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Auditing the inference processes of 
medical-image classifiers by leveraging 
generative AI and the expertise of physicians

Alex J. DeGrave1,2, Zhuo Ran Cai3, Joseph D. Janizek1,2, Roxana Daneshjou    4,5,6  

& Su-In Lee    1,6 

The inferences of most machine-learning models powering medical artificial 

intelligence are difficult to interpret. Here we report a general framework 

for model auditing that combines insights from medical experts with a 

highly expressive form of explainable artificial intelligence. Specifically, 

we leveraged the expertise of dermatologists for the clinical task of 

differentiating melanomas from melanoma ‘lookalikes’ on the basis of 

dermoscopic and clinical images of the skin, and the power of generative 

models to render ‘counterfactual’ images to understand the ‘reasoning’ 

processes of five medical-image classifiers. By altering image attributes to 

produce analogous images that elicit a different prediction by the classifiers, 

and by asking physicians to identify medically meaningful features in the 

images, the counterfactual images revealed that the classifiers rely both 

on features used by human dermatologists, such as lesional pigmentation 

patterns, and on undesirable features, such as background skin texture and 

colour balance. The framework can be applied to any specialized medical 

domain to make the powerful inference processes of machine-learning 

models medically understandable.

Medical artificial intelligence (AI) classifiers have proliferated in 

recent years1, but currently, the scientific and medical communities 

poorly understand what factors influence AI outputs and whether 

these factors could lead to failures and harm to patients when AI is 

deployed in practice. The reasoning processes of these high-stakes 

classifiers—namely, those that rely on neural networks and other 

complex ‘machine-learning’ techniques, which automatically learn 

statistical patterns in large datasets—remain opaque to all stakehold-

ers, including patients, medical providers, regulators and even the 

developers of these AI systems. In principle, a detailed understanding 

of the reasoning processes of these AI classifiers could help us predict 

and prevent AI failures, help to improve AI models and offer scientific 

value by contributing to the community’s knowledge of AI reasoning 

processes or their underlying training data. However, we lack a thor-

ough medically interpretable picture of the reasoning processes of 

machine-learning-based medical-image classifiers. Previous efforts 

provided extremely limited peeks at medical-AI reasoning processes2,3, 

typically via techniques that ‘sanity check’ whether a model is looking in 

the correct place4–7, and both these and more expressive techniques8,9 

typically suffer from a lack of principled and medically informed analy-

sis, precluding a thorough understanding. Indeed, despite technical 

developments in these explainable AI (XAI) tools, the gap between XAI 

tool output and a pragmatic understanding of an AI classifier, particu-

larly for image analysis and other ‘representation learning’ AI systems, 
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dermatology expertise, impeding a global understanding of the AI 

classifier’s behaviour.

In this work, we scrutinized numerous high-profile dermatology 

AI models to obtain a medically interpretable picture of medical-image 

AI reasoning processes. In the process, we showcase our work-

flow, which combines XAI with human domain expertise (Fig. 1a).  

We demonstrate solutions to severe practical issues with XAI in 

the imaging domain, including (1) conceptualizing AI behaviour in 

medically meaningful terms, (2) addressing sampling challenges 

to form robust conclusions, and (3) scaling from explanations of 

individual predictions to a global understanding of an AI classifi-

er’s reasoning processes. At a high level, our workflow involves the 

generative-AI-based synthesis of counterfactual images, which cir-

cumvent limitations of the de facto standard XAI modality (saliency 

maps) in medical-image analysis. Here we define counterfactuals 

as images that answer the question ‘what realistic alterations elicit 

a different prediction from the AI?’ We constrain the alterations to 

appear realistic, such that the differences between counterfactuals 

may be interpreted by medical experts (Methods). Our workflow 

continues with the analysis of thousands of such counterfactual 

images by dermatology experts, to characterize AI classifiers in 

human-understandable medical terms. Throughout the process, 

we emphasize rigour by mitigating problems of sampling and bias, via 

examination of numerous images, consideration of multiple datasets 

remains so large that efforts to apply XAI often miss severe faults in 

an AI-classifier’s logic10–13, such as strong dependence on spurious 

‘shortcut’ features4,14.

In exploring the reasoning processes of medical image AI, der-

matology AI classifiers serve as a particularly impactful use case, 

for several reasons: numerous academic papers report high perfor-

mance15–17; the first handful of companies have received Conformité 

Européene (CE) approval to deploy their AI classifiers on patients in 

the European Economic Area18,19; and multiple developers are working 

on approval from the US Food and Drug Administration20. Dermatol-

ogy AI classifiers, often targeted directly at consumers, may pose 

particular risks due to the lack of involvement from healthcare pro-

viders, potential for bias on skin tone21 and other sensitive attributes, 

and heterogeneity of user-acquired images, resulting from variability 

in lighting conditions, image acquisition devices and digital process-

ing procedures, none of which are standardized. Simultaneously, the 

de facto standard5 XAI modality to analyse image models—saliency 

maps, which highlight the regions of an image that most influence a 

model’s prediction—appear poorly suited to understand dermatology 

AI classifiers, which may be best explained in terms of dermatological 

concepts (such as ‘multiple colours of pigment’ or ‘atypical pigment 

networks’) that spatially overlap or manifest diffusely throughout an 

image (Extended Data Fig. 1). Explanation of even a single prediction 

involves simultaneously high levels of technical AI knowledge and 
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Fig. 1 | Overview of joint expert, XAI auditing procedure and audited AI 

classifiers. a, Our auditing procedure unites XAI with analysis by human experts 

to understand medical AI classifiers. Specifically, we leverage generative models 

to create counterfactual images that alter the prediction of a medical AI classifier; 

analysis of the counterfactuals by human experts (dermatologists) reveals the 

medical AI classifier’s reasoning processes. We perform the analysis on numerous 

images from each of multiple datasets, gathering insights from two experts, for 

each of five different dermatology AI classifiers. b, Key details of dermatology AI 

classifiers audited in this study. c, Performance of the dermatology AI classifiers 

on three datasets, including a dataset (DDI) external to the training data of every 

classifier. We examine the area under the receiver operating characteristic 

curve (ROC-AUC) to focus on the model’s internal reasoning processes rather 

than emphasize the authors’ original choices of model calibration. Asan, Atlas 

and Hallym datasets are described in ref. 22; MED-NODE is described in ref. 58; 

Edinburgh is available at https://licensing.edinburgh-innovations.ed.ac.uk/

product/dermofit-image-library (*ROC-AUC < 0.5; that is, worse than random 

performance).
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and solicitation of insights independently from two dermatologists 

via a randomized and blinded analysis.

Results
Overview of dermatology AI classifier selection and 
reproduction
Aiming to best represent the current state of the art in dermatology AI 

classifiers, we explored the scientific literature and commercial market, 

ultimately choosing five AI classifiers to audit (Fig. 1b). These classifiers 

span the spectrum of academic and commercial classifiers and include 

classifiers already distributed for use by consumers. The five classifi-

ers are: (1) DeepDerm, a previously developed reproduction21—using 

the original training data—of the classifier from a seminal academic 

publication15, which hailed the classifier for its ‘dermatologist-level’ 

performance; (2) ModelDerm 201822, an academic classifier for which 

a later version (which we were unable to obtain) was CE approved for 

use in the European economic zone; (3 and 4) Scanoma and Smart Skin 

Cancer Detection (SSCD), two consumer-facing, smartphone apps; and 

(5) a ‘competition-style’ classifier, designed to mimic the key design 

decisions of the winning model23 from the 2020 Society for Imaging 

Informatics in Medicine and International Skin Imaging Collaboration 

(SIIM-ISIC) Melanoma Classification Kaggle challenge24 while circum-

venting that model’s prohibitive computational burden. Authors of 

additional AI classifiers declined to make available their full models 

(particularly the model weights), preventing us from analysing other 

high-profile classifiers16,17.

As these diverse AI classifiers were trained on highly varied training 

data, we hypothesize they may show a wide range of internal reasoning 

processes, for instance, focusing on varied dermatological features or 

spurious signals. The training data include both dermoscopic images 

(taken through a specialized dermatological tool that magnifies and 

enables visualization of deeper layers of the skin) and clinical images 

(acquired with a digital camera, without the use of a dermatoscope). 

Dermoscopic and clinical images feature unique profiles of potential 

signals for AI systems to learn: for instance, dermoscopic images better 

reveal a lesion’s fine details, such as pigmentation patterns, and show 

unique artefacts, such as ruler markings and dark corner artefacts; 

clinical images likewise may provide more information on a lesion’s 

context (location, surrounding lesions), in addition to their own char-

acteristic artefacts, such as presence of markings or patient clothing. 

