
REVIEW Communicated by Vincent Vanhoucke

Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review

Waseem Rawat
wrawat10@gmail.com
Zenghui Wang
wangz@unisa.ac.za
Department of Electrical and Mining Engineering, University of South Africa,
Florida 1710, South Africa

Convolutional neural networks (CNNs) have been applied to visual tasks
since the late 1980s. However, despite a few scattered applications, they
were dormant until the mid-2000s when developments in computing
power and the advent of large amounts of labeled data, supplemented
by improved algorithms, contributed to their advancement and brought
them to the forefront of a neural network renaissance that has seen rapid
progression since 2012. In this review, which focuses on the application
of CNNs to image classification tasks, we cover their development, from
their predecessors up to recent state-of-the-art deep learning systems.
Along the way, we analyze (1) their early successes, (2) their role in the
deep learning renaissance, (3) selected symbolic works that have con-
tributed to their recent popularity, and (4) several improvement attempts
by reviewing contributions and challenges of over 300 publications. We
also introduce some of their current trends and remaining challenges.

1 Introduction

Image classification, which can be defined as the task of categorizing im-
ages into one of several predefined classes, is a fundamental problem in
computer vision. It forms the basis for other computer vision tasks such
as localization, detection, and segmentation (Karpathy, 2016). Although the
task can be considered second nature for humans, it is much more chal-
lenging for an automated system. Some of the complications encountered
include viewpoint-dependent object variability and the high in-class vari-
ability of having many object types (Ciresan, Meier, Masci, Gambardella, &
Schmidhuber, 2011). Traditionally, a dual-stage approach was used to solve
the classification problem. Handcrafted features were first extracted from
images using feature descriptors, and these served as input to a trainable
classifier. Themajor hindrance of this approachwas that the accuracy of the
classification task was profoundly dependent on the design of the feature

Neural Computation 29, 2352–2449 (2017) © 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00990

Open Rubric

Deep Convolutional Neural Networks for Image Classification 2353

extraction stage, and this usually proved to be a formidable task (LeCun,
Bottou, Bengio, & Haffner, 1998).

In recent years, deep learning models that exploit multiple layers of
nonlinear information processing, for feature extraction and transforma-
tion as well as for pattern analysis and classification, have been shown to
overcome these challenges. Among them, CNNs (LeCun, Boser, Denker,
Henderson, Hubbard, & Jackel, 1989a, 1989b) have become the leading ar-
chitecture for most image recognition, classification, and detection tasks
(LeCun, Bengio, & Hinton, 2015). Despite some early successes (LeCun
et al., 1989a, 1989b; LeCun et al. 1998; Simard, Steinkraus, & Platt 2003),
deep CNNs (DCNNs)were brought into the limelight as a result of the deep
learning renaissance (Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006), whichwas fueled
by GPUs, larger data sets, and better algorithms (Krizhevsky, Sutskever, &
Hinton, 2012; Deng & Yu, 2014; Simonyan & Zisserman, 2014; Zeiler & Fer-
gus, 2014). Several advances such as the first GPU implementation (Chel-
lapilla, Puri, & Simard, 2006) and the first application of maximum pooling
(max pooling) for DCNNs (Ranzato, Huang, Boureau, & LeCun, 2007) have
all contributed to their recent popularity.

The most significant advance, which has captured intense interest in
DCNNs, especially for image classification tasks, was achieved in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Rus-
sakovsky et al., 2015), when the winning entry, by Krizhevsky et al. (2012),
used aDCNN to classify approximately 1.2million images into 1000 classes,
with record-breaking results. Since then, DCNNs have dominated subse-
quent versions of the ILSVRC and, more specifically, its image classification
component (Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy,
Liu, et al., 2015).

In addition, selected representative examples of other improvement at-
tempts related to the following different aspects of DCNNs—(1) network
architecture (Lin, Chen, & Yan, 2013; Zeiler & Fergus, 2013; Gong, Wang,
Guo, & Lazebnik, 2014; Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2015);
(2) nonlinear activation functions (He, Zhang, Ren, & Sun, 2015a; Xu,Wang,
Chen, & Li, 2015); (3) supervision components (Tang, 2013; Zhao & Grif-
fin, 2016); (4) regularization mechanisms (Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012; Zeiler & Fergus, 2013); and (5) optimiza-
tion techniques (Glorot & Bengio, 2010; Krizhevsky et al., 2012)—have also
been implemented in recent years.Moreover, some of their open challenges,
like their variance to geometric distortions (Gong, Wang, et al., 2014), the
fact that theirmodels are often large and slow to compute (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014), and the intriguing discovery of adver-
sarial examples (Szegedy et al., 2014), have led to evenmore research focus-
ing on image classification with DCNNs.

Previously, several generic deep learning reviews (Bengio, 2009; Schmid-
huber, 2015; Deng, 2014; LeCun et al., 2015), reviews that deal with deep

2354 W. Rawat and Z. Wang

learning for visual understanding (Guo et al., 2016), reviews covering re-
cent advances in CNNs (Gu et al., 2015), and a taxonomy of DCNNs for
computer vision tasks (Srinivas et al., 2016) have been published. However,
given the surge in the popularity of DCNNs for image classification tasks
and the subsequent plethora of related papers, we feel the time is right to re-
view them for this specific andmomentous problem.With this inmind, this
review is intended for those who want to understand the development of
CNN technology and architecture, specifically for image classification, from
their predecessors up to modern state-of-the-art deep learning systems. It
also asserts brief insights into their future and provides several interesting
imminent directions making it suitable for researchers in the field.

