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Abstract— The state-of-the-art photo upsampling method,
PULSE, demonstrates that a sharp, high-resolution (HR) version
of a given low-resolution (LR) input can be obtained by exploring
the latent space of generative models. However, mapping an

extreme LR input (162) directly to an HR image (10242) is too
ambiguous to preserve faithful local facial semantics. In this
paper, we propose an enhanced upsampling approach, Pro-
PULSE, that addresses the issues of semantic inconsistency and
optimization complexity. Our idea is to learn an encoder that
progressively constructs the HR latent codes in the extended
W+ latent space of StyleGAN. This design divides the complex
64× upsampling problem into several steps, and therefore small-
scale facial semantics can be inherited from one end to the
other. In particular, we train two encoders, the base encoder
maps latent vectors in W space and serves as a foundation
of the HR latent vector, while the second scale-specific encoder
performed in W+ space gradually replaces the previous vector
produced by the base encoder at each scale. This process produces
intermediate side-outputs, which injects deep supervision into
the training of encoder. Extensive experiments demonstrate
superiorities over the latest latent space exploration methods,
in terms of efficiency, quantitative quality metrics, and qualitative
visual results.

Index Terms— Photo upsampling, GANs, progressive learning,
latent space.

I. INTRODUCTION

R
ECENT advances in image editing and transformation

are driven by the success of latent space exploration in
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generative models. These methods fully leverage the powerful

generation ability of GANs, especially StyleGAN [15],

by discovering semantically meaningful directions in the

latent space [10], [24], [26], or inverting the generation

process by estimating the latent codes of an input real

image [1], [2], [25], [38].

These successes are extended to a fundamental, ill-posed

super-resolution problem. A photo upsampling approach [21],

namely PULSE, is proposed to transform an extreme low-

resolution (LR) input into a sharp high-resolution (HR) image.

Instead of inverting an HR real image to the latent codes of

GANs, PULSE aims to discover the latent code of the LR

image that can produce a consistent HR image. In particular,

it self-supervisedly optimizes the latent code by enforcing the

similarity between input LR and the downscaled output. In this

way, although the generated HR images are not exactly the

same as the ground truth, it does produce sharp and realistic

results. When applying it on face images, it is known as

face hallucination [27], [39]. Similar to PULSE, we take face

hallucination as an application in this paper.

Notwithstanding the achieved high upsampling quality,

PULSE suffers from a severe complexity problem, as it

relies on localizing the optimal latent vector for each input

LR image. A concurrent work, pSp network [25], is pro-

posed to learn an encoder that maps several types of inputs

(LR is one of them) to the latent vectors for specific tasks. This

is undisputed faster than optimizing the image-specific latent

code as PULSE does. However, both PULSE and pSp share a

common limitation that they cannot capture small-scale facial

semantics in the LR image. This is because low resolution

is akin to myopic vision in that fine visual features are not

discernable. Converting such a blurry input to an HR image

is extremely ambiguous, as there exists multiple HR images

correspond to exactly the same LR input. Direct mapping

exhibits spatial shift and semantic inconsistency. As shown

in Fig. 1c and 1d, eyeglasses are too blurry to be correctly

mapped to the HR images, resulting in either blackened eye

regions or failures in eyeglasses recovery.

In this paper, we follow the same spirit of PULSE but

propose an alternative solution, namely Pro-PULSE, to solve

the above notorious and universal problem. Our idea is to

progressively predict latent vectors for different scales, such

that the complex 64× mapping problem can be divided into

several simpler 2× upsampling operations. In this way, fine

details of LR can be easily inherited and refined step-by-step.
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Fig. 1. Our Pro-PULSE framework allows capturing small-scale facial semantics (e.g., eyeglasses) in low-resolution input for photo upsampling. We produce
inherited semantics and progressively refined upsampled faces as side outputs, with successive intermediate results being more concise.

In particular, we have two encoders that map LR images into

the latent vectors of StyleGAN [15]. The first base encoder

learns to generate a latent vector in W space, which serves as

a foundation of generating HR results in all scales. We then

train the second scale-specific encoder in the W+ space that

gradually replaces the previous latent vector obtained from the

base encoder, until all the scales are fed with scale-specific

latent vectors. Rather than learning all scales simultaneously,

our incremental nature allows the training to first discover

large-scale structure of the image distribution and then shift

attention to increasingly finer scale detail. To ensure seman-

tically correct inheritance during the progressive process,

we revise StyleGAN to contain a deeply-supervised generator

that produces a side-output with guidance at each scale to

aid the training of intermediate latent codes. This not only

enables multi-scale upsampling, but also enforces perceptual

consistency of side-outputs in all resolutions. With our multi-

level analysis and progressive inference, the model is able to

discover semantically meaningful small-scale facial compo-

nents, as shown in Fig. 1e.

