
Neural Networks, Vol. 1, pp. 339-356, 1988

Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/88 $3.00 + .00

Generalization of Backpropagation with Application
to a Recurrent Gas Market Model

PAUL J. WERBOS

U.S. Department of Energy

(Received August 1987; revised and accepted May 1988)

Abstract—Backpropagation is often viewed as a method for adapting artificial neural networks to classify patterns.

Based on parts of the book by Rumelhart and colleagues, many authors equate backpropagation with the generalized

delta rule applied to fully-connected feedforward networks. This paper will summarize a more general formulation

of backpropagation, developed in 1974, which does more justice to the roots of the method in numerical analysis

and statistics, and also does more justice to creative approaches expressed by neural modelers in the past year or

two. It will discuss applications of backpropagation to forecasting over time (where errors have been halved by using

methods other than least squares), to optimization, to sensitivity analysis, and to brain research.

This paper will go on to derive a generalization of backpropagation to recurrent systems (which input their own

output), such as hybrids of perceptron-style networks and Grossberg/Hopfield networks. Unlike the proposal of

Rumelhart, Hinton, and Williams, this generalization does not require the storage of intermediate iterations to deal

with continuous recurrence. This generalization was applied in 1981 to a model of natural gas markets, where it

located sources of forecast uncertainty related to the use of least squares to estimate the model parameters in the
first place.

Keywords—-Backpropagation, Recurrent, Continuous time, Reinforcement learning, Energy models, Prediction,
Modelling, Cerebral cortex.

1. INTRODUCTION

Backpropagation, as formulated by Rumelhart, Hinton,

and Williams (1986) with acknowledgement of the

prior work by David Parker (1985), may well be the

most widely-used method to adapt artificial neural net-

works, for use in pattern classification. Nevertheless,

the limitations of that formulation have been severely

criticized by neuropsychologists and by classical com-

puter scientists. The neuropsychologists have argued

that simple feedforward networks cannot do justice to

the structure and power of the brain. Neuropsycholo-

gists and computer scientists have argued that complex,

interesting problems tend to require iterative proce-

dures (or networks) for their solution. Many other crit-

icisms have been raised, which merit serious attention.

Section 2 of this paper will review a different for-

mulation of backpropagation, developed in the period

The views expressed in this paper are those of the author, and do

not necessarily reflect those of any component of the Federal govern-

ment.

Requests for reprints should be sent to Paul J. Werbos, Neuroen-

gineering Program, Room 1134, NSF, 1800 G Street N.W., Wash-
ington, DC 20550.

339

between 1968 and 1974, which can overcome many of

these difficulties. This formulation deals with the gen-

eral case of nonlinear systems of equations. It lacks the

concrete, specialized appeal of Rumelhart’s discussion,

but it can apply to neural networks, econometric mod-

els, and other systems as special cases. Applications to

prediction, optimization and sensitivity analysis become

possible; as an example, this paper will discuss an ap-

plication to the sensitivity analysis of a natural gas

market model developed by the Department of Energy.

Werbos (19874) discussed at length a research strategy

for brain research and factory automation based upon

this formulation.

Section 3 of this paper will show how derivatives

may also be propagated through recurrent networks

(such as those discussed by Grossberg, 1976 and Hop-

field and Tank, 1986) without the expensive storage of

information for each iteration (as required by the ap-

proach of Rumelhart et al., 1986). Our approach will

require storage, however, to handle true external time

lags; the significance of this will be discussed, along

with ways to implement this storage and issues related

to real-time adaptation. When external time lags are

totally absent, our method is closely related to the

340

method of Almeida (1987), though slightly more gen-

eral.

Finally, Section 4 will display a practical application

of the methods given in Section 3—an analysis of the

properties of a natural gas market model, actually used

by the Department of Energy several years ago. The

conclusions of this analysis were double-checked by ex-

plicit numerical perturbations of the model. This anal-

ysis provided an insight into the limitations of the

model, which are related to certain limitations of mul-

tiple regression, the method used to estimate (adapt)

the model in the first place. Multiple regression is closely

related to the generalized delta rule for network ad-

aptation; however, alternative estimation (adaptation)

rules exist which have overcome these limitations in

simulation studies and in several practical examples

(Werbos, 1974, 1983a, 1988a; Werbos & Titus, 1978).

Those alternative rules are consistent with the general

framework proposed here.

2. GENERAL FRAMEWORK: BACKGROUND,

TERMINOLOGY, AND APPLICATIONS

Rumelhart, Hinton, and Williams (RHW)

Debates about backpropagation have been confused,

in part, by different definitions of the word. The index

to Rumelhart et al. (1986) defines the word backprop-

agation by pointing to three pages of text which discuss

the generalized delta rule. The generalized delta rule,

in turn, is defined as a set of three steps to be applied

to feedforward networks. (RHW also discuss recurrent

networks, but that extension will not be discussed until

Section 3, in order to simplify things here.) RHW spec-

ify feedforward networks as:

Opj = Ji{netp;) ()

Net,) = DL WiKOpe = Dy Wx fe(Metpx), (2)
k k

where 0, is the output of unit number / for pattern

(observation) number p, where f; is some differentiable

function, where w;; is a weight to be adapted, and where

the processing units are assumed to be ordered ina

feedforward fashion. In a feedforward network, the

summation over k in Equation (2) can run from | to

j — 1, in principle. Some readers have interpreted this

to mean that the network must be fully connected;

however, even in the RHW formulation, most of the

w;. could be fixed to zero, in a practical application,

so that the physical connections and the required cal-

culations can both be sparse.

The first of the three steps in the generalized delta

rule (p. 327) is a calculation for the final outputs of

the network:

8pj = (tpi — Opi) f j(mety;), (3)

where f,; is the teaching or target value for the output

of unit number j and ‘is just the derivative of f;. This

P. J. Werbos

step is explained (p. 323) by noting that 6,; is just the

derivative of error, E,, with respect to net,;, defined as:

N
i
l

Ey = (lpi 7 fy(met,;))? (4)

i

The second step (p. 327) is a calculation for all other

units j which output to units k:

5pj = f(Metp) D Spx Wei
k

= 2 Spx f j(Metp;) We; (5)

This step is explained (p. 326) as a way of calculating

the derivatives of E,, with respect to all of the net,;, in

a single pass of calculations, based on an informal ap-

peal to the chain rule for differentiation. The third step

(p. 330) is a procedure to adapt the weights of the

network:

Aw y(n t+ 1) = a(6,;0p1) + nAw;i(n) (6}

Note that 6,;0,; is simply the derivative of E, with re-

spect to Wii.

A More General View of Backpropagation

Researchers in this field sometimes use the term

backpropagation to refer to the second step above, or

to all three steps, with or without variations. Again,

Rumelhart et al. (1986, Index) appear to refer to all

three steps. We would propose that the term backprop-

agation should include any three-step or three-com-

ponent procedure for adapting a network, in which the

three steps are:

e An output evaluation component (OEC), which

evaluates how successful the ultimate outputs of the

network are in minimizing or maximizing something.

In other words, the OEC defines what the network

is supposed to minimize or maximize. More pre-

cisely, the OEC provides the derivatives of some eval-

uation function (such as error) with respect to the

ultimate outputs of the network. Equation (3)—the

OEC of the generalized delta rule—calculates the de-

rivatives of square error, the error function which is

minimized in nonlinear regression; thus, from a stat-

istician’s point of view, the generalized delta rule is

basically one more numerical way to implement

nonlinear regression, a well-known, well-studied sta-

tistical method. (See Brode, Werbos, & Dunn, 1975;

Dennis & Schnabel, 1983; SAS Institute, 1986, Wer-

bos, 1988a.)

e Dynamic feedback, a method for calculating the de-

rivatives of error or loss with respect to the inter-

mediate outputs and weights within the network.

(Werbos, 1974, 1982.) Strictly speaking, this is the

only component which actually propagates infor-

mation backwards along a network. This paper will

use the term “dynamic feedback” to refer to this

Backpropagation with a Recurrent Gas Market Model

component, in part because this term was used in

the original papers on this concept, and in part be-

cause the term backpropagation usually refers to the

combination of all three components.

e A convergence method or solution algorithm, a

method for responding to the derivatives (and/or

other local information) by adapting the parameters.

This may involve a simple proportionate response

(steepest descent), or conjugate gradient methods

(which include (6) as a special case, but which pro-

vide procedures for adjusting the sensitivity constants

a and), or more complex methods like those which

have worked in complex practical applications (Wer-

bos, 1983a). Surprisingly, some of the classical

methods from statistics and numerical analysis

(Dennis & Schnabel, 1983) can be applied with O(7)

storage in exact or near-exact form (Werbos, 1988b).

Origin of the General View

Background. The intuitive notion of backpropagation—

of adaptation and optimization based on a flow of feed-

back backwards through a neural system, specifically

related to the issue of brain functioning and artificial

intelligence—was published in Werbos (1968), albeit

in a clumsy linear version. A nonlinear version, essen-

tially equivalent to the generalized delta rule, was pro-

posed in various documents circulated in 1971 and

1972. At that time, applications to artificial neural net-

works were not considered interesting or acceptable to

much of the scientific community. Therefore, the

method was generalized to permit applications to more

conventional forecasting applications (Werbos, 1974).

Werbos (1974) also cited related work in control

theory, which also used backwards flows of information

to identify systems, albeit in a different way. The for-

mulation to be given below could have been derived as

an extension of control theory, but I found it easier

simply to prove (9) directly. Likewise, I found it much

easier to apply (9) directly to neural-like problems than

to extend and generalize the more complex and indirect

methods of control theory. This is especially true with

stochastic optimization, where the notation can oth-

erwise get quite complex. Nevertheless, a reviewer has

suggested that Athans and Kalb (1966) came surpris-

ingly close to the kind of approach presented here; the

details are beyond the scope of this paper, in part be-

cause I have never seen the book. For an easy tutorial

on my 1974 formulation of backpropagation and var-

ious alternatives, see Werbos (1988a).

