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ABSTRACT
In the quest for cognitive computing, we have built a mas-
sively parallel cortical simulator, C2, that incorporates a
number of innovations in computation, memory, and com-
munication. Using C2 on LLNL’s Dawn Blue Gene/P su-
percomputer with 147, 456 CPUs and 144 TB of main mem-
ory, we report two cortical simulations – at unprecedented
scale – that effectively saturate the entire memory capac-
ity and refresh it at least every simulated second. The first
simulation consists of 1.6 billion neurons and 8.87 trillion
synapses with experimentally-measured gray matter thala-
mocortical connectivity. The second simulation has 900 mil-
lion neurons and 9 trillion synapses with probabilistic con-
nectivity. We demonstrate nearly perfect weak scaling and
attractive strong scaling. The simulations, which incorpo-
rate phenomenological spiking neurons, individual learning
synapses, axonal delays, and dynamic synaptic channels, ex-
ceed the scale of the cat cortex, marking the dawn of a new
era in the scale of cortical simulations.

1. INTRODUCTION
Large-scale cortical simulation is an emerging interdisciplinary
field drawing upon computational neuroscience, simulation
methodology, and supercomputing. Towards brain-like cog-
nitive computers, a cortical simulator is a critical enabling
technology to test hypotheses of brain structure, dynamics
and function, and to interact as an embodied being with vir-
tual or real environments. Simulations are also an integral
component of cutting-edge research, such as DARPA’s Sys-
tems of Neuromorphic Adaptive Plastic Scalable Electronics
(SyNAPSE) program that has the ambitious goal of engen-
dering a revolutionary system of compact, low-power neu-
romorphic and synaptronic chips using novel synapse-like
nanodevices. We compare the SyNAPSE objectives with
the number of neurons and synapses in cortices of mammals
classically used as models in neuroscience 1 [8, 22, 29, 32].
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Mouse Rat SyNAPSE Cat Human

Neurons ×108 .160 .550 1 7.63 200
Synapses ×1012 .128 .442 1 6.10 200

Simulations at mammalian scale pose a formidable challenge
even to modern-day supercomputers, consuming a vast num-
ber of parallel processor cycles, stressing the communication
capacity, and filling all available memory and refreshing it
at least every second of simulation time, thus requiring ex-
tremely innovative simulation software design. Previously,
using a Blue Gene/L (BG/L) [14] supercomputer, at IBM
T. J. Watson Research Center, with 32, 768 CPUs and 8 TB
main memory, we reported the design and implementation
of a cortical simulator C2 and demonstrated near real-time
simulations at scales of mouse [13, 3] and rat cortices [2].

In this paper, we have significantly enriched our simulations
with neurobiological data from physiology and anatomy (Sec-
tion 2), and have simultaneously enhanced C2 with algorith-
mic optimizations and usability features (Section 3). As a re-
sult of these innovations, as our main contribution, by using
Lawrence Livermore National Labs’ state-of-the-art Dawn
Blue Gene/P (BG/P) [17] supercomputer with 147, 456 CPUs
and 144 TB of total memory, we achieve cortical simula-
tions at an unprecedented and historic scale exceeding that
of cat cerebral cortex (Sections 4 and 5). Our simulations
use single-compartment phenomenological spiking neurons
[19], learning synapses with spike-timing dependent plastic-
ity [36], and axonal delays. Our specific results are summa-
rized below:

• We simulated a biologically-inspired model with 1.617 ×

109 neurons and 0.887× 1013 synapses, roughly 643 times
slower than real-time per Hertz of average neuronal firing
rate. The model used biologically-measured gray mat-
ter thalamocortical connectivity from cat visual cortex [7]
(Figure 1), dynamic synaptic channels, and a simulation
time step of 0.1 ms (Section 4).

• We simulated a model with 0.9×109 neurons and 0.9×1013

synapses, using probabilistic connectivity and a simula-
tion time step of 1 ms, only 83 times slower than real-time
per Hertz of average neuronal firing rate (Section 5).

• We demonstrated that the simulator has nearly perfect
weak scaling (Section 5) implying that doubling of mem-
ory resource translates into a corresponding doubling of
the model size that can be simulated. From a strong scal-
ing perspective (Section 5), at constant model size, we
demonstrated that using more CPUs reduces the simula-
tion time, closing the gap to real-time simulations.
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2. NEUROSCIENCE 101
Here, we describe essential dynamical features from neuro-
physiology and structural features from neuroanatomy; for a
comprehensive overview of neuroscience, please see [21]. The
key features incorporated in our simulations are highlighted
below in bold.

