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1. Introduction
In the future, it is anticipated that the smartest creatures will have software minds.
At that point, their intelligence may improve quickly—as quickly as the underlying
algorithms can be improved (Muehlhauser and Salamon 2012; Yudkowsky 2013).

To understand how progress will proceed when intelligence becomes an algorithmic
problem, we might do well to look at how existing algorithms improve.

Several features of characteristic algorithmic improvement curves should interest us.
How fast is progress? Does it tend to be smooth or lumpy? Is there rapid progress
followed by diminishing returns, or does progress accelerate? How much of progress
comes immediately from large insights, and how much comes from tinkering later on?
Are there general patterns to be found?

Progress on human-level AI may be faster than progress on historical algorithmic
problems, because superhuman intelligences are likely to be more productive researchers
than their human counterparts. Moreover, mature AI will have unprecedented economic
value, and hence probably attract commensurately more investment. The population
will be larger, and technology will be better. As a result, raw improvement rates are
not necessarily strong indicators of what will happen after human-level AI is developed.
There is, however, great variation in how much effort is invested in different contempo-
rary problems, so investigating the current relationships between inputs and outputs in
algorithms should give us a better picture of what to expect when inputs are changed in
the future.

If we know more about the work that produced the algorithmic improvements, we
may be able to answer some other useful questions. How does the rate of progress
depend on the number of people working in an area? How much does information
sharing matter?

All these questions contribute to what we might expect in an intelligence explosion.
Speed tells us about the timescale over which we should expect an intelligence explosion.
If we see that algorithms robustly become twice as good in half a year to five years, we
might expect an intelligence explosion to take half a year to five years. Whether progress
speeds up or slows down, and how fast such changes occur, might help us predict whether
a sustained feedback loop could appear, whether parties who get ahead will tend to stay
ahead, and consequently whether such a transition is likely to be destructive. The sizes
of jumps in capability and the importance of large insights also say a lot about how
abrupt a transition might be, and the extent to which small competing entities can get
ahead of the competition and stay forever ahead. The extent to which progress tends
to be predictable tells us something about how likely an intelligence explosion is to be
surprising. If insights translate quickly to improvements in capabilities, this will allow

1



Algorithmic Progress in Six Domains

lucky entities to get ahead more than if gains from insights are returned spread out over
the long run. The effects of sharing between groups tell us something about whether
information transfer should undermine local takeoff scenarios. The extent to which
scaling up the size of a research team scales up progress tells us about the potential for
feedback from the creation of AI to AI research.

Each of these questions deserves a thoroughly researched answer, but much of the
information is probably visible in the first glance. This paper is a collection of first
glances: roughly what the history of algorithmic improvement looks like, focusing on
areas where improvement can be easily measured. Looking at what is readily apparent
raises some issues with selection effects, which we shall visit in the next section. This pa-
per will neither analyze the data extensively nor attempt to point out all of its interesting
implications.

2. Summary
This document presents empirical evidence regarding progress in six areas of algorithms
research. This section summarizes these findings, while the rest of the document details
them. Skimming the figures in this document should also constitute a good summary.

In recent Boolean satisfiability (SAT) competitions, SAT solver performance has in-
creased 5–15% per year, depending on the type of problem. However, these gains have
been driven by widely varying improvements on particular problems. Retrospective
surveys of SAT performance (on problems chosen after the fact) display significantly
faster progress.

Chess programs have improved by around fifty Elo points per year over the last four
decades. Estimates for the significance of hardware improvements are very noisy but are
consistent with hardware improvements being responsible for approximately half of all
progress. Progress has been smooth on the scale of years since the 1960s, except for the
past five.

Go programs have improved about one stone per year for the last three decades. Hard-
ware doublings produce diminishing Elo gains on a scale consistent with accounting for
around half of all progress.

Improvements in a variety of physics simulations (selected after the fact to exhibit per-
formance increases due to software) appear to be roughly half due to hardware progress.

The largest number factored to date has grown by about 5.5 digits per year for the last
two decades; computing power increased ten-thousand-fold over this period, and it is
unclear how much of the increase is due to hardware progress.

Some mixed integer programming (MIP) algorithms, run on modern MIP instances
with modern hardware, have roughly doubled in speed each year. MIP is an important

2
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optimization problem, but one which has been called to attention after the fact due to
performance improvements. Other optimization problems have had more inconsistent
(and harder to determine) improvements.

Various forms of machine learning have had steeply diminishing progress in percent-
age accuracy over recent decades. Some vision tasks have recently seen faster progress.

