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Abstract—Backpropagation is often viewed as a method for adapting artificial neural networks to classify patterns. 

Based on parts of the book by Rumelhart and colleagues, many authors equate backpropagation with the generalized 

delta rule applied to fully-connected feedforward networks. This paper will summarize a more general formulation 

of backpropagation, developed in 1974, which does more justice to the roots of the method in numerical analysis 

and statistics, and also does more justice to creative approaches expressed by neural modelers in the past year or 

two. It will discuss applications of backpropagation to forecasting over time (where errors have been halved by using 

methods other than least squares), to optimization, to sensitivity analysis, and to brain research. 

This paper will go on to derive a generalization of backpropagation to recurrent systems (which input their own 

output), such as hybrids of perceptron-style networks and Grossberg/Hopfield networks. Unlike the proposal of 

Rumelhart, Hinton, and Williams, this generalization does not require the storage of intermediate iterations to deal 

with continuous recurrence. This generalization was applied in 1981 to a model of natural gas markets, where it 

located sources of forecast uncertainty related to the use of least squares to estimate the model parameters in the 
first place. 
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1. INTRODUCTION 

Backpropagation, as formulated by Rumelhart, Hinton, 

and Williams (1986) with acknowledgement of the 

prior work by David Parker (1985), may well be the 

most widely-used method to adapt artificial neural net- 

works, for use in pattern classification. Nevertheless, 

the limitations of that formulation have been severely 

criticized by neuropsychologists and by classical com- 

puter scientists. The neuropsychologists have argued 

that simple feedforward networks cannot do justice to 

the structure and power of the brain. Neuropsycholo- 

gists and computer scientists have argued that complex, 

interesting problems tend to require iterative proce- 

dures (or networks) for their solution. Many other crit- 

icisms have been raised, which merit serious attention. 

Section 2 of this paper will review a different for- 

mulation of backpropagation, developed in the period 
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between 1968 and 1974, which can overcome many of 

these difficulties. This formulation deals with the gen- 

eral case of nonlinear systems of equations. It lacks the 

concrete, specialized appeal of Rumelhart’s discussion, 

but it can apply to neural networks, econometric mod- 

els, and other systems as special cases. Applications to 

prediction, optimization and sensitivity analysis become 

possible; as an example, this paper will discuss an ap- 

plication to the sensitivity analysis of a natural gas 

market model developed by the Department of Energy. 

Werbos (19874) discussed at length a research strategy 

for brain research and factory automation based upon 

this formulation. 

Section 3 of this paper will show how derivatives 

may also be propagated through recurrent networks 

(such as those discussed by Grossberg, 1976 and Hop- 

field and Tank, 1986) without the expensive storage of 

information for each iteration (as required by the ap- 

proach of Rumelhart et al., 1986). Our approach will 

require storage, however, to handle true external time 

lags; the significance of this will be discussed, along 

with ways to implement this storage and issues related 

to real-time adaptation. When external time lags are 

totally absent, our method is closely related to the
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method of Almeida (1987), though slightly more gen- 

eral. 

Finally, Section 4 will display a practical application 

of the methods given in Section 3—an analysis of the 

properties of a natural gas market model, actually used 

by the Department of Energy several years ago. The 

conclusions of this analysis were double-checked by ex- 

plicit numerical perturbations of the model. This anal- 

ysis provided an insight into the limitations of the 

model, which are related to certain limitations of mul- 

tiple regression, the method used to estimate (adapt) 

the model in the first place. Multiple regression is closely 

related to the generalized delta rule for network ad- 

aptation; however, alternative estimation (adaptation ) 

rules exist which have overcome these limitations in 

simulation studies and in several practical examples 

(Werbos, 1974, 1983a, 1988a; Werbos & Titus, 1978). 

Those alternative rules are consistent with the general 

framework proposed here. 

2. GENERAL FRAMEWORK: BACKGROUND, 

TERMINOLOGY, AND APPLICATIONS 

Rumelhart, Hinton, and Williams (RHW) 

Debates about backpropagation have been confused, 

in part, by different definitions of the word. The index 

to Rumelhart et al. (1986) defines the word backprop- 

agation by pointing to three pages of text which discuss 

the generalized delta rule. The generalized delta rule, 

in turn, is defined as a set of three steps to be applied 

to feedforward networks. (RHW also discuss recurrent 

networks, but that extension will not be discussed until 

Section 3, in order to simplify things here.) RHW spec- 

ify feedforward networks as: 

Opj = Ji{netp;) () 

Net,) = DL WiKOpe = Dy Wx fe(Metpx), (2) 
k k 

where 0, is the output of unit number / for pattern 

(observation) number p, where f; is some differentiable 

function, where w;; is a weight to be adapted, and where 

the processing units are assumed to be ordered ina 

feedforward fashion. In a feedforward network, the 

summation over k in Equation (2) can run from | to 

j — 1, in principle. Some readers have interpreted this 

to mean that the network must be fully connected; 

however, even in the RHW formulation, most of the 

w;. could be fixed to zero, in a practical application, 

so that the physical connections and the required cal- 

culations can both be sparse. 

The first of the three steps in the generalized delta 

rule (p. 327) is a calculation for the final outputs of 

the network: 

8pj = (tpi — Opi) f j(mety;), (3) 

where f,; is the teaching or target value for the output 

of unit number j and ‘is just the derivative of f;. This 
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step is explained (p. 323) by noting that 6,; is just the 

derivative of error, E,, with respect to net,;, defined as: 

N
i
l
 

Ey = (lpi 7 fy(met,;))? (4) 

i 

The second step (p. 327) is a calculation for all other 

units j which output to units k: 

5pj = f(Metp) D Spx Wei 
k 

= 2 Spx f j(Metp;) We; (5) 

This step is explained (p. 326) as a way of calculating 

the derivatives of E,, with respect to all of the net,;, in 

a single pass of calculations, based on an informal ap- 

peal to the chain rule for differentiation. The third step 

(p. 330) is a procedure to adapt the weights of the 

network: 

Aw y(n t+ 1) = a(6,;0p1) + nAw;i(n) (6} 

Note that 6,;0,; is simply the derivative of E, with re- 

spect to Wii. 

A More General View of Backpropagation 

Researchers in this field sometimes use the term 

backpropagation to refer to the second step above, or 

to all three steps, with or without variations. Again, 

Rumelhart et al. (1986, Index) appear to refer to all 

three steps. We would propose that the term backprop- 

agation should include any three-step or three-com- 

ponent procedure for adapting a network, in which the 

three steps are: 

e An output evaluation component (OEC), which 

evaluates how successful the ultimate outputs of the 

network are in minimizing or maximizing something. 

In other words, the OEC defines what the network 

is supposed to minimize or maximize. More pre- 

cisely, the OEC provides the derivatives of some eval- 

uation function (such as error) with respect to the 

ultimate outputs of the network. Equation (3 )—the 

OEC of the generalized delta rule—calculates the de- 

rivatives of square error, the error function which is 

minimized in nonlinear regression; thus, from a stat- 

istician’s point of view, the generalized delta rule is 

basically one more numerical way to implement 

nonlinear regression, a well-known, well-studied sta- 

tistical method. (See Brode, Werbos, & Dunn, 1975; 

Dennis & Schnabel, 1983; SAS Institute, 1986, Wer- 

bos, 1988a.) 

e Dynamic feedback, a method for calculating the de- 

rivatives of error or loss with respect to the inter- 

mediate outputs and weights within the network. 

(Werbos, 1974, 1982.) Strictly speaking, this is the 

only component which actually propagates infor- 

mation backwards along a network. This paper will 

use the term “dynamic feedback” to refer to this
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component, in part because this term was used in 

the original papers on this concept, and in part be- 

cause the term backpropagation usually refers to the 

combination of all three components. 

e A convergence method or solution algorithm, a 

method for responding to the derivatives (and/or 

other local information ) by adapting the parameters. 

This may involve a simple proportionate response 

(steepest descent), or conjugate gradient methods 

(which include (6) as a special case, but which pro- 

vide procedures for adjusting the sensitivity constants 

a and ), or more complex methods like those which 

have worked in complex practical applications ( Wer- 

bos, 1983a). Surprisingly, some of the classical 

methods from statistics and numerical analysis 

(Dennis & Schnabel, 1983) can be applied with O(7) 

storage in exact or near-exact form (Werbos, 1988b). 

Origin of the General View 

Background. The intuitive notion of backpropagation— 

of adaptation and optimization based on a flow of feed- 

back backwards through a neural system, specifically 

related to the issue of brain functioning and artificial 

intelligence—was published in Werbos (1968), albeit 

in a clumsy linear version. A nonlinear version, essen- 

tially equivalent to the generalized delta rule, was pro- 

posed in various documents circulated in 1971 and 

1972. At that time, applications to artificial neural net- 

works were not considered interesting or acceptable to 

much of the scientific community. Therefore, the 

method was generalized to permit applications to more 

conventional forecasting applications (Werbos, 1974). 

Werbos (1974) also cited related work in control 

theory, which also used backwards flows of information 

to identify systems, albeit in a different way. The for- 

mulation to be given below could have been derived as 

an extension of control theory, but I found it easier 

simply to prove (9) directly. Likewise, I found it much 

easier to apply (9) directly to neural-like problems than 

to extend and generalize the more complex and indirect 

methods of control theory. This is especially true with 

stochastic optimization, where the notation can oth- 

erwise get quite complex. Nevertheless, a reviewer has 

suggested that Athans and Kalb (1966) came surpris- 

ingly close to the kind of approach presented here; the 

details are beyond the scope of this paper, in part be- 

cause I have never seen the book. For an easy tutorial 

on my 1974 formulation of backpropagation and var- 

ious alternatives, see Werbos (1988a ). 

