
BACKPROPAGATION IN PERCEPTRONS WITH FEEDBACK

Luis B. Almeida

R. Alves Redol, 9-2

P-1000 Lisboa

Portugal

ABSTRACT

Backpropagation has shown to be an efficient learning rule for graded

perceptrons. However, as initially introduced, it was limited to

feedforward structures. Extension of backpropagation to systems with

feedback was done by this author, in [4]. In this paper, this extension is

presented, and the error propagation circuit is interpreted as the

transpose of the linearized perceptron network. The error propagation

network is shown to always be stable during training, and a sufficient

condition for the stability of the perceptron network is derived. Finally,

potentially useful relationships with Hopfield networks and Boltzmann

machines are discussed.

1. INTRODUCTION

Backpropagation has been independently introduced by several authors

(including at least Parker, Le Cun, and Rummelhart, Hinton and

Williams), as a learning rule for feedforward multilayer graded

perceptron networks [1]. Its power is by now well demonstrated (see [2]

for an example). It is based on the minimization of the squared error of

the actual output, relative to a desired output, this minimization being

performed through a gradient descent technique. Its extension to a

special class of perceptrons with feedback was made in [1], followiong

a suggestion by Minsky and Papert [3]. This class of perceptrons is

characterized by the (implicit) assumption of the existence of a

sample-and-hold operation at the output of each unit, all sample-and

holds being triggered synchronously. Under this assumption, the

perceptron with feedback can be "unfolded" in time, into an equivalent

feedforward one, and can therefore be trained using backpropagation. An

important limitation of backpropagation in this context, however, is

R. Eckmiller et al. (eds.), Neural Computers

© Springer-Verlag Berlin Heidelberg 1989

200

that it demands the existence of an essentially unlimited amount of

memory in each unit.

In this paper, we will be concerned with a different class of feedback

perceptrons: they will be assumed not to have any sample-and-hold;

instead, for each input pattern, the outputs of the units will change

continuously in time until a stable state is reached. The outputs of the

perceptron are observed only in the stable state, and are then compared

to the desired outputs. Training, i.e., weight update, is performed with

the system in the stable state. The input-output mapping to be learned

by the perceptron is assumed to be combinatorial, i.e., the desired

outputs depend only on present inputs, not on past ones.

The extension of backpropagation to this class of perceptrons was

first made by this author, in [4]. Here, we will review its derivation, and

we will briefly discuss the problem of stability. We will then proceed to

discuss the relationships between feedback perceptrons and Hopfield

networks and Boltzmann machines.

2. BACKPROPAGATION IN FEEDBACK PERCEPTRONS

Consider a graded perceptron network, and designate by Xk the

external inputs (k = 1, ... ,K), by Yi the outputs of the units (i = 1, ... ,N), by

Si the result of the sum performed at the input of unit i, and by op the

external outputs (pE 0, where 0 is the set of units producing external

outputs). The static equations of the perceptron network are

N K

Si = L ani Yn + L bki Xk + Ci i = 1, ... ,N (1)

n=1 k=1

Yi = Si(Si) i = 1, ... ,N (2)

op = YP P EO (3)

where ani and bki are weights, Ci is a bias term, and Si is the nonlinear

function in unit i (usually a sigmoid). In a feedforward perceptron, the

units can be numbered in such a way that the array [ani] is lower

triangular, with zeros in the main diagonal. Note that in the

nomenclature used in this paper, we do not consider external inputs as

units.

201

Equations (1-3) are the equations of the equilibrium states of the

network, for a given input pattern (or vector) x = [Xk]. If we linearize

the network around an equilibrium state, we obtain the network

N K

S'j = L anj y'n + L bkj X'k i = 1, ... ,N (4)
n=1 k=1

y'j = Dj(sj) S'j i = 1, ... ,N (5)

o'p = YP pi 0 (6)

where the primes denote the variables of the linearized system, and Dj

is the derivative of Sj. Note that, in terms of the linearized network,

D j(Sj) is just a constant coefficient. Transposing [5] this network, we

obtain (using double-primed variables for the transposed network)

N

L ajn s"n + O"j

y"j =

s"j = Dj(Sj) y"j

N

X"k = L bkn sOn
n=j

if i, 0

(7)

if i;. 0

i = 1, ... ,N (8)

k = 1, ... ,K (9)

It is easy to see that, in the case of a feedforward perceptron, this is

also a feedforward network, though it propagates in the reverse

direction. In fact, it is exactly the backward error propagation network,

as one can check by comparing these equations with those given in [1].

We shall now show that this fact extends to feedback perceptrons: the

transpose of the linearized perceptron network is always the adequate

network for error propagation. For this proof, let us first define the

error at output p

ep = op - dp P EO (10)

and the total quadratic error

(11)

202

Taking the partial derivative relative to weight aqr

E =
~ aE .
~ aop op

pEO

(12)

where the dots denote derivatives relative to aqr. If we differentiate

equations (1-3) relative to aqr, we obtain

N

L ani
.

if Yi + Yq = r
n=1

Si = (1 3)
N

L ani
.

if Yi '* r

n=1

Yi = Di(Si} Si (14)

Yp (15)
.
op =

These equations are those of the linearized perceptron network (eqs.

