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Abstract

This paper introduces a new technique for map-
ping Deep Recurrent Neural Networks (RNN) ef-
ficiently onto GPUs. We show how it is possi-
ble to achieve substantially higher computational
throughput at low mini-batch sizes than direct
implementations of RNNs based on matrix mul-
tiplications. The key to our approach is the use of
persistent computational kernels that exploit the
GPU’s inverted memory hierarchy to reuse net-
work weights over multiple timesteps. Our initial
implementation sustains 2.8 TFLOP/s at a mini-
batch size of 4 on an NVIDIA TitanX GPU. This
provides a 16x reduction in activation memory
footprint, enables model training with 12x more
parameters on the same hardware, allows us to
strongly scale RNN training to 128 GPUs, and al-
lows us to efficiently explore end-to-end speech
recognition models with over 100 layers.

1. Introduction

Recurrent Neural Networks (RNNs) have been shown to
be powerful tools for solving general sequence to sequence
mapping problems in domains ranging from speech recog-
nition (Sainath et al., 2015) to natural language process-
ing (Gao et al., 2015)(Sutskever et al., 2014).

In this paper, we explore techniques for mapping RNNs to
throughput optimized processors such as GPUs. We use the
Multi-Bulk-Synchronous-Parallel (Valiant, 2008) (MBSP)
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model to analyze the computation, communication, and
synchronization operations performed by a RNN. We fo-
cus on mapping strategies that carefully manage data move-
ment through the processor’s memory hierarchy to balance
these costs. These changes enable RNN implementations
on GPUs that are very efficient at small mini-batch sizes,
even on mini-batch sizes of just 4 examples. We exploit
this reduction in batch size to decrease the memory foot-
print of our networks by 16x, allowing us to explore deeper
networks without exceeding GPU memory.

We exploit the largest source of on-chip memory on the
GPU—the collective register files of 6144 hardware thread
contexts on a TitanX GPU—to cache the RNN parameters
and reuse them over multiple timesteps during training. We
attack the cost of inter-processor synchronization with an
optimized assembly level barrier implementation, demon-
strating that such barriers implemented in software can re-
duce latency by approximately 10x compared to relying on
repeated kernel launches.

To make our results relevant for deployment, we only con-
sider models with a hard constraint of 800ms of future con-
text. We find that accuracy improves with deeper models
using batch normalization and skip connections (He et al.,
2015; Srivastava et al., 2015), reinforcing the trend towards
deeper models in vision applications. We present evidence
that accuracy continues to improve with increased depth.

2. Related Work

This work is motivated by recent advances in speech recog-
nition and natural language processing using deep RNNs.
It draws insight from related work on performance opti-
mization of DNN and dense linear algebra libraries, dis-
tributed training of DNNs, work on general purpose GPU
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performance optimization, and high performance processor
technology trends.

In computer vision recognition tasks, Deep Neural Nets
(DNN) have demonstrated superior performance in object
detection (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; Szegedy et al., 2014; He et al., 2015), local-
ization (He et al., 2015), and pose estimation (Toshev &
Szegedy, 2013). In natural language processing, DNNs
have enabled significant advancements in language mod-
eling (Bengio et al., 2003; Mikolov et al., 2010), senti-
ment analysis (Socher et al., 2013; Iyyer et al., 2015; Le
& Zuidema, 2015), syntactic parsing (Collobert & Weston,
2008; Socher et al., 2011; Chen & Manning, 2014) and
machine translation (Bahdanau et al., 2014; Devlin et al.,
2014; Sutskever et al., 2014).

In speech recognition, DNNs have become a fixture in the
ASR pipeline (Mohamed et al., 2011; Hinton et al., 2012;
Dahl et al., 2011b;a; N. Jaitly & Vanhoucke, 2012; Seide
et al., 2011). CNNs have also been found beneficial for
acoustic models (Abdel-Hamid et al., 2012; Sainath et al.,
2013). RNNs, typically LSTMs, arecommonly used in
state-of-the art recognizers (Graves et al., 2013; H. Sak
et al., 2014; Sak et al., 2014) and work well together with
convolutional layers for feature extraction (Sainath et al.,
2015). End-to-end speech recognition with a combina-
tion of CNNs and RNNs has also been developed (Amodei
et al., 2015).