The generalized formulation of 1974 began by ob- 

serving that the “training signal” (f,; in Equation 3) is 

really just a vector t, which the network tries to repro- 

duce or predict. Any set of functional relations can be 

represented as a network. Likewise, the problem of 

“adapting weights” in a neural network is just a special 

case of the problem of estimating the parameters of a 
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general functional model. The use of square error and 

steepest descent in estimating a model had been estab- 

lished decades before; therefore, the novel feature of 

backpropagation in this formulation was the use of dy- 

namic feedback in combination with those two com- 

ponents. 

(First order) dynamic feedback was defined as a 

method for calculating the derivatives of some function, 

L, of the inputs and outputs of a feedforward system, 

in a single pass through the system. 

Feedforward Systems. A feedforward system is defined 

as follows, in the most general formulation. First, there 

are m input variables, x, through x,,, which include 

all of the parameters or weights of the system, as well 

as those variables which are normally thought of as 

inputs to the system. (By including the weights as vari- 

ables, one simplifies some of the later calculations.) 

These variables form an m-component vector, X. Then 

let x; through xy denote ail of the variables of the sys- 

tem; these variables form an N-component vector x, 

of which X is essentially a subset. Let fj, forj= m+ 1, 

..., N, be the differentiable functions which corre- 

spond to the functions implemented by the network 

components. This means that for j= m+1,...,.N: 

». Xj-1): (7) 
Finally, we denote the function which we wish to min- 

imize (or simply to differentiate ) as: 

xXp= SX, -- 

L=L(x,,..., Xn). (8) 

Note that this paper will frequently use small letters 

(like x) to refer to internal inputs or functions within 

a system, and capital letters (like X) to refer to the 

inputs or outputs of the system as a whole; this dis- 

tinction is important, because both levels of analysis 

will be discussed. 

The network formulation in (7) and (8) is more 

general than it might appear at first. As with (1) and 

(2), for example, the functions f; may form a sparse 

network, in practice, which simplifies the calculations. 

To make this apparent, and to make the applications 

to parallel computers more explicit, I have sometimes 

spelled out (7) explicitly for the special case of a mul- 

tilayer network (Werbos, 1987a, Appendix); however, 

this paper will try to be more general and to avoid the 

additional notation required to make that example ex- 

plicit. 

Notice that (7) and (8) make no reference to time 

t or to pattern number p. As a result, there is a choice 

between two (or more) different ways of using these 

equations in practice to represent a network. When 

there is no connection at all between variables at dif- 

ferent times or for different patterns (as in Equations 

1, 2, and 4), it is possible to identify the variables of 

the system at any time with the variables x; of Equations 

(7) and (8). For example, the RHW system can be
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represented in our framework by identifying our series 

X1°**Xy with the following RHW variables, in order: 

wx and other inputs, net,,, net 2, °° Netp,, 

where n is the number of neurons and by identifying 

our L with their E,. (Note that the variables 0,; for 

neurons within the system are not necessary; Equations 

(2) and (4) can represent the system without referring 

to them.) We can then go on to calculate the derivatives 

of L with respect to the weights for each pattern indi- 

vidually, as RHW do, and then add up these derivatives 

across different patterns. The details of this equivalence 

are discussed in Werbos (1988a, 1988b). In brief, the 

RHW feedforward networks are a special case of equa- 

tions 7 and 8. 

When studying dynamic systems, this kind of simple 

formulation is not possible. For example, if net,, uses 

net,-;,2 as one of its inputs, where ‘“t” refers to time 

and “‘t — 1” is the previous observation or pattern, then 

a more complex use of (7) is needed. Each variable x; 

in Equation (7) would then refer to a specific neuron 

ata specific time; the activation level of the same neuron 

at a different time would have to be treated as a different 

variable, for purposes of (7). In this case, (7) would 

say that each neuron is allowed to input the outputs of 

earlier neurons from the same time, as well as the out- 

puts of all neurons from earlier times. Sections 3 and 

4 will give more examples of this sort. In some appli- 

cations at the Department of Energy, we have even 

worked with systems where two time-dimensions were 

necessary (Werbos, 1988a); even there, there was no 

difficulty in using dynamic feedback, because there was 

a definite sequence of calculation, which determined 

which variables at which points would be calculated in 

which order. 

The Chain Rule. First-order dynamic feedback is de- 

fined as the use of the chain rule for ordered derivatives, 

in order to calculate the derivatives of L with respect 

to the system inputs. The chain rule for ordered deriv- 

atives (proven in Werbos, 1974) may be written: 

+ N + 

OX, OXK cgay OX; OXK’ 
  

where the plus signs indicate ordered derivatives, and 

the derivatives without plus signs refer to conventional 

partial derivatives of the functions L and /;. The con- 
ventional partial derivatives are calculated by differ- 

entiating the functions L and f; as they would normally 

be written, as functions of their direct arguments as 

listed in (7) and (8) without any substitutions. Since 

the functions /; usually depend on only a small portion 

of the earlier variables, x;, in practice, the partial de- 

rivative on the far right is usually zero for most com- 

binations of j and k; therefore, the summation on the 

right is usually very sparse and simple. In formal terms, 

the ordered derivative of ZL with respect to x; refers to 
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the derivative of L expressed as a function of x; + + + xx, 

where the dependency of ZL on Xz41;* + *xXy has been 

eliminated by substituting in from the equations (7) 

which equate their values to the functions f,41+ °° fy. 

In intuitive terms, the conventional partial derivative 

refers to the direct causal impact of x, on L, while the 

ordered derivative refers to the tota/ causal impact, in- 

cluding direct and indirect effects, both. 

Equation (9) is usually simple to apply as a recursive 

relation, in practice. One begins by calculating the or- 

dered derivative with respect to x, for which the sum- 

mation on the right is null. One then proceeds back- 

wards to Xy-,, Xv--2, on down to x;. For example, to 

apply (9) to the RHW system (Equations 1, 2, and 4), 

one would normally begin by allocating an array to 

hold the ordered derivatives; ‘““delta(k)” could be used 

to hold the ordered derivative of L with respect to x;,. 

Then, for each variable x, in the system, one would 

identify which other variables (x;) that variable may 
have a direct impact on; one would differentiate the 

functions f; with respect to x;,, and substitute the result 

into (9), which then becomes a concrete recursion 

equation for the special case at hand. 

In the RHW system, for example, (5) is the special 

case of (9), where “delta” is used to hold the ordered 

derivatives, and where x; is one of the internal variables 

net, ;; this is particularly obvious when we compare the 
rightmost side of (5) with the conventional derivatives 

of the rightmost side of (2). (Note that our f; here 

includes the whole right side, and not just RHW’s 

function “ f;’.) 

Note that (9) also eliminates the artificial distinction 

between neurons whose output goes outside the system 

and neurons whose output is used internally. As with 

(7), there is no reason to limit oneself to fully con- 

nected, rigidly structured networks; if (7) has a sparse 

structure, which allows for efficient implementation on 

a parallel computer or circuit, then (9) will automat- 

ically have this property as well, at least if it can add 

efficiently. 

Ordered derivatives are important in many other 

applications besides neural nets. As a result, a host of 

informal names have been developed for this concept, 

as used in different applications. For example, econo- 

mists speak of impact multipliers, control theorists 

speak of variational derivatives, and many people speak 

of time-dependent Lagrange multipliers. The use of 

mathematically oriented language may help reduce the 

kind of fragmentation which encourages workers in dif- 

ferent applications to continually reinvent the wheel. 

Early Applications and Development. The first actual 

application of backpropagation was in estimating time- 

series models used to predict nationalism and social 

communications, developed by Prof. Karl Deutsch. 

Ironically, backpropagation was not used to implement 

ordinary least squares (regression ), which had already
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been tested in this application by use of conventional 

software. Instead, it was used to implement more ad- 

vanced statistical methods, which would have been too 

costly to use without backpropagation. The results were 

documented in Werbos (1974), embedded (and doc- 

umented ) in user-oriented software in an MIT version 

of the Time-Series Processor (Brode et al., 1975), and 

discussed in Werbos (1977), which emphasized the po- 

tential value of the same general mathematics for fore- 

casting and for brain modeling. A general survey of 

applications—to neural modeling, optimization, sen- 

sitivity analysis, and estimation—was presented to the 

International Federation for Information Processing 

(IFIP) in 1981 (Werbos, 1982), along with diagrams 

illustrating both Equation 9 and several generalizations 

to calculate second-order derivatives economically. 

These generalizations were quite different from David 

Parker’s second-order backpropagation, which is es- 

sentially a new alternative to steepest descent as a con- 

vergence method (Parker, 1987). The primary ideas 

here were widely transmitted, both in writing and oth- 

erwise. 

Applications of Backpropagation in the General 

View: Prediction 

In the delta rule, the target vector t, is a vector to 
be reproduced or predicted by the network. The dis- 

tinction between reproduction and prediction is essen- 

tially meaningless here, since in both cases we try to 

match the target vector over previous observations and 

we hope that the match will still be valid in future ob- 

servations. Most of the current research on backpropa- 

gation—like our own empirical work-—has focused on 

this problem of reproduction or prediction. 