The remainder of this review is organized as follows: Section 2 briefly
introduces CNNs and acquaints readers with the key building blocks of
their architecture. Section 3 covers the early development of CNNs. Among
other highlights, it briefly touches on the first applications of backpropaga-
tion and max pooling, as well as the introduction of the famous MNIST
data set (LeCun et al., 1998). In section 4, we deal with the role of DC-
NNs in the deep learning renaissance, and this is followed by discussions
on selected representative works that have contributed to their popularity
for image classification tasks. Section 5 deals with several DCNN improve-
ment attempts in various aspects, including network architecture, nonlinear
activation functions, supervision components, regularization mechanisms,
optimization techniques, and computational cost developments. Section 6
concludes the review by introducing some of the remaining challenges and
current trends.

2 Overview of CNN architecture

CNNs are feedforward networks in that information flow takes place in
one direction only, from their inputs to their outputs. Just as artificial neu-
ral networks (ANN) are biologically inspired, so are CNNs. The visual cor-
tex in the brain, which consists of alternating layers of simple and complex
cells (Hubel & Wiesel, 1959, 1962), motivates their architecture. CNN ar-
chitectures come in several variations; however, in general, they consist
of convolutional and pooling (or subsampling) layers, which are grouped
into modules. Either one or more fully connected layers, as in a standard
feedforward neural network, follow these modules. Modules are often
stacked on top of each other to form a deep model. Figure 1 illustrates typ-
ical CNN architecture for a toy image classification task. An image is input
directly to the network, and this is followed by several stages of convolu-
tion andpooling. Thereafter, representations from these operations feed one
or more fully connected layers. Finally, the last fully connected layer out-
puts the class label. Despite this being the most popular base architecture
found in the literature, several architecture changes have been proposed in
recent yearswith the objective of improving image classification accuracy or

Deep Convolutional Neural Networks for Image Classification 2355

Figure 1: CNN image classification pipeline.

reducing computation costs. Although for the remainder of this section, we
merely fleetingly introduce standard CNNarchitecture, in section 5we deal
with several architectural design changes that have facilitated enhanced im-
age classification performance.

2.1 Convolutional Layers. The convolutional layers serve as feature
extractors, and thus they learn the feature representations of their input
images. The neurons in the convolutional layers are arranged into feature
maps. Each neuron in a feature map has a receptive field, which is con-
nected to a neighborhood of neurons in the previous layer via a set of train-
able weights, sometimes referred to as a filter bank (LeCun et al., 2015).
Inputs are convolved with the learned weights in order to compute a new
feature map, and the convolved results are sent through a nonlinear acti-
vation function. All neurons within a feature map have weights that are
constrained to be equal; however, different feature maps within the same
convolutional layer have different weights so that several features can be
extracted at each location (LeCun et al., 1998; LeCun et al., 2015). More for-
mally, the kth output feature mapYk can be computed as

Yk = f (Wk ∗ x) (2.1)

where the input image is denoted by x; the convolutional filter related to
the kth feature map is denoted by Wk; the multiplication sign in this con-
text refers to the 2D convolutional operator, which is used to calculate the
inner product of the filter model at each location of the input image; and
f (·) represents the nonlinear activation function (Yu, Wang, Chen, & Wei,
2014). Nonlinear activation functions allow for the extraction of nonlinear
features. Traditionally, the sigmoid and hyperbolic tangent functions were
used; recently, rectified linear units (ReLUs; Nair & Hinton, 2010) have
become popular (LeCun et al., 2015). Their popularity and success have

2356 W. Rawat and Z. Wang

opened up an area of research that focuses on the development and ap-
plication of novel DCNN activation functions to improve several charac-
teristics of DCNN performance. Thus, in section 5.2, we formally introduce
the ReLU and discuss the motivations that led to their development, before
elaborating on the performance of several rectification-based and alterna-
tive activation functions.

2.2 Pooling Layers. The purpose of the pooling layers is to reduce the
spatial resolution of the feature maps and thus achieve spatial invariance to
input distortions and translations (LeCun et al., 1989a, 1989b; LeCun et al.,
1998, 2015; Ranzato et al., 2007). Initially, it was common practice to use av-
erage pooling aggregation layers to propagate the average of all the input
values, of a small neighborhood of an image to the next layer (LeCun et al.,
1989a, 1989b; LeCun et al., 1998). However, in more recent models (Ciresan
et al., 2011; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Zeiler &
Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015), max pooling aggre-
gation layers propagate the maximum value within a receptive field to the
next layer (Ranzato et al., 2007). Formally, max pooling selects the largest
element within each receptive field such that

Yki j = max
(p,q)∈�i j

xkpq, (2.2)

where the output of the pooling operation, associated with the kth feature
map, is denoted byYki j, xkpq denotes the element at location (p, q) contained
by the pooling region �i j, which embodies a receptive field around the po-
sition (i, j) (Yu et al., 2014). Figure 2 illustrates the difference between max
pooling and average pooling. Given an input image of size 4 × 4, if a 2 × 2
filter and stride of two is applied, max pooling outputs the maximum value
of each 2 × 2 region, while average pooling outputs the average rounded
integer value of each subsampled region. While the motivations behind the
migration toward max pooling are addressed in section 4.2.3, there are also
several concerns with max pooling, which have led to the development of
other pooling schemes. These are introduced in section 5.1.2.

