
283

PROGRAMMING A MASSIVELY PARALLEL, COMPUTATION

UNIVERSAL SYSTEM: STATIC BEHAVIOR

Alan Lapedes and Robert Farber

Theoretical Division

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

March 27, 1986

Abstract

Massively parallel systems are presently the focus of intense

interest for a variety of reasons. A key problem is how to control,

or "program" these systems. In previous work by the authors~ the

"optimum finding" properties of Hopfield neural nets were applied to

the nets themselves to create a "neural compiler." This was done in

such a way that the problem of programming the attractors of one

neural net (called the Slave net) was expressed as an optimization

problem that was in turn solved by a second neural net (the Master

net). The procedure is effective and efficient. In this series of

papers we extend that approach to programming nets that contain

interneurons (sometimes called "hidden neurons"), and thus we deal

with nets capable of universal computation. Our work is closely

related to recent work of Rummelhart et al. (also Parker, and

LeChun), which may be viewed as a special case of this formalism and

therefore of "computing with attractors." In later papers in this

series, we present the theory for programming time dependent behav-

ior, and consider practical implementations. One may expect numerous

applications in view of the computation universality of these

networks.

I. Introduction

Massively parallel systems are the focus of intense interest by

numerous researchers spanning many disciplines. They have tremendous

practical implications for new kinds of computing 1'2 and may give

some insight into how massively parallel biological brains oper-

ate. 3'4 They are also theoretically interesting when analyzed as an

example of a complex, nonlinear dynamical system. 5 Programming, i.e.

controlling, these systems is a difficult task. Recent work of

Hopfield 1'2 on a particular system~ neural networks, has stimulated

intense interest on the part of many researchers. He has shown that

nets with symmetrical interactions posess a Lyapunov function, and

that such a function is very useful in controlling the network behav-

ior. In particular, he has shown that continuous state neural net-

works (as opposed to discrete, two state networks) may be used to

perform a credible job of solving difficult optimization problems

such as the classic Traveling Salesman Problem (see also M. Takeda,

G. Goodman6). In these types of problems the solution to the optimi-

zation problem is a fixed point of the neural dynamics and the pro-

blem constraints and the data (e.g. the distances in the TSP problem)

appears in the symmetrical neural connections. The solution to the

problem~ the fixed point of the net, is of course not known a priori,

and thus one runs the nonlinear differential equations for the nets

until it relaxes to a fixed point in order to find an optimum.

0094-243X/86/1510283-1653.00 Copyright 1986 American Institute of Physics

284

A second class of difficult computation problems, e.g. Content

Addressable Memory, associative memory, pattern recognition (and many

other forms of high level symbol processing) can also be attacked

with neural networks. Here, one knows the desired fixed points

a priori (they correspond, for example, to the patterns to be recog-

nized), however, one does not know in general what neural connections

will yield the known fixed points. A partial solution to determine

the neural connections was given by Hopfield z, which is based on a

symmetric synaptic connection matrix formed by taking outer products

of the desired fixed point vectors. Disadvantages of this approach

include a very limited degree of control over the basins of attrac-

tion, the symmetry of the synaptic connection matrix (which is almost

certainly unphysiological), inability to deal with time dynamic

behavior, and the fact that interneurons necessary for universal

computation are excluded. In spite of these limitations, Hopfield's

pioneering work remains an important first step in the theory of

computation for neural networks.

The present authors 7 have approached the problem of programming

fixed points into a neural net by directly attacking the conditions

that the synaptic connection matrix must satisfy if the desired fixed

points are to be present. This was accomplished by posing the gener-

al problem of determining the connections of a Slave net as an optim-

ization problem, and then using the "optimum finding" abilities of

neural nets to define a second net, a Master net, that performed the

optimization. This therefore links the two classes of problems

currently under investigation in neural network theory. Advantages

of this approach include greater control over the basins of attrac-

tion, removal of the symmetry restriction in the Slave net, and as we

will show, the ability to control interneurons or "hidden neurons"

that are necessary for universal computation. The method is effec-

tive and efficient 8 and may also be viewed as a learning algorithm

for neural networks. We have also extended the method to allow

programming of time dependent behavior (paper II of this series).

The extension of our original formalism that is required to deal

with hidden neurons is closely related to recent work of

Rummelhart et al., 9 Parker 1~ and Le Chun. ~I This work, performed

independently of the Master/Slave approach is shown to be a special

case of the more general formalism presented below. This comment is

not intended in any way to detract from the very fine results of

these authors, and we hope that by providing a general setting that

the value of such approaches can be better appreciated.