Dermoscopic images from the ISIC database24–26 were used to train both 

DeepDerm and SIIM-ISIC, although the particular subsets of data used 

for each model differed. DeepDerm also included clinical images in 

its training set, gathered from numerous online sources. ModelDerm 

trained on only clinical images, including publicly available images 

as well as images that were never made publicly available. The train-

ing procedures for the smartphone app AI classifiers have not been 

published, but based on the wide public availability of dermatology 

image datasets, we speculate they could have trained at least in part 

on images from the ISIC archive, the Fitzpatrick17k database of clinical 

dermatology images27 or other sources. Beyond the variability intro-

duced by differences in training data, additional variation between the 

models may also arise from their diverse architectures, pre-processing 

schemes, ensembling and other computational differences.

We frame our analysis around the clinical task of differentiating 

melanomas from melanoma lookalikes (such as benign nevi, seborrheic 

keratoses or dermatofibromas), which has historically received great 

attention within the AI community and which aligns with the intended 

use cases of the AI classifiers. Four of the five AI classifiers explicitly 

predict melanoma, while the remaining AI classifier (DeepDerm) pro-

vides a more general prediction of ‘benign’ or ‘malignant’. To model this 

clinical task, we construct our test data to contain only melanomas and 

melanoma lookalikes; in this setting, DeepDerm effectively functions 

as a melanoma classifier, although the DeepDerm’s training for a more 

general task could still impart variation relative to the other classifiers. 

We frame our analysis through this narrower problem, which has his-

torically received great attention within the AI community and which 

models a well-defined clinical task. As some classifiers were designed to 

function on dermoscopic images, others on clinical images and at least 

one (DeepDerm) on both, we examine all classifiers in each context, 

using ISIC as our source of dermoscopic images and Fitzpatrick17k for 

clinical images (note that, as we are most interested in what alterations 

cause images to appear more benign or malignant and not benchmark-

ing AI performance, we do not expect our XAI analysis to be sensitive 

to overlap between the training and test data)8.

We carefully adapted each AI classifier for use with our XAI tools, 

such that all analyses could be performed in a uniform software envi-

ronment, thus eliminating a potential source of variation. Wherever 

feasible (that is, with the exception of SIIM-ISIC), we used the original 

model weights, to ensure that the original reasoning processes for that 

AI classifier could not change. While we suspect that the reasoning pro-

cess of SIIM-ISIC should closely match the original 2020 SIIM-ISIC Kag-

gle competition winning model—we use the same training data, training 

procedure and test-time image augmentations/ensembling—we intend 

our audit of SIIM-ISIC to shed light on the influence of these common, 

performance-boosting techniques rather than to definitively com-

ment on the reasoning process of that original model. We verified our 

adaptations against the original implementations and achieved close 

reproduction of the original results; only slight differences arose due 

to platform-dependent implementation differences in pre-processing 

or arithmetic (Supplementary Fig. 1).

Dermatology AI classifiers vary in melanoma-detection 
performance
As a first step toward understanding dermatology AI classifiers, 

we evaluated the performance of each classifier for differentiation 

between melanoma and melanoma lookalikes (Fig. 1c). While most AI 

classifiers detected melanomas in most datasets with at least limited 

success, performance was variable and often low. All failed to achieve 

satisfactory performance in the Diverse Dermatology Images (DDI) 

dataset, the only one of our three datasets known not to overlap with 

the training data of any AI classifier. This performance gap could 

come from the DDI’s inclusion of diverse skin tones and rare diseases 

but may also arise from other out-of-distribution features21. Despite 

training on no clinical images, SIIM-ISIC—which utilizes ensembling in 

conjunction with more modern neural network architectures—outper-

forms all other models on clinical images. Overall, our performance 

evaluation provides a sanity check that the dermatology AI classi-

fiers likely rely in part on medically relevant attributes, given that 

most generalize, at least to a limited extent, to external datasets. In 

addition, our evaluation suggests that the five dermatology AI classi-

fiers likely differ in their internal reasoning processes, as the pattern 

of performance gains or losses across the three datasets does not 

hold consistent among the AI classifiers. The findings from this ret-

rospective analysis (which we do not intend as estimates of real-world 

performance as might be observed in deployment) motivate further 

analysis via XAI.

Counterfactual images reveal basis for AI decisions
To understand the reasoning processes of the AI classifiers, we exam-

ined each AI classifier via an XAI tool: generation of counterfactual 

images. Counterfactual images reveal the basis of an AI classifier’s 

decisions by altering attributes of a reference image to produce a 

similar image that elicits a different prediction from the AI classifier. 

For instance, consider the case that an AI classifier predicts a lesion is 

malignant, while a counterfactual predicted by the AI classifier to be 

benign differs in that it features lighter, more uniform pigmentation and 

fewer brown spots on the background skin; provided that we ensure all 

differences in the counterfactual push the AI classifier’s predictions in 

the desired direction (more benign), we may infer that the classifier uses 

http://www.nature.com/natbiomedeng
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darker pigmentation of the lesion and brown spots on the background 

skin as part of its reasoning process (Fig. 2a).

To this end, we improved and applied a previously developed8 

technique for generation of counterfactual images, Explanation by 

Progressive Exaggeration, with updates to enable more rigorous con-

clusions. In the context of our dermatology AI classifiers, this technique 

enables the generation of both ‘benign’ and ‘malignant’ counterfactuals 

from a reference image (Fig. 2a). We can then learn from comparing 
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Fig. 2 | Joint expert and XAI auditing procedure reveals reasoning processes 

of dermatology AI classifiers. a, Given a reference image and an AI classifier 

to investigate, our generative model produces ‘benign’ and ‘malignant’ 

counterfactuals, which resemble the reference image but differ in one or more 

attributes (such as pigmentation of the lesion and dots on the background 

skin). When evaluated by the AI classifier, the counterfactuals’ outputs lie 

on opposite sides of the decision threshold. Higher values indicate greater 

likelihood of malignancy, as predicted by an AI classifier (Scanoma). b, To obtain 

robust conclusions, dermatology experts evaluate numerous counterfactuals 

after pre-screening and randomization of the images. c, Attributes identified 

by our joint expert-XAI auditing procedure as key influences on the output 

of dermatology AI classifiers. For each attribute/classifier pair, we count the 

proportion of counterfactual pairs in which experts noted that attribute differs; 

we display the global top-10 attributes as determined by lowest rank-sum over all 

AI classifiers, then group by attribute category (‘lesion’ or ‘background’). Based 

on expert evaluation of whether the attribute was present to a greater extent 

in the malignant or benign counterfactual of each pair, we determine whether 

that attribute was ‘predominant’ in benign or malignant counterfactuals, 

that is, present to a greater extent in benign (malignant) counterfactuals in at 

least twice as many images as malignant (benign) counterfactuals. The size of 

each square (the ‘fraction of counterfactual pairs’) is then determined as the 

proportion of counterfactual pairs with a difference noted in the predominant 

direction, averaged over both readers. For comparison, we specify how human 

dermatologists use each attribute (‘literature’), based on our review of the 

literature29–33,38,42 combined with expert opinion from two board-certified 

dermatologists; see ‘Discussion’ for additional information. Bar charts indicate 

Cohen’s κ values for agreement between each expert and the AI classifier, where 

each is asked which image in each counterfactual pair appeared more likely to 

be malignant. d, Examples of counterfactuals that differ in each of the top ten 

attributes identified in the ISIC data; the attribute is present to a greater extent 

in the right image of each pair. For conciseness, some attribute names were 

shortened; refer to Supplementary Table 1 for full names. Figure was adapted 

with permission from ref. 25, ViDIR Group, Department of Dermatology, Medical 

University of Vienna.
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two opposing counterfactuals, which guards against potential misin-

terpretations, should the technique introduce any systematic changes 

to the counterfactuals. Explanation by Progressive Exaggeration trains 

a generative AI model in conjunction with an AI classifier, such that the 

generative model learns how to alter images to change the AI classifier’s 

predictions. We train the generative model to create counterfactuals 

that are similar to the reference image and appear realistic but differ 

from the reference image to elicit the desired prediction from the AI 

classifier. Importantly, as the generated counterfactuals may alter more 

than one attribute, we updated the technique to ensure that we train the 

generative model to only change attributes when those changes elicit 

the desired effect on the AI classifier’s output, whereas the previously 

published version of this technique may also alter attributes irrelevant 

to the classifier’s output (Supplementary Fig. 2). Additional updates 

enabled generation of higher-quality images that retain fine details, 

such as hair, that might be important for dermatology AI classifiers 

(Supplementary Fig. 3). We separately trained such generative models 

for each AI classifier, for each of the ISIC and Fitzpatrick17k datasets, 

for a total of ten generative models (Methods and Supplementary Figs. 

4 and 5); a uniform set of training parameters facilitates comparison 

between the AI classifiers (Supplementary Fig. 6).

