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Starting around 6 to 9 months of age, children begin acquiring their first words, linking spoken words to

their visual counterparts. How much of this knowledge is learnable from sensory input with relatively

generic learning mechanisms, and how much requires stronger inductive biases? Using longitudinal

head-mounted camera recordings from one child aged 6 to 25 months, we trained a relatively generic

neural network on 61 hours of correlated visual-linguistic data streams, learning feature-based

representations and cross-modal associations. Our model acquires many word-referent mappings present

in the child’s everyday experience, enables zero-shot generalization to new visual referents, and aligns

its visual and linguistic conceptual systems. These results show how critical aspects of grounded word

meaning are learnable through joint representation and associative learning from one child’s input.

P
hilosophers and cognitive scientists have

argued that learning a new word re-

quires sorting through a vast, poten-

tially infinite set of candidate meanings

(1–3). For instance, when a child hears

the word “ball” in an utterance, how do they

learn to associate thiswordwith round, bouncy

objects (i.e., the correct visual referents), rather

than with other features, objects, or events?

Young children are highly adept word learners:

At 6 to 9 months, they begin connecting words

to their visual counterparts (4). By 18 to

24months, they can comprehend 300words on

average, mostly nouns (5, 6). How do children

get started onword learning?What ingredients

(e.g., learningmechanisms and representational

commitments) are needed to learnword-referent

mappings from early experience?

The nature of these ingredients is the sub-

ject of intense interest and debate. One promi-

nent theory is that word learning is driven by

simple, domain-general, associative learning

mechanisms (7–11), such as tracking the co-

occurrencesbetween stimuli inwaysnonspecific

to language. Alternative theories point to stron-

ger constraints on word learning (e.g., innate

knowledge or domain-specific inductive biases;

for instance, that different words have different

meanings) (12–14), or to other emerging cogni-

tive abilities that actively support word learn-

ing (e.g., reasoning and social cognition) (3, 15).

Each account is well-supported by empirical

studies in the lab (3, 9, 13, 14, 16, 17), but ac-

knowledging the evidence formultiple learning

mechanisms, often measured across different

developmental time points, does not reveal

their relative importance. Nor does it pro-

vide sufficient guidance for building compu-

tational models that, like children, aim to learn

outside the lab. If a model could perceive the

world through a child’s eyes and ears, would

it need strong inductive biases or additional

cognitive capacities to get word learning un-

derway? Or would a simpler account driven

by associative learning, in conjunction with

feature-based representation learning (18),

suffice?

In this article, we put the simplest theories

of word learning to an unprecedented test:We

examine the learnability of word-referent map-

pings from a single child’s longitudinal head-

mountedvideo recordings. Todo so,we introduce

the Child’s View for Contrastive Learning mod-

el (CVCL, as shown in Fig. 1B)which instantiates

a form of associative learning that is cross-

situational, tracking the co-occurrences between

words andpossible visual referents to determine

their mappings (10, 19–22). CVCL interprets this

idea through recent advances in multimodal

(e.g., vision-and-language) machine learning

that integrates representation learning and

associative learning (23–26), using a contras-

tive objective that coordinates two neural net-

works, a vision encoder and a language encoder.

Trained in a self-supervised manner (i.e., using

only the recordings from the child’s view and

no outside labels), the contrastive objective

brings together the embeddings (vectors) of

video frames and linguistic utterances that

temporally co-occur (treating the co-occurrences

as positive evidence),while separating those that

do not (treating the absence of co-occurrence

as implicit negative evidence), as shown in

Fig. 1B. Assuming that spoken utterances cor-

relate with observable visual referents, CVCL

converts these temporal associations into a

smooth learning signal for learning and align-

ing its multimodal representations. Without

strong constraints on word meaning, nor ad-

vance knowledge of possible visual referents,

this combination of representation learning

and associative learning enables the recovery

of many, although not all, of the underlying

word-referent mappings from a child’s re-

corded input.

We train CVCL on the SAYCam-S dataset of

longitudinal egocentric video recordings from

an individual child (27), which consists of clips

over a 1.5-year period of the child’s life (6 to

25months), with a total of 600,000 video frames

paired with 37,500 transcribed utterances (ex-

tracted from 61 hours of video; data examples in

Fig. 1A, with additional details in the Supple-

mentary Materials or SM S.4). Thus, SAYCam-S

provides an extended, first-person window into

one child’s experiences, but it only captures

about 1% of the child’s waking hours (28) and

misses other aspects of their experience (e.g.,

action and embodiment). Despite these lim-

itations, applying machine learning to the

most realistic proxy experience to date can

help illuminate the necessary ingredients

for learning (29, 30).

