ACKNOWLEDGMENT
The author is grateful to Prof. S. J. Mason of M.I.T. for his interest in this work, and for his many helpful suggestions. The author also wishes to thank Prof. K. N. Stevens and Prof. M. Eden for some very helpful discussions, and Prof. D. E. Troxel for his help in designing the sensory display.

REFERENCES

Nearest Neighbor Pattern Classification

T. M. COVER, MEMBER, IEEE, AND P. E. HART, MEMBER, IEEE

Abstract—The nearest neighbor decision rule assigns to an unclassified sample point the classification of the nearest of a set of previously classified points. This rule is independent of the underlying joint distribution on the sample points and their classifications, and hence the probability of error R of such a rule must be at least as great as the Bayes probability of error R^*—the minimum probability of error over all decision rules taking underlying probability structure into account. However, in a large sample analysis, we will show in the M-category case that $R^* < R < R'(2 - MR^*/(M-1))$, where these bounds are the tightest possible, for all suitably smooth underlying distributions. Thus for any number of categories, the probability of error of the nearest neighbor rule is bounded above by twice the Bayes probability of error. In this sense, it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor.

I. INTRODUCTION

In the classification problem there are two extremes of knowledge which the statistician may possess. Either he may have complete statistical knowledge of the underlying joint distribution of the observation x and the true category θ, or he may have no knowledge of the underlying distribution except that which can be inferred from samples. In the first extreme, a standard Bayes analysis will yield an optimal decision procedure and the corresponding minimum (Bayes) probability of error of classification R^*. In the other extreme, a decision to classify x into category θ is allowed to depend only on a collection of n correctly classified samples $(x_1, \theta_1), (x_2, \theta_2), \ldots, (x_n, \theta_n)$, and the decision procedure is by no means clear. This problem is in the domain of nonparametric statistics and no optimal classification procedure exists with respect to all underlying statistics.

If it is assumed that the classified samples (x_i, θ_i) are independently and identically distributed according to the distribution of (x, θ), certain heuristic arguments may be made about good decision procedures. For example, it is reasonable to assume that observations which are close together (in some appropriate metric) will have the same classification, or at least will have almost the same posterior probability distributions on their respective classifications. Thus to classify the unknown sample x we may wish to weight the evidence of the nearby x_i's most heavily. Perhaps the simplest nonparametric decision procedure of this form is the nearest neighbor (NN) rule, which classifies x in the category of its nearest neighbor. Surprisingly, it will be shown that, in the large sample case, this simple rule has a probability of error which
is less than twice the Bayes probability of error, and hence is less than twice the probability of error of any other decision rule, nonparametric or otherwise, based on the infinite sample set.

The first formulation of a rule of the nearest neighbor type and primary previous contribution to the analysis of its properties, appears to have been made by Fix and Hodges [1] and [2]. They investigated a rule which might be called the \(k\)-nearest neighbor rule. It assigns to an unclassified point the class most heavily represented among its \(k\) nearest neighbors. Fix and Hodges established the consistency of this rule for sequences \(k_n \to \infty\) such that \(k_n/n \to 0\). In reference [2], they investigate numerically the small sample performance of the \(k\)-NN rule under the assumption of normal statistics.

The NN rule has been used by Johns [3] as an example of an empirical Bayes rule. Kanal [4], Sebestyen [5] (who calls it the proximity algorithm), and Nilsson [6] have mentioned the intuitive appeal of the NN rule and suggested its use in the pattern recognition problem. Loftsgaarden and Quesenberry [7] have shown that a simple modification of the \(k\)-NN rule gives a consistent estimate of a probability density function. In the above mentioned papers, no analytical results in the nonparametric case were obtained either for the finite sample size problem or for the finite number of nearest neighbors problem.

In this paper we shall show that, for any number \(n\) of samples, the single-NN rule has strictly lower probability of error than any other \(k\)-NN rule against certain classes of distributions, and hence is admissible among the \(k\)-NN rules. We will then establish the extent to which “samples which are close together have categories which are close together” and use this to compare in Section VI the probability of error of the NN-rule with the minimum possible probability of error.

