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Abstract 

Massively parallel systems are presently the focus of intense 

interest for a variety of reasons. A key problem is how to control, 

or "program" these systems. In previous work by the authors~ the 

"optimum finding" properties of Hopfield neural nets were applied to 

the nets themselves to create a "neural compiler." This was done in 

such a way that the problem of programming the attractors of one 

neural net (called the Slave net) was expressed as an optimization 

problem that was in turn solved by a second neural net (the Master 

net). The procedure is effective and efficient. In this series of 

papers we extend that approach to programming nets that contain 

interneurons (sometimes called "hidden neurons"), and thus we deal 

with nets capable of universal computation. Our work is closely 

related to recent work of Rummelhart et al. (also Parker, and 

LeChun), which may be viewed as a special case of this formalism and 

therefore of "computing with attractors." In later papers in this 

series, we present the theory for programming time dependent behav- 

ior, and consider practical implementations. One may expect numerous 

applications in view of the computation universality of these 

networks. 

I. Introduction 

Massively parallel systems are the focus of intense interest by 

numerous researchers spanning many disciplines. They have tremendous 

practical implications for new kinds of computing 1'2 and may give 

some insight into how massively parallel biological brains oper- 

ate. 3'4 They are also theoretically interesting when analyzed as an 

example of a complex, nonlinear dynamical system. 5 Programming, i.e. 

controlling, these systems is a difficult task. Recent work of 

Hopfield 1'2 on a particular system~ neural networks, has stimulated 

intense interest on the part of many researchers. He has shown that 

nets with symmetrical interactions posess a Lyapunov function, and 

that such a function is very useful in controlling the network behav- 

ior. In particular, he has shown that continuous state neural net- 

works (as opposed to discrete, two state networks) may be used to 

perform a credible job of solving difficult optimization problems 

such as the classic Traveling Salesman Problem (see also M. Takeda, 

G. Goodman6). In these types of problems the solution to the optimi- 

zation problem is a fixed point of the neural dynamics and the pro- 

blem constraints and the data (e.g. the distances in the TSP problem) 

appears in the symmetrical neural connections. The solution to the 

problem~ the fixed point of the net, is of course not known a priori, 

and thus one runs the nonlinear differential equations for the nets 

until it relaxes to a fixed point in order to find an optimum. 
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A second class of difficult computation problems, e.g. Content 

Addressable Memory, associative memory, pattern recognition (and many 

other forms of high level symbol processing) can also be attacked 

with neural networks. Here, one knows the desired fixed points 

a priori (they correspond, for example, to the patterns to be recog- 

nized), however, one does not know in general what neural connections 

will yield the known fixed points. A partial solution to determine 

the neural connections was given by Hopfield z, which is based on a 

symmetric synaptic connection matrix formed by taking outer products 

of the desired fixed point vectors. Disadvantages of this approach 

include a very limited degree of control over the basins of attrac- 

tion, the symmetry of the synaptic connection matrix (which is almost 

certainly unphysiological), inability to deal with time dynamic 

behavior, and the fact that interneurons necessary for universal 

computation are excluded. In spite of these limitations, Hopfield's 

pioneering work remains an important first step in the theory of 

computation for neural networks. 

The present authors 7 have approached the problem of programming 

fixed points into a neural net by directly attacking the conditions 

that the synaptic connection matrix must satisfy if the desired fixed 

points are to be present. This was accomplished by posing the gener- 

al problem of determining the connections of a Slave net as an optim- 

ization problem, and then using the "optimum finding" abilities of 

neural nets to define a second net, a Master net, that performed the 

optimization. This therefore links the two classes of problems 

currently under investigation in neural network theory. Advantages 

of this approach include greater control over the basins of attrac- 

tion, removal of the symmetry restriction in the Slave net, and as we 

will show, the ability to control interneurons or "hidden neurons" 

that are necessary for universal computation. The method is effec- 

tive and efficient 8 and may also be viewed as a learning algorithm 

for neural networks. We have also extended the method to allow 

programming of time dependent behavior (paper II of this series). 

The extension of our original formalism that is required to deal 

with hidden neurons is closely related to recent work of 

Rummelhart et al., 9 Parker 1~ and Le Chun. ~I This work, performed 

independently of the Master/Slave approach is shown to be a special 

case of the more general formalism presented below. This comment is 

not intended in any way to detract from the very fine results of 

these authors, and we hope that by providing a general setting that 

the value of such approaches can be better appreciated. 