3. A Few General Points
3.1. On Measures of Progress
This report deals mostly with progress on well-defined, relatively easy to measure axes,
such as speed and accuracy. Such progress is not the only goal of algorithm developers;
algorithms are also optimized to be general, simple to maintain, and usable, among other
desiderata. These things will sometimes be traded off against one another, so algorithms
are not as fast as they would be if speed were the only goal, though it is not obvious how
this affects relative improvements. Some of the data here is from competitions, which
presumably helps to direct efforts toward specific, measurable benchmarks. Even so,
developers have goals beyond winning the present competition.

It is often challenging to determine whether progress is speeding up or slowing down.
Progress that is slowing by one measure is always accelerating by some other measure,
so such claims are highly dependent on context and on the performance benchmarks
we care about. For instance, if you double the speed of a chess algorithm, the number
of levels searched grows logarithmically, the number of board positions examined grows
exponentially, and the Elo rating grows linearly. It is tempting to use the most intuitive
measure, such as percentage instead of logarithm of percentage, but this is not always
related to what we really care about. For instance, progress in machine translation
appears to have slowed in terms of percentage accuracy, but improving accuracy by
a percentage point in the 90% regime arguably increases the usefulness of translation
software much more than improving accuracy by a point in the 30% regime. If we are
trying to predict whether a process of self-improvement would accelerate exponentially,
the interesting measure is probably the same one with which we measure inputs.

3.2. Inputs and Outputs
Ideally, we would like to know the relationships between inputs and outputs for algorith-
mic progress. For instance, we would like to know how much improvement is produced
by one year of an intelligent person’s time. Inputs are generally harder to measure than
outputs; even if you know that a chess project belongs to one person, it isn’t clear how
much of their time they spend on it, and how much of the relevant added insight they
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produce personally rather than harvesting from a larger community. Consequently, most
of the data collected here is about outputs.

Outputs alone can still tell us a lot, especially as we already know some basic things
about inputs. For instance, even if we are unsure how many people work on a problem,
or how much of the intellectual work is done outside the apparent group working on it,
we can probably assume that these remain roughly stable over short spans of years. So,
if we see jumpy progress, we can tentatively attribute it to something else. Even if we
are unsure which hardware is used for particular applications, we know the rough rate at
which hardware gets better, and we can often assume state-of-the-art hardware is being
used. To estimate progress in software, we can take overall progress and subtract the
approximate contributions from hardware.

3.3. On Selection
The most salient algorithmic problems might be those for which progress is particularly
fast (or slow), so looking at algorithms that are being reported on might give us a
biased impression of the overall rate of progress. There are a few ways to mitigate
this difficulty. In general, we should pay attention to motives of authors. Reports
such as “A Science-Based Case for Large-Scale Simulation” (Keyes et al. 2004) might
intend to illustrate points by highlighting fast-improving algorithms. The existence of
benchmarks introduces a more ambiguous selection effect, which could nevertheless
significantly bias results. In many cases, we should treat estimates as being optimistic
rather than representative. We should rely more on assessments that are planned in
advance of knowledge about performance. Competitions are better than retrospective
analyses, and problems that were singled out early are better than problems that were
selected after some progress. For many purposes, it doesn’t matter much whether the
sample is representative; trends that hold robustly over a range probably continue to hold
outside of that range, and an optimistic sample can give us a better picture of the high
end of progress, as long as we interpret it correctly.

That which is easily measured may improve faster than more nebulous qualities,
particularly if such measures are being used to guide progress. Yet we may care about
the nebulous qualities. For instance, it is easier to measure progress in voice recognition
in specific circumstances than it is to measure the breadth of circumstances in which it
works well, weighted by how likely we are to want to use it there. Thus, progress on well-
defined metrics, such as most of what we will examine here, will tend to overestimate
the progress we care about.
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4. Boolean Satisfiability (SAT)
4.1. SAT Solving Competition
The Boolean satisfiability (SAT) solving competition has been held once every year or
two since 2002 and publishes detailed results. For instance, the 2007 competition pro-
duced 78,507 data points of time taken by a particular solver on a particular SAT instance
(problem) on fixed hardware. Some instances are taken from industrial applications,
some are handcrafted, and some are produced randomly from a distribution known to
be on the boundary of what is possible for existing algorithms. Each problem instance
is solved by a number of competing programs. This section presents data from the 2007,
2009, and 2011 competitions.

Over the three competitions investigated here, there were 190,074 data points for
3,015 different instances. The instances used each year change substantially;1 however,
there is overlap. Many specific industrial and handcrafted instances return in multiple
contests. Problems from the same random distributions also appear in multiple contests,
though never exactly the same problems.

Problems from the competitions are published, so it is possible that some progress
when problems are repeated comes from algorithms being optimized for known prob-
lems. This cannot be a factor in progress on the random instances, as they are changed
every year. Progress was greater for the random instances than for the handcrafted and
industrial instances, which suggests this is not a big effect.