Using the notation of statistics, the delta rule is trying 

to address the well-known problem of estimating b so 

as to improve the predictions: 

¥(t) = F(X(z), b), (10) 

in the special case where F happens to be represented 

as a network of elementary units, where the parameters 

b happen to be interpreted as a collection of weights, 

and where the observations (t) may be interpreted as 

patterns presented to the system. Here, X (¢) is the vec- 

tor of inputs for observation or time number ¢, and 

y(t) is a prediction of the target vector y(t). As discussed 

after (7), we use a capital letter (e.g., F) to refer to the 

vector function which describes the system as a whole; 

this is different from the /;, the functions which rep- 
resent individual components of the system. In a feed- 

forward system, the components of y(t), 9, (¢) through 

J,(t), would correspond to the last m components of 

the vector x as given in (7). 

The use of backpropagation in some form is basically 

necessary to solve this problem. One cannot find the 

value of b which best fits the historical or training data 
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unless one has some definition of the word “best,” some 

measure of the quality of fit; thus an error measure or 

loss function (such as Equation 4 or the many alter- 

natives used by statisticians) is more or less unavoid- 

able. Admittedly, this measure might not be an explicit 

part of the adaptation procedure. More importantly, 

however, one cannot expect to minimize such a measure 

efficiently without exploiting the derivatives of that 

measure with respect to the parameters. Long experi- 

ence in numerical analysis has shown the central, un- 

avoidable importance of knowing the derivatives when 

minimizing or maximizing a complex function of many 

variables (Dennis & Schnabel, 1983). This makes it 

essential to use dynamic feedback—to calculate the 

derivatives at an acceptable cost—to adapt any complex 

network F, in the general case; that in turn leads to the 

backpropagation strategy. 

To improve the power of backpropagation in coping 

with the prediction problem, one needs to look more 

closely at each of its three components, and at the for- 

mulation of the prediction problem itself. The output 

evaluation component (like Equation 3) or error func- 

tion (Equation 4) define what a statistician would call 

the estimation method. The other two components are 

simply a numerical procedure for implementing or ap- 

proximating the estimation method. 

Unfortunately, (10) does not do full justice to the 

kinds of prediction problems which occur in many ap- 

plications. For example, in econometric forecasting 

(Werbos, in press), the variables to be predicted are 

often predicted as functions of their own values at a 

previous times. In other words, the problem is to es- 

timate b in: 

X(t + 1) = F(X(0), u(d), bd), (1) 

where X is a vector of observed variables to be pre- 

dicted, where b is a vector of weights or parameters, 

and where u is a vector of auxiliary input variables. 

This kind of prediction over time is also essential when 

performing optimization over time (to be discussed in 

the next section). Even Grossberg’s explanations of 

learning require the existence of circuits which some- 

how learn to produce expectations or predictions of the 

near-term future (Grossberg, Levine, & Schmajuk, 

1987). 

Superficially, (10) and (11) may appear to be special 

cases of each other. For example, we can use a super- 

vised learning system, based on Equation 10, to predict 

X(t + 1), simply by defining y(t) as X(t + 1) and 

defining the system input vector as X (¢) combined with 

u(t). Unfortunately, this approach does not lead to the 

best possible forecasts over time, especially if one is 

concerned with predictions over more than one period 

into the future. When ordinary regression (least 

squares) is used to estimate a model which predicts 

variables at time ¢ + 1 as a function of time ¢, then the 

forecasts for several months out will tend to deteriorate,
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due to cumulative error effects. (There are tricks to 

avoid this, in some kinds of econometric models, which 

would not work for neural networks.) Cumulative errors 

of this sort would be impossible or unavoidable if reality 

fit a simple model, perfectly, and if all errors were due 

to random white noise; however, this is not generally 

the case (Werbos, 1983a, in press). Section 4 will dis- 

cuss an example of this problem, in detail, as it arises 

in a real-world forecasting model based on least squares. 

More to the point, better forecasts have been obtained, 

in many empirical examples and in simulation studies, 

by using estimation methods which explicitly represent 

the notion of forecasting over time (Werbos, 1974, 

1983a, in press; Werbos & Titus, 1978). The best results 

have been obtained with methods which explicitly try 

to minimize error in multiperiod forecasting. 

These methods can be translated into recipes for 

building neural networks by adopting the 3-net archi- 

tecture shown in Figure |. In mathematical terms, Fig- 

ure | represents a 3-equation model used to predict 

X(t): 

R(t + 1) = FI(R(z), b1) (12a) 

R(¢t+ 1) = F2R(2+ 1), X¥(2+ 1),b2) (12) 

X(e+ 1) = F3(R(t + 1), b3), (12c) 

where ali three functions are implemented as feedfor- 

ward networks and where some additional arguments 

would be allowable (Werbos, 1987b). The vector func- 

tions F1 and F3 both represent networks to predict 

something, while F2 calculates what F1 tries to predict; 

nevertheless, one can adapt all of the weights together— 

bl, b2, and b3—by trying to minimize the sum of 

squared error across all components of X and all com- 

ponents of R, across time. Dynamic feedback can cal- 

culate the derivatives needed in this minimization. See 

Werbos (1988b) for the details of how to implement 

this, using RHW-like networks. 

This 3-net arrangement has close connections with 

statistical methods associated with Box and Jenkins and 

Kalman filtering; for example, in the simplest appli- 

cations of Equations (12), the R vectors would be fil- 
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FIGURE 1. Three-net architecture. 
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tered versions of the X variables. Werbos (1987b) elab- 

orates on these connections, and explains how this kind 

of procedure can lead to more accurate forecasts over 

time than a direct use of (10) would; furthermore, it 

explains why it is usually important to minimize a 

weighted sum of squared errors, and to give different 

weights to different variables. For example, when the 

prediction networks are used as part of a larger opti- 

mization system (to be described), there will auto- 

matically be information available about the derivative 

of long-term utility with respect to each variable R; and 

X;; if variables are weighted according to the variance 

of these derivatives (plus the variance of error deriva- 

tives as well), then the system will give greatest weight 

to stable, persistent variables—-which should lead to 

better multiperiod forecasting. Note also that the vari- 

ables R;, in Equations (12a) and (12b), depend on their 

own past values, in such a way that the system may 

“remember” a few periods back; Equation (11) does 

not provide that capability. 

Many researchers have criticized the use of back- 

propagation even with (10), the problem of supervised 

learning. Some have recommended the use of content- 

addressable memory instead. Content-addressable 

memory systems may converge faster than backpropa- 

gation, but this would be of little interest if they were 

converging to the wrong answers (i.e., inconsistent es- 

timators of the weights). Under certain conditions, 

however (Werbos, 19&7b, 1987c), we have found that 

their estimates may be justified, statistically, if we ac- 

count for the role of prior probabilities (discussed in 

Werbos, in press). When these conditions can occur, 

the ideal adaptation scheme would be a synthesis of 

least squares and content-addressable memory. A syn- 

thesis of this sort could be used instead of simple least 

squares in adapting (12a) and (12c) in the 3-net ar- 

chitecture (though (12b) is a different matter). 

In general, these kinds of statistical methods offer a 

hope of greater robustness, statistical efficiency, and 

generalizability, based not on speculation but on de- 

cades of experience with a huge variety of applications. 

All of these hopes involve the accuracy of the predictions 

which result when the network is used to predict new 

situations, not in the training set. This still leaves open 

the questions of how to propagate the required deriv- 

atives through a network, and of how to choose a con- 

vergence method. 

The choice of convergence method (like Equation 

6) should not be confused with the choice of estimation 

method. The convergence method basically determines 

the number of iterations or cost of minimizing error 

over the training set. Admittedly, there are some error 

functions which place a greater stress on the conver- 

gence method, because they are harder to minimize. 

These are mainly “stiff” error functions, which contain 

sharp hills and valleys when graphed as a function of 

the parameters b. Smooth, fuzzy error functions are
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easier to minimize. Unfortunately, the error or fuzziness 

in estimating parameters is directly related to the fuz- 

ziness of the error function; therefore, those error mea- 

sures which pinpoint the weights most accurately are 

precisely those error measures which are hardest to 

minimize. In summary, one should not expect superior 

estimation methods (error functions) to reduce the 

number of iterations required to analyze a fixed training 

set with a fixed convergence method; one might even 

expect the opposite. To reduce the number of iterations, 

we should try instead to develop more powerful con- 

vergence methods, which are capable of supporting 

more sophisticated estimation methods. Fortunately, 

there are many convergence procedures which have 

worked on complex practical problems which steepest 

descent (or its equivalents) could not handle (Dennis 

& Schnabel, 1983; Werbos, 1983b, 1988b). 

When there is no fixed training set (as in organic 

intelligence, where experience accumulates steadily and 

old events cannot be truly relived), there are additional 

complexities; however, we cannot expect to understand 

these complexities until we understand the simpler sit- 

uation of adaptation with fixed training sets. 

Applications of Backpropagation In the General 

View: Optimization Over Time 

There are many practical problems where a “target 

vector” would not be available. For example, in ro- 

botics, we may know what a robot is supposed to ac- 

complish, but we may not know a priori what its sched- 

ule of movements should be to accomplish its task at 

minimum cost. Instead of a target vector, we may have 

a notion of what we want the system to accomplish 

over time, a notion which implies some kind of success 

measure or utility function to be maximized over time. 