We find that CVCL can learn powerful multi-

modal representations from limited slices

of one child’s experience. In the following

sections, we show that CVCL is capable of

matching a range of everyday words to their

corresponding visual referents in categoriza-

tion tasks, generalizing to highly novel vi-

sual exemplars not seen during training, and

achieving broad-scale alignment between vi-

sual and linguistic conceptual systems. Our

results suggest that multimodal representa-

tion learning paired with domain-general,

associative learning mechanisms provides a

computational foundation for breaking into

word learning.

Evaluating acquired word-referent mappings

After training was completed, we evaluated

CVCL and various alternative models for the

quality of their learnedword-referentmappings.

Adapting a common procedure for testing

children (Fig. 1, C and D) (31), models were

prompted with a target category label and

selected the corresponding visual referent among

four candidate images (based on their cosine

similarity to the label). Figure 2A shows the

results for Labeled-S: an evaluation dataset

of frames annotated with 22 visual concepts

that were jointly present in this child’s visual

and linguistic experience. This dataset was

adapted from (32) [see supplementarymaterials

(SM) S.5 for additional details]. Overall, CVCL’s

classification accuracy was 61.6%. Figure 2D

shows the breakdown in performance across

thedifferent evaluation categories,whereCVCL’s

performance for 11 out of the 22 concepts was

found to be within 5% of the upper-bound

estimate from CLIP (25), a similar image-text

contrastive neural network, but trained on sev-

eral orders ofmagnitudemore data (400million

image-text pairs from theweb). To address any

potential issues related to category overlap in

the evaluation frames, we also conducted a

follow-up evaluation using amanually filtered

subset with 15 mutually exclusive categories

(see SM S5 and fig. S3).
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CVCL was compared to alternatives (see SM

S2 for details) that aimed to capture meaning-

ful lower and upper bounds on perform-

ance (Fig. 2A). To lesion the visual-linguistic

co-occurrences, we trained a variant using a

training dataset in which the co-occurring

frames and utterances were randomly shuffled

and instead paired with other frames and ut-

terances from the training set (CVCL-Shuffled),

breaking the original co-occurrence links while

preserving the information from each indepen-

dent modality. This model performed at chance

(mean, M = 26.7%), showing the critical role

of consistent visual and verbal co-occurrence

for learning. To lesion the use of strong visual

embeddings (CVCL-Random Features), CVCL’s

vision encoder was randomly initialized and

frozen during training. Again, performance

dropped substantially (M = 38.0%), although a

few concepts such as “sand” and “car” were

partially acquired (Fig. 2D). We also estimated

two upper bounds on performance based on

models that use either outside or oracle training

data, beyond what a child has access to.

Evaluating CLIP (25) out-of-the-box achieved

66.7% accuracy, a 5.1% improvement over CVCL,

owing to the relative improvement of a few

concepts such as “kitchen,” “toy,” and “basket.”

Thus, CVCL’s performance is comparable to

a strong web-scale contrastive model when

tested within-distribution. Finally, to exam-

ine the performance achievable with direct

supervision with individual category labels

(from the manually annotated Labeled-S eval-

uation set) rather than child-directed utter-

ances, we trained a Linear Probe model. This

Linear Probe was constructed by fitting a

linear classifier on top of the frozen pre-

trained vision encoder (initialized from self-

supervision) and achieved 81.6% accuracy

based on thousands of within-distribution

supervised examples.

Fig. 1. CVCL model architecture and evaluation procedure. (A) Examples of

paired frames and child-directed utterances (transcribed) from a single video in

the SAYCam-S dataset, highlighting the noisy and sparse co-occurrences

between visual and verbal information. (B) Images and utterances are embedded

in a joint vector space through separate modality-specific neural networks.

During training, matching pairs are brought closer (higher cosine similarity)

whereas mismatching pairs are pushed apart. Example evaluation trials with

(C) visually similar or (D) visually distinct images from those seen during

training. The goal is to select the image matching the target concept’s label.

