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This paper has two parts. In the fIrst one. an intuitively simple proof of the extension of 

backpropagation to recurrent networks is given. In the second part. preliminary results on the 

application of recurrent backpropagation to the training of Hopfield networks are presented. 

1 - Introduction 

Backpropagation is a well known learning technique for multilayer perceptrons. As originally 

introduced. it was applicable only to feedforward networks. i.e. networks with no recurrent 

connections [1]. The extension of this rule to recurrent networks was fIrst developed by this 

author [2]. Pineda [3] independently derived the same result. In this paper. a new form of the 

derivation is frrst presented. which is easier to grasp from an intuitive viewpoint. Then. some 

preliminary results on the training of HopfIeld networks through recurrent backpropagation are 

described. These results suggest that backpropagation is a viable alternative for the training of 

such networks. possibly yielding some advantages. like the use of hidden units. and the 

training of analog-valued stable patterns. The paper is organized as follows: Section 2 presents 

the new derivation of recurrent backpropagation. and section 3 gives the results on training of 

Hopfield networks. Section 4 concludes. 

2 - Recurrent back;propagation 

Backpropagation is a gradient optimization technique for minimizing the total quadratic error of 

the outputs of multilayer perceptrons. As originally developed for feedforward networks [1]. it 

involves a backward propagation of errors which can be viewed as a propagation through an 

error propagation network. As shown in [2]. this network can be obtained from the multilayer 

perceptron by the application of two successive operations: linearization and transposition [4]. 

In [2]. it was mathematically shown that this rule generalizes to recurrent perceptrons. i.e. that 

gradient optimization can be performed in the same way in these networks. the error 

propagation network being still obtained through linearization and tran~position of the 

perceptron. Next. we shall give a more intuitive version of this proof. 
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As a step towards the derivation of the gradient learning procedure, we shall fIrst fInd a way to 

compute the partial derivative of an output relative to a weight. Consider a general nonlinear 

network P with an output 0 and a linear branch of gain a, as depicted in fIgure I-a. The external 

inputs of the network are to be kept fIxed during the partial differentiation, and therefore they 

can be considered to be contained within the network itself, without loss of generality. This is 

why they are not shown in the fIgure. The network is assumed to be at a fIxed point. 
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Figure I - Computation of the partial derivative of the output of a nonlinear network, relative to 
a branch weight. See text for explanation. 
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To compute the partial derivative, we shall give an infInitesimal increment to the branch gain. 

This is equivalent to adding an extra branch with gain da (fIgure I-b). Since the network can 

have feedback connections, there will be increments in all node variables, including the node at 

the input to the branch under consideration. The net output of the new branch will be 

(y+dy).da, or simply y.da, if we discard the higher order term. The same result can be 

obtained by using and external input with value y, through a branch with gain da (fIgure I-c). If 

we now linearize around the original fIxed point, considering only increments, we will obtain 

the network of fIgure I-d, which we have designated by PL. 

Network PL is linear, and therefore if we divide its net input by da, the output will be divided 

by the same amount. Dividing the net input by da can be accomplished by changing the gain of 

the input branch to unity, as shown in fIgure I-e. The output will now be dolo a, which we 

shall designate by 0, for compactness. 

The network of fIgure 1-e is linear, and has a single input and a single output. Therefore, the 

transposition theorem [4] can be applied to it, yielding the transposed network (PLT) which, 

when its input is y, still produces the output 0 (figure I-f). If we call t the gain of this network 

from input to output, we can write 

o =yt 

We shall now use this expression of the partial derivative to obtain the gradient learning rule. 

Consider a perceptron (figure 2-a) with a fIxed input pattern. We can write for each output op 

(fIgure 2-b) 

ao 
o = ~ = y. t· 

P iJaij I Pi 
(1) 

If the perceptron has several outputs, and 0 is the set of indexes of the units that produce 

external outputs, the squared error for the given input pattern is 

where 

2 
E= I. e , p 

pEa 

ep = dp-Op 

is the error of output p, op and dp being the output and the desired value, respectively, for the 

given input pattern. Now, 

E - # = 
- 0 aij 

-2 I. e op 
PEO p 



But, using eq. (1) 

or 

E = - 2 Yj L e tpj 
pEa P 

a 

c 
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Figure 2 - Computation of the partial derivative in the case of a recurrent perceptron. See text 
for explanation. 