Our approach has conceptual similarity to previous progres-

sive [14], [30] or cascaded approaches [5]. We share the same

observation that the complex large scaling factor mapping

problem can be easier to learn in steps. However, a crucial

difference is that we have an emphasis on multi-level analysis

in the latent spaces of GANs, instead of learning a direct

LR-HR mapping. In addition, we demonstrate the proposed

method in the application of face hallucination, but it is general

to other context.

Overall, our contributions are three-fold:
• We propose a novel progressive upsampling framework,

Pro-PULSE, for mapping an extreme LR input to a

latent vector of StyleGAN that produces faithful and

semantically correct HR image.

• We tailor a progressive training scheme for explor-

ing latent spaces of GANs, by involving two separate

encoders and producing side-outputs, to ease the learning

ambiguity and inherit fine details from the lowest level.

• Extensive quantitative and qualitative experiments

demonstrate that the favorable characteristics of our

underlying techniques manifest in Pro-PULSE being

both semantically accurate and computational efficient.

II. RELATED WORKS

A. Image Super-Resolution

Image super-resolution aims at recovering a realistic HR

image based on its blurry LR counterpart. Early works tackle

this problem using statistical techniques [4], [12], [28], [32].

The same as other applications, image super-resolution

achieves a rapid development with the advance of convo-

lutional neural networks (CNNs). A typical solution is to

learn a direct mapping function between paired LR and HR

images using a CNN. Dong et al. [9] proposed the first CNN

for single image super-resolution. Li et al. [18] develop an

image super-resolution feedback network that refines low-level

representations with high-level information. Except for natural

images, face super-resolution/hallucination utilize the extra

facial knowledge in the upsampling process. Zhu et al. [39]

proposed a unified framework that estimates the dense corre-

spondence fields to hallucinate face images. Yu et al. [35]

design a two-branches network, one is for recovering face

HR and the other is to predict salient regions for better

reconstruction. Chen et al. [6] introduced the facial landmark

and parsing map as the guidance signal into the upsampling

process. Although considerable progress has been made, they

still suffer from the following issues: 1) most of those works

use MSE loss to train a CNN, which leads to a blurring

effect and lost vivid details on the recovered HR face images;

2) state-of-arts super-resolution methods can deal with at most

8× upscaling factors, which limits the practical usages in many

scenarios.

B. GAN Inversion

Generative models take random latent codes as input

and synthesize various images. To better meet the needs

of the real-world applications, GAN inversion is proposed

that maps a real image to the latent space of a pre-trained

generator that produces a consistent result with the input

image [1], [2], [7], [25], [38].
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Based on how they search for the latent code, these

methods can be categorized in two classes. The first one

is optimization-based methods, in which they process a sin-

gle image by optimizing its latent code directly with pixel-

wise reconstruction loss [1], [2], [20]. PULSE adopts this

idea on photo upsampling with a fixed StyleGAN. However,

it ignores the highly structured semantics that emerges in the

generation process of StyleGAN [31]. Besides, optimization-

based methods are time-consuming which limits its scalability.

The second class is learning-based that learns a mapping

function from image space to latent space directly. Particularly,

Zhu et al. [38] proposed an encoder that ensures the inverted

code in the semantic domain of the original latent space.

Richardson et al. [25] demonstrated various applications can

be well-solved by mapping a real image to W+ latent space

of StyleGAN. However, all the previous methods neglect the

fact that directly mapping a sparse input (either the random

code or LR image) to a super-dense high-resolution output

is ambiguous and intractable. We overcome this universal

problem by introducing the progressive encoder that inherits

structured semantics in steps.

The two most related works, PULSE [21] and pSp [25],

share the same idea that search an optimal latent code in

latent space for image upsampling as ours. However, PULSE

is an optimization-based method, which is time-consuming to

optimize every input into a target latent code. On the contrary,

we explore the StyleGAN latent space from a learning per-

spective that can significantly accelerate the inference speed.

pSp proposes a general framework to learn an encoder that

maps the input from domain X to the StyleGAN domain

(X can be the LR image). Both PULSE and pSp are one-

step mapping methods that neglect a critical fact that fine

visual features in the LR input are not discernable. Hence, they

may not produce semantically consistent outputs. In contrast,

we tailor a progressive encoder and training scheme to remedy

the semantic inheritance problem.

III. APPROACH

A. Preliminary

Before getting into our method, we first briefly introduce the

W and W+ space of StyleGAN, as our method relies heavily

on them. Generally, a generative model takes the latent code

from the Gaussian distribution Z as input. This noise input

directly control the output of a pretrained generative model,

therefore latent space exploration methods aim to figure out

the semantic structure within the latent space. StyleGAN [15]

maps this latent code from Z space to another space with a few

fully-connected layers, called W space, before feeding to gen-

erator for a better semantic disentanglement. Abdal et al. [1]

find that using the same latent code in the W space for all

layers limits the representation ability, thus they extend the

W space to W+ space, where a w+ latent code consists

of a combination of layer-aware w codes. Compared with

the W space, W+ space improves the representative ability

significantly. As a result, many latent space exploration works

are applied on the W+ space of pre-trained StyleGAN due to

its strong expressiveness.