The generalized formulation of 1974 began by ob-

serving that the “training signal” (f,; in Equation 3) is

really just a vector t, which the network tries to repro-

duce or predict. Any set of functional relations can be

represented as a network. Likewise, the problem of

“adapting weights” in a neural network is just a special

case of the problem of estimating the parameters of a

34]

general functional model. The use of square error and

steepest descent in estimating a model had been estab-

lished decades before; therefore, the novel feature of

backpropagation in this formulation was the use of dy-

namic feedback in combination with those two com-

ponents.

(First order) dynamic feedback was defined as a

method for calculating the derivatives of some function,

L, of the inputs and outputs of a feedforward system,

in a single pass through the system.

Feedforward Systems. A feedforward system is defined

as follows, in the most general formulation. First, there

are m input variables, x, through x,,, which include

all of the parameters or weights of the system, as well

as those variables which are normally thought of as

inputs to the system. (By including the weights as vari-

ables, one simplifies some of the later calculations.)

These variables form an m-component vector, X. Then

let x; through xy denote ail of the variables of the sys-

tem; these variables form an N-component vector x,

of which X is essentially a subset. Let fj, forj= m+ 1,

..., N, be the differentiable functions which corre-

spond to the functions implemented by the network

components. This means that for j= m+1,...,.N:

». Xj-1): (7)
Finally, we denote the function which we wish to min-

imize (or simply to differentiate) as:

xXp= SX, --

L=L(x,,..., Xn). (8)

Note that this paper will frequently use small letters

(like x) to refer to internal inputs or functions within

a system, and capital letters (like X) to refer to the

inputs or outputs of the system as a whole; this dis-

tinction is important, because both levels of analysis

will be discussed.

The network formulation in (7) and (8) is more

general than it might appear at first. As with (1) and

(2), for example, the functions f; may form a sparse

network, in practice, which simplifies the calculations.

To make this apparent, and to make the applications

to parallel computers more explicit, I have sometimes

spelled out (7) explicitly for the special case of a mul-

tilayer network (Werbos, 1987a, Appendix); however,

this paper will try to be more general and to avoid the

additional notation required to make that example ex-

plicit.

Notice that (7) and (8) make no reference to time

t or to pattern number p. As a result, there is a choice

between two (or more) different ways of using these

equations in practice to represent a network. When

there is no connection at all between variables at dif-

ferent times or for different patterns (as in Equations

1, 2, and 4), it is possible to identify the variables of

the system at any time with the variables x; of Equations

(7) and (8). For example, the RHW system can be

342

represented in our framework by identifying our series

X1°**Xy with the following RHW variables, in order:

wx and other inputs, net,,, net 2, °° Netp,,

where n is the number of neurons and by identifying

our L with their E,. (Note that the variables 0,; for

neurons within the system are not necessary; Equations

(2) and (4) can represent the system without referring

to them.) We can then go on to calculate the derivatives

of L with respect to the weights for each pattern indi-

vidually, as RHW do, and then add up these derivatives

across different patterns. The details of this equivalence

are discussed in Werbos (1988a, 1988b). In brief, the

RHW feedforward networks are a special case of equa-

tions 7 and 8.

When studying dynamic systems, this kind of simple

formulation is not possible. For example, if net,, uses

net,-;,2 as one of its inputs, where ‘“t” refers to time

and “‘t — 1” is the previous observation or pattern, then

a more complex use of (7) is needed. Each variable x;

in Equation (7) would then refer to a specific neuron

ata specific time; the activation level of the same neuron

at a different time would have to be treated as a different

variable, for purposes of (7). In this case, (7) would

say that each neuron is allowed to input the outputs of

earlier neurons from the same time, as well as the out-

puts of all neurons from earlier times. Sections 3 and

4 will give more examples of this sort. In some appli-

cations at the Department of Energy, we have even

worked with systems where two time-dimensions were

necessary (Werbos, 1988a); even there, there was no

difficulty in using dynamic feedback, because there was

a definite sequence of calculation, which determined

which variables at which points would be calculated in

which order.

The Chain Rule. First-order dynamic feedback is de-

fined as the use of the chain rule for ordered derivatives,

in order to calculate the derivatives of L with respect

to the system inputs. The chain rule for ordered deriv-

atives (proven in Werbos, 1974) may be written:

+ N +

OX, OXK cgay OX; OXK’

where the plus signs indicate ordered derivatives, and

the derivatives without plus signs refer to conventional

partial derivatives of the functions L and /;. The con-
ventional partial derivatives are calculated by differ-

entiating the functions L and f; as they would normally

be written, as functions of their direct arguments as

listed in (7) and (8) without any substitutions. Since

the functions /; usually depend on only a small portion

of the earlier variables, x;, in practice, the partial de-

rivative on the far right is usually zero for most com-

binations of j and k; therefore, the summation on the

right is usually very sparse and simple. In formal terms,

the ordered derivative of ZL with respect to x; refers to

P. J. Werbos

the derivative of L expressed as a function of x; + + + xx,

where the dependency of ZL on Xz41;* + *xXy has been

eliminated by substituting in from the equations (7)

which equate their values to the functions f,41+ °° fy.

In intuitive terms, the conventional partial derivative

refers to the direct causal impact of x, on L, while the

ordered derivative refers to the tota/ causal impact, in-

cluding direct and indirect effects, both.

Equation (9) is usually simple to apply as a recursive

relation, in practice. One begins by calculating the or-

dered derivative with respect to x, for which the sum-

mation on the right is null. One then proceeds back-

wards to Xy-,, Xv--2, on down to x;. For example, to

apply (9) to the RHW system (Equations 1, 2, and 4),

one would normally begin by allocating an array to

hold the ordered derivatives; ‘““delta(k)” could be used

to hold the ordered derivative of L with respect to x;,.

Then, for each variable x, in the system, one would

identify which other variables (x;) that variable may
have a direct impact on; one would differentiate the

functions f; with respect to x;,, and substitute the result

into (9), which then becomes a concrete recursion

equation for the special case at hand.

In the RHW system, for example, (5) is the special

case of (9), where “delta” is used to hold the ordered

derivatives, and where x; is one of the internal variables

net, ;; this is particularly obvious when we compare the
rightmost side of (5) with the conventional derivatives

of the rightmost side of (2). (Note that our f; here

includes the whole right side, and not just RHW’s

function “ f;’.)

Note that (9) also eliminates the artificial distinction

between neurons whose output goes outside the system

and neurons whose output is used internally. As with

(7), there is no reason to limit oneself to fully con-

nected, rigidly structured networks; if (7) has a sparse

structure, which allows for efficient implementation on

a parallel computer or circuit, then (9) will automat-

ically have this property as well, at least if it can add

efficiently.

Ordered derivatives are important in many other

applications besides neural nets. As a result, a host of

informal names have been developed for this concept,

as used in different applications. For example, econo-

mists speak of impact multipliers, control theorists

speak of variational derivatives, and many people speak

of time-dependent Lagrange multipliers. The use of

mathematically oriented language may help reduce the

kind of fragmentation which encourages workers in dif-

ferent applications to continually reinvent the wheel.

Early Applications and Development. The first actual

application of backpropagation was in estimating time-

series models used to predict nationalism and social

communications, developed by Prof. Karl Deutsch.

Ironically, backpropagation was not used to implement

ordinary least squares (regression), which had already

Backpropagation with a Recurrent Gas Market Model

been tested in this application by use of conventional

software. Instead, it was used to implement more ad-

vanced statistical methods, which would have been too

costly to use without backpropagation. The results were

documented in Werbos (1974), embedded (and doc-

umented) in user-oriented software in an MIT version

of the Time-Series Processor (Brode et al., 1975), and

discussed in Werbos (1977), which emphasized the po-

tential value of the same general mathematics for fore-

casting and for brain modeling. A general survey of

applications—to neural modeling, optimization, sen-

sitivity analysis, and estimation—was presented to the

International Federation for Information Processing

(IFIP) in 1981 (Werbos, 1982), along with diagrams

illustrating both Equation 9 and several generalizations

to calculate second-order derivatives economically.

These generalizations were quite different from David

Parker’s second-order backpropagation, which is es-

sentially a new alternative to steepest descent as a con-

vergence method (Parker, 1987). The primary ideas

here were widely transmitted, both in writing and oth-

erwise.

Applications of Backpropagation in the General

View: Prediction

In the delta rule, the target vector t, is a vector to
be reproduced or predicted by the network. The dis-

tinction between reproduction and prediction is essen-

tially meaningless here, since in both cases we try to

match the target vector over previous observations and

we hope that the match will still be valid in future ob-

servations. Most of the current research on backpropa-

gation—like our own empirical work-—has focused on

this problem of reproduction or prediction.

Using the notation of statistics, the delta rule is trying

to address the well-known problem of estimating b so

as to improve the predictions:

¥(t) = F(X(z), b), (10)

in the special case where F happens to be represented

as a network of elementary units, where the parameters

b happen to be interpreted as a collection of weights,

and where the observations (t) may be interpreted as

patterns presented to the system. Here, X (¢) is the vec-

tor of inputs for observation or time number ¢, and

y(t) is a prediction of the target vector y(t). As discussed

after (7), we use a capital letter (e.g., F) to refer to the

vector function which describes the system as a whole;

this is different from the /;, the functions which rep-
resent individual components of the system. In a feed-

forward system, the components of y(t), 9, (¢) through

J,(t), would correspond to the last m components of

the vector x as given in (7).

The use of backpropagation in some form is basically

necessary to solve this problem. One cannot find the

value of b which best fits the historical or training data

343

unless one has some definition of the word “best,” some

measure of the quality of fit; thus an error measure or

loss function (such as Equation 4 or the many alter-

natives used by statisticians) is more or less unavoid-

able. Admittedly, this measure might not be an explicit

part of the adaptation procedure. More importantly,

however, one cannot expect to minimize such a measure

efficiently without exploiting the derivatives of that

measure with respect to the parameters. Long experi-

ence in numerical analysis has shown the central, un-

avoidable importance of knowing the derivatives when

minimizing or maximizing a complex function of many

variables (Dennis & Schnabel, 1983). This makes it

essential to use dynamic feedback—to calculate the

derivatives at an acceptable cost—to adapt any complex

network F, in the general case; that in turn leads to the

backpropagation strategy.