While examination of a single counterfactual pair provides some 

information about an AI classifier’s reasoning process, to obtain a more 

complete and rigorous understanding of the AI classifiers and enable 

direct comparisons between classifiers, we systematically interrogated 

thousands of counterfactual images, in a randomized and blinded 

fashion (Fig. 2b). We began our analysis by pre-screening the counter-

factuals, to ensure we only examined high-quality counterfactuals and 

to facilitate comparisons between AI classifiers. We excluded counter-

factuals that failed to produce the desired output from our AI classifiers 

(that is, we ensured that the ‘malignant’ and ‘benign’ counterfactuals 

lie on the correct sides of the decision threshold) or that contained 

visual artefacts (such as ‘water-droplet-like’ artefacts28), as judged by 

dermatologists. Two dermatologists then independently annotated 

each counterfactual pair, which was randomized and blinded to reduce 

bias. To learn whether the dermatologists’ general impressions of the 

counterfactuals agreed with each AI classifier regarding what appears 

more or less malignant, we first inquired, ‘Which image appears most 

likely to represent a melanoma?’ We then asked the dermatologists to 

record individual image attributes that differ between the ‘benign’ and 

‘malignant’ counterfactuals, such that we could learn which attributes 

each AI classifier uses and how it uses them (Supplementary Fig. 7 and 

Supplementary Tables 1–3).

We aggregated the dermatologists’ insights over thousands of 

counterfactuals to determine the reasoning process of each dermatol-

ogy AI classifier. We conceptualize the reasoning process as swayed 

toward a benign or malignant prediction by key attributes identified 

as differing in counterfactual pairs; our analysis provides the typical 

direction of an attribute’s effect, based on whether that attribute was 

predominant in the benign or malignant counterfactuals, as well as an 

approximate idea of the extent of the effect, based on the frequency 

with which dermatologists observed that attribute differing in coun-

terfactuals. Note that we expect this frequency to depend on multiple 

factors, including the fraction of the dataset to which that attribute 

is relevant, inductive biases of our generative models and perhaps a 

combination of a dermatology AI system’s sensitivity to an attribute and 

the sensitivity of our evaluators in detecting that attribute (which may 

be at odds, in the case of a visually subtle change that sizeably affects 

a prediction). Our analysis reveals that the AI classifiers focus on both 

medically relevant and putatively spurious attributes and show con-

siderable heterogeneity in how they interpret those attributes (Fig. 2c).

A detailed view of medical AI reasoning
Our counterfactual analysis highlights the pigmentation of lesions 

as a key attribute in determining the predictions of all dermatology 

AI classifiers examined, for both dermoscopic and clinical images. 

In all cases, ‘darker pigmentation’ surpassed all other attributes in 

frequency, with dermatologists noting this change in the majority of 

counterfactual pairs. Consistent with dermatologists’ interpretation 

of more darkly pigmented lesions, dermatology AI classifiers typically 

associate darker pigmentation of lesions with increased likelihood 

of melanoma; the only exception is ModelDerm when evaluated on 

dermoscopic images—an image type upon which this model was never 

trained. Dermoscopic counterfactuals from a subset of the dermatol-

ogy AI classifiers (DeepDerm, Scanoma, and SSCD) also showed atypical 

pigment networks, featuring these in the more ‘malignant’ images, in 

agreement with dermatologists’ use of this attribute during pattern 

analysis of melanocytic lesions29,30.

Our counterfactual analysis suggested that dermatology AI clas-

sifiers also depend on a variety of other attributes of the lesion, many 

of which dermatologists also consider when analysing melanocytic 

lesions. In both dermoscopic and clinical images, counterfactuals from 

all AI classifiers varied the number of colours in a lesion, typically asso-

ciating a greater number of colours with predictions of malignancy31. 

Some AI classifiers, most prominently SIIM-ISIC, also elicited coun-

terfactuals with blue/white veils, which has previously been reported 

as a specific finding for melanoma32,33. Other attributes of the lesion 

that may factor into the AI classifiers’ decisions include presence of 

structureless areas or regression in dermoscopic images, and uneven 

pigmentation or erythema in clinical images. Aside from erythema, 

which varies between a benign or malignant signal depending on the AI 

classifier, these attributes typically associate with the malignant coun-

terfactuals. Their frequency, however, varies considerably between 

classifiers, pointing out heterogeneity in the classifiers’ reasoning 

processes.

Analysis of each AI classifier’s top attributes (Extended Data Figs. 

2 and 3) revealed additional lesional attributes highlighted by coun-

terfactuals from only a subset of the AI classifiers. In dermoscopic 

images, these attributes included patchiness (DeepDerm and SSCD), 

strawberry pattern (ModelDerm), white spots (SSCD), prominence of 

follicles or pores (SSCD), white striae (SIIM-ISIC) and scale (SIIM-ISIC). 

In clinical images, these attributes included erosion or ulceration 

(DeepDerm and Scanoma), nodular or papular appearance (Model-

Derm), uneven borders (ModelDerm) and the shininess of a lesion 

(SIIM-ISIC).

Typically, inter-reader variability did not result in conflicting 

conclusions about the presence or direction of an attribute’s effect 

(Extended Data Fig. 4).

Our counterfactuals indicate that attributes of the background 

skin also influence the dermatology AI classifiers; also, in comparison 

to attributes of the lesion, those of the background often elicit more 

diverse responses among the classifiers: Counterfactuals for multiple 

classifiers show brown spots on the background skin, and these variably 

associate with either malignant or benign predictions, depending on 

the classifier. Hair typically associates with benign counterfactuals in 

dermoscopic images but can also associate with malignant counter-

factuals in clinical images. Reticulation of the background skin asso-

ciates with the benign counterfactuals of Scanoma and ModelDerm 

(Extended Data Fig. 2) but is rarely highlighted by the counterfactuals 

of other classifiers. Erythema or telangiectasias of the background skin 

also feature prominently in the results of our counterfactual analysis, 

and the effects of these attributes vary both between AI classifiers and 

within an AI classifier, depending on whether an image is clinical or 

dermoscopic. Finally, counterfactuals highlighted the ‘pinkness’ of 

background skin as influencing AI classifiers’ decisions, particularly 

in dermoscopic images. In contrast to erythema, this attribute often 

applies uniformly across an image (Fig. 2d), consistent with effects of 

lighting or an image’s colour balance. Similarly, we recorded overall 

darker images and cooler colour temperatures as influential for one 

classifier (SIIM-ISIC). Similar to other background skin attributes, 

http://www.nature.com/natbiomedeng
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lighting or colour balance changes may sway an AI classifier toward a 

more benign or more malignant prediction depending on the classi-

fier. Aside from brown spots on the background skin, which could be 

interpreted as sun damage34, we were unable to identify dermatological 

literature that establishes these attributes of the background skin as 

signals commonly used by dermatologists.

Darker pigmentation of the background skin, which stands out as 

the overall second most frequently recorded difference in our clinical 

counterfactuals, consistently associates with malignant counterfactu-

als. We observed that the darker pigmentation sometimes localized to 

discrete areas of the background skin, for instance to the immediate 

periphery of a lesion (effectively enlarging the lesion), or alternatively 

to areas of the image in shadow. In other instances, darker pigmentation 

extended more uniformly throughout the background skin. Among 

the classifiers, SIIM-ISIC featured this attribute most prominently in 

its counterfactuals.

In general, AI classifiers and human dermatologists agreed on 

which image in the counterfactual pair most likely depicted a malig-

nancy. The exception, ModelDerm, showed negative Cohen Kappa val-

ues compared to dermatologists on dermoscopic images, in alignment 

with the unique profile of attributes highlighted in our analysis. This 

classifier also agreed poorly on clinical images, again coinciding with 

its focus on a unique profile of attributes. Curiously, Scanoma achieved 

the best agreement with dermatologists on both datasets, despite other 

AI classifiers achieving higher predictive performance (even when that 

performance was on external data and therefore not inflated by train–

test overlap, as in the SIIM-ISIC with Fitzpatrick17k; Fig. 1c).

Validation of insights from counterfactuals
While we engineered our counterfactual generation procedure to 

ensure that detected attributes indeed influence AI classifiers’ predic-

tions, we performed additional analyses to verify these conclusions. 

Ideally, we may confirm our findings by performing a targeted inter-

vention to experimentally modify a single attribute of an image, in a 

well-defined fashion, then monitor the intervention’s effect on each 

AI classifier’s prediction. While existing techniques such as CycleGANs 

(a type of generative adversarial network)35 or manual image editing 

do not enable reliable modification of most attributes detected in our 

analysis (such as the addition or removal of atypical pigment networks 

without altering other attributes), transformation to a suitable colour 

space (in our case, the International Commission on Illumination’s CIE 

1976 L*, u*, v* color space, abbreviated CIELUV)36 enables programmatic 

modification of the colour of an image, permitting us to experimentally 

produce images that are more or less ‘pink’, an attribute detected as 

influential to most classifiers (Figs. 2c and 3a). We shifted the colour 

(that is, the u’ and v’ chromaticity coordinates in the CIELUV colour 

space36) of each image in the ISIC dataset, then monitored how each AI 

classifier’s prediction changed for a range of colours (Fig. 3b).