Fig. 2. Overview of our Pro-PULSE. The right part is our modified generator
with multi-side-outputs. Encoder EW learns a latent vector in W space with
LR input, which serves as a foundation of generating HR results in all scales.
EW+ maps the LR input to the W+ space that gradually replaces the w
latent code obtained from EW . Note this figure shows the starting status of

our progressive process, in which the w latent code for 32×32 is first replaced

by an advanced scale-specific w+ latent code. At the end of our training, all

the w codes will be replaced by the layer-specific w+ codes.

B. Pipeline

Given an LR photo, the proposed Pro-PULSE, which is

illustrated in Fig. 2, aims to generate a high-resolution ver-

sion with more small-scale facial semantics being captured.

To achieve this goal, we divide the model within three sub-

networks. The first one is a deeply supervised generator, which

additionally produces multiple side outputs. These outputs are

particularly designed for inheriting facial semantics from each

other and thus enables more concise and plausible reconstruc-

tions. The second one is a base encoder that maps the LR

image to the W space, while the last is our final target model,

i.e., scale-specific encoder, which progressively encodes the

input to the W+ space, and is trained under the guidance of

the other two modules.

C. Deeply-Supervised Generator

StyleGAN profits from highly structured semantics and has

proven to be successful in facial image generation [1], [31].

However, those semantics are presented implicitly, and there-

fore could be underutilized to translate an LR image to

its HR version. To tackle this problem, we transform the

generator of a pre-trained StyleGAN into a new one with

multiple appended branches, i.e., the deeply-supervised gener-

ator Gds , as illustrated in Fig. 2. Specifically, in the proposed

generator, each style block is connected with a convolu-

tion branch to correspond to a different output resolution
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(from 32 × 32 to 512 × 512), further producing a side output.

Such a design enables to generate images with the same

content but different resolutions. In this way, the structured

information embedded in those multi-resolution images could

be provided explicitly as guidance for recovery of higher

resolution versions.

Note that we fix the parameters of original StyleGAN and

only optimize those of the additional branches during train-

ing of the generator. The adversarial learning cannot ensure

a pixel-level consistency, such that the acquired structure

semantics would not be used effectively. We instead train

the branches with forcing a pixel-wise consistency. Besides,

we also utilize a perceptual loss [13] for maintaining the subtle

facial details. As a result, the total objective LGds to train the

generator is given by

LGds = Lpix + λppLpp, (1)

where λpp denotes a balancing factor. Regarding the pixel-

wise consistency loss Lpix , we calculate the L2 distance

between a side-output image I r
o (with a resolution of r2) and

the final output face I 1024
o (with a resolution of 10242) which

is downsampled to the same resolution of I r
o . Then Lpix is

formulated as

Lpix =
1

M

∑

r

1

Sr
kI r

o − DSr (I 1024
o )k2, (2)

where DSr (·) denotes a downsampling operation to the target

resolution r2, M represents the number of elements in the set

of r , M = 5 in our case because of r ∈ {32, 64, . . . , 512}, and

Sr means the size of image or feature map under resolution r2.

In regard to the perceptual loss Lpp , we compute the

L2 distance between features produced by I r
o and I 1024

o after

feeding to a pre-trained VGG-16 network �V GG(·).

Lpp =
1

M

∑

r

1

Sr
k�V GG(I r

o ) − �V GG(DSr (I 1024
o ))k2. (3)

Here we select the features produced by conv4_2 layer of

the VGG-16 network.

D. Base Encoder for W Space

After training the deeply-supervised generator, we tend to

extract and utilize the features from LR images to reconstruct

multiple higher resolutions of images. A seemingly good

method is to encode LR images into a W+ latent space which

is demonstrated more disentangled for semantic editing [1].

However, training such an encoder is an intractable problem

due to the complexity of W+ space. On the other hand,

we empirically find that learning an encoder to W space is

much easier (latent code in W is 18× smaller than in W+).

As a compromise, we first learn an base encoder EW that

maps the input LR image to its latent code w, which is in W

space and would provide guidance for further training another

encoder to W+ space. Note that during training of the base

encoder, the parameters of the generator are fixed. Then we

formulate the pipeline as

w = EW (IL R),

Set (I r 0

o ) = Gds(Rq(w)), (4)

where IL R indicates the input LR images and Set (I r 0

o ) denotes

the set of generated images with resolutions of r 02, r 0 ∈

{32, 64, . . . , 1024}, and Rq(·) denotes a repetitive operation in

q times. Following the setting in StyleGAN, we set q = 18 so

that the generated images can reach the maximum resolution

of 1024 × 1024.

