUs to a machine learning task
is to redesign the learning algorithms to meet these
constraints as far as possible. While a thorough intro-
duction to graphics processor architecture is beyond
the scope of this paper, we now review the basic ideas
behind successful computation with GPUs.

2. Computing with graphics processors

We illustrate the principles of GPU computing using
Nvidia’s CUDA programming model (Harris, 2008).
Figure 1 shows a simplified schematic of a typical
Nvidia GPU. The GPU hardware provides two levels of
parallelism: there are several multiprocessors (MPs),
and each multiprocessor contains several stream pro-
cessors (SPs) that run the actual computation. The
computation is organized into groups of threads, called
“blocks”, such that each block is scheduled to run on
a multiprocessor, and within a multiprocessor, each
thread is scheduled to run on a stream processor.

All threads within a block (and thus executing on the
same multiprocessor) have shared access to a small
amount (16 KB) of very fast “shared memory,” and
they can synchronize with each other at different
points in their execution. All threads also have access
to a much larger GPU-wide “global memory” (cur-
rently up to 4 GB) which is slower than the shared
memory, but is optimized for certain types of simul-
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taneous access patterns called “coalesced” accesses.
Briefly, memory access requests from threads in a
block are said to be coalesced if the threads access
memory in sequence (i.e., the k-th thread accesses the
k-th consecutive location in memory).1 When memory
accesses are coalesced, the hardware can perform them
in parallel for all stream processors, and the effective
access speed (between the stream processors and the
global memory) is several times faster than the access
speed between a CPU and RAM.

Since GPU computation and within-GPU memory ac-
cesses themselves are highly parallel, in many algo-
rithms, the main bottleneck arises in transferring data
between RAM and the GPU’s global memory. For ex-
ample, the total time taken to multiply two 1000x1000
matrices using our GPU configuration (and a vendor-
supplied linear algebra package) is roughly 20 millisec-
onds, but the actual computation takes only 0.5% of
that time, with the remaining time being used for
transfer in and out of global memory. A partial so-
lution is to perform memory transfers only in large
batches, grouped over several computations. In our
example, if we were doing 25 different matrix multi-
plications and were able to perform memory transfers
in large chunks (by transferring all inputs together,
and transferring all outputs together), then as much
as 25% of the total time is spent in computation. Thus,
efficient use of the GPU’s parallelism requires careful
consideration of the data flow in the application.

3. Preliminaries

We now introduce the unsupervised learning problems
we consider in this paper, and analyze the specific is-
sues faced in applying GPUs to those problems. We
consider an unsupervised learning task where we are
given a large unlabeled dataset {x(1), x(2), . . . , x(m)},
with each input x(i) ∈ R

k. The goal is to learn a
model for the inputs x, and to then apply the model
to specific machine learning tasks. For example, each
unlabeled input x(i) ∈ R

900 might represent a 30x30
pixel image of a handwritten character (represented as
a vector of pixel intensities). We might want to learn
a model for the complex 900-dimensional space of in-
puts, and then use this model to classify new hand-
written characters using only very little labeled data.

3.1. Deep Belief Networks

DBNs are multilayer neural network models that learn
hierarchical representations for their input data. Hin-

1For simplicity, we ignore certain other technical condi-
tions that are easy to obey in practice. We also omit dis-
cussion of two other types of memory—constant and tex-
ture memory—that are optimized for other specific types
of access patterns that we do not use in our applications.

ton et al. (2006) proposed an unsupervised algorithm
for learning DBNs, in which the DBN is greedily built
up layer-by-layer, starting from the input data. Each
layer is learnt using a probabilistic model called a re-
stricted Boltzmann machine (RBM). Briefly, an RBM
contains a set of stochastic hidden units h that are fully
connected in an undirected model to a set of stochas-
tic visible units x. Assuming binary-valued units, the
RBM defines the following joint distribution:

P (x, h) ∝ exp
(

∑

i,j xiwijhj +
∑

i cixi +
∑

j bjhj

)

where the weights w and biases b and c are parame-
ters to be tuned. The conditional distributions can be
analytically computed:

P (hj |x) = sigmoid(bj +
∑

i wijxi) (1)

P (xi|h) = sigmoid(ci +
∑

j wijhj) (2)

Maximum likelihood parameter learning for an RBM
can be efficiently approximated by contrastive diver-
gence updates (Hinton, 2002), where we start with the
unlabeled examples as the visible units, alternately
sample the hidden units h and visible units x using
Gibbs sampling (Equations 1-2), and update the pa-
rameters as:

wij := wij + η (〈xihj〉data − 〈xihj〉sample) (3)

ci := ci + η (〈xi〉data − 〈xi〉sample) (4)

bj := bj + η (〈hj〉data − 〈hj〉sample) (5)

where η is the learning rate, 〈·〉data represents expecta-
tions with the visible units tied to the input examples,
and 〈·〉sample represents expectations after T ≥ 1 itera-
tions of Gibbs sampling. Since each update requires a
Gibbs sampling operation, and the updates have to be
applied over many unlabeled examples to reach con-
vergence, unsupervised learning of the parameters can
take several days to complete on a modern CPU.

3.2. Sparse Coding

Sparse coding is an algorithm for constructing suc-
cinct representations of input data (Olshausen & Field,
1996). Using our earlier example, if each input x(i) ∈
R

900 represents a handwritten character image, sparse
coding attempts to learn that each handwritten char-
acter is composed of only a few building blocks, such
as pen strokes (instead of 900 arbitrary intensity val-
ues). Such a higher-level representation can then be
applied to classification tasks, where it leads to good
results even with limited labeled data (Raina et al.,
2007; Bradley & Bagnell, 2008).

Specifically, given inputs x ∈ R
k, sparse coding at-

tempts to find basis vectors b = {b1, b2, . . . , bn}, bj ∈
R

k such that each input x can be represented as a lin-
ear combination of a few basis vectors: x ≈

∑

j ajbj ,
where aj ∈ R represents the activation of basis bj ,
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and most of the aj values are zero (or, the vector a
is sparse). The basis vectors are found by solving the
following optimization problem (Lee et al., 2006):

minimizeb,a
1
2

∑

i ‖x
(i) −

∑

j a
(i)
j bj‖

2 + β
∑

i,j |a
(i)
j |

s.t. ‖bj‖ ≤ 1, ∀j ∈ {1, ..., n}

where the first term in the objective function encour-

ages good reconstruction (x(i) ≈
∑

j bja
(i)
j ), and the

second term encourages sparsity by penalizing non-
zero activations (Tibshirani, 1996). The optimization
problem is not jointly convex in both b and a vari-
ables, but it is convex in either one of those variables,
if the other is kept fixed. This suggests an alternating
minimization algorithm with two steps: first, keep-
ing b fixed, we optimize over a, which leads to an L1-
regularized least squares problem, that can be solved
using custom-designed solvers (Efron et al., 2004; Lee
et al., 2006; Andrew & Gao, 2007). Then, we keep a
fixed, and optimize over b using convex optimization
techniques (Lee et al., 2006). For problems with high-
dimensional inputs and large numbers of basis vectors,
the first step is particularly time consuming as it in-
volves a non-differentiable objective function, and the
overall learning algorithm can take several days.

4. GPUs for unsupervised learning

Both the above algorithms repeatedly execute the fol-
lowing computations: pick a small number of unla-
beled examples, compute an update (by contrastive di-
vergence or by solving a convex optimization problem),
and apply it to the parameters. To successfully apply
GPUs to such unsupervised learning algorithms, we
need to satisfy two major requirements. First, memory
transfers between RAM and the GPU’s global memory
need to be minimized, or grouped into large chunks.
For machine learning applications, we can achieve this
by storing all parameters permanently in GPU global
memory during learning. Unlabeled examples usually
cannot all be stored in global memory, but they should
be transferred only occasionally into global memory in
as large chunks as possible. With both parameters and
unlabeled examples in GPU global memory, the up-
dates can be computed without any memory transfer
operations, with any intermediate computations also
stored in global memory.