To improve the power of backpropagation in coping

with the prediction problem, one needs to look more

closely at each of its three components, and at the for-

mulation of the prediction problem itself. The output

evaluation component (like Equation 3) or error func-

tion (Equation 4) define what a statistician would call

the estimation method. The other two components are

simply a numerical procedure for implementing or ap-

proximating the estimation method.

Unfortunately, (10) does not do full justice to the

kinds of prediction problems which occur in many ap-

plications. For example, in econometric forecasting

(Werbos, in press), the variables to be predicted are

often predicted as functions of their own values at a

previous times. In other words, the problem is to es-

timate b in:

X(t + 1) = F(X(0), u(d), bd), (1)

where X is a vector of observed variables to be pre-

dicted, where b is a vector of weights or parameters,

and where u is a vector of auxiliary input variables.

This kind of prediction over time is also essential when

performing optimization over time (to be discussed in

the next section). Even Grossberg’s explanations of

learning require the existence of circuits which some-

how learn to produce expectations or predictions of the

near-term future (Grossberg, Levine, & Schmajuk,

1987).

Superficially, (10) and (11) may appear to be special

cases of each other. For example, we can use a super-

vised learning system, based on Equation 10, to predict

X(t + 1), simply by defining y(t) as X(t + 1) and

defining the system input vector as X (¢) combined with

u(t). Unfortunately, this approach does not lead to the

best possible forecasts over time, especially if one is

concerned with predictions over more than one period

into the future. When ordinary regression (least

squares) is used to estimate a model which predicts

variables at time ¢ + 1 as a function of time ¢, then the

forecasts for several months out will tend to deteriorate,

344

due to cumulative error effects. (There are tricks to

avoid this, in some kinds of econometric models, which

would not work for neural networks.) Cumulative errors

of this sort would be impossible or unavoidable if reality

fit a simple model, perfectly, and if all errors were due

to random white noise; however, this is not generally

the case (Werbos, 1983a, in press). Section 4 will dis-

cuss an example of this problem, in detail, as it arises

in a real-world forecasting model based on least squares.

More to the point, better forecasts have been obtained,

in many empirical examples and in simulation studies,

by using estimation methods which explicitly represent

the notion of forecasting over time (Werbos, 1974,

1983a, in press; Werbos & Titus, 1978). The best results

have been obtained with methods which explicitly try

to minimize error in multiperiod forecasting.

These methods can be translated into recipes for

building neural networks by adopting the 3-net archi-

tecture shown in Figure |. In mathematical terms, Fig-

ure | represents a 3-equation model used to predict

X(t):

R(t + 1) = FI(R(z), b1) (12a)

R(¢t+ 1) = F2R(2+ 1), X¥(2+ 1),b2) (12)

X(e+ 1) = F3(R(t + 1), b3), (12c)

where ali three functions are implemented as feedfor-

ward networks and where some additional arguments

would be allowable (Werbos, 1987b). The vector func-

tions F1 and F3 both represent networks to predict

something, while F2 calculates what F1 tries to predict;

nevertheless, one can adapt all of the weights together—

bl, b2, and b3—by trying to minimize the sum of

squared error across all components of X and all com-

ponents of R, across time. Dynamic feedback can cal-

culate the derivatives needed in this minimization. See

Werbos (1988b) for the details of how to implement

this, using RHW-like networks.

This 3-net arrangement has close connections with

statistical methods associated with Box and Jenkins and

Kalman filtering; for example, in the simplest appli-

cations of Equations (12), the R vectors would be fil-

x (t+1) R(t+1)

R

4

—O x(t) R(t)

FIGURE 1. Three-net architecture.

P. J. Werbos

tered versions of the X variables. Werbos (1987b) elab-

orates on these connections, and explains how this kind

of procedure can lead to more accurate forecasts over

time than a direct use of (10) would; furthermore, it

explains why it is usually important to minimize a

weighted sum of squared errors, and to give different

weights to different variables. For example, when the

prediction networks are used as part of a larger opti-

mization system (to be described), there will auto-

matically be information available about the derivative

of long-term utility with respect to each variable R; and

X;; if variables are weighted according to the variance

of these derivatives (plus the variance of error deriva-

tives as well), then the system will give greatest weight

to stable, persistent variables—-which should lead to

better multiperiod forecasting. Note also that the vari-

ables R;, in Equations (12a) and (12b), depend on their

own past values, in such a way that the system may

“remember” a few periods back; Equation (11) does

not provide that capability.

Many researchers have criticized the use of back-

propagation even with (10), the problem of supervised

learning. Some have recommended the use of content-

addressable memory instead. Content-addressable

memory systems may converge faster than backpropa-

gation, but this would be of little interest if they were

converging to the wrong answers (i.e., inconsistent es-

timators of the weights). Under certain conditions,

however (Werbos, 19&7b, 1987c), we have found that

their estimates may be justified, statistically, if we ac-

count for the role of prior probabilities (discussed in

Werbos, in press). When these conditions can occur,

the ideal adaptation scheme would be a synthesis of

least squares and content-addressable memory. A syn-

thesis of this sort could be used instead of simple least

squares in adapting (12a) and (12c) in the 3-net ar-

chitecture (though (12b) is a different matter).

In general, these kinds of statistical methods offer a

hope of greater robustness, statistical efficiency, and

generalizability, based not on speculation but on de-

cades of experience with a huge variety of applications.

All of these hopes involve the accuracy of the predictions

which result when the network is used to predict new

situations, not in the training set. This still leaves open

the questions of how to propagate the required deriv-

atives through a network, and of how to choose a con-

vergence method.

The choice of convergence method (like Equation

6) should not be confused with the choice of estimation

method. The convergence method basically determines

the number of iterations or cost of minimizing error

over the training set. Admittedly, there are some error

functions which place a greater stress on the conver-

gence method, because they are harder to minimize.

These are mainly “stiff” error functions, which contain

sharp hills and valleys when graphed as a function of

the parameters b. Smooth, fuzzy error functions are

Backpropagation with a Recurrent Gas Market Model

easier to minimize. Unfortunately, the error or fuzziness

in estimating parameters is directly related to the fuz-

ziness of the error function; therefore, those error mea-

sures which pinpoint the weights most accurately are

precisely those error measures which are hardest to

minimize. In summary, one should not expect superior

estimation methods (error functions) to reduce the

number of iterations required to analyze a fixed training

set with a fixed convergence method; one might even

expect the opposite. To reduce the number of iterations,

we should try instead to develop more powerful con-

vergence methods, which are capable of supporting

more sophisticated estimation methods. Fortunately,

there are many convergence procedures which have

worked on complex practical problems which steepest

descent (or its equivalents) could not handle (Dennis

& Schnabel, 1983; Werbos, 1983b, 1988b).

When there is no fixed training set (as in organic

intelligence, where experience accumulates steadily and

old events cannot be truly relived), there are additional

complexities; however, we cannot expect to understand

these complexities until we understand the simpler sit-

uation of adaptation with fixed training sets.

Applications of Backpropagation In the General

View: Optimization Over Time

There are many practical problems where a “target

vector” would not be available. For example, in ro-

botics, we may know what a robot is supposed to ac-

complish, but we may not know a priori what its sched-

ule of movements should be to accomplish its task at

minimum cost. Instead of a target vector, we may have

a notion of what we want the system to accomplish

over time, a notion which implies some kind of success

measure or utility function to be maximized over time.

If we cannot devise such a measure, then we cannot

discriminate between better performance and worse

performance, and we cannot say whether our design

was successful or not even after the fact. Also, there is

no assumption here that the system must have access

to an explicit representation of the utility measure as

a function (though such information can be exploited,

if available).

345

This problem of utility maximization over time may

also be a useful representation of adaptation problems

faced by organic systems (Werbos, 1986, 1987a). Hin-

ton (1987) has referred to this problem as the rein-

forcement learning paradigm. Unlike the paradigm of

totally unsupervised learning, it provides an explicit

basis for Unconditioned Stimuli or primary reinforce-

ment, which ensures that a system will not be essentially

indifferent to biological drives and social feedback.

Werbos (1987a) has shown how this optimization

problem can be solved (approximately) by tying to-

gether three distinct networks, each to be adapted by

backpropagation but each with a different output eval-

uation component. The basic idea is illustrated in Fig-

ure 2 (although there are further complexities required

to extend the idea to systems as complex as the human

brain).

The middle box in Figure 2 basically contains the

entire system shown in Figure 1. (Figure 2, like Figure

1, is taken from previous papers using slightly different

notation.)

The upper box—-the “strategic assessment” network

or “‘ J network”’—outputs something like an evaluation

of how well the system is doing, in making progress

towards its goals. More precisely, this network would

represent an approximation to the “7” function for the

optimization problem. The J function comes from dy-

namic programming, and is defined as follows: the

strategy of maximizing J in the short-term (1.e., picking

actions u(t) so as to maximize J(f + 1)) is equivalent

to maximizing the utility function U in the long term

(maximizing expected U(t’) over all future times f¢’).

Intuitively, the J function corresponds to the notion of

conditioned reinforcement, to the static position eval-

uators sought in game-playing artificial intelligence, to

the measures of net present value used by economists,

and to other similar ideas (Werbos, 1986).

As with the problem of prediction, there are several

different methods which could be used to adapt the J

network. One of them—heuristic dynamic program-

ming (HDP) (Werbos, 1977, 1987a)—is similar to

conventional backpropagation, with the network

adapted to make its output variable, J(R(1t)), do a

good job of predicting U(t) + J(R(t + 1)— U), where

basic, long-term Strategic strategic

goals (U) Assessment goals (J)

‘ 4

4

Analysis of . . ~
current Cause tnd Effect, simulated reality R >

information| x(t) Dynamic Modeling | A(t+1)=f (R(t), u(t), noise)

 ‘

Tactical Operations, \u(t) to maximize J(f(..ult).))