2.3 Fully Connected Layers. Several convolutional and pooling layers
are usually stacked on top of each other to extract more abstract feature
representations in moving through the network. The fully connected layers
that follow these layers interpret these feature representations and perform
the function of high-level reasoning (Hinton et al., 2012; Simonyan&Zisser-
man, 2014; Zeiler & Fergus, 2014). For classification problems, it is standard
to use the softmax operator (see sections 5.3.1 and 5.3.5) on top of a DCNN
(Krizhevsky et al., 2012; Lin et al., 2013; Simonyan & Zisserman, 2014;
Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015). While early

Deep Convolutional Neural Networks for Image Classification 2357

Figure 2: Average versus max pooling.

success was enjoyed by using radial basis functions (RBFs), as the classifier
on top of the convolutional towers (LeCun et al., 1998), Tang (2013) found
that replacing the softmax operator with a support vector machine (SVM)
leads to improved classification accuracy (see section 5.3.4 for further de-
tails). Moreover, given that computation in the fully connected layers is
often challenged by their compute-to-data ratio, a global average-pooling
layer (see section 5.1.1.1 for further details), which feeds into a simple lin-
ear classifier, can be used as an alternative (Lin et al. 2013). Notwithstanding
these attempts, comparing the performance of different classifiers on top of
DCNNs still requires further investigation and thus makes for an interest-
ing research direction (see section 6 for other intrinsic DCNN trends).

2.4 Training. CNNs, and ANNs in general use learning algorithms to
adjust their free parameters (i.e., the biases and weights) in order to at-
tain the desired network output. The most common algorithm used for
this purpose is backpropagation (LeCun, 1989; LeCun et al., 1998; Bengio,
2009; Deng & Yu, 2014; Deng, 2014; Srinivas et al., 2016). Backpropaga-
tion computes the gradient of an objective (also referred to as a cost/loss/
performance) function to determine how to adjust a network’s parameters
in order to minimize errors that affect performance. A commonly experi-
enced problem with training CNNs, and in particular DCNNs, is overfit-
ting, which is poor performance on a held-out test set after the network is
trained on a small or even large training set. This affects the model’s ability
to generalize on unseen data and is a major challenge for DCNNs that can
be assuaged by regularization, which is surveyed in section 5.4.

2358 W. Rawat and Z. Wang

2.5 Discussion. This section briefly highlighted some of the fundamen-
tal aspects related to the basic building blocks of CNNs. Further detailed
explanations on the convolution function and its variants and the con-
volutional and pooling layers, can be found in Goodfellow, Bengio, and
Courville (2016). Furthermore, for convolutional and pooling arithmetic,
reader’s are referred to Dumoulin and Visin (2016). Detailed explanations
on the backpropagtion algorithm and general training protocols for deep
neural networks (DNNs) are available in LeCun et al. (1998) and Goodfel-
low et al. (2016), while LeCun et al. (2015) provides a concise summary of
the algorithm and supervised learning (one of the major machine learn-
ing paradigms, together with unsupervised and reinforcement learning)
in general. A brief history on the development of this popular algorithm,
specifically for CNNs, is provided in section 3.2. Finally, some of the DCNN
theoretical considerations, many of which are concisely summarized by
Koushik (2016), are introduced in section 6.1.

3 Early CNN Development

In this section, we cover the early developments and significant advance-
ments of CNNs, from their predecessors up to successful applications prior
to the deep learning renaissance (Hinton et al., 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006).

3.1 CNNPredecessors Inspired byNeuroscience. Biology has inspired
several artificial intelligence techniques such as ANNs, evolutionary algo-
rithms, and cellular automata (Floreano & Mattiussi, 2008). However, per-
haps the greatest success story among them are CNNs (Goodfellow et al.,
2016). Their history began with the neurobiological experiments conducted
by Hubel andWiesel (1959, 1962) from as early as 1959. The main contribu-
tion of their work was the discovery that neurons in different stages of the
visual system, responded strongly to specific stimulus patternswhile ignor-
ing others. More specifically, they found that neurons in the early stages of
the primary visual cortex responded strongly to precisely oriented patterns
of light, such as bars, but ignoredmore complex patterns of the input stimu-
lus that resulted in strong responses from neurons in later stages. They also
found that the visual cortex consisted of simple cells, which had local recep-
tive fields, and complex cells, which were invariant to shifted or distorted
inputs, arranged in a hierarchical fashion. These works provided the early
inspiration tomodel our automated vision systems based on characteristics
of the central nervous system.

In 1979, a novel multilayered neural network model, nicknamed the
neocognitron, was proposed (Fukushima, 1979). Modeled based on the
findings of Hubel and Wiesel (1959, 1962), it also consisted of simple and
complex cells, cascaded together in a hierarchical manner. With this archi-
tecture, the network proved successful at recognizing simple input patterns

Deep Convolutional Neural Networks for Image Classification 2359

irrespective of a shift in the position or considerable distortion in the shape
of the input pattern (Fukushima, 1980; Fukushima & Miyake, 1982). Sig-
nificantly, the neocognitron laid the groundwork for the development of
CNNs. In fact, CNNs were derived from the neocognitron, and hence they
have a similar architecture (LeCun et al., 2015).

