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Fig. 1. Vector icons generated with text prompts. The proposed IconShop supports vector icon synthesis from keywords (le� panel) and natural phrases and

sentences (right panel).

Scalable Vector Graphics (SVG) is a popular vector image format that o�ers

good support for interactivity and animation. Despite its appealing charac-

teristics, creating custom SVG content can be challenging for users due to the

steep learning curve required to understand SVG grammars or get familiar
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with professional editing software. Recent advancements in text-to-image

generation have inspired researchers to explore vector graphics synthesis

using either image-based methods (i.e., text→ raster image→ vector graph-

ics) combining text-to-image generation models with image vectorization,

or language-based methods (i.e., text → vector graphics script) through

pretrained large language models. Nevertheless, these methods su�er from

limitations in terms of generation quality, diversity, and �exibility. In this

paper, we introduce IconShop, a text-guided vector icon synthesis method

using autoregressive transformers. The key to success of our approach is to

sequentialize and tokenize SVG paths (and textual descriptions as guidance)

into a uniquely decodable token sequence. With that, we are able to exploit

the sequence learning power of autoregressive transformers, while enabling

both unconditional and text-conditioned icon synthesis. Through standard

training to predict the next token on a large-scale vector icon dataset accom-

panied by textural descriptions, the proposed IconShop consistently exhibits

better icon synthesis capability than existing image-based and language-

based methods both quantitatively (using the FID and CLIP scores) and

qualitatively (through formal subjective user studies). Meanwhile, we ob-

serve a dramatic improvement in generation diversity, which is validated
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by the objective Uniqueness and Novelty measures. More importantly, we

demonstrate the �exibility of IconShop with multiple novel icon synthesis

tasks, including icon editing, icon interpolation, icon semantic combination,

and icon design auto-suggestion.
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1 INTRODUCTION

As a form of computer graphics, vector graphics represents visual

content based directly on geometric shapes (via command lines and

arguments), and is widely used in scienti�c and artistic applications,

including architecture, surveying, 3D rendering, typography, and

graphic design. Compared with raster graphics, vector graphics is

preferred when a high degree of geometric precision is required

across arbitrary scales, among which Scalable Vector Graphics (SVG)

is a popular vector graphics �le format extensively employed in

creative industries. Generally, creating SVG content is di�cult for

non-professional users. It is tedious and time-consuming to gain

adequate knowledge of SVG grammars and/or master professional

editing software such as Adobe Illustrator. Recently, there have

been impressive successes in generating raster images from text,

providing a convenient and e�cient means of ful�lling users’ image

design intents. Thus, it is highly desirable to build a computational

system that can accomplish something similar in the �eld of SVG,

allowing accurate and �exible SVG content synthesis guided by

intuitive textual descriptions.

One straightforward approach is adapting raster image genera-

tion to vector synthesis by converting the image outputs of text-

to-image generation models into vector graphics using image vec-

torization methods. While such image-based methods (i.e., text→

raster image → vector graphics) directly incorporate recent ad-

vances in text-to-image generation (e.g., Stable Di�usion [Rombach

et al. 2022]) into SVG generation, their results are often unsatisfac-

tory. This is because text-to-image models are mostly trained to

generate complex natural geometric shapes and color appearances,

and are less probable to reproduce SVG styles with simple geometric

primitives and �at colors. Furthermore, to �t such complex raster im-

ages, vectorization methods often use jagged paths with unwanted

corners and crossovers, resulting in visible and annoying artifacts.

As SVG is based on Extensible Markup Language (XML), one

research avenue for synthesizing SVG content from text is to train

Sequence-To-Sequence (seq2seq) models that take text prompts as

input and directly produce SVG scripts as output.We refer to these as

language-based methods (i.e., text→ vector graphics script). Despite

the conceptual simplicity, SVG involves complex grammars, and

naive tokenization of SVG as a form of natural language may result

in complex and lengthy token sequences, which complicate subse-

quent probabilistic modeling. Preliminary experiments [Bubeck et al.

2023] show that Large Language Models (LLMs) like GPT-4 [Ope-

nAI 2023] tend to combine basic geometric shapes, such as Circle

and Ellipse, to convey semantic information with relatively good

text-SVG alignment. However, the synthesis results show limited

complexity and diversity (see Section 4.3), which is inadequate for

real-world SVG applications.

In this paper, we develop an autoregressive transformer-based

method that supports accurate and �exible SVG content synthesis

guided by textual descriptions. We demonstrate the feasibility of

our method in the context of black-and-white SVG icons due to

the availability of a large dataset and the moderate complexity of

these icons, as well as their wide range of applications (e.g., website

design, visualizations, and print media). Consequently, we name our

system IconShop. The key to success of IconShop is to exploit the

sequential nature of SVG: An SVG script is composed of a sequence

of paths, which in turn consists of a sequence of drawing commands

(e.g., lines and curves, see Section 3.2). We thus concatenate all SVG

paths in a uniquely decodable way to form a command sequence.

Since the text prompt is sequential in nature as well, it can be

straightforwardly prepended to the command sequence.

We thus tokenize andmask the combined sequence in away [Agha-

janyan et al. 2022; Bavarian et al. 2022; Fried et al. 2023] that admits

standard training of IconShop (to predict the next token autore-

gressively), while enabling conditional SVG icon synthesis on the

bidirectional context (also known as the �lling-in-the-middle task).

This can be e�ectively achieved by incorporating the right context

into the left context (separated by a special token), which conforms

to causal (i.e., autoregressive) masking.

We train IconShop on a large-scale vector icon dataset FIGR-8-

SVG [Clouâtre and Demers 2019], consisting of monochromatic (i.e.,

black-and-white) SVG icons. We conduct comprehensive evalua-

tions of IconShop in terms of generation quality and diversity under

di�erent synthesis settings. Our experimental results show that

IconShop is superior to existing image-based and language-based

methods in these two aspects both quantitatively and qualitatively.