II. THE NEAREST NEIGHBOR RULE

A set of \(n\) pairs \((x_1, \theta_1), \ldots, (x_n, \theta_n)\) is given, where the \(x_i\)'s take values in a metric space \(X\) upon which is defined a metric \(d\), and the \(\theta_i\)'s take values in the set \(\{1, 2, \ldots, M\}\). Each \(\theta_i\) is considered to be the index of the category to which the \(i\)-th individual belongs, and each \(x_i\) is the outcome of the set of measurements made upon that individual. For brevity, we shall frequently say “\(x_i\) belongs to \(\theta_i\)” when we mean precisely that the \(i\)-th individual, upon which measurements \(x_i\) have been observed, belongs to category \(\theta_i\).

A new pair \((x, \theta)\) is given, where only the measurement \(x\) is observable by the statistician, and it is desired to estimate \(\theta\) by utilizing the information contained in the set of correctly classified points. We shall call

\[x' \in \{x_1, x_2, \ldots, x_n\} \]

a nearest neighbor to \(x\) if

\[\min d(x_i, x) = d(x', x) \quad i = 1, 2, \ldots, n. \quad (1) \]

The nearest neighbor rule decides \(x\) belongs to the category \(\theta'_{x'}\) of its nearest \(1\) neighbor \(x'\). A mistake is made if \(\theta'_{x'} \neq \theta\). Notice that the NN rule utilizes only the classification of the nearest neighbor. The \(n - 1\) remaining classifications \(\theta_i\) are ignored.

III. ADMISSIBILITY OF NEAREST NEIGHBOR RULE

If the number of samples is large it makes good sense to use, instead of the single nearest neighbor, the majority vote of the nearest \(k\) neighbors. We wish \(k\) to be large in order to minimize the probability of a non-Bayes decision for the unclassified point \(x\), but we wish \(k\) to be small (in proportion to the number of samples) in order that the points be close enough to \(x\) to give an accurate estimate of the posterior probabilities of the true class of \(x\).

The purpose of this section is to show that, among the class of \(k\)-NN rules, the single nearest neighbor rule \((1-NN)\) is admissible. That is, for the \(n\)-sample problem, there exists no \(k\)-NN rule, \(k \neq 1\), which has lower probability of error against all distributions. We shall show that the single NN rule is undominated by exhibiting a simple distribution for which it has strictly lower probability of error \(P_e\). The example to be given comes from the family of distributions for which simple decision boundaries provide complete separation of the samples into their respective categories. Fortunately, one example will serve for all \(n\).

Consider the two category problem in which the prior probabilities \(n_1 = n_2 = \frac{1}{2}\), and the conditional density \(f_1\) is uniform on the unit disk \(D_1\) centered at \((-3, 0)\), and the conditional density \(f_2\) is uniform on the unit disk \(D_2\) centered at \((3, 0)\) as shown in Fig. 1. In the \(n\)-sample problem, the probability that \(j\) individuals come from category \(1\), and hence have measurements lying in \(D_1\), is \((\frac{1}{2})^n\). Without loss of generality, assume that the unclassified \(x\) lies in category \(1\). Then the NN rule will make a classification error only if the nearest neighbor \(x'\) belongs to category \(2\), and thus, necessarily, lies in \(D_2\). But, from inspection of the distance relationships, if the nearest neighbor to \(x\) is in \(D_2\), then each of the \(x_i\) must lie in \(D_2\). Thus the probability \(P_e(1; n)\) of error of the NN rule in this case is precisely \((\frac{1}{2})^n\)—the probability that \(x_1, x_2, \ldots, x_n\) all lie in \(D_2\). Let \(k = 2k_n + 1\). Then the \(k\)-NN rule makes an error if \(k_n\) or fewer points lie in \(D_1\). This occurs with probability

\[P_e(k; n) = (\frac{1}{2})^n \sum_{i=0}^{k_n} \binom{n}{i}. \quad (2) \]