These experimental modifications of image colour and their 

impact on the predictions of the AI classifiers recapitulates the trend 

observed in our previous analysis of counterfactual images (Fig. 3c 

compared to Fig. 3a): for example, pinker images elicit more benign 

predictions from DeepDerm and more malignant predictions from 

Scanoma. Multiple factors including the ‘sensitivity’ of an AI classi-

fier to changes in an attribute determine the relative frequency of an 

attribute among counterfactuals (Fig. 3a); thus, magnitudes are not 

directly comparable (Results: ‘Counterfactual images reveal basis for 

AI decisions’). This experiment validates that the attributes identified 

in our previous analysis of counterfactual images indeed influence the 

output of the AI classifiers in the direction described by the counterfac-

tual analysis. In addition, this experiment validates our interpretation 

of ‘pinker background skin’ as a global change in lighting or colour 

balance. Indeed, our experimental procedure mirrors computational 

techniques used to perform white balancing (correction for chromatic 

adaptation) in digital cameras37 and highlights how changes to lighting 

or camera settings might affect AI dermatology classifiers’ predictions 

in undesirable ways.

Counterfactuals explain failure cases
To reinforce the core findings from our systematic analysis of coun-

terfactuals, we also present counterfactual explanations of cases in 

which the AI classifiers failed to correctly predict whether a lesion was 

malignant or benign.

The reliance of dermatology AI models on the pigmentation of a 

lesion can lead to failures that are ‘reasonable’, in that they might also 

be expected from human dermatologists (Fig. 4a): for instance, while 

presence of atypical pigment networks and darker pigmentation leads 

one AI classifier to predict a lesion was malignant, it turned out to be 

benign; indeed, authors of this present study who practice dermatol-

ogy find this lesion concerning for the same reason and would have 

opted to biopsy the lesion.

In other cases, dermatology AI models rely on potentially relevant 

attributes of an image but use these attributes incorrectly. ModelDerm 

misclassified a malignant lesion as benign, and examination of the 

corresponding counterfactuals revealed attributes such as darker 

pigmentation of the lesion and absence of erythema as influential for 

this decision (Fig. 4b). However, dermatologists would not typically 

associate darker pigmentation with decreased likelihood of melanoma, 

and the distribution of erythema does not match the ‘pink rim’ some-

times associated with melanoma38.

Dermatology AI classifiers also utilize likely irrelevant attributes in 

their reasoning process, including associating hair on background skin 

with benign lesions (Fig. 4b). In another example (Fig. 4c), a classifier 

misclassifies a benign lesion as melanoma in part due to an attribute of 

the background skin, namely, lack of prominent reticulation.

Discussion
Relative to previous techniques for the analysis of medical-image AI 

classifiers, our framework provides numerous advantages, which 

together enable us to present a detailed view of the reasoning processes 

of AI systems for medical images. Whereas saliency maps—the de facto 

standard XAI technique for image models—best reveal the importance 

of localizable attributes, our discovery of dependencies on numerous 

overlapping, textural and tonal changes to an image showcases the 

importance of our use of XAI based on counterfactual images, and high-

lights limitations of previous work that relied only on saliency maps5. In 

fact, we surmise that most attributes identified by our framework, such 

as darker pigmentation of lesions, number of colours in a lesion and the 

presence of erythema and pigmentation patterns, would be unlikely 

to be identified by saliency maps. Our framework also improves upon 

previous efforts8,9 to analyse medical-image AI systems via counterfac-

tual images. In contrast with other generative techniques8,9 for counter-

factual generation (including the original Explanation by Progressive 

Exaggeration) or with the simple comparison of real images predicted 

as benign and malignant, our method enables the inference that each 

attribute that differs in a benign–malignant pair is indeed important for 

the predictions of the AI classifier (Supplementary Fig. 2). Our method 

also offers a more detailed reproduction of fine-grained features such 

as hair (Supplementary Fig. 3), which we discovered to influence some 

AI classifiers. Perhaps more importantly, our framework introduces a 

means to translate XAI outputs to a human-understandable medically 

meaningful form, namely, via systematic, randomized and blinded 

analysis by medical experts. Particularly for a high-stakes application 

such as medical decision making, we contend that such a medically 

grounded understanding offers the greatest potential for actionability.

We find that dermatology AI classifiers leverage a number of medi-

cally meaningful attributes found within lesions, including attributes 

related to a lesion’s pigmentation, in a manner consistent with human 

experts. Dermatology AI classifiers also rely on numerous attributes 

with debatable medical relevance and unclear desirability. Brown spots 
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on the background skin may signify a patient’s age or history of sun 

exposure (a risk factor for melanoma34) but are not in any established 

melanoma-diagnosis guidelines. Our observation of this attribute 

is consistent with previous works that suggested that AI classifiers 

may rely in part on perilesional sun damage when examining actinic 

keratoses or Bowen disease39,40; a later study further corroborated that 

perilesional sun damage also enhances the human diagnosis of actinic 

keratoses and, more directly relevant to the prediction task in our study, 

provided evidence that melanomas also show perilesional sun damage 

more frequently than benign nevi41. Erythema, particularly in a ‘pink 

rim’ distribution around a lesion38, has been associated with melanoma, 

but also with benign melanoma lookalikes such as irritated seborrheic 

keratoses42. Hair may suggest a lesion’s location on the body, while skin 

grooves may provide clues on a lesion’s location (for example, acral) 

or the patient’s age or history of sun exposure. Lighting conditions or 

colour balance also influence many dermatology AI classifiers, and 

we surmise these almost certainly undesirable dependencies arise 

from spurious differences in image acquisition or pre-processing. The 

examined AI classifiers show considerable variability in their reasoning 

processes, especially with respect to their use of background attrib-

utes. While such variability might be partially explained by one model 

(DeepDerm) differing in its intended task (differentiation between 

malignant and benign lesions in general, as opposed to melanomas and 

benign melanoma lookalikes), the remaining models differ in reasoning 

processes despite sharing a common task. Beyond the fundamental 

scientific interest of this detailed characterization of AI reasoning 

processes, our approach could be used by AI developers to improve 

their models and to inform stakeholders on the trustworthiness of 

medical AI classifiers.

This methodology can help uncover idiosyncratic failure modes 

of AI, with implications for its regulation and medical use. We expect 

distributional shifts in medical AI to be common—especially in der-

matology AI, given the diversity of image acquisition devices, lighting 

conditions, skin appearances across demographics and lack of imple-

mented image standards. Our findings suggest that common distribu-

tional shifts, such as changes in lighting or colour balance, will alter AI 

performance. Thus, we caution potential users of such classifiers that 

a classifier’s advertised performance, which is often estimated in a 

well-circumscribed setting, may not be achieved in real-world use21. Our 

findings also imply that regulators should scrutinize the distribution of 

data on which a classifier is evaluated, with particular attention toward 

(1) ensuring it well reflects the intended deployment distribution, and 

(2) considering differential performance across subgroups (such as 

varied acquisition devices or regions or key potential dependencies 

such as lighting and skin tone). For AI developers, we envision that our 

methodology may enable more tractable debugging of AI classifiers 

before more expensive and time-consuming multi-site performance 

evaluations43. Finally, our framework might directly assist physicians by 

revealing new attributes that they could subsequently use to improve 

their diagnostic skills, as was previously exemplified with perilesional 

sun damage as a diagnostic clue41. By contrast, while use of XAI outputs 

to support the case-by-case decision-making of physicians as part of 

a human-AI team has received attention within the XAI community, 

our framework is not directly applicable to this task but focuses more 

on large-scale auditing, and additional studies would be required to 

ascertain the utility of the underlying counterfactuals for verifying 

AI decisions44,45.

In light of a recent study that highlighted how dermatology AI clas-

sifiers perform worse on darker skin tones21, we considered how our 

analysis might detail the underpinnings of this behaviour; that is, which 

aspects of the classifiers’ reasoning processes might lead to inequitable 

performance across skin tones. In some malignant counterfactuals, 

particularly those of SIIM-ISIC, annotators noted diffusely darker 

background skin compared to the benign counterfactual. As multiple 

real-world variations, including differences in skin tone or lighting 

conditions, might recapitulate this effect, the precise explanation 

remains unclear, but either case may be concerning. To the extent that 

real-world variations in skin tone may mirror this difference between 

the counterfactuals, a dermatology AI model may depend directly on 

skin tone. To the extent that real-world variation in lighting conditions 

or camera settings might mirror this difference, there is also potential 
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Fig. 3 | Experimental validation of findings from expert analysis of 

counterfactual images. a, The frequency with which experts noted that either 

the benign or malignant image in a pair of counterfactuals showed a pinker 

background; this view details our observations from the ISIC dataset summarized 

in Fig. 2c, in the row ‘pinker’ (ISIC dataset, ‘Background’ section). The vertical 

axis is normalized relative to the maximum observed frequency, that is, 42% of 

counterfactual pairs from SIIM-ISIC. b, Experimental set-up used to verify the 

importance of a pink tint to the AI classifiers’ predictions. We programmatically 

colour-shifted each image in the ISIC dataset (n = 20,260) by modifying its 

chromaticity coordinates in the CIELUV colour space (Methods), then compared 

each AI classifier’s predictions between the original and colour-shifted images. 

c, Sensitivity of each AI classifier to programmatic colour shifts, mirroring 

observations from our counterfactual experiments regarding the effect of pinker 

tints on the AI classifiers’ predictions. The vertical axis is normalized relative 

to the maximum change in AI classifier output, that is, a decrease of 0.17 with 

DeepDerm. Vertical dashed lines indicate the mean change in chromaticity 

(colour) among counterfactual pairs annotated as differing in their pink tone. 