The synthesized SVG icons also show reasonable faithfulness to the

corresponding text prompts. Moreover, we demonstrate the �exibil-

ity of IconShop with multiple novel icon synthesis tasks, including

icon editing, icon interpolation, icon semantic combination, and

icon design auto-suggestion.

2 RELATED WORK

Our work is related to text-to-image generation (Section 2.1), icon

generation (Section 2.2), vector graphics generation (Section 2.3),

and generative transformers (Section 2.4). Here we only provide a

concise review of previous work that is closely related to ours, and

a comprehensive treatment of the above areas is beyond the scope

of this paper.

2.1 Text-to-Image Generation

Generating images from text is a challenging task that has gained

substantial attention in recent years, and has gone through three

stages of development: Generative Adversarial Networks (GANs) [Kang

et al. 2023; Qiao et al. 2019; Reed et al. 2016; Xu et al. 2018; Zhang

et al. 2017, 2018], seq2seq models based on transformers [Chang et al.



2023; Ding et al. 2021, 2022; Ramesh et al. 2021; Yu et al. 2022], and

di�usion models [Nichol et al. 2021; Rombach et al. 2022; Saharia

et al. 2022]. Speci�cally, a GAN [Goodfellow et al. 2014] involves

training two neural networks - a generator and a discriminator -

to play a minmax zero-sum game. The system learns to generate

new images by respecting the training data distribution and text

conditions. Text-conditioned GANs [Kang et al. 2023; Qiao et al.

2019; Reed et al. 2016; Xu et al. 2018; Zhang et al. 2017, 2018] are typ-

ically limited to modeling single and multiple object classes. Scaling

them up to handle complex image datasets remains very challenging

due to the instability occurred in the training procedure, until very

recently [Kang et al. 2023]. Seq2seq models based on transformers

operate by converting (and concatenating) the input text (and image)

into a sequence of tokens for predicting another sequence of tokens

that corresponds to the target image [Chang et al. 2023; Ding et al.

2021, 2022; Ramesh et al. 2021; Yu et al. 2022]. Text-only and image-

only self-attention and text-image cross-attention are canonical com-

putational mechanisms in seq2seq models to capture intricate text

and image dependencies. Recently, di�usion models have emerged

to be the new standard in text-to-image generation overnight. Typi-

cally, an unconditional di�usion model [Ho et al. 2020] initiates its

process with Gaussian noise, and iteratively eliminates it to yield

a natural image. Text-guided di�usion models [Nichol et al. 2021;

Rombach et al. 2022; Saharia et al. 2022] leverage the text embedding

either as input or through cross-attention. Although previous work

tackles text-guided visual content generation like ours, they focus

primarily on raster images with �xed resolution. In contrast, we aim

for a di�erent goal - text-guided vector icon synthesis with arbitrary

scaling.

2.2 Icon Generation

Icons play a pivotal role in modern design and communication, of-

fering concise representations of objects for quick understanding.

Researchers have long been engaged in the exploration of icon cre-

ation. Setlur et al. [2005, 2011] proposed a retrieval-based method

to create icons for �les and hyperlinks: they began by extracting

contexts from text content, then retrieved images from a database

that matched the context, using image processing techniques to

make these images more akin to query semantics. The ICONATE

system [Zhao et al. 2020] facilitates text-to-icon generation by con-

structing a concept map where semantic concepts are linked to com-

pound sub-concepts for new icon generation. When a user provides

a text description, the system consults the concept map, combining

several existing icons to create an icon that corresponds to the in-

put text. Such retrieval-based approaches have limitations when it

comes to the variation of each icon concept. Our IconShop supports

text-to-icon generation with a focus on �exible editing capabilities.

In the era of deep learning, there have been advancements in GANs

to synthesize more diverse icons [Chen et al. 2022; Yang et al. 2021].

For instance, Iconify [Karamatsu et al. 2020] harnesses the domain

conversion capabilities of CycleGAN [Zhu et al. 2017] to transform

natural images into icon-style representations. The GAN-based icon

generation solutions produce rasterized icon images while our Icon-

Shop synthesizes vector icons and supports various applications to

facilitate user production.

2.3 Vector Graphics Generation

In the early 2000s, SVG content can be created using PERL [Probets

et al. 2001] with plentiful drawing commands, but requires extensive

human intervention. Bergen and Ross [2012] automated the deter-

mination of the number and type of drawing commands by evolu-

tionary computation to match a target raster image. These work can

be seen as ancestors of vector graphics generation methods based

on deep neural networks for learning editable SVG representations.

SketchRNN [Ha and Eck 2017] is a pioneering deep representation

learning model for vector sketches based on a seq2seq Variational

Auto-Encoder (VAE) [Kingma and Welling 2013]. The encoder and

the decoder were implemented by a bidirectional recurrent neu-

ral network (RNN) and an autoregressive RNN, respectively. The

sketches were parameterized by polylines - a sequence of points

with line segments drawn between consecutive points. Lopes et al.

[2019] incorporated a VAE-learned raster image representation to

aid SVG font synthesis, where the feasibility was demonstrated

only on glyphs with a maximum of 50 commands. Modeling the

layered structure of SVG, DeepSVG [Carlier et al. 2020] leverages

two transformer-based encoders in tandem to map SVG icons from

commands to path-level representations, and then to a global la-

tent representation. Two decoders were paired up for SVG icon

reconstruction. Although the reconstructed shapes look reason-

able, DeepSVG fails to reproduce simple geometric relationships

like perpendicularity and parallelism. Inspired by DeepSVG, Aoki

and Aizawa [2022] made full use of the global latent representation

in every stage of the decoder for synthesizing Chinese SVG char-

acters. Wang and Lian [2021] introduced DeepVecFont, a method

that exploits dual-modality information (i.e., both vector graph-

ics and corresponding raster images) to synthesize vector glyphs.

Along with a re�nement process, their approach generates visually

pleasing fonts. Despite demonstrated success, the above-mentioned

methods fail to support text-guided SVG generation.

