
VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1987

Generalization of Back-Propagation to Recurrent Neural Networks

Fernando J. Pineda
Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20707

(Received 10 June 1987)

An adaptive neural network with asymmetric connections is introduced. This network is related to the
Hopfield network with graded neurons and uses a recurrent generalization of the 6 rule of Rumelhart,
Hinton, and Williams to modify adaptively the synaptic weights. The new network bears a resemblance
to the master/slave network of Lapedes and Farber, but it is architecturally simpler.

PACS numbers: 87.30.6y

The neural network approach is a paradigm for com-
putation in which the traditional paradigm of a finite-
state machine performing sequential instructions in a
discrete state space is replaced with the paradigm of a
dynamical system, in a discrete or continuous state
space, which evolves under the control of a certain class
of dynamics (neurodynamics) Alth. ough a precise
definition of neurodynamics does not exist, it seems safe
to characterize it by at least three salient features. First,
the dynamical system has very many degrees of freedom.
At the present time, most simulations of these systems
are limited to less than 10 neurons. On the other hand,
the human brain has at least 10" neurons. The activity
level and the time derivative of the activity of the neu-
rons are the coordinates in the phase space of the system.
This phase space plays the role of the state space in a
conventional computing machine. The second feature of
neurodynamics is nonlinearity. Nonlinearity is essential
to create a universal computing machine. This follows
because a network composed of linear units can always
be reduced to an equivalent single-layer network which
performs the same input/output transformation. But, as
pointed out by Minsky and Papert, ' a universal comput-
ing machine cannot be built from a single layer of finite-
order neurons. The third feature of neurodynamics is
that it is dissipative. A dissipative system is character-
ized by the convergence of the phase-space volume onto
a manifold of lower dimensionality as time increases.
Systems whose flow exhibits the property of global
asymptotic stability play a particularly important role in
neural-network modeling. Global asymptotic stability
implies that the system will ultimately settle down to a
steady state for any choice of initial condition. Systems
which minimize an energy function, such as the Hopfield
model, are guaranteed to be globally asymptotically
stable.

The identification of stable fixed points with computa-
tional objects, e.g. , memories, is one of the fundamental
ideas of the paradigm. To implement this idea it is

necessary to control the locations of the fixed points of
the neural networks. A learning algorithm is a rule or
dynamical equation which changes the locations of fixed
points to encode information. One way of doing this is to
minimize, by gradient descent, some function of the sys-

where x; represents the activity of the ith neuron, where
the matrix element ~;~ denotes the connection strength,
or coupling, from the jth to the ith neuron, and where a
and P are conveniently chosen positive constants. The
functions f; may have diA'erent forms for various popula-
tions of neurons. A commonly used form is the logistic
function,

The constant I; represents an external input bias which
may be included inside or outside f(g). I chose the
latter case arbitrarily. The fixed points of (1), which I
denote as x, are solutions of the nonlinear algebraic
equations

ax; =Pf; g. vv~&xz +I; (2)

and are implicit functions of the weight matrix w and in-
itial state x'.

Suppose that vr is lower triangular. Then it is clear
that Eq. (2) can be solved recursively since to calculate
x; one needs only xi, . . . , x; I. Thus, when the units are
properly labeled, this is just the forward propagation
which occurs in the widely used feedforward network of
Rumelhart, Hinton, and Williams. I conclude that the
feedforward network simply provides a direct method of
calculating the fixed points of (1) when w is lower tri-
angular.

The 6 rule is a learning rule for feedforward networks.
Strictly speaking, it is restricted to feedforward networks
only. Nevertheless it has been applied to recurrent net-
works by taking advantage of the fact that for every re-
current network there exists an equivalent feedforward
network (for a finite time). The cost for this strategy is

tern parameters. This general approach is reviewed by
Amari and forms the basis of many learning algorithms.
The algorithm described here is a specific case of this
general approach.