Example colour-shifted images (below colour bar) show the extent of the colour 

shift; the reference image50 appears at far left.
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for an indirect dependence of dermatology AI models on skin tone: 

camera designs are often biased toward ensuring appropriate expo-

sure and colour in light skin tones, but not dark skin tones46, implying 

that an AI classifier that depends on lighting and colour balance may 

as a result perform inequitably across skin tones. While we performed 

additional experiments modifying image brightness in hopes of better 

disentangling effects of lighting and skin tone, conclusions (Extended 

Data Fig. 5) varied considerably with the methodology used (in contrast 

to our experiments with image chromaticity; Extended Data Fig. 6). 

Finally, our counterfactuals occasionally highlighted reflections as 

influential, which could systematically bias predictions in images of 

dark skin acquired with suboptimal lighting (as with the use of camera 

flash)47. Thus, our study suggests multiple potential avenues by which 

inequitable performance of dermatology AI classifiers may arise from 

a mechanistic point of view, although future studies would be required 

to alleviate ambiguity and verify potential links between skin tone and 

variations in image acquisition on a dataset-by-dataset basis.

While our framework provides a detailed picture of the reasoning 

processes of medical AI classifiers, limitations remain. First, we aimed 

to characterize the classifiers in medically meaningful, human-derived 

terms, but AI reasoning processes a priori need not coincide with 

human concepts. For instance, AI classifiers can predict sex from fun-

doscopic images48, a challenging task for ophthalmologists, and the 

struggle to conceptualize these decisions in terms simple to humans49 

suggests the existence of peculiar, AI-specific abilities to detect certain 

attributes. While our use of an expressive XAI technique in combination 

with free-text annotations may improve our chances of capturing such 

AI-specific attributes, human biases may nonetheless prevent their 

detection or description. Second, while our counterfactual generation 

technique is highly expressive (Extended Data Fig. 1), inductive biases 

may still limit detection of some attributes. For instance, considering 

similarities between our generative models and the CycleGAN, which 

struggles to produce large-scale geometric changes35, our models may 

similarly be less likely to produce certain alterations in the counter-

factuals, such as changes to the size of a lesion. Third, our approach 

does not provide information on the relationships between multiple 

attributes (for example, on the extent of any ‘interactions’ between 

attributes). Fourth, while we examine multiple modalities of derma-

tological images (clinical and dermoscopic), our analysis provides 

limited information on out-of-distribution features or features that 

rarely appear in the examined images (such as sutures). Fifth, the use 

of human annotators introduces variability, both due to stochastic 

effects of whether an annotator notices an attribute in a given image 

and due to variation in the background and training of experts. We 

found that our annotators typically agreed on the presence and direc-

tion of an attribute’s effect, but the frequency with which they noted 

that attribute was not quantitatively consistent (Extended Data Fig. 4). 

Thus, while the ‘fraction of counterfactual pairs’ in which an attribute 

was noted may help gauge our confidence in the attribute’s effect 

or enable approximate comparisons, granular comparisons of the 

‘extent’ of an attribute’s effect are likely not meaningful. Moreover, 

domain experts from varied backgrounds may tend to focus on differ-

ent attributes (for example, a dermoscopy expert may focus on tradi-

tional features of pattern analysis). Finally, while our use of free-text 

entry likely improves the expressiveness of our framework, there is no 

uniquely correct way to distil these responses into a uniform taxonomy, 

implying that another set of domain experts may have chosen differ-

ent levels of granularity. Despite these limitations, we believe our use 

of an expressive XAI technique, expert annotators and free text entry 

together enable detailed, medically meaningful inferences on the AI 

classifiers’ reasoning processes and how they could lead to desirable 

or undesirable behaviour in deployment.

In addition to the immediate value of our analysis to understand-

ing dermatology AI classifiers, the analysis provides a general frame-

work for auditing complex AI systems that require specialized domain 

knowledge to best understand. Based on the success of our framework 

in multiple image modalities (dermoscopy and clinical images), for 

each of five AI classifiers, all in a particularly heterogeneous medical 

domain (dermatology), we anticipate that investigators could apply 

the framework towards understanding a variety of other AI systems: 

perhaps other AI medical-image analysis tools, such as the numerous 

AI-based medical image-analysis systems that have been deployed 

clinically, as well as non-medical computer-vision tasks such as facial 

recognition, scene classification in autonomous vehicles and industrial 

or agricultural monitoring. The modest number of images (less than 

1,000) with which we were able to train a counterfactual generation 

model further bodes well for the broad applicability of this analy-

sis. In addition, our framework for querying experts and compiling 

responses could be applied in conjunction with other XAI techniques 

to understand AI systems outside the image domain, in cases where 

input features still lack stable semantics, such as systems that operate 

on time-series data. More generally, our study offers a template for the 

rigorous application of XAI by addressing key issues that may have 

imperilled previous XAI analyses: insufficient sampling, potential for 

bias, lack of expert involvement and failure to examine AI systems in 

multiple contexts.

Methods
Image selection and pre-processing
To interrogate the performance of AI-based dermatological classifiers, 

we collected images of melanomas and melanoma lookalike lesions 

from multiple sources. We focus on this specific task for multiple 

Reference Benign Malignant

Prediction: malignant

Ground truth: benign

Prediction: malignant

Ground truth: benign

Prediction: benign

Ground truth: malignant

a

b

c

Fig. 4 | Explanations of failure cases of dermatology AI classifiers, illustrating 

key findings from our systematic analysis. a, Presence of atypical pigment 

networks (black arrows) and darker pigmentation (white arrows) contributed 

to a false-positive prediction from Scanoma. b, Lack of more colours of 

pigment may have contributed to a false-negative prediction from ModelDerm. 

Curiously, ModelDerm may have also required lighter pigmentation (black 

arrows), increased erythema (white arrows) and less hair on background skin 

(grey arrows) to correctly predict this image pictures a melanoma. c, Lack of 

prominent reticulation on the background skin (black arrows), alongside darker 

pigmentation of the lesion (white arrows), contributed to another false-positive 

prediction from Scanoma. Figure adapted, with permission, from ref. 25, ViDIR 

Group, Department of Dermatology, Medical University of Vienna.
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reasons, including (1) the substantial attention it has received within 

the machine-learning community24,50, (2) alignment between this task 

and the intended use cases of the five AI classifiers, to enable comparison 

between classifiers, and (3) the improved likelihood of generating inter-

esting information on the reasoning processes of dermatology AI classi-

fiers, compared to simpler tasks that feature more visually salient signals.

Our first source, Fitzpatrick17k27, consists of clinical (rather than 

dermoscopic) images previously aggregated from online dermatol-

ogy atlases. We filtered Fitzpatrick17k to include only melanomas, 

benign melanocytic lesions, seborrheic keratoses and dermatofibro-

mas. We additionally excluded diagrammatic and histopathologi-

cal images and images that could be clearly identified as paediatric; 

after exclusions, the dataset consisted of 889 images. Advantages of 

Fitzpatrick17k include closer approximation of the expected inputs 

to consumer-facing dermatology AI tools (compared to dermoscopic 

images, which require specialized tools) and inclusion of a variety of 

skin tones. Disadvantages include its relatively small size after filtering 

and noise in the diagnosis labels, which may not have been acquired via 

histopathological analysis or other gold-standard means.

Our second source, the ISIC 2019 challenge dataset25,26,50, consists 

of dermoscopic images from a variety of primary sources, including the 

‘Human Against Machine with 10,000 training images’ (HAM10000) 

dataset25 and the BCN20000 dataset26. Like Fitzpatrick17k, we filtered 

the dataset to include melanomas, as well as melanoma lookalikes: 

benign melanocytic lesions, seborrheic keratoses and dermatofibro-

mas. After filtering, the ISIC dataset consisted of 20,260 images. Most 

lesions were confirmed via histopathology (n = 13,072) or serial imaging 

showing no change (n = 3,704), while a smaller number were confirmed 

by single-image expert consensus (n = 1,207), confocal microscopy 

with consensus dermoscopy (n = 712) or unspecified means (n = 1,565). 

Compared to Fitzpatrick17k, ISIC thus offers more reliable diagnoses, 

but it lacks diversity in skin tones, featuring predominately light skin.

Finally, our third source, DDI21, consists of clinical images gathered 

from Stanford Clinics. Like other datasets, we filtered DDI to include 

only melanomas and melanoma lookalikes. In the case of DDI, which 

contains more granular and varied diagnoses, we included the follow-

ing labels in our ‘melanoma’ category: acral lentiginous melanoma, 

melanoma in situ, nodular melanoma and the general tag ‘melanoma’. 