One straightforward approach of text-guided SVG content syn-

thesis is to �rst generate a raster image with a trained text-to-image

generation model (e.g., DALL·E [Ramesh et al. 2021] and Stable

Di�usion [Rombach et al. 2022]), and then vectorize it using o�-the-

shelf image vectorization techniques (e.g., Potrace [Selinger 2003]

and LIVE [Ma et al. 2022]). Another emerging line of research is to

directly optimize SVG parameters for a pretrained vision-language

model as the loss function. For instance, CLIPDraw [Frans et al.

2021] adopts the CLIP [Radford et al. 2021] model as the optimization

objective to measure the embedding distance between the vector-to-

raster image and the input textual description. Apart from the CLIP

distance, VectorFusion [Jain et al. 2022] leverages the Score Distilla-

tion Sampling (SDS) loss [Poole et al. 2022] based on a pixel-space

text-to-image di�usion model. Despite di�erent design philosophies,

the vectorization-based and optimization-based methods su�er from

similar limitations. First, the vision-language models as the key en-

ablers are pretrained on raster images of complex natural scenes,

and thus can hardly provide guidance in synthesizing SVG-style

images with simple geometric primitives and �at colors. Second, the

generated paths are often jagged and messy, failing to reproduce

accurate geometric relations such as parallelism and perpendicular-

ity. Third, the per-SVG optimization can be painfully slow, making



Table 1. Overview of SVG commands. In our implementation, we employ three simple yet expressive commands (namely, M, L,

and C) to represent vector icons. In the Example column, we assume the current point is located at (0, 0) . For a sequence of

commands, the starting position of each command is the ending position of the previous command.

Name Symbol Argument Explanation Example

Move To M G , ~
Move the cursor to the speci�ed point

(G, ~) .

M 20, 10(20, 10)
Line To L G , ~

Draw a line segment from the current

point to the speci�ed point (G, ~) .

L 20, 10

(20, 10)

Cubic Bézier C

G1, ~1

G2, ~2

G , ~

Draw a curved path from the current

point to the speci�ed point (G, ~) using

two control points (G1, ~1 ) and (G2, ~2 ) .

C 13, 2 7, 8 20, 10

(20, 10)

(13, 2)

(7, 8)

it impractical for real-time applications. In contrast, our proposed

system, IconShop, does not su�er from any of the above-mentioned

problems. Once trained, IconShop can perform text-guided vector

icon synthesis automatically and e�ciently.

2.4 Transformers as Generative Models

Owing to its inherent capability to capture long-term dependen-

cies and support parallel computing, Transformers [Vaswani et al.

2017] have emerged as a powerful class of generative models for

producing a wide variety of outputs, ranging from natural lan-

guages [Brown et al. 2020; Radford et al. 2019; Ra�el et al. 2020], au-

dios [Huang et al. 2018; Li et al. 2019; Valle et al. 2020], and raster im-

ages [Chen et al. 2020; Esser et al. 2021]. Transformers can be made

non-autoregressive and autoregressive. The non-autoregressive in-

stantiation [Chang et al. 2023, 2022; Ding et al. 2022; Zhang et al.

2021] suggests to leverage the bidirectional context using BERT-

like [Devlin et al. 2018] bidirectional Transformers for its sampling

e�ciency. The autoregressive instantiation [Ding et al. 2021; Ramesh

et al. 2021; Yu et al. 2022] emphasizes the importance of learning

to predict the next token in a causal way. Together with scaling, it

unlocks the emerging abilities of LLMs. Inspired by [Aghajanyan

et al. 2022; Bavarian et al. 2022], we unify non-autoregressive and

autoregressive modeling of vector icons for various synthesis tasks.

3 ICONSHOP

In this section, we �rst brie�y introduce autoregressive models (Sec-

tion 3.1), and describe the SVG commands of vector icons, followed

by our tokenization strategy (Section 3.2). We then describe the

"causal" masking strategy, which enables our autoregressive model

to perform the �lling-in-the-middle task (Section 3.3). We next elab-

orate our model architecture (Section 3.4) and, �nally, present the

training objectives (Section 3.5).

3.1 Preliminaries on Autoregressive Models

An autoregressive model speci�es that the current state depends

only on its previous states. In probabilistic terms, this corresponds

to the chain rule of probability:

? (() =

#∏

==1

? ((= |(1, . . . , (=−1), (1)

in which we factorize the joint probability of a sequence of random

variables ( = ((1, . . . , (# ) into a product of conditional probabil-

ities. At the =-th instance, autoregressive models take the values

of previous = − 1 random variables (or the most recent ones if a

Markov window is applied) as input, and compute the conditional

probability distribution of (= , from which we are able to draw a

sample as its prediction. Here we resort to autoregressive models

for SVG icon synthesis because it �ts naturally in the sequential

nature of SVG and textural descriptions.

3.2 SVG Representation and Tokenization

SVG o�ers a range of features and syntax options, allowing users

to create their original work with great �exibility. For example,

the Rect command creates a rectangular shape controlled by the

starting point, width, and height arguments, like <Rect x="80"

y="90" width="100" height="100"/>. The Transform attribute

applies an a�ne transformation to an existing shape, like <Rect

Transform="rotate (-10 50 100)" x="80" y="90" width="100"

height="100"/>. If we try to come up with a universal data struc-

ture to represent all possible SVG commands and attributes, such

a data structure would become highly complex, which may hinder

the probabilistic modeling of SVG icons. To bypass this issue, we

choose to limit the number of commands and attributes, while main-

taining their expressiveness to capture the essence of SVG icons. In

other words, we seek a compact SVG representation that makes the

probabilistic modeling easier.

Inspired by DeepSVG [Carlier et al. 2020], we simplify every SVG

icon by removing all attributes and using only three basic commands:

Move To, Line To, and Cubic Bézier (see Table 1 for explanations

and examples). Other complex commands (e.g., Rect, Circle, and

Ellipse) can be approximated by combinations of these basic com-

mands with negligible visual di�erences. For example, we can use
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Fig. 2. The system diagram of IconShop. In this example, the clock icon has two paths, each comprising three types of basic commands (refer to Table 1). For

Path1, there is one M (Move To) command and four Bézier curves. For Path2, there is one M command and two line segments. To tokenize these paths, we first

concatenate the commands of the two paths to form a single sequence. We then convert each command’s 2D location argument (G, ~) into 1D using the

formula G × F + ~, where F is the default SVG image width. We use a pretrained text encoder to tokenize and embed the text "clock, time", where <CLS> and

<SEP> mark the beginning and the end of the text input. We then concatenate the embedded text and SVG sequences, and add an <SOS> at the beginning.