The importance of hidden neurons has, of course, not gone unno- 

ticed by other researchers. It was forcefully pointed out by Minsky 

et al. 12 that hidden neurons are necessary to solve certain classes 

of important problems. In fact, it was the difficulty in being able 

to program these important neurons that led to the decline of inter- 

est in the 1970's in the Perceptron formalism of neural networks. 

Hinton and Sejnowski et al. 13'14 attacked the hidden neuron problem 

in the early 1980s by developing the Boltzman machine formalism. In 

this work, simulated annealing is for a stochastic two-state neuron 

model was coupled with the construction of a clever learning algo- 

rithm to provide the first solutions for programming massively paral- 

lel networks to perform difficult computations. Hinton and Sejnowski 

and coworkers have provided many beautiful analyses of problems 
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involving hidden neurons and used their procedure to find many solu- 

tions for small-scale model problems. However, there exist two 

severe disadvantages to their approach. These are the extreme compu- 

tational slowness and the inability to directly incorporate time- 

varying neural behavior (e.g. direct programming of network limit 

cycles etc.). 

Recently, Sejnowski has used the Rummelhart procedure (in favor 

to the Boltzman machine procedure) to solve a moderately large-scale 

problem - that of converting typed text to speech, including correct 

context dependent pronunciations of phonemes. 16 As we will see in 

the general formalism below, computational slowness is no longer an 

issue, and that the work of Rummelhart, Parker, Le Chun, Sejnowski 

and the present authors are closely related to the neural networks 

popularized by Hopfield, and are examples of computing with attrac- 

tors in computation universal systems. In view of the widespread 

interest by engineers in constructing Hopfield-type nets in hardware 

(VLSI or optical) l? , it would seem that actual construction of mas- 

sively parallel, computation universal devices may closely follow the 

development of theory for controlling these systems. 

In this paper (I) we confine our attention to developing the 

theory for control of static behavior and point out the relations to 

work of Rummelhart, Parker, Le Chun. Their work inspired the present 

development. However, our results are completely general in that we 

allow all possible connections of hidden, input and output neurons, 

both forward and backward, including fully recurrent hidden connec- 

tions. "Clamping" of inputs is not necessary - back connections can 

allow inputs to remain "on" as part of the net's fixed-point configu- 

ration. Adjustment of basin boundaries may be accomplished in the 

manner of Ref. 7. The formalism clearly shows that the method is a 

procedure for controlling attractors in Hopfield type nets. In paper 

II we present the theory for controlling time dependent behavior. In 

subsequent papers we discuss specific applications. 

II. Summary of Master/Slave Formalism 

The Master/Slave formalism was developed as a general 7 attack on 

determining what synaptic connection matrix, Tij , yields desired 

fixed points of the neural net equations 

Ui + ~Ui" = ~. Tijg(Uj) + Ii (I) 

J 

th 
Here, U. represents the membrane potential of the i neuron, ~ is 

the cel~ summation time constant (or the RC time constant of an 

electric circuit implementation), T.. is the synaptic cp~nection 

matrix, g(U.) is the sigmoidal firin1~ rate curve of the jtn neuron 

(or transfe~ function of an op-amp), and I. is an external current 

(or equivalently an internal threshold). ~or concreteness we take 

g(x) = �89 + tanh(~x)) (la) 

where ~ determines the slope of the sigmoid curve. The exact form 

that the sigmoia assumes is not crucial to the results. These equa- 

tions were introduced by Hopfield 1'2 in the context of "problem 

solving with neural nets" (e.g. the Traveling Salesman Problem), but 
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related equations have also been written down by many researchers 18'19 

as an acceptably crude model of neurophysiology. Hopfield showed 

that if Tij = Tji , then a Lyapunov function, E, exists: 

V. 

E = -�89 ~ T . .  V. V. - ~ I .  V.+ Z f l  g - l ( x  ) dx (2) 
ij 13 1 J i i i i 

where V i = g(Ui). Equation (2) implies that 

dE g,(Ui).0~ 
dt 

i 

(3) 

and since g'(x) is positive semidefinite, E will decrease. E is 

bounded however, so that it will eventually stop decreasing and U. 

will be zero, at which point a fixed point is reached. In the hig~ 

gain limit (large ~), the integral in Eq. (2) is negligible and the 

minima of E that is obtained will be close to a minima of El: 

E1 = -�89 ~ij Tij g(U i) g(Uj) - ~i Iig (Ui) (4) 

Hopfield chose 

m 

E l = -�89 ~ (V (s)'V) 2 (5) 

s=l 

where . (s) = (s) 
memory v$ atess~ g(Ui )' s = {],2...m} are the desired choice of m 

or fixed points. Although this choice works, subject 

to limitations discussed in the Introduction, it is ad hoc and it is 

not a general solution to the problem of inserting desired fixed 

points into the neural dynamics. The T.. determined by Eq. (5) is a 

sum of the outer products of the flxg~-polnt vectors and is, of 

course, symmetric. 