The dynamics of the network considered in this Letter
is based on the following system of coupled diA'erential

equations:
r

dx;/dt = —ax;+Pf; g. w;~.xt +I;,

1987 The American Physical Society 2229



VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1987

the manyfold duplication of the hardware for the feed-
forward version of the recurrent network. The algo-
rithm presented in this paper makes unnecessary the ar-
tiface of unfolding a recurrent network into a feedfor-
ward network.

A necessary condition for the learning algorithm dis-
cussed in this Letter to exist is that system (1) reach
steady state (I will not discuss limit cycles here). Except
for some theorems concerning collective quantities, little
is known about the stability of system (1) for arbitrary
w. However, there are special cases for which (1) can be
proved to be globally asymptotically stable. The set of
equations (1) is stable if w is symmetric because (1) can
be transformed into the equations studied by Hopfield
under the coordinate transformation,

haik

xk.

Hopfield's equations are globally asymptotically stable if
w is symmetric and has zeros along the diagonal. Stabil-
ity in this case is proved because there exists a Liapunov
function. A general theorem concerning stability of net-
works with symmetric weights is given by Cohen and
Grossberg. The set of equations (1) is also globally
asymptotically stable if w is lower triangular because in

such a case the network is a pure feedforward network.
In other words the nth unit can only receive input from
the mth unit if n & m. The stability of the feedforward
case follows from a recursive agreement which goes as
follows. Suppose that the activations x; (where i =1,
. . . , m) are constant. Then from the feedforward con-
straint the nth unit (where n =m + 1) receives only con-
stant input. With constant input Eqs. (1) converge ex-
ponentially to a constant value, and hence x +& becomes
constant. Thus it is clear that if the inputs are constant,
the activation of the entire network will ultimately be-
come constant. Equations (1) are also stable in the limit
of infinite w since if w is infinite the function f(u;) be-
comes constant and the solutions to (1) simply decay ex-
ponentially to constants.

Numerical simulations conducted by this author
strongly suggest that in practice the system is stable for
most w and initial x. Oscillatory solutions can occur
when there exists substantial self-excitation. It shall be
assumed, for the purpose of deriving the back-propaga-
tion equations, that the system ultimately settles down to
a stable state. With this caveat in mind I present the re-
current back-propagation (RBP) algorithm.

Consider a system of neurons, or units, whose dynam-
ics is determined by Eqs. (1). Of all the units in the net-
work we will arbitrarily define some subset of them, 4,
as input units and some other subset of them, Q, as out-
put units. Units which are neither members of 4 or 0
are denoted hidden units. A unit may be simultaneously
an input unit and an output unit. If a unit is an input
unit, the corresponding component of the vector I is
nonzero and represents an external input to the system,

i.e.,

I;= ifi EA,
0, otherwise,

where

z; —x;, if&ED,
0, otherwise.

It is an implicit function of the weight matrix w because
the fixed point I is implicitly dependent on the weight
matrix. E(x ) has a family of minima which exist on
the hyperplanes which satisfy x; = z;, where i E A.

A formal learning algorithm consists of an algorithm
which drives the fixed point towards one of these hyper-
planes. Dynamically, this is accomplished by our letting
the system evolve in the weight space along trajectories
which are antiparallel to the gradient BE/Bwl. In other
words,

dwiz/dt = —
q BE/Bw;z, (3)

where q is a numerical constant which defines the (slow)
time scale on which w changes. g must be small so that
x is always essentially at steady state (i.e., x=x ). On
performing the differentiations in (3) one immediately
obtains

dw„/dt =yak Jk Bxk/Bw„, . (4)

The derivative of xk with respect to ~„ is obtained by
our differentiating both sides of (2) with respect to w„
and solving for the derivatives. The result is

Bxk/Bw„=P(L ')k„f,'(u, )x, ,

where the matrix L is given by

Iij alai~' Pfi (ui )wij~'
(5)

and where 8;~ is the Kronecker 6 symbol. On substitut-
ing (5) into (4) one immediately obtains

dw„/dt = qy„x, ,

where

y, =pf„'(u, )Q„Jk(L ')k„. (7)

where g; is an external input.
Our goal will be to find a local algorithm which ad-

justs w so that a given fixed initial state I' and a given
set of input values g; result in a fixed point, x, whose
components along the output units have a desired set of
values, r~ (where j E 0). This will be accomplished by
our minimizing a function which measures the error be-
tween the desired fixed point and the actual fixed point.
Consider the positive definite function