With aid of the multi-branch design, extra structural infor-

mation could be exploited for retrieving a better latent code.

We train this base encoder EW with three losses: pixel-wise

reconstruction loss Lrec , identity loss Lid , and adversarial loss

Ladv . The total loss function is then defined as follows:

LEW = λrecLrec + λidLid + λadvLadv, (5)

where λrec , λid and λadv are the balancing weights of recon-

struction loss, identity loss, and adversarial loss respectively.

The first one is the pixel-wise reconstruction loss that

encourages all the generated images to downsample consis-

tently with the input LR image. Bounded by this constraint,

the semantic knowledge could be preserved, and we define

this loss as follows:

Lrec =
1

N

∑

r 0

kIL R − DSr 0

(I r 0

o )k2, (6)

where N = 6 is the number of resolution scales.

We also utilize the identity loss for maintaining the identity

information between the final HR and the GT faces, that is

Lid = 1 − cosh�id (I 1024
o ),�id (IGT )i, (7)

where �id (·) denotes a pre-trained ArcFace network for face

recognition [8], IGT denotes the ground truth faces, and

cosh·, ·i denotes the cosine similarity between two inputs.

Besides, adversarial loss between the final HR image and

GT face is also involved in our training process to conform real

face data distributions, which can be formulated as follows:

Ladv = − E
I 1024
o ∼Pg

[D(I 1024
o )], (8)

LD = E
I 1024
o ∼Pg

[D(I 1024
o )] − E

IGT ∼Pr

[D(IGT )], (9)

where Pg and Pr denotes the distribution of generated data

and real data respectively, and D(·) denotes the discriminator.

Note that LD is the loss of the discriminator.

We do not use the perceptual loss in the training process as

we found it cannot boost the performance. This is because the

perceptual loss reduces the features differences between target

and synthesis results, while this could be compensated by the

combination of identity loss and adversarial loss.

E. Scale-Specific Encoder for W+ Space

Once we have trained the base encoder EW , a

512-dimensional w latent code, which serves as a foundation

of generating SR results in all scales, could be obtained.

Together with the multi-side-output images, we consequently

train a scale-specific encoder EW+. Different from EW that

maps the input LR face image to W space, EW+ maps the

input image to a latent code lain in a more complicated

W+ space, by treating the latent codes in all scales separately.

Previous works [25], [38] learn the whole w+ latent codes
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directly, which is unstable and with high training ambiguity.

In contrast, we learn the w+ latent codes in a progressive

manner, producing the structural information at low-level

scales while refining high-resolution details in the following

layers.

Fig. 2 depicts the beginning status when training the

EW+ encoder. Specifically, we first train EW+ that maps

the input LR image to immediate resolutions (r i )2 such as

32 × 32, and produce a part of latent codes w+r i
with the

maximum resolution of r i . Then to obtain the final HR faces,

we supplement the rest w+(r 00\r i ) codes with the duplicates

of the w vector, where r 00 ∈ {4, 8, . . . , 1024}. In other words,

we concatenate the latent code w+r i
with the repetitive w code

and feed the concatenated code into Gds , and the pipeline is

given by

w+ = EW+(IL R),

Set (I r
o ) = Gds(C(w+r i

, R2q (w))),

r i ∈ {4, 8, . . . , 1024}, q = #{r 00\r i }, (10)

where C(·) represents concatenate operation, R(·) is the repet-

itive operation, {r 00\r i } denotes the difference set between r 00

and r i , 2q denotes the repetitions and is the output of the

counting operator #. In this way, the training is stabilized by

using the pre-trained w, while the encoder can focus on a

simpler training task of 2× mapping. We gradually replace

the previous latent w vector obtained from EW until all the

style blocks are fed with scale-specific latent vectors w+. Note

that we train the scale-specific encoder EW+ by using the same

losses as EW .

F. Implementation Details

We revise the StyleGAN2 [2] pre-trained on the FFHQ [15]

dataset to equip our deeply-supervised generator. Each side-

output branch consists of 3 convolutional layers, and we set

the kernel size as 1 × 1 with stride = 1. The numbers of

channels are set as 128, 64 and 3 respectively to transform

the feature maps into an RGB image gradually. Meanwhile,

our base encoder EW maps an input LR image to W space

and serves as a basic encoder. The structure of EW is shown

in Fig. 3. It consists of several convolutional layers and the

residual channel attention blocks (RCAB) [37]. We set the

first convolutional layer with a kernel size = 3 × 3 and

stride = 1. The following transposed convolutional layer has

the same kernel size and stride. Then we add 4 groups of

two RCABs and its detailed architecture can be seen in [37].