3.2 Brief History of Backpropagation and the First Application to
CNNs. Backpropagationwas derived in the 1960s. In particular, S. E. Drey-
fus (1962) derived a simplified version of the algorithm that used the chain
rule alone. Nevertheless, the early versions of backpropagation were inef-
ficient since they backpropagated derivative information from one layer
to the preceding layer without openly addressing direct links across lay-
ers. Furthermore, they did not consider potential efficiency gains due to
network sparseness (Schmidhuber, 2015). The modern efficient form of the
algorithm that addressed these issues was derived in 1970 (Linnainmaa,
1970); however, there was no mention of its use for ANNs. Preliminary
discussions for its use for ANNs date back to 1974 (Werbos, 1974); how-
ever, the first known application of efficient backpropagation, specifically
for ANNs, was described in 1981 (Werbos, 1982), but this remained rela-
tively unknown. Nevertheless, it was “significantly popularized” (Schmid-
huber, 2015) due to a seminal paper in 1986 by D. E. Rumelhart et al. (1986),
which demonstrated that by using the backpropagation learning algorithm,
the internal hidden neurons of an ANN could be trained to represent im-
portant features of the task domain.

In 1989, LeCun et al. (1989a, 1989b) proposed the first multilayered
CNNs and successfully applied these large-scale networks, to real (hand-
written digits and zip codes) image classification problems. These ini-
tial CNNs were reminiscent of the neocognitron (Fukushima, 1979, 1980;
Fukushima & Miyake, 1982). However, the key difference was that they
were trained in a fully supervised fashion using backpropagation, which
was in contrast to the unsupervised reinforcement scheme used by their
predecessor. This allowed them to rely more profoundly on automatic
learning rather than hand-designed preprocessing for feature extraction
(LeCun et al., 1989a, 1989b; LeCun, 1989), which previously proved to be
extremely challenging; hence, they form an essential component of many
recent competition-winning DCNNs (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015).

3.3 Introduction of the MNIST Data Set. In 1998, the CNNs described
earlier (LeCun et al., 1989a, 1989b), were improved on and used for the
task of individual character classification in a document recognition appli-
cation. This work was published in a detailed seminal paper (LeCun et al.,
1998) that highlighted the main advantages of CNNs when compared to
traditional ANNs: they require fewer free parameters (because of weight
sharing), and they consider the spatial topology of the input data, thereby

2360 W. Rawat and Z. Wang

Figure 3: Architecture of LeNet-5 (LeCun et al., 1998).

allowing them to deal with the variability of 2D shapes. In addition to the
proposed CNNs, LeCun et al. (1998) introduced the popular Modified Na-
tional Institute of Standards and Technology (MNIST) data set of 70,000
handwritten digits, which has since been used extensively for several com-
puter vision tasks and, in particular, for image classification and recognition
problems. Figure 3 illustrates the architecture of the CNN, called LeNet-5,
proposed by LeCun et al. (1998). The diagram clearly illustrates the design
of LeNet-5, which consists of alternating convolutional and subsampling
layers, followed by a single fully connected layer.

3.4 Early CNN Successes Despite Perceived Issues with Gradient De-
scent. In the late 1990s and early 2000s, neural network research haddimin-
ished (Simard et al., 2003; LeCun et al., 2015). It was little used for machine
learning tasks, and computer vision and speech recognition tasks over-
looked them. It was widely believed that learning useful multistage feature
extractors, with little prior knowledge, was infeasible due to issues with
the popular optimization algorithm, gradient descent. Specifically, it was
thought that basic gradient descent would not recover from poor weight
configurations that inhibited the reduction of the average backpropagated
error, a phenomenon known as poor local minima (LeCun et al., 2015). In
contrast, other statisticalmethods and, in particular, SVMs, became popular
due to their successes (Decoste & Schölkopf, 2002). Contrary to this trend, a
CNNwas proposed for the application of visual document analysis in 2003
(Simard et al., 2003).

At a time when CNNs were not popular in the engineering community,
Simard et al. (2003) were able to achieve the best-known classification re-
sult on the MNIST data set (LeCun et al., 1998), improving on the previous
best results obtained by the SVMs of Decoste and Schölkopf (2002). Cit-
ing the advantages that were mentioned by LeCun et al. (1998), utilizing
CNNs for visual tasks, they expanded the size and quality of the MNIST
data set and proposed the use of simple software loops for the convolu-
tional operation. These loops exploited the property of backpropagation
that allows an ANN to be expressed in a modular fashion, and this allowed

Deep Convolutional Neural Networks for Image Classification 2361

for modular software debugging. Although LeCun et al. (1998) had already
hypostasized and proved that by increasing the size of the data set, using ar-
tificially generated affine transformations, the network’s performance will
improve, Simard et al. (2003) improved the quality of the increased por-
tion of the data set to further improve performance. This was accomplished
by using elastic image deformations. This work formed part of a series of
several optical character recognition applications that used CNNs. In par-
ticular, Microsoft used them for English handwritten digits (Simard et al.,
2003; Chellapilla, Shilman, & Simard, 2006), Arabic handwriting recogni-
tion (Abdulkader, 2006) and East Asian handwritten character recognition
(Chellapilla & Simard, 2006). Thus, these applications, together with the
work described by LeCun et al. (1989a, 1989b, 1998), represent some of the
early image classification successes enjoyed by CNNs. The background to
the next section highlights several other successes.