The times recorded are total processing times (if multiple processors are used, the
times spent by each are added together). The same hardware was used between 2007
and 2009: Intel Xeon 3.00 GHz processors with 2 GB of RAM and a 2 MB cache. In
2011, the hardware was changed to Intel Xeon 2.67 GHz cores with 32 GB of RAM
and an 8 MB cache.2 The later processor is newer and has larger cache and RAM, so it
may be somewhat faster overall, notwithstanding the slower clock speed.

Every competition has time and memory limits. These are not necessarily the same
between competitions, or between sections of the same competition. Whether a solver
timed out or “memoried out” on a problem is recorded. In the following, timeouts are
treated as if they had taken infinite time to solve, but are excluded when calculating
average rates of progress (except via their effect on median times). This ensures that
changes in the set of feasible problems don’t directly bias the results.

1. One might fear selection bias here—e.g., problems may be disproportionately kept around for
another year if people anticipate they will remain in a particular band of difficulty.

2. For more extensive hardware details, see “launcher data” on benchmark pages, for instance in 2009
or 2011.
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4.1.1. Industrial and Handcrafted SAT Instances
Of 1,294 industrial and handcrafted problems in the three-competition (five-year) data-
set, 279 were used in more than one competition, and fourteen were used in all three
competitions. We will focus on the 189 that were used in two consecutive competitions
and that were solved by at least one competitor.

Speedup Distribution
Figure 1 shows how much the best time improved on each problem between consecutive
contests (that is, over two years).3 As we can see, the distribution is almost uniform
between zero and one, with a small fraction taking much longer than before. There
is a flat spot: around six percent of problems’ times changed by less than one percent
between years.
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Figure 1: Reduction in time taken for handcrafted and industrial Boolean satisfiability (SAT) instances
over two years. The horizontal axis represents each of the 189 SAT instances compared, ordered from
largest to smallest improvement. The vertical axis represents the ratio of time to solve in later competition
(T1) to time to solve in earlier competition (T0). The graph is truncated at 2, though a few problems took
two to ten times longer in the second year.

For reference, figures 2–4 show the distribution of times in the first year of each of
the periods to be considered (2007–2009, 2009–2011, and these combined). Problems

3. Figures 1–10 and Tables 1–4 were created using data from the SAT Competition Organizers (2007–
2011).
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do not appear in the first-year times if they were not solved by any solver in the second
year.
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Figure 2: Fastest 2007 times to solve handcrafted and industrial SAT instances completed in both 2007
and 2009, ordered from fastest to slowest.
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Figure 3: Fastest 2009 times to solve handcrafted and industrial SAT instances completed in both 2009
and 2011, ordered from fastest to slowest.
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Figure 4: Fastest first-year times to solve handcrafted and industrial SAT instances completed in two
consecutive competitions between 2007 and 2011, ordered from fastest to slowest.

Two-Year Improvements
In order to measure overall improvement in a period, we need to combine the speedup
on many separate problems into a single indicator. This aggregation requires making
some assumptions about the distribution of problems that we care about. As can be
seen in figure 4, the competition uses problems with a broad distribution of difficulties,
spread across about six orders of magnitude. This means the total time to solve all of the
benchmarks will mostly depend on how much the most time-consuming benchmarks
got better, which is not a realistic indicator of the progress we are interested in. This
approximately uniform distribution over many orders of magnitude suggests the com-
petition organizers consider problems of different difficulties to be similarly important.
If we want to give equal weight to each problem in measuring the speedup, a better way
is to use a bundle of problems where we initially spend an equal amount of time on every
problem. The speedup on this bundle is just the mean time taken in the second period
when the first-period time is normalized to one unit. Table 1 shows this number for
2007–2009, 2009–2011, and both of these combined.

This scheme introduces a subtle bias into our estimates. Ideally, different SAT in-
stances would be weighted by underlying characteristics that determine their difficulty.
But, especially in the case of random problems, the actual time required to solve a
problem is a noisy indicator of its difficulty. The proposed weighting system tends to
overweight problems that happened to be solved unusually quickly, incorrectly supposing
that such problems appear more often in a representative basket. This means that this
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Table 1: Overall improvements between consecutive competitions, in terms of mean fraction of time
taken to solve a problem in a later year (T1) over the time taken in an earlier year (T0).

2007–2009 2009–2011 All
Mean T1/T0 0.75 0.41 0.65
Annual reduction 13% 36% 19%

weighting system systematically advantages earlier years, by overweighting problems
that happened to be solved quickly in the first year. As a consequence, the stated rate
of progress will be systematic underestimates of the real rate of progress. This effect will
be most pronounced when there is independent random variation in the solution times
for different instances.