N
E(x')= —,

' g J,',

2230



VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1987

Equations (6) and (7) specify a formal learning rule.
Equations (7) require a matrix inversion to calculate the
error signals, yk. Direct matrix inversions are necessari-
ly nonlocal calculations and therefore this learning algo-
rithm is not suitable for implementation as a neural net-
work. A local method for the calculation of y, is ob-
tained by the introduction of an associated dynamical
system. Consider the vector z whose components are
defined in terms of the components of y according to

Equations (7) and (8) imply that z„satisfies

Q„L„z,=Jt. (9)

dz;/dt = —az;+Pg, {f„'(u„)w„z,j+J;.

This leads to a learning rule of the form

dw„, /dt =rtf'(u, )zox,0.

(10)

Equations (1), (10), and (11) completely specify the
dynamics for an adaptive neural network, provided that
(1) and (10) are convergent. It is known that the con-
vergence of (1) is a sufficient condition for the conver-
gence of (10). This follows from the observation that
the back-propagation network is obtained from the
forward-propagation network (linearized about a fixed
point) and that a linear network is stable in both direc-
tions if it is stable in either direction. It is quite easy for
one to obtain the 6 rule from the RBP algorithm by ex-
pressing Eqs. (1), (10), and (11) as difference equations
with h, t =1 and with w lower triangular.

I have conducted preliminary numerical experiments
with exclusive OR (XOR) networks to verify the
correctness of the algorithm. These were performed by
my approximating the differential equations with first-
order finite-difference equations and requiring that Eqs.
(1) and (10) converge before taking an integration step
in Eq. (11). The XOR network is shown in Fig. l. Each
input unit receives one digit of a two-digit binary num-
ber. The target x; for the output unit is 1 if the number
of 1's in the input is odd and 0 otherwise. Unit 5 is a
threshold unit, i.e., it biases the total input to units 3 and
4 so as to provide a threshold which must be exceeded if
these units are to turn on. Unit 5 feeds back on itself so
as to stay turned on always. The feedforward exclusive
OR network used by Rumelhart, Hinton, and Williams
is completely equivalent to this network if the backward
connection from unit 4 to unit 3 is omitted and if the
feedback loop in unit 5 has an infinite positive magni-

Now observe that the solutions of Eqs. (9) are the
steady-state solutions of

dz;/dt = —g„L„;z,+J;.
In terms of the explicit variables in the problem, these
equations are

FIG. 1. XOR network with recurrent connections.

tude. In practice I made the magnitude of the loop
merely large and was able to reproduce the behavior of
the Rumelhart network.

The network with the backward connection performed
only modestly faster than the network without this con-
nection. The main difference in the networks was in the
distribution of final weights. Both networks had similar
attractors which could be characterized by the final root
mean square weight per connection (w„~,). The attrac-
tor which I denote by 2 had w, , =3.4, while the attrac-
tor denoted by B had w, , =10.7. The network without
the backward connection converged onto attractors A
and B approximately 85% and 15% of the trials, respec-
tively, whereas the network with the backward connec-
tion converged onto attractors 4 and B approximately
52% and 48% of the trials, respectively. Only in one trial
out of 480 did the recurrent network fail to converge
onto a global minimum. Each pattern was presented to
the recurrent network approximately 200 times. The
final solutions were insensitive to the initial value of I
which indicates that the attractors of Eqs. (1) have large
basins of convergence.