This concatenated sequence is sent to an autoregressive transformer for joint probability modeling.

four line segments to construct a Rect, and concatenate four Bézier

curves to form a Circle. An SVG text script � , after the simpli�ca-

tion, contains" paths, � = {%8 }
"
8=1

, where %8 is the 8-th path, and

each path %8 in turn consists of #8 commands, %8 = {�
9
8
}
#8

9=1
, where

�
9
8
is the 9-th command in the 8-th path. A command,�

9
8
= (*

9
8
,+

9
8
),

contains its type *
9
8
∈ {M, L, C} and the corresponding location

argument +
9
8
.

The next step is to convert the SVG script into a discrete sequence

of tokens, which are subject to autoregressive modeling. We intro-

duce an intuitive SVG tokenization approach, which is composed of

four major steps. First, �atten the layered structure of the SVG script

by concatenating commands from di�erent paths to form a single

command sequence. To uniquely decode the �attened command

sequence back to the layered representation, we prepend a special

token, <BOP> (i.e., beginning-of-path), before the �rst command of

each path. Second, assign distinct tokens to each command type

(i.e., M, L, C). Third, map the 2D location argument to 1D using row-

major order, which roughly halves the length of the token sequence.

For example, suppose the default width of an SVG image isF , we

transform a 2D location argument (G,~) to a 1D argument using

the formula G ×F + ~. Fourth, append a special token, <EOS> (i.e.,

end-of-SVG), at the end of the sequence that indicates the completion

of an SVG icon sequence. An example of a sequence created using

the above steps is shown in Figure 2.

3.3 Masking Scheme

Autoregressivemodels have been shown to be e�ective in generating

token sequences from scratch, but they are constrained to doing

so in a causal direction (i.e., from left to right). This constraint

hinders SVG synthesis performance in tasks such as icon editing,

where we need to �ll in missing content based on the bidirectional

context. Some methods have been developed to expand the ability of

autoregressive models to perform the �lling-in-the-middle task by

massaging training data without modifying the model architecture.

For example, CM3 [Aghajanyan et al. 2022] and InCoder [Fried

et al. 2023] use a "causal" masking strategy that randomly selects

several chunks in the input sequence, and move them to the end.

In [Bavarian et al. 2022], a similar strategy was implemented to learn

to �ll in the middle without sacri�cing the original causal generation



capability. In training IconShop, we incorporate a similar "casual"

masking strategy to unify non-autoregressive and autoregressive

modeling of SVG token sequences.

For a given input sequence ( (0) , we �rst select a random chunk

called span, based on which we split the sequence into three parts,

[Left : Span : Right], where ":" represents concatenation. We

replace the span with a special <Mask> token to obtain a new se-

quence ( (1) = [Left : <Mask> : Right]. Next, we add the same

<Mask> token to the beginning of the span and add a <EOM> token

(i.e., end-of-mask) to the end of the span to create a new sequence

( (2) = [<Mask> : Span : <EOM>]. Finally, we concatenate ( (1) and

( (2) to form

( = [Left : <Mask> : Right : <Mask> : Span : <EOM>], (2)

which is sent to the model for probabilistic modeling. The masked

sequence ( conveys the following information: 1) the �rst <Mask>

token indicates the original position of the span, 2) the second

<Mask> token denotes the beginning of the span, and 3) the <EOM>

tokenmarks the end of the span. During training, we randomly apply

this masking strategy to 50% of the training data, while leaving the

remaining 50% unchanged. We exclude the <Mask> token from the

cross-entropy loss calculation to discourage its generation during

inference.

We now explain how this masking technique enables autoregres-

sivemodels to perform the �lling-in-the-middle (i.e., non-autoregressive)

generation without modifying the architecture. Suppose we have

a token sequence [Left : Right], and want to �ll in the middle

chunk between Left and Right. As in Eq. (2), we add two <Mask>

tokens to the sequence to create[Left : <Mask> : Right : <Mask>],

and send it to the model for seq2seq generation until the <EOM>

token occurs, giving rise to the sequence [Left : <Mask> : Right :

<Mask> : Span : <EOM>]. After that, we move the predicted Span

back to its original position, i.e., the position of the �rst <Mask>

token, to obtain the �nal output [Left : Span : Right]. Since the

model leverages both Left and Right contexts to �ll in the mid-

dle Span chunk, we achieve non-autoregressive modeling through

autoregressive prediction, and thus unify these two.

3.4 Model Architecture

We employ the Transformer decoder [Vaswani et al. 2017] to im-

plement our autoregressive model, as it e�ectively captures the

long-range interdependencies among various tokens that constitute

a vector icon sequence. Speci�cally, the model consists of three

modules: an SVG embedding module to encode the SVG sequence,

a text embedding module to encode the text sequence, and a trans-

former (decoder) module to exploit text-SVG correlations, and learn

the joint probability distribution of the combined token sequence,

sampling from which produces novel sequences that are not present

in the training set.

3.4.1 SVG Embedding Module. As discussed previously, an SVG

sequence is represented by six distinct categories of tokens: 1) Com-

mand type, 2) 1D location argument, 3) Beginning-of-path token

<BOP>, 4) End-of-SVG token <EOS>, 5) Mask token <Mask>, and

6) End-of-mask token <EOM>. By default, each icon is constrained

within a 100×100 bounding box, resulting in 1002 possible values for

the 1D location argument. Thus, a one-hot vector 4 with a dimension

of 10, 007(= 3+1002+1+1+1+1) su�ces to represent all possible to-

ken cases. We then use a learnable embedding matrix, ∈ R�×10007

to transform the one-hot vector into an embedding vector of size � .