We also follow [37] that use a residual connection after the

RCABs. At the end of the model, there are 3 convolutional

layers converting the feature map into a 1 × 1 × 512 output,

reshaped as a 1 × 512 code. The (kernel size, stride) are set

as (4, 4), (4, 4) and (2, 1), respectively. We set their channel

numbers as 512. Fig. 4 shows the architecture of the scale-

specific encoder EW+. It is formed by repeating two RCABs

and the subsequent three convolutional layers of EW .

IV. EXPERIMENTS

We conduct our experiments on the PyTorch platform with

an Nvidia GeForce Titan Xp GPU. Adam [16] optimizer with

Fig. 3. Architecture of EW .

Fig. 4. Architecture of EW+.

the learning rate of α = 1e − 4 is adopted for training

the Gds , EW , and EW+. We set λpp = 1, λrec = 1,

λid = 1, and λadv = 0.01 empirically. We train the Gds

and EW with 50,000 iterations. Besides, We train the EW+

with 10,000 iterations in each resolution scale, resulting in

60,000 iterations totally.

A. Experimental Settings

1) Dataset: FFHQ [15] dataset contains 70,000 face images

with resolution of 1024 × 1024, which is the key to generat-

ing high-quality faces of StyleGAN. We train the proposed

progressive encoders on the CelebA-HQ dataset [17] using

the same setting as the pSp network [25]. It consists of

30,000 images with the resolution of 1024 × 1024. We fol-

low the standard train-test split, resulting in 24,183 and

5,817 images for training and testing respectively. We use an

scaling factor of 64× to convert an 16 × 16 LR image to

1024 × 1024 HR for comparisons.

2) Evaluation Metrics: Face hallucination is not suited to be

evaluated by pixel-wise measurements like PSNR. We use two

metrics, Fréchet Inception Distance (FID) [11] and Naturalness

Image Quality Evaluator (NIQE) [23], for evaluating the

human-perceptual quality of upsampling results. In particular,

FID computes the Wasserstein-2 distance between the features

of GT and recovered HR faces. An InceptionV3 model [29]

pre-trained for image classification is used as a feature gen-

erator in here. NIQE is a completely blind assessment with

no request for the GT image, which measures the image

quality using perceptual features extracted from the recovered

SR results. We also report the runtime and FLOPs of these

methods. The runtime is estimated by averaging the inference

time-cost of the entire testing set using a single Nvidia

GeForce Titan Xp GPU.

3) Competitors: We mainly compare to two latent space

exploration methods pSp network [25] and PULSE [21] quan-

titatively and qualitatively.

Note that although the test set used in PULSE is the same

as ours, the actual testing samples are different as it filters
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON FID AND NIQE
METRICS. ↓ DENOTES THE LOWER THE BETTER AND ↑ DENOTES THE

OPPOSITE. THE BEST RESULTS ARE MARKED IN BOLD

out images with low self-supervised losses. We record the

performances on the entire test set for all the methods.

B. Quantitative Comparison

In this section, we first show the quantitative comparison

with PULSE [21] and pSp [25] on the recovered face with

resolution of 1024 × 1024 upsampled from the 16 × 16 LR

input.

The comparison results are shown in Table I. We can

see that our Pro-PULSE outperforms PULSE and pSp on

both FID and NIQE metrics. In particular, our Pro-PULSE

is superior over competitors on the FID metric by a large

margin, which shows that our model has a better hallucination

ability and produces consistent face identities. We believe this

improvement attributes to our progressive training strategy,

which allows our model to inherit faithful characteristics from

the input LR. As for the no-reference evaluation metric NIQE,

our model outperforms the other two competitors as well,

especially for the image-specific optimization-based method

PULSE. This reveals that our recovered HR faces receive

favorable visual quality by the human perceptual.

Besides the quality metrics, our model can process images

with a faster speed and lower complexity than others. This is

because our progressive encoders focus on the training stages,

once they are properly trained, our encoder is lightweight and

the generator is almost the same as the original StyleGAN.

Compared with pSp network, which takes a feature pyramid

as input, our solution directly injects deep guidance in either

the training of encoder or generator, yielding better accuracy

yet lower complexity. On other hand, PULSE has a complex

optimization process. The proposed Pro-PULSE largely reme-

dies this disadvantage while achieving better performances.

Note that we test PULSE and pSp using their official source

codes on the same computer as ours. Additionally, PULSE is

an optimization method that has an additional backward pass

during inference. Therefore, the FLOPs of the backward pass

is estimated as 2 times of that of the forward pass, following

the evaluation strategy of DeepSpeed [22].