4-6) with a single input Yq applied to node s'r with a unit weight. Since

that network is linear, we can write

op = Yq t'rp p «0, q,r = 1, ... ,N (16)

where t'rp is the transfer ratio from node s'r to the output op. But, from

the transposition theorem [5], that transfer ratio is equal to the

transfer ratio from o"p to s"n in the transposed network. Therefore,

Op = Yq t"pr P E 0, q,r = 1, ... ,N

which we can replace in equation (12), obtaining

E = 2 Yq L ep t"p r
peO

q,r = 1, ... ,N

(17)

(18)

and the sum in the right hand side is the value that will be obtained at

node s"r, in the transposed network, if we apply the errors ep at the

outputs o"p:

aE
aaqr

2 Yq s"r q,r = 1, ... ,N (19)

203

which is just the result we wanted to obtain: the update of weight aqr is

proportional to the output of unit q multiplied by the result of

propagating the error(s) through the transposed linearized network.

Similar derivations can also be made for the weights bki and the bias

terms Ci. The only assumption is that the functions Si must be

differentiable. Figure 1 shows an example of a feedback perceptron and

of the corresponding error propagation network. For example, we have

for this figure aE/ac = 2 Y2 V1 and aE/ah = 2 Y1 V2.

\12
-71'-- t-----<F-+ 0

Figure 1 a - A simple perceptron with feedback. Bold characters indicate weights,
light characters indicate network variables.

f~

"·N_d __ V

,_1 _9_ll_~_I_f....l}; I ~ •

Figure 1 b - The error propagation network corresponding to figure 1 a. In this

figure, 9i=Dj(sj). Dotted parts belong to the transposed linearized network, but

are not needed for error propagation.

3. STABILITY

In feedback perceptrons, the error propagation network also has

feedback, and thus we have to study its stability, since an unstable

error propagation network would be useless. However, it is a well known

result from the theory of dynamical systems that the stability of a

nonlinear system at an equilibrium state is equivalent to the stability

of the system obtained through linearization around that state (except

in very infrequent marginal situations [6]). Furthermore, the stability of

204

a linear system is equivalent to the stability of its transpose.

Therefore, since we have assumed that training is performed with the

perceptron network at a stable state, the backward error propagation

network will also be stable. Note, however, that the error propagation

network must be the transpose of the linearized perceptron not only in

static, but also in dynamical terms: the dynamical properties of the two

networks must be matched.

Another issue is the problem of whether the perceptron network

itself is stable, so that it can be used, and trained, as described above.

The stability of the perceptron does not depend only on its static

equations (1-3), but also on the dynamical behavior of its units. Figure 2

depicts dynamical behaviors that are commonly assumed for neural

network units. The uppermost circuit comes from considerations on the

dynamical behavior of actual neurons [7], while the lower one

corresponds to a plausible dynamical behavior of electronic

implementations.

I
";"

~
1

function S Lm.
~ .. Z~ Iyyyy-I----+~ y

'vi 2 I

Figure 2 - Two circuits corresponding to dynamical behaviors often assumed for
perceptron units. Resistor and capacitor values may differ from unit to unit. or
from branch to branch.

Networks with both kinds of units have been shown to be stable if the

weights are symmetrical, i.e., if ain = ani, for all i,n, and the functions Si

are monotonically increasing and bounded. The proof was given in [7] for

205

networks of the upper kind, and in [4] for those of the lower kind.

Actually, the sufficient condition for stability obtained in [4] is

somewhat broader than weight symmetry: it is that there exist positive

coefficients J.li such that

J.l i ani = J.ln ai n i,n = 1, ... ,N (20)

and the proof of this condition would be easy to extend to the networks

of the upper kind.

These proofs are based on the use of a so-called "energy function"

W =

1 N N K N
-2 L LJ.li ani Yn Yi - L LJ.li bki Xk Yi -

n=1 i=1 k=1 i=1

N

- L J.li Ci Yi +
i = 1

N

L J.li Ui(Yi)
i= 1

(21)

where Ui is a primitive of Sr1 (the inverse of Si). What is actually done,

in both cases, is to show that this energy function always decreases in

time, with the dynamical behavior of the perceptron network, and

therefore that it cannot oscillate, and must stop at some stable point,

corresponding to a local minimum of W.

It should be noted, however, that experimental tests performed by the

author have led him to suggest that unstable situations are encountered

only very infrequently, even when the condition (20) is not enforced. On

the other hand, it is easy to see that that condition is still too

restrictive: feedforward perceptrons are always stable, but they do not

obey this condition, in general.

A third problem concerning stability is the possibility of there being

multiple stable states for the same input pattern. An intuitive reasoning

was given in [4], suggesting that this probably is not a serious problem,

and this seems to be confirmed by the tests performed so far.

4. EXPERIMENTAL RESULTS

A number of experimental tests were performed on feedback

perceptrons, some of which are described in [4] They will not be given

206

here for lack of space). These experiments included pattern completion,

a kind of problem for which feedforward perceptrons seem to be quite

unsuited. Though still few in number, those tests apparently point to

some conclusions:

- Feedback perceptrons seem to have advantages over feedforward

ones in some situations (including pattern completion), but in other

cases their advantage may be only marginal.