If we cannot devise such a measure, then we cannot 

discriminate between better performance and worse 

performance, and we cannot say whether our design 

was successful or not even after the fact. Also, there is 

no assumption here that the system must have access 

to an explicit representation of the utility measure as 

a function (though such information can be exploited, 

if available). 
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This problem of utility maximization over time may 

also be a useful representation of adaptation problems 

faced by organic systems ( Werbos, 1986, 1987a). Hin- 

ton (1987) has referred to this problem as the rein- 

forcement learning paradigm. Unlike the paradigm of 

totally unsupervised learning, it provides an explicit 

basis for Unconditioned Stimuli or primary reinforce- 

ment, which ensures that a system will not be essentially 

indifferent to biological drives and social feedback. 

Werbos (1987a) has shown how this optimization 

problem can be solved (approximately) by tying to- 

gether three distinct networks, each to be adapted by 

backpropagation but each with a different output eval- 

uation component. The basic idea is illustrated in Fig- 

ure 2 (although there are further complexities required 

to extend the idea to systems as complex as the human 

brain). 

The middle box in Figure 2 basically contains the 

entire system shown in Figure 1. ( Figure 2, like Figure 

1, is taken from previous papers using slightly different 

notation.) 

The upper box—-the “strategic assessment” network 

or “‘ J network”’—outputs something like an evaluation 

of how well the system is doing, in making progress 

towards its goals. More precisely, this network would 

represent an approximation to the “7” function for the 

optimization problem. The J function comes from dy- 

namic programming, and is defined as follows: the 

strategy of maximizing J in the short-term (1.e., picking 

actions u(t) so as to maximize J(f + 1)) is equivalent 

to maximizing the utility function U in the long term 

(maximizing expected U(t’) over all future times f¢’). 

Intuitively, the J function corresponds to the notion of 

conditioned reinforcement, to the static position eval- 

uators sought in game-playing artificial intelligence, to 

the measures of net present value used by economists, 

and to other similar ideas (Werbos, 1986). 

As with the problem of prediction, there are several 

different methods which could be used to adapt the J 

network. One of them—heuristic dynamic program- 

ming (HDP) (Werbos, 1977, 1987a)—is similar to 

conventional backpropagation, with the network 

adapted to make its output variable, J(R(1t)), do a 

good job of predicting U(t) + J(R(t + 1)— U), where 

  

      

  

    

basic, long-term Strategic strategic 

goals (U) Assessment goals (J) 
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Analysis of . . ~ 
current Cause tnd Effect, simulated reality R > 

information| x(t) Dynamic Modeling | A(t+1)=f (R(t), u(t), noise)       

    ‘ 

Tactical Operations, \u(t) to maximize J(f(..ult).)) 

Optimization 
> 

FIGURE 2. Three core components of an intelligent system (J, f, u).
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U is the utility measure and U is a constant used to 

prevent drift in the range of the function. More real- 

istically, U(t) may be physically represented as a 

weighted sum U;x;(t), such that the final output of the 

J network can be a set of components, J;, each adapted 

to predict the corresponding U,x;(t) + J;(t + 1) — U;. 

Another method—dual heuristic programming— is 

slightly more sophisticated, but can still be imple- 

mented by use of first-order backpropagation. A third 

method—globalized dual heuristic programming 

(GDHP)—fully exploits the cause-and-effect infor- 

mation embedded in the middle box, but requires sec- 

ond-order dynamic feedback for its implementation 

(Werbos, 1987a, 1979, 1982, 1988b); the details are 

too complex to present here. The required form of sec- 

ond-order dynamic feedback, like first order dynamic 

feedback, calculates all the required information at a 

cost which is only proportional to the cost of one pass 

through the original network. 

Using the HDP method, at least, it is possible to 

forego the middle box and use experience itself (without 

any simulations ) to adapt the / network. The resulting 

J network would be quite similar to the adaptive po- 

sition evaluator used in Samuels’ checker playing pro- 

gram, or to the adaptive critic used by Barto, Sutton, 

and Anderson (1983). The work of those authors proves 

that adaptive optimization is already a practical (or 

superior) alternative to conventional methods. Sutton 

has also noted the need for an adaptive model to predict 

the environment when dealing with more complex 

problems, like those of robotics in realistic factories. 

Optimization through backpropagation could also be 

implemented in more conventional software for use in 

policy analysis, business decision-making, and the like 

(Werbos, 1986). 

The network in the bottom box would simply de- 

termine the actions, u(t). It would use the derivatives 

of J (propagated back through the other networks) as 

its output evaluation component. 

3. PROPAGATING DERIVATIVES IN 

RECURRENT SYSTEMS 

Overview 

This section will derive a procedure for calculating 

the derivatives of any evaluation function Z with respect 

to the weights and intermediate variables in a recurrent 

network. The function L could represent prediction 

error, or a J function (as defined above), or simply a 

function we are interested in studying for its own sake. 

It can be any differentiable function of the network 

variables (as in Equation 9). 

The purpose of this section is simply to generalize 

the dynamic feedback procedure, for use with networks 

more general than (7). This generalization could be 

used with some of the complex architectures from Sec- 
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tion 2, but we will deliberately avoid limiting ourselves 

to those special cases (just as we did in formulating 

equation 9 itself). In order to visualize this generaliza- 

tion, it may be easier to think in terms of simple su- 

pervised learning problems (as in Equation 10) where 

the function F can be represented as a recurrent net- 

work (not a feedforward network). In other words, this 

generalization allows one to adapt networks just like 

(1) and (2), except that all neurons are allowed to input 

the results of all other neurons, without regard to which 

neuron is earlier and which neuron is later. As the critics 

of backpropagation have pointed out, a single layer 

network of this kind can represent very complex al- 

gorithms which cannot be represented in simple feed- 

forward networks; for example, it could learn to rep- 

resent the specific, iterative calculations which are fun- 

damental to applications work in adaptive object 

recognition and speech recognition. 

Rumelhart et al. (1986) define recurrent networks 

as networks in which a unit can take input from units 

downstream from them, though with a time delay. In 

describing their basic framework (Rumelhart et al., 

1986, Chap. 2), they stress that the time delay is in- 

tended to be an approximation to a continuous-time 

system, the kind of system which Grossberg (1976) and 

Hopfield and Tank (1986) have written about. They 

assume that a pattern (p) is presented to the system, 

and that the experimenter can wait until the state of 

the network settles down in response to that pattern. 

Their general framework allows for some relation be- 

tween a pattern p and earlier patterns, but they admit 

that the existing work (like their Chap. 8) does not 

really address that possibility. 

Figure 3 illustrates the RHW approach to back- 

propagation in recurrent networks. For each pattern, 

the vector x is allowed to “settle down” for S cycles of 

the iterative procedure used to approximate a self-con- 

sistent state of the network. Backpropagation (Equation 

9, in effect) is applied in its usual form by treating 

variable values in later cycles as distinct variables, 

downstream from earlier versions of the same variable. 

(For example, x;(p, 5 + 1) is treated as a distinct vari- 

able, different from and later than x;(p, 5).) To calculate 

derivatives all the way back to the start (x(p, 0)), it is 

necessary to work back through all the intermediate 

values; that, in turn, requires that the intermediate val- 

ues be stored. For further details, see Rumelhart et al. 

(1986). 

For our purposes, it is extremely important to allow 

for the interaction between different patterns p, because 

these patterns may refer to different states in the evo- 

lution of the externa! environment across time. I will 

use the letter ‘‘t’? (instead of “‘p’’) to refer to time in 

the external environment, not in the system per se. 

Some critics have argued that the brain cannot possibly 

track discrete time intervals or distinct patterns the way 

a computer might; however, Purpura (in F. O. Schmitt,
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X(p+1) 

  

      

  

FIGURE 3. RHW approach to recurrent networks. 

1970, 1971) has observed discrete clock pulses, of the 
required sort, going from the nonspecific thalamus to 
the giant pyramid cells of the cerebral cortex. Foote 
and Morrison (1987) have observed similar pulses from 
subthalamic centers. 

In our framework (illustrated in Figure 4), there are 
actually two kinds of recurrence to be considered: 
¢ Time lags, in which the present system output is a 

function of earlier signals from the previous external 
time period (¢ — 1). 

© Grossberg / Hopfield recurrence, in which there is an 
immediate response to other units. 

Our approach still requires the storage of a complete 
database, including at least X(¢) and y(t — 1) for all 
external time intervals (patterns) ¢. Such a database is 
normally built up anyway in standard statistical analysis 
programs, and we have handled this kind of recurrence 
in our earliest work (Werbos, 1974). Such a database 
is not built up in true real-time systems like the brain, 
to be discussed at the end of this section. 

For the second kind of recurrence, we will calculate 
the required derivatives directly, without using knowl- 

edge of intermediate approximations; this is the main 
difference between the current paper and earlier forms 
of backpropagation. As in conventional backpropaga- 
tion through feedforward networks, the cost in time 
and the cost in storage are both about the same as the 
costs of running the network in the forwards direction. 
‘Two versions of this method will be presented—a ver- 
sion aimed at aggregate-level calculations (see Equa- 
tions 30, and their application in Section 4), and a 
version aimed at continuous-time neural networks 
(Equations 31 and 32, and auxiliary equations). 

When the second kind of recurrence is present, but 
not the first, the need for storing earlier observations 
disappears. In that special case, if the elementary func- 
tions are all (nonhidden) model neurons, our method 
reduces to something nearly equivalent to the work of 
Almeida (1987). (Unfortunately, I have yet to obtain 
Pineda (1987), which may also be related.) 