The importance of hidden neurons has, of course, not gone unno-

ticed by other researchers. It was forcefully pointed out by Minsky

et al. 12 that hidden neurons are necessary to solve certain classes

of important problems. In fact, it was the difficulty in being able

to program these important neurons that led to the decline of inter-

est in the 1970's in the Perceptron formalism of neural networks.

Hinton and Sejnowski et al. 13'14 attacked the hidden neuron problem

in the early 1980s by developing the Boltzman machine formalism. In

this work, simulated annealing is for a stochastic two-state neuron

model was coupled with the construction of a clever learning algo-

rithm to provide the first solutions for programming massively paral-

lel networks to perform difficult computations. Hinton and Sejnowski

and coworkers have provided many beautiful analyses of problems

285

involving hidden neurons and used their procedure to find many solu-

tions for small-scale model problems. However, there exist two

severe disadvantages to their approach. These are the extreme compu-

tational slowness and the inability to directly incorporate time-

varying neural behavior (e.g. direct programming of network limit

cycles etc.).

Recently, Sejnowski has used the Rummelhart procedure (in favor

to the Boltzman machine procedure) to solve a moderately large-scale

problem - that of converting typed text to speech, including correct

context dependent pronunciations of phonemes. 16 As we will see in

the general formalism below, computational slowness is no longer an

issue, and that the work of Rummelhart, Parker, Le Chun, Sejnowski

and the present authors are closely related to the neural networks

popularized by Hopfield, and are examples of computing with attrac-

tors in computation universal systems. In view of the widespread

interest by engineers in constructing Hopfield-type nets in hardware

(VLSI or optical) l? , it would seem that actual construction of mas-

sively parallel, computation universal devices may closely follow the

development of theory for controlling these systems.

In this paper (I) we confine our attention to developing the

theory for control of static behavior and point out the relations to

work of Rummelhart, Parker, Le Chun. Their work inspired the present

development. However, our results are completely general in that we

allow all possible connections of hidden, input and output neurons,

both forward and backward, including fully recurrent hidden connec-

tions. "Clamping" of inputs is not necessary - back connections can

allow inputs to remain "on" as part of the net's fixed-point configu-

ration. Adjustment of basin boundaries may be accomplished in the

manner of Ref. 7. The formalism clearly shows that the method is a

procedure for controlling attractors in Hopfield type nets. In paper

II we present the theory for controlling time dependent behavior. In

subsequent papers we discuss specific applications.

II. Summary of Master/Slave Formalism

The Master/Slave formalism was developed as a general 7 attack on

determining what synaptic connection matrix, Tij , yields desired

fixed points of the neural net equations

Ui + ~Ui" = ~. Tijg(Uj) + Ii (I)

J

th
Here, U. represents the membrane potential of the i neuron, ~ is

the cel~ summation time constant (or the RC time constant of an

electric circuit implementation), T.. is the synaptic cp~nection

matrix, g(U.) is the sigmoidal firin1~ rate curve of the jtn neuron

(or transfe~ function of an op-amp), and I. is an external current

(or equivalently an internal threshold). ~or concreteness we take

g(x) = �89 + tanh(~x)) (la)

where ~ determines the slope of the sigmoid curve. The exact form

that the sigmoia assumes is not crucial to the results. These equa-

tions were introduced by Hopfield 1'2 in the context of "problem

solving with neural nets" (e.g. the Traveling Salesman Problem), but

286

related equations have also been written down by many researchers 18'19

as an acceptably crude model of neurophysiology. Hopfield showed

that if Tij = Tji , then a Lyapunov function, E, exists:

V.

E = -�89 ~ T . . V. V. - ~ I . V.+ Z f l g - l (x) dx (2)
ij 13 1 J i i i i

where V i = g(Ui). Equation (2) implies that

dE g,(Ui).0~
dt

i

(3)

and since g'(x) is positive semidefinite, E will decrease. E is

bounded however, so that it will eventually stop decreasing and U.

will be zero, at which point a fixed point is reached. In the hig~

gain limit (large ~), the integral in Eq. (2) is negligible and the

minima of E that is obtained will be close to a minima of El:

E1 = -�89 ~ij Tij g(U i) g(Uj) - ~i Iig (Ui) (4)

Hopfield chose

m

E l = -�89 ~ (V (s)'V) 2 (5)

s=l

where . (s) = (s)
memory v$ atess~ g(Ui)' s = {],2...m} are the desired choice of m

or fixed points. Although this choice works, subject

to limitations discussed in the Introduction, it is ad hoc and it is

not a general solution to the problem of inserting desired fixed

points into the neural dynamics. The T.. determined by Eq. (5) is a

sum of the outer products of the flxg~-polnt vectors and is, of

course, symmetric.