(E) During evaluation trials, the encoders produce embeddings for the target

concept’s label and each of the candidate images. The image with the highest

cosine similarity with the label is selected.
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As a follow-up,we aimed to quantify the value

of a word occurring in a natural utterance ver-

sus in a directly labeled example. As shown in

Fig. 2B, we trained additional Linear Probes

with fewer labeled examples (using 10 and 1%

of the available labeled data), with the number

of natural language examples for CVCL and

directly labeled examples for the Linear Probes

displayed in table S2. Reducing the amount

of directly labeled supervision resulted in an

expected decrease in classification accuracy

to 77.2 and 65.9%, respectively (with per cat-

egory performance in fig. S2). Despite the

limited number of labeled examples in the

1% Linear Probe, its performance was margin-

ally better than and most comparable to

that of CVCL (Fig. 2B). Furthermore, by com-

paring their relative frequencies, we can

conservatively estimate that one directly lab-

eled example is worth at least seven examples

from natural language. Nevertheless, natural

language supervision has the advantage ofmore

accurately representing what children learn

from, and enabling a flexible representational

Toy Basket Room Hand

Kitchen Ground Table Door Foot Floor

Ball Road Chair Cat Computer Window

Sand Crib Car Paper Stairs Puzzle

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Model

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Model CVCL CVCL (Shuffled) CVCL (Random Features) CLIP Linear Probe

61.6 58.9 59.3 58.3
0

25

50

75

100

CVCL CVCL
(LSTM)

CVCL
(Single
Frame)

CVCL
(Scratch)

Model

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

61.6 65.9 77.2 81.6
0

25

50

75

100

CVCL Linear
Probe
(1%)

Linear
Probe
(10%)

Linear
Probe
(100%)

Model

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

61.6 26.7 38.0 66.7 81.6
0

25

50

75

100

CVCL CVCL
(Shuffled)

CVCL
(Rand.

Features)

CLIP Linear
Probe

Model

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A B C

D

Fig. 2. Image classification accuracy from Labeled-S evaluation. (A) Performance of CVCL (green) compared to alternative models that represent upper

and lower bounds. The performance of the upper bounds cannot be directly compared to CVCL because they are trained with much more (or cleaner) data.

(B) Performance of CVCL compared to multiple Linear Probes trained with varying levels of direct supervision. (C) Performance of CVCL compared to CVCL

model variants. (D) Performance broken down by target category. In each graph, error bars represent standard error across models trained with three different

random seeds, and the dashed line represents chance accuracy.
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Fig. 3. Zero-shot classification accuracy from Konkle objects evaluation.

(A) Performance of CVCL as evaluated using 64 visual categories. Error bars

represent standard error across three models trained with different random

seeds, and the black dashed line represents chance accuracy. The colored dash

lines represent the overall accuracy across all trials for CVCL, as well as the other

upper and lower bounds. CVCL performed significantly above chance, and

better than either lower-bound estimate, but still struggled across many

categories, whereas both upper bounds were close to ceiling (owing to

training on these types of images). (B) In each row, two randomly selected

training examples (image-utterance pairs) for four different visual concepts

(in bold) are shown, alongside four test examples corresponding (left to right) to

the two top, the median, and the worst exemplars. The percent correct

below each generalization example refers to performance when this image is

the target.
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scheme that accommodates an unbounded

number of visual concepts. Separately, to ex-

amine whether other factors influenced the

learnability of word-referent mappings, we

also trained and evaluated additional var-

iants of the CVCL model, varying either

aspects of the model architecture or the train-

ing procedure, although none performed

better than CVCL itself (see Fig. 2C and SM

S2 for details). Overall, our findings sug-

gest that many of the earliest word-referent

mappings can be acquired from as few as

10 to a hundred naturally occurring word-

referent pairs.

Generalizing to novel visual exemplars

Using the same training runs, we also mea-

sured CVCL performance on the Konkle Objects

evaluationdataset, containingnaturalistic object

categories derived from (33) [see Fig. 1D and

fig. S1 (right panel) for example trials, and SM

S5 for details]. This evaluation included 64 visual

concepts whose corresponding words were all

present in CVCL’s vocabulary (34), with images

containing a single object on a white back-

ground, inspired by the kinds of laboratory

experiments used to study infant language

development (4). This allowed us to examine

whether the words learned by CVCL generalize

to out-of-distribution visual stimuli—that is, novel

category examples on an atypical background.

As summarized in Fig. 3A, CVCL demonstrates

modest knowledge of these additional visual

concepts, with 16 of the 64 concepts scoring

better than 50% correct and an additional

42 concepts scoring above chance (25%). The

overall accuracy was 34.7%, and although this

was lower than the Labeled-S evaluation, the

task demands a larger set of concepts (whose

word frequency in the training set was highly

varied; see table S3), as well as the additional

difficulty of out-of-distribution generalization.