2.1 Neurophysiology: Dynamics
The computational building block of the brain is the neu-

ron, a cell specialized to continuously integrate inputs and
to generate signals based on the outcome of this integration
process. The term neuron was coined by Heinrich Wilhelm
Gottfried von Waldeyer-Hartz in 1891 to capture the dis-
crete information processing units of the brain. Each neu-
ron receives inputs from thousands of other neurons via its
dendrites and, in turn, connects to thousands of others via
its axon. At the point of contact between the axon of a
neuron and the dendrite of a target neuron is a synapse,
a term coined by Sir Charles Sherrington in 1897. With
respect to the synapse, the two neurons are respectively
called pre-synaptic and post-synaptic. When a synapse is
activated, it produces a change in the voltage across the post-
synaptic neuron’s cell membrane, called the membrane po-

tential. If some event, such as an incoming stimulus, causes
synaptic activations sufficient to increase the post-synaptic
neuron’s membrane potential above a certain threshold, the
neuron will fire, sending a spike down its axon. Our sim-
ulations use single-compartment phenomenological
spiking neurons [19] that capture the essential proper-
ties of synaptic integration and spike generation. Once a
neuron spikes, all the synapses that its axon contacts are
then activated after an appropriate axonal conductance de-

lay. Our simulations include discrete axonal delays
in the units of the simulation time step. Neurons
can either be excitatory, meaning that their firing increases
the membrane potential of target neurons (whose synapses
they contact), or inhibitory, which decrease the membrane
potential of target neurons. Our simulations include ex-
citatory and inhibitory neurons in approximately a
4:1 ratio [8].

Neurophysiological studies have made clear that a synap-
tic activation produces an effect on a target neuron that
gradually grows and then fades with a specific time course,
usually on the order of under a second and varying between
synapse types. Our simulations include four of the
most prominent types found in the cortex: AMPA,
NMDA, GABAA, and GABAB, which are modeled
as dynamic synaptic channels; for details, please see
Appendix A.

A large proportion of synapses are plastic, that is, the ef-
fect of their activation on the corresponding post-synaptic
neuron is subject to change over time using a plasticity
rule. Synaptic learning is captured by Donald Hebb’s princi-
ple: neurons that fire together, wire together. Our simula-
tions include a form of spike-timing dependent plas-
ticity (STDP) [36] that potentiates (increases the weight
of) a synapse if its post-synaptic neuron fires after its pre-
synaptic neuron fires, and depresses (decreases the weight
of) a synapse if the order of two firings is reversed. Synaptic
plasticity allows networks of neurons to extract, encode, and
store spatiotemporal invariants from the environment.
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Figure 1: Connectivity diagram for the biologically inspired
model of the thalamocortical system simulated here. Connections
are shown for neuron types in the model’s two cortical areas, as
well as simulated regions of the thalamus and reticular nucleus.
Each cortical area is divided into four layers and neurons are fur-
ther grouped into cortical hypercolumns (an example of which is
depicted for each area using dashed lines). Connections from a
neuron to a given layer are assumed to target all neuron types
in that layer. To improve clarity, weak connections (200 or less
contacts) are not shown.

2.2 Neuroanatomy: Structure
The cerebral cortex is a large sheet of neurons a few millime-
ters thick and with a surface area of 2500 cm2 in humans,
folded tightly to fit within constraints imposed by the skull
[30]. Neuronal density in the cortical sheet has been esti-
mated at 92, 000 neurons under 1 mm2[8]. The cortex is
subdivided into multiple areas, each showing some degree
of functional specialization and a specific set of connections
with other cortical areas. Six layers span the thickness of the
cortical sheet. It has been suggested that layer 4 serves as
the main cortical input layer, relaying information to layers 2
and 3, which in turn transfer activity to layers 5 and 6 where
it is then sent out of cortex, with connections within each
layer facilitating information processing along the way [5].
Across the surface of the cortical sheet, neurons are orga-
nized into repeating functional units called hypercolumns,
each 200 − 800 µm in diameter and spanning all cortical
layers [28]. The cortex is densely interconnected with the
thalamus, a small body that serves as a center to distribute
signals from subcortical regions, including sensory informa-
tion, into cortex and between different cortical areas [20].
Firing in the thalamus is regulated by the reticular nucleus,
a sheet of inhibitory neurons overlying the thalamus [20].

Our simulations include a biologically inspired net-
work (Figure 1) that is designed to incorporate the
above principles of cortical structure. For this imple-
mentation, the network is divided into two regions, with each
region including a visual cortical area (Cx1 and Cx2) and an
attendant section of the thalamus (T1 and T2) and reticular
nucleus (R1 and R2). Regions are constructed from thalam-
ocortical modules, each comprising 10, 000 cortical neurons
representative of a cortical hypercolumn, 334 thalamic neu-
rons and 130 thalamic reticular nucleus cells. Within each



thalamocortical module, cortical neurons are further subdi-
vided into 4 layers corresponding to combined layers 2 and 3
(L2/3), layer 4 (L4), layer 5 (L5) and layer 6 (L6). Cortical
layer 1 is not explicitly represented in our model due to the
very small number of neurons present in this layer. Each
layer contains 3 − 4 neuron types, as described in [7], with
a total of 13 neuron types in cortex, 4 in thalamus and 1 in
the reticular nucleus. Neurons of the same type within the
same thalamocortical module and layer form a group. Thus
each module contains 18 neuron groups. Thalamocortical
modules are arranged in sheets, with each module having a
specific topographic (x, y) coordinate used for determining
connections within the network. Each module is assumed
to correspond to a square region of cortex 330 µm across,
resulting in a cortical density of 91, 827 neurons per mm2.