In Ref. (7) we considered the general prpb/em of finding T..'s

that produce fixed points at desired states V~ s), s = {1,2...m} ~th
1

no a priori restriction on the T... To do so we reformulated Eq. (I)

by introducing a new variable, V~t) such that

U. = ~ T..V. + I. (6)
1 j lJ 3 1

It is easily checked that V. satisfies
1

V i + NV i = g(~ T..V + li) (7) j ij j

by multiplying Eq. (7) by T.., summing over i, and comparing to Eq.

(I). It may be shown that ~ is essentially a short time average of

the firing rate g(U=), and t~at at a fixed point O~hE q. (7) (V i = O)

the value of V. is t~e firing rate, g(U.), of the i neuron. . .
.1 . 1

The requlrement that a partlcular set of m fixed points V~ s),
1

287

{s = 1,2...m} of Eq. 7 exists may be expressed as

E 1 = ~ [v!S)-g(E T. V! s) + li)] 2 (8)
�9 i . lj j

S,l J

with E 1 = 0. From Eq. 7 we see that this requires that V. = 0 at
i

each V! s). The V (s). are the known fixed points that one desired to

insertlinto the ne~ and the T..'s are unknown but subject to Eq. (81.

Note that no restrictions s~h as symmetry have been placed on the

T..'s. In Ref. 7 we rewrote Eq. (8) slightly as
ij

E 1 = ~ [g-lCv~s)/ - ~ Tij V! s/ - 1.] 2 (9)
s,i j j i

and noticed that finding the T..'s satisfying E. = 0 requires finding

the minimum of the quadratic ~rm I in T.. that results from expanding

the square in Eq. (9). 13

It is desirable to keep T.. bounded and a natural parameteriza-

tion that accomplishes this is 13

Tij = 2g(Uij) -I (I0)

where g(U..) is another sigmoidal function (between 0 and I) of the

new varia~e U... T.. ranges over -I to +I. I. may be parameterized
1 . 1 . . .

in a similar fa~hlon ~ut for slmphclty let us ~ake I. to be zero for
1

the moment. We consider non-zero I. in the next section, but wish to
�9 1

keep the following summary as simple as possible and will not consid-

er non-zero I. until later. There will be no problems with non-zero

I. - it just ~dds some more terms.
1

Inserting (10) in (9) and expanding the square yields

E 1 = - Z Tijks g(Uij) g(Uks - E Iij g(Uij) + constant
ijks ij

(11)

where

= V (s) V~ s) (12a)
Tijks - 4 ~ 6ki j , Tijks = Tks

s

= Z 4 v~S)[g_l(v~S)) (c + ~ v~S)]((12b)
I i j s J ~ s

Comparison of Eq. (11) with Eq. (4) shows that Eq. (11) is related to

the Lyapunov function for another network, the Master net, with mem-

brane potential U.. and synaptic matrix and external currents given

by Eq. 12. Addin#~ suitable integral places Eq. (11) exactly in the

same form as Eq. (21 with the Master net neurons indexed by two

indices, i and j, instead of just one index. Therefore, solving the

two index form of Eq. (I)

288

Uij + p Uij = ~ Tijks g(Uks + lij (13)
ks

will result in a fixed point of the Master net, g(Ui.) that is a

minimum of Eq. (II) and equivalently Eq. (9) (for larg~ 6). At the

Master fixed point the Master neurons are firing at a sustained rate

g(Uij) and the Slave net Tij will be given by Eq. (I0), i.e.,

Tij = 2g(Uij)-I (14)

The Master net firing rates, therefore, modulate the synaptic connec-

tions in the Slave.

Simulations ~ show that a good approximation to the global mini-

mum of Eq. (II) is generally found, and that the resulting Slave net

T..'s generally produce the desired fixed points. For further dis-

cu~slon, and extenslons to add control over basins of attraction, see

Ref. 7. More discussion and an analysis of the efficiency of the

above procedure may be found in Ref. 8.

III. Extension of Master/Slave Procedure: Hidden Neurons

The above procedure was originally developed for auto-associa-

tive memory. 2~ That is, fixed points were inserted in a Slave net

such that configurations in the basins of attraction evolved to the

desired fixed points. Hetero-associative memory 20, i.e. true associ-

ative memory, seeks to find T..'s such that particular configurations

At, A A will evolve toIJother specific patterns B4, B B .