Optimization
>

FIGURE 2. Three core components of an intelligent system (J, f, u).

346

U is the utility measure and U is a constant used to

prevent drift in the range of the function. More real-

istically, U(t) may be physically represented as a

weighted sum U;x;(t), such that the final output of the

J network can be a set of components, J;, each adapted

to predict the corresponding U,x;(t) + J;(t + 1) — U;.

Another method—dual heuristic programming— is

slightly more sophisticated, but can still be imple-

mented by use of first-order backpropagation. A third

method—globalized dual heuristic programming

(GDHP)—fully exploits the cause-and-effect infor-

mation embedded in the middle box, but requires sec-

ond-order dynamic feedback for its implementation

(Werbos, 1987a, 1979, 1982, 1988b); the details are

too complex to present here. The required form of sec-

ond-order dynamic feedback, like first order dynamic

feedback, calculates all the required information at a

cost which is only proportional to the cost of one pass

through the original network.

Using the HDP method, at least, it is possible to

forego the middle box and use experience itself (without

any simulations) to adapt the / network. The resulting

J network would be quite similar to the adaptive po-

sition evaluator used in Samuels’ checker playing pro-

gram, or to the adaptive critic used by Barto, Sutton,

and Anderson (1983). The work of those authors proves

that adaptive optimization is already a practical (or

superior) alternative to conventional methods. Sutton

has also noted the need for an adaptive model to predict

the environment when dealing with more complex

problems, like those of robotics in realistic factories.

Optimization through backpropagation could also be

implemented in more conventional software for use in

policy analysis, business decision-making, and the like

(Werbos, 1986).

The network in the bottom box would simply de-

termine the actions, u(t). It would use the derivatives

of J (propagated back through the other networks) as

its output evaluation component.

3. PROPAGATING DERIVATIVES IN

RECURRENT SYSTEMS

Overview

This section will derive a procedure for calculating

the derivatives of any evaluation function Z with respect

to the weights and intermediate variables in a recurrent

network. The function L could represent prediction

error, or a J function (as defined above), or simply a

function we are interested in studying for its own sake.

It can be any differentiable function of the network

variables (as in Equation 9).

The purpose of this section is simply to generalize

the dynamic feedback procedure, for use with networks

more general than (7). This generalization could be

used with some of the complex architectures from Sec-

P. J. Werbos

tion 2, but we will deliberately avoid limiting ourselves

to those special cases (just as we did in formulating

equation 9 itself). In order to visualize this generaliza-

tion, it may be easier to think in terms of simple su-

pervised learning problems (as in Equation 10) where

the function F can be represented as a recurrent net-

work (not a feedforward network). In other words, this

generalization allows one to adapt networks just like

(1) and (2), except that all neurons are allowed to input

the results of all other neurons, without regard to which

neuron is earlier and which neuron is later. As the critics

of backpropagation have pointed out, a single layer

network of this kind can represent very complex al-

gorithms which cannot be represented in simple feed-

forward networks; for example, it could learn to rep-

resent the specific, iterative calculations which are fun-

damental to applications work in adaptive object

recognition and speech recognition.

Rumelhart et al. (1986) define recurrent networks

as networks in which a unit can take input from units

downstream from them, though with a time delay. In

describing their basic framework (Rumelhart et al.,

1986, Chap. 2), they stress that the time delay is in-

tended to be an approximation to a continuous-time

system, the kind of system which Grossberg (1976) and

Hopfield and Tank (1986) have written about. They

assume that a pattern (p) is presented to the system,

and that the experimenter can wait until the state of

the network settles down in response to that pattern.

Their general framework allows for some relation be-

tween a pattern p and earlier patterns, but they admit

that the existing work (like their Chap. 8) does not

really address that possibility.

Figure 3 illustrates the RHW approach to back-

propagation in recurrent networks. For each pattern,

the vector x is allowed to “settle down” for S cycles of

the iterative procedure used to approximate a self-con-

sistent state of the network. Backpropagation (Equation

9, in effect) is applied in its usual form by treating

variable values in later cycles as distinct variables,

downstream from earlier versions of the same variable.

(For example, x;(p, 5 + 1) is treated as a distinct vari-

able, different from and later than x;(p, 5).) To calculate

derivatives all the way back to the start (x(p, 0)), it is

necessary to work back through all the intermediate

values; that, in turn, requires that the intermediate val-

ues be stored. For further details, see Rumelhart et al.

(1986).

For our purposes, it is extremely important to allow

for the interaction between different patterns p, because

these patterns may refer to different states in the evo-

lution of the externa! environment across time. I will

use the letter ‘‘t’? (instead of “‘p’’) to refer to time in

the external environment, not in the system per se.

Some critics have argued that the brain cannot possibly

track discrete time intervals or distinct patterns the way

a computer might; however, Purpura (in F. O. Schmitt,

Backpropagation with a Recurrent Gas Market Model 347

X(p+1)

FIGURE 3. RHW approach to recurrent networks.

1970, 1971) has observed discrete clock pulses, of the
required sort, going from the nonspecific thalamus to
the giant pyramid cells of the cerebral cortex. Foote
and Morrison (1987) have observed similar pulses from
subthalamic centers.

In our framework (illustrated in Figure 4), there are
actually two kinds of recurrence to be considered:
¢ Time lags, in which the present system output is a

function of earlier signals from the previous external
time period (¢ — 1).

© Grossberg / Hopfield recurrence, in which there is an
immediate response to other units.

Our approach still requires the storage of a complete
database, including at least X(¢) and y(t — 1) for all
external time intervals (patterns) ¢. Such a database is
normally built up anyway in standard statistical analysis
programs, and we have handled this kind of recurrence
in our earliest work (Werbos, 1974). Such a database
is not built up in true real-time systems like the brain,
to be discussed at the end of this section.

For the second kind of recurrence, we will calculate
the required derivatives directly, without using knowl-

edge of intermediate approximations; this is the main
difference between the current paper and earlier forms
of backpropagation. As in conventional backpropaga-
tion through feedforward networks, the cost in time
and the cost in storage are both about the same as the
costs of running the network in the forwards direction.
‘Two versions of this method will be presented—a ver-
sion aimed at aggregate-level calculations (see Equa-
tions 30, and their application in Section 4), and a
version aimed at continuous-time neural networks
(Equations 31 and 32, and auxiliary equations).

When the second kind of recurrence is present, but
not the first, the need for storing earlier observations
disappears. In that special case, if the elementary func-
tions are all (nonhidden) model neurons, our method
reduces to something nearly equivalent to the work of
Almeida (1987). (Unfortunately, I have yet to obtain
Pineda (1987), which may also be related.)

This section will begin with a review of our earlier
approach, used when only the first kind of recurrence
was present. Then we will propose a method for dealing
with Grossberg / Hopfield recurrence. This method will

X(t- 1) ————____»

X(t-1)

y —
FIGURE 4. Proposed approach to recurrent networks.

348

be expressed in general form, allowing for both kinds

of recurrence. There will actually be two variants of

the method, one where the recurrence is “solved for”

by an equation-solving system, and one where contin-

uous-time differential equations are assumed to ac-

complish the same result.

The methods discussed here were derived as a gen-

eralization of dynamic feedback, though the aggregate

form could have been derived as a generalization of the

“adjoint” method used by Alsmiller et al. (1981), which

I was aware of at the time. Section 4 will demonstrate

an application of the aggregate form of this method.

Review of Classical, External Time Lags

This subsection will present a formulation of dy-

namic feedback which is technically a special case of

(9). However, new notation will be introduced in order

to make the time dependencies in Figure 4 more ex-

plicit.

Let us assume the existence of a network which im-

plements a functional relationship F:

y(t) = F(y(t— 1), x), 4),

where y has 7 components and X has m components.

The function F is still assumed to depend on the pa-

rameters b, but there is no need to display that depen-

dence explicitly here. We no longer need to put a caret

over the output vector, y, because the true target vectors

will be left implicit; in fact, the discussion here will

assume an arbitrary differentiable function L(y(‘),t),

which may or may not have anything to do with forecast

error or matching error. Our goal will be to calculate

the derivatives of L’, defined as the sum of L across all

times f. (Actually, the calculations will work even if we

only know the derivatives of the function, rather than

the function itself.)

The vector y in (13) would typically include both

the external outputs of the network and a set of auxiliary

variables which serve as a kind of memory from one

time period to the next. In some applications, such as

economic forecasting, the auxiliary variables will

sometimes be filtered representations of unknown, ex-

ternal variables. In applications like real-time control

systems, where the external time lag may be less than

a second, the auxiliary variables may represent a kind

of reverberating short-term memory as described by

Hebb (1949). In some applications, there is no need

for auxiliary variables at all.

In order to represent F as a network, we will assume

that:

t=1toT (13)

» Xj-1(t)), (4)

where the x;(¢) are components of a vector x(t) which

represents the total set of variables available as inputs

or outputs to the network. Equation (14) looks like

(7), superficially, but the references to a common time,

x(t) = fl%w,---

P. J. Werbos

t, make this a more specialized formulation; Equation

7 allowed for any variable x;(1) to receive inputs from

any variables at earlier times.

In parallel with (7), we will again assume that the

external inputs are in the front of this network:

x(t) = X(t), i= ltom (15)

but we will leave the parameters b implicit for now. We

will also assume that the components of y(¢ — 1) come

next in the x vector, followed by / hidden units, such

that:

Xmoilt) = y(t — 1) i=1to n, (16)

and j in (11) is assumed to run from m + 2 + ltom

+n+h-+4+nH, so that:

yilt) = Xmensnvi(L) (17)

Strictly speaking, if we assume that h = 0, we would

arrive at a more general-looking structure, more like

(7) and (9); however, this formulation gives us the free-

dom to set A greater than zero, which will be useful

when dealing with continuous-time systems.