- Unstable situations are encountered only very infrequently, when no

measures are taken to ensure stability.

- Weight symmetry, as a sufficient condition for stability, does not

seem to strongly impair the performance of feedback perceptrons.

5. FEEDBACK PERCEPTRONS AND HOPFIELD NETWORKS

As was emphasized above, training of feedback perceptrons by

backpropagation is done in the stable states, and therefore back

propagation can be viewed as a means to "move" the stable states

toward desired positions (if the network contains hidden units, i.e. units

that do not directly produce outputs, backpropagation will move the

stable states toward desired subspaces of the state space).

If we impose weight symmetry, force the "self-feedback" weights ajj

to be zero and do not allow any hidden units, feedback perceptrons

become formally equivalent to Hopfield networks with graded neurons

[7]. Therefore, backpropagation can be viewed as a learning rule for

graded Hopfield networks (Hopfield's learning rule is for networks of

binary units [8]). Graded networks are the natural choice for

representing patterns with analog valued features.

On the other hand, backpropagation can be used in networks with

hidden units, thus eliminating one of the basic limitations of Hopfield

networks, allowing them to express more complex dependencies among

pattern features. Backpropagation also does not require the weights to

be symmetrical, though stability cannot be guaranteed if condition (20)

is not satisfied.

207

Finally, backpropagation does not impose any limitation on the

patterns to be stored, and therefore eliminates the restriction that they

should be approximately orthogonal to each other [8].

6. FEEDBACK PERCEPTRONS ANP BOLTZMANN MACHINES

Let us again consider a feedback perceptron with symmetrical

weights and null "self-feedback" weights. If we let the sigmoids Sj

approach step functions, the energy W given in equation (21) approaches,

in the limit, the energy function of Boltzmann machines [1,4]. Therefore,

a feedback perceptron with steep sigmoids has approximately the same

energy minima as a Boltzmann machine with the same weights.

Backpropagation can thus, very probably, be used to train Boltzmann

machines, i.e., to adapt their weights in such a way that they have a

minimum of the energy function at the desired location, for each input

pattern. In this context, the following comments may be appropriate:

- Backpropagation, if used for the initial training of a Boltzmann

machine, may be faster than the standard Boltzmann machine training,

due to its deterministic character.

- Initial training by backpropagation may need to be refined by

standard Boltzmann machine training, mainly because the energy

function of the graded perceptron network is not exactly equal to the

one of the Boltzmann machine (though it may be as close as desired).

- Backpropagation does not guarantee the existence of a global

minimum at the desired location, since it treats all minima equally.

However, it tends to move all local minima toward that location, and

thus it probably will end up yielding an energy function with a global

minimum at the desired site, and with fewer local minima. If so, the

resulting Boltzmann machine can use a faster cooling schedule, and will

therefore run faster.

7. CONCLUSIONS

The backpropagation learning rule extends to nonfeedforward

perceptrons in a very natural way, as was first shown in [4]. The error

208

propagation network can be viewed as the transpose of the linearized

perceptron network, and is always stable when training is performed.

The stability of the feedback perceptron network can be guaranteed by

means of a condition on the weights, which does not seem to

significantly restrict its capabilities. On the other hand, if this

condition is not imposed, unstable situations seem to arise only very

infrequently.

Close relationships exist between feedback perceptrons, Hopfield

networks and Boltzmann machines. Backpropagation can presumably be

used for the training of graded Hopfield networks (with hidden units if

desired), and may also exhibit some advantages if used for the training

of Boltzmann machines.

REFERENCES

1. D. Rumelhart, J. McClelland and the PDP Research Group, eds.,

"Parallel Distributed Processing: Explorations in the Microstructure

of Cognition", Cambridge, MA: MIT Press 1986.

2. T. Sejnowski and C. Rosenberg, NETtalk: A Parallel Network that

Learns to Read Aloud", technical report JHU/EECS-86-01, The Johns

Hopkins University, 1986.

3. M. Minsky and S. Papert, "Perceptrons", Cambridge, MA: MIT Press,

1969.

4. L. Almeida, "A Learning Rule for Asynchronous Perceptrons with

Feedback in a Combinatorial Environment", Proceedings of the 1987

IEEE First Annual International Conference on Neural Networks, S.

Diego, CA, June 1987.

5. A. Oppenheim and B. Schafer, "Digital Signal Processing", Englewood

Cliffs, NJ: Prentice-Hall, 1975.

6. J. Willems, "Stability Theory of Dynamical Systems, London: Thomas

Nelson and Sons Ltd., 1970.

7. J. Hopfield, "Neurons with Graded Response Have Collective

Computational Properties Like Those of Two-State Neurons", Proc.

Nat. Acad. Sci. USA, vol. 81, pp. 3088-3092, May 1984.

8. J. Hopfield, "Neural Networks and Physical Systems with Emergent

Collective Computational Abilities, Proc. Nat. Acad. Sci. USA, vol. 79,

pp. 141-152, 1985.