Thus in this example, the 1-NN rule has strictly lower \(P_e\) than does any \(k\)-NN rule, \(k \neq 1\), and hence is admissible in that class. Indeed

\[\text{In case of ties for the nearest neighbor, the rule may be modified to decide the most popular category among the ties. However, in those cases in which ties occur with nonzero probability, our results are trivially true.} \]
For a given \(x \) the conditional loss is minimum when the individual is assigned to the category \(j \) for which \(r_j(x) \) is lowest. Minimizing the conditional expected loss obviously minimizes the unconditional expected loss. Thus the minimizing decision rule \(\delta^* \), called the Bayes decision rule with respect to \(\eta \), is given by deciding the category \(j \) for which \(r_j \) is lowest. Using \(\delta^* \), the conditional Bayes risk \(r^*(x) \) is

\[r^*(x) = \min_i \left\{ \sum_{i=1}^M \eta_i(x) L(i, j) \right\} \]

and the resulting overall minimum expected risk \(R^* \), called the Bayes risk, is given by

\[R^* = ER^*(x), \]

where the expectation is with respect to the compound density

\[f(x) = \sum_{i=1}^M \eta_i f_i(x). \]

V. CONVERGENCE OF NEAREST NEIGHBORS

Most of the properties of the NN rules hinge on the assumption that the conditional distributions of \(\eta^i \) and \(\theta \) approach one another when \(x^* \to x \). In order to put bounds on the NN risk for as wide a class of underlying statistics as possible, it will be necessary to determine the weakest possible conditions on the statistics which guarantee the above convergence.

Lemma (Convergence of the Nearest Neighbor)

Let \(x^* \) denote the nearest neighbor to \(x \) from the set \(\{x_1, x_2, \ldots, x_n\} \). Then \(x^* \to x \) with probability one.

Remark: In particular, \(x^* \to x \) with probability one for any probability measure in Euclidean \(n \)-space. We prove the lemma in this generality in order to include in its coverage such standard pathological candidates for counterexamples as the Cantor ternary distribution function defined on the real line.

Since the convergence of the nearest neighbor to \(x \) is independent of the metric, the bounds on the risks of the NN rule will be independent of the metric on \(X \).

Proof: Let \(S_r(x) \) be the sphere \(\{z \in X : d(z, x) \leq r\} \) of radius \(r \) centered at \(x \), where \(d \) is the metric defined on \(X \).

Consider first a point \(x \in X \) having the property that every sphere \(S_r(x) \), \(r > 0 \), has nonzero probability measure. Then, for any \(\delta > 0 \),

\[P\left(\min_{k=1,2,\ldots,n} d(x_k, x) \geq \delta \right) = (1 - P(S_r(\delta))^n \to 0 \]

and therefore, since \(d(x_k, x) \) is monotonically decreasing in \(k \), the nearest neighbor to \(x \) converges to \(x \) with probability one.
It remains to argue that the random variable \(x \) has this property with probability one. We shall do so by proving that the set \(N \) of points failing to have this property has probability measure zero. Accordingly, let \(N \) be the set of all \(x \) for which there exists some \(r_2 \) sufficiently small that \(P(S_r(r_2)) = 0 \).

By the definition of the separability of \(X \), there exists a countable dense subset \(A \) of \(X \). For each \(x \in N \) there exists, by the deneness of \(A \), an \(a_2 \in A \) for which \(a_2 \in S_r(r_2/3) \). Thus, there exists a small sphere \(S_{r_3}(r_2/3) \) which is strictly contained in the original sphere \(S_r(r_2) \) and which contains \(x \). Thus \(P(S_{r_3}(r_2/3)) = 0 \). Then the possibly uncountable set \(N \) is contained in the countable union (by the countability of \(A \)) of spheres \(\bigcup_{n \in \mathbb{N}} S_{r_3}(r_2) \). Since \(N \) is contained in the countable union of sets of measure zero, \(P(N) = 0 \), as was to be shown.