As DNNs have continued to increase application-level per-
formance, more effort has been applied to hardware and
software optimizations targeting DNNs. High performance
libraries following a similar design philosophy as BLAS
have emerged (Chetlur et al.). These libraries have begun
to include optimized RNN routines, although they have not
yet used persistent GPU kernels. Additional work has fo-
cused on improving algorithmic efficiency of the funda-
mental operations used by DNNs (Vasilache et al., 2014;
Lavin & Gray, 2015). Finally, DNNs often rely on dense
linear algebra operations, and benefit from prior work that
has resulted in highly tuned implementations for modern
processors (Dongarra et al., 2014; Gray, 2014).

An open-source implementation of the Persistent RNN
GPU kernels has been released (Diamos et al.).

3. RNN to Hardware Mapping Strategy

Let a single input sequence x and corresponding out-
put sequence y be sampled from a training set X =
{(x(1), y(1)), (x(2), y(2)), . . .}. Each input sequence, x(i),
is a time-series of length T (i) where every time-slice is a
vector of application-specific features (e.g. audio samples),

x
(i)
t , t = 0, . . . , T (i)−1.

The forward in time hl recurrent layer activations are

hl

t
= f(hl−1

t , hl

t−1) (1)

The function f can be the standard recurrent operation

hl

t
= σ(W lhl−1

t + U lhl

t−1 + bl) (2)

where W l is the input-hidden weight matrix, U l is the re-
current weight matrix and bl is a bias term.

Implementations of recurrent neural networks typically
separate the computation into two stages.

In the first stage (W lhl−1
t ), the contribution to the output of

each neuron for each timestep is computed using the neuron
inputs for that timestep. Like a feed forward network, the
first stage represents the input weights of all the neurons in
the layer as a dense two-dimensional matrix and the inputs
to the layer for each timestep as a one-dimensional dense
vector. A common optimization is to unroll the time di-
mension and pack multiple one-dimensional input vectors
together into a single two-dimensional matrix. This is pos-
sible because the weight matrix is shared over all timesteps.

In the second stage(U lhl
t−1), the connections between the

outputs of the layer neurons on a given timestep to the in-
puts of the layer neurons on the next timestep are repre-
sented by a two-dimensional matrix, referred to as the re-
current weight matrix. In this case, each timestep must
be processed sequentially because the outputs of the next
timestep depend on the outputs of the current timestep,
requiring this operation to be performed using a matrix-
vector product, followed by an application of the activa-
tion function. This is the most computationally expensive
step, since the sequential dependence between timesteps
requires explicit synchronization between them and the re-
current weight matrix has to be reloaded from memory on
each timestep. So we focus our attention on optimizing
this stage using the Multi-Bulk-Synchrononus-Parallel ma-
chine model.

3.1. Multi-Bulk-Synchronous-Parallel Machine Model

The Multi-Bulk-Synchronous-Parallel (MBSP) abstract
machine model (Valiant, 2008) is a processor performance
model that takes into account the physical realities of mul-
tiple processor cores, each with finite memory and compu-
tational resources, as well as communication and synchro-
nization costs. These costs are a function of the physical di-
mensions of and distances between processor cores. They
typically increase with the number of cores.

The MBSP model is a hierarchical model, with an arbitrary
number of levels. At each level, it describes a collection of
processor cores and the associated on-chip memory/cache
capacities with four parameters (computational bandwidth,
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Figure 1: A depiction of the MBSP machine model hierarchy for an NVIDIA TitanX GPU. Each level of the hierarchy
contains memory capacity (left square) with associated latency and bandwidth (arrows), as well as a set of sublevels or
compute units (right square). At each level of the hierarchy, the Persistent RNN kernels store all neuron parameters in
memory and match latencies between communication, synchronization, and computation.

memory capacity, memory bandwidth, and memory la-
tency). A memory hierarchy is needed due to the physical
limits on the amount of memory that can be accessed in a
fixed amount of time from a processor core.