Our simulations include several key sets of data in
designing our connections. It has been estimated that
about 70% of input to a cortical neuron arises from sources
within the same area, with the remaining connections com-
ing from other cortical areas or regions outside of cortex [16].
Intraareal connections typically are made within a few hy-
percolumns of the neuron of origin [15]. Connections made
by various neuron types within cat visual cortex have re-
cently been analyzed in detail, providing specific connectiv-
ity patterns between and within all layers and suggesting
that each neuron receives about 5, 700 synapses on average
[7]. It has been observed that about 20% of synapses in cor-
tex are inhibitory, while the rest are excitatory [6]. Connec-
tions from cortex to the thalamus and reticular nucleus orig-
inate from layers 5 and 6. Thalamic cells send projections to
cortex based on cell type, with thalamic core cells projecting
in a focused fashion to a specific cortical area and thalamic
matrix cells projecting in a diffuse fashion to multiple cor-
tical areas [20]. The reticular nucleus receives input from
cortex and thalamus and in turn provides strong inhibitory
input to the thalamus [20]. As described in Appendix B, we
established connections between neurons within our model
based on the above observations, using the cortical cell types
described in [7].

3. SUPERCOMPUTING SIMULATIONS: C2
The essence of cortical simulation is to combine neurophys-
iological data on neuron and synapse dynamics with neu-
roanatomical data on thalamocortical structure to explore
hypotheses of brain function and dysfunction. For relevant
past work on cortical simulations, see [10, 12, 19, 24, 27, 33].
Recently, [18] built a cortical model with 1 million multicom-
partmental spiking neurons and half a billion synapses using
global diffusion tensor imaging-based white matter connec-
tivity and thalamocortical microcircuitry. The PetaVision
project at LANL is using the RoadRunner supercomputer
to build a synthetic visual cognition system [9].

The basic algorithm of our cortical simulator C2 [2] is that
neurons are simulated in a clock-driven fashion whereas synapses
are simulated in an event-driven fashion. For every neuron,
at every simulation time step (say 1 ms), we update the state
of each neuron, and if the neuron fires, generate an event for
each synapse that the neuron is post-synaptic to and pre-
synaptic to. For every synapse, when it receives a pre- or
post-synaptic event, we update its state and, if necessary,
the state of the post-synaptic neuron.

In this paper, we undertake the challenge of cortical sim-
ulations at the unprecedented target scale of 109 neurons
and 1013 synapses at the target speed of near realtime. As
argued below, at the complexity of neurons and synapses
that we have used, the computation and communication re-
quirements per second of simulation time as well as memory
requirements all scale with the number of synapses – thus
making the problem exceedingly difficult. To rise to the
challenge, we have used an algorithmically-enhanced version
of C2, while simultaneously exploiting the increased com-
putation, memory, and communication capacity of BG/P.
Given that BG/P has three computation modes, namely,
SMP (one CPU per node), DUAL (two CPUs per node),
and VN (four CPUs per node), we have been able to ex-
plore different trade-offs in system resources for maximizing
simulation scale and time.

3.1 Performance Optimizations in C2
Assuming that, on an average, each neuron fires once a sec-
ond, we quantify computation, memory, and communication
challenges–in the context of the basic algorithm sketched
above–and describe how C2 addresses them.

3.1.1 Computation Challenge
In a discrete-event simulation setting, the state of all neurons
must be updated every simulation time step (which is 0.1-1
ms in this paper). Each synapse would be activated twice
every second: once when its pre-synaptic neuron fires and
once when its post-synaptic neuron fires. For our target
scale and speed, this amounts to 2 × 1013 synaptic updates
per second; as compared to 1012 (or 1013) neuronal updates
per second assuming a neuronal update time of 1 ms (or 0.1
ms). Thus, synapses dominate the computational cost at 1
ms or larger simulation time steps.

To address the computation challenge, C2 enables a true
event-driven processing of synapses such that the computa-
tion cost is proportional to the number of spikes rather than
to the number of synapses. Also, we allow communication
to overlap computation, thus hiding communication latency.
For ease of later exposition in Figures 5 - 7, the computation
cost is composed of four major components [2]: (a) process
messages in the synaptic event queue; (b) depress synapses;
(c) update neuron state; and (d) potentiate synapses.

3.1.2 Memory Challenge
To achieve near real-time simulation, the state of all neu-
rons and synapses must fit in main memory. Since synapses
(1013) far outnumber the neurons (109), the number of synapses
that can be modeled is roughly equal to the total memory
size divided by the number of bytes per synapse. Of note,
the entire synaptic state is refreshed every second of model
time at a rate corresponding to the average neural firing rate
which is typically at least 1 Hz.

To address the memory challenge, C2 distills the state for
each synapse into merely 16 bytes while still permitting com-
putational efficiency of an event-driven design. Further, C2
uses very little storage for transient information such as de-
layed spikes and messages.
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Figure 2: Distribution of the number of synapses among the
627, 263 groups used in the biologically-inspired model. The la-
bels on the x-axis denote the thalamocortical population to which
the groups belong, as discussed in Section 2.2. Each red cross
denotes an inhibitory group, and a blue circle represents an exci-
tatory group. As can be seen the number of synapses for neurons
in a group can be varied, ranging from a few hundred to almost
18, 000 synapses per neuron.