VI. NEAREST NEIGHBOR PROBABILITY OF ERROR

Let \(x_0 \in \{x_1, x_2, \ldots, x_n\} \) be the nearest neighbor to \(x \) and let \(\theta_0 \) be the category to which the individual having measurement \(x_0 \) belongs. If \(\theta \) is indeed the category of \(x \), the NN rule incurs loss \(L(\theta, \theta_0) \). If \((\theta, e), (x_1, \theta_1), \ldots, (x_n, \theta_n) \) are random variables, we define the n-sample NN risk \(R(n) \) by the expectation

\[
R(n) = E[L(\theta, \theta_0) | x, x_1, \ldots, x_n] = P_r[\theta \neq \theta_0 | x, x_0] = \sum_{\theta \neq \theta_0} P_r[\theta = 1 | x, x_0] + P_r[\theta = 2 | x, x_0] = P_r[\theta = 1 | x, x_0] + P_r[\theta = 2 | x, x_0]
\]

where the expectation is taken over \(\theta \) and \(\theta_0 \). By the development of (4) the above may be written as

\[
r(x, x_0) = \eta_1(x) \eta_2(x_0) + \eta_2(x) \eta_1(x_0). \tag{14}
\]

We wish first to show that \(r(x, x_0) \) converges to the random variable \(2\eta_1(x)\eta_2(x) \) with probability one.

We have not required that \(f_1, f_2 \) be continuous at the points \(x \) of nonzero probability measure \(\nu(x) \), because these points may be trivially taken into account as follows. Let \(\nu(x_0) > 0 \); then

\[
P_r[x_0 \neq x_0'] = \lim_{n \to \infty} P_r[\theta \neq \theta_0 | x, x_0'] = 0. \tag{16}
\]

Since \(x_0' \), once equalling \(x_0 \), equals \(x_0 \) thereafter,

\[
r(x, x_0') \to 2\eta_1(x)\eta_2(x_0) \tag{17}
\]

with probability one.

For the remaining points, the hypothesized continuity of \(f_1 \) and \(f_2 \) is needed. Here \(x \) is a continuity point of \(f_1 \) and \(f_2 \) with conditional probability one (conditioned on \(x \) such that \(\nu(x) = 0 \)). Then, since \(\eta \) is continuous in \(f_1 \) and \(f_2 \), \(x \) is a continuity point of \(\eta \) with probability one. By the lemma, \(x_0' \) converges to the random variable \(x \) with probability one. Hence, with probability one,

\[
\eta(x_0') \to \eta(x) \tag{18}
\]

and, from (15), with probability one,

\[
r(x, x_0') \to r(x) = 2\eta_1(x)\eta_2(x), \tag{19}
\]

where \(r(x) \) is the limit of the n-sample conditional NN risk.

As shown in (6) the conditional Bayes risk is

\[
r^*(x) = \min \{\eta_1(x), \eta_2(x)\} = \min \{\eta_1(x), 1 - \eta_2(x)\}. \tag{20}
\]

Now, by the symmetry of \(r^* \) in \(\eta \), we may write

\[
r(x) = 2\eta_1(x)\eta_2(x) = 2\eta(x)(1 - \eta(x)) \tag{21}
\]

These bounds are as tight as possible.

Remarks: In particular, the hypotheses of the theorem are satisfied for probability densities which consist of any mixture of \(\delta \)-functions and piecewise continuous density functions on Euclidean d-space. Observe that \(0 \leq R^* \leq R \leq 2R^*(1 - R^*) \leq \frac{1}{2} \); so \(R^* = 0 \) if and only if \(R = 0 \), and \(R^* = \frac{1}{2} \) if and only if \(R = \frac{1}{2} \). Thus in the extreme cases of complete certainty and complete uncertainty the NN probability of error equals the Bayes probability of error. Conditions for equality of \(R \) and \(R^* \) for other values of \(R^* \) will be developed in the proof.
Thus as a by-product of the proof, we have shown in the large sample case, that with probability one a randomly chosen \(x \) will be correctly classified with probability
\[2r^*(x)(1 - r^*(x))\]. For the overall NN risk \(R \), we have, by definition,
\[R = \lim_{n \to \infty} E[r(x, x^n)] \] (22)
where the expectation is taken over \(x \) and \(x^n \). Now \(L \), and hence \(r \), is bounded by one; so applying the dominated convergence theorem,
\[R = E[\lim_{n \to \infty} r(x, x^n)] \] (23)
The limit, from (19) and (21), yields
\[R = E[r(x)] = E[2\hat{\theta}(x)\hat{\theta}(x)] = E[2r^*(x)(1 - r^*(x))] \] (24)
Since the Bayes risk \(R^* \) is the expectation of \(r^* \), we have
\[R = 2R^*(1 - R^*) - 2 \text{ Var } r^*(x) \] (25)
Hence
\[R \leq 2R^*(1 - R^*) \] (26)
with equality if \(\text{ Var } r^* = 0 \), which holds iff \(r^* = R^* \) with probability one. Investigating this condition we find that for \(R - 2R^*(1 - R^*) \) it is necessary and sufficient that
\[\frac{\eta_f(x)}{\eta_f(x)} = R^*/(1 - R^*) \quad \text{or} \quad (1 - R^*)/R^* \] (27)
for almost every \(x \) (with respect to the probability measure \(\nu \)).