Additionally, both of the lower bounds were

around chance accuracy (25.6 and 23.4% for

the CVCL-Shuffled and CVCL-Random Features

models respectively),whereas bothupper-bound

estimates were near ceiling (99.4 and 90.7%

for CLIP and the Linear Probe models, re-

spectively), as bothmodels are trained on these

types of images.

These results show how CVCL’s multimodal

representations can permit out-of-distribution

generalization, consistent with other larger-

scale demonstrations of this ability (25, 35).

To illustrate the degree of visual generalization

required in this evaluation, Fig. 3B presents some

naturalistic training instances (from the child’s

view) of a word embedded in an utterance,

matched with novel test images used for eva-

luation (alongwith their classification accuracy).

Furthermore, this evaluation closely resembles

the kinds of stimuli presented in classic infant

word learning experiments (4, 31), demonstrating

that representations acquired outside the lab

can explainhow infants generalize tonovel visual

stimuli inside the lab.

The organization of multimodal

representations

In this section, we present three families of

analyses exploring the structure of the learned

multimodal representations in CVCL. First, we

examined the extent to which CVCL’s visual

and linguistic conceptual systems align. For

example, if both the vision and word embed-

dings for “car” are independentlymore similar

to “road” than “ball,” this would indicate good

multimodal alignment (36, 37).

Using the 22 concepts from Labeled-S, we

computed a visual prototype for each concept

by randomly sampling 100 annotated frames,

extracting their imageembeddingsandaveraging

across frames. We also retrieved each concept’s

correspondingword embedding.Next, we com-

puted all pairwise cosine similarities from these

embeddings (both within and across modal-

ities) and visualized their relationship using

t-distributed stochastic neighbor embedding

(t-SNE) as shown in Fig. 4, A and B. In Fig.

4A, the dashed lines represent the distance

between each concept’s corresponding visual

centroid and word embedding. Because many

of these cross-modal distances are small, we

examined whether the within-modal similari-

ties between concepts (via cosine) are related

across vision and language, finding a signifi-

cant degree of conceptual alignment (correla-

tion coefficient r = 0.37, p < 0.001). These

relationships did not hold for either of the two

lower bounds for CVCL (fig. S4). Furthermore,

alignment distance was also strongly nega-

tively correlated to classification performance

(r = −0.65, p = 0.001), with some of the least

accurate categories exhibiting the largest dis-

tance between their respective visual proto-

type and word embeddings [e.g., “hand” (38);

fig. S5]. Figure 4B illustrates a subset of la-

beled image embeddings from each concept,

highlighting that different visual concepts

vary in how tightly clustered their examples

are. By considering visual variability as the

average Euclidean distance of a concept’s vi-

sual embeddings to its visual prototype (37),

we also find a strong negative correlation

to classification performance (r = −0.48, p =

0.025), suggesting that CVCL’s difficulty with

word-referent mappings such as “hand” and

“toy” is linked to their visual variability, com-

pared to tightly clustered concepts like “car”

and “crib.”

Next, we visualize how different word em-

beddings interact with image embeddings in

CVCL (Fig. 4C). Examining three different con-

cepts, we observe that the images that themodel

predicts to bemost similar to a particular word

embedding (shown in green) closely approxi-

mate the true set of labeled images from each

class (shown in blue), with the full set of concepts

shown in fig. S6. We find that CVCL learns to

represent different sets of visually similar

items from a concept as distinct subclusters,

despite using a single vector per word. For

example, the word embedding for “stairs”

most strongly activates two separate clusters

representing indoor versus outdoor stairs,

whereas “puzzle” produces two other clusters

that represent alphabet versus animal puzzles.

Previous psychological theories of concept

learning often required explicit, built-inmech-

anisms to capture substructurewithin concepts

(39, 40), but in CVCL, we find that multicluster

representations emerge implicitly through con-

trastive learning.

We also qualitatively examined CVCL’s ability

to localize referents. For a given image, we

obtained an attention map by applying Grad-

CAM (41), highlighting image regions most rel-

evant to the target category by computing a

weighted sumof the final convolutional layer’s

featuremaps (using weights based on a spatial

average of the gradient of the image-text cosine

similarity with respect to the featuremaps).We

can overlay this attention map over the image

and check for any correspondence between

the location of the referent and the attention

map. Figure 5 presents multiple examples of

attention maps from four concepts. For some

classes, CVCL’s attentionmaps provide evidence

of object localization: The highest activating

regions in the attention map closely track

the locationof the referent. Additional randomly

selected attention maps are shown in fig. S7.