T~us, ~atte~n A +B , A2+B etc. A trivial psychological�89
1 1 ,, ,, ,,

tion is that recalling ~act A I (a dog) evokes fact B 1 (dogs
bark"). Although this is amusing (and potentially very powerful in,

say, a relational data base or massively parallel expert system) the

psychological interpretation is the least important aspect of hetero-

associative memory.

In our opinion the prime significance of hetero-associative

memory, when accomplished with interneurons or hidden neurons, is the

ability to perform universal computation. For example, the following

bit pattern associations O0 ~ O, 01 ~ 1, 10 + I, 11 ~ 0 may only be

realized in a neural network with the aid of hidden neurons 12'13'14

and are the logical expression of XOR ("exclusive or"). Negation and

other logical functions may also be expressed as simple associations

and can only be accomplished with hidden neurons. Therefore networks

with hidden neurons are capable of space-bounded universal computa-

tion. To realize this capability one must be able to control the

attractors in such networks.

In the following we show that a minor extension of the Master/

Slave procedure (section II and Ref. 7) allows one to present a

collection of inputs and outputs to a Master/Slave neural net, where

the outputs may be complicated logical functions of the inputs, so

that the net will adapt its attractors to "deduce" an algorithm that

reproduces the input/output pairs. The net has limited information

capacity and is clearly not just recording the input/output pairs,

but is instead developing a collective algorithm to associate input

and output. The net has certain capabilities of deduction and gener-

alization (this seems to be related to overloading the memory capaci-

289

ty) and may even be operated in a "backward mode" where it is told

the output and can back propagate to "correct" a corrupted input. We

allow all possible connections of hidden, input, and output neurons,

both forwards and backwards, including fully recurrent connections

among the hidden neurons. "Clamping" of inputs is not necessary.

Adjustment of basin boundaries, if desired, may be accomplished in a

similar manner to Ref. 7. A natural extension of this method, to

deal with time dependent behavior is presented in the next paper in

this series.

Development of the Master/Slave procedure for hidden neurons

begins with Eq. (7) and_~8). In the previous section, and in Ref

(7), we introduced the g function so that the energy expression in

Eq. (8) could be written as a quadratic form (Eq. (9)) with known

coefficients related to the desired fixed points of the Slave net.

This was done for pedagogical purposes to clarify the connection to a

Hopfield Lyapunov function for a Master net, which was originally

presented as a quadratic form. However, it is not mathematically

necessary to do this, and to clarify the relation to Rummelhart et

al., we consider Eq.(8)instead of Eq.(9).

Let us now parameterize T.. as before (Eq. I0) and introduce a

similar parameterization for ~. that bounds the allowed current
values, i

Tij = 2g(Uij)-I = tanh(~Uij) (15a)

I i = 2g(Si)-I = tanh(~S i) (15b)

Actually, the ~ appearing in 15a,b does not have any relation to the

of the Slave net, so for clarity let us retain the notation of Eq.

(la) for the Slave net

g(x) = �89 + tanh(~x)) -- Slave net (16a)

and introduce a better notation gM(x), for the Master net

gH(x) = tanh(~Mx) -- (Master net)

with

Tij = gM(Uij) ~[-1,1]

(16b)

I i = gH(Si) g[-l,1] (17b)

Let us now add two integrals to Eq. (8) to produce a Lyapunov func-

tion for the Master net that is not a quadratic form:

gM(Uij) gM(Si)

E = E 1 + X f gMl(x)dx + ~ f gMl(x)dx (18a)

ij i

with

(17a)

290

E l = [[V~ s) - g(E Tij 9! s) + Ii)]2

s,i J

and Tij , I i parameterized as Eq. 17a,b. If

�9 8E 1

Uij + PUij = - ST..
iO

(18b)

(19a)

�9 3E 1

Si + PSi = - 81.
1

(19b)

then it is easily verified that

dE
-- < 0 (2o)
dt -

and an identical argument to the previous section shows that E will

decrease to near a minimum of E., at which point the Master neurons

(with membrane potentials U.. an~ S.) are firing at a constant rate
�9 i

determined by the flxed poi~s of l~a,b. The Slave net synapses and

currents are then determined by (17a,b) evaluated at the fixed point

of (19a,b).

To summarize, the logical argument so far is virtually identical

to the previous section and Ref. 7. The only change is that we chose

to use the nonquadratic form of Eq. 18 and have also included contri-

butions from currents, I.. It may be worth emphasizing that the
1 . .

above demonstrates that restrlctlons to quadratic Lyapunov functions

are totally unnecessary, and that Hopfield's "energy minimization"

arguments apply to a much wider class of functions than merely quad-

ratic. There seems to be a misconception present in the literature

that Lyapunov functions must be restricted to be quadratic, which in

turn restricts the class of optimization problems that can be

attacked. This restriction is unnecessary.