Refering to figure 2-c, and taking into account that network PL T is linear, we can finally 

conclude that: 

. 
E = - 2 Yj sj 

where sj is the value obtained at the corresponding node when the output errors are all 

simultaneously applied to the respective inputs of the transposed network, as shown in that 

figure. This is a direct extension of the backpropagation rule of feedforward networks: the 
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derivatives are still obtained by applying the output errors to an error propagation network, 

which is obtained by linearizing and transposing the original perceptron. 

3 - Training of Hopfield networks 

Hopfield networks [5,6] have been the centre of much interest from researchers. Training 

methods include Hopfield's original storage prescription [5], pseudo-inverse methods [7] and 

extensions of the perceptron learning procedure [8]. In this section, we present preliminary 

results on an investigation of the possibility of training Hopfield networks through recurrent 

backpropagation. 

A fully connected perceptron with no inputs, and with symmetrical weights, i.e., in which 

aij=aji for all iJ is equivalent to a graded Hopfield network [6] if the same dynamical behavior 

is assumed for the units as was done by Hopfield. The dynamical evolution of such a network 

can be characterized by an energy function. The network evolves in such a way that the energy 

function always decreases. The points where the network stabilizes are points of stationarity 

(usually local minima) of this function. In Hopfield networks, the locations of these fixed 

points are of special interest, since they are used to store patterns. As we have seen, 

backpropagation can be used to train a network with feedback, moving its fixed points towards 

desired positions. Therefore, we can conjecture that backpropagation can be used to store a 

desired set of patterns in a Hopfield network. In the next sections, results obtained with this 

kind of training, are described. Before presenting these results, however, a point about network 

initialization should be discussed. The backpropagation procedure can only train fixed points, it 

cannot train the dynamical behavior of the network. Consider two patterns to be stored, and 

assume that with its initial weights, the network would evolve from both patterns to the same 

fixed point. Backpropagation training cannot be expected to split this fixed point into the two 

that we would desire the network to have. Therefore, steps should be taken to ensure that, 

initially, each input pattern evolves to a different fixed point 

2.1- Trainin g of fixed points 

A 10-unit network was used for this test. The network was fully connected, including 

connections from each unit to itself (this is slightly different from Hopfield's original topology, 

but is similar to what has been used by other authors [7]). The patterns to be trained were 

randomly generated vectors of 10 components each. Each vector component could take the 

values - 0.8 and + 0.8, with equal probability. The sigmoids used in the network's units had an 

output ranging from -1 to + 1. 
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Training was performed as follows. As an initialization procedure, the network was first trained 

with recurrent connections opened, i.e., in a feedforward configuration (see figure 3 for an 

example). In this mode, it was trained to perform an identity mapping on the training patterns. 

This training was performed for a number of iterations sufficient to ensure that each training 

pattern would evolve to a different fixed point, when recurrent connections were closed. 

Figure 3 - lllustration of the weight initialization procedure in a 2-unit network. 

Mter this initialization, recurrent connections were closed. Each pattern p to be trained was 

clamped on the network, which was then released, evolving to some fixed point C. This fixed 

point was trained towards the originally clamped pattern, i.e. the output error vector was 

computed as e = p - C, and this error vector was input to the error propagation network in the 

usual way, for gradient computation. Weight updates were performed after each sweep through 

the whole set of training patterns. 

Table I shows the results obtained for various training set sizes. The statistics were collected 

after training, by systematically testing the 1024 possible input patterns. Each one was clamped 

onto the net, which was then released, evolving to some fixed point. The pattern was 

considered to be stable (and therefore stored) if the signs of the unit outputs at the fixed point 

were the same as those of the corresponding components of the initially clamped pattern. 

Spurious stored patterns were those stable ones that did not belong to the training set. The table 

shows a performance close to what could be expected [9]: the number of spurious patterns is 

very low initially, and increases steeply when the training set size is of the order of the network 

size (note, however, that we exert no direct control over spurious states, and that some form of 

unlearning [10] might reduce their number, improving the network's performance). 
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trained spurious trained spurious 

6 0 15 53 

8 1 20 145 

9 9 30 324 

10 14 40 745 

12 18 50 917 

Table I - Results of training of random patterns; trained - training set size; spurious - number 
of spurious stable patterns. 