In Ref. (7) we considered the general prpb/em of finding T..'s 

that produce fixed points at desired states V~ s), s = {1,2...m} ~th 
1 

no a priori restriction on the T... To do so we reformulated Eq. (I) 

by introducing a new variable, V~t) such that 

U. = ~ T..V. + I. (6) 
1 j lJ 3 1 

It is easily checked that V. satisfies 
1 

V i + NV i = g(~ T..V + li) (7) j ij j 

by multiplying Eq. (7) by T.., summing over i, and comparing to Eq. 

(I). It may be shown that ~ is essentially a short time average of 

the firing rate g(U=), and t~at at a fixed point O~hE q. (7) (V i = O) 

the value of V. is t~e firing rate, g(U.), of the i neuron. . . 
.1 . 1 

The requlrement that a partlcular set of m fixed points V~ s), 
1 
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{s = 1,2...m} of Eq. 7 exists may be expressed as 

E 1 = ~ [v!S)-g(E T. V! s) + li)] 2 (8) 
�9 i . lj j 

S,l J 

with E 1 = 0. From Eq. 7 we see that this requires that V. = 0 at 
i 

each V! s). The V (s). are the known fixed points that one desired to 

insertlinto the ne~ and the T..'s are unknown but subject to Eq. (81. 

Note that no restrictions s~h as symmetry have been placed on the 

T..'s. In Ref. 7 we rewrote Eq. (8) slightly as 
ij 

E 1 = ~ [g-lCv~s)/ - ~ Tij V! s/ - 1.] 2 (9) 
s,i j j i 

and noticed that finding the T..'s satisfying E. = 0 requires finding 

the minimum of the quadratic ~rm I in T.. that results from expanding 

the square in Eq. (9). 13 

It is desirable to keep T.. bounded and a natural parameteriza- 

tion that accomplishes this is 13 

Tij = 2g(Uij) -I (I0) 

where g(U..) is another sigmoidal function (between 0 and I) of the 

new varia~e U... T.. ranges over -I to +I. I. may be parameterized 
1 . 1 . . . 

in a similar fa~hlon ~ut for slmphclty let us ~ake I. to be zero for 
1 

the moment. We consider non-zero I. in the next section, but wish to 
�9 1 

keep the following summary as simple as possible and will not consid- 

er non-zero I. until later. There will be no problems with non-zero 

I. - it just ~dds some more terms. 
1 

Inserting (10) in (9) and expanding the square yields 

E 1 = - Z Tijks g(Uij ) g(Uks - E Iij g(Uij) + constant 
ijks ij 

(11) 

where 

= V (s) V~ s) (12a) 
Tijks - 4 ~ 6ki j , Tijks = Tks 

s 

= Z 4 v~S)[g_l(v~S) ) ( c  + ~ v~S)]( (12b) 
I i j  s J ~ s 

Comparison of Eq. (11) with Eq. (4) shows that Eq. (11) is related to 

the Lyapunov function for another network, the Master net, with mem- 

brane potential U.. and synaptic matrix and external currents given 

by Eq. 12. Addin#~ suitable integral places Eq. (11) exactly in the 

same form as Eq. (21 with the Master net neurons indexed by two 

indices, i and j, instead of just one index. Therefore, solving the 

two index form of Eq. (I) 



288 

Uij + p Uij = ~ Tijks g(Uks + lij (13) 
ks 

will result in a fixed point of the Master net, g(Ui.) that is a 

minimum of Eq. (II) and equivalently Eq. (9) (for larg~ 6). At the 

Master fixed point the Master neurons are firing at a sustained rate 

g(Uij) and the Slave net Tij will be given by Eq. (I0), i.e., 

Tij = 2g(Uij)-I (14) 

The Master net firing rates, therefore, modulate the synaptic connec- 

tions in the Slave. 

Simulations ~ show that a good approximation to the global mini- 

mum of Eq. (II) is generally found, and that the resulting Slave net 

T..'s generally produce the desired fixed points. For further dis- 

cu~slon, and extenslons to add control over basins of attraction, see 

Ref. 7. More discussion and an analysis of the efficiency of the 

above procedure may be found in Ref. 8. 