Up until now we have always assumed that all the ~!s) fixed-

point components were known because they were specified b~ the user

and that there were no hidden neurons. Let us now consider a neural

net where a subset of the neurons are arbitrarily labeled as Input,

another subset as Output, and the remaining neurons as Bidden (see

Fig. I). Only pairs of associations of Input/Output are now speci-

fied by the user, however, we will now show that at a fixed point of

the Slave, the states of the hidden neurons are known as well.

Knowing the state of all the neurons at the fixed point allows us to

determine the synaptic matrix, T.. and currents I i by the procedure

of Ref. (7) (see previous section~

To summarize, the idea is to present the known input/output

pairs to the Master net~ which then determines Slave net T..'s and

l.'s related to the firing rates of the Master at its o~ fixed

p~int. A later presentation of an input to the Slave (with the

hiddens and outputs set to states midway between "on" and "off") will

place the Slave in the basin of attraction of a Slave fixed point

291

@ Output

t
@ | @ @ @ I~

Figu re 1

t h a t then comple tes (i . e . " a s s o c i a t e s ") the a p p r o p r i a t e ou tpu t .

Because n e u r a l ne t s w i l l on ly "comple te c o r r e c t l y " i f t h e r e i s s u f f i -
c i e n t i n i t i a l i n f o r m a t i o n , we would expec t t h a t i f the inpu t s do not

c o n s t i t u t e a m a j o r i t y of the neurons in the ne t then comple t ion may
be i n c o r r e c t . For t he se s p e c i a l s i t u a t i o n s one may d i s a l l o w back

connec t i ons to the i n p u t s . However, f o r most cases the ou tpu t
neurons typically signal "yes/no" answers about complicated input

patterns, and therefore completion of the much fewer output neurons

will occur. Utilization of the completion capability of neural

networks (which is a consequence of the attractor structure) adds new

possibilities to neural net information processing.

We will first consider almost all possible connections of the

Slave net, both forwards and backwards, including recurrent connec-

tions among the Inputs and Outputs. For the moment the only case we

will not consider is recurrent connections among the hiddens. Recur-

rent hidden connections require a slight additional argument that we

provide later on so as not to unnecessarily confuse the logical

argument. This will then complete all possible cases.

The global minimum of Eq. 18b and 18a expresses ~he condition

that Eq. (7) has fixed points at desired locations, V~ s). Because

the fixed-point values are to be specified only for theiInput/Output

neurons, we restrict the sum over "i" in E 1 (Eq. 18b) as follows

E 1 = X I [9~ s) g(I Tij V! s) + Ii)]2 (21a)

s i~I/O j 3

or expanding the E
J

292

E l = ~ ~ [V~ s) - g(X T.. 9!s) + ~ T.. ~!s)+ 1.)]2 (21b)

s i~I/0 jel/0 ij 3 jeH Ij j i

The V! s) for j e I/0 are.k~own, while the V! s) for jeH are determined

by th~ known values of V~ s) for jel/O because at a fixed point
J

~(s) �9 = g(~ v s)
J kgl/O TJk + lj) , for jgH (22)

if we disallow hidden-hidden connections for the moment. Inserting

Eq. (22) in Eq. (21b) yields (for no hidden-hidden connections)

E l = X X [9~S)_g(X T..v!S)+ X T. g(~ T. v(s)+l.)+li)] 2
s i~I/O jgl/O iJ j j~H ij k~I/O ok k j

(23)

If we now allow the hidden-hidden connections to be only feed-

forward connections then we may split the sum over jgH in Eq. (21b)

into a sum over jeH I (the first hidden layer), and a sum over jgH 2
(the second hidden iEyer), see Fig. 2.

@ Output

t
~) ~ ~ Hidden 2

t
~ ~ Hidden I

t
@ @ @ @ @ I~176

Figure 2

293

In this case Eq. (21b) becomes

E 1 = E E [v~S)-g(E T..v!S)+ E T..v!S)+ E T..v!S)+I.)] 2

s igl/O jgl/O iO j JgHI ij 3 jgH2 lJ J 1

(24)

where V. for jgH 1 is as before (Eq. 22) and V. for jgH 2 becomes:
O J

v(s) .(s) + ~ . (s) + Ij)
�9 = g(~ Tjk v k Tjk v k
J kgI/O kgH 1

. (s) + ~ g(E .(s) + ik) + lj) (25) = g(~ Tjk v k Tjk Tks vs .
kgl/0 kgH 1 s

This clearly generalizes for any number of hidden layers HI, H2...H n.