A second requirement is that the learning updates
should be implemented to fit the two level hierar-
chy of blocks and threads, in such a way that shared
memory can be used where possible, and global mem-
ory accesses can be coalesced. Often, blocks can ex-
ploit data parallelism (e.g., each block can work on
a separate input example), while threads can exploit
more fine-grained parallelism because they have access
to very fast shared memory and can be synchronized

(e.g., each thread can work on a single coordinate of
the input example assigned to the block). Further,
the graphics hardware can hide memory latencies for
blocks waiting on global memory accesses by schedul-
ing a ready-to-run block in that time. To fully use such
latency hiding, it is beneficial to use a large number
of independently executing blocks. In some cases, as
discussed for sparse coding in Section 6, we can com-
pletely redesign the updates to be inherently parallel
and require less synchronization between threads.

We thus arrive at the following template algorithm for
applying GPUs to unsupervised learning tasks:

Algorithm 1 Parallel unsupervised learning on GPUs

Initialize parameters in global memory.
while convergence criterion is not satisfied do

Periodically transfer a large number of unlabeled
examples into global memory.
Pick a few of the unlabeled examples at a time,
and compute the updates in parallel using the
GPU’s two-level parallelism (blocks and threads).

end while

Transfer learnt parameters from global memory.

5. Learning large deep belief networks

We apply Algorithm 1 to learning large DBNs using
the contrastive divergence updates in Equations (3-
5). The parameters w, c and b for all the DBN layers
are maintained permanently in global memory during
training. The updates require repeated Gibbs sam-
pling using the distributions in Equations (1-2). These
distributions can be rewritten using matrix notation:

P (h|x) = vectorSigmoid(b + wT x)

P (x|h) = vectorSigmoid(c + wh)

where vectorSigmoid(·) represents the elementwise sig-
moid function, and x, h are vectors containing an el-
ement corresponding to each visible and hidden unit
respectively. The above computations can be batched
together for several examples for further efficiency.
The matrix operations can be performed in parallel us-
ing optimized linear algebra packages for the GPU, and
the sigmoid computation and sampling can be done by
a simple parallelization scheme where each block works
on a single example, and each thread in the block
works on a single element of the example. Finally,
once the samples have been generated, the updates
can again be applied in parallel using linear algebra
packages: e.g., w := w + η

(

〈xT h〉data − 〈xT h〉sample

)

We extend our method to learning deep belief networks
with “overlapping patches” (Figure 2). This model is
most easily understood with hidden and visible units
arranged in a 2-D array (e.g., when the input is an
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Figure 2. A schematic of the overlapping patches model.
Two patches A and B in the input image are shown, with
each patch connected to a different set of hidden units.
The connections are parameterized by their own sets of
parameters wA, bA, cA and wB , bB , cB .

image and each visible unit is a pixel). The input im-
age is tiled by equally-spaced, equal-sized patches (or
receptive fields), and each patch is fully connected to
a unique group of hidden units. There is no weight
sharing in this model, and each connection is param-
eterized by a free parameter. Because of the overlap-
ping patches, all the parameters in the model depend
on each other, making learning hard. However, Gibbs
sampling can still be performed in parallel for this
model: each visible unit depends on hidden units at
many different locations, but the sampling operation
x|h can be implemented using only coalesced global
memory accesses (implementation details omitted).

These overlapping patch RBMs can be stacked on top
of each other, such that the second-layer RBM con-
tains hidden units connected locally to first-layer hid-
den units, and so on. The resulting deep networks
have a very large number of units, but only sparse,
local connections, which make learning tractable even
for models with more than 100 million parameters.

Experimental Results: We compare our GPU-
based algorithm against CPU-based methods using the
following multicore hardware:

• GPU: Nvidia GeForce GTX 280 graphics card
with 1GB memory. Dual-core CPU @ 3.16GHz.
Reported results show the total running time (in-
cluding all computation, memory transfer, etc.).

• Single CPU: Single core @ 3.16GHz.
• Dual-core CPU: Two cores, each @ 3.16GHz.