3.1.3 Communication Challenge
When a neuron fires, a spike message must be sent to each
of the synapses made by its axon. For our target scale and
speed, this amounts to a total of 1013 messages per second
assuming a 1 Hertz average neuronal firing rate.

To address the communication challenge, C2 was developed
with a view towards a distributed memory multiprocessor
architecture such as that embodied in BG/L and BG/P. C2
achieves massive spike message aggregation by reducing the
number of messages from the order of synapses to the order
of processors that a neuron connects to. Through innovative
use of MPI’s reduce-scatter primitive, we developed a novel
synchronization scheme that requires only 2 communication
steps independent of the number of the processors. When
simulating with over a hundred thousand processors, such
communication optimizations are absolutely indispensable
since all processors must synchronize at every simulation
time step.

3.1.4 Load Balancing Challenge
A key requirement for efficient utilization of computation,
memory and communication resources in a distributed mem-
ory multiprocessor system is the equal distribution of work
load among the processors. This is especially true in C2,
since the simulation follows a discrete event framework where
all the processors synchronize at every simulation time step:
Variability in work load among processors directly leads to
slower runtime, and is highly undesirable. To maximize
the size of the cortical model that can be simulated, all of
the available memory should be used for storing simulation
state, which chiefly consists of synapses.

Neurons anchor the synapses, and hence the synapses be-
longing to a neuron have to be co-located on the same pro-
cessor. Neurons are combined into groups to manage the
connectivity in the network of the simulated model. Thus,
the unit of load balancing among the processors is a neu-

ron group. The goal of the load balancing is to distribute
the groups among the processors such that the number of
synapses allocated to each processor is roughly the same.
Computation, memory, and communication all scale with
the number of synapses, but the number of synapses per neu-
ron can range from a few hundred to almost 18, 000 synapses
per neuron (Figure 2).

To address the load balancing challenge, we use an external
load map to assign the groups to the processors by using the
total number of synapses in the processor as the primary cost
metric. In typical simulations, we achieved a difference of
less than 0.3% between the minimum and maximum of the
total number of synapses assigned to the processors. The
efficiency of our load balancing scheme is demonstrated by
the constant cost of the four computational components as
seen in Figure 5.

3.2 Usability Features of C2

3.2.1 Checkpoints
Checkpoints in C2 are used for traditional computational
features – such as ensuring forward progress for a long simu-
lation in the presence of interruptions. Further, when using
the simulation in the context of learning, checkpoints are
necessary between “training” and “test” phases. Simulations
are used to sift through a wide variety of hypotheses in order
to uncover key computational circuits underlying function.
The parameter space of stable cortical dynamics is many di-
mensional and large. Checkpoints can facilitate search for
solutions in this high dimensional space by establishing ref-
erence points that represent already discovered operating
points in terms of desirable features of stability and/or func-
tion – and those reference points can subsequently be used
to explore other neighboring spaces.

Most of the memory is occupied by data structures that
hold the state of synapses (including synaptic efficacy, time
of last activation) and neurons (membrane potential, recov-
ery variable). The checkpoint size is almost the same as the
amount of memory used. Each MPI rank produces its own
checkpoint file independently in parallel. Writes from each
MPI Rank are sequential. The format of the checkpoint is
data-structure oriented, and many of the data structures are
allocated in sequential chunks. The size of the data struc-
tures – and, hence the size of writes – depend on the layout
or distribution of data among processors; most writes are
several megabytes large. Checkpoint restore is also done in
parallel with each MPI rank reading one file sequentially. C2
reads, verifies, initializes, and restores individual data struc-
tures one at a time. The granularity of individual reads is
small, just a few bytes to few hundred bytes, but does not
pose a performance problem since the reads are all sequen-
tial. Hence, suitable buffering and read-ahead at the file-
system level effectively increase the size of the read at the
device.

3.2.2 BrainCam
C2 simulations provide access to a variety of data at a high-
resolution spatiotemporal scale that is difficult or impossi-
ble in biological experiments. The data can be recorded at
every discrete simulation time step and potentially at every
synapse. When combined with the mammalian-scale models



now possible with C2, the flood of data can be overwhelm-
ing from a computational (for example, the total amount of
data can be many terabytes) and human perspective (the
visualization of the data can be too large or too detailed).

To provide the appropriate amount of information, much of
the spatiotemporal data is rendered in the form of a movie,
in a framework we refer to as BrainCam. C2 records spa-
tiotemporal data in parallel at every discrete time step with
every MPI Rank producing its own file of data, one file for
each type of data. The data is aggregated into groups, for
example, one type of data records the number of neurons fir-
ing in a given group at a time step while another type records
the amount of synaptic current in-coming for a group. The
data files are processed by a converter program to produce
an MPEG movie which can be played in any movie player or
using a specialized dashboard that segregates the data ac-
cording to anatomical constraints, such as different cortical
layers [4]. The synaptic current can also be used to produce
an EEG-like rendering as seen in Figure 3.