Next, in order to calculate all the derivatives of L’,

we have a choice of two approaches. Both approaches

force us to think of x;(f) across all ¢ and all i as the

system of variables, with variables later in time always

having a higher implied index (when we apply Equation

9) in this greater system. (See Werbos, 1974, 1988a for

some simple examples.)

In the first approach—the aggregate approach—we

treat (13) as the equation of the system, and treat the

components of the vector F as the elementary functions.

In this case, the application of (9) yields:

Ze) = 5 (+ eA HNFu(tt+ 1), (18)

j=l

where Z,(t) will contain the ordered derivative of L’

with respect to y,(f), where the equation is to be eval-

uated first for ¢ = T (for all k), then T — 1, and so on,

where the rightmost (summation) term is to be treated

as zero for t+ T, and where F' is the derivative of F;

(the jth component of F) with respect to yx. The pa-

rameter derivatives—-what we really need in most ap-

plications—also follow directly from (9):

OL!

‘Ob;

22 dF (t +1)
= 2 = ot a an (19)

Superficially, (18) may appear as complex as (9) itself

(since the sum over the right-hand side includes the

ordered derivatives, Z;(¢ + 1), for al/ subsequent vari-

ables in the system at a// times); however, there are

many applications (like Section 4) where each param-

eter 5; will appear in only one or a few of the functions

F,, so that the summation over j may be very sparse.

(Note that we still assume that F depends on the pa-

rameters b, as discussed above, even though this de-

Backpropagation with a Recurrent Gas Market Model

pendency has been implicit until now.) The summation

over time can be carried out efficiently as a running

sum, backwards in time, in parallel with (18); we will

show how this can be done in (35c), of Section 4, after

we have derived a version of this equation for use with

recurrent systems. This method of calculating deriva-

tives is very similar to earlier methods from control

theory.

In the second approach (which is far more efficient

for true networks), we treat (14) through (17) as the

equations of the system, and we treat the f; in these

equations as the elementary functions. This approach

(used in Werbos, 1974) is essentially the same as the

RHW approach for recurrent networks, except that we

feed the derivatives back to handle external time inter-

vals instead of internal cycle times in iteration.

Applying (9) to the set of all variables over space

and time yields the following set of equations to be

evaluated as a set, first for all variables at ¢ = 7, then

for t = T — 1, and so on:

Zm+ntnrk(t)

oL mtnthtn of.

=> (t)+ > 2)(t) oA — (1) + zmaalt + 1),
OVE jemtnthtk+l OX mtnthtk

k=ntol (20)

where the rightmost term is assumed zero for t = T,

and

mt+nthtn af;

A(t)= 2D 2,2) ox,
jak+1

(t) k=mt+nthtol. (21)

Here the variables z,(t) refer to the ordered derivative

of L’ (the sum of LZ over time) with respect to x;(t).

As with (9), these equations can be implemented ef-

ficiently on a parallel computer to the extent that the

original system (Equation 11) could be. In deriving

(20) from (9), Iam accounting for the fact that y;,(t)

can have a direct causal effect (in our assumed network)

only on some of the later variables—L itself (which

yields the first term), y(t) variables for J greater than

k (generating the second term), and x,,;(¢+ 1) (which

by definition equals y,(t), so that the conventional par-

tial derivative of Xn+4:(¢ + 1) with respect to y;,(t) is

just 1). Likewise, (21) has only one term because these

components of x(t) can only have a direct effect on

later components of x(t).

Finally, the derivatives with respect to parameters

or weights follow directly from (9), and may again be

read off as running sums:

aL’ T mtnthtn of;

==> 2 2(1) oF (t) (22)
0b; t=] j=itl

The summations in (20) through (22) are generally

very trivial and sparse, so long as the functions f; only

have a few inputs each.

These equations can be implemented most quickly

if all components of x(t) have been stored for all t;

349

however, the time cost is increased by only a fixed per-

centage (circa one-third?) if only the lower-order com-

ponents are stored and the others regenerated at each

time ¢ while going backwards. (At most, x; through

Xm+n are needed, but less will be needed if some com-

ponents of y(¢ — 1) are for external use only; to exploit

this, it would help to locate such components in a block

with higher index numbers in the vector y.)

Networks Containing Both Types of Recurrence

Equation (13) may be generalized still further as:

F(y(t), y(¢—- 1), X(t),)=0, t= 1toT (23)

where F has the same dimensionality as y. As before,

the parameters b are still arguments of F, but are left

implicit. A system of this sort can yield forecasts only

if we have some method available to solve these equa-

tions for y(t) when we are given values for y(t — 1)

and for X(t) and b. In econometric forecasting, this

system of equations (one equation for each component

of F) may be typed into a software package such as

Troll (MIT, 1980) or SAS (1986), which then generates

the forecasts. In neural nets, (23) may result from a

hybrid continuous/ discrete system such as:

Vit) = Fily(), y(t - 1), X(¢), 2), (24)

where we count on the mechanisms described by Hop-

field and Tank (1986) to move y(t) quickly to a solution

which fits (23). (Hopfield’s mechanism works only for

symmetric networks, but—after establishing definitions

in Equations 26—I will cite an older, more general cri-

terion, which is useful here but often difficult to apply.)

In neurological terms, (24) would reflect the idea that

some cells have a totally continuous-time response while

others are partly controlled by some kind of clock pulse.

Before we can calculate the ordered derivatives of

L', using either (18) or (9) directly, we need to calculate

the direct causal impact of changing y(t — 1) on y(?),

when holding b constant; in other words, we need to

know what corresponds to the matrix Fin this situ-
ation. To calculate this, we may begin by taking the

total differential of (23), which yields:

G(t)dy(t) + H(t)dy(t — 1) =0 (25)

where

G,(t) = OF (y(t), — X(Z), ¢) (26a)

H,,(t) = OF (y(t), y(t — 1), X(2), 0) (26b)

dy(t — 1)

Likewise, to use (19), we will need to calculate the

causal effect on y(t) of changing b while holding y(t

— 1) constant; this will be based on an equation like

(25) but with H(t)dy(t — 1) replaced by J/(t)db, where

we define:

350

OF y(t), yi — 1), X(t), £) Jit) = A) ab, (26c)

Note that the matrix G will normally be nonsingular

if (as we must assume) the original system in (23) can

be solved for over a range of different values of y(t

~ 1). In fact, for continuous-time systems, (24) can

only converge if the eigenvalues of G all have negative

(nonzero) real parts.

Equation (25) leads to:

dy(t) = —G"'(t)H(t)dy(t — 1). (27)

In formal terms, this is just a linear dynamic system

(albeit in infinitesimal quantities), which can be treated

as a special case of (13). In fact, if we had taken the

total differential of (13), we would have arrived at a

linearized dynamic equation exactly like (27), except

that the matrix F%, used in (18) would have replaced

~G7'H. Therefore, in this special case, Fj, of (18) cor-

responds to the jk component of —(G7'H). By sim-

ilar reasoning, the rightmost term of (19) corresponds

with —(G7'J). With these two substitutions into (18)
and (19), and minor changes to express the results as

vector equations, we arrive at:

Z(t) = VyL(t) — H7(t+ YCG(t£4+ 1)) 'Z(t + 1) (28a)

VL = S -Ptet IG (4+ DIZ + VY, (28b)

where V, represents the vector of derivatives with re-
spect to the components of y(t), where the recursion

is from ¢ = T backwards again, and where the rightmost

term in (28a) is treated as zero for ¢ = T.

Asa practical matter-—either in neuron networks or

econometric models—we do not have the inverse

(G7(t))”' available. Therefore, (28) cannot be used

directly as a recursion rule to calculate the derivatives.

However, we can overcome this problem simply by de-

fining an auxiliary vector w(t):

w(t) = —G"(t) 'Z(t). (29)

When we solve for Z (t) in this equation, and substitute

the resulting expression for Z(f) into Equations (28)

(while uniformly shifting back the time index in Equa-

tions 28), we arrive at the following equations which

can be used to calculate the derivatives (if we invoke

them in backwards time):

Z(t) = -—G"(1)w(t) (30a)

Z(t—1) = VyLit— 1) + A(t) w(t) (30b)

VL’ = d J (1) w(t). (30c)

Equation (30a) still must be solved for w; in other

words, Z (¢) is the input to the required calculation and

w(t) is the output. However, this can be done by the

same mechanism used to solve (23) in the first place.

This leads to two versions of the method, depending

on the original solution method.

P. J. Werbos

With econometric models, or other systems solved

on a computer by an equation-solving package, the

procedure is very straightforward. One can simply write

down Equations (30) explicitly, and insert them into

the same equation-solving package. Section 4 will pro-

vide an example of how one can do this, for a moder-

ately large model. With fully recurrent nets, unlike (18)

and (19), the aggregate formulation can be just as ef-

ficient as the network formulation, i/we take care to

break down the equations of the model into elementary

relationships (whose sparsity will be accounted for in

a good equation-solving package); in other words, we

can expand the vector y to include the intermediate

variables, and to enforce the sparsity of the matrices

G, H, and J. In this manner, a single-layer recurrent

network can represent anything that a multilayer feed-

forward network can. (Strictly speaking, however, we

did break down a few of the longer model equations in

our application, as will be discussed.) Notice that (30b)

and (30c) are really just a conventional derivative cal-

culation, as in conventional backpropagation (Equation

18), using w in place of Z(¢ + 1).

With true continuous-time neural networks, based

on (24), we need to formulate a network representation,

translate (30b) and (30c) into a network version, and

then use a continuous-time procedure to solve for the

vector w. To define the network itself, we may continue

to use (14) through (17) with the proviso that those

functions /.(t) which represent components of the

vector y(t) may also include a dependency on any other

component of the vector y(£), regardless of whose index

is the greatest.