We first generate the MBSP model for the target processor
or family of processors that we plan to execute our RNN.
Our model describes each level of a processor’s memory
hierarchy with a tuple (p, b, c,m), where p represents the
number of submodules or processor cores, b represents the
communication bandwidth, c represents the synchroniza-
tion cost among processors at this level, and m represents
the cache or memory capacity at this level. An example of
these parameters for the TitanX GPU is shown in Figure 1.

Starting with the lowest level of hierarchy and working
up to the highest, we divide individual neurons into logi-
cal modules and arrange the connections between modules
such that the following constraints are met:

• the parameters representing the neurons selected for a
given processor fit completely into the cache or mem-
ory capacity for this level of the memory hierarchy.

• the communication cost implied by intra-module con-
nections and inter-module connections is approxi-
mately equal to the computational cost of evaluating
the module’s neurons.

• the synchronization cost implied by inter-module con-
nections is approximately equal to the computational
cost of evaluating the module’s neurons.

These changes balance the computational, communication,
synchronization, and memory capacity requirements of the
RNN such that no one resource becomes a significant bot-
tleneck. It does so by exploiting the reuse of RNN weights

over multiple timesteps to avoid repeatedly loading weights
from DRAM, and taking into account the significantly
higher cost of synchronization and off-chip memory ac-
cesses as compared to floating-point math operations.

4. Implementation on a TitanX GPU

The peak floating point throughput of a TitanX is 6.144
TFLOP/s. A straightforward implementation of a RNN us-
ing GEMM operations achieves 0.099 TFLOP/s at a layer
size of 1152 using Nervana Systems GEMM kernels at a
mini-batch size of 4. Our initial Persistent RNN imple-
mentation with the same layer and mini-batch size achieves
over 2.8 TFLOP/s resulting in a 30x speedup.

4.1. Approach

In contrast to approaches based on matrix multiplication,
we divide the recurrent weight matrix into blocks of con-
tiguous rows, each of which is processed by a single SM ,
as shown in Figure 2 . Even though this approach requires
more global memory bandwidth than the more traditional
approach of dividing into tiles, we chose it because it avoids
the need to perform an inter-SM reduction to compute the
activations for a given block of rows.

Our implementation first loads the weight matrix into reg-
isters. Then each SM loads all of the input activations from
the previous timestep from global memory to shared mem-
ory, computes the dot product for each row, performs the
nonlinearity, writes the result for the current timestep, and
performs a global barrier with all other SMs. The latency
required to perform the load operations is approximately
four times higher than the time required to perform the
math operations for a single timestep. So we break the
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Figure 2: A depiction of the recurrent weight matrix tiling
strategy. Each of the 24 SMs on the GPU processes a
48x1152 block row, reading 1152 activations for the current
timestep, and writing 48 activations for the next timestep.
Within an SM, each of 8 warps processes a 6x1152 block
row, and all warps share access to the activations for the
current timestep in CUDA shared memory. Groups of 16
threads arranged in an interleaved pattern cooperate to pro-
cess a 3x1152 tile.

computation into four independent stages and use software
pipelining to overlap the load operation with math, reduce
and barrier operations. We use a mini-batch size of four or
greater to keep the pipeline full.

4.2. Stashing the Weights On-Chip

Each thread in the TitanX GPU has access to approximately
1KB of memory that can be read at high enough band-
width to saturate the floating point datapath. Out of this,
we dedicate 896 bytes to store recurrent weights as shown
in Figure 2 , and the rest for intermediate computations.
These weights are loaded once at the start of the kernel,
and reused over each timestep.

4.3. A Fast Global Barrier

Synchronization between GPU processors cores is typi-
cally achieved implicitly between dependent kernel calls
in both CUDA and OpenCL development frameworks.
However, this mechanism for synchronization between
timesteps requires launching a new kernel that forces the
weights to be reloaded from off-chip memory. This causes
the synchronization latency of dependent kernels to be ap-
proximately 6-10x larger than the time spent performing
the math operations for a single timestep, and this cannot
be overlapped with computation. We address this problem
with an optimized implementation of a global barrier that
can be completely overlapped with the math operations for
a single timestep.