(Identical machine as for the GPU result.)

The CPU-based method was implemented using two
highly optimized multithreaded linear algebra pack-
ages: ATLAS BLAS (Whaley et al., 2001) and Goto
BLAS (Goto & Van De Geijn, 2008). Consistent
with previous results, we found that Goto BLAS was
faster (Bengio, 2007), so we report CPU results us-
ing it. As input, we used a large dataset of natural

images (van Hateren & van der Schaaff, 1997) and ob-
tained input examples by randomly extracting square
image patches of the required size. Following previ-
ous work, we used Gaussian visible units and binary
hidden units, and trained a sparse RBM by adding an
additional penalty term to the objective (Lee et al.,
2007)—however, these modifications do not affect the
running time results significantly. For learning, we
performed one-step contrastive divergence updates us-
ing a mini-batch of 192 examples.

Table 2 shows the running time for processing 1 million
examples for RBMs of varying size (denoted by num-
ber of visible units × number of hidden units). The
GPU method is between 12 to 72 times faster. The
speedup obtained is highest for large RBMs, where
the computations involve large matrices and can be
more efficiently parallelized by using a large number
of concurrent blocks (which allows the graphics hard-
ware to better hide memory latencies). The largest
model in Table 2 has 45 million parameters, and our
GPU method can update these parameters using a mil-
lion examples in about 29 minutes. In comparison, our
multicore CPU takes more than a day per million ex-
amples. Since we would ideally want to use tens of
millions of training examples for learning such a large
model, the CPU method is impractical for such tasks.

Table 3 shows a similar running time comparison for
two “overlapping patch” models (see table caption for
details). The GPU method is about 10 times faster
than the dual-core CPU. This speedup is somewhat
lower than the speedup observed for a fully connected
RBM (Table 2), because Gibbs sampling in the over-
lapping patch model requires many operations involv-
ing small matrices (one weight matrix per patch), in-
stead of only a few operations involving large matri-
ces. Using the overlapping patch model, we can learn a
four-layer DBN with 96 million parameters, and 25600,
82944, 8192, 4608 and 1024 units respectively in the
input layer and the four successive hidden layers. Such
models are at least an order of magnitude larger than
previously published work on DBNs.

Finally, we note that the overlapping patches model
can be modified to share parameters in all patches,
such that, for example, wA = wB in Figure 2. If over-
lapping patches are tiled one pixel apart, this model is
identical to the convolutional RBM model (Desjardins
& Bengio, 2008; Lee et al., 2009). Contrastive diver-
gence learning in this model can be implemented by
using convolutions to perform the Gibbs sampling op-
eration h|x. For small to medium filter (patch) sizes,
spatial convolution can be implemented very efficiently
using GPUs, by having each block read a filter into
shared memory, then reading the input image column-
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Table 2. Average running time in seconds for processing 1 million input examples for learning an RBM, with contrastive
divergence updates applied in batches of 192 examples each. The size of the RBM in each column is denoted by the
number of visible units × number of hidden units. The GPU speedup is computed w.r.t. the fastest CPU-based result.

Package Architecture 576x1024 1024x4096 2304x16000 4096x11008
Goto BLAS Single CPU 563s 3638s 172803s 223741s
Goto BLAS Dual-core CPU 497s 2987s 93586s 125381s

GPU 38.6s 184s 1376s 1726s
GPU Speedup 12.9x 16.2x 68.0x 72.6x

Table 3. Average time in seconds for processing 1 million
examples for the overlapping patch model, with contrastive
divergence updates applied in batches of 192 examples
each. The model size in each column is denoted by the
number of visible units × number of hidden units (but note
that the units are not fully connected). The two models
were created by taking 144x144 pixel and 192x192 pixel
inputs respectively; the size of each patch is 24x24 pixels,
there are 192 hidden units connected to each patch, and
neighboring patches are 8 pixels apart. Overall, the models
have 28 million and 54 million free parameters respectively.