III. Extension of Master/Slave Procedure: Hidden Neurons 

The above procedure was originally developed for auto-associa- 

tive memory. 2~ That is, fixed points were inserted in a Slave net 

such that configurations in the basins of attraction evolved to the 

desired fixed points. Hetero-associative memory 20, i.e. true associ- 

ative memory, seeks to find T..'s such that particular configurations 

At, A .... A will evolve toIJother specific patterns B4, B .... B . 

T~us, ~atte~n A +B , A2+B etc. A trivial psychological�89 
1 1 ,, ,, ,, 

tion is that recalling ~act A I ( a dog ) evokes fact B 1 ( dogs 
bark"). Although this is amusing (and potentially very powerful in, 

say, a relational data base or massively parallel expert system) the 

psychological interpretation is the least important aspect of hetero- 

associative memory. 

In our opinion the prime significance of hetero-associative 

memory, when accomplished with interneurons or hidden neurons, is the 

ability to perform universal computation. For example, the following 

bit pattern associations O0 ~ O, 01 ~ 1, 10 + I, 11 ~ 0 may only be 

realized in a neural network with the aid of hidden neurons 12'13'14 

and are the logical expression of XOR ("exclusive or"). Negation and 

other logical functions may also be expressed as simple associations 

and can only be accomplished with hidden neurons. Therefore networks 

with hidden neurons are capable of space-bounded universal computa- 

tion. To realize this capability one must be able to control the 

attractors in such networks. 

In the following we show that a minor extension of the Master/ 

Slave procedure (section II and Ref. 7) allows one to present a 

collection of inputs and outputs to a Master/Slave neural net, where 

the outputs may be complicated logical functions of the inputs, so 

that the net will adapt its attractors to "deduce" an algorithm that 

reproduces the input/output pairs. The net has limited information 

capacity and is clearly not just recording the input/output pairs, 

but is instead developing a collective algorithm to associate input 

and output. The net has certain capabilities of deduction and gener- 

alization (this seems to be related to overloading the memory capaci- 
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ty) and may even be operated in a "backward mode" where it is told 

the output and can back propagate to "correct" a corrupted input. We 

allow all possible connections of hidden, input, and output neurons, 

both forwards and backwards, including fully recurrent connections 

among the hidden neurons. "Clamping" of inputs is not necessary. 

Adjustment of basin boundaries, if desired, may be accomplished in a 

similar manner to Ref. 7. A natural extension of this method, to 

deal with time dependent behavior is presented in the next paper in 

this series. 

Development of the Master/Slave procedure for hidden neurons 

begins with Eq. (7) and_~8). In the previous section, and in Ref 

(7), we introduced the g function so that the energy expression in 

Eq. (8) could be written as a quadratic form (Eq. (9)) with known 

coefficients related to the desired fixed points of the Slave net. 

This was done for pedagogical purposes to clarify the connection to a 

Hopfield Lyapunov function for a Master net, which was originally 

presented as a quadratic form. However, it is not mathematically 

necessary to do this, and to clarify the relation to Rummelhart et 

al., we consider Eq.(8 )instead of Eq.(9). 

Let us now parameterize T.. as before (Eq. I0) and introduce a 

similar parameterization for ~. that bounds the allowed current 
values, i 

Tij = 2g(Uij)-I = tanh(~Uij) (15a) 

I i = 2g(Si)-I = tanh(~S i) (15b) 

Actually, the ~ appearing in 15a,b does not have any relation to the 

of the Slave net, so for clarity let us retain the notation of Eq. 

(la) for the Slave net 

g(x) = �89 + tanh(~x)) -- Slave net (16a) 

and introduce a better notation gM(x), for the Master net 

gH(x) = tanh(~Mx) -- (Master net) 

with 

Tij = gM(Uij) ~[-1,1] 

(16b) 

I i = gH(Si) g[-l,1] (17b) 

Let us now add two integrals to Eq. (8) to produce a Lyapunov func- 

tion for the Master net that is not a quadratic form: 

gM(Uij) gM(Si ) 

E = E 1 + X f gMl(x)dx + ~ f gMl(x)dx (18a) 

ij i 

with 

(17a) 
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E l = [ [V~ s) - g(E Tij 9! s) + Ii)]2 

s,i J 

and Tij , I i parameterized as Eq. 17a,b. If 

�9 8E 1 

Uij + PUij = - ST.. 
iO 

(18b) 

(19a) 

�9 3E 1 

Si + PSi = - 81. 
1 

(19b) 

then it is easily verified that 

dE 
-- < 0 (2o) 
dt - 

and an identical argument to the previous section shows that E will 

decrease to near a minimum of E., at which point the Master neurons 

(with membrane potentials U.. an~ S.) are firing at a constant rate 
�9 i 

determined by the flxed poi~s of l~a,b. The Slave net synapses and 

currents are then determined by (17a,b) evaluated at the fixed point 

of (19a,b). 