4.4. Saving Memory to Enable Deeper Networks

When training our speech recognition model, we encounter
very long utterances that are up to thirty seconds long, cor-

responding to 3,000 timesteps. For a RNN layer with 1760
hidden units, and a mini-batch size of 64, this corresponds
to 1.3 GB of storage per layer. This is much more than
the 12.3 MB required to store the layer weights. In prac-
tice, with GPUs with 12GB of DRAM, we find that this
limits us to networks with about 9 layers. A common so-
lution to this problem is to use truncated back-propagation
through time (Sutskever, 2013) (BPTT). However, we have
observed a 20% relative performance degradation of the
converged model using this approach, making other tech-
niques that reduce memory footprint, such as reducing the
mini-batch size, more attractive.

4.5. GRUs and LSTMs

The persistent RNN approach can also be applied to GRU
and LSTM recurrent networks with simple modifications.
In both cases, the update rule for a single timestep can be
factored into a component that depends on the layer input
hl−1
t , and a component that depends on the output from

the previous timestep hl
t−1. As before, the first compo-

nent can be computed in parallel over all timesteps using
matrix multiplications, but the second component requires
synchronization between timesteps. Similarly the second
component for both GRUs and LSTMs can be factored into
a single matrix multiplication by packing the individual re-
current weight matrices together into a single matrix that is
applied to the concatenation of each of the activation sig-
nals —reset, update, activation, etc. This matrix can now
be distributed throughout on-chip memory.

5. Experiments

This section focused mainly on the computational through-
put of our Persistent RNN implementation. We also include
experimental results of very deep forward-only recurrent
networks on a large-scale speech recognition task, similar
to the Deep Speech 1 (Hannun et al., 2014) (DS1) and Deep
Speech 2 (Amodei et al., 2015) (DS2) systems. These very
deep networks would not be feasible to run efficiently on
our systems without Persistent RNNs due to memory limi-
tations.

5.1. Computational Throughput

In this section we compare the computational efficiency
of Persistent RNN, against an optimized RNN implemen-
tation based on matrix multiplication routines from the
NVIDIA and Nervana Systems BLAS libraries. We find
that our implementation is substantially more efficient at
small mini-batch sizes than either of those implementa-
tions.
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Figure 3: Throughput scaling with mini-batch size.

Figure 4: Throughput scaling with timesteps.

5.1.1. SENSITIVITY TO MINI-BATCH-SIZE

Figure 3 compares floating point throughput for Persistent
RNN against two other RNN implementations for small
mini-batch sizes. Note that after a mini-batch size of
four, Persistent RNN consistently deliver approximately
2.8 TFLOP/s, but matrix-multiply based implementations
start out much slower, and need relatively large mini batch
sizes to become competitive. Even then, we find that layer
sizes around 1152 units are somewhat too small for matrix
multiplication libraries to be efficient, only achieving about
1.5 TFLOP/s at a mini-batch size of 64. Performance is
generally much better at layer sizes of 2560 units, suggest-
ing the advantages of persistent RNN implementations will
grow as models become deeper and thinner.

5.1.2. SENSITIVITY TO TIMESTEPS

Figure 4 shows the sensitivity of Persistent RNN to start up
overheads associated with launching the kernels and load-
ing the recurrent weight matrix on the first iteration. We

Figure 5: Throughput scaling of the 48 RNN, 61 total layer
RNN with a fixed algorithmic mini-batch of 512.

find that most of the performance is achieved after approx-
imately 30 timesteps, which is substantially smaller than
the average utterance length in our training set of about 350
timesteps. However, it does suggest that real time imple-
mentations that rely on processing a small number of ut-
terances at a time should still buffer up about 30 timesteps
(600ms of audio at a frame size of 10ms).