C. User Study

Except using objective metrics, we also conduct user studies

using mean-opinion-score (MOS) with 40 raters. The panel is

composed of 20 undergraduates and 20 graduates, with an

equal proportion of male and female. In addition, to help the

raters to be more familiar with the test, we provide 20 ground

truth examples of full marks for them in advance. We designed

Fig. 5. User study results on mean-opinion-score. Two studies, a pairwise
evaluation on (L R, H R) and a no-reference evaluation on H R only, are
conducted.

two questions for different purposes. The first one evaluates

the consistency between the input LR faces and the recovered

HR ones. Raters are asked to score each pair of (L R, H R)

with a question “How well the HR image is restored from

the LR image?” They rate between 1 (worst) and 5 (best).

Another study cares about the subjective perceptual quality of

HR faces. For each method, raters provide a score from 1 to 5,

evaluating the visual quality solely on the HR images. For both

studies, each method provides 30 output images, and we mixed

all the results (90 in total) in random order for evaluation.

We show the comparison result in Fig. 5. In terms of

pairwise evaluation, the proposed method outperforms both

competitors by around 5% and 11% respectively, showing that

our produced results are more consistent with the LR input.

On the other hand, our method performs favorably against

state-of-the-arts on no-reference subjective evaluation by a

large margin. It indicates that the generated results are mostly

of high-quality and without visually noticeable artifacts.

D. Qualitative Comparison

Fig. 6 gives the visual comparison of Pro-PULSE, pSp and

PULSE on the resolution of 1024×1024. We can see that both

pSp and PULSE failed to maintain the semantically consistent

facial components like sunglasses in the first row of Fig. 6.

In particular, PULSE focuses on finding a HR that can be

downsampled to the input LR. The deviations of exploration

space from the true natural image manifold lead to the poor

result when there is ambiguous semantic in the input LR. Also,

pSp cannot recover the fine details since it does not consider

the locality. In contrast, our recovered faces could preserve

small-scale semantic regions well from the blurry LR input.

On the other hand, when the input LR images contain rare

semantics, like hats are rarely appeared in the FFHQ dataset,

all the methods cannot recover the missing semantics that not

existed in the latent space. However, unlike the competitors

affected by the irregular shapes of unknown LR semantics,

our method recovers more visually plausible results. These

interesting findings attribute to the reduced learning ambiguity

of our progressive mechanism, such that rare and difficult

semantics can be correctly inherited to HR results.

Due to the incremental nature of our progressive model,

we can produce multi-resolution upsampling results. Fig. 7

shows how our produced results evolve. Lower resolution

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on January 27,2022 at 03:43:05 UTC from IEEE Xplore.  Restrictions apply. 



1236 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 6. Qualitative comparison of latent space exploration methods with a scaling factor of 64×.

Fig. 7. Multi-resolution images produced by our deeply-supervised generator.

images (see Fig. 7b and Fig. 7c) mainly focus on the struc-

ture and shape of faces, while the higher resolution images

fill up detailed textures (see Fig. 7f and Fig. 7g). This

implies that our scale-specific encoder EW+ learns knowl-

edge that consistent with the inherent multi-scale properties

of StyleGAN.

E. Analysis on Semantic Preservation

In this section, we first analyze the semantics inheritance

in the progressive learning process. We use the semantic

score as the indicator, by taking the attribute classifier pre-

trained on the CelebA-HQ dataset [17] to predict 40 attributes

scores. We aim to examine whether the results from different

resolutions are semantically-consistent with the ground truths.

The absolute differences for all attribute scores between inputs

and GTs are reported. We present 6 representative attributes in

Fig. 8a, and we can see that our method can maintain correct

semantics from the very beginning of our progressive process,

except for ‘attractive’ and ‘young’ that are relied heavily on

image resolution.
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Fig. 8. (a) Our method can inherit correct semantics from the very beginning
of our progressive process. (b) Our method can obtain a closer semantic score
(averaged across all 40 attributes) compared to state-of-the-art methods.

We also present the average absolute difference scores

among 40 attributes with 3 up-sampling methods in Fig 8b,

we can see our Pro-PULSE has a lower value on score dif-

ferences, which shows it achieves better semantic-preservation

than other two competitors.

Furthermore, we performs semantic editing based on the

latent space interpretation approach, AdvStyle [33], which

is an interpretable direction exploration method to find the

latent semantics of GANs. In this experiment, we move the

w+ codes from Pro-PULSE along the ‘Gender’ and ‘Smile’

directions found by AdvStyle, then feed the resulting codes

into generator Gds to get edited results. As shown in Fig. 9,

semantics are edited successfully and images of multiple

resolutions still maintain the same semantics after editing.

This indicates that the obtained latent codes are editable, and

the edited semantics can be propagated correctly to the HR

images.