It is worthwhile to compare the RBP network with the
master/slave network of Lapedes and Farber. The slave
network corresponds to my forward-propagation net-
work. If we suppose it has N nodes then the master net-
work determines the weights of the slave network by in-
tegrating N equations, each of which has a form similar
to Eqs. (1), but with slave weight matrix elements as
dynamical variables and a rank-4 matrix as the master' s

weight matrix. The weight matrix of the master network
has a simple symmetric form with at most N(N+1)/2
nonvanishing independent components. These com-
ponents require additional storage beyond the N com-
ponents of the slave's weight matrix. The RBP network,
on the other hand, requires the integration of N +2N
equations and no additional storage. 2N of these equa-
tions correspond to Eqs. (1) and (10). The remaining
N equations have a simple outer product form [cf. Eq.
(11)] and are quite trivial to implement. The conclusion
is that the RBP network is an architecturally simpler
network than the master/slave network and requires less
memory.

2231



VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1987

The master/slave network directly minimizes the aver-
age of E over all input/output associations. This average
is denoted by (E). The master equations are guaranteed
to converge to at least a local minimum of (E) because
(E) is a Liapunov function for the equations. ' On the
other hand, E is a Liapunov function for Eq. (3) of the
RBP network only in the case of a single input/output
association. For multiple associations the RBP network
is guaranteed to converge only in a probabilistic sense
and under certain technical conditions. It was noted by
Amari that gradient-descent algorithms, such as RBP,
converge to a minimum point of (E) to within a small
fluctuating term provided that the input/output sequence
is an ergodic random sequence and provided that (E) has
a unique minimum. Experimentally it is found that
RBP, like standard back-propagation, converges robustly
albeit after very many iterations. A detailed computa-
tional comparison of RBP and master/slave has yet to be
performed.

The RBP algorithm is better suited for hardware im-
plementation than the 6 rule for two reasons. First, the
algorithm is expressed completely in diA'erential equa-
tions and therefore can be implemented in analog very
large-scale integration. This eliminates the timing and
synchronization problems which appear in digital im-
plementations of the standard 6 rule. Second, the RBP
algorithm vectorizes naturally. This is because the units
are homogeneous, i.e., the input, hidden, and output
units all obey the same differential (difference) equa-
tions —only the components of the constant vectors I and
J serve to distinguish the roles of the units.

The author wishes to acknowledge very fruitful discus-
sions with Robert Jenkins and Ben Yuhas. Liam Healy
also contributed in the early discussions. This work was
supported in part by Grant No. AFOSR-87-0354 from

the U.S. Air Force Of5ce of Scientific Research.

~M. Minsky and S. Papert, Perceprron (M. I.T. Press, Cam-
bridge, MA, 1969).

2Shun-Ichi Amari, in Systems Neurosci ence, edited by
Jacqueline Metzler (Academic, New York, 1977).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in

Parallel Distributed Processing, edited by D. E. Rumelhart
and J. L. McClelland (M. I.T. Press, Cambridge, MA, 1986).

4Shun-Ichi Amari, IEEE Trans. Systems Man Cybernet. 2,
643-657 (1972).

5J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. Bio. 81,
3088-3092 (1984).

Michael A. Cohen and Stephen Grossberg, IEEE Trans.
Systems Man Cybernet. I3, 815-826, 1983.

7After this Letter was submitted, the author learned of the
independent work of Luis B. Almeida, who derived a discrete
version of the RBP algorithm to appear in the Proceedings of
the IEEE First Annual International Conference on Neural
Networks, San Diego, California, June 1987, edited by
M. Caudil and C. Butler (to be published).

sThe parameters used were ht =1, a = I, p= I, and tI =0.5.
The integration was terminated when the X summed over all
four patterns reached 0. 1. A new pattern was presented on
each iteration of Eq. (11). The diff'erence equation corre-
sponding to (11) was modified by the inclusion of a momentum
term to accelerate the convergence.

9Alan Lapedes and Robert Farber, Physica (Amsterdam)
D22, 247-259, 1986, and in Neural Networks for Compur
ing —1986, edited by J. S. Denker, AIP Conference Proceed-
ings No. 151 (American Institute of Physics, New York,
1986), pp. 283-298.

~oThe master/slave Liapunov function actually contains an
extra term which adds a passive decay term to the learning
equations. Our function E could be modified to include such a
term, but the inclusion of such a term is not essential to the
d1sc us s1on.

2232