This section will begin with a review of our earlier 
approach, used when only the first kind of recurrence 
was present. Then we will propose a method for dealing 
with Grossberg / Hopfield recurrence. This method will 
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FIGURE 4. Proposed approach to recurrent networks.
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be expressed in general form, allowing for both kinds 

of recurrence. There will actually be two variants of 

the method, one where the recurrence is “solved for” 

by an equation-solving system, and one where contin- 

uous-time differential equations are assumed to ac- 

complish the same result. 

The methods discussed here were derived as a gen- 

eralization of dynamic feedback, though the aggregate 

form could have been derived as a generalization of the 

“adjoint” method used by Alsmiller et al. (1981), which 

I was aware of at the time. Section 4 will demonstrate 

an application of the aggregate form of this method. 

Review of Classical, External Time Lags 

This subsection will present a formulation of dy- 

namic feedback which is technically a special case of 

(9). However, new notation will be introduced in order 

to make the time dependencies in Figure 4 more ex- 

plicit. 

Let us assume the existence of a network which im- 

plements a functional relationship F: 

y(t) = F(y(t— 1), x), 4), 

where y has 7 components and X has m components. 

The function F is still assumed to depend on the pa- 

rameters b, but there is no need to display that depen- 

dence explicitly here. We no longer need to put a caret 

over the output vector, y, because the true target vectors 

will be left implicit; in fact, the discussion here will 

assume an arbitrary differentiable function L(y(‘),t), 

which may or may not have anything to do with forecast 

error or matching error. Our goal will be to calculate 

the derivatives of L’, defined as the sum of L across all 

times f. (Actually, the calculations will work even if we 

only know the derivatives of the function, rather than 

the function itself.) 

The vector y in (13) would typically include both 

the external outputs of the network and a set of auxiliary 

variables which serve as a kind of memory from one 

time period to the next. In some applications, such as 

economic forecasting, the auxiliary variables will 

sometimes be filtered representations of unknown, ex- 

ternal variables. In applications like real-time control 

systems, where the external time lag may be less than 

a second, the auxiliary variables may represent a kind 

of reverberating short-term memory as described by 

Hebb (1949). In some applications, there is no need 

for auxiliary variables at all. 

In order to represent F as a network, we will assume 

that: 

t=1toT (13) 

» Xj-1(t)), (4) 

where the x;(¢) are components of a vector x(t) which 

represents the total set of variables available as inputs 

or outputs to the network. Equation (14) looks like 

(7), superficially, but the references to a common time, 

x(t) = fl%w,--- 
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t, make this a more specialized formulation; Equation 

7 allowed for any variable x;(1) to receive inputs from 

any variables at earlier times. 

In parallel with (7), we will again assume that the 

external inputs are in the front of this network: 

x(t) = X(t), i= ltom (15) 

but we will leave the parameters b implicit for now. We 

will also assume that the components of y(¢ — 1) come 

next in the x vector, followed by / hidden units, such 

that: 

Xmoilt) = y(t — 1) i=1to n, (16) 

and j in (11) is assumed to run from m + 2 + ltom 

+n+h-+4+nH, so that: 

yilt) = Xmensnvi(L) (17) 

Strictly speaking, if we assume that h = 0, we would 

arrive at a more general-looking structure, more like 

(7) and (9); however, this formulation gives us the free- 

dom to set A greater than zero, which will be useful 

when dealing with continuous-time systems. 

Next, in order to calculate all the derivatives of L’, 

we have a choice of two approaches. Both approaches 

force us to think of x;(f) across all ¢ and all i as the 

system of variables, with variables later in time always 

having a higher implied index (when we apply Equation 

9) in this greater system. (See Werbos, 1974, 1988a for 

some simple examples.) 

In the first approach—the aggregate approach—we 

treat (13) as the equation of the system, and treat the 

components of the vector F as the elementary functions. 

In this case, the application of (9) yields: 

Ze) = 5 (+ eA HNFu(tt+ 1), (18) 

j=l 

where Z,(t) will contain the ordered derivative of L’ 

with respect to y,(f), where the equation is to be eval- 

uated first for ¢ = T (for all k), then T — 1, and so on, 

where the rightmost (summation) term is to be treated 

as zero for t+ T, and where F' is the derivative of F; 

(the jth component of F) with respect to yx. The pa- 

rameter derivatives—-what we really need in most ap- 

plications—also follow directly from (9): 

OL! 

‘Ob; 

22 dF (t +1) 
= 2 = ot a an (19) 

Superficially, (18) may appear as complex as (9) itself 

(since the sum over the right-hand side includes the 

ordered derivatives, Z;(¢ + 1), for al/ subsequent vari- 

ables in the system at a// times); however, there are 

many applications (like Section 4) where each param- 

eter 5; will appear in only one or a few of the functions 

F,, so that the summation over j may be very sparse. 

(Note that we still assume that F depends on the pa- 

rameters b, as discussed above, even though this de-
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pendency has been implicit until now.) The summation 

over time can be carried out efficiently as a running 

sum, backwards in time, in parallel with (18); we will 

show how this can be done in (35c), of Section 4, after 

we have derived a version of this equation for use with 

recurrent systems. This method of calculating deriva- 

tives is very similar to earlier methods from control 

theory. 

In the second approach (which is far more efficient 

for true networks), we treat (14) through (17) as the 

equations of the system, and we treat the f; in these 

equations as the elementary functions. This approach 

(used in Werbos, 1974) is essentially the same as the 

RHW approach for recurrent networks, except that we 

feed the derivatives back to handle external time inter- 

vals instead of internal cycle times in iteration. 

Applying (9) to the set of all variables over space 

and time yields the following set of equations to be 

evaluated as a set, first for all variables at ¢ = 7, then 

for t = T — 1, and so on: 

Zm+ntnrk(t) 

oL mtnthtn of. 

=> (t)+ > 2)(t) oA — (1) + zmaalt + 1), 
OVE jemtnthtk+l OX mtnthtk 

k=ntol (20) 

where the rightmost term is assumed zero for t = T, 

and 

mt+nthtn af; 

A(t)= 2D 2,2) ox, 
jak+1 

(t) k=mt+nthtol. (21) 

Here the variables z,(t) refer to the ordered derivative 

of L’ (the sum of LZ over time) with respect to x;(t). 

As with (9), these equations can be implemented ef- 

ficiently on a parallel computer to the extent that the 

original system (Equation 11) could be. In deriving 

(20) from (9), Iam accounting for the fact that y;,(t) 

can have a direct causal effect (in our assumed network) 

only on some of the later variables—L itself (which 

yields the first term), y(t) variables for J greater than 

k (generating the second term), and x,,;(¢+ 1) (which 

by definition equals y,(t), so that the conventional par- 

tial derivative of Xn+4:(¢ + 1) with respect to y;,(t) is 

just 1). Likewise, (21) has only one term because these 

components of x(t) can only have a direct effect on 

later components of x(t). 

Finally, the derivatives with respect to parameters 

or weights follow directly from (9), and may again be 

read off as running sums: 

aL’ T mtnthtn of; 

==> 2 2(1) oF (t) (22) 
0b; t=] j=itl 

The summations in (20) through (22) are generally 

very trivial and sparse, so long as the functions f; only 

have a few inputs each. 

These equations can be implemented most quickly 

if all components of x(t) have been stored for all t; 
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however, the time cost is increased by only a fixed per- 

centage (circa one-third?) if only the lower-order com- 

ponents are stored and the others regenerated at each 

time ¢ while going backwards. (At most, x; through 

Xm+n are needed, but less will be needed if some com- 

ponents of y(¢ — 1) are for external use only; to exploit 

this, it would help to locate such components in a block 

with higher index numbers in the vector y.) 

Networks Containing Both Types of Recurrence 

Equation (13) may be generalized still further as: 

F(y(t), y(¢—- 1), X(t),)=0, t= 1toT (23) 

where F has the same dimensionality as y. As before, 

the parameters b are still arguments of F, but are left 

implicit. A system of this sort can yield forecasts only 

if we have some method available to solve these equa- 

tions for y(t) when we are given values for y(t — 1) 

and for X(t) and b. In econometric forecasting, this 

system of equations (one equation for each component 

of F) may be typed into a software package such as 

Troll (MIT, 1980) or SAS (1986), which then generates 

the forecasts. In neural nets, (23) may result from a 

hybrid continuous/ discrete system such as: 

Vit) = Fily(), y(t - 1), X(¢), 2), (24) 

where we count on the mechanisms described by Hop- 

field and Tank (1986) to move y(t) quickly to a solution 

which fits (23). (Hopfield’s mechanism works only for 

symmetric networks, but—after establishing definitions 

in Equations 26—I will cite an older, more general cri- 

terion, which is useful here but often difficult to apply.) 

In neurological terms, (24) would reflect the idea that 

some cells have a totally continuous-time response while 

others are partly controlled by some kind of clock pulse. 