4 The Deep Learning Renaissance and the Rise of DCNNs

This section briefly introduces the deep learning renaissance and focuses on
the significant contributions ofDCNNs to the current surge in deep learning
research. It also covers a seminal paper and several representative works
that have led to their recent ascendancy over other image classification
techniques.

4.1 Background to the Deep Learning Renaissance. The first feedfor-
ward multilayered neural networks were trained in 1965 (Ivakhnenko &
Lapa, 1966), and although they did not use backpropagation, theywere per-
haps the first deep learning systems (Schmidhuber, 2015). Although deep
learning–like algorithms have a long history, the term deep learning became a
catchphrase around 2006, when deep belief networks (DBNs) and autoen-
coders trained in an unsupervised fashion were used to initialize DNNs,
trained using backpropagation (Hinton et al., 2006; Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006). Prior to this, it was taught that deep
multilayered networks (including DCNNs) were too hard to train due to
issues with gradient descent and thus were not popular (Bengio et al., 2006;
Bengio, 2009; Deng&Yu, 2014; Schmidhuber, 2015; Goodfellow et al., 2016).
Conversely, CNNs were a notable exception and proved easier to train
when compared to fully connected networks (Simard et al., 2003, Bengio,
2009; LeCun et al., 2015; Goodfellow et al., 2016). In addition to the suc-
cesses discussed in section 3.3, some of the other successful applications that
incorporated CNNs for their image classification component prior to the
resurgence of neural networks in 2006 includemedical image segmentation
(Ning et al., 2005); facial recognition, detection, and verification (Lawrence,
Giles, Tsoi, & Back, 1997; Garcia & Delakis, 2002; Chopra, Hadsell, & Le-
Cun, 2005); off-road obstacle avoidance (Muller, Ben, Cosatto, Flepp, &

2362 W. Rawat and Z. Wang

LeCun, 2005); and generic object classification (LeCun, Huang, & Bottou,
2004; Huang & LeCun, 2006).

However, since neural network research had slowed in the late 1990s and
early 2000s (Simard et al., 2003; LeCun et al., 2015), CNN development was
also hindered, but it revived around 2006. Using an energy-based model to
extract sparse features, which has several applications that include classi-
fication and segmentation, and then using the resultant output to initialize
the first layer of a DCNN, Ranzato, Poultney, Chopra, and LeCun (2006)
slightly improved the previous best-reported classification result (Simard
et al., 2003) on the MNIST data set (LeCun et al., 1998). Citing Hinton et al.
(2006), their DCNN model, which had a similar architecture to that of Le-
Cun et al. (1998) but used a considerably larger number of feature maps
to produce sparse features, was pretrained in an unsupervised fashion and
consisted of three essential components. An encoder interrogated the in-
put image and computed a code vector of the image, which was then trans-
formed into a sparse code vector by a nonlinear-sparsifying logisticmodule.
A decoder that computed a restored version of the input image deciphered
the sparse code vector, and its output was used to initialize the first-layer
weights of the CNN. This work was the first to use DCNNs initialized by
unsupervised training techniques during the period of the deep learning
renaissance and led to several other unsupervised pretraining attempts be-
tween 2006 and 2011, as the next section shows.

4.2 The Deep Learning Renaissance Fueled by GPUs and Improved
Algorithms.

4.2.1 Unsupervised Pretraining. Inspired by the speed and accuracy
advantages of unsupervised pretraining (Hinton et al., 2006; Hinton &
Salakhutdinov, 2006; Bengio et al., 2006; Ranzato et al., 2006), Ranzato et al.
(2007) used aDCNN-like architecture trained in an unsupervisedmanner to
learn hierarchical sparse features that were locally invariant to small shifts
and distortions. Their approach, which introduced max pooling (see sec-
tions 2.2 and 4.2.3), achieved results very close to the state-of-the-art for
the MNIST (LeCun et al., 1998; Ranzato et al., 2006) and the California
Institute of Technology (CALTECH-101—Fei-Fei, Fergus, & Perona, 2006;
Zhang, Berg, Maire, & Malik, 2006) benchmarks. Despite this early success,
DCNNs are still not immune to large-scale shifts and distortions; this is still
an open area of research (see section 6.2).

Asserting that the pretraining methods that Hinton et al. (2006), Ben-
gio et al. (2006), and Ranzato et al. (2007), used were complicated and
restricted, Weston, Ratle, Mobahi, and Collobert (2008) presented a sim-
pler way to perform deep learning by fusing nonlinear embedding algo-
rithmswith deepmultilayered architectures (including DCNNs), trained in
a supervised fashion. The resulting semisupervised deep learning scheme
was inspired by the Laplacian SVMs presented by Belkin, Niyogi, and

Deep Convolutional Neural Networks for Image Classification 2363

Figure 4: Different modes of embedding regularizes into deep architectures.

Sindhwani (2006) and brought about competitive error rates on the MNIST
data set (LeCun et al., 1998), when compared to other shallow semisuper-
vised techniques (Belkin, Niyogi, & Sindhwani, 2006; Collobert, Sinz, We-
ston, & Bottou, 2006) and the existing deep learning approaches of the time
(Hinton et al., 2006; Ranzato et al., 2007; Salakhutdinov & Hinton, 2007).
Figure 4 shows how the embedding algorithms were added to regularize
either the entire network output, the hidden layers, or an auxiliary network
that had the same initial layers of the original network but a new final set
of weights. In the figure, the broken red lines illustrate the point at which
the embedding algorithms were incorporated.