Rewriting (24), we have
\[R = E[r^*(x) + r^*(x)(1 - 2r^*(x))] \]
\[= R^* + E[r^*(x)(1 - 2r^*(x))] \]
\[\geq R^* \] (28)
with equality if and only if \(r^*(x)(1 - 2r^*(x)) = 0 \) almost everywhere (with respect to \(\nu \)). Thus the lower bound \(R = R^* \) is achieved if and only if \(r^* \) equals 0 or \(\frac{1}{2} \) almost everywhere and \(E r^* = R^* \). Examples of probability distributions achieving the upper and lower bounds will be given at the end of this section following the extension to \(M \) categories.

Consider now the \(M \)-category problem with the probability of error criterion given by the loss function \(L(i, j) = 0 \) for \(i = j \) and \(L(i, j) = 1 \) for \(i \neq j \). The substitution trick of (21) can no longer be used when \(M \neq 2 \).

Theorem (Extension of Theorem 1 to \(M \neq 2 \))

Let \(X \) be a separable metric space. Let \(f_1, f_2, \ldots, f_M \) be probability densities with respect to some probability measure \(\nu \) such that, with probability one, \(x \) is either 1) a continuity point of \(f_1, f_2, \ldots, f_M \), or 2) a point of nonzero probability measure. Then the NN probability of error \(R \) has the bounds
\[R^* < R < R^* \left(2 - \frac{M}{M - 1} R^*\right) \] (29)
These bounds are as tight as possible.

Proof: Since \(x'_i \to x \) with probability one, the posterior probability vector \(\hat{\theta}(x'_i) \to \hat{\theta}(x) \) with probability one. The conditional \(n \)-sample NN risk \(r(x, x'_i) \) is
\[r(x, x'_i) = E[L(\theta, \theta'_i) | x, x'_i] = \sum_{i=1}^M \hat{\theta}_i(x)\hat{\theta}_i(x'_i) \] (30)
which converges with probability one to the large sample conditional risk \(r(x) \) defined by
\[r(x) = \sum_{i=1}^M \hat{\theta}_i(x)\hat{\theta}_i(x) = 1 - \sum_{i=1}^M \hat{\theta}_i(x) \] (31)
The conditional Bayes risk \(r^*(x) \), obtained by selecting, for a given \(x \), the maximum \(\hat{\theta}_i(x) \), say \(\hat{\theta}_i(x) \), is given by
\[r^*(x) = 1 - \max_i \{ \hat{\theta}_i(x) \} = 1 - \hat{\theta}_i(x) \] (32)
By the Cauchy-Schwarz inequality
\[(M - 1) \sum_{i \neq k} \hat{\theta}_i^2(x) \geq \left(\sum_{i \neq k} \hat{\theta}_i(x) \right)^2 = (r^*(x))^2 \] (33)
Adding \((M - 1)\hat{\theta}_i^2(x) \) to each side,
\[(M - 1) \sum_{i=1}^M \hat{\theta}_i^2(x) \geq (r^*(x))^2 + (M - 1)\hat{\theta}_i^2(x) \]
\[= (r^*(x))^2 + (M - 1)(1 - r^*(x))^2 \] (34)
or
\[\sum_{i=1}^M \hat{\theta}_i^2(x) \geq \frac{(r^*(x))^2}{M - 1} + (1 - r^*(x))^2 \] (35)
Substituting (35) into (31),
\[r(x) \leq 2r^*(x) - \frac{M}{M - 1} (r^*(x))^2 \] (36)
Taking expectations, and using the dominated convergence theorem as before,
\[R = 2R^* - \frac{M}{M - 1} (R^*)^2 - \frac{M}{M - 1} \text{ Var } r^*(x) \] (37)
Hence
\[R \leq R^* \left(2 - \frac{M}{M - 1} R^*\right) \] (38)
The upper bound is attained for the no-information experiment \(f_1 = f_2 = \ldots = f_M \), with \(\eta_i = 1 - R^* \), and \(\eta_i - R^*/(M - 1) ; i = 2, \ldots, M \). The lower bound \(R = R^* \) is attained, for example, when \(\eta_i = 1/M, i = 1, 2, \ldots, M \), and