3.2.3 SpikeStream
The input to the brain is generated by sensory organs, which
transmit information through specialized nerve bundles such
as the optic nerve, to the thalamus and thence to the cortex.
The nature of the sensory information is encoded in spikes,
including, but not limited to, the timing between spikes.
Spikes encode space and time information of the sensory
field, and other information specific to the particular sense.

SpikeStream is our framework to supply stimulus to C2. It
consists of two parts: (1) the mapping of the input nerve
fibers to a set of neurons in the model (for example, visual
stimulus is given to the lateral geniculate nucleus), and (2)
the actual input spikes, framed by the discrete time steps,
such that at each step there is a vector, of length of the
map, of binary values. C2 processes the input map to ef-
ficiently allocate data structures for proper routing of the
spikes. All the MPI Ranks process the streams in parallel,
so there is low overhead of using this generalized facility.
The spikes can represent an arbitrary spatiotemporal code.
We have used SpikeStream to encode geometric visual ob-
jects (for example, Figure 3 uses a square stimulus). In more
elaborate simulations, we have used SpikeStream to encode
synthesized auditory utterances of the alphabet. Finally,
in conjunction with the effort of a larger research group
working on the DARPA SyNAPSE project, we have used
SpikeStream to encode visual stimuli from a model retina
that, in turn, receives input from a virtual environment.

In summary, SpikeStream represents a spike-in-spike-out in-
terface that can connect the simulated brain in C2 to an
external environment.

4. KEY SCIENCE RESULT
Our central result is a simulation that integrates neurophys-
iological data from Section 2.1 and neuroanatomical data
from Section 2.2 into C2 and uses the LLNL Dawn BG/P
with 147, 456 CPUs and 144 TB of total memory. We simu-
lated a network comprising 2 cortical areas depicted in Fig-
ure 1. Networks are scaled by increasing the number of
thalamocortical modules present in the model while keep-
ing constant the number of neurons and number of synapses

made by each neuron in each module. In the largest model
we simulated, each area consists of a 278× 278 sheet of tha-
lamocortical modules, each consisting of a cortical hyper-
column and attendant thalamic and reticular nucleus neu-
rons. Each module has 18 neuron groups and 10, 464 neu-
rons. The overall model consists of 1.617 billion neurons
(= 278×278×2×10, 464). While there is a wide distribution
in the number of synapses per neuron (see Figure 2) from a
few hundred to almost 18, 000, on an average, each neuron
makes or receives 5, 485 synapses. Thus, each module makes
or receives 57, 395, 040 synapses (= 5, 485×10, 464) for a to-
tal of 8.87 trillion synapses (= 57, 395, 040×278×278×2).
The model scale easily exceeds the scale of cat cerebral cor-
tex that has an estimated 763 million neurons and 6.1 trillion
synapses. Choosing learning synapses with STDP, a 0.1 ms
simulation time step, and a stimulus of a square image that
fills 14% of the visual field, we observed activity at a firing
rate of 19.1 Hz, and a normalized speed of 643 seconds for
one second of simulation per Hz of activity.

To facilitate a detailed examination of network activity, we
used a smaller model with over 364 million neurons. Stim-
ulation was delivered by injecting superthreshold current in
each time step to a randomly chosen set of 2.5% of thala-
mic core cells, chosen from thalamocortical modules within
a 50 × 50 square at the center of the model’s first corti-
cal area. The simulation time step was 0.1 ms. First, we
explored the dynamic regime with STDP turned off. Dur-
ing this run, activity in the model oscillated between active
and inactive periods, with an average firing rate of 14.6 Hz.
Next, we performed a comparable run with STDP turned
on, which produced similar oscillations and an average fir-
ing rate of 21.4 Hz, with a normalized speed of 502 seconds
for one second of simulation per Hz of activity.

A simulated electroencephalographic (EEG) like recording
of the response to stimulation in the above model showed
12 full oscillations over the course of the one second simu-
lation (Figure 3A). A further analysis revealed that activity
in the model did not occur randomly, but rather propagated
through the network in a specific fashion. An activation
was initially produced at the site of stimulation in T1 and
then propagated to L4 and L6 of Cx1 with average response
latencies of 13.4 and 14.2 ms. The activation then trav-
eled rapidly to the other cortical layers, reaching L2/3 and
L5 with latencies of 19.4 and 17.1 ms. Within each layer,
activity spread more slowly, traveling horizontally at 0.27
m/sec. These propagation patterns are in agreement with
observations made in animals [31][26], providing a measure
of validation of the model. Going beyond what is possible in
animal experiments (where typically 10’s of neural popula-
tions can be simultaneously recorded), the simulator allows
the analysis of hundreds of thousands of neural groups. Fig-
ure 3B provides a visualization of each group’s response over
the course of the stimulation, revealing fluctuations between
active and silent periods that occur in conjunction with the
oscillations in the EEG trace. The topography of the re-
sponse provides further details (Figure 3C), showing that
activity propagates between layers initially in a topographi-
cally aligned fashion, and then spreads out within each layer.
These simulations thus provide a novel insight into how a
stimulus propagates through brain circuitry at a previously
unachieved scale.
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Figure 3: One second of activity simulated in a biologically inspired network model. Data is shown for a run of a model with over 364
million neurons, organized into 2 cortical areas, each made up of a 132 × 132 grid of hypercolumns. A. A simulated EEG trace for the
first cortical area, calculated as a sum of current in pyramidal neurons scaled by each cell’s distance from the simulated electrode location
(assumed here to the center of the area). B. Plot of firing rates for the different neuron types employed in the model (labeled along
the y-axis), where each row represents the firing of a single neuron group. Firing rates were smoothed using a sliding gaussian window
(sigma = 10 ms) for clarity. C. Topographic plots of the time of the first spike occurring in each neuron group for the neuron groups
and time windows indicated with blue boxes in B. Plots 1 − 5 show groups containing neurons from the first cortical area of type p2/3,
ss4(L2/3), p5(L5/6) and p6(L4), and from T1 CoreE, respectively.