We incorporate two extra learnable matrices, G ,, ~ ∈ R�×100 to

augment the location information as suggested in [Xu et al. 2022]:

E8 ←,48 +,
G4G8 +,

~4
~

8
, (3)

where 48 ∈ R
10007×1 is the one-hot vector of the 8-th token, and

4G
8
, 4

~

8
∈ R100×1 are one-hot encodings of the 2D coordinates, re-

spectively.

3.4.2 Text Embedding Module. LLMs trained on a large corpus of

textual data have the ability to capture intricate word interrelation-

ships, including synonymy and antonymy, as suggested in [Saharia

et al. 2022]. Here we make use of the tokenization and word embed-

ding layers from a pretrained BERT [Turc et al. 2019] model, and

�x them to tokenize and embed textual inputs. The tokenizer adds

a <CLS> token to the beginning of the text, and appends an <SEP>

token at the end of the text, indicating the start and the end of the

text sequence, respectively.

3.4.3 Transformer Module. Our autoregressive transformer model

consists of a stack of 12 identical layers. Each layer is a standard

transformer decoder block, comprising (masked) multi-head atten-

tion, layer normalization, and feed-forward layers, all intercon-

nected via residual connections. The autoregressive transformer

ultimately produces a �-dimensional vector at the =-th token posi-

tion, which is conditioned on its preceding = − 1 tokens. A linear

layer followed by the softmax function is applied to obtain the

probabilities of all possible tokens at the =-th position.

3.5 Training Objective

Since the text descriptions and SVG scripts in the training set have

varying lengths, we pad both the text token sequence ( text and the

icon token sequence ( icon with zeros to a �xed length (50 for the text

and 512 for the icon in our implementation). We then concatenate

them to obtain the target sequence ( = [( text : ( icon].

The autoregressive transformer is trained to predict the next to-

ken based on previous tokens. To prepare the input sequence ( in,

we remove the last token of ( (i.e., <EOS>), and add an <SOS> token

at the start. This essentially shifts ( to the right by one position,

which enables initial autoregressive prediction with an empty con-

text. The transformer outputs a token sequence (̂ = [(̂ text : (̂ icon]

sequentially. Our objective is to minimize the cross-entropy loss

between the target and output tokens at each position, and then

combine text and icon losses with a weighted sum [Ramesh et al.

2021]:

ℓ text = CE(( text, (̂ text),

ℓ icon = CE(( icon, (̂ icon),

ℓ total = ℓ text + _ℓ icon,

(4)

where CE() is the standard cross-entropy function, and _ = 7.0 is

the weighting to control the relative importance between the text

and icon reconstruction.



24­hour card, password play, music cat, face

Fig. 3. Monochromatic icon samples from the FIGR-8-SVG dataset (1st

row). Each icon is associated with several discrete keywords as textual

descriptions. We remove the black box by intensity inversion to improve the

visual quality (2nd row). Sample icons are from ©Noun Project.

4 EXPERIMENTS

In this section, we �rst present in detail the data processing pro-

cedure for the icon dataset with textual descriptions (Section 4.1).

We then introduce an ablation study to validate the e�cacy of the

model architecture under both conditional and unconditional gen-

eration settings (Section 4.2). Lastly, we compare the proposed Icon-

Shop with alternative solutions, demonstrating that IconShop yields

higher-quality results (Section 4.3).

4.1 Data Preparation

4.1.1 SVG Dataset. We use the FIGR-8-SVG dataset [Clouâtre and

Demers 2019] that consists of 1.5million monochromatic (black-and-

white) vector icons. Typically, the �rst step for SVG data processing

is transforming icons with varied grammars into standardized rep-

resentations. Fortunately, in the FIGR-8-SVG dataset, all icons have

been converted to a uniform representation with discretized argu-

ments. We show several icon examples from the dataset in the �rst

row of Figure 3. We further enhance the visual attractiveness of each

icon by removing the outer black box by intensity inversion. The

corresponding enhanced icons are shown in the second row. After

the SVG tokenization described in Section 3.2, we set the maximum

length of an icon sequence to 512, �ltering out those with longer

lengths. This results in about 1.1 million samples, among which, we

select 300, 000 samples for model training and experimentation. We

partition these samples into 90% for training, 5% for validation, and

5% for testing.

4.1.2 Text Input. In the FIGR-8-SVG dataset, every vector icon is

annotated with discrete keywords, such as "cat,face". Training

IconShop only with keywords would constrain its capacity to gener-

ate icons from natural language phrases and sentences. Inspired by

InstructPix2Pix [Brooks et al. 2022], which �ne-tunes GPT-3 [Brown

et al. 2020] to produce editing instructions and captions, we use

LLMs (ChatGPT1 in particular) to expand these keywords into natu-

ral language phrases and sentences. The prompt given to ChatGPT is

"Write the simplest sentence from keywords: #{keywords}.

Do not add additional facts".

1https://openai.com/blog/chatgpt

0.9883 0.9800

0.9863 0.9760

Generated

0.9604

0.9746

0.9920 0.9775 0.9595

Dataset Samples

Cosine Similarity

0.5230

0.5320

0.5845

Fig. 4. We use the CLIP image encoder to extract image features, and

calculate the cosine similarity between the generated icons and the samples

in the dataset. As visually distinct icons may have high cosine similarity

scores due to the simple black strokes against the white background, we

set a relatively high threshold of 0.98 to determine whether two icons are

identical when computing the "Uniqueness" and "Novelty" scores. Sample

icons are from ©Noun Project.