Discussion

In this article, we introduced the CVCLmodel,

a deep neural network for grounded word

learning from slices of one child’s egocentric

experience. Across a series of experiments, we

found that CVCL can acquire word-referent

mappings through naturalistic learning, gen-

eralize beyond the specific visual referents in

the child’s environment, and align its visual

and linguistic representations. Our work builds

on recent advances in multimodal machine

learning (23, 25, 26, 42), which also learn to

associate words and visual referents, although

through increasingly large and unrepresentative

training datasets compared to how children

learn. Owing to this data gap (43), the rel-

evance of these machine learning advances

for understanding early language acquisition

has been, until now, unclear. Here, we showed

how CVCL can effectively learn words from

developmentally realistic data from an indi-

vidual child. Establishing learnability from indi-

vidual (rather than aggregate) data (30, 44–47) is

noteworthy because children must learn

language from their own limited input. In this

more rigorous and ecologically valid setting,

CVCL suggests that paired representation and

associative learning provides a genuine start

to this problem.

RESEARCH | RESEARCH ARTICLE

Vong et al., Science 383, 504–511 (2024) 2 February 2024 5 of 8



CVCL’s successes have broader implications

for theories of word learning. Alternative theo-

ries posit reliance on strong inductive biases,

specialized language machinery, or other cog-

nitive abilities, in part, because word learn-

ing was assumed to be too hard otherwise

(2, 3, 13, 14) (with different perspectives fo-

cusing on evidence from different develop-

mental ages). CVCL’s focus on learnability

withminimal ingredients shows how represen-

tation learning and associative, cross-situational

mechanisms (9, 19, 22, 48) are sufficient to

acquireword-referentmappings fromonechild’s

first-person experiences. Rather than count-

ing co-occurrences between discrete symbolic

Fig. 4. Conceptual alignment of visual and language modalities. (A) A t-SNE

plot derived from the cosine similarities between the mean image embeddings

and text embeddings from concepts in Labeled-S, showing the high degree of

alignment across the visual and linguistic conceptual systems. (B) t-SNE plots

showing 100 labeled image embeddings for each concept (randomly chosen),

highlighting how concepts vary both in how many distinct clusters are required to

represent them and how tightly clustered or loosely scattered points from the

same class can be. Additionally, for each concept, we also show its corresponding

text embedding (diamond) and mean image embedding (circle). (C) In each plot, we

visualize how CVCL predictions compare to the labeled examples using t-SNE, using

a subset of the frame embeddings from the Labeled-S evaluation. The blue points on

the left correspond to the 100 frames belonging to a particular category, and the

green points on the right correspond to the 100 highest activating frames (based on

the cosine similarity to each concept’s word embedding from CVCL). Below

each plot, we show multiple example frames belonging to either one or multiple

subclusters for each concept, capturing how word embeddings interact with image

embeddings in the joint embedding space. For example, for the word “stairs,” we see

that one cluster represents images of indoor wooden stairs, and the other main

cluster represents images of the outdoor blue set of stairs. All of the t-SNE plots in

these figures are derived from the same set of joint image and text embeddings.
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entities like traditional cross-situational models,

CVCL encodes both words and images using

distributed vectors (49–52). The contrastive ob-

jective leverages the temporal co-occurrence of

words and images as an associative learning

signal, enabling the incremental acquisition

and alignment of multiple word-referent map-

pings jointly, and sidestepping previous con-

ceptualizations of word learning as a discrete

search over a vast number of candidate hypo-

theses (1, 53). Contrastive learning is also a

broadly applicable and domain-general learn-

ing strategy (26, 52, 54), allowing CVCL to

learn representations informed by both within-

domain [e.g., word-to-word (49–51)] and across-

domain (e.g., word-to-image) correlations (36).

Although our primary aim was establishing

the learnability of word-referentmappingswith

minimal ingredients, CVCL’s successes do not

rule out more sophisticated forms of represen-

tation and reasoning, especially ones that might

emerge in later development (55). These include

mutual exclusivity (13), the principle of contrast

(12), the shape bias (56), syntactic cues (57),

social or gestural cues (15), or hypothesis gen-

eration (58). Each of these additional factors

has empirical support and their inclusionmay

further improve learning, to the extent that

they do not already emerge from training. Sub-

sequent research could systematically test

for their contributions on top of CVCL, by

incorporating these biases into the architecture

or training procedure (59, 60). Nevertheless, our

Fig. 5. Attention maps generated by Grad-CAM for four different categories

showing some object localization capabilities in CVCL. Each plot contains eight

different examples from a category, with the corresponding normalized attention

map below, where yellow indicates regions with the highest attention. For the top

two categories (ball and car), we see that the model can localize the intended

referent across different views. However, in the bottom two categories (cat and

paper), the attention maps are sometimes misaligned with the referent, showing

that this ability to localize referents is not consistent across all categories. Images

were manually selected from Labeled-S where the referent was visible and clear

but did not take up the entire frame.
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findings suggest that they are not essential

formaking genuine progress onword learning

from one child’s experience.