5. SCALING & PERFORMANCE STUDIES
We undertook a wide array of measurements to benchmark
the cortical simulator C2. We focus on two primary mea-
surements: the size of the model that could be represented
in varying amounts of memory, and the time it takes to sim-
ulate one second of model time. Secondary measures include
the breakdown of the runtime into various computation and
communication components. We also performed detailed
performance profiling studies using MPI Profiler and Hard-
ware Performance Monitor [23].

For this purpose, we have developed a range of network mod-
els that are easily parameterized so as to enable extensive
testing and analysis [2]. Like the cortex, all our models
have roughly 80% excitatory and 20% inhibitory neurons.
The networks do not have the detailed thalamocortical con-
nectivity, but groups of neurons are interconnected in a
probabilistic fashion. Each neuron group connects to 100
other random groups and each neuron makes about 10, 000
synapses. Our largest network has a local connection prob-
ability of 0.13, which is comparable to the experimentally-
measured number of 0.09 [8]. The axonal conduction delays
are between 1 − 20 ms for excitatory neurons, and 1 ms for
inhibitory neurons.

The measurements were performed on the LLNL Dawn BG/P
with 147, 456 CPUs and 144 TB of total memory. The data
was gathered from a total of about 400 simulations runs
using just over 3, 000, 000 core hours.

5.1 Weak Scaling
Figure 4 presents the results of our weak scaling study,
where the problem size is increased with increasing amount
of memory. The plot demonstrates nearly perfect weak scal-
ing in terms of memory, since twice the model size could
be simulated when the amount of memory is doubled. The
largest simulated model corresponds to a scale larger than
the cat cerebral cortex, reaching 4.5% of the human cerebral
cortex.

Runtimes corresponding to weak scaling are shown in Fig-
ure 5 (top left). Other plots in the figure provide a deeper
analysis of the communication and computation costs. These
plots illustrate that computation costs remain fairly con-
stant, but communication costs, due to increased cost of
synchronization and activity dependent variability amongst
the different processors, increase in a slow logarithmic fash-
ion as larger model sizes are deployed on larger numbers of
processors.
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with a little over 24, 756 nodes and 24 racks, we simulated a 6.1 trillion synapses at the scale of the cat cortex. Finally, the largest
model size consists of 900 million neurons and 9 trillion synapses, in 1, 179, 648 groups of 763 neurons each. This corresponds to a scale
of 4.5% of the human cortex.

5.2 Strong Scaling
Strong scaling is where a fixed problem size is run on increas-
ingly larger partition sizes to study the effect on simulation
time. We demonstrate that our simulation has favorable
strong scaling behavior (Figure 6). In the SMP and DUAL
modes, where there is relatively more memory per CPU, the
scaling is very good – as seen in the plots, the time taken
for a fixed model continues to decrease as more CPUs are
employed. This behavior is also observed in a significant
part of the VN results, but the results for higher number
of CPUs indicate an optimal ratio of memory to computa-
tion to communication may exist for our simulator. A trend
in BlueGene architecture has been the increase in available
memory per CPU, which favors our strong scaling sweet-
spot of 2GB memory per CPU as shown in the DUAL mode
plot.

5.3 MPI Profiler
We now turn our efforts towards a detailed study of the com-
munication performance. To avoid an overwhelming amount
of data, we restrict this and next subsection to representa-
tive data points in the weak and strong scaling graphs. Due
to memory needed for instrumentation, the models used in
this and the next subsection are 2 − 3% smaller.