Before we can calculate the ordered derivatives of 

L', using either (18) or (9) directly, we need to calculate 

the direct causal impact of changing y(t — 1) on y(?), 

when holding b constant; in other words, we need to 

know what corresponds to the matrix Fin this situ- 
ation. To calculate this, we may begin by taking the 

total differential of (23), which yields: 

G(t)dy(t) + H(t)dy(t — 1) =0 (25) 

where 

G,(t) = OF (y(t), — X(Z), ¢) (26a) 

H,,(t) = OF (y(t), y(t — 1), X(2), 0) (26b) 

dy(t — 1) 

Likewise, to use (19), we will need to calculate the 

causal effect on y(t) of changing b while holding y(t 

— 1) constant; this will be based on an equation like 

(25) but with H(t)dy(t — 1) replaced by J/(t)db, where 

we define:
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OF y(t), yi — 1), X(t), £) Jit) = A) ab, (26c) 

Note that the matrix G will normally be nonsingular 

if (as we must assume) the original system in (23) can 

be solved for over a range of different values of y(t 

~ 1). In fact, for continuous-time systems, (24) can 

only converge if the eigenvalues of G all have negative 

(nonzero) real parts. 

Equation (25) leads to: 

dy(t) = —G"'(t)H(t)dy(t — 1). (27) 

In formal terms, this is just a linear dynamic system 

(albeit in infinitesimal quantities), which can be treated 

as a special case of (13). In fact, if we had taken the 

total differential of (13), we would have arrived at a 

linearized dynamic equation exactly like (27), except 

that the matrix F%, used in (18) would have replaced 

~G7'H. Therefore, in this special case, Fj, of (18) cor- 

responds to the jk component of —(G7'H). By sim- 

ilar reasoning, the rightmost term of (19) corresponds 

with —(G7'J). With these two substitutions into (18) 
and (19), and minor changes to express the results as 

vector equations, we arrive at: 

Z(t) = VyL(t) — H7(t+ YCG(t£4+ 1)) 'Z(t + 1) (28a) 

VL = S -Ptet IG (4+ DIZ + VY, (28b) 

where V, represents the vector of derivatives with re- 
spect to the components of y(t), where the recursion 

is from ¢ = T backwards again, and where the rightmost 

term in (28a) is treated as zero for ¢ = T. 

Asa practical matter-—either in neuron networks or 

econometric models—we do not have the inverse 

(G7(t))”' available. Therefore, (28) cannot be used 

directly as a recursion rule to calculate the derivatives. 

However, we can overcome this problem simply by de- 

fining an auxiliary vector w(t): 

w(t) = —G"(t) 'Z(t). (29) 

When we solve for Z (t) in this equation, and substitute 

the resulting expression for Z(f) into Equations (28) 

(while uniformly shifting back the time index in Equa- 

tions 28), we arrive at the following equations which 

can be used to calculate the derivatives (if we invoke 

them in backwards time): 

Z(t) = -—G"(1)w(t) (30a) 

Z(t—1) = VyLit— 1) + A(t) w(t) (30b) 

VL’ = d J (1) w(t). (30c) 

Equation (30a) still must be solved for w; in other 

words, Z (¢) is the input to the required calculation and 

w(t) is the output. However, this can be done by the 

same mechanism used to solve (23) in the first place. 

This leads to two versions of the method, depending 

on the original solution method. 
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With econometric models, or other systems solved 

on a computer by an equation-solving package, the 

procedure is very straightforward. One can simply write 

down Equations (30) explicitly, and insert them into 

the same equation-solving package. Section 4 will pro- 

vide an example of how one can do this, for a moder- 

ately large model. With fully recurrent nets, unlike (18) 

and (19), the aggregate formulation can be just as ef- 

ficient as the network formulation, i/we take care to 

break down the equations of the model into elementary 

relationships (whose sparsity will be accounted for in 

a good equation-solving package); in other words, we 

can expand the vector y to include the intermediate 

variables, and to enforce the sparsity of the matrices 

G, H, and J. In this manner, a single-layer recurrent 

network can represent anything that a multilayer feed- 

forward network can. (Strictly speaking, however, we 

did break down a few of the longer model equations in 

our application, as will be discussed.) Notice that (30b) 

and (30c) are really just a conventional derivative cal- 

culation, as in conventional backpropagation (Equation 

18), using w in place of Z(¢ + 1). 

With true continuous-time neural networks, based 

on (24), we need to formulate a network representation, 

translate (30b) and (30c) into a network version, and 

then use a continuous-time procedure to solve for the 

vector w. To define the network itself, we may continue 

to use (14) through (17) with the proviso that those 

functions /.(t) which represent components of the 

vector y(t) may also include a dependency on any other 

component of the vector y(£), regardless of whose index 

is the greatest. 

To translate Equations (30) into a network version, 

we begin by finding a continuous-time version of (30a) 

which, at any time f, is the first equation to be invoked 

when calculating derivatives. We cannot deduce a con- 

tinuous-time version from (30a), but we can deduce 

that the following equation yields a solution for w which 

is equivalent to that of (30a): 

W(t) = Zmin(t + 1+ rend (4) y (1) (31) 
jel OVE 

This equation reaches equilibrium when the time-de- 

rivative on the left is zero, which requires that the right- 

hand side be zero. However, the rightmost (summation) 

term in this equation is really just G’w, because the 

derivatives in that term correspond to our original def- 

inition of G applied to this case; therefore, the right- 

hand side of (31) will equal zero only when (30a) is 

satisfied. We already know that the eigenvalues of G 

must all have negative real parts, in order for (24) to 

converge in the first place; therefore, we may be sure 
that (31)—which is linear in the feedback variables— 

will also converge. 

Next, we can translate (30b) into a network version 

quite easily if we exploit our understanding of causal 

flows. We may begin by replacing (23) by:
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OL 
Zmenthek(t) = w(t) + on, (1), kK=I1toan, (32) 

Vk 

Strictly speaking, this does not match (30b) exactly. 

The Z term matches, but the rightmost term in (30b) 

would be zero in this case, and the w,(f) term requires 

explanation. The point is, if we go on to use (21) and 

(22) as they stand, after having invoked (32), we will 

get the correct ordered derivatives for the inputs, be- 

cause (30b) and (30c) both require that we add in 

feedback from w. In fact, (30b) and (30c) do not show 

feedback from the L-derivative through H’” to the lower- 

order derivatives; however, this was due to the exclusion 

of indirect impacts at time ¢ in the aggregate version 

of the net; Equations (20) through (22) should make 

it clear that we do want to account for such effects 

when the network specification permits them. 

In summary, our continuous-time procedure would 

go backwards in time, ¢, to calculate the derivatives. 

At each time f, it would first invoke (31) through to 

equilibrium, and then invoke (32), (21), and (22), in 

that order, going backwards from later variables to ear- 

lier variables. A hybrid approach would continue to 

use an equation-solver to solve (30), and then proceed 

to (32), (21), and (22). 

Strictly speaking, we can generalize this arrangement 

still further by allowing hidden units as well to depend 

on components of the vector y(t). In order to imple- 

ment (30a), we then need to allocate another vector z’ 

of length /, to establish the convention that z44,(1) 

refers to w;,(t), to add the equation: 

htn 
0 mnt 2) = > 2) 2 (0, (33) 
OXm+ntk 

and to add the following term to the right-hand side of 

(31): 

= Gmc z(t). (34) 

This generalization will not be considered further, be- 

cause its value is questionable in neural applications; 

however, it is necessary to use this generalization, in 

principle, to describe what we did in our application 

in Section 4 (when “‘hidden variables” were defined in 

order to break up a few big equations). 

In both versions of the method—equation-based and 

continuous—the difficulty of solving for w depends on 

the eigenvalues and sparsity of the matrix G; since this 

is also true for the forwards version of the system 

(Equations 23 or 24), but the forwards version is non- 

linear, the calculation of w(t) should never be more 

expensive than the calculation of y(z) in the forwards 

system. Likewise, the cost of running (31), (21), and 

(23) should be comparable to the usual costs of running 

conventional backpropagation through one iteration. 

The storage costs (aside from the need to store one 

additional vector, w) are the same as those of back- 
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propagation in a network without the continuous-time 

recurrence. In the case where y(¢ — 1) is not actually 

used in (23) or (24), so that continuous-time recur- 

rence is the only form of recurrence, there is no need 

to store any information at all from earlier times r. 

Issues Related to Real-Time Adaptation 

Two different adaptation strategies are now used with 

backpropagation, when adapting artificial neural net- 

works. Both strategies involve iterating through the data 

base or training set many times, until the estimated 

values of the weights settle down or the level of error 

is acceptably small. 

Hinton (1987) calls one of these strategies “batch 

learning.” In batch learning, each iteration begins with 

a calculation of the derivatives of error with respect to 

the weights, summed up over all patterns exactly as 

indicated in (19). The weights are then adapted in pro- 

portion to these derivatives (or by use of more sophis- 

ticated methods using the derivatives). Then a new it- 

eration begins. Statisticians almost always use batch 

learning, as I have myself when using three-net type 

architectures. The best convergence rates I have seen 

so far with artificial neural networks have involved 

the use of batch learning and sophisticated numer- 

ical methods, even when an O(n) storage constraint 

is imposed and the higher cost per iteration is ac- 

counted for. 

The other strategy I usually call pattern learning. In 

pattern learning, one does not wait to calculate the en- 

tire sum in (19) before adapting the weights. One cal- 

culates the component of (19) for pattern number f, 

adapts the weights immediately, and then moves on to 

the next pattern. This kind of approach can be used 

with continuous-time or simultaneous-time recurrent 

networks, exactly as it can with feedforward networks. 