As melanoma lookalikes, we included the following labels: acral mel-

anotic macule, atypical spindle cell nevus of reed, benign keratosis, 

blue nevus, dermatofibroma, dysplastic nevus, epidermal nevus, 

hyperpigmentation, keloid, inverted follicular keratosis, melanocytic 

nevi, nevus lipomatosus superficialis, pigmented spindle cell nevus 

of reed, seborrheic keratosis, irritated seborrheic keratosis and solar 

lentigo. After filtering, DDI included 282 images; due to the compara-

tively high volume of data required for training our generative models, 

DDI was used only for performance evaluation (Fig. 1) rather than for 

our in-depth analysis of medical AI reasoning processes. However, DDI 

offers a number of desirable characteristics for evaluation purposes: 

(1) its images were not publicly available until after we obtained the 

five audited dermatology AI classifiers, precluding train–test over-

lap; (2) DDI images have diverse skin tones, including enrichment for 

Fitzpatrick skin types V and VI; (3) DDI contains a wide variety of skin 

conditions, including uncommon conditions; and (4) the lesions are 

histopathologically proven, guaranteeing label accuracy. We note 

also that DDI is likely enriched for challenging lesions, as these are the 

lesions likely to require a biopsy.

For all evaluations, we pre-process the images to match the native 

input resolution of the AI classifier, which is 299 × 299 pixels for Deep-

Derm and 224 × 224 pixels for all other classifiers. When evaluating AI 

classifier performance or generating counterfactuals (after generator 

training is complete), we resize the image via bilinear interpolation 

such that its shorter edge matches the input size of the AI classifier, 

then centre-crop to obtain a square image. When training our gen-

erative models, which benefit from image augmentation, we instead 

resize the image such that its shorter edge is 120% of the input size of 

the corresponding AI classifier, then perform a random square crop 

matching the input size.

Classifier reproduction
We reproduced five AI-based dermatological classifiers, including 

prominent academically designed classifiers proposed for clinical 

use and classifiers currently in use by the public. Two of the classi-

fiers, Scanoma and SSCD, are designed for use on mobile devices by 

the general public. The DeepDerm classifier is a previously published 

reproduction21 of a prominent academic model15, sharing its training 

data and architecture. The ModelDerm 2018 classifier is a publicly dis-

tributed academic model22, of which a later iteration (for which model 

weights are not publicly available) has been CE marked for use by the 

general public in Europe. The SIIM-ISIC classifier is a reproduction of 

the first-place classifier23 in the 2020 SIIM-ISIC Kaggle competition24. 

These models cover a broad range of architectures, pre-processing 

techniques and training data sources; as such we believe these models 

offer a thorough view of both current practices and the state of the art 

in dermatology AI.

Scanoma is a commercial software available for mobile platforms 

including iOS and Android; at the time of writing, the app’s AI classifier 

is free to use, while follow-up human evaluation is available for a fee. 

Architecturally, it is a custom convolutional neural network consistent 

with a MnasNet51, that is further optimized for use on mobile devices 

via quantization52. We obtained and unzipped the Scanoma Android 

package (APK) file (normally installed on Android devices) to examine 

its TensorFlow Lite (TFlite) file, which contains the model specification 

and weights. As our analysis tools are based on the PyTorch software 

library (version 1.9), we converted the network to the cross-library Open 

Neural Network Exchange (ONNX) format, which we then parsed in 

PyTorch. To maintain consistency with the original, quantized network 

while maintaining useful gradients, we implement the network using 

‘fake quantization’52. We verified that our PyTorch re-implementation 

matches the TensorFlow Lite implementation by comparing a series of 

1,000 test images, and we achieved nearly identical outputs (r = 0.99; 

Supplementary Fig. 1a). To account for the small discrepancy between 

the classifiers, we analysed the processing pipeline step by step and 

found slight differences in the bilinear rescaling pre-processing step, 

which may differ due to different anti-aliasing constants; the remain-

ing differences were explained by sporadic single-bit differences in the 

quantized feature maps, likely resulting from numerical differences 

between TensorFlow Lite’s native integer arithmetic routines and the 

equivalent operations performed in floating point arithmetic followed 

by fake quantization.

Like Scanoma, SSCD is a publicly available app intended for use 

on mobile devices. The architecture is a MobileNetV1, evaluated using 

floating-point (non-quantized) arithmetic. We followed a similar pro-

cess to re-implement the SSCD classifier in PyTorch: a TFLite file was 

obtained from the app’s APK package, then converted to ONNX before 

loading in PyTorch. We again verified our reproduction using a series 

of 1,000 images and found that our PyTorch re-implementation of the 

neural network exactly matched the original Tensorflow Lite network. 

However, to ease comparison between classifiers, we update the input 

image resizing routine (a pre-processing step, before the neural net-

work) in our implementation relative to the original app. Whereas the 

original app asks a user to specify a bounding box and then scales this 

box to the 224 × 224 pixel input image (warping the aspect ratio), we 

use the same pre-processing routine for all other networks, in which we 

first centre-crop the image and then resize the image using a bilinear 

filter. To assess the impact of this change in image pre-processing, we 

compared our PyTorch implementation against (1) the original TFLite 

model accompanied by pre-processing with square centre-cropping 

and nearest-neighbour resizing and (2) the original TFLite model 

with variable aspect-ratio resizing using nearest-neighbour rescaling 
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(matching the original Android implementation, under the assumption 

that the uncropped image represents a user-defined bounding box), 

and we observed Pearson correlation coefficients of 0.97 and 0.92, 

respectively (Supplementary Fig. 1b,c). While evaluation of the entire 

processing pipeline including user selection of bounding boxes and 

choice of resampling filters is important for clinical evaluation of an 

AI system, our study instead focuses on the decision-making processes 

of the neural networks.

ModelDerm22 is an academic classifier that has undergone mul-

tiple iterations, some of which have been tested in clinical settings 

and one version of which has been approved for use in Europe via 

CE marking. We analyse the latest version for which model weights 

are publicly available, which we term ModelDerm 2018 based on the 

date of the accompanying publication22; authors declined to provide 

weights for the latest version of the model due to commercialization 

plans. ModelDerm is a ResNet-15253 that runs natively in PyCaffe, with 

pre-processing performed in OpenCV (in our reproduction efforts, 

we used version 3.4.2). We parse the model architecture and weights 

directly from Caffe Protocol Buffer files and reconstruct the model in 

PyTorch. While the majority of the processing pipeline is highly repro-

ducible in PyTorch relative to the original implementation, the original 

implementation pre-processes images channel by channel using the 

histogram equalization function in OpenCV, which we could not exactly 

reproduce in PyTorch while maintaining meaningful gradients during 

backpropagation. Instead, we implemented a custom, differentiable 

analogue of histogram equalization, in which the empirical cumulative 

density function used in OpenCV’s implementation is replaced with a 

piecewise linear approximation. Our PyTorch reimplementation of 

ModelDerm 2018, including the differentiable histogram equaliza-

tion pre-processing step, retains close correspondence to the original 

PyCaffe/OpenCV implementation (r = 0.96; Supplementary Fig. 1d).

The SIIM-ISIC competition classifier is intended to represent key 

features responsible for the high performance of the first-place winning 

classifier from the 2020 SIIM-ISIC melanoma classification Kaggle chal-

lenge, while reducing the computational complexity to permit feasible 

analysis. The original classifier is an extremely large ensemble of 90 net-

works, comprising mostly neural networks of the ‘EfficientNet’ architec-

ture54 but also a few networks of the ‘SE-ResNext 101’ architecture55 and 

‘ResNest101’ architecture56, all of which are evaluated at test time on 8 

flips and rotations of the test image, for a total of 720 model evaluations 

per prediction. We reduced the computational complexity by retrain-

ing an ensemble of 3 EfficientNets (an EfficientNet-B5, -B6 and -B7),  

which comprise 80 of the 90 classifiers in the original ensemble, using 

a lower resolution of 224 × 224 pixels. To encourage similarity to the 

original model, we use the same training data, augmentation scheme 

and hyperparameters as the original classifiers. Our classifier addi-

tionally retains eightfold image augmentation at test time, which we 

suspected may reduce the classifier’s sensitivity to subtle image vari-

ations. While not intended to be an exact reproduction of the original 

winning classifier, our classifiers attain only slightly lower classifica-

tion performance in fivefold cross validation compared to the original 

classifier (area under the receiver operating characteristic curve of 

0.966 versus 0.985).

The DeepDerm classifier is a previously published reproduction21 

of an academically developed model that was acclaimed for performing 

similarly well to dermatologists15. DeepDerm shares the same architec-

ture (Inception-V3 (ref. 57)) and, importantly, the same training data 

as the original model, which was not publicly released. As DeepDerm 

is distributed natively in PyTorch, no conversion steps were necessary 

for this classifier.