5.1.3. STRONG SCALING

Figure 5 shows scalability of the 48 RNN layer network
from 1 to 128 GPUs. Our cluster is composed of nodes
with 8 GPUs and 2 CPUs. GPUs are connected locally via
PCIe v3 using two 4-wide full bisection bandwidth PCIe
switches, which are interconnected using the QPI bus be-
tween CPUs. Nodes are interconnected by Infiniband 12x
QDR links to a full bisection bandwidth router. We use
MPI as the communication layer. We use synchronous
SGD as the training algorithm, with data parallelism to sup-
port multiple GPUs. There is no need to use a technique
that reduces interconnect bandwidth such as asynchronous
SGD because our system is fast enough to completely over-
lap the all-reduce operation in SGD with the back propaga-
tion evaluation.

The algorithmic mini-batch size is fixed at 512 for all ex-
periments (i.e. the mini-batch per GPU is 64 when run
on 16 GPUs and 4 when run on 128 GPUs). The GEMM
based RNN implementation scales well up to 16 GPUs, but
does substantially worse as more GPUs are added. The
Persistent RNN implementation scales nearly linearly, and
achieves 250 TFLOP/s on 128 GPUs (about 30% of peak).
Note that this number is the sustained throughput of the
entire system, not just the RNN kernels.
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Figure 6: The theoretical floating point throughput for various RNN layer sizes, with different plots for variations of the
TitanX GPU microarchitecture. Each point represents a different tiling strategy. The solid line indicates the maximum
throughput of that GPU, any point above that line is compute limited, and any point below it is limited by latency, memory
bandwidth, or load imbalance.

5.1.4. PROCESSOR DESIGN SPACE

Our final experiment uses an analytical performance model
to predict the performance of persistent RNN implemen-
tations of various layer sizes on modified versions of the
TitanX GPU microarchitecture, offering a view into the
performance landscape of future GPUs for different layer
sizes. We explore doubling the register file size per SM,
doubling the number of SMs, performing all of the compu-
tations in 16-bit floating point, doubling the DRAM band-
width, and halving the memory latency.

Generally, we find that future GPUs will probably en-
able bigger recurrent layer sizes, and run them at higher
throughput. Of the options that are straightforward to im-
plement through process scaling and minor architecture
changes, moving to 16-bit floating point operations pro-
vides the biggest improvement, followed by more memory
per SM, and finally increasing the number of SMs. Reduc-
ing synchronization latency is expected to be much more
difficult, but it is interesting to note that substantially reduc-
ing the memory and synchronization latency would enable
the efficient implementation of a larger range of layer sizes
(smaller layer sizes in particular). It is also interesting to
note that substantially increasing DRAM bandwidth is un-
likely to impact the efficiency of persistent RNN kernels,

although other components of deep networks are known to
be memory bound and would probably benefit.

5.2. Speech Recognition Task

This section explores the design space around very deep
stacks of forward-only RNN models using a large vocabu-
lary end-to-end English speech recognition task.

Figure 7 shows the architecture of the DS2 which we use
as the baseline for these experiments: a recurrent neu-
ral network (RNN) trained to ingest speech spectrograms
and generate text transcriptions using the CTC loss func-
tion (Graves et al., 2006). We evaluate various architec-
tures by varying the number of recurrent layers and the
number and span of skip connections between them. We
use a dataset of 500 hours of audio in these experiments to
quickly perform model design space exploration. We re-
port Word Error Rate (WER) on an English speaker held
out development set which is an internal dataset contain-
ing 2048 utterances of primarily read speech. We integrate
a language model in a beam search decoding step as de-
scribed in (Amodei et al., 2015).

Although the network architectures explored here are al-
most identical to the DS2 network, there is one significant
difference. We use unidirectional RNN layers and row con-



Persistent RNNs: Stashing Recurrent Weights On-Chip

Architecture Dev (WER)

48 RNN, 61 total, no skip 100.0
48 RNN, 61 total, skip 1 38.77
48 RNN, 61 total, skip 2 33.28
48 RNN, 61 total, skip 3 30.32
48 RNN, 61 total, skip 4 29.40
48 RNN, 61 total, skip 5 29.82
48 RNN, 61 total, skip 6 30.04
48 RNN, 61 total, skip 7 29.87
48 RNN, 61 total, skip 8 27.44

Table 1: WER for models with skip connections added be-
tween every N RNN layers, each with 1152 units.

volutions (Amodei et al., 2015) with a fixed context size of
800ms rather than bidirectional RNN layers to make sure
that the networks can be readily deployed in online speech
recognition tasks.