Package Arch. 20736x49152 36864x92928
Goto Single CPU 38455s 77246s
Goto Dual-core 32236s 65235s

GPU 3415s 6435s
GPU Speedup 9.4x 10.1x

by-column into shared memory, and finally aggregat-
ing the output elements affected by that filter and that
input image column. It can be shown that by ordering
operations in this way, we use only fast shared memory
accesses and coalesced global memory accesses.2 For
example, on computing the convolution of 32 128x128
images with 32 16x16 filters, our GPU implementation
of spatial convolution (including the time to transfer
images/filters into GPU memory) is over 100 times
faster than either spatial convolution implemented in
C or FFT-based convolution in Matlab.

6. Parallel sparse coding

We now consider the sparse coding optimization prob-
lem discussed in Section 3.2. Following the tem-
plate in Algorithm 1, we maintain the basis param-
eters b permanently in global memory, and transfer
input examples to GPU global memory periodically in
large batches. Following the alternating minimization
method, each update itself consists of two steps: the
first, simpler part of the update involves optimizing
over b, given fixed a:

minimize b

∑

i ‖x
(i) −

∑

j a
(i)
j bj‖

2 s.t. ‖bj‖ ≤ 1,∀j

We solve this problem using projected gradient de-
scent, where we follow the gradient of the quadratic
objective function, and project at each step to the

2For larger filter sizes FFT-based convolution is gener-
ally better, and a GPU FFT package can be used.

feasible set.3 This method is guaranteed to converge
to the optimal b and can be straightforwardly imple-
mented using a GPU linear algebra package.

The other part of the update involves optimizing over
a, given fixed b. Since the activation a(i) for each ex-
ample x(i) is now independent of the activations for
other examples, it suffices to consider the following
canonical L1-regularized least squares problem for a
single input example x:

minimize a
1
2‖x −

∑

j ajbj‖
2 + β

∑

j |aj | (6)

The objective function is not differentiable because of
the second term. This problem has recently received
wide attention because of its robust feature selection
properties (Tibshirani, 1996; Ng, 2004), and custom
algorithms have been designed to solve it (Efron et al.,
2004; Lee et al., 2006; Andrew & Gao, 2007). Some of
these algorithms use sparse linear algebra operations
to achieve efficiency. We instead present a very differ-
ent algorithm that is inherently parallel and thus uses
the GPU hardware more efficiently.

6.1. Parallel L1-regularized least squares

Our algorithm is based on the observation that in the
optimization problem in Equation (6), if we vary only
one of the activations aj , while keeping the other acti-
vations fixed, the optimal value a∗

j can be easily com-
puted (Friedman et al., 2007). Letting B be a matrix
with bj as its j-th column, and rj = bT

j bj :

a∗

j =







0 if |gj − rjaj | ≤ β
(−gj + rjaj + β)/rj if gj − rjaj > β
(−gj + rjaj − β)/rj if gj − rjaj < −β

where g = ∇a

1

2
‖x −

∑

j ajbj‖
2 = BT Ba − BT x.

The updates can be efficiently performed in parallel by
having thread j compute just one coordinate a∗

j . Fur-
ther, since we usually batch several examples together,
we can precompute the matrix BT B, the vector BT x
and the vector r once in parallel, store the result in
global memory, and perform only efficient accesses to
compute all a∗

j values.4

3The projection operation is particularly simple: for
each basis vector bj , if ‖bj‖ > 1 then rescale bj to have
norm 1, otherwise keep bj unchanged.

4To see why, note that to compute a∗

j , thread j needs to
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Thus, we propose the following iterative algorithm: at
each iteration, starting at the current activation values
a = â, we compute all the optimal coordinate values
a∗

j in parallel as outlined above. Then, we perform
a line search in the direction of vector d = a∗ − â.
The line search consists of finding a step size t > 0
such that the value of the objective function at the
point a = â + td is lower than the value at a = â.
This line search, including the function evaluations,
can be run in parallel.5 We then move to the new
point a = â + td, and iterate. We declare convergence
when the objective value decreases by less than a 10−6

fraction of the previous objective value.