Along the lines of unsupervised DCNNpretraining (Ranzato et al., 2006,
2007) and semi-supervised embedding (Weston et al., 2008), Ahmed, Yu,
Xu, Gong, and Xing (2008) first performed a set of pseudo-tasks on data
in an unsupervised fashion and then transferred the resultant knowledge
to DCNNs via transfer learning. All the layers of the DCNN, including the
final classification layer, were trained with backpropagation. Their results
inferred that knowledge transfer followed by supervised training improved
DCNNperformance and could be applied to a range of visual tasks, includ-
ing object, gender, and ethnicity recognition. Further details are available in
the original paper (Ahmed et al., 2008); an overview on the different forms
of knowledge transfer and some of its early successes is provided by Fei-
Fei (2006). Recently, the features extracted by DCNNs have been shown to
provide an astounding baseline for various computer vision tasks, includ-
ing scene recognition, fine-grained recognition, attribute detection, image
retrieval, and, most significant, image classification (Razavian, Azizpour,

2364 W. Rawat and Z. Wang

Sullivan, & Sarlsson, 2014). The obvious advantage for computer vision sys-
tems that use knowledge transferred from DCNNs is that their exorbitant
training times can be eliminated, thus reducing the development and de-
ployment times of such schemes.

A detailed study that investigated the effect of the nonlinearities that
follow convolutional filters in DCNNs; the performance of supervised, un-
supervised, and randomly learned convolutional filters; and the advan-
tages (if any) of using two stages of feature extraction compared to one
was undertaken by Jarrett, Kavukcuoglu, and LeCun (2009), and LeCun,
Kavukcuoglu, and Farabet (2010). They found that nonlinearities that com-
prise rectification and local contrast normalization were key to good accu-
racy on theMNIST (LeCun et al., 1998), CALTECH-101 (Fei-Fei et al., 2006),
and NYU Object Recognition Benchmark (NORB—LeCun et al., 2004) data
sets, and that better classification accuracy was obtained from two stages
of feature extraction rather than one. In particular, they set a new record
on the unmodified MNIST data set, improving on the previous best perfor-
mance (Ranzato et al., 2006) by following unsupervised pretraining, using a
method called predicative sparse decomposition (PSD; Kavukcuoglu, Ran-
zato, & LeCun, 2010), with supervised reinforcement. The PSD technique,
like the work proposed by Ranzato et al. (2006), is based on an encoder-
decoder architecture that enforces sparse constraints on the feature vec-
tor by utilizing a basic feedforward regressor that is trained to estimate a
sparse solution for all the vectorized patches or their stacks in a prescribed
training set. Although sparse coding algorithms are generally computation-
ally exorbitant, since the PSD technique approximates the sparse codes, it is
computationally cheaper, making it very fast relative to other sparse coding
schemes.

Unsupervised (including semisupervised) pretraining, followed by su-
pervised refinement, discussed in this section, was made popular by the
deep belief networks proposed at the rise of the deep learning renaissance
(Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Bengio et al., 2006). The
most common unsupervised schemes used contrastive divergence (Hin-
ton, 2002) methods (see Lee, Grosse, Ranganath, & Ng, 2009), sparse con-
straints (Ranzato et al., 2006, 2007), or PSD (Kavukcuoglu et al., 2010;
LeCun et al., 2010). In general, for these techniques, the feature extraction
filters are trained such that representations at a particular stage can be re-
constructed from representations of a preceding stage. Themajor hindrance
of this approach is that the feature learning process is independent of the
task, although Bengio et al. (2006), Mairal, Bach, Ponce, Sapiro, and Zisser-
man (2008), and Ranzato and Szummer (2008) attempted to alleviate this
by assimilating supervised criteria with unsupervised techniques.

Furthermore, despite the initial promising results obtained from unsu-
pervised pretraining (see Erhan et al., 2010, for a detailed analysis), in recent
years, supervised learning has become the leading paradigm for train-
ing DCNNs (see section 5.3). However, semisupervised learning is more

Deep Convolutional Neural Networks for Image Classification 2365

biologically plausible. For example, consider how children learn about their
environments or, more specifically, how they learn to recognize or classify
objects. They are usually supplied a few examples by their caregivers, anal-
ogous to semi- or weakly supervised learning, and they use this to general-
ize on unseen objects. Thus, to align our current heavily supervised models
closer to nature, it is envisaged that future DCNNs will go back to using
semisupervised schemes, similar to those introduced in this section. These
schemes will incorporate, at least initially, supervised criteria to overcome
the known issues with their unsupervised counterparts. Such progress will
eventually lead to independent, unsupervised systems to tackle the increas-
ingly immense expanses of unannotated data currently available (see sec-
tion 6.6 for further insight).