3.2 - Training of regions of attraction 

For a better control of the network's performance, one may want to train not only the fixed 

points, but also each fixed point's region of attraction (in [8], another procedure for training 

basins of attraction is given). For this purpose, we used the following procedure: We randomly 

selected a pattern p. Assume that this pattern was desired to belong to the region of attraction of 

some stable pattern q. After clamping p and releasing the network, the resulting fixed point f 

was trained to move towards the state q. Then, a new pattern p was randomly selected, and the 

procedure repeated. Weight update was performed after each pattern presentation. As network 

initialization we used a very simple deterministic method: we initialized each "self' weight au to 

a relatively large value (typically 3), and each aij (with i ¢ j) to zero. In this way, each unit 

would initially be bistable, and independent of other units, i.e., all possible binary patterns 

would be stable (note that this initialization could not be used in the case of section 3.1, since 

there we were training starting only from the desired fixed points, and therefore training would 

never modify the network's behavior if these patterns were already stable). 

Small 2- and 3-unit networks were used in these tests. Figures 4 and 5 depict some of the 

behaviors that we were able to train, showing that a good control over the regions of attraction 

can be obtained by this procedure, at least for these small networks. 

i f 

Figure 4 - Basins of attraction trained on a 2-unit network. 
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Figure 6 shows an interesting case. This behavior, which was trained on a network of four 

units (three visible and one hidden), corresponds to the exclusive-or case. It cannot be obtained 

without hidden units, and therefore it cannot be obtained with any of the other available training 

methods. The network was operated in the following way. Each pattern was kept clamped onto 

the visible units long enough for the hidden unit to stabilize. After that, the visible units were 

unclamped, and the network was allowed to relax to some fIxed point. Weight initialization was 

performed as outlined above, for the visible units. Weights between visible units and the hidden 

unit were randomly initialized, and that unit's feedback weight was initially set to zero. The 

remainder of the training procedure was as described above in this section. 
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Figure 5 - Basins of attraction trained on a 3-unit network 

Figure 6 - Exclusive-or behavior trained on a net with 4 units (3 visible and 1 hidden) 

3.3 - DiscussiOn 

These preliminary results suggest that recurrent backpropagation is a viable technique for 

training graded Hopfield networks. We have shown that it is possible to train both stable 

patterns and regions of attraction, and we have given an example of the training of a network 

with one hidden unit. However, these results also suggest that a better control over the 

intialization and learning is needed. As an example, a behavior which was hard to train, 

requiring very precise adjustment of the training of parameteres, and whose success depended 

on the random ordering of patterns during training, is shown in fIgure 7 -a. Most often, after 

some training time, the fIxed points corresponding to both right-hand patterns would merge, 
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and then the single resulting ftxed point would be trained to the left 50% of the time, and to the 

riglit another 50%, fmally stopping midway, as shown in ftgure 7-b. 

v I I 
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I 

I 

l.--e 

a b 

Figure 7 - Example of a problem in the training of basins of attraction; a - desired behavior; 
b - behavior that was most frequently obtained. 

An interesting application of backpropagation would be to train a graded Hopfteld network to 

have given analog-valued stable patterns. An example of two patterns that were successfully 

stored in a to-unit network, using the procedures described in section 3.2, is given in ftgure 8. 

However, there is still very little experience on this kind of application. 

unit 
1 0 

unit 

Figure 8 - Two analog patterns that were trained on a lO-unit network. Horizontal axis - unit 
number. Vertical axis - unit output. The unit outputs have been joined by straight lines for better 

visibility. Thin black lines - trained pattern. Thick gray lines - recalled pattern. 
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4 - Conclusions 

We have given an intuitively simple proof of the extension of the backpropagation learning rule 

to recurrent networks. We have also presented results on the application of this rule to graded 

Hopfield networks, both for the training of stable patterns and of regions of attraction. These 

results lead us to think that recurrent backpropagation is an alternative method for the training of 

these networks. Two of the potentially interesting applications of this form of learning, would 

be the training of Hopfield networks with hidden units, and the storage of analog-valued 

patterns. Though one example has been presented of each of these cases, further work is 

needed to assess their general feasibility. 
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