F. Comparison With Hallucination Method

In Fig. 10 we also show the comparison results with

the state-of-the-art face hallucination method, DIC and

DICGAN [19]. Due to the maximum 8× unsampling factor of

these compared methods, we also give the comparison results

on the resolution of 128×128. Note that our 128×128 results

are produced by our side-outputs. We also show our final

results with a resolution of 1024×1024. Comparing with DIC

Fig. 9. Semantic editing by the latent space interpretation approach.
In (a) and (b), the top-left image is 1024 × 1024 input from Pro-PULSE, and
the following images are edited outputs from resolution 16×16 to 1024×1024.

and DICGAN, we can see those hallucination methods produce

similar structures of the ground truth faces, but the faces

recovered by our Pro-PULSE contains richer details than the

hallucination methods, such as teeth or eyes. This is due to the

different mechanisms between GAN inversion-based methods

and hallucination methods. The former projects an input image

to a low-dimensional code, this step discards the original

spatial information which is difficult to be fully recovered

by exploring the latent space. Despite the spatial discrepancy

between GT and the output, it can produce vivid details. The

latter focuses on expanding the original coarse input. Although

hallucination methods can preserve the plausible structure of

the ground truth identity, their results lack details and are

limited to a small factor of upscaling.

G. Ablation Study

In this section, we conduct an ablation study on our Pro-

PULSE and its variants. We analyze the efficiency of our

progressive learning strategy, the effectiveness of using the

base encoder EW for guidance or deeply-supervised generator

Gds , and finally the loss functions. These result in 11 variants:

1) Edirect
W : Learning a direct encoder for W space.

2) Edirect
W+ : learning a direct encoder for W+ space. Both

previous two variants are learned without progressive

strategy.

3) E2E : Training encoder and generator in an end-to-end

manner.

4) w/o EW : Pro-PULSE without the guidance of the pre-

trained EW .

5) w/o Gds : Pro-PULSE using the original StyleGAN gen-

erator rather than the deeply supervised generator Gds .
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Fig. 10. Comparison of Pro-PULSE with bicubic upsampling, DIC, and DICGAN. Pro-PULSE (8×) denotes the side-output of resolution 128 × 128. Our
recovered results contain richer details.

6) w/ only Lrec : Pro-PULSE with only the reconstruction

loss.

7) w/ only Lid : Pro-PULSE with only the identity loss.

8) w/ only Ladv : Pro-PULSE with only the adversarial loss.

9) w/o Lrec: Pro-PULSE without the reconstruction loss.

10) w/o Lid : Pro-PULSE without the identity loss.

11) w/o Ladv : Pro-PULSE without the adversarial loss.

Note that variants from 6 to 11 are conducted when training

the scale-specific encoder EW+. We show both quantitative

and qualitative results of above variants.

1) Quantitative Ablation Results: Quantitative results are

shown in Table II. Edirect
W and Edirect

W+ are two baselines

that directly learn the encoders for mapping latent codes in

different spaces. Embedding into the W space means that

we have to find the original space the GAN was trained on,

which applies the same latent vector to all the layers of the

network. It is demonstrated [2] that different layers correspond

to different levels of semantics, and therefore the enlagred

W+ space leads to diverse and accurate editing. However,

we can see that Edirect
W+ performs much worst than Edirect

W .

It evidenced our observation that learning the w+ latent code

with the dimension of the 18 × 512 is a challenging task.

Instead, our tailored progressive training scheme could ease

the learning ambiguity and achieve even better performance

than solely learning on either spaces.

As for the end-to-end training scheme, the generator cannot

propagate accurate multi-scale information back to the encoder

since its side-outputs are always changing during training.

These unstable branches bring wrong feedback that influence

the training of the encoder. We also show that without the

guidance from the pre-trained EW , our Pro-PULSE decreases

its performance both on FID and NIQE. This, on one hand,
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Fig. 11. Qualitative ablation comparison on different variants of the proposed method.

TABLE II

QUANTITATIVE ABLATION COMPARISONS. ↓ DENOTES THE LOWER

THE BETTER AND ↑ DENOTES THE OPPOSITE. THE BEST

RESULTS ARE MARKED IN BOLD

implicitly reveals that the effectiveness of our progressive

learning, as we enables the learning on W+ space, and largely

improves the performance over Edirect
W+ . On the other hand,

it also demonstrates that the base encoder EW provides extra

knowledge and stabilizes the training process. Besides, without

the deep supervision from Gds , the performance of our model

also degrades, which shows that the intermediate guidance

ensures correct information propagation in our progressive

training strategy.

Regarding the loss functions, we find Ladv serves as an

essential loss to our model, as our model decreases dramati-

cally without adversarial loss. This is because LR-HR mapping

is highly ambiguous, using pixel-wise constraints cannot guar-

antee plausible images, instead they tend to produce middle

values to conform pixel-wise measurement. On the other hand,

using only the Ladv loss can produce realistic results, but

they are not related to the input LR images (see Fig. 11j).