4.2.2 GPUs Stimulate Research into DCNNs. Even though the deep learn-
ing algorithms that work currently have been available since the 1980s
(LeCun et al., 1989a, 1989b), they were taught to be too computationally ex-
pensive to allow a great deal of research on the hardware available prior
to 2006 (Goodfellow et al., 2016). Furthermore, during program execu-
tion, convolution operations are computationally costly and thusmakeDC-
NNs significantly slower to evaluate when compared to standard ANNs
of the same magnitude. To overcome these constraints, Chellapilla, Puri,
and Simard (2006) proposed three novel methods to speed up DCNNs: un-
rolling convolution, using basic linear algebra software subroutines, andus-
ing GPUs. Although GPUs had already been applied to ANNs (Oh & Jung,
2004; Steinkrau, Simard, & Buck, 2005), this work was significant since it
was the first implementation of a DCNN using GPUs. Over time, this has
become a momentous facet of most award-winning or state-of-the-art DC-
NNs (Ciresan et al., 2011; Krizhevsky et al., 2012; Hinton et al., 2012; Zeiler
& Fergus, 2013, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He
et al., 2015a). Although the development of enhanced hardware to facilitate
DCNN computation is still an open area of research, it has become largely
commercialized in recent years. With this trend, much of the academic fo-
cus has been on either the application of this commercially available hard-
ware or algorithmic development to aid swifter processing. Although this
is not envisaged to change in the near future, there is an expectation that
imminent hardware and software advances will focus on the deployment
of DCNNs to mobile devices (see section 6.3).

4.2.3 Max Pooling Leads to Improved Generalization. In 2007, backpropa-
gation was applied for the first time to a DCNN-like architecture that used
max pooling (Ranzato et al., 2007). In 2010, Scherer, Müller, and Behnke
(2010) showed empirically that the max pooling operation was vastly supe-
rior for capturing invariance in image-like data and could lead to improved
generalization and faster convergence when compared to a subsampling
operation. They demonstrated this by achieving the best published results

2366 W. Rawat and Z. Wang

on the normalized-uniform NORB data set (LeCun et al., 2004), improving
on the previous best (Nair & Hinton, 2009) by over a half percent. Contin-
uing with the empirical work, Jarrett et al. (2009) showed that max pool-
ing alleviated the need for a rectification layer, which is not usually part
of DCNN architecture; however, they found that average pooling does not
enjoy the same benefit and thus suffers from cancellation effects between
neighboring filter outputs.

Adetailed theoretical analysis of max pooling and average pooling, sup-
plemented by empirical evaluations, was conducted by Boureau, Ponce,
and LeCun (2010). They concluded that the performance of either max or
average pooling was dependant on the data and its features, and that for a
given classification problem, using either pooling strategy alone may not
be optimal. Since max pooling was designed only for feedforward net-
works, Lee, Gross, Ranganath, andNg (2009) introduced and applied prob-
abilistic max pooling to convolutional DBNs with the aim of scaling DBNs
(Hinton et al., 2006) to full-sized, high-dimensional images. Their resultant
translation invariant hierarchical generative model performed well on sev-
eral classification benchmarks, including MNIST (LeCun et al., 1998) and
CALTECH-101 (Fei-Fei et al., 2006). Although it is well known that max
pooling leads to a certain degree of invariance to distortions and transla-
tions, it accomplishes this by discarding spatial information (Ranzato et al.,
2007; Scherer et al., 2010; Szegedy, Liu, et al., 2015). Despite this, it contin-
ues to be a key component of several state-of-the-art DCNNs (Ciresan et al.,
2011; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy, Liu,
et al., 2015). For some of the issues associated with max and average pool-
ing and their proposed solutions, refer to section 5.1.2.

4.3 The Changing Point in the Application of DCNNs for Computer
Vision Tasks. The deep learning renaissance of 2006 (Hinton et al., 2006;
Hinton & Salakhutdinov, 2006; Bengio et al., 2006), spurred on several suc-
cessful applications of DCNNs to a wide variety of tasks. These included
image and object classification and recognition (Chellapilla, Puri, & Simard,
2006; Ranzato et al., 2007; Weston et al., 2008; Jarrett et al., 2009; Lee et al.,
2009; LeCun et al., 2010; Scherer et al., 2010; Boureau et al., 2010; Masci,
Meier, Ciresan, & Schmidhuber, 2011), face detection (Nasse, Thurau, &
Fink, 2009), and image segmentation (Turaga et al., 2010). Furthermore,
they also found interesting applications in scene parsing (Farabet, Couprie,
Najman, & LeCun, 2012), vision for autonomous off-road driving (Had-
sell et al., 2009), and hand gesture recognition (Nagi et al., 2011). Despite
these accomplishments, theywere still largely discarded by themainstream
computer vision and machine learning communities (LeCun et al., 2015).
This changed after the ILSVRC 2012 (Russakovsky et al., 2015), when a
fully supervised DCNN achieved record-breaking classification results on
a subset of the ImageNet data set (Krizhevsky et al., 2012). This work has
revolutionized the field of computer vision, and as a result, DCNNs have

Deep Convolutional Neural Networks for Image Classification 2367

Figure 5: DCNN architecture split over two GPUs (Krizhevsky et al., 2012).

since become the leading architecture for most visual tasks, in particu-
lar, for image classification–related applications, as the rest of this review
shows.