Since the direction d is a nonnegative linear combina-
tion of descent directions along the coordinate axes:
dj = a∗

j − âj , d must itself be a descent direction for
the objective function. Thus, at each iteration, a step
size t > 0 can always be found that reduces the value
of the objective function, and the overall algorithm is
guaranteed to converge to the optimal solution.

This algorithm uses fine-grained parallelism by having
each thread compute just one coordinate of the solu-
tion. Such highly multithreaded execution is especially
well-suited for graphics processors, as the hardware is
able to hide memory latency (for threads blocked on
memory accesses) by scheduling other threads that are
not blocked on memory accesses, and leads to high uti-
lization of the available cores.

Experimental Results: We again compare our
method against a multicore CPU baseline (Lee et al.,
2006). We used optimized Matlab code provided by
Lee et al. For the CPU multicore results, we executed
the same Matlab code with multithreading enabled.

Table 4 shows the running time for applying sparse
coding basis updates (including both basis and activa-
tion optimization) for m = 5000 examples, with mini-
batches of 1000 examples. Each example x ∈ R

1024

compute gj − rjaj =
P

t(B
T B)tjat − (BT x)j − rjaj . Con-

sider the elements thread j accesses: (i) (BT B)tj : Accesses
can be coalesced if BT B is stored in row-major order. (ii)
By maintaining a in shared memory, all threads can access
the same element at simultaneously, as well as access the
elements aj that are different for each thread. (For the in-
terested reader, we add that this avoids “bank conflicts” in
shared memory. See CUDA reference manual for details.)
(iii) (BT x)j and rj : Can be coalesced as thread j accesses
the j-th location.

5Details: By substituting a = â + td in the original
objective function, the line search reduces to minimizing a
1-D function of the form f(t) = α2t

2+α1t+α0+β‖â+td‖1,
where the values α2, α1, α0 can be computed in parallel.
For the 1-D line search over f(t), we simply try a fixed set
of positive step sizes, and pick the largest step size that
reduces the value of the objective function.

Table 4. Average running time for updating sparse coding
parameters on 5000 input examples. The GPU speedup is
computed w.r.t. the fastest CPU-based result. The spar-
sity value refers to the average percentage of the 1024 acti-
vations that were nonzero at the optimal solution; different
sparsity was obtained by using different β values. Note that
3-10% is a reasonable range as it corresponds to around 30
to 100 nonzero activations per input example.

Method Sparsity≈3% 6% 10%
Single CPU 215s 403s 908s
Dual-core 191s 375s 854s
GPU 37.0s 41.5s 55.8s
Speedup 5.2x 9.0x 15.3x

was obtained via a randomly sampled 32x32 pixel nat-
ural image patch. We used n = 1024 basis vectors,
initialized randomly. The majority of sparse coding
time in Lee et al.’s method is taken by the activa-
tion learning step, especially when many activations
are nonzero at the optimum. By effectively paralleliz-
ing this step, our GPU method is up to 15 times faster
than a dual-core implementation.

7. Discussion
Graphics processors are able to exploit finer-grained
parallelism than current multicore architectures or dis-
tributed clusters. They are designed to maintain thou-
sands of active threads at any time, and to schedule the
threads on hundreds of cores with very low scheduling
overhead. The map-reduce framework (Dean & Ghe-
mawat, 2004) has been successfully applied to par-
allelize a class of machine learning algorithms (Chu
et al., 2006). However, that method relies exclusively
on data parallelism—each core might work indepen-
dently on a different set of input examples—with no
further subdivision of work. In contrast, the two-level
parallelism offered by GPUs is much more powerful:
the top-level GPU blocks can already exploit data par-
allelism, and GPU threads can further subdivide the
work in each block, often working with just a single
element of an input example.

GPUs have been applied to certain problems in ma-
chine learning, including SVMs (Catanzaro et al.,
2008), and supervised learning in convolutional net-
works (Chellapilla et al., 2006). To continue this line
of work, and to encourage further applications of deep
belief networks and sparse coding, we will make our
source code publicly available.
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