To summarize, the logical argument so far is virtually identical 

to the previous section and Ref. 7. The only change is that we chose 

to use the nonquadratic form of Eq. 18 and have also included contri- 

butions from currents, I.. It may be worth emphasizing that the 
1 . . 

above demonstrates that restrlctlons to quadratic Lyapunov functions 

are totally unnecessary, and that Hopfield's "energy minimization" 

arguments apply to a much wider class of functions than merely quad- 

ratic. There seems to be a misconception present in the literature 

that Lyapunov functions must be restricted to be quadratic, which in 

turn restricts the class of optimization problems that can be 

attacked. This restriction is unnecessary. 

Up until now we have always assumed that all the ~!s) fixed- 

point components were known because they were specified b~ the user 

and that there were no hidden neurons. Let us now consider a neural 

net where a subset of the neurons are arbitrarily labeled as Input, 

another subset as Output, and the remaining neurons as Bidden (see 

Fig. I). Only pairs of associations of Input/Output are now speci- 

fied by the user, however, we will now show that at a fixed point of 

the Slave, the states of the hidden neurons are known as well. 

Knowing the state of all the neurons at the fixed point allows us to 

determine the synaptic matrix, T.. and currents I i by the procedure 

of Ref. (7) (see previous section~ 

To summarize, the idea is to present the known input/output 

pairs to the Master net~ which then determines Slave net T..'s and 

l.'s related to the firing rates of the Master at its o~ fixed 

p~int. A later presentation of an input to the Slave (with the 

hiddens and outputs set to states midway between "on" and "off") will 

place the Slave in the basin of attraction of a Slave fixed point 
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@ Output 

t 
@ | @ @ @ I~ 

Figu re  1 

t h a t  then comple tes  ( i . e .  " a s s o c i a t e s " )  the  a p p r o p r i a t e  ou tpu t .  

Because n e u r a l  ne t s  w i l l  on ly  "comple te  c o r r e c t l y "  i f  t h e r e  i s  s u f f i -  
c i e n t  i n i t i a l  i n f o r m a t i o n ,  we would expec t  t h a t  i f  the  inpu t s  do not  

c o n s t i t u t e  a m a j o r i t y  of  the  neurons in  the  ne t  then  comple t ion  may 
be i n c o r r e c t .  For t he se  s p e c i a l  s i t u a t i o n s  one may d i s a l l o w  back 

connec t i ons  to  the  i n p u t s .  However, f o r  most cases  the  ou tpu t  
neurons typically signal "yes/no" answers about complicated input 

patterns, and therefore completion of the much fewer output neurons 

will occur. Utilization of the completion capability of neural 

networks (which is a consequence of the attractor structure) adds new 

possibilities to neural net information processing. 

We will first consider almost all possible connections of the 

Slave net, both forwards and backwards, including recurrent connec- 

tions among the Inputs and Outputs. For the moment the only case we 

will not consider is recurrent connections among the hiddens. Recur- 

rent hidden connections require a slight additional argument that we 

provide later on so as not to unnecessarily confuse the logical 

argument. This will then complete all possible cases. 

The global minimum of Eq. 18b and 18a expresses ~he condition 

that Eq. (7) has fixed points at desired locations, V~ s). Because 

the fixed-point values are to be specified only for theiInput/Output 

neurons, we restrict the sum over "i" in E 1 (Eq. 18b) as follows 

E 1 = X I [9~ s) g(I Tij V! s) + Ii)]2 (21a) 

s i~I/O j 3 

or  expanding the  E 
J 
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E l = ~ ~ [V~ s) - g( X T.. 9!s) + ~ T.. ~!s)+ 1.)]2 (21b) 

s i~I/0 jel/0 ij 3 jeH Ij j i 

The V! s) for j e I/0 are.k~own, while the V! s) for jeH are determined 

by th~ known values of V~ s) for jel/O because at a fixed point 
J 

~(s) �9 = g( ~ v s) 
J kgl/O TJk + lj) , for jgH (22) 

if we disallow hidden-hidden connections for the moment. Inserting 

Eq. (22) in Eq. (21b) yields (for no hidden-hidden connections) 

E l = X X [9~S)_g( X T..v!S)+ X T. g( ~ T. v(s)+l.)+li)] 2 
s i~I/O jgl/O iJ j j~H ij k~I/O ok k j 

(23) 

If we now allow the hidden-hidden connections to be only feed- 

forward connections then we may split the sum over jgH in Eq. (21b) 

into a sum over jeH I (the first hidden layer), and a sum over jgH 2 
(the second hidden iEyer), see Fig. 2. 