Eq. (19a,19b) will determine the appropriate synaptic connec-

tions and currents given the expressions E 1 (above). It should

already be clear that this procedure incorporfites the Rummelhart et

al. algorithm as a special case if one uses a linear function for

gM(x) (Eq. 16b) and allows only feed forward connections. The sub-

s[itutions performed in Eq. 22 ~ 25 replace the "back propagation" of

Rummelhart while the Eq. (19a,b) are identical to Rummelhart's when

one "smooths the gradient" by overrelaxation (see Sejnowski Ref. 16).

In actual practice, Rummelhart changes the synaptic weights (using an

Euler discretization of Eq. 19) after a presentation of each pattern.

He notes, however, that he is really attempting to perform gradient

descent, which requires weight changes to he made only after the

complete set of patterns is "presented" (as we do above). His simu-

lations verify his claim that changing the weights after presentation

of each pattern does not destroy the gradient descent process. A

more detailed analysis of the relation of our procedure to that of

Rummelhart is given in the next section.

We now consider the case where the hidden-hidden connections are

allowed to be recurrent. This will complete the generalization to

all possible types of connections. The case of feed forward H-H

connections was considered above by appropriately generalizing Eq.

(22). We now return to Eq. (22) and generalize it for the case of

recurrent H-H connections. If we have some recurrent H-H connections

and some purely feed forward (or feed backward) H-H connections then

we would need to add additional terms as in Eq. 24, 25. The separate

cases are additive (one just adds in more terms for the separate

cases), so we see little expository value in writing down a huge

complicated looking expression that sums up all the separate cases.

We therefore return to Eq. (22) and add in only recurrent H-H connec-

tions.

In this situation Eq. (22) becomes

v(s) ~ . (s)
�9 = g (X V s) + ~ + I j) (2 6)
3 k~I/O Tjk ksH TjR vk

294

for jeH _. Because there are now feed forward and feed back-
. . gecurren~.

waro n-n connecexons, we are not able to substitute an expression in

the known I/O values for the second summation in Eq. (26) as we did

in Eq. (25). We ,~,t'h~ref~ leave the second summation as an extra

unknown variable, X~ ~ , where:
J

.(s) (27) X! s) = ~ Tjk v k
3 k~B

Thus

v (s) = g(x . (s) + x ! S) + I)
J keI/O Tjk vk 3 J

(28)

We now proceed exactly as in the above and form the analogue to Eq.

(23) by substituting Eq. 28 in Eq. (21b).

E l = ~ E [v!S)-g(~ T..v!S)+ ~ T..g(~ T.,v~S)+x!S)+I.)+I.)] 2

s iml/O 1 jgl/O 1j 3 jgH 1J kel/O $K K j 3 1

(29)

The unknown X! s) appears on v i r t u a l l y the same f o o t i n g as the un-
known, I s , so ~ha t we may pa rame te r i ze i t i n a s i m i l a r f a sh i on to Eq.
17b, ad~ the analogous i n t e g r a l to Eq. 18a and d i s cove r a l l the
unknowns by runn~Eq. 19 supplemented with a third equation for the

third variable X. . Of course X~ sJ is not in the range (-I,I), but

is instead in th~ range (-H,H) (s~e Eq. 27), so that the parameteri-

zation similar to 17b uses H-g M and not just gM where H = (number of

recurrent hiddens).

At the end of the above procedure we know the values of T:~ for

(jgH) and (kgl/O), and also for (jgl/O) and (k51/O), and for j~I/O)

and (keH). We also know all I. and the X~ sJ. All that remains is

the determination of the values 3 of T., for3(jgB) and (kgH). We have

all the information we need to do thi~ In view of tho olready known

variables and Eq. 28, we also know the values of V~ sJ for all j,

including jeH. Equation (27) now determines the unknown values of

Tjk because we may now form a new El,

E 1 = IX! s) - X Tjk v~S)] 2

3 kgH

and proceed in the usual fashion to determine T. k. Note the inter-

esting consistency condition that arises (ova, under, or exact

determination of T..) when one includes recurrent hidden connections.

It is now clJ~r that a straightforward extension of the Master/

Slave approach to computing with attractors allows one to program

networks capable of universal computation. The only slight complica-

tion occurs when one allows recurrent hidden connections. It would

be of great interest to have a "theory of computation" for neural

networks, which would give some insight into the conditions on types

of problems that require recurrent hidden connections (as well as

2 9 5

other hidden connections).