Future work could aim to bring learning

in children and models closer together by

incorporatingmore cognitively plausible assump-

tions into the model. For example, children

learn from temporally extended episodes (61),

whereas CVCL learns from independent still

frames, likely affecting the learnability of verbs

and other abstract words. Second, children

are fundamentally active, embodied learners,

whereas CVCL must learn passively from re-

corded visual-linguistic experience. CVCL’s suc-

cesses are implicitly supported, in part, by the

child’s actions, attention, and social engage-

ment, although other benefits of active learn-

ing are beyond the model’s reach (62). Third,

children learn continually from an ongoing

stream of experience, whereas CVCL learns by

revisiting its training data repeatedly overmulti-

ple epochs, although continual contrastive

learning has been successful too (63). Finally,

young childrenmust learn from speechwhereas

CVCL learns from transcribed utterances, trad-

ing useful speech cues like intonation and em-

phasis for explicit word boundaries (30).

Even with these modeling and data limita-

tions, CVCL demonstrates how grounded word

learning is achievable from slices of a single

child’s experience. There are other aspects of

word meaning, such as links to beliefs, inten-

tions, and general semantic knowledge (64, 65),

that are beyond the scope considered here. Still,

CVCL’s promising performance on naturalistic

word learning shows the power of combining

representation learning and associative learn-

ing for addressing a long-standing challenge

in early language acquisition.

REFERENCES AND NOTES

1. W. V. O. Quine, Word and Object (MIT Press, 1960).

2. S. Carey, Linguistic Theory and Psychological Reality, M. Halle,

J. Bresnan, G. A. Miller, Eds. (MIT Press, 1978), pp. 264–293.

3. P. Bloom, How Children Learn the Meanings of Words (MIT

Press, 2002).

4. E. Bergelson, D. Swingley, Proc. Natl. Acad. Sci. U.S.A. 109,

3253–3258 (2012).

5. L. Fenson et al., MacArthur-Bates Communicative Development

Inventories (Paul H. Brookes, 2007).

6. M. C. Frank, M. Braginsky, D. Yurovsky, V. A. Marchman,

J. Child Lang. 44, 677–694 (2017).

7. T. Regier, Cogn. Sci. 29, 819–865 (2005).

8. E. Colunga, L. B. Smith, Psychol. Rev. 112, 347–382 (2005).

9. C. Yu, L. B. Smith, Psychol. Sci. 18, 414–420 (2007).

10. L. B. Smith, S. H. Suanda, C. Yu, Trends Cogn. Sci. 18, 251–258

(2014).

11. J. Fiser, R. N. Aslin, Proc. Natl. Acad. Sci. U.S.A. 99,

15822–15826 (2002).

12. E. V. Clark, B. MacWhinney, Mechanisms of Language

Acquisition (Lawrence Erlbaum Associates, 1987), pp. 1–33.

13. E. M. Markman, Categorization and Naming in Children:

Problems of Induction (MIT Press, 1989).

14. N. N. Soja, S. Carey, E. S. Spelke, Cognition 38, 179–211 (1991).

15. M. Tomasello, M. J. Farrar, Child Dev. 57, 1454–1463 (1986).

16. D. A. Baldwin, Child Dev. 62, 875–890 (1991).

17. M. Bohn, M. H. Tessler, M. Merrick, M. C. Frank, J. Exp. Psychol.

Gen. 151, 2927–2942 (2022).

18. Y. LeCun, Y. Bengio, G. Hinton, Nature 521, 436–444 (2015).

19. D. K. Roy, A. P. Pentland, Cogn. Sci. 26, 113–146 (2002).

20. L. Smith, C. Yu, Cognition 106, 1558–1568 (2008).

21. M. C. Frank, N. D. Goodman, J. B. Tenenbaum, Psychol. Sci. 20,

578–585 (2009).

22. A. Fazly, A. Alishahi, S. Stevenson, Cogn. Sci. 34, 1017–1063 (2010).

23. A. Lazaridou, G. Chrupała, R. Fernández, M. Baroni, in

Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies (2016), pp. 387–392.