@ Output 

t 
~) ~ ~ Hidden 2 

t 
~ ~ Hidden I 

t 
@ @ @ @ @ I~176 

Figure 2 
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In this case Eq. (21b) becomes 

E 1 = E E [v~S)-g( E T..v!S)+ E T..v!S)+ E T..v!S)+I.)] 2 

s igl/O jgl/O iO j JgHI ij 3 jgH2 lJ J 1 

(24) 

where V. for jgH 1 is as before (Eq. 22) and V. for jgH 2 becomes: 
O J 

v(s) .(s) + ~ . (s) + Ij) 
�9 = g( ~ Tjk v k Tjk v k 
J kgI/O kgH 1 

. (s) + ~ g( E .(s) + ik ) + lj) (25) = g( ~ Tjk v k Tjk Tks vs . 
kgl/0 kgH 1 s 

This clearly generalizes for any number of hidden layers HI, H2...H n. 

Eq. (19a,19b) will determine the appropriate synaptic connec- 

tions and currents given the expressions E 1 (above). It should 

already be clear that this procedure incorporfites the Rummelhart et 

al. algorithm as a special case if one uses a linear function for 

gM(x) (Eq. 16b) and allows only feed forward connections. The sub- 

s[itutions performed in Eq. 22 ~ 25 replace the "back propagation" of 

Rummelhart while the Eq. (19a,b) are identical to Rummelhart's when 

one "smooths the gradient" by overrelaxation (see Sejnowski Ref. 16). 

In actual practice, Rummelhart changes the synaptic weights (using an 

Euler discretization of Eq. 19) after a presentation of each pattern. 

He notes, however, that he is really attempting to perform gradient 

descent, which requires weight changes to he made only after the 

complete set of patterns is "presented" (as we do above). His simu- 

lations verify his claim that changing the weights after presentation 

of each pattern does not destroy the gradient descent process. A 

more detailed analysis of the relation of our procedure to that of 

Rummelhart is given in the next section. 

We now consider the case where the hidden-hidden connections are 

allowed to be recurrent. This will complete the generalization to 

all possible types of connections. The case of feed forward H-H 

connections was considered above by appropriately generalizing Eq. 

(22). We now return to Eq. (22) and generalize it for the case of 

recurrent H-H connections. If we have some recurrent H-H connections 

and some purely feed forward (or feed backward) H-H connections then 

we would need to add additional terms as in Eq. 24, 25. The separate 

cases are additive (one just adds in more terms for the separate 

cases), so we see little expository value in writing down a huge 

complicated looking expression that sums up all the separate cases. 

We therefore return to Eq. (22) and add in only recurrent H-H connec- 

tions. 

In this situation Eq. (22) becomes 

v(s) ~ . ( s )  
�9 = g (  X V s )  + ~ + I j )  ( 2 6 )  
3 k~I/O Tjk ksH TjR vk 
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for jeH _. Because there are now feed forward and feed back- 
. . gecurren~. 

waro n-n connecexons, we are not able to substitute an expression in 

the known I/O values for the second summation in Eq. (26) as we did 

in Eq. (25). We ,~,t'h~ref~ leave the second summation as an extra 

unknown variable, X~ ~ , where: 
J 

.(s) (27) X! s) = ~ Tjk v k 
3 k~B 

Thus 

v (s)  = g( x . ( s )  + x ! S )  + I ) 
J keI/O Tjk vk 3 J 

(28) 

We now proceed exactly as in the above and form the analogue to Eq. 

(23) by substituting Eq. 28 in Eq. (21b). 

E l = ~ E [v!S)-g( ~ T..v!S)+ ~ T..g( ~ T.,v~S)+x!S)+I.)+I.)] 2 

s iml/O 1 jgl/O 1j 3 jgH 1J kel/O $K K j 3 1 

(29) 

The unknown X! s) appears  on v i r t u a l l y  the same f o o t i n g  as the un- 
known, I s ,  so ~ha t  we may pa rame te r i ze  i t  i n  a s i m i l a r  f a sh i on  to Eq. 
17b, ad~ the analogous i n t e g r a l  to Eq. 18a and d i s cove r  a l l  the 
unknowns by runn~Eq. 19 supplemented with a third equation for the 

third variable X. . Of course X~ sJ is not in the range (-I,I), but 

is instead in th~ range (-H,H) (s~e Eq. 27), so that the parameteri- 

zation similar to 17b uses H-g M and not just gM where H = (number of 

recurrent hiddens). 