5.3. Methodology

All models are trained for 20 epochs on the English dataset.
We use stochastic gradient descent with Nesterov momen-
tum (Sutskever et al., 2013) along with a minibatch from
the range of [64, 512] utterances. If the norm of the gradi-
ent exceeds the threshold of 400, it is rescaled to 400 (Pas-
canu et al., 2012). The model that performs the best on
a held-out development set during training is chosen for
evaluation. The learning rate is chosen from the range
[1 × 10−5, 6 × 10−4] to yield the fastest convergence and
annealed by a constant factor of 1.2 after each epoch. We
use a momentum of 0.99 for all models.

5.3.1. SENSITIVITY TO RESIDUAL CONNECTIONS

Table 1 shows the impact of residual skip connections on
very deep RNN architectures with over fifty layers. We
find that skip connections are essential for training these
models, even when batch normalization is enabled. Mod-
els without skip connections fail to converge. For these
networks, we find that skipping three or four RNN layers is
substantially better than skipping a single layer, and mod-
erately better than any other configuration (except for the
outlier of 8, which we cannot explain). This suggests that
residual skip connections enable effective optimization of
very deep stacks of RNN layers.

5.3.2. SENSITIVITY TO DEPTH

Table 2 shows the impact of depth on residual RNN models
with a constant number of parameters. We find that depth
helps up to a point, about 50 layers, after which perfor-
mance degrades. We hypothesize that this may be due to
the thinning of individual layers in very deep networks.

CTC

Spectrogram

Recurrent

2D Invariant
Convolution

Fully Connected

Residual
Skip 

Connection

Row Convolutions

Figure 7: Architecture of the speech recognition system
used in this paper. All networks use 2 layers of 2D in-
variant convolutions, and one fully connected layer. The
basic module is a stack of four simple recurrent layers fol-
lowed by a single row convolution layer, all of which may
be bypassed by a single residual skip connection. Deeper
networks are constructed by adding multiple of these basic
modules. All networks use 10 layers of row convolutions.
All layers except row convolutions use batch normaliza-
tion.

5.3.3. SENSITIVITY TO PARAMETERS

Table 3 shows how training is affected by increasing the
number of parameters in the network. We find that increas-
ing the number of parameters by stacking additional layers
generally improves performance of the network with con-
tinued gains out to the largest networks with approximately
100 layers and 200 million parameters.

5.3.4. SENSITIVITY TO MINI-BATCH SIZE

Table 8 shows how training is affected by increasing the
mini-batch size. For these experiments, we perform a
search over the learning rate, momentum, and annealing
rate for each batch size to find a good value. We find that
there is very little difference in the amount of computa-
tional work (in this case, the number of epochs) needed to
converge for batch sizes below a threshold of 512 to 1024,
but convergence is much slower beyond it. This suggests
that even if GPU memory capacities were increased, run-
ning efficiently with a smaller batch size per GPU would
enable data-parallel approaches to scale to more GPUs.

5.4. Discussion

In general, these results reinforce the trend of deeper mod-
els being more difficult to train, but delivering better per-
formance if they can be trained successfully. We find both
batch normalization and residual skip connections to be ef-
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Arch # Acts Dev (WER)

8 RNN 1632 33.61
24 RNN 928 31.99
40 RNN 704 31.64
56 RNN 608 30.67
72 RNN 544 33.35
88 RNN 480 42.67

Table 2: WER on a training and development set for vari-
ous depths of RNN. The number of parameters is kept ap-
proximately constant as the depth increases, thus the num-
ber of activations per layer decreases. For the architecture
“M RNN” implies M uni-directional RNN layers.