We gathered details of the communication performance us-
ing the MPI Profiler [23]. At 12K nodes in VN mode (49, 152
CPUs), the total time for simulation is 173 seconds (for 1
second of model time at 3.89 Hz firing rate) with the com-
munication component consuming 71 seconds. Of this, the
major MPI communication primitive is the Reduce_scatter

taking 66.3 seconds, followed by a distant Isend, taking 2.5
seconds, and Recv taking 2.1 seconds. We performed fur-
ther investigation to find the key reason for the high cost of
the reduce/scatter. Surprisingly, it is not a cost inherent to
the reduce/scatter operation, but rather that the operation
serves as a barrier. When the code was modified to add
an explicit barrier just before the reduce/scatter operation,
most of the time (60 – 90%) was consumed in the barrier.
In turn, the barrier on the Blue Gene architecture is not
expensive – several hundred barriers can be executed in a
second. The reason for the time at the barrier is, instead,
due to the variability in firing rate. In short, due to the
activity dependent firing of neurons – and hence the result-
ing activity dependent processing of spike messages, synap-
tic updates, etc. – different MPI Ranks execute variable
amount of actual work during a given time-step. The result
is that a particular time step is only as fast as the slowest
MPI rank with the most amount of work during that time
step. This characterization also fits the profile that signifi-
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cantly increased numbers of CPUs in the simulation increase
the total communication cost, including the implicit barrier.
To further optimize these costs, we are investigating tech-
niques to overlap processing of messages while others are
still being received. Finally, the total cost to actually send
and receive messages is quite low – only 4.6(= 2.5 + 2.1)
seconds out of 173; this is an indication of the effectiveness
of the compaction of spike information and aggregation of
messages.

5.4 Hardware Performance Monitoring
The final detailed performance study uses execution profiles
generated by the hardware performance monitoring (HPM)
facility in BG/P [23]. In brief, HPM consists of 256 perfor-
mance counters that measure different events such as integer
and floating point operations, cache and memory events,
and other processor and architecture specific information.
Depending on the configuration, the counters measure the
performance of either core 0 and 1, or, core 2 and 3. To
calibrate our measurements, we used a smaller run at 32
nodes and verified that the counters for cores 0/1 and 2/3
were comparable in simulations with enough steps (for ex-
ample, 1000 steps). The HPM facility reports FLOPS as a
weighted sum of the various floating point operations (for
example, fmadd (floating point multiply-and-add) is two op-
erations). At 12K nodes in VN mode (49, 152 CPUs, the
same run as the MPI profile), we measured 1.5254 teraflops.
Many of the computational operations in C2 are not floating
point intensive – only the core dynamical equations of neu-
rons and the synaptic weights involve floating point num-
bers; the rest, such as time-information, delays, etc., are
integer oriented. The compaction of many data structures
necessitates the use of bit-fields, resulting in additional (in-
teger) operations to extract and position those fields, which
also increase the ratio of integer to floating point operations.
HPM also reports the memory traffic averaged over all nodes
(DDR hardware counters). In the same 12K run, the total
number of loads and stores is 2.52 bytes per cycle. In the
BG/P each node has a dual memory controller [17] for a
combined issue capacity of 16 bytes per cycle (at 850 MHz
this gives a peak 13.6 GB/sec). As noted in the MPI Profiler
subsection, about 40% of the time is spent in communica-
tion, leaving a possible peak use of 9.6 bytes per cycle in
the computational parts (60% of 16). Thus, the memory
bandwidth use is about 26% (2.52 out of 9.6). This large
memory foot print is a result of the dynamic, activity de-
pendent processing – different sets of neurons and synapses
are active in adjacent steps in the simulation. Unlike other
non-trivial supercomputing applications, these observations
may indicate that it will be difficult to obtain super-linear
speed-ups due to cache effects in large number of processors:
activity is seldom localized in time.

6. DISCUSSION AND CONCLUSIONS
What does the brain compute? This is one of the most
intriguing and difficult problems facing the scientific and
engineering community today.

Cognition and computation arise from the cerebral cortex; a
truly complex system that contains roughly 20 billion neu-
rons and 200 trillion synapses. Historically, efforts to un-
derstand cortical function via simulation have been greatly
constrained–in terms of scale and time–by the lack of com-

putational resources and by the paucity of large-scale, high-
performance simulation algorithms.

Using a state-of-the-art Blue Gene/P with 147, 456 proces-
sors and 144 TB of main memory, we were able to simulate a
thalamocortical model at an unprecedented scale of 109 neu-
rons and 1013 synapses. Compared to the human cortex, our
simulation has a scale that is roughly 1 − 2 orders smaller
and has a speed that is 2 − 3 orders slower than real-time.
Our work opens the doors for bottom-up, actual-scale mod-
els of the thalamocortical system derived from biologically-
measured data. In the very near future, we are planning to
further enrich the models with long-distance white-matter
connectivity [35]. We are also working to increase the spa-
tial topographic resolution of thalamocortical gray-matter
connectivity 100 times – from hypercolumn (∼ 10, 000 neu-
rons) to minicolumn (∼ 100 neurons). With this progres-
sively increasing level of detail, the simulator can be paired
with current cutting edge experimental research techniques,
including functional imaging, multiple single-unit recordings
and high-density electroencephalography. Such simulations
have tremendous potential implications for theoretical and
applied neuroscience as well for cognitive computing. The
simulator is a modern-day scientific instrument, analogous
to a linear accelerator or an electron microscope, that is
a significant step towards unraveling the mystery of what
the brain computes and towards paving the path to low-
power, compact neuromorphic and synaptronic computers
of tomorrow.