As we can see, problems took on average 35% less time to solve after two years, or
19% less per year. Annual improvement in the 2009–2011 period was almost three times
that in the 2007–2009 period.4

Difficulty and Progress
Here we will look at the relationship between how long a problem initially takes and
how much this time is reduced in the following two years. This tells us whether progress
is overwhelmingly driven by very difficult things becoming easy, or by smaller improve-
ments across the range of problem difficulties. These would be quite different situations,
and might provide useful information about other important questions—for example,
the possibility of a sustained intelligence explosion or abrupt changes in capabilities.

The relationship between difficulty and improvement should also give us a better
picture of whether progress on specific problems gets faster or slower, without needing a
long series of data. If problems that are already quicker have reliably more improvement,
then we should expect to see accelerating progress on any given problem. On the other
hand, if it is the harder problems that improve more, we should see declining progress
on each problem.

The initial solution times fall roughly within six orders of magnitude (see figure
4). We can divide them into three buckets of roughly two orders of magnitude each.
Table 2 shows time improvement for each of these buckets, in each period, using the
same measure as above. Figure 5 shows the entire distribution of initial speed and

4. Note that the processor speed was slightly reduced in 2011, although available RAM and cache
were increased and the processor was newer. The difference between these annual speedups is probably
significantly greater than can be explained by the change in hardware between 2009 and 2011.
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Table 2: Improvements by problem difficulty. Buckets contain problems of different lengths (T0 denotes
the earlier time). For each bucket and time period the table shows (1) the mean fraction of time taken in
the second competition compared to the first competition, (2) the number of problems in that class, and
(3) the annual time reduction for that bucket and period.

2007–2009 2009–2011 All
Bucket 1 (T0 < 1s) 0.85 18 8% 0.63 2 21% 0.83 20 9%
Bucket 2 (1s < T0 < 100s) 0.77 47 12% 0.63 12 21% 0.74 59 14%
Bucket 3 (100s < T0) 0.71 73 16% 0.32 37 43% 0.58 110 24%

improvement. Both suggest that problems that initially take longer tend to see faster
improvement. Though this effect is large, it is not overwhelmingly so—the easiest
problems in each competition see approximately half as much annual improvement as
the most difficult ones.
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Figure 5: Initial difficulty and fractional improvement over two years for each handcrafted or industrial
SAT problem. The horizontal axis shows how long the problem initially took; the vertical axis shows the
ratio of its time in the second competition (T1) to its time in the first competition (T0). We exclude five
outliers that initially took a long time and got up to ten times worse.

One might try to explain the different speedups in 2007–2009 and 2009–2011 by
changes in the distribution of problems. Compared to the first period, the second period
has disproportionately slower problems, which tend to see more improvement. This
reasoning doesn’t straightforwardly work, as each individual bucket in table 2 also sees
more improvement in the second period. However, the distribution of problems inside
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buckets also changes between periods, seemingly also toward longer problems in the
second period.

4.1.2. Random SAT Instances
The same distributions of random problems were included in consecutive competitions,
though new random problems were used each year. For each distribution, there are
a number of specific problems from that distribution each year. For each individual
problem, we find the fastest algorithm for that problem. Because the same problems are
not included in consecutive competitions, it is not trivial to make comparisons between
years. One approach would be to compare the best time for the median problem. In fact,
this works very poorly, because the distributions are chosen such that roughly half of
the problems are satisfiable and half are unsatisfiable, and these two categories require
very different amounts of time. This means that the median will jump around a lot
depending on whether it falls just in the satisfiable half or just in the unsatisfiable half.
To get roughly the same information while avoiding this problem, we will look at 25th
percentile and 75th percentile times; that is, for each problem type, in each year, we
will find the minimum times to solve every problem of that type, and take the 25th
percentile time. Nevertheless, different problems from the same distribution will still
have different difficulties, and this will complicate year-to-year comparisons.

Overall Picture
There were only twenty-five random problem types solved in more than one contest. A
few more were used, but could not be finished in more than one contest. Figures 6 and 7
show the best times for the 25th percentile problem of each type and the 75th percentile
problem of each type, respectively.

Speedups for Individual Problem Types
Figures 8 and 9 show speedups in order of size for all problems solved in consecutive
competitions (some problems will be repeated, because they were solved in all years).

Two-Year Improvements
Table 3 shows mean improvements in each two-year interval. As with the handcrafted
and industrial problems, there was much more improvement at both percentiles in the
second interval. Again, the harder problems saw bigger fractional improvements in time.
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Figure 6: The 25th percentile of best solve times for all types of random SAT problems solved in more
than one contest. Each line represents a different problem type.
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Figure 7: The 75th percentile of best solve times for all types of random SAT problems solved in more
than one contest. Each line represents a different problem type.
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