24. D. Harwath et al., in Proceedings of the European Conference

on Computer Vision (ECCV) (2018), pp. 649–665.

25. A. Radford et al., Learning Transferable Visual Models From

Natural Language Supervision. arXiv:2103.00020

[cs.CV] (2021).

26. M. Nikolaus, A. Alishahi, G. Chrupała, Trans. Assoc. Comput.

Linguist. 10, 922–936 (2022).

27. J. Sullivan, M. Mei, A. Perfors, E. Wojcik, M. C. Frank, Open

Mind (Camb.) 5, 20–29 (2021).

28. We obtain this estimate by approximating the total number of

hours during this time span as 1.583 × 365 × 24 = 13,867

hours, and assuming that half of these are waking hours,

then the proportion of time that SAYCam-S covers is

61/(0.5 × 13867) ≈ 0.01. Similarly, our training set consists of

225,000 linguistic tokens, and comparing this to estimates

that suggest children hear between 2 million to 7 million

words per year (66), suggests that the proportion of language

is around 0.8% to 2.2% of the total language input received

by this child.

29. E. Dupoux, Cognition 173, 43–59 (2018).

30. A. Warstadt, S. R. Bowman, What Artificial Neural Networks

Can Tell Us About Human Language Acquisition. arXiv:2208.

07998 [cs.CL] (2022).

31. K. Hirsh-Pasek, R. M. Golinkoff, Methods for assessing

children’s syntax, D. McDaniel, C. McKee, H. S. Cairns, Ed.

(The MIT Press, 1996), pp. 105–124.

32. E. Orhan, V. Gupta, B. M. Lake, “Self-supervised learning

through the eyes of a child” in Advances in Neural Information

Processing Systems 33 (NeurIPS 2020), H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin, Eds. (virtual).

33. T. Konkle, T. F. Brady, G. A. Alvarez, A. Oliva, J. Exp. Psychol.

Gen. 139, 558–578 (2010).

34. The word frequency of these concepts in the training dataset

varied greatly, with a maximum of 481 examples for ball,

to a minimum of 3 examples for desk, fan, kayak, crib, pizza,

and tricycle. The frequency of each concept can be found

in table S.3.

35. C. Jia et al., in Proceedings of the 38th International Conference

on Machine Learning (PMLR, 2021), pp. 4904–4916.

36. B. D. Roads, B. C. Love, Nat. Mach. Intell. 2, 76–82

(2020).

37. Y. Zhou, M. J. Tarr, D. Yurovsky, Quantifying the Roles of

Visual, Linguistic, and Visual-Linguistic Complexity in Verb

Acquisition. arXiv:2304.02492 [cs.CL] (2023).

38. Although the denominator in the contrastive objective aims to

push away embeddings of frames and utterances that do not

temporally co-occur, there are cases where word embeddings

can still be very similar. One such case is the large discrepancy

between the visual and word embeddings for “hand,” because it is

primarily spoken about only when the child is playing with sand,

leading the model to incorrectly also associate the word “hand”

with the referent sand. In this kind of situation, when two different

words (“sand” and “hand”) are both used to describe the same

visual referent, the contrastive objective favors a solution where

both the word embeddings for “sand” and “hand” are both

associated with the referent for sand, and therefore end up

similar to one another.

39. J. R. Anderson, Psychol. Rev. 98, 409–429 (1991).

40. B. C. Love, D. L. Medin, T. M. Gureckis, Psychol. Rev. 111,

309–332 (2004).

41. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,

D. Batra, in Proceedings of the IEEE International Conference on

Computer Vision (2017), pp. 618–626.

42. J.-B. Alayrac et al., Adv. Neural Inf. Process. Syst. 35, 23716

(2022).
43. M. C. Frank, Large language models as models of human

cognition. PsyArXiv [Preprint] (2023); https://doi.org/10.

31234/osf.io/wxt69.

44. A. Perfors, J. B. Tenenbaum, E. Wonnacott, J. Child Lang. 37,

607–642 (2010).
45. B. C. Roy, M. C. Frank, P. DeCamp, M. Miller, D. Roy, Proc. Natl.

Acad. Sci. U.S.A. 112, 12663–12668 (2015).

46. W. Wang, W. K. Vong, N. Kim, B. M. Lake, Cogn. Sci. 47,

e13305 (2023).

47. A. E. Orhan, B. M. Lake, Learning high-level visual representations

from a child’s perspective without strong inductive biases.

arXiv:2305.15372 [cs.CV] (2024).

48. B. McMurray, J. S. Horst, L. K. Samuelson, Psychol. Rev. 119,

831–877 (2012).