IV. Relation to Rummelhart et al.

Rummelhart et al. consider a neural network with a "synchronous

update rule" such that the output, O, of a neuron at time (t + I) is

given a function, f, of the other neurons at time t:

O.(t + I) = f(E T. . O. + I.) (31)
1 j zJ J z

They consider primarily feed forward networks, with input feeding to

hidden neurons, that in turn feed to output neurons. Recurrent net-

works are somewhat unnaturally handled by relating them to feed for-

ward networks. They consider an "energy function"

E (s) = �89 ~ (t! s) - o!S)) 2 (32)
1 1

i

�9 (s)
where t. is a

units (w~en given

the actual output

oped by performing

desired, or target, configuration for the qu~put

an input configuration labeled by s), and O~ s) is

that occurs. A "learning rule" for Tij was ~evel-

gradient descent on E [sj i.e.

aE (s)
ATij = - 8T~ q (33)

z3

where

~E (s) _ a!s) O! s)
ST.. z J

z j

(34)

and q is a."learning constant."

The 6~ s) is given by
1

6(s) . (s) o!S)) f, = (t. - (X T 0 + I i)
i 1 1 . ij j

J

(35a)

for i g Outputs and

.(s) (35b) 6 (s). = f'(X Tij O! s) + I i) [o k Tki
i j J k

for i g Hiddens. Equations (35a,b) define a recursive procedure for

calculating AT.. in their feed forward networks. Because of numeri-

cal problems, X~ne can smooth the gradient by overrelaxation (c.f.

Sejnowski, Ref. 16), so that Eq. (33) becomes:

T..(t + I) = a T..Ct) + (I - ~) (- - -
z3 zj

8E (s)
ST.. q)

xj

(36)

296

On the other hand, we consider a Slave network with subsets of

neurons divided into Input, Bidden and Output classes with no restric-

tions on the connections. The evolution equation for our Slave net-

work is

Vi + ~ Vi = g(~j Tij Vj + Ii) , (37)

which may be written in an Euler discretized form as

V . (t + A t) = (1 At At
i - ~-) Vi(t) + ~- g(~. Tij V.3 + li) (38)

3

The units of time are arbitrary, and if we choose to use units of At

then (38) becomes

V . (t + 1) = (1 - 1 1 l ~) Vi(t) + ~ g(~ Tij V. + I) (39) j j i

The relation to Eq. (31) is clear given a slight change in notation.

Our Lyapunov function Eq. (18a, b) is virtually identical to Eq. (32)

(the integral makes a negligible contribution, but helps remove false

minima 1'2) and our "learning Equation" Eq. (19a, b) is

3E 1

Uij + V 0ij - - ST..
Ij

(40a)

3E 1
S . + p S = - - - (4 0 b)
i i ~I.

1

Note that the Euler d~scretized form of Eq. (40) corresponds to

Eq. (36) with ~ = I -- and with ~_ restricted to be a linear func-

tion. In this case a ~few lines o~ algebra using Eq. 35 show that

they are identical. The constant, q corresponds to an overall con-

stant multiplicative factor on E.. In fact, as we pointed out in Ref.

7, the q's may actually he used ~o sculpt the basins of attraction by

generalizing it to n~ s~ (c.f. the constants, C~ s), in Ref. 7).

It is therefor~ clear that the two methods (programming attrac-

tors versus learning rules) are very closely related. Our evolution

equation for the Slave net, Eq. 39) is a Hopfield style neural net

equation and differs slightly from the evolution equation of Rummel-

hart (Eq. (31)) by the addition of a "forgetting" term. The fixed-

point conditions for the two evolution equations are, however,

identical. Rummelhart's learning equations, Eq. (33-35), are

virtually identical to our Eq. (40), if the gM(s) is specialized to a

linear function. The back propagation and recursive manipulations of

Rummelhart are replaced by our determination of the fixed-point

values of the hidden units in terms of the Input and Ouput. We allow

297

full back propagation to the Inputs (and also recurrent Input connec-

tions) to keep the Inputs switched on to their correct values. This

can replace the "clamping of inputs" performed by Rummelhart. It

allows a new kind of information processing where the output may be

set to, say, a "yes" value and information may flow backwards through

the net to correct a corrupted input.

Because we have specified the learning problem in terms of

evolution to attractors, we require that the network correctly "com-

plete" partial information. As noted above, this is potentially

quite powerful, but can be fairly delicate. The network will gener-

ally be unable to correctly "complete" partial information unless it

has sufficient information to start with. In these situations, we

may restrict certain connections to be feed forward, and/or clamp

inputs, and perform the task in a manner similar to Rummelhart et al.