When external time-lags are present, however, pattern 

learning leads to an inconsistency between the values 

of y(t) currently available and those implied across all 

time by the new set of weights, after the weights are 

adapted for a given observation; as a result, big learning 

rates could lead to a failure to converge in some cases. 

However, there are similar problems which can lead to 

divergence even when pattern learning is used to adapt 

feedforward networks. (With external time-lags, the 

problem might be reduced by adapting weights only 

during the backwards pass, i.e., backwards through the 

set of patterns.) Because of the current need for small 

learning rates, convergence times have been very long 

with pattern learning, even with feedforward networks; 

however, this merely underlines the need for further 

research, to adapt the methods of numerical analysis 

and to combine the power of backpropagation and 

content-addressable memory (Werbos, 1988b). 

Natural systems, like the human brain, do not use
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batch learning or pattern learning. Instead, they use 

real-time adaptation, in which each pattern is available 

only once, and then lost (except for its impact on the 

weights and on short-term memory). The patterns are 

experienced in forwards time only. For feedforward 

networks, this is really the same as pattern learning, 

except that only one pass through the database is al- 

lowed. The same situation applies to networks with si- 

multaneous/continuous recurrence only. However, 

when external time-lags are present, our recurrence 

formulas simply cannot be applied exactly in real-time 

adaptation, because of the lack of a database to go back 

through. A similar problem would apply to continuous- 

time systems which implement a similar recurrent, 

short-term memory and which therefore violate the 

conditions on G given above. (This violation follows 
from the fact that systems which obey our conditions 

allow one to solve for the equilibrium system state as 

a function of present inputs only.) In either case, true 

real-time adaptation would require the use of some sort 

of approximation. 

The easiest and least accurate approximations would 

simply cut off feedback to earlier than one or two ob- 

servations into the past. The accuracy of such approx- 

imations may depend on the loss functions actually 

used, in a complex way. Far better, in theory, is to treat 

the determination of y,;(f) as a long-term optimization 

problem, as if y(t) were a vector of actions (like u(¢) 

in Figure 2) chosen to as to minimize the sum of pre- 

diction errors over present and future time. To apply 

the optimization methods mentioned in Section 2, note 

that prediction error is normally represented as a sum 

of distinct components (i.e., errors on individual vari- 

ables). Also note that there is no need for an additional 

predictive model; the equations of the existing network 

specify exactly how y(f) affects y(¢ + 1), and so on. 

Implementing the optimization methods of Section 2, 

we would create something like an estimate J; which 

would serve as a direct, local source of feedback for 

each component y, of the y vector. The details of this 

possibility are beyond the scope of the present paper; 

however, since the action variables, the dynamics of the 

system, and the utility measures have all been specified, 

it should be straightforward in principle to work out 

these details. Furthermore, since these optimization 

methods all impose costs on the order of O(N)—like 

backpropagation itself—this should be a workable ap- 

proach. 
This approach should not be confused, again, with 

the use of Figure 2 to optimize overt actions. This ap- 

proach could be used with any recurrent net, emerging 

from the architecture of Figure 1 or from other archi- 

tectures. When this approach is used to help adapt the 

nets shown in Figures | and 2, then the J network used 

to give feedback to the y variables would be quite dis- 

tinct from the J network used to adapt overt actions. 

P. J. Werbos 

4. DESCRIPTION OF THE APPLICATION 

Background and Goals 

The work reported here was performed in 1982 for 

the Energy Information Administration (EIA), prior 

to the construction of a new natural gas supply model. 

It has never been published, since the results were 

mainly for internal use. To our knowledge, this was the 

first successful, operational test of Equations 30 in cal- 

culating the derivatives of a fully recurrent system. 

The purpose of this project was to better understand 

the properties of EIA’s previous model of natural gas 

markets, the Natural Gas Market Model (NGMM), 

which had been used in a major study of natural gas 

deregulation (MecNiccl, O’ Neill, & Dickens, 1981). The 

first stage of this project was simply to penetrate the 

code of the model, and convert 1500 lines of FOR- 

TRAN into an explicit, equivalent 73-equation system 

in Troll, corresponding exactly to a 73-component vec- 

tor Fin (7). A concise, consolidated description of the 

model was then published (Werbos, 1981). The model 

was then updated to an 83-equation system to reflect 

more recent information on natural gas availability by 

regulatory category (O’Neill & Dickens, 1981) and 

more recent demand forecasts (EIA, 1982). 

The major goal of this project was to evaluate what 

really drove the forecasts of the model. The model was 

a highly interactive system, dependent on dozens of 

uncertain parameters and initial values. To vary all of 

these parameters and all of the variables of the model, 

in all years, would have required hundreds of runs of 

the model. It was easier and more accurate to create 

an “adjoint model’’—-replicating the feedback calcu- 

lations implied by Equations (30)—which would yield 

the derivatives of a selected model result Z with respect 

to all parameters and all variables in all years in only 

one run. In other words, dynamic feedback was used 

here simply to calculate derivatives, which were of in- 

terest in their own right as a diagnostic tool in evaluating 

the model. In principle, this kind of sensitivity analysis 

could also be used to locate policy levers which are 

especially important in changing future outcomes. 

Implementation of Dynamic Feedback 

The analysis here was carried out in Troll (MIT, 

1980), a standard software package developed by the 

MIT Center for Computational Economics and Man- 

agement Science. An “adjoint model” was created in 

Troll, representing exactly the calculations implied by 

Equations 30. 

Troll, like most dynamic modeling packages, only 

allows calculations forwards in time. Therefore, Equa- 

tions (30) had to be translated into an equivalent set 

of equations running in reverse time. We defined 7’ 

= 1990 — t, and re-expressed Equations (30) in terms
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of t’, For convenience, we assumed that L(t) = 0 for ¢ 

less than the terminal year, 1990. (However, a running 

total was created to handle the one instance where we 

were interested in what influenced the sum of a variable 

over time, as opposed to its 1990 value.) Also, because 

we had not yet considered what conventions would lead 

to felicitous notation with continuous-time neural nets, 

we defined w(t) as minus w(t + 1) (where the latter 

copy of w is defined as in Equation 29). Substituting 

these definitions for ¢’ and w into Equations (30), we 

arrive at the equations actually implemented in the ap- 

plication: 

Z(t —-D)=G7(t - w(t) (35a) 

-Z'(t) = A(t — Dwr) (35b) 

a(t’) =a(t’-—1)- J7(¢-— Dw’), (350) 

where a(0) will contain the final vector of derivatives 

of L with respect to the parameters. 

In order to implement Equations (35), we followed 

a straightforward procedure that could be implemented 

quite easily in a package such as Troll. (This was verified 

in 1981 when it was proposed to the developers of Troll, 

in connection with an ongoing contract with the De- 

partment of Energy; unfortunately, other priorities pre- 

empted this option.) To understand this procedure, it 

would help to consider an example, based on a sim- 

plified version of a few of the model’s equations: 

#25: exploration(t) 

= b,*(exploration(t — 1))”?*(gas__price(t)/ 

drill__price(t))” 

#26: cumulative__exploration(t) 

= cumulative__exploration(t — 1) + exploration(t) 

#49: drill__price(t) + drill, price(t — 1) 

+ by + bs*(rig__use(t)/(1 — rig__use(t)) 

#67: industry__demand(t) 

= base__demand(t)*(gas__price(f)/base__price(r))”* 

*(industry__demand(t — 1)/base__demand(r))” 

The Troll equation numbers (between ! and 83) are 

shown on the left. The first three equations describe 

how the utilization of drill rigs affects changes in the 

price of drilling, which in turn combines with the price 

of gas to affect exploration for gas. The last equation 

shows how interstate industrial gas demand will differ 

from a previous baseline forecast, if the actual gas price 

differs from the (base) price assumed in that forecast. 

The model solves to find a price which matches supply 

and demand. Notice how values of b2 and 67 near zero 

would make the forecasts dependent on conditions in 

the present time, while values near one would tend to 

yield a kind of exponential growth process (because 

outside factors then determine the rate of growth of the 

variables being projected, instead of their actual values.) 
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Our first step, in creating an adjoint model, was 

simply to write out all the component equations implied 

by (35a). To do this in a comprehensible way, we 

adopted a naming convention in which, for example, 

Fexploration(t) corresponded to Z25(t). However, we 

simply used W25(t) to represent W;5(¢). Following 

this convention, we can calculate Fexploration(t' — 1) 

as implied by (35a) by looking through a// the equations 

and looking for occurrence of the variable “‘explora- 

tion(t)”; if we find one in equation j, we calculate 

G4;,; by simply differentiating the equation with respect 

to exploration(t). If exploration(t) appears on the left- 

hand side of an equation, we treat that as an appearance 

on the right-hand side with a minus sign. Applying this 

procedure to the example above, we get: 

Fexploration(t’ — 1) 

= W25(t)*(-1) + W26(t)e(+1) + +e 

Fdrill__price(t’ — 1) 

= W25(t')«(exploration(t! — 1)*(—b3/ 

drill__price(t’— 1)) + W49a(-1) + -->. 

In the first of these equations, the (—1) simply came 

from differentiating Equation #25 after exploration(t) 

is moved to the right-hand side. The (+1) came from 

differentiating the right-hand side of Equation #26 with 

respect to exploration(t). The next equation came from 

a similar calculation; however, note that all references 

to variables convert f to t’ — 1 and t — 1 to #’, because 

of the time reversal. The triple dots here refer to other 

terms which involve the differentiation of other equa- 

tions, not given in our example. Mechanically, it was 

easier to do all this by writing “ Fname(?t’ — |) =” for 

each variable, on a separate line of a large sheet of 

paper, and going through the list of equations in order, 

looking for all unlagged variables and adding terms to 

their equations. 