\[
f_i(x) = \begin{cases}
1, & 0 \leq x \leq MR^*/M - 1 \text{ or } i \leq x \leq i + 1 - MR^*/M - 1 \\
0, & \text{elsewhere.}
\end{cases}
\]

VII. Example

Let the real valued random variable \(x \) have triangular densities \(f_1 \) and \(f_2 \) with prior probabilities \(\eta_1 = \eta_2 = \frac{1}{2} \), as shown in Fig. 2. The density \(f = \eta_1 f_1 + \eta_2 f_2 \) on \(x \) is uniform on \([0, 1]\), thus facilitating calculation of the distribution of the nearest neighbor \(x_n \).

![Fig. 2. Triangle densities for example.](image)

The probability of error for this example in the \(n \)-sample single NN case is

\[
R(n) = E[\eta_1 \eta_2 f_1(x_n') + \eta_1 \eta_2 f_2(x_1')]
- E[x(1 x_n') | (1 x_1')].
\]

Upon performing a lengthy but straightforward calculation, we obtain

\[
R(n) = \frac{1}{3} + \frac{1}{(n + 1)(n + 2)}.
\]

Thus

\[
R = \lim_{n \to \infty} R(n) = \frac{1}{3}.
\]

The NN risk \(R \) is to be compared to the Bayes risk

\[
R^* = \int \min \{ \eta f_1, \eta f_2 \} \, dv
= \int_0^1 \min \{ x, 1 - x \} \, dx = \frac{1}{4}.
\]

Exhibiting corresponding terms we have

\[
R^* \leq R \leq 2R^*(1 - R^*)
\]

or

\[
\frac{1}{4} \leq R \leq \frac{2}{3}.
\]

In this example we have found an exact expression for the NN risk \(R(n) \) for any finite sample size. Observe that \(R(1) = \frac{1}{2} \), in agreement with simpler considerations, and that \(R(n) \) converges to its limit approximately as \(1/n^2 \).

VIII. The k-NN Rule

From Section V it is also possible to conclude that the \(k \)th nearest neighbor to \(x \) converges to \(x \) with probability one as the sample size \(n \) increases with \(k \) fixed. Since each of the nearest neighbors casts conditionally independent votes as to the category of \(x \), we may conclude, in the various category case for odd \(k \), that the conditional \(k \)-NN risk \(r_k(x) \) is given in the limit (with probability one) as \(n \) increases, by

\[
r_k(x) = \eta_1(x) \sum_{j=0}^{(k-1)/2} \binom{k}{j} \eta_1(x)(1 - \eta_1(x))^{j-i}
+ (1 - \eta_1(x)) \sum_{j=(k+1)/2}^{k} \binom{k}{j} \eta_1(x)(1 - \eta_1(x))^{j-i}.
\]

Note that the conditional NN risks \(r_k(x) \) are monotonically decreasing in \(k \) (to \(\min \{ \eta_1(x), 1 - \eta_1(x) \} \)), as we might suspect. Thus the least upper bounds on the unconditional NN risks \(R_k \) will also be monotonically decreasing in \(k \) (to \(R^* \)).