At the end of the above procedure we know the values of T:~ for 

(jgH) and (kgl/O), and also for (jgl/O) and (k51/O), and for j~I/O) 

and (keH). We also know all I. and the X~ sJ. All that remains is 

the determination of the values 3 of T., for3(jgB) and (kgH). We have 

all the information we need to do thi~ In view of tho olready known 

variables and Eq. 28, we also know the values of V~ sJ for all j, 

including jeH. Equation (27) now determines the unknown values of 

Tjk because we may now form a new El, 

E 1 = IX! s) - X Tjk v~S)] 2 

3 kgH 

and proceed in the usual fashion to determine T. k. Note the inter- 

esting consistency condition that arises (ova, under, or exact 

determination of T..) when one includes recurrent hidden connections. 

It is now clJ~r that a straightforward extension of the Master/ 

Slave approach to computing with attractors allows one to program 

networks capable of universal computation. The only slight complica- 

tion occurs when one allows recurrent hidden connections. It would 

be of great interest to have a "theory of computation" for neural 

networks, which would give some insight into the conditions on types 

of problems that require recurrent hidden connections (as well as 
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other hidden connections). 

IV. Relation to Rummelhart et al. 

Rummelhart et al. consider a neural network with a "synchronous 

update rule" such that the output, O, of a neuron at time (t + I) is 

given a function, f, of the other neurons at time t: 

O.(t + I) = f(E T. .  O. + I.) (31) 
1 j zJ J z 

They consider primarily feed forward networks, with input feeding to 

hidden neurons, that in turn feed to output neurons. Recurrent net- 

works are somewhat unnaturally handled by relating them to feed for- 

ward networks. They consider an "energy function" 

E (s) = �89 ~ (t! s) - o!S)) 2 (32) 
1 1 

i 

�9 (s) 
where t. is a 

units (w~en given 

the actual output 

oped by performing 

desired, or target, configuration for the qu~put 

an input configuration labeled by s), and O~ s) is 

that occurs. A "learning rule" for Tij was ~evel- 

gradient descent on E [sj i.e. 

aE (s) 
ATij = - 8T~ q (33) 

z3 

where 

~E (s) _ a!s)  O! s) 
ST.. z J 

z j  

(34) 

and q is a."learning constant." 

The 6~ s) is given by 
1 

6(s) . (s) o!S)) f, = (t. - (X T 0 + I i) 
i 1 1 . ij j 

J 

(35a) 

for i g Outputs and 

.(s) (35b) 6 (s). = f'(X Tij O! s) + I i) [ o k Tki 
i j J k 

for i g Hiddens. Equations (35a,b) define a recursive procedure for 

calculating AT.. in their feed forward networks. Because of numeri- 

cal problems, X~ne can smooth the gradient by overrelaxation (c.f. 

Sejnowski, Ref. 16), so that Eq. (33) becomes: 

T..(t + I) = a T..Ct) + (I - ~) (- - -  
z3 zj 

8E (s) 
ST..  q) 

xj 

(36) 
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On the other hand, we consider a Slave network with subsets of 

neurons divided into Input, Bidden and Output classes with no restric- 

tions on the connections. The evolution equation for our Slave net- 

work is 

Vi + ~ Vi = g(~j Tij Vj + Ii) , (37) 

which may be written in an Euler discretized form as 

V . ( t  + A t )  = (1 At At 
i - ~-) Vi(t) + ~- g(~. Tij V.3 + li) (38) 

3 

The units of time are arbitrary, and if we choose to use units of At 

then (38) becomes 

V . ( t  + 1) = (1 - 1 1 l ~ ) Vi(t) + ~ g(~ Tij V. + I ) (39) j j i 

The relation to Eq. (31) is clear given a slight change in notation. 

Our Lyapunov function Eq. (18a, b) is virtually identical to Eq. (32) 

(the integral makes a negligible contribution, but helps remove false 

minima 1'2) and our "learning Equation" Eq. (19a, b) is 

3E 1 

Uij + V 0ij - - ST.. 
Ij 

(40a) 

3E 1 
S .  + p S = - - -  ( 4 0 b )  
i i ~I. 