Equation (35b) was handled essentially the same 

way, except that we looked for lagged references (i.e., 

to variable (¢ — 1)), differentiated with respect to lagged 

variables, and began the relevant equations with (for 

example) ‘“‘Fexploration(t’) =.” Equation (35c) was 

likewise straightforward. After completing this exercise, 

we simply typed the set of equations into Troll, and 

asked Troll to solve the set of equations from ¢’ = | 

through ¢’ = 7. (This also required the use of a few 

Troll instructions to create a database made up of the 

original model variables, reversed in time.) 

All of these tasks were completed in about two days. 

However, because the approach was new, two weeks 

were then used mainly to test, but also to debug the 

results. Modified versions of the model and of its adjoint 

were created in which the free market price of gas was 

made exogenous, so that the flow of causation and cal- 

culated feedback could be compared at all points in 

the model. Checks against derivatives by brute force
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TABLE 1 

Parameters with the Five Biggest impacts on 1990 Average Residential Gas Price (i.e., with L’ = Gas Price) 

Total Parameter 

Description of Parameter Impact Vaiue 

Elasticity of exploratory gas drilling to its previous value (i.e., b2 in 
equation labelled “#25” above) $150 8 

Elasticity of gas development drilling to its previous value $25.1 8 
Elasticity of oil development drilling to its previous value $18.8 9 
impact of oil production (f — 1) on oil production (f) $15.6 9 
Impact of nonassociated gas production (f — 1) on itself (f) $14.6 9 
  

parameter shifts and variable shifts were used; these 

required trying several step sizes (at least plus and mi- 

nus some amount), because of problems with rounding 

error and nonlinear effects with the brute force method. 

At this point, the adjoint method has passed very severe 

tests of its accuracy. The adjoint, unlike brute force 

methods, is also ‘“‘well-conditioned” numerically; the 

reason for this, technically, is that the transpose of G7'H 

has the same ‘condition number” as G_'H itself ( For- 

sythe & Moler, 1967), so that the adjoint is as well 

conditioned as the original model itself. 

Results of the Analysis 

Tables 1 through 3 below summarize the results of 

greatest interest. 

Table 1 provides a rank-ordering of the five most 

important “items” input to the model, where “items” 

include both parameters and initial values in principle. 

Importance is measured in terms of “Total Impact,” 

defined as the change in residential gas prices which 

would result from setting the item to zero (assuming 

no change in the derivative). From an economist’s point 

of view, the “Total Impact” as defined here is just the 

elasticity of gas prices with respect to each item, mul- 

tiplied by the base case residential gas price for 1990. 

Out of the 35 most important items only two involved 

the demand for natural gas, and two involved initial 

values for 1979; thus the results of the model were 

clearly driven by supply-side assumptions. 

Six other 1990 outcome variables were also exam- 

ined with the same adjoint model: (a) DEMAND, total 

U.S. wellhead gas demand in quadrillion Btu; (b) 

CUMEXTRA, cumulative supplemental gas (potential 

shortages) over 1979--1990; (c) PSUPPLY, the unregu- 

lated wellhead price of gas; (d) RN.NAGAS, proved 

reserve balance of nonassociated gas; (e) SUSGASB, 

free-market domestic gas production; and (f ) SDEEP, 

U.S. production of gas from 15,000 feet or deeper. The 

results with these other measures of outcome were sim- 

ilar to those of Table 1, but even more tilted towards 

the supply-oriented items input to the model. 

The adjoint model also printed out information 

about the dynamics of the effect of each item, as shown 

in Table 2. The 1979 row of Table 3, like all the numbers 

in Table |, reports the impact of changing the item on 

changing the outcome variable. This derivative essen- 

tially answers the usual question: “If you change this 

  

  

TABLE 2 

Ordered Derivatives of DEMAND with Respect to Three items Over Time 

Elasticity of industrial 
Gas Exploration Ratio for Gas Demand 

to its Past to Oil in Lag Factor 

(62 in Equation #25) Oil Production (07 in Equation #67) 

Parameter Value .806 135 .69 

Ordered Derivatives (z,(t)) From Year. . . 
1990 0 0 0 
1989 —.5 2.5 3 
1988 1.8 2.1 —4 
1987 9.0 1.7 —.6 
1986 22.0 1.3 ~7 

1985 40.0 1.0 —.8 
1984 63.0 0.7 ~9 
1983 89.0 0.6 —.9 
1982 118.0 0.5 —9 
1981 150.0 0.4 9 

1980 184.0 0.2 —.9 
1979 222.0 —.9 —.9 
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input to the model by one unit, while keeping all the 

other inputs as they are, how much will the outcome 

change?” The 1985 row, however, answers the question: 

“If you changed this parameter by one unit in 1985, 

and afterwards, but used the old value for it before 

1985 (still holding the other items constant), how much 

would the outcome change?’ (Likewise, for variables, 

the 1985 row reports the impact of an “autonomous 

change” in 1985, such that the other variables in 1985 

are unchanged.) The main purpose of this table is to 

illustrate the diagnostic value of ordered derivatives in 

understanding how any system behaves over time. 

Table 2 shows clearly that the gas exploration elas- 

ticity acquires its importance because of its cumulative 

effect over time. Like the population growth rate in 

population forecasting, this parameter has a greater 

impact on the forecast as the forecast interval grows. 

For the same reason, random errors in estimating this 

parameter will lead to cumulative errors in forecasting 

almost any of the outputs of the model. 

The impact of the industrial demand lag term also 

grows with time. This parameter, like the exploration 

elasticity, is an “inertia” term; it indicates how much 

industrial gas demand is affected by its own past value. 

However, after a couple of years, the rate of growth of 

its importance is greatly damped. This would appear 

to mean that the “memory” on the demand side is 

quickly overshadowed by the impact of current prices 

on demand, so that the accumulation of impact is re- 

duced, This pattern of a declining rate of growth in 

impact applies to most parameters in the model; impact 

grows with time, though at a decelerating rate, because 

more time simply adds to the points where the param- 

eter affects the system, usually pushing the system in 

the same direction. The rate of growth declines for most 

but not all parameters, because of systems dynamic 

effects beyond the scope of this paper; if the system 

under study were “stationary,”’ however (always decay- 

ing to the same equilibrium no matter what its initial 

state), then the rate of growth would eventually decline 

for all parameters. 

Finally, Table 2 shows that the “ratio for gas to oil 

in oil production” declines steadily in importance as 

we go back to 1980. Steady decline is typical for the 

impact of a variable, but it is very unusual for a pa- 

rameter. In this case, the direction of the immediate 

impact reverses between 1990 and the preceding years, 

perhaps because the direct impact in 1990 depends on 

the size of this parameter RELATIVE TO variables 

increased by the parameter before 1990. This parameter 

is odd in another way: in 1979, there is a sudden “‘blip” 

in the impact of this item, and of a few other items. 

This “blip” appears due to the equation which enforces 

a fixed price of drilling in 1980, when all the rest of 

the variables are treated as model predictions; changes 

in a parameter can force changes in the 1980 values of 

the variables which have nothing to do with the causal 

355 

TABLE 3 
Results of Different Values for Elasticity Parameter (67) 
  

  

Elasticity 1990 Average Residential 
(Exponent) Gas Price in 1979 Dollars 

.806 $7.30 (actual forecast) 

.807 $7.13 
816 $6.18 
.796 $8.23 
  

impact of the parameter, because of the equation forcing 

the 1980 drilling costs to not be changed accordingly. 

Note that this kind of startup problem affects the sen- 

sitivity of a model, regardless of what method is used 

to test the sensitivity; it can be a serious problem in 

interpreting the results of “what if ’ analysis based on 

changes in model assumptions, for many models. 

All of these “sensitivity coefficients” theoretically 

represent the effect of small changes from the base case 

(continuation of the Natural Gas Policy Act). To verify 

the large-scale importance of the most important pa- 

rameter—the elasticity of exploratory gas drilling to its 

own past value—the original model was rerun for four 

different values of the elasticity. These results are shown 

in Table 3. 

According to the original model documentation, the 

standard error of this exponent was .08, much larger 

than the changes made here. This result did not nec- 

essarily invalidate the model, for reasons beyond the 

scope of this paper; however, it did lead to the conclu- 

sion that attention should be redirected towards the use 

of new statistical methods to estimate this kind of pa- 

rameter more accurately, and towards possible respe- 

cification of the equations they appear in. The new 

methods cited in Section 2 exploit the phenomenon of 

cumulative error, and use multiyear tests of forecast 

error, in order to arrive at more accurate parameter 

estimates which lead to less cumulative error in fore- 

casting. Previous research on these methods ( Werbos, 

1974, 1983a; Werbos & Titus, 1978) suggests that this 

model was far from unique in this weakness, but was 

typical of a large class of econometric models. 

Conclusion 

A generalization of dynamic feedback (the central 

component of “backpropagation” ) to deal with recur- 

sive (‘‘simultaneous”) time-dependent networks has 

been developed and tested, and has led to applications 

of importance to practical econometric forecasting. 

These applications in turn point to the importance of 

using new loss functions instead of regression when 

estimating many models; the use of these loss functions 

tends to require dynamic feedback for efficient, reliable 

implementation.
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