4.1.3 Implementation Details. We implement IconShop using Py-

Torch. The training process employs the Adam optimizer [Kingma

and Ba 2014] with a learning rate of 0.0006, along with linear

warm-up, decay, and gradient clipping. The dropout rate is set to

0.1. The BERT version is google_bert_uncased_L-12_H-512_A-8.

Sampled and shu�ed discrete keywords (i.e., a subset of the origi-

nal keywords), natural language phrases and sequences (generated

by ChatGPT), and blank text are, respectively, trained with ratios

of 60%, 30%, and 10%, with a total minibatch size of 192. We train

IconShop for 300 epochs. We use an NVIDIA A100 GPU in the fol-

lowing experiments to test IconShop, which takes 1.38 seconds to

generate an SVG icon sequence on average. We generate 32 icons for

each text description, and use ImageReward [Xu et al. 2023] (a text-

image scoring model that is calibrated against human preferences)

automatic result selection, which is a standard practice in text-to-

image generation. Please refer to the supplementary material for a

collection of uncurated results.

4.1.4 Metrics. To evaluate the quality of the generated SVG icons,

we use the Fréchet Inception Distance (FID) [Heusel et al. 2017],

which measures the distance between the image features of synthe-

sized and "ground-truth" SVG icons from FIGR-8-SVG. Speci�cally,

we obtain the image features of rendered and rasterized SVG icons

using the CLIP image encoder [Radford et al. 2021]. We also compute

the CLIP score to measure text-SVG alignment (i.e., the semantic

similarity between the text input and the visual icon output). Ad-

ditionally, following SkexGen [Xu et al. 2022], we calculate the

"Novelty" and the "Uniqueness" scores, which stand for the propor-

tion of generated data absent from a target set (i.e., the training set

from FiGR-8-SVG) and occurring only once among all generated

samples, respectively. We generate 20, 000 icons unconditionally and

7, 000 icons with textual guidance. The cosine similarity between



DeepSVG+GAN BERT IconShop

Fig. 5. Icons randomly generated by DeepSVG+GAN, BERT and IconShop, respectively. Our approach creates icons with form consistency, high-precision

of recognizability, geometry simplicity, and good composition. Icons produced by DeepSVG+GAN do not meet such desired properties, while BERT only

synthesizes basic geometric shapes with essentially no semantics.

the CLIP features is used to determine whether the two icons are

identical with a threshold of 0.98. Figure 4 gives an intuitive visual

comparison of di�erent similarity values.

4.2 Ablation on Di�erent Network Architectures

In this subsection, we conduct two ablation studies to illustrate

the e�ects of two key components of IconShop on the synthesis

performance. The �rst study shows the importance of exploiting the

sequential nature of the SVG icons in generation by comparing our

seq2seq model to a GAN model. The second study demonstrates the

necessity of our autoregressive model augmented with the "causal"

masking scheme by comparing it to a non-autoregressive training

strategy (i.e., BERT [Devlin et al. 2018]).

4.2.1 Seq2seq versus Layered Modeling. As previously mentioned,

an SVG �le is layered in structure, consisting of higher-layer paths

and lower-layer commands. Here we use DeepSVG+GAN as a base-

line to testify our choice of the seq2seq generation mechanism.

The original DeepSVG reconstructs an SVG icon by �rst obtaining

path-level representations and then aggregating them to a global

representation. To make a fair comparison between IconShop and

DeepSVG, we need to enable the original DeepSVG to generate new

icons and support text-guided generation. To achieve these goals,

we retrain DeepSVG for SVG icon reconstruction on our dataset.

We then train a conditional GAN, which takes the textual feature as

input and predicts the latent representation precomputed from the

encoder of DeepSVG as output, which can be straightforwardly de-

coded into an SVG icon by passing through the decoder of DeepSVG.

In addition to text-guided generation, we also enable the GAN to

generate icons unconditionally by replacing the text feature with

random noise 10% of the time during training.

We compare both random generation and text-guided generation

performance. For random generation, we produce 20, 000 icons for

each method. For text-guided generation, we choose both discrete

keywords and natural phrases/sentences commonly used in design

scenarios as text inputs, and generate 7, 000 icons for each model.

As shown in Figures 5 and 6, IconShop is capable of generating vi-

sually recognizable and eye-catching icons while preserving salient

geometric relationships, such as perpendicularity, parallelism, and

symmetry. We believe such consistent high-quality generation re-

sults arise because we prioritize the sequential modeling of SVG

icons. In contrast, DeepSVG+GAN presents visually worse results

than ours, which we attribute to its averaging operation over com-

mands and paths, resulting in a loss of geometric details in the

generated icons. Please refer to the supplementary material for

more qualitative results with diverse prompts.

We also quantitatively evaluate the random generation and text-

guided generation results in Tables 2a and 2b. We �nd that Icon-

Shop synthesizes results with signi�cantly lower FID scores in both

random and text-guided generation tasks, which provides a strong

indication of its superior synthesis capability. Regarding Uniqueness

and Novelty as measures of generation diversity, IconShop performs

comparably well to DeepSVG+GAN. It is crucial to bear in mind that

these two quantitative scores must be considered along with icon

quality. Merely achieving high scores does not necessarily imply

good results. Speci�cally, the high Uniqueness and Novelty values

achieved by DeepSVG+GAN are largely attributed to the noticeable
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“spider, bug, 

nature, insect”
“cake, dessert,
sweet, food”

“A pumpkin, a kind of 
fall vegetable.”
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snowflake.”

“A microphone used 
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Fig. 6. We evaluate the text-guided icon synthesis of IconShop against several other methods, including DeepSVG+GAN, BERT, Stable Di�usion+LIVE, and

GPT-4. The results show that Stable Di�usion+LIVE provides poor vectorization results, in terms of geometrical and semantic precision of icon forms, while

GPT-4 is only able to combine basic geometric shapes with limited recognizability. IconShop clearly outperforms the competing methods in terms of icon

generation quality.

Table 2. We evaluate IconShop through random generation and text-guided

generation tasks. We use the FID score, with features extracted from the

CLIP image encoder, to assess generation quality. We also compute the

percentage of unique and novel icons as measures of generation diversity.

For text-guided generation, we employ the CLIP score to show the semantic

alignment between the text input and the generated icons.