To translate Equations (30) into a network version,

we begin by finding a continuous-time version of (30a)

which, at any time f, is the first equation to be invoked

when calculating derivatives. We cannot deduce a con-

tinuous-time version from (30a), but we can deduce

that the following equation yields a solution for w which

is equivalent to that of (30a):

W(t) = Zmin(t + 1+ rend (4) y (1) (31)
jel OVE

This equation reaches equilibrium when the time-de-

rivative on the left is zero, which requires that the right-

hand side be zero. However, the rightmost (summation)

term in this equation is really just G’w, because the

derivatives in that term correspond to our original def-

inition of G applied to this case; therefore, the right-

hand side of (31) will equal zero only when (30a) is

satisfied. We already know that the eigenvalues of G

must all have negative real parts, in order for (24) to

converge in the first place; therefore, we may be sure
that (31)—which is linear in the feedback variables—

will also converge.

Next, we can translate (30b) into a network version

quite easily if we exploit our understanding of causal

flows. We may begin by replacing (23) by:

Backpropagation with a Recurrent Gas Market Model

OL
Zmenthek(t) = w(t) + on, (1), kK=I1toan, (32)

Vk

Strictly speaking, this does not match (30b) exactly.

The Z term matches, but the rightmost term in (30b)

would be zero in this case, and the w,(f) term requires

explanation. The point is, if we go on to use (21) and

(22) as they stand, after having invoked (32), we will

get the correct ordered derivatives for the inputs, be-

cause (30b) and (30c) both require that we add in

feedback from w. In fact, (30b) and (30c) do not show

feedback from the L-derivative through H’” to the lower-

order derivatives; however, this was due to the exclusion

of indirect impacts at time ¢ in the aggregate version

of the net; Equations (20) through (22) should make

it clear that we do want to account for such effects

when the network specification permits them.

In summary, our continuous-time procedure would

go backwards in time, ¢, to calculate the derivatives.

At each time f, it would first invoke (31) through to

equilibrium, and then invoke (32), (21), and (22), in

that order, going backwards from later variables to ear-

lier variables. A hybrid approach would continue to

use an equation-solver to solve (30), and then proceed

to (32), (21), and (22).

Strictly speaking, we can generalize this arrangement

still further by allowing hidden units as well to depend

on components of the vector y(t). In order to imple-

ment (30a), we then need to allocate another vector z’

of length /, to establish the convention that z44,(1)

refers to w;,(t), to add the equation:

htn
0 mnt 2) = > 2) 2 (0, (33)
OXm+ntk

and to add the following term to the right-hand side of

(31):

= Gmc z(t). (34)

This generalization will not be considered further, be-

cause its value is questionable in neural applications;

however, it is necessary to use this generalization, in

principle, to describe what we did in our application

in Section 4 (when “‘hidden variables” were defined in

order to break up a few big equations).

In both versions of the method—equation-based and

continuous—the difficulty of solving for w depends on

the eigenvalues and sparsity of the matrix G; since this

is also true for the forwards version of the system

(Equations 23 or 24), but the forwards version is non-

linear, the calculation of w(t) should never be more

expensive than the calculation of y(z) in the forwards

system. Likewise, the cost of running (31), (21), and

(23) should be comparable to the usual costs of running

conventional backpropagation through one iteration.

The storage costs (aside from the need to store one

additional vector, w) are the same as those of back-

35]

propagation in a network without the continuous-time

recurrence. In the case where y(¢ — 1) is not actually

used in (23) or (24), so that continuous-time recur-

rence is the only form of recurrence, there is no need

to store any information at all from earlier times r.

Issues Related to Real-Time Adaptation

Two different adaptation strategies are now used with

backpropagation, when adapting artificial neural net-

works. Both strategies involve iterating through the data

base or training set many times, until the estimated

values of the weights settle down or the level of error

is acceptably small.

Hinton (1987) calls one of these strategies “batch

learning.” In batch learning, each iteration begins with

a calculation of the derivatives of error with respect to

the weights, summed up over all patterns exactly as

indicated in (19). The weights are then adapted in pro-

portion to these derivatives (or by use of more sophis-

ticated methods using the derivatives). Then a new it-

eration begins. Statisticians almost always use batch

learning, as I have myself when using three-net type

architectures. The best convergence rates I have seen

so far with artificial neural networks have involved

the use of batch learning and sophisticated numer-

ical methods, even when an O(n) storage constraint

is imposed and the higher cost per iteration is ac-

counted for.

The other strategy I usually call pattern learning. In

pattern learning, one does not wait to calculate the en-

tire sum in (19) before adapting the weights. One cal-

culates the component of (19) for pattern number f,

adapts the weights immediately, and then moves on to

the next pattern. This kind of approach can be used

with continuous-time or simultaneous-time recurrent

networks, exactly as it can with feedforward networks.

When external time-lags are present, however, pattern

learning leads to an inconsistency between the values

of y(t) currently available and those implied across all

time by the new set of weights, after the weights are

adapted for a given observation; as a result, big learning

rates could lead to a failure to converge in some cases.

However, there are similar problems which can lead to

divergence even when pattern learning is used to adapt

feedforward networks. (With external time-lags, the

problem might be reduced by adapting weights only

during the backwards pass, i.e., backwards through the

set of patterns.) Because of the current need for small

learning rates, convergence times have been very long

with pattern learning, even with feedforward networks;

however, this merely underlines the need for further

research, to adapt the methods of numerical analysis

and to combine the power of backpropagation and

content-addressable memory (Werbos, 1988b).

Natural systems, like the human brain, do not use

352

batch learning or pattern learning. Instead, they use

real-time adaptation, in which each pattern is available

only once, and then lost (except for its impact on the

weights and on short-term memory). The patterns are

experienced in forwards time only. For feedforward

networks, this is really the same as pattern learning,

except that only one pass through the database is al-

lowed. The same situation applies to networks with si-

multaneous/continuous recurrence only. However,

when external time-lags are present, our recurrence

formulas simply cannot be applied exactly in real-time

adaptation, because of the lack of a database to go back

through. A similar problem would apply to continuous-

time systems which implement a similar recurrent,

short-term memory and which therefore violate the

conditions on G given above. (This violation follows
from the fact that systems which obey our conditions

allow one to solve for the equilibrium system state as

a function of present inputs only.) In either case, true

real-time adaptation would require the use of some sort

of approximation.

The easiest and least accurate approximations would

simply cut off feedback to earlier than one or two ob-

servations into the past. The accuracy of such approx-

imations may depend on the loss functions actually

used, in a complex way. Far better, in theory, is to treat

the determination of y,;(f) as a long-term optimization

problem, as if y(t) were a vector of actions (like u(¢)

in Figure 2) chosen to as to minimize the sum of pre-

diction errors over present and future time. To apply

the optimization methods mentioned in Section 2, note

that prediction error is normally represented as a sum

of distinct components (i.e., errors on individual vari-

ables). Also note that there is no need for an additional

predictive model; the equations of the existing network

specify exactly how y(f) affects y(¢ + 1), and so on.

Implementing the optimization methods of Section 2,

we would create something like an estimate J; which

would serve as a direct, local source of feedback for

each component y, of the y vector. The details of this

possibility are beyond the scope of the present paper;

however, since the action variables, the dynamics of the

system, and the utility measures have all been specified,

it should be straightforward in principle to work out

these details. Furthermore, since these optimization

methods all impose costs on the order of O(N)—like

backpropagation itself—this should be a workable ap-

proach.
This approach should not be confused, again, with

the use of Figure 2 to optimize overt actions. This ap-

proach could be used with any recurrent net, emerging

from the architecture of Figure 1 or from other archi-

tectures. When this approach is used to help adapt the

nets shown in Figures | and 2, then the J network used

to give feedback to the y variables would be quite dis-

tinct from the J network used to adapt overt actions.

P. J. Werbos

4. DESCRIPTION OF THE APPLICATION

Background and Goals

The work reported here was performed in 1982 for

the Energy Information Administration (EIA), prior

to the construction of a new natural gas supply model.

It has never been published, since the results were

mainly for internal use. To our knowledge, this was the

first successful, operational test of Equations 30 in cal-

culating the derivatives of a fully recurrent system.

The purpose of this project was to better understand

the properties of EIA’s previous model of natural gas

markets, the Natural Gas Market Model (NGMM),

which had been used in a major study of natural gas

deregulation (MecNiccl, O’ Neill, & Dickens, 1981). The

first stage of this project was simply to penetrate the

code of the model, and convert 1500 lines of FOR-

TRAN into an explicit, equivalent 73-equation system

in Troll, corresponding exactly to a 73-component vec-

tor Fin (7). A concise, consolidated description of the

model was then published (Werbos, 1981). The model

was then updated to an 83-equation system to reflect

more recent information on natural gas availability by

regulatory category (O’Neill & Dickens, 1981) and

more recent demand forecasts (EIA, 1982).

The major goal of this project was to evaluate what

really drove the forecasts of the model. The model was

a highly interactive system, dependent on dozens of

uncertain parameters and initial values. To vary all of

these parameters and all of the variables of the model,

in all years, would have required hundreds of runs of

the model. It was easier and more accurate to create

an “adjoint model’’—-replicating the feedback calcu-

lations implied by Equations (30)—which would yield

the derivatives of a selected model result Z with respect

to all parameters and all variables in all years in only

one run. In other words, dynamic feedback was used

here simply to calculate derivatives, which were of in-

terest in their own right as a diagnostic tool in evaluating

the model. In principle, this kind of sensitivity analysis

could also be used to locate policy levers which are

especially important in changing future outcomes.

Implementation of Dynamic Feedback

The analysis here was carried out in Troll (MIT,

1980), a standard software package developed by the

MIT Center for Computational Economics and Man-

agement Science. An “adjoint model” was created in

Troll, representing exactly the calculations implied by

Equations 30.