Another feature of our implementation is the nonlinear form for

gM(x). Restricting gM(x) to be linear (c.f. Rummelhart 9) is poss-

isle, and changes our ~igorithm to a straight gradient descent proce-

dure. A nonlinear gM(x), however, tends to smooth the energy land-

scape I and allows th~ possibility of annealing in 6, This should be

helpful in more complicated situations than those considered by

Rummelhart, where false minima become a problem.

V. Summary

The Master/Slave approach ? to controlling attractors in neural

networks was extended to the case of networks with hidden neurons.

Such networks are extremely important in view of their ability to

perform space-bounded universal computations in a massively parallel

manner. A collective method of programming such networks was devel-

oped as an extension of our original approach. A special case of

this method is identical to recent work of Ru~elhart O, Parker 10 and

LeChun 11. Their results were analyzed in the broader context of

"computing with attractors" of Hopfield-style neural nets. This

results in a unification of these two approaches and clarifies many

aspects of the algorithm, in distinction to emphasizing implementa-

tion of the algorithm.

All possible types of neural interactions were allowed, includ-

ing recurrent Hidden connections, and also recurrent Input connec-

tions. For certain situations one need not clamp the Slave net

Inputs thereby allowing a new kind of information processing. The

"learning procedure" is replaced by the Master net evolution equa-

tion, which is identical to Rummelhart's learning equation in the

case where the Master net is restricted to have a linear firing rate

curve. Nonlinear (sigmoidal) Master net firing rate curves are also

allowed and this helps to smooth the energy landscape resulting in

fewer false minima (c.f. Hopfield I, in another context). The basins

of attraction may also be shaped by hand in the manner of Ref. 7.

Computational speed is determined by the time needed to reach a fixed

point of the Master Net. This is generally of order ~, which is

fractions of a microsecond in hardware.

This analysis therefore results in a formalism for programming

attractors in massively parallel Hopfield style neural nets that are

capable of performing universal computation. It reduces to previous

work of Rummelhart 9, Parker I~ and LeChun 11 in special cases, and

they have demonstrated its power in small-scale model problems (see

298

Sejnowski 16 for applications to a larger-scale problem). Until

devices can be built (either optical or VLSI) that allow for synaptic

plasticity, one must restrict attention to problems where the synap-

tic connections can be precomputed and then hard-wired.. Sejnowski's

Net Talk 16 is such an example. Even in this restricted problem

domain one may expect numerous applications in view of the computa-

tion universality of these networks.

References

I. J. J. Hopfield, Bio. Cyb. 52, 141 (1985).

2. J. J. Hopfield, PNAS 79, 2554 (1982), PNAS 81, 3088 (1984).

3. G. Hinton, J. Anderson, ed. "Parallel Models of Associative

Memory," Erlbaum Assoc., Hillsdale, NJ (1981).

4. D. Rummelbart, J. McClelland, ed. "Parallel Distributed Pro-

cessing: Exploration in the Microstructure of Cognition," MIT

Press (1986).

5. S. Wolfram, Rev. Hod. Phys. 55, p. 601 (1983).

6. M. Takeda, G. Goodman "Neural Networks for Computation,"

Stanford Univ., E.E. Dept. preprint (1986).

7. A. Lapedes, R. Farber Proceedings: Los Alamos International

Conference on Learning, Games, Evolution (May 1985) to be

published, Physica D (1986).

8. J. Denker, accepted for publication, Physica D; E. Mjolsness

(unpublished).

9. D. Rummelhart, J. McClelland in Ref. 4.

10. D. Parker "Learning Logic" (TR-47) HIT Center for Computational

Research in Economics and Management Sciences preprint (1986).

11. Y. LeChun, Proceedings of Cognitiva 85, p. 599 (1985).

12. M. Minsky, S. Papert "Perceptrons," MIT Press (1969).

13. G. Hinton, J. Sejnowski, Proc. IEEE Soc. Conf. on Computer

Vision and Pattern Recognition, Washington, D. C., p. 448

(1983).
14. D. Ackley, G. Hinton, and T. Sejnowski, Cog. Sci. 2, 147 (1985).
15. S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220 (1983).
16. T. Sejnowski and C. Rosenberg, "Net Talk: A Parallel Network

that Learns to Read Aloud," Johns Hopkins EECS preprint (1986).
17. D. Psaltis, N. Farhart, Opt. Lett. IO, 98 (1985).

IS. See e.g., J. Feldman, J. Cowan, Biol. Cyb. 17, 29 (1975).

19. T. Sejnowski in Ref. 3.

20. T. Kohonen "Self Organization and Associative Memory," Springer-

Verlag Press (1984).