FID ↓ Uniqueness% ↑ Novelty% ↑

DeepSVG+GAN 11.95 98.72 99.22
BERT 43.61 2.06 19.90

IconShop 6.08 78.77 85.10

(a) Random Generation

FID ↓ Uniqueness% ↑ Novelty% ↑ CLIP Score ↑

DeepSVG+GAN 12.01 97.59 99.01 21.78
BERT 35.10 14.41 50.30 22.03

IconShop 4.65 68.29 68.60 25.74

(b) Text-Guided Generation

visual distortions (e.g., jittering curves) it su�ers from rather than

novel instantiations of the same object/concept, as evidenced in

Figure 5. We regard this as "fake diversity" if it is solely interpreted

without being conditioned on acceptable generation quality. More-

over, IconShop obtains the highest CLIP score in the text-guided

generation task, signaling the outstanding ability to produce icons

that accurately re�ect the text semantics.

4.2.2 Autoregressive versus Non-Autoregressive Modeling. Recent

research [Chang et al. 2023, 2022] shows that a non-autoregressive

training paradigm for generating raster images is feasible. These

approaches use bidirectional Transformers (i.e., BERT) as the funda-

mental model architecture. The departure from the autoregressive to

non-autoregressive modeling allows parallel prediction of multiple

tokens, and opens the door to diverse image editing tasks such as

inpainting. We explore the possibility of using BERT to produce SVG

token sequences, as an alternative to our "causal" masking scheme.

It is noteworthy that, unlike raster image generation which is often

�xed in length, SVG icon generation expects output sequences of

varying lengths as a manifestation of generation diversity. This

makes it a more di�cult task because in SVG icon generation, BERT

needs to not only model the likelihood of next tokens but also de-

termine where to terminate the sequence.

After training the BERT model on the same dataset as ours, we

assess the generation quality and diversity of its outputs. Quan-

titative evaluations are conducted similarly to DeepSVG+GAN in

both random (Table 2a) and text-guided generation (Table 2b). BERT

produces worse results in both tasks than ours and DeepSVG+GAN.

The qualitative results in Figure 5 also suggest that BERT can only

generate simple geometric shapes such as circles and rectangles

that are relatively insipid. A closer inspection of the �lled tokens

reveals that the end-of-SVG token, <EOS>, may frequently appear in

multiple positions due to parallel prediction, which results in early

termination when reconstructing SVG icons. Therefore, despite the

impressive ability of the non-autoregressive BERT in sequence edit-

ing, it is inferior to the autoregressive counterpart (as in IconShop)

in modeling and producing sequences of varying lengths.



4.3 Comparison to the State-of-the-Art

We compare the proposed IconShop to two types of text-to-SVG

generation schemes: image-based and language-based methods. For

the former, we use Stable Di�usion [Rombach et al. 2022] to create

raster images, which are transformed into SVG images using the

LIVE [Ma et al. 2022] program. To encourage icon-style results,

we include keywords (like "monochrome" and "line art") in the

text prompts. For the latter, we employ GPT-4, arguably the best-

performing LLM so far, to generate SVG scripts directly. To initiate

the conversation, we provide a text prompt at the system level asking

it to act as an SVG code generator.

Figure 6 shows icons synthesized by the competing methods. We

�nd that the outcomes of the Stable Di�usion model often fall short

of expectations. After all, it is trained on raster images, which as

expected struggles to produce icon-style images even with some

prompt engineering. After applying LIVE, the resulting SVG icons

usually present unsmooth and inconsistent structures, many of

which are not semantically recognizable. In addition, Stable Di�u-

sion is ine�cient in generation due to the iterative optimization-

based vectorization by LIVE. With respect to the language-based

method, GPT-4 has relatively strong capabilities in generating SVG

icon scripts purely from text prompts, with moderate text-SVG

alignment. Nevertheless, the results are manifested as simple com-

binations of primitive shapes with no complex overlaying, which

are inadequate for graphics design, and also su�er from the recog-

nizability problem (see the third and �fth rows). In stark contrast,

IconShop produces results with the highest visual quality in terms of

form consistency, high precision of recognizability, text-SVG align-

ment, and geometry simplicity. Reasonable generation diversity is

also well observed from IconShop. More visual results of the text-

guided generation and comparison to VectorFusion [Jain et al. 2022]

and CLIPDraw [Frans et al. 2021] can be found in our supplementary

material.

4.4 Subjective User Study

To formally validate the perceptual gains by IconShop, we conduct

a subjective user study, consisting of three tasks to visually assess 1)

random generation quality, 2) text-guided generation quality, and 3)

text-SVG alignment. In the �rst task, we �rst familiarize users with

high-quality icons from the training set. We then present them a

total of 15×5 icons in random order, one-�fth of which are generated

by (or sampled from) DeepSVG+GAN, Stable Di�usion+LIVE, GPT-

4, IconShop, and FIGR-8-SVG, respectively. Users are forced to give a

binary decision of whether each presented icon is of high quality. In

the second task, we randomly select ten text prompts, and generate

the corresponding icons by the four competing methods. Users are

then asked to select two icons that they believe are of the best visual

quality. The setup of the third task is identical to that of the second

task. The di�erence is that this time users need to pick two icons

that best match the corresponding text prompt.

We conduct the user study via an online questionnaire, with 79

participants. For the �rst task, we obtain 79 (users) × 15 (icons)

× 5 (methods) = 5, 925 human judgments. We calculate the aver-

age percentage of high-quality icons identi�ed by users for each

method, and list the results in the �rst row of Table 3. We see that

Table 3. Subjective user study results. In each task, we report the average

percentage of selected (i.e., high-quality) icons by users.

User Selection% ↑

Quality

(random)

Quality

(text)

Alignment

(text)

DeepSVG+GAN 54.09 51.90 29.24

Stable Di�usion+LIVE 15.95 49.49 72.78

GPT-4 2.95 2.15 1.77

IconShop 82.11 96.33 96.20

Dataset 83.71 \ \

IconShop approaches the performance to that of the "Dataset" as

the upper bound, and is clearly better than the other three meth-

ods. This shows that IconShop is able to produce high-quality icons

that consistently "fool" the subjects in the random (unconditional)

generation setting.