Observe that in (45) \(r_k \) is symmetric in \(\eta_1 \) and \(1 - \eta_1 \). Thus \(r_k \) may be expressed solely in terms of \(r^* = \min \{ \eta_1, 1 - \eta_1 \} \) in the form

\[
r_k = \rho_k(r^*)
= r^* \sum_{j=0}^{(k-1)/2} \binom{k}{j} (r^*)^j (1 - r^*)^{k-j-i}
+ (1 - r^*) \sum_{j=(k+1)/2}^{k} \binom{k}{j} (r^*)^j (1 - r^*)^{k-j-i}.
\]

Now let \(\tilde{\rho}_k(r^*) \) be defined to be the least concave function greater than \(\rho_k(r^*) \). Then

\[
r_k = \rho_k(r^*) \leq \tilde{\rho}_k(r^*),
\]

and, by Jensen's inequality,

\[
R_k = E r_k = E \rho_k(r^*) \leq E \tilde{\rho}_k(r^*) \leq \tilde{\rho}_k(E r^*) = \tilde{\rho}_k(R^*).
\]

So \(\tilde{\rho}_k(R^*) \) is an upper bound on the large sample \(k \)-NN risk \(R_k \). It may further be shown, for any \(R^* \), that \(\tilde{\rho}_k(R^*) \) is the least upper bound on \(R_k \) by demonstrating simple statistics which achieve it. Hence we have the bounds

\[
\tilde{\rho}_k(R^*) \leq R_k \leq \tilde{\rho}_k(R^*).
\]
where the upper and lower bounds on R_k are as tight as possible.

IX. Conclusions

The single NN rule has been shown to be admissible among the class of k_n-NN rules for the n-sample case for any n. It has been shown that the NN probability of error R_* in the M-category classification problem, is bounded below by the Bayes probability of error R^* and above by $R^*(2 - MR^*/(M - 1))$. Thus any other decision rule based on the infinite data set can cut the probability of error by at most one half. In this sense, half of the available information in an infinite collection of classified samples is contained in the nearest neighbor.

REFERENCES

A Generalized Form of Price’s Theorem and Its Converse

JOHN L. BROWN, JR., SENIOR MEMBER, IEEE

Abstract—The case of n unity-variance random variables x_1, x_2, \ldots, x_n governed by the joint probability density $w(x_1, x_2, \ldots, x_n)$ is considered, where the density depends on the (normalized) cross-covariance $\rho_{ij} = E[(x_i - \bar{x}_i)(x_j - \bar{x}_j)]$. It is shown that the condition

$$\frac{\partial}{\partial x_i} \{E[f(x_i, x_2, \ldots, x_n)]\} = E\left[\frac{\partial}{\partial x_i} f(x_i, x_2, \ldots, x_n)\right] \quad (i \neq f)$$

holds for an "arbitrary" function $f(x_1, x_2, \ldots, x_n)$ of n variables if and only if the underlying density $w(x_1, x_2, \ldots, x_n)$ is the usual n-dimensional Gaussian density for correlated random variables.

This result establishes a generalized form of Price’s theorem in which: 1) the relevant condition (*) subsumes Price’s original condition; 2) the proof is accomplished without appeal to Laplace integral expansions; and 3) conditions referring to derivatives with respect to diagonal terms ρ_{ii} are avoided, so that the unity variance assumption can be retained.

INTRODUCTION

PRICE’S THEOREM and its various extensions ([1]–[4]) have had great utility in the determination of output correlations between zero-memory nonlinearities subjected to jointly Gaussian inputs. In its original form, the theorem considered n jointly normal random variables, x_1, x_2, \ldots, x_n, with respective means $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$ and n-th order joint probability density,

$$P(x_1, x_2, \ldots, x_n) = \frac{1}{(2\pi)^{n/2} |M_n|^{-1/2}} \exp \left\{-\frac{1}{2} \sum_r \sum_s M_{rs} (x_r - \bar{x}_r)(x_s - \bar{x}_s)\right\},$$

where $|M_n|$ is the determinant of $M_n = [\rho_{rs}]$, $\rho_{rs} = E[(x_r - \bar{x}_r)(x_s - \bar{x}_s)] = x_r x_s - \bar{x}_r \bar{x}_s$ is the correlation coefficient of x_r and x_s, and M_{rs} is the cofactor of ρ_{rs} in M_n.

From [1], the theorem statement is as follows:

"Let there be n zero-memory nonlinear devices specified by the input-output relationship $f_i(x_i), i = 1, 2, \ldots, n$. Let each x_i be the single input to a corresponding $f_i(x_i)$.