Counterfactual generation
To identify specific image factors responsible for each classifier’s pre-

dictions, we generated counterfactual images using a variant of the 

technique ‘explanation by progressive exaggeration’8. However, to 

improve image quality, stabilize training and better restrict generated 

alterations to those that cause a classifier to output a different predic-

tion, we introduce multiple updates. We begin with an overview of the 

technique, then explain our specific updates. Full details of our genera-

tive models, including a formal mathematical treatment and an explana-

tion of training parameters, are described in Supplementary Methods.

At a high level, a counterfactual considers a scenario that did 

not occur, typically for the purpose of comparison to a scenario that 

did occur or to another counterfactual scenario. Such comparison 

may enable inferences about how a different AI classifier output may 

have been achieved or which factors lead to that outcome. To enable 

these inferences, a counterfactual must typically be sufficiently similar 

to allow comparison, while differing in a realistic manner and elic-

iting a different outcome. In our case, we consider counterfactual 

images, which are alternative versions of real images. To create these 

counterfactual images, we use a type of generative image AI based on 

generative adversarial networks. We train our generative AI models 

to produce counterfactuals by altering real, reference images, with 

the goal of eliciting different predictions from an AI classifier; we also 

constrain these differences to be realistic (Supplementary Table 4). 

Then, examination of the differences between counterfactuals thus 

enables inferences regarding which image attributes influence an AI 

classifier’s predictions.

We updated an existing generative AI technique for counterfactual 

images, explanation by progressive exaggeration8 (Supplementary 

Figs. 8 and 9), to better suit our purposes: First, we found that the 

original formulation of this technique could alter attributes of an image 

upon which the classifier does not depend but which correlate with 

attributes upon which it does depend (Supplementary Fig. 2). We found 

that this behaviour, which could lead to misinterpretations about the 

reasoning processes of the AI classifiers, arose from the specification 

of the discriminator, a component of the generative model that helps 

ensure realism of the generated images, and thus we updated our dis-

criminator to remove this behaviour (see Supplementary Methods for 

full details). Second, we also update the generator component of our 

model to use an architecture similar to that used in CycleGANs35. This 

network is similar to the residual network-based autoencoder used in 

the original implementation of Explanation by Progressive Exaggera-

tion, but we found it produced images of higher visual quality (Sup-

plementary Fig. 3). Finally, we applied data augmentation, including 

random cropping and random brightness modifications, to improve 

training when only a modest number of images are available (as is the 

case for Fitzpatrick17k).

Expert evaluation of counterfactuals
To identify specific image factors upon which dermatological clas-

sifiers base their predictions, we asked two board-certified der-

matologists, each with 6 years of experience, to analyse generated 

counterfactual images and determine which aspects of each image were 

altered, implying that they affect the classifiers’ decisions. We queried 

these dermatologists on hundreds of pairs of counterfactuals for each 

of five classifiers and two image datasets, amounting to thousands of 

responses. Each pair of counterfactuals was generated from a common 

‘reference’ image and consisted of an image that the classifier predicted 

to appear more benign and an image that the classifier predicted to 

appear more malignant, such that both images depicted the same 

lesion but showed differences that altered the output of a classifier.

To facilitate interpretation of the dermatologists’ responses and 

comparison of the classifiers, we pre-screened the counterfactual 

images before analysis of the alterations within counterfactual pairs. 

Our pre-screening consisted of a ‘classifier-consistency’ criterion to 

ensure that the alterations between each pair of counterfactuals mean-

ingfully changed the classifiers’ predictions and a ‘visual quality’ cri-

terion to mitigate the presence of artefacts, which could impede our 

ability to infer the importance of non-artefactual alterations. Our 

http://www.nature.com/natbiomedeng
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classifier-consistency criterion required the ‘benign’ and ‘malignant’ 

images in a counterfactual pair lay on opposite sides of the decision 

threshold (that is, they were classified as benign and malignant). In the 

visual-quality pre-screening step, two board-certified dermatologists 

independently evaluated for artefacts each image that passed the 

classifier-consistency criterion, and we excluded images rejected by 

either evaluator. To ease comparison between classifiers, we included 

the same set of counterfactual pairs (modulo counterfactual altera-

tions) for all classifiers; more precisely, for each reference image x
r

, we 

included the corresponding counterfactual images {G
c

(x

r

)}

c∈C

 (where 

C represents the set of classifiers, and Gc is the generative model trained 

to produce counterfactuals for classifier c), if and only if G
c

(x

r

) passed 

the pre-screen for each classifier c. For subsequent analysis, we 

included the 92 images from Fitzpatrick17k that passed our 

pre-screening criteria, and we included 100 images from ISIC to achieve 

a similar quantity of images.

To learn which attributes differ between benign and malignant 

counterfactuals—and thus influence an AI classifier’s predictions—we 

developed a two-stage annotation approach. We designed the first 

stage of this approach to encourage discovery of a wide variety of 

attributes, which we then leverage in the second stage to more effi-

ciently collect data. Both stages leverage a graphical interface that runs 

locally in a web browser; expert evaluators view a pair of benign and 

malignant counterfactuals, then answer questions regarding (1) which 

member of the pair appears most likely to be malignant and (2) what 

attributes differ, and how they differ, between the counterfactuals. In 

the first stage, evaluators enter attributes as free text (for example, ‘skin 

lines more prominent’), accompanied by a ‘direction’ specifying how 

the images differ (Supplementary Fig. 7). After the first 100 pairs were 

evaluated by each expert, we pooled and grouped the free text terms 

to determine ‘pre-set’ attributes (such as ‘skin lines more prominent’ 

and ‘more skin lines’ map to the pre-set ‘Prominence of skin grooves/

dermatoglyphs’) that could be selected during the second stage of 

annotation. This stage also retained the option for free text entry in 

case a new attribute was discovered. To mitigate potential bias, we 

randomized and blinded evaluators to (1) the appearance order of a 

counterfactual pair (that is, whether the benign or malignant coun-

terfactual appeared on the left or right) and (2) the overall order of the 

counterfactual pairs, including randomization of the corresponding 

reference images and shuffling counterfactual pairs from the various 

AI classifiers. Evaluators annotated the counterfactual pairs in sets of 

20, which required approximately 30 min to complete.

To infer general conclusions regarding which attributes influence 

the AI classifiers, we aggregated data from both evaluators and both 

stages of annotation. First, we mapped the free text attributes from 

the first stage of annotation to a common list of attributes, as agreed 

upon by the evaluators. We then filtered any counterfactual noted by 

either evaluator as ‘unable to assess’ due to the presence of substantial 

artefacts, which amounted to 4% of the total images. Finally, to obtain 

a global picture of each AI classifier, we tabulated the number of times 

an evaluator noted an attribute, along with the direction in which that 

attribute differed between the benign and malignant counterfactuals. 

Mathematically, we define an indicator function s
e,c,a,d,i

 as 1 if evaluator 

e recorded for AI classifier c that attribute a differs in direction d in 

image i, and s
e,c,a,d,i

= 0 otherwise. Then the score for an AI classifier is 

given by the mean of s over images i ∈ I  and evaluators e ∈ E, where I is 

the set of all examined images (that is, those that pass the pre-screen) 

and E is the set of evaluators:

̄

s

c,a,d

∶=∑

i∈I

∑

e∈E

s

e,c,a,d,i

/∑

i∈I

∑

e∈E

1

To visualize the resulting values (Fig. 2), we further aggregated the 

‘directions’ d which originally included five options: benign only, 

benign > malignant, different, benign < malignant and malignant only 

(during data collection, which was blinded, these terms appears as A 

only, A < B and so on, where images A and B were randomized to benign 

or malignant). We aggregated benign only and benign > malignant into 

a new category, benign, and likewise aggregated benign < malignant and 

malignant only into the new category malignant. Finally, for each pair of 

attribute and AI classifier, we determined the ‘predominate direction’ 

of that attribute which we defined as benign if ̄s
c,a,benign

> 2 ⋅

̄

s

c,a,malignant

, 

we defined as malignant if ̄

s

c,a,malignant

> 2 ⋅

̄

s

c,a,benign

, and we defined as 

neither otherwise, where the cut-off factor of 2 was chosen to prevent 

emphasis on small differences in frequency between the benign and 

malignant directions. In Fig. 2, the size of the square is then proportional 
̄

s for the predominate direction or the average of the directions if nei-

ther was predominate.