1 

Note that the Euler d~scretized form of Eq. (40) corresponds to 

Eq. (36) with ~ = I -- and with ~_ restricted to be a linear func- 

tion. In this case a ~few lines o~ algebra using Eq. 35 show that 

they are identical. The constant, q corresponds to an overall con- 

stant multiplicative factor on E.. In fact, as we pointed out in Ref. 

7, the q's may actually he used ~o sculpt the basins of attraction by 

generalizing it to n~ s~ (c.f. the constants, C~ s), in Ref. 7). 

It is therefor~ clear that the two methods (programming attrac- 

tors versus learning rules) are very closely related. Our evolution 

equation for the Slave net, Eq. 39) is a Hopfield style neural net 

equation and differs slightly from the evolution equation of Rummel- 

hart (Eq. (31)) by the addition of a "forgetting" term. The fixed- 

point conditions for the two evolution equations are, however, 

identical. Rummelhart's learning equations, Eq. (33-35), are 

virtually identical to our Eq. (40), if the gM(s) is specialized to a 

linear function. The back propagation and recursive manipulations of 

Rummelhart are replaced by our determination of the fixed-point 

values of the hidden units in terms of the Input and Ouput. We allow 
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full back propagation to the Inputs (and also recurrent Input connec- 

tions) to keep the Inputs switched on to their correct values. This 

can replace the "clamping of inputs" performed by Rummelhart. It 

allows a new kind of information processing where the output may be 

set to, say, a "yes" value and information may flow backwards through 

the net to correct a corrupted input. 

Because we have specified the learning problem in terms of 

evolution to attractors, we require that the network correctly "com- 

plete" partial information. As noted above, this is potentially 

quite powerful, but can be fairly delicate. The network will gener- 

ally be unable to correctly "complete" partial information unless it 

has sufficient information to start with. In these situations, we 

may restrict certain connections to be feed forward, and/or clamp 

inputs, and perform the task in a manner similar to Rummelhart et al. 

Another feature of our implementation is the nonlinear form for 

gM(x). Restricting gM(x) to be linear (c.f. Rummelhart 9) is poss- 

isle, and changes our ~igorithm to a straight gradient descent proce- 

dure. A nonlinear gM(x), however, tends to smooth the energy land- 

scape I and allows th~ possibility of annealing in 6, This should be 

helpful in more complicated situations than those considered by 

Rummelhart, where false minima become a problem. 

V. Summary 

The Master/Slave approach ? to controlling attractors in neural 

networks was extended to the case of networks with hidden neurons. 

Such networks are extremely important in view of their ability to 

perform space-bounded universal computations in a massively parallel 

manner. A collective method of programming such networks was devel- 

oped as an extension of our original approach. A special case of 

this method is identical to recent work of Ru~elhart O, Parker 10 and 

LeChun 11. Their results were analyzed in the broader context of 

"computing with attractors" of Hopfield-style neural nets. This 

results in a unification of these two approaches and clarifies many 

aspects of the algorithm, in distinction to emphasizing implementa- 

tion of the algorithm. 

All possible types of neural interactions were allowed, includ- 

ing recurrent Hidden connections, and also recurrent Input connec- 

tions. For certain situations one need not clamp the Slave net 

Inputs thereby allowing a new kind of information processing. The 

"learning procedure" is replaced by the Master net evolution equa- 

tion, which is identical to Rummelhart's learning equation in the 

case where the Master net is restricted to have a linear firing rate 

curve. Nonlinear (sigmoidal) Master net firing rate curves are also 

allowed and this helps to smooth the energy landscape resulting in 

fewer false minima (c.f. Hopfield I, in another context). The basins 

of attraction may also be shaped by hand in the manner of Ref. 7. 

Computational speed is determined by the time needed to reach a fixed 

point of the Master Net. This is generally of order ~, which is 

fractions of a microsecond in hardware. 

This analysis therefore results in a formalism for programming 

attractors in massively parallel Hopfield style neural nets that are 

capable of performing universal computation. It reduces to previous 

work of Rummelhart 9, Parker I~ and LeChun 11 in special cases, and 

they have demonstrated its power in small-scale model problems (see 
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Sejnowski 16 for applications to a larger-scale problem). Until 

devices can be built (either optical or VLSI) that allow for synaptic 

plasticity, one must restrict attention to problems where the synap- 

tic connections can be precomputed and then hard-wired.. Sejnowski's 

Net Talk 16 is such an example. Even in this restricted problem 

domain one may expect numerous applications in view of the computa- 

tion universality of these networks. 
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