Our interdisciplinary result is a perfect showcase of the im-
pact of relentless innovation in supercomputing [25] on sci-
ence and technology. We have demonstrated attractive strong
scaling behavior of our simulation; hence, better and faster
supercomputers will certainly reduce the simulation times.
Finally, we have demonstrated nearly perfect weak scaling
of our simulation; implying that, with further progress in
supercomputing, realtime human-scale simulations are not
only within reach, but indeed appear inevitable (Figure 8).
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Endnotes
1. The total surface area of the two hemispheres of the rat cor-

tex is roughly 6 cm2 and that of the cat cortex is roughly 83 cm2

[29]. The number of neurons under 1 mm2 of the mouse cortex

is roughly 9.2 × 104 [34] and remains roughly the same in rat

and cat [32]. Therefore, the rat cortex has 55.2 × 106 neurons

and the cat cortex has 763 × 106 neurons. Taking the number of

synapses per neuron to be 8, 000 [8], there are roughly 442 × 109

synapses in the rat cortex and 6.10 × 1012 synapses in the cat

cortex. The numbers for human are estimated in [22], and corre-

spond to roughly 10, 000 synapses per neuron.
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APPENDIX

A. Dynamic Synaptic Channels

Our simulations include four of the most prominent types of dy-
namic synaptic channels found in the cortex: AMPA, NMDA,
GABAA, and GABAB .

Synaptic current for each cell, Isyn, represents summed current
from these four channel types, where current for each type is given
as:

I = g(Erev − V )

where g is the conductance for the synaptic channel type, Erev is
the channel’s reversal potential (see Table 1) and V is the neurons
membrane potential. The conductance value of each channel, g,
is simulated using a dual-exponential that simulates the response
to a single input spike as [1]:

g(t) = gpeak

exp(−t/τ1) − exp(−t/τ2)

exp(−tpeak/τ1) − exp(−tpeak/τ2)
.

Here, τ1 and τ2 are parameters describing the conductance rise
and decay time constants (Table 1). The gpeak value represents
the peak synaptic conductance for the activated synapse (that is,
its synaptic strength) and tpeak represents the time to peak:

tpeak =
τ1τ2

τ1 − τ2
ln

(

τ1

τ2

)

.

NMDA is unique in that its level of activation is also dependent
upon the voltage difference across the membrane of the target cell.
Voltage sensitivity for the NMDA channel is simulated by multi-
plying NMDA conductance by a scaling factor, gscale calculated
as [11]:

gscale =
1

1 + exp(−(V + 25)/12.5)
.

Table 1: Synaptic channel parameters

Erev gpeak τ1 τ2

AMPA 0 0.00015 0.5 2.4
NMDA 0 0.00015 4 40
GABAA -70 0.00495 1.0 7.0
GABAB -90 0.000015 60 200

B. Model Connectivity Profiles

The coordinates of target thalamocortical modules for each cell
are determined using a Gaussian spatial density profile centered
on the topographic location of the source thalamocortical module
according to the equation:

p(x, y) =
1

2πσ2
exp

(

−
1

2σ2

[

(x − x0)2 + (y − y0)2
]

)

where p(x, y) is the probability of forming a connection in the tha-
lamocortical module at coordinate (x, y) for source cell in the tha-
lamocortical module at coordinate (x0, y0). Connection spread is
determined by the parameter σ. Interareal connections are cen-
tered on the (x, y) coordinate in the target area corresponding to
the topographic location of the source thalamocortical module.
The connections used in the model are depicted in Figure 1.

C. From BG/L to BG/P

We now compare our previous results from C2 on BG/L to the
new results in this paper; this analysis will further illustrate the
tradeoffs in memory and computation. On BG/L, the largest
simulated model consisted of 57.67 million neurons each of 8, 000
synapses for a total of 461 billion synapses; and 5 seconds of model
time took 325 elapsed seconds at a firing rate of 7.2 Hz. The
normalized runtime for each 1 Hz of firing rate is approximately
9 seconds (325/7.2/5) [2]. From Figure 4, the comparative data
point is at 8, 192 CPUs in the VN mode. At this partition size,
the model size is 49.47 million neurons each with 10, 000 synapses,
for a total of 494 billion synapses. The runtime for 1 second of
model time was 142 seconds at 3.9 Hz – this yields a normalized
runtime for each 1 Hz of firing at 36.4 seconds. The number of
synapses in the BG/P result is larger than the BG/L result by
about 7%, a direct benefit of the improved load balancing scheme
in C2, which allows for near-optimal memory utilization. BG/L
has only 256 MB per CPU compared to 1 GB in BG/P (in VN
mode) – a factor of 4. Thus, only 8, 192 CPUs in BG/P were
sufficient to accommodate the larger model. However, due to the
four times fewer number of CPUs, the runtime correspondingly
increased in BG/P by almost the same factor – from 9 to 36.4
seconds of normalized runtime.

Synapses CPUs Elapsed Time (sec)/ Normalized
(billions) Model Time (sec)/ (sec/sec/Hz)

Rate (Hz)
BG/L 461 32768 325/5/7.2 9
BG/P 494 8192 142/1/3.9 36.4