Experimental validation of findings from counterfactuals via 
colour shifts
To validate the attributes identified as important for dermatology AI 

classifier’s predictions in our counterfactual experiments, we aimed 

to experimentally modify a single attribute and observe the effect on 

each AI classifier; we chose image colour as a test case, as existing 

mathematical tools36 enable well-defined, unambiguous changes to 

this attribute. To alter the colour of each image, we converted from the 

sRGB colour space to the CIE 1976 L*, u*, v* colour space (CIELUV)36, 

added an offset to the chromaticity coordinates 
(u

∗

, v

∗

)

, then converted 

back to sRGB. Different chromaticity shifts were generated by varying 

the offset along a circle centred at 
(u

∗

, v

∗

) = 0 with radius 20, where the 

factor 20 was chosen heuristically to produce colour changes that we 

deemed visible while remaining plausible.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The images used in this study were obtained from publicly available 

repositories. ISIC images are available at https://challenge.isic-archive.

com/data. Fitzpatrick17k images are available at https://github.com/

mattgroh/fitzpatrick17k. The DDI images are available at https://

stanfordaimi.azurewebsites.net/datasets/35866158-8196-48d8-87bf-

50dca81df965. Model weights for the DeepDerm classifier are available 

at https://zenodo.org/record/6784279#.ZFrDc9LMK-Z. The weights 

and model specification for the ModelDerm classifier are available at 

https://figshare.com/articles/Caffemodel_files_and_Python_Exam-

ples/5406223. Model weights for our retrained variant of the SIIM-ISIC 

competition classifier are available at https://zenodo.org/doi/10.5281/

zenodo.10049216. Scanoma and Smart Skin Cancer Detection are 

third-party software for which we cannot redistribute model weights. 

At the time of writing, both are apps that are available for download with 

no fee from the Google Play store and from third-party APK-package 

download sites.

Code availability
Custom codes, including a PyTorch implementation of explanation 

by progressive exaggeration and of classes for loading datasets and 

classifiers, are available at https://github.com/suinleelab/derm_audit. 

The weights for the trained generative models and the re-trained 

SIIM-ISIC classifier are available at https://zenodo.org/doi/10.5281/

zenodo.10049216.
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Extended Data Fig. 1 | Comparison of insights from counterfactuals 

and saliency maps. We calculated feature attributions using three 

popular techniques, Expected Gradients, Kernel SHAP, and GradCAM (see 

Supplementary Methods) and then produced our best-effort visualizations of 

the resulting saliency maps. We failed to gather insights from the saliency maps, 

except that the AI classifier may focus on the lesion (but perhaps not always, 

depending on the saliency technique). In contrast, the counterfactuals provided 

more granular and medically interpretable insights: for instance, based on the 

malignant counterfactuals we inferred that multiple colors of pigment (top + 

bottom), erythema (middle + bottom), darker pigmentation (all), and blue-white 

veil (bottom) tend to elicit more malignant predictions. In this figure, all saliency 

maps and counterfactuals were generated in reference to our AI classifier ‘SIIM-

ISIC’. Figure adapted with permission from ref. 25, ViDIR Group, Department of 

Dermatology, Medical University of Vienna.
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Extended Data Fig. 2 | Attributes identified by the joint expert–XAI auditing 

procedure as key influences on the output of individual dermatology 

AI classifiers, when evaluated on the ISIC dataset. In contrast to main 

text Fig. 2, attributes are ordered by the proportion of counterfactual pairs 

from the specified AI classifier in which experts noted that attribute differs, 

enabling examination of attributes relevant to a particular AI classifier but not 

necessarily to most AI classifiers (for example, prominence of skin grooves or 

dermatoglyphs, which influences Scanoma and ModelDerm).
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Extended Data Fig. 3 | Attributes identified by the join expert–XAI auditing 

procedure as key influences on the output of individual dermatology AI 

classifiers, when evaluated on the Fitzpatrick17k dataset. In contrast to main 

text Fig. 2, attributes are ordered by the proportion of counterfactual pairs from 

the specified AI classifier in which experts noted that attribute differs, enabling 

examination of attributes relevant to a particular AI classifier but not necessarily 

to other AI classifiers.
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Extended Data Fig. 4 | Analysis of inter-reader variability, displaying the 

two readers’ individual conclusions side-by-side for each attribute. For 

each reader, we separately determine whether that attribute was 'predominant' 

in benign or malignant counterfactuals, that is, present to a greater extent 

in benign (malignant) counterfactuals in at least twice as many images as 

malignant (benign) counterfactuals. The size of each rectangle (the 'fraction of 

counterfactual pairs') is then determined as the proportion of counterfactual 

pairs with a difference noted in the predominant direction, for that reader alone. 

While readers typically do not attain quantitative agreement on the fraction 

of counterfactual pairs for a given attribute, the presence and direction of an 

attribute’s effect typically remains consistent. For conciseness, attribute names 

are shortened as described in Supplementary Table 1.
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Extended Data Fig. 5 | Effect of the programmatic modification of image 

brightness on the predictions of the AI classifier. We separately applied three 

methods of image brightness modification (see Supplementary Methods), 

then calculated the mean change in AI classifier output relative to the original, 

unaltered images. For modifications in linear RGB or Jzazbz space, we modified 

brightness by applying a multiplicative factor B = 2n; we display AI classifier 

responses as a function of n. For modifications in CIELUV space, we add a 

constant ∆L* to the perceptual lightness L*, where the maximum value of L* is 

100. To facilitate visualization, the vertical axis is normalized to the maximum 

absolute change in AI classifier output observed for a given method; the 

normalization factors are displayed at bottom right. Images indicate the effect of 

each given brightness modification.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Effect of the programmatic modification of image 

chromaticity on the predictions of the AI classifier. We separately applied 

three methods of image chromaticity modification (see Supplementary 

Methods), then calculated the mean change in AI classifier output relative to the 

original, unaltered images. Each method of chromaticity modification reflects 

the chromatic adaptation transform (white balancing method) provided by 

the corresponding color appearance model (CIE 1976 L* u* v*, CIE 1976 L* a* 

b*, or CAM16). To facilitate visualization, the vertical axis is normalized to the 

maximum absolute change in AI classifier output observed for a given method; 

the normalization factors are displayed at bottom right. Images indicate the 

effect of each given chromaticity modification. Color bars indicate the hue 

to which a neutral color (white) is shifted by the chromaticity modification; 

colorfulness in the color bar (but not example images) is exaggerated for ease  

of viewing.
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datasets/35866158-8196-48d8-87bf-50dca81df965. Model weights for the DeepDerm classifier are available at https://zenodo.org/record/6784279#.ZFrDc9LMK-Z. 

The weights and model specification for the ModelDerm classifier are available at https://figshare.com/articles/Caffemodel_files_and_Python_Examples/5406223. 

Model weights for our retrained variant of the SIIM-ISIC competition classifier are available at https://zenodo.org/doi/10.5281/zenodo.10049216. Scanoma and 

Smart Skin Cancer Detection are third-party software for which we cannot redistribute model weights. At the time of writing, both are apps that are available for 

download with no fee from the Google Play store and from third-party APK-package download sites.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The study relied on previously published data for which sex and gender data were only partly available. Images derived from 

both male and female patients were included in this study. The method of determination of sex was not stated in the 

publications from which we derived data.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

The study relied on previously published data, which did not make available information on race, ethnicity or other socially 

relevant groupings.

Population characteristics Participants with the following conditions were included in the study: acral melanotic macule, atypical spindle cell nevus of 

reed, benign keratosis, blue nevus, dermatofibroma, dysplastic nevus, epidermal nevus, hyperpigmentation, keloid, inverted 

follicular keratosis, melanocytic nevus, nevus lipomatosus superficialis, pigmented spindle cell nevus of reed, seborrheic 

keratosis, irritated seborrheic karatosis, solar lentingo,acral lentiginous melanoma, melanoma in situ, nodular melanoma, and 

melanoma. 

Recruitment No participants were recruited for this study.

Ethics oversight The study relied entirely on publicly available and previously published data. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We determined sample sizes on the basis of the total number of images in each of the publicly available datasets. In the case of our 

counterfactual experiments, we included all images that fit our inclusion criteria for Fitzpatrick17k, and included a comparable number of 

images from the ISIC database (92 from Fitzpatrick17k and 100 from ISIC). The goal of the study was to infer the reasoning processes of AI 

classifiers with only qualitative comparisons between classifiers; hence, no sample-size calculation was necessary. 

Data exclusions We restricted our images to include only clinical or dermoscopic images of melanomas and melanoma look-alikes (Methods). In our 

counterfactual analysis, we excluded counterfactual pairs that did not straddle the decision boundary of each dermatology AI classifier, as well 

as counterfactual pairs that contained visual artifacts, as identified by at least one of two board certified dermatologists (Methods).

Replication We independently retrained our generative models to ensure that they maintained the same attributes as differing between the benign and 

malignant counterfactual images. We observed that these attributes are indeed maintained.

Randomization We randomized counterfactuals throughout our evaluation, from their screening phase to their annotation. We pooled counterfactual pairs 

from all AI classifiers and all reference images, then randomized their viewing order independently for each dermatologist evaluator. Within 

each counterfactual pair, we additionally randomized whether the benign or malignant counterfactual appeared on the left or right, to 

prevent evaluators from inferring their identity. 

Blinding The dermatologist evaluators were blinded to the identity of the counterfactuals, including to which classifier they corresponded and their 

identity as 'benign' or 'malignant', until all labelling of the counterfactuals was complete.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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