For the second and third tasks, we, respectively, collect 79 (users)

× 10 (text prompts) × 2 (selections) = 1, 580 human judgments for

each task. We report the average percentage of user-selected icons

by each method in the last two rows of Table 3. It is clear that icons

synthesized by IconShop are most frequently selected, indicating the

highest quality and the best text-SVG alignment in the text-guided

generation task. We also perform one-way ANalysis Of VAriance

(ANOVA) tests, and the ?-values of the three tasks are all less than

0.001, suggesting that the perceptual gains by IconShop are statisti-

cally signi�cant. In summary, the proposed IconShop demonstrates

the highest quality for both random and text-guided generation,

with a strong text-SVG alignment.

5 APPLICATIONS

In this section, we explore four practical applications of IconShop:

icon editing, icon interpolation, icon semantic combination, and icon

design auto-suggestion. These applications streamline the process of

vector icon synthesis, enhancing user productivity and experience

signi�cantly.

5.1 Icon Editing

Thanks to the uni�cation of non-autoregressive and autoregres-

sive modeling through the "causal" masking strategy outlined in

Section 3.3, the proposed IconShop facilitates icon editing as exem-

pli�ed in Figure 7. IconShop is capable of �lling in missing content

based on the bidirectional context, in either random or text-guided

generation scenario. This leads to precise, consistent, and diverse

restoration of the missing paths in icons.

5.2 Icon Interpolation

In DeepSVG, each SVG icon is mapped into a latent representation

space, which allows meaningful algebraic manipulations such as in-

terpolation. Although IconShop is not accompanied by such a latent

space, as it is not designed to learn SVG icon representations, such

interpolation can be performed through text embeddings. Figure 8
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Fig. 7. IconShop enables both random and text-guided icon editing. We use the green color to highlight the paths to be edited.
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Fig. 8. We linearly interpolate two text embedding vectors using the formula E = (1 − U ) · E (1) + U · E (2) , where U ∈ [0, 1]. Subsequently, we generate icons

corresponding to each interpolated vector E. The results show that IconShop learns a smooth mapping between the text and SVG spaces.

shows a collection of icons generated from interpolated text embed-

ding vectors, demonstrating that IconShop has learned a smooth

mapping between the text and SVG spaces.

5.3 Icon Semantic Combination

Text-to-image models demonstrate an impressive ability to combine

textual inputs, encouraging generation of novel concepts that do not

exist in the training data, such as "avocado chair" generated by

DALL·E [Ramesh et al. 2021]. In our experiments, we �nd that Icon-

Shop also learns to create innovative and reasonable combinations,

as shown in Figure 9.

5.4 Icon Design Auto-Suggestion

One advantage of automated icon generation is to support both

designers and non-specialists in expressing their creative ideas. A

desired feature of such an automated system is the ability to suggest

possible placements for subsequent paths on a canvas, which would

signi�cantly improve work e�ciency and productivity. Relying on
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+ flask + star + sun
computer

+ cake + clock + eye
calendar

+ rain + apple + mountain
cloud

+ umbrella + apple+ tree
Fig. 9. IconShop learns to produce creative icons by combining semantics

of di�erent text prompts.

Fig. 10. IconShop is able to suggest subsequent paths for users to design

icons, with significantly boosted e�iciency. We highlight paths suggested

by IconShop with the green color and paths drawn by users with the blue

color. Even if users diverge from the suggested route, IconShop still predicts

subsequent paths that are compatible with the users’ chosen paths.

the autoregressive transformer, IconShop is able to predict the next

path that users may choose in their icon creation processes (see

Figure 10). Please refer to the supplemental material for the video

demonstrations of our auto-suggestion system for SVG icon design.

6 CONCLUSION AND DISCUSSION

We have introduced IconShop, an autoregressive transformer-based

method pro�cient at generating vector icons from textual descrip-

tions. IconShop stands out from both image-based methods that

combine text-to-image generation and image vectorization, and

        

  Mismatch

fish/sea/

swim
ChatGPT

A swimmer in a 
sea with fish.

Semantic Combination

dog, cake, sun, car A bridge built over the 
mountain.

Fig. 11. Limitations contain text-SVG mismatches (top panel) and subop-

timal semantic icon combination (bo�om panel). In the bo�om panel, we

present two text inputs that significantly deviate from the dataset distribu-

tion.

language-based techniques that treat SVG scripts as natural lan-

guages. Comprehensive experiments showcase the e�ectiveness

and �exibility of IconShop in terms of generation quality, diversity,

text-icon alignment, and wide applicability.

IconShop exhibits impressive SVG icon synthesis performance

by exploiting the sequential nature of SVG scripts and unifying

non-autoregressive and autoregressive modeling, but it is not with-

out limitations (see Figure 11). First, natural language phrases and

sentences generated by ChatGPT may inadvertently result in text-

SVG mismatches. This problem can be mitigated by using a higher-

quality SVG dataset with accurate text annotations or by manual

�ltering. Second, the semantic icon combination performance by

IconShop may not be as remarkable as text-to-image generation,

because most icons in the FIGR-8-SVG dataset contain a single object

situated at the center, occupying a signi�cant portion of the space.

In challenging scenarios where the input text signi�cantly deviates

from the dataset distribution, our model produces icons that do not

align well with the text. But these icons consistently display regu-

lar shapes and symmetrical structures, as illustrated in Figure 11.

We believe proper data augmentation such as scaling and merg-

ing SVG data to create new icons has the potential to improve the

combination performance. Finally, IconShop is restricted to black-

and-white icon generation, a task tractable to generative modeling

due to its simplicity and well-de�ned SVG grammars. While the

generated results are eye-catching, their usability as computer sys-

tem icons and UI elements is not guaranteed to be optimal, because

the synthesis process might overlook speci�c user requirements

(e.g., preferred styles and complexity levels), resulting in potential

inconsistencies with the overall design theme and user expectations.

But IconShop could potentially be expanded to yield multicolored

icons or more general SVG content (e.g., clip art) with proper modi-

�cations. For example, for multicolored icons, one potential solution

is to encode color into a token.
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