Architecture # Params Dev (WER)

8 RNN, 21 total 22M 35.69
24 RNN, 37 total 65M 31.32
40 RNN, 53 total 107M 28.90
56 RNN, 69 total 149M 28.12
72 RNN, 85 total 192M 27.84
88 RNN, 101 total 234M 27.23

Table 3: WER on a training and development set for vari-
ous depths of RNN. The number of parameters per layer is
kept constant as the depth increases in this experiment, thus
the number of parameters increases as the depth increases.
For the architecture “M RNN, N total” implies M consec-
utive uni-directional RNN layers with N total layers in the
network.

fective techniques that allow training deeper RNN mod-
els for speech recognition, reinforcing the importance of
these techniques that has been previously demonstrated for
CNNs applied to vision applications.

From a computational perspective, it seems clear that the
development of faster processors with more memory ca-
pacity will likely enable even larger models to be trained on
bigger data sets, unlocking additional accuracy. This work
has shown that some model architectures are constrained
not only by hardware performance, but also by the strat-
egy used to map them to hardware. Mapping RNNs to
GPUs using matrix multiplication is efficient for shallow
networks with large layers, but persistent RNN kernels are
much more efficient for very deep networks with relatively
narrow layers.

In addition to work on model architecture exploration, and
work on improving the performance of general purpose
processors, it may also be fruitful to consider strategies for
mapping currently inefficient model architectures onto ex-
isting hardware platforms. We have found the MBSP ab-
stract machine model together with the guidelines in Sec-

Figure 8: Development set cost after 10 epochs for various
mini-batch sizes. The architecture is a 61-layer model with
2 layers of 2D-invariant convolution, 48 RNN layers (with
1152 activations and skip connections every 4 layers), 10
row convolution layers, and one fully connected feed for-
ward layer. Note that the number of epochs needed to reach
a given cost is approximately constant until the mini-batch
becomes larger than 512-1024, at which point it grows con-
siderably.

tion 3.1 to be a useful tool for quickly deciding whether
or not a hypothetical model architecture can be efficiently
mapped to hardware.

6. Conclusion

We demonstrate a technique for achieving high perfor-
mance for RNN evaluation at very low batch sizes on an
NVIDIA TitanX GPU, achieving 2.8 TFLOP/s at a mini-
batch size of 4. This provides a 16x reduction in activation
memory footprint, and allows us to train models with over
100 layers on the same hardware which is about an order
of magnitude deeper than without this technique. We focus
our evaluation on unidirectional RNNs with at most 800ms
of future context, and demonstrate that accuracy continues
to scale with increased depth. We expect these gains to
directly enable the training of deeper RNN networks on
much larger datasets than would be possible without this
technique.

References

Abdel-Hamid, Ossama, Mohamed, Abdel-rahman, Jang,
Hui, and Penn, Gerald. Applying convolutional neural
networks concepts to hybrid nn-hmm model for speech
recognition. In ICASSP, 2012.

Amodei, Dario, Anubhai, Rishita, Battenberg, Eric, Case,



Persistent RNNs: Stashing Recurrent Weights On-Chip

Carl, Casper, Jared, Catanzaro, Bryan, Chen, Jingdong,
Chrzanowski, Mike, Coates, Adam, Diamos, Greg, et al.
Deep speech 2: End-to-end speech recognition in english
and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,
Yoshua. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2014. URL
http://arxiv.org/abs/1409.0473.

Bengio, Yoshua, Ducharme, RÃl’jean, Vincent, Pascal,
and Jauvin, Christian. A neural probabilistic language
model. JOURNAL OF MACHINE LEARNING RE-

SEARCH, 3:1137–1155, 2003.

Chen, Danqi and Manning, Christopher D. A fast and
accurate dependency parser using neural networks. In
Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing, EMNLP 2014, Oc-

tober 25-29, 2014, Doha, Qatar, A meeting of SIG-

DAT, a Special Interest Group of the ACL, pp. 740–750,
2014. URL http://aclweb.org/anthology/D/D14/

D14-1082.pdf.

Chetlur, Sharan, Woolley, Cliff, Vandermersch, Philippe,
Cohen, Jonathan, Tran, John, Catanzaro, Bryan, and
Shelhamer, Evan. cuDNN: Efficient primitives for deep
learning. URL http://arxiv.org/abs/1410.0759.