Besides, Lrec and Lid influence the FID a lot. As FID is

a reference-related metric, the Lrec and Lid could ensure

semantic consistency between the generated faces and the

identity characteristics. However, using only the Lrec or Lid is

insufficient, especially using Lid only may lead to the failure

of training due to the deficiency of pixel-level appearance

information.

2) Qualitative Ablation Results: We further show the visual

results of various variants in Fig. 11. We can see that learning

an encoder to the W+ space directly always produce abnormal

results (See Fig. 11d) due to the complexity of W+ space.

However, using our progressive learning can largely ease this

difficulty (Fig. 11f). On the other hand, learning an encoder to

the W space directly will produce plausible results except for

small scale objects (see the glasses in the top row of Fig. 11c),

which implies that learning in W space is not sufficiently

disentangled from various semantics [1].

Comparing Fig. 11e and Fig. 11n, we can know that the

stable side-output branches of generator are helpful for the
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Fig. 12. Qualitative ablation comparison on loss weights. (d), (e), (f) separately increase the weight of Lrec , Lid , and Ladv , compared to our final weight
setting (c).

encoder to capture multi-scale features during progressive

learning. The inaccurate side-outputs lead to poor results of

end-to-end training scheme. We also find that without the

guidance of Gds or EW , the recovered HR faces contain

artifacts that lack of detailed texture. Fig. 11h demonstrates

that training with only the pixel-wise Lrec loss brings blurry

artifacts. The poor results shown in Fig. 11i indicate that

only the supervision of Lid is insufficiently informative for

training, as Lid is adopted on the feature level, but cannot

confine the generated RGB outputs. The adversarial loss

shows its importance in Fig. 11m, we cannot recover the

realistic faces when deactivating Ladv , and using pixel-wise

constraints only typically produce blurry results for a highly

ambiguous problem. When removing the reconstruction loss,

the recovered images are inconsistent with the GT faces, and

the identity loss is essential for maintaining the facial details

of faces.

3) Loss Weights Analysis: Here we examine the effective-

ness of loss weights. As shown in the Fig. 12, we increase the

λrec , λid , and λadv separately, compared to our final setting

Fig. 12c. When enhancing the reconstruction loss, it weakens

the semantic-consistency producing incorrect semantics like

eyeglasses. Also, by comparing Fig. 12c and Fig. 12e, we can

see that the model tries to match the identity but introduces

implausible details. As for the λadv , Fig. 12f demonstrates

that Ladv encourages more realistic faces, but sacrifices the

consistency between LR and HR. Overall, our final setting

can have a optimal balance between reconstruction, semantic

and identity preservations.

H. Real Image Upsampling

In addition, to verify the generalization of Pro-PULSE,

we provide results of real images which are unseen in the

Fig. 13. Upsampling real images using our method. The rows from top to
bottom are Input LR, GT HR and Pro-PULSE, respectively. It shows that
Pro-PULSE is generalized enough to handle images in reality.

training. From Fig. 13 we see that Pro-PULSE is capable to

synthesize meaningful semantics for real images, such as beard

and glasses. It demonstrates that Pro-PULSE is generalized

enough to handle images in reality.

I. Generalization on Non-Human Domains

We also carry out an experiment on the non-human

datasets to validate that our method is general to other

domains, including Anime [3], Cat [36], and Church [34].

We use the StyleGAN generators pre-trained on these datasets

with the dataset resolutions of 512 × 512, 256 × 256,

and 256×256 respectively. Note that we deactivate the Lid in
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Fig. 14. Upsampling results for non-human domains. From top to bottom
rows are input LR, GT HR, and our results, respectively.

the training of Pro-PULSE on these non-human dataset, and

the other settings remain the same. The results on these dataset

are shown in Fig. 14. Although without identity information,

we can see that Pro-PULSE is still qualified for producing

plausible HR on various non-human domains.

V. CONCLUSION AND LIMITATIONS

In this paper, we propose a novel progressive upsampling

framework, i.e., Pro-PULSE, that mapping an extreme LR

input to a latent vector of StyleGAN for producing faithful

and semantically correct HR image. Our progressive training

strategy allows the encoder inherit the semantic information

from the LR input and ease the learning ambiguity. Both

quantitative and qualitative experiment results demonstrate that

our Pro-PULSE could recover the SR faces both semantical

accurately and computational efficiently. Although, our Pro-

PULSE also work well on non-human data, it requires a specif-

ically pre-trained StyleGAN generator of the corresponding

domain. This is a common limitation for the latent space

exploration works, as we cannot synthesize out-of-distribution

results. We may explore a one-shot or few-shot cross-domain

solution to resolve this limitation in the future.
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