Troll, like most dynamic modeling packages, only

allows calculations forwards in time. Therefore, Equa-

tions (30) had to be translated into an equivalent set

of equations running in reverse time. We defined 7’

= 1990 — t, and re-expressed Equations (30) in terms

Backpropagation with a Recurrent Gas Market Model

of t’, For convenience, we assumed that L(t) = 0 for ¢

less than the terminal year, 1990. (However, a running

total was created to handle the one instance where we

were interested in what influenced the sum of a variable

over time, as opposed to its 1990 value.) Also, because

we had not yet considered what conventions would lead

to felicitous notation with continuous-time neural nets,

we defined w(t) as minus w(t + 1) (where the latter

copy of w is defined as in Equation 29). Substituting

these definitions for ¢’ and w into Equations (30), we

arrive at the equations actually implemented in the ap-

plication:

Z(t —-D)=G7(t - w(t) (35a)

-Z'(t) = A(t — Dwr) (35b)

a(t’) =a(t’-—1)- J7(¢-— Dw’), (350)

where a(0) will contain the final vector of derivatives

of L with respect to the parameters.

In order to implement Equations (35), we followed

a straightforward procedure that could be implemented

quite easily in a package such as Troll. (This was verified

in 1981 when it was proposed to the developers of Troll,

in connection with an ongoing contract with the De-

partment of Energy; unfortunately, other priorities pre-

empted this option.) To understand this procedure, it

would help to consider an example, based on a sim-

plified version of a few of the model’s equations:

#25: exploration(t)

= b,*(exploration(t — 1))”?*(gas__price(t)/

drill__price(t))”

#26: cumulative__exploration(t)

= cumulative__exploration(t — 1) + exploration(t)

#49: drill__price(t) + drill, price(t — 1)

+ by + bs*(rig__use(t)/(1 — rig__use(t))

#67: industry__demand(t)

= base__demand(t)*(gas__price(f)/base__price(r))”*

*(industry__demand(t — 1)/base__demand(r))”

The Troll equation numbers (between ! and 83) are

shown on the left. The first three equations describe

how the utilization of drill rigs affects changes in the

price of drilling, which in turn combines with the price

of gas to affect exploration for gas. The last equation

shows how interstate industrial gas demand will differ

from a previous baseline forecast, if the actual gas price

differs from the (base) price assumed in that forecast.

The model solves to find a price which matches supply

and demand. Notice how values of b2 and 67 near zero

would make the forecasts dependent on conditions in

the present time, while values near one would tend to

yield a kind of exponential growth process (because

outside factors then determine the rate of growth of the

variables being projected, instead of their actual values.)

353

Our first step, in creating an adjoint model, was

simply to write out all the component equations implied

by (35a). To do this in a comprehensible way, we

adopted a naming convention in which, for example,

Fexploration(t) corresponded to Z25(t). However, we

simply used W25(t) to represent W;5(¢). Following

this convention, we can calculate Fexploration(t' — 1)

as implied by (35a) by looking through a// the equations

and looking for occurrence of the variable “‘explora-

tion(t)”; if we find one in equation j, we calculate

G4;,; by simply differentiating the equation with respect

to exploration(t). If exploration(t) appears on the left-

hand side of an equation, we treat that as an appearance

on the right-hand side with a minus sign. Applying this

procedure to the example above, we get:

Fexploration(t’ — 1)

= W25(t)*(-1) + W26(t)e(+1) + +e

Fdrill__price(t’ — 1)

= W25(t')«(exploration(t! — 1)*(—b3/

drill__price(t’— 1)) + W49a(-1) + -->.

In the first of these equations, the (—1) simply came

from differentiating Equation #25 after exploration(t)

is moved to the right-hand side. The (+1) came from

differentiating the right-hand side of Equation #26 with

respect to exploration(t). The next equation came from

a similar calculation; however, note that all references

to variables convert f to t’ — 1 and t — 1 to #’, because

of the time reversal. The triple dots here refer to other

terms which involve the differentiation of other equa-

tions, not given in our example. Mechanically, it was

easier to do all this by writing “ Fname(?t’ — |) =” for

each variable, on a separate line of a large sheet of

paper, and going through the list of equations in order,

looking for all unlagged variables and adding terms to

their equations.

Equation (35b) was handled essentially the same

way, except that we looked for lagged references (i.e.,

to variable (¢ — 1)), differentiated with respect to lagged

variables, and began the relevant equations with (for

example) ‘“‘Fexploration(t’) =.” Equation (35c) was

likewise straightforward. After completing this exercise,

we simply typed the set of equations into Troll, and

asked Troll to solve the set of equations from ¢’ = |

through ¢’ = 7. (This also required the use of a few

Troll instructions to create a database made up of the

original model variables, reversed in time.)

All of these tasks were completed in about two days.

However, because the approach was new, two weeks

were then used mainly to test, but also to debug the

results. Modified versions of the model and of its adjoint

were created in which the free market price of gas was

made exogenous, so that the flow of causation and cal-

culated feedback could be compared at all points in

the model. Checks against derivatives by brute force

354 P. J. Werbos

TABLE 1

Parameters with the Five Biggest impacts on 1990 Average Residential Gas Price (i.e., with L’ = Gas Price)

Total Parameter

Description of Parameter Impact Vaiue

Elasticity of exploratory gas drilling to its previous value (i.e., b2 in
equation labelled “#25” above) $150 8

Elasticity of gas development drilling to its previous value $25.1 8
Elasticity of oil development drilling to its previous value $18.8 9
impact of oil production (f — 1) on oil production (f) $15.6 9
Impact of nonassociated gas production (f — 1) on itself (f) $14.6 9

parameter shifts and variable shifts were used; these

required trying several step sizes (at least plus and mi-

nus some amount), because of problems with rounding

error and nonlinear effects with the brute force method.

At this point, the adjoint method has passed very severe

tests of its accuracy. The adjoint, unlike brute force

methods, is also ‘“‘well-conditioned” numerically; the

reason for this, technically, is that the transpose of G7'H

has the same ‘condition number” as G_'H itself (For-

sythe & Moler, 1967), so that the adjoint is as well

conditioned as the original model itself.

Results of the Analysis

Tables 1 through 3 below summarize the results of

greatest interest.

Table 1 provides a rank-ordering of the five most

important “items” input to the model, where “items”

include both parameters and initial values in principle.

Importance is measured in terms of “Total Impact,”

defined as the change in residential gas prices which

would result from setting the item to zero (assuming

no change in the derivative). From an economist’s point

of view, the “Total Impact” as defined here is just the

elasticity of gas prices with respect to each item, mul-

tiplied by the base case residential gas price for 1990.

Out of the 35 most important items only two involved

the demand for natural gas, and two involved initial

values for 1979; thus the results of the model were

clearly driven by supply-side assumptions.

Six other 1990 outcome variables were also exam-

ined with the same adjoint model: (a) DEMAND, total

U.S. wellhead gas demand in quadrillion Btu; (b)

CUMEXTRA, cumulative supplemental gas (potential

shortages) over 1979--1990; (c) PSUPPLY, the unregu-

lated wellhead price of gas; (d) RN.NAGAS, proved

reserve balance of nonassociated gas; (e) SUSGASB,

free-market domestic gas production; and (f) SDEEP,

U.S. production of gas from 15,000 feet or deeper. The

results with these other measures of outcome were sim-

ilar to those of Table 1, but even more tilted towards

the supply-oriented items input to the model.

The adjoint model also printed out information

about the dynamics of the effect of each item, as shown

in Table 2. The 1979 row of Table 3, like all the numbers

in Table |, reports the impact of changing the item on

changing the outcome variable. This derivative essen-

tially answers the usual question: “If you change this

TABLE 2

Ordered Derivatives of DEMAND with Respect to Three items Over Time

Elasticity of industrial
Gas Exploration Ratio for Gas Demand

to its Past to Oil in Lag Factor

(62 in Equation #25) Oil Production (07 in Equation #67)

Parameter Value .806 135 .69

Ordered Derivatives (z,(t)) From Year. . .
1990 0 0 0
1989 —.5 2.5 3
1988 1.8 2.1 —4
1987 9.0 1.7 —.6
1986 22.0 1.3 ~7

1985 40.0 1.0 —.8
1984 63.0 0.7 ~9
1983 89.0 0.6 —.9
1982 118.0 0.5 —9
1981 150.0 0.4 9

1980 184.0 0.2 —.9
1979 222.0 —.9 —.9

Backpropagation with a Recurrent Gas Market Model

input to the model by one unit, while keeping all the

other inputs as they are, how much will the outcome

change?” The 1985 row, however, answers the question:

“If you changed this parameter by one unit in 1985,

and afterwards, but used the old value for it before

1985 (still holding the other items constant), how much

would the outcome change?’ (Likewise, for variables,

the 1985 row reports the impact of an “autonomous

change” in 1985, such that the other variables in 1985

are unchanged.) The main purpose of this table is to

illustrate the diagnostic value of ordered derivatives in

understanding how any system behaves over time.

Table 2 shows clearly that the gas exploration elas-

ticity acquires its importance because of its cumulative

effect over time. Like the population growth rate in

population forecasting, this parameter has a greater

impact on the forecast as the forecast interval grows.

For the same reason, random errors in estimating this

parameter will lead to cumulative errors in forecasting

almost any of the outputs of the model.

The impact of the industrial demand lag term also

grows with time. This parameter, like the exploration

elasticity, is an “inertia” term; it indicates how much

industrial gas demand is affected by its own past value.

However, after a couple of years, the rate of growth of

its importance is greatly damped. This would appear

to mean that the “memory” on the demand side is

quickly overshadowed by the impact of current prices

on demand, so that the accumulation of impact is re-

duced, This pattern of a declining rate of growth in

impact applies to most parameters in the model; impact

grows with time, though at a decelerating rate, because

more time simply adds to the points where the param-

eter affects the system, usually pushing the system in

the same direction. The rate of growth declines for most

but not all parameters, because of systems dynamic

effects beyond the scope of this paper; if the system

under study were “stationary,”’ however (always decay-

ing to the same equilibrium no matter what its initial

state), then the rate of growth would eventually decline

for all parameters.