49. J. L. Elman, Cogn. Sci. 14, 179–211 (1990).

50. T. K. Landauer, S. T. Dumais, Psychol. Rev. 104, 211–240

(1997).

51. T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of

Word Representations in Vector Space. arXiv:1301.3781 [cs.CL]

(2013).

52. S. Chopra, R. Hadsell, Y. LeCun, in IEEE Computer Society

Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 539–546 (2005).

53. S. Pinker, Learnability and Cognition: The Acquisition of

Argument Structure (MIT Press, 1989).

54. T. Chen, S. Kornblith, M. Norouzi, G. Hinton, in International

Conference on Machine Learning (PMLR, 2020), pp. 1597–1607.

55. S. C. Meylan, E. Bergelson, Annu. Rev. Linguist. 8, 77–99 (2022).

56. B. Landau, L. B. Smith, S. S. Jones, Cogn. Dev. 3, 299–321

(1988).

57. L. Gleitman, Lang. Acquis. 1, 3–55 (1990).

58. J. C. Trueswell, T. N. Medina, A. Hafri, L. R. Gleitman, Cogn.

Psychol. 66, 126–156 (2013).

59. K. Gulordava, T. Brochhagen, G. Boleda, in Proceedings of

the 42nd Annual Meeting of the Cognitive Science Society

(CogSci), pp. 2089–2095.

60. R. Geirhos et al., “ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and

robustness” in International Conference on Learning

Representations (ICLR) (2019).

61. L. B. Smith, H. Karmazyn-Raz, Trends Cogn. Sci. 26,

1064–1065 (2022).

62. 61. T. M. Gureckis, D. B. Markant, Perspect. Psychol. Sci. 7,

464–481 (2012).
63. W. K. Vong, B. M. Lake, Cogn. Sci. 46, e13122 (2022).

64. E. H. Wojcik, M. Zettersten, V. L. Benitez, Wiley Interdiscip. Rev.

Cogn. Sci. 13, e1596 (2022).
65. B. M. Lake, G. L. Murphy, Psychol. Rev. 130, 401–431 (2023).

66. J. Gilkerson et al., Am. J. Speech Lang. Pathol. 26, 248–265

(2017).

67. J. Sullivan, M. Mei, A. Perfors, E. Wojcik, M. C. Frank, Head

cameras on children aged 6 months through 31 months

(SAYCam), Databrary (2017); retrieved 16 October 2023.

https://doi.org/10.17910/b7.564.

ACKNOWLEDGMENTS

We are grateful to the authors of the SAYCam article (27), and the

volunteers who contributed to the data set, for making our article

possible. We thank K. Adolph, G. Davidson, J. Guo, T. Kwan,

G. Murphy, Y. Zhou, and four anonymous reviewers for valuable

feedback on earlier versions of the article. Early versions of this

work were presented as an abstract at the 34th CUNY Conference

on Human Sentence Processing and the Philosophy of Deep

Learning conference. Funding: This work was supported by the

DARPA Machine Common Sense program and NSF Award 1922658

NRT-HDR: FUTURE Foundations, Translation, and Responsibility

for Data Science. Author contributions: All of the authors

contributed to conceptualizing the project and editing the

manuscript. Conceptualization: W.K.V., W.W., A.E.O., B.M.L.

Modeling: W.K.V., W.W., A.E.O., B.M.L. Investigation: W.K.V., B.M.L.;

Visualization: W.K.V., W.W., B.M.L. Writing: W.K.V. (original draft),

W.K.V., W.W., A.E.O., B.M.L. (editing). Competing interests: None

declared. Data and materials availability: Pretrained models and

code are available at https://github.com/wkvong/multimodal-

baby. The SAYCam dataset is accessible to authorized users on

Databrary (67). Access can be obtained by securing authorization

from their institution through the formal Databrary Access

Agreement (https://databrary.org/about/agreement.html), or

through affiliation from a researcher who has authorization.

License information: Copyright © 2024 the authors, some rights

reserved; exclusive licensee American Association for the

Advancement of Science. No claim to original US government

works. https://www.sciencemag.org/about/science-licenses-

journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.adi1374

Materials and Methods

Figs. S1 to S5

Tables S1 to S3

References (68–79)

MDAR Reproducibility Checklist

Submitted 26 April 2023; resubmitted 17 July 2023

Accepted 31 December 2023

10.1126/science.adi1374

RESEARCH | RESEARCH ARTICLE

Vong et al., Science 383, 504–511 (2024) 2 February 2024 8 of 8