Collobert, R. and Weston, J. A unified architecture for
natural language processing: Deep neural networks with
multitask learning. In International Conference on Ma-

chine Learning, ICML, 2008.

Dahl, G.E., Yu, D., and Deng, L. Large vocabulary contin-
uous speech recognition with context-dependent DBN-
HMMs. In Proc. ICASSP, 2011a.

Dahl, G.E., Yu, D., Deng, L., and Acero, A. Context-
dependent pre-trained deep neural networks for large vo-
cabulary speech recognition. IEEE Transactions on Au-

dio, Speech, and Language Processing, 2011b.

Devlin, Jacob, Zbib, Rabih, Huang, Zhongqiang, Lamar,
Thomas, Schwartz, Richard, and Makhoul, John. Fast
and robust neural network joint models for statistical ma-
chine translation. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguis-

tics, volume 1, pp. 1370–1380, 2014.

Diamos, Gregory, Sengupta, Shubho, Catanzaro, Bryan,
Chrzanowski, Mike, Coates, Adam, Elsen, Erich, Engel,
Jesse, Hannun, Awni, and Satheesh, Sanjeev. Persis-
tent RNNs. https://github.com/baidu-research/

persistent-rnn. Accessed: 2016-05-23.

Dongarra, Jack, Gates, Mark, Haidar, Azzam, Kurzak,
Jakub, Luszczek, Piotr, Tomov, Stanimire, and Ya-
mazaki, Ichitaro. Accelerating numerical dense linear
algebra calculations with gpus. Numerical Computations

with GPUs, pp. 1–26, 2014.

Gao, Haoyuan, Mao, Junhua, Zhou, Jie, Huang, Zhiheng,
Wang, Lei, and Xu, Wei. Are you talking to a ma-
chine? dataset and methods for multilingual image ques-
tion answering. CoRR, abs/1505.05612, 2015. URL
http://arxiv.org/abs/1505.05612.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J.
Connectionist temporal classification: Labelling unseg-
mented sequence data with recurrent neural networks. In
ICML, pp. 369–376. ACM, 2006.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Ge-
offrey. Speech recognition with deep recurrent neural
networks. In ICASSP, 2013.

Gray, Scott. Assembler for nvidia maxwell architecture,
2014. URL https://github.com/NervanaSystems/

maxas.

H. Sak, Hasim, Senior, Andrew, and Beaufays, Francoise.
Long short-term memory recurrent neural network ar-
chitectures for large scale acoustic modeling. In Inter-

speech, 2014.

Hannun, Awni, Case, Carl, Casper, Jared, Catanzaro,
Bryan, Diamos, Greg, Elsen, Erich, Prenger, Ryan,
Satheesh, Sanjeev, Sengupta, Shubho, Coates, Adam,
and Ng, Andrew Y. Deep speech: Scaling up
end-to-end speech recognition. 1412.5567, 2014.
http://arxiv.org/abs/1412.5567.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. ArXiv e-prints, Decem-
ber 2015.

Hinton, G.E., Deng, L., Yu, D., Dahl, G.E., Mohamed,
A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal

Processing Magazine, 29(November):82–97, 2012.

Iyyer, Mohit, Manjunatha, Varun, Boyd-Graber, Jordan,
and III, Hal Daume. Deep unordered composition ri-
vals syntactic methods for text classification. In As-

sociation for Computational Linguistics, 2015. URL
docs/2015_acl_dan.pdf.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoff. Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing

Systems 25, pp. 1106–1114, 2012.



Persistent RNNs: Stashing Recurrent Weights On-Chip

Lavin, Andrew and Gray, Scott. Fast algorithms for convo-
lutional neural networks. CoRR, abs/1509.09308, 2015.
URL http://arxiv.org/abs/1509.09308.

Le, Phong and Zuidema, Willem. Compositional distribu-
tional semantics with long short term memory. arXiv

preprint arXiv:1503.02510, 2015.

Mikolov, Tomas, Karafiát, Martin, Burget, Lukas, Cer-
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