Finally, Table 2 shows that the “ratio for gas to oil

in oil production” declines steadily in importance as

we go back to 1980. Steady decline is typical for the

impact of a variable, but it is very unusual for a pa-

rameter. In this case, the direction of the immediate

impact reverses between 1990 and the preceding years,

perhaps because the direct impact in 1990 depends on

the size of this parameter RELATIVE TO variables

increased by the parameter before 1990. This parameter

is odd in another way: in 1979, there is a sudden “‘blip”

in the impact of this item, and of a few other items.

This “blip” appears due to the equation which enforces

a fixed price of drilling in 1980, when all the rest of

the variables are treated as model predictions; changes

in a parameter can force changes in the 1980 values of

the variables which have nothing to do with the causal

355

TABLE 3
Results of Different Values for Elasticity Parameter (67)

Elasticity 1990 Average Residential
(Exponent) Gas Price in 1979 Dollars

.806 $7.30 (actual forecast)

.807 $7.13
816 $6.18
.796 $8.23

impact of the parameter, because of the equation forcing

the 1980 drilling costs to not be changed accordingly.

Note that this kind of startup problem affects the sen-

sitivity of a model, regardless of what method is used

to test the sensitivity; it can be a serious problem in

interpreting the results of “what if ’ analysis based on

changes in model assumptions, for many models.

All of these “sensitivity coefficients” theoretically

represent the effect of small changes from the base case

(continuation of the Natural Gas Policy Act). To verify

the large-scale importance of the most important pa-

rameter—the elasticity of exploratory gas drilling to its

own past value—the original model was rerun for four

different values of the elasticity. These results are shown

in Table 3.

According to the original model documentation, the

standard error of this exponent was .08, much larger

than the changes made here. This result did not nec-

essarily invalidate the model, for reasons beyond the

scope of this paper; however, it did lead to the conclu-

sion that attention should be redirected towards the use

of new statistical methods to estimate this kind of pa-

rameter more accurately, and towards possible respe-

cification of the equations they appear in. The new

methods cited in Section 2 exploit the phenomenon of

cumulative error, and use multiyear tests of forecast

error, in order to arrive at more accurate parameter

estimates which lead to less cumulative error in fore-

casting. Previous research on these methods (Werbos,

1974, 1983a; Werbos & Titus, 1978) suggests that this

model was far from unique in this weakness, but was

typical of a large class of econometric models.

Conclusion

A generalization of dynamic feedback (the central

component of “backpropagation”) to deal with recur-

sive (‘‘simultaneous”) time-dependent networks has

been developed and tested, and has led to applications

of importance to practical econometric forecasting.

These applications in turn point to the importance of

using new loss functions instead of regression when

estimating many models; the use of these loss functions

tends to require dynamic feedback for efficient, reliable

implementation.

356

REFERENCES

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons

with feedback in a combinatorial environment. Proceedings of the

IEEE First International Conference on Neural Networks, Vol. I

(pp. 609-618). New York: IEEE.

Alsmiller, R. G. et al. (1981). Adjoint sensitivity analysis and its ap-

plication to LEAP Model 22c. ORNL/TM-7789, Oak Ridge, TN:

Oak Ridge National Laboratory.

Athans, M., & Kalb, P. L. (1966). Optimal control theory. New York:

McGraw-Hill.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-like adaptive

elements that can solve difficult learning control problems. JEEE

Transactions on Systems, Man and Cybernetics, SMC-13, 834-

846.
Brode, J., Werbos, P., & Dunn, E. (1975). TSP in the Datatran lan-

guage. Cambridge, MA: MIT Cambridge Project. (Also distrib-

uted by the MIT Information Processing Services Department

and DOD/AFDSC as a contract product.)

Dennis, J., & Schnabel, R. (1983). Numerical methods for uncon-

strained optimization and nonlinear equations. Englewood Cliffs,

NJ: Prentice-Hall.

Energy Information Administration. (1982). 1987 Annual report to

Congress, Volume 3. DOE/EIA-0173(81)/3. Washington, DC:

National Energy Information Center (NEIC, 202-586-8800).

Washington, DC: U.S. Department of Energy.

Foote, S., & Morrison, J. (1987). Extrathalamic modulation of cortical

function. Annual Review of Neuroscience, 10, 67-95.

Forsythe, G., & Moler, C. (1967). Computer solution of linear algebraic

systems. Englewood Cliffs, NJ: Prentice-Hall.

Grossberg, S. (1976). Adaptive pattern classification and universal

recording, IH: Feedback, expectation, olfaction and illusions. Bio-

logical Cybernetics, 23, 187-202.
Grossberg, S., Levine, D., & Schmajuk, N. (1987). Predictive regu-

lation of associative learning in neural networks by reinforcement

and attentive feedback. Proceedings of the 1987 IEEE International

Conference on Systems, Man and Cybernetics, Volume II. (EEE

Catalog No. 87CH2503-3). New York: [EEE.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

Hinton, G. (1987, June). Connectionist learning procedures (Tech.

Rep. No. CMU-CS-87-115). Pittsburgh: Carnegie-Melion Uni-

versity, Computer Science Department.

Hopfield, J., & Tank, D. (1986). Computing with neural circuits: A

model. Science, 233, 625-633.

MIT Center for Computational Research In Economics and Man-

agement Science. (1980). Troll Users’ Guide. Cambridge, MA.

IPS Technical Services, MIT Building 39-327.

McNicol, D., O’Neill, R., & Dickens, P. (1981). Analysis of the eco-

nomic effects of accelerated deregulation of natural gas prices.

DOE/EIA-0303. Washington DC: NEIC (see EIA 1980),

O'Neill, R., & Dickens, P. (1981). An analysis of the natural gas

policy act and several alternatives: Part 1, DOE/EYA-0313. Wash-

ington DC: NEIC (see EIA 1980).

Parker, D. B. (1985). Learning-logic (Report TR-47). Cambridge,

MA: MIT Center for Research in Computational Economics and

Management Science.

Parker, D. B. (1987). Second-order backpropagation: Implementing

an optimal O(n) approximation to Newton’s method in an artificial

neural network. Unpublished manuscript.

Pineda, F. J. (1987). Generalization of backpropagation to recurrent

and higher order networks. Proceedings of the IEEE Conference

on Neural Information Processing Systems. New York: IEEE.

P. J. Werbos

Rumelhart, D., Hinton, G., & Williams, R. (1986). Parallel distributed

processing (Chap. 8), Cambridge, MA: MIT Press.
SAS Institute. (1986). SAS users guide: Statistics. Cary, NC: SAS

Institute Inc.

Schmitt, F. O. (Ed.). (1970-1971). Neurosciences (ist and 2nd study

programs), New York: Rockefeller University Press.

Werbos, P. (1968). Elements of intelligence. Cybernetica, 3.

Werbos, P. (1974). Beyond regression: New tools for prediction and

analysis in the behavioral sciences. Ph.D. thesis Harvard Univer-

sity. (Also printed as a report of the Harvard/ MIT Cambridge

Project, 1975, under Dept. of Defense contract.)

Werbos, P. (1977). Advanced forecasting methods for global crisis

warning and models of intelligence. General Systems Yearbook,

22, 25-38.
Werbos, P., & Titus, J. (1978). An empirical test of new forecasting

methods derived from a theory of intelligence: the prediction of

conflict In Latin America. /EEE Transactions on Systems, Man

and Cybernetics, SMC-8, 657-666.

Werbos, P. (1979). Changes in global policy analysis procedures sug-

gested by new methods of optimization. .. Policy Analysis and

Information Systems, 3, 27-51.

Werbos, P. (1981). The Natural Gas Market Model: Equations and

data sources. DOE/EIA-0355. Washington DC: NEIC (see EIA

1980).
Werbos, P. (1982). Applications of advances in nonlinear sensitivity

analysis. In R. Drenick & F. Kozin (Eds.), Systems modeling and

optimization: Proceedings of the 10th IFIP Conference, New York

(pp. 762-777). New York: Springer-Verlag.

Werbos, P. (1983a). A statistical analysis of what drives industrial

energy demand (Chap. 4, Section on Dynamic Robust Estima-

tion), DOE/EIA-0420/3. Washington DC: NEIC (see EIA 1980).

Werbos, P. (1983b). Solving and optimizing complex systems: Lessons

from the EIA long-term model. In B. Lev. (Ed.), Energy models

and studies. New York: North Holiand.

Werbos, P. (1986). Generalized information requirements of intelligent

decision-making systeras. In SUG/ i 1 Proceedings. SAS Institute:

Cary, NC (A revised version, available from the author, is easier

to read and contains more discussions of psychology.)

Werbos, P. (1987a). Building and understanding adaptive systems: A

statistical /numerical approach to factory automation and brain

research. JEEE Transactions on Systems, Man and Cybernetics,

SMC-17, 7-20.

Werbos, P. (1987b). Learning how the world works: Specifications

for predictive networks in robots and brains. In Proceedings of

the 1987 IEEE International Conference on Systems, Man and

Cybernetics, Volume I (pp. 302-310). (IEEE Catalog No.

87CH2503-1). New York: IEEE.

Werbos, P. (1987c). Backpropagation versus content-addressable

memory: Applications, evaluation, and synthesis. Unpublished

manuscript.

Werbos, P. (in press). Econometric techniques: Theory versus practice.

In J. Weyant & T. Kuczmowski (Eds.), Planning in a risky en-

vironment: A handbook of energy /economy modeling. New York:

Pergamon.

Werbos, P. (1988a). Maximizing long-term gas industry profits in

two minutes in Lotus using neural network methods. JEEE

Transactions on Systerns, Man and Cybernetics.

Werbos, P. (1988b). Backpropagation: Past and future. Proceedings

of the LEEE International Conference on Neural Networks, 1988,

Vol. I (pp. 343-353). (IEEE Catalog No. 88CH2632-8). New

York: IEEE.