Central to their success, they implemented several novel and unusual
techniques. Rather than using traditional sigmoid or hyperbolic tangent
activation functions, they were inspired by Jarrett et al. (2009) and used
ReLU (Nair & Hinton, 2010) activations, which allowed much faster train-
ing times (see section 5.2.1 for further details). Since their network was too
big to fit into one GPU, they spread it over two GPUs arranged in a parallel
configuration, which was similar to the multicolumn DCNNs proposed by
Ciresan, Meier, and Schmidhuber (2012). Inspired by the local contrast nor-
malization of Jarrett et al. (2009), they applied local response normalization.
Denoted mathematically, if a kernel i, at position (x; y) is used to compute
the activity of a neuron denoted by aix,y and the ReLU nonlinearity is than

applied, the response-normalized activity bix,y can be expressed as

bix,y = aix,y

��

k + α

min(N−1,i+n/2)�

j=max(0, i−n/2)

(a jx,y)
2

� β

, (4.1)

where N is the total number of kernels in the layer and the sum runs over
n “adjacent” kernel maps at the same spatial position. This scheme aided
generalization and reduced their network classification error rates. They
further reduced the classification error by overlapping the network’s max
pooling layers. Figure 5 illustrates the revolutionary architecture presented
by Krizhevsky et al. (2012). It consisted of five convolutional layers, three
of which were followed by max pooling layers, and three fully connected
layers. The various layer parts in the top half of the figure ran on one GPU,
while the layer parts at the bottom ran on the second GPU. The GPUs in-
teracted with each other only at specific layers.

2368 W. Rawat and Z. Wang

To overcome overfitting, the authors employed a regularization tech-
nique known as Dropout (Hinton et al., 2012). Specifically, when each train-
ing case was presented to the network during the training phase, each
hidden neuron was randomly omitted from the network with a probability
of 0.5. Thus, hidden neurons could not rely on other hidden neurons be-
ing present, and this prevented complex coadaptations of features on the
training data. At test time, all of the hidden neurons were used, but their
outputs were multiplied by 0.5 to compensate for the fact that double the
number of neurons were now active. The result of this was a strong regular-
ization effect that significantly reduced overfitting (Krizhevsky et al., 2012;
Hinton et al., 2012; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-
dinov, 2014). Figure 11 (in section 5.4.2) shows the effect of Dropout on a
standard feedforward network, with two hidden layers, while section 5.4.1
gives a more formal description of the technique and introduces several of
its variants.

Overfitting was further reduced by applying data augmentation, a pop-
ular procedure to artificially enlarge a data set (LeCun et al., 1998; Simard
et al., 2003; Ciresan et al., 2011, 2012). In particular, they created more im-
ages by applying translations and horizontal reflections to the training im-
ages, altering the intensities of their color channels, and performing princi-
pal component analysis (PCA) on their pixel values, which led to improved
classification performance. Krizhevsky et al.’s (2012) model has been used
extensively for various purposes since its development. Vast amounts of re-
search have used it to benchmark their models against or as a base model
to test new algorithms. Furthermore, their model has inspired DCNNwork
and has become one of the major contributors to the recent rise in DCNN
technology for image classification–related applications.

Notably, preceding the pioneering work of Krizhevsky et al. (2012) was
the series of work proposed by Ciresan et al. (2011, 2012). They presented
deep hierarchical CNNs, trained in a fully supervised fashion, that achieved
the best published results on the NORB (LeCun et al., 1998; Krizhevsky,
2009; Coates, Lee, & Ng, 2011) and MNIST (LeCun et al., 1998; Ciresan,
Meier, Gambardella, & Schmidhuber, 2010) classification benchmarks (Cire-
san et al., 2011). By stacking these DCNNs into columns, they further im-
proved the state of the art for these benchmarks and, in particular, reached
human-level performance on theMNIST data set. Furthermore, on the Ger-
man traffic sign recognition benchmark (GTSRB; Stallkamp, Schlipsing,
Salmen, & Igel, 2011), they surpassed human performance by a factor of
two.

Table 1 summarizes the key attributes of the image classification data
sets introduced thus far. Although other classification data sets exist (see
sections 5.1.2.3 and 5.3.2), these are the most commonly used for DCNN
evaluation and benchmarking. Among them, the MNIST data set (LeCun
et al., 1998) has stood the test of time and become the most popular,

Deep Convolutional Neural Networks for Image Classification 2369

T
ab

le
1:

P
o
p
u
la
r
D
C
N
N

Im
ag

e
C
la
ss
ifi
ca
ti
o
n
B
en

ch
m
ar
k
s.

N
u
m
b
er

N
u
m
b
er

D
at
a
S
et

Im
ag

e
D
es
cr
ip
ti
o
n

Im
ag

e
S
iz
e

o
f
Im

ag
es

o
f
C
la
ss
es

R
ef
er
en

ce

M
N
IS
T

H
an

d
w
ri
tt
en

d
ig
it
s

28
×

28
70

,0
00

10
L
eC

u
n
et

al
.,
19

98
C
A
L
T
E
C
H
-1
01

C
o
lo
r
im

ag
es

±
30

0
×

20
0

91
46

10
1

F
ei
-F
ei

et
al
.,
20

06
C
A
L
T
E
C
H
-2
56

C
o
lo
r
im

ag
es

±
30

0
×

20
0

30
,6
07

25
6

G
ri
ffi
n
,H

o
lu
b
,&

P
er
o
n
a,

20
07

N
o
rm

al
iz
ed

-u
n
if
o
rm

N
O
R
B

S
te
re
o
im

ag
es

w
it
h
u
n
if
o
rm

b
ac
k
g
ro
u
n
d

96
×

96
48

,6
00

5
L
eC

u
n
et

al
.,
20

04
Ji
tt
er
ed

an
d
cl
u
tt
er
ed

N
O
R
B

S
te
re
o
ji
tt
er
ed

im
ag

es
w
it
h
cl
u
tt
er

96
×

96
34

9,
92

0
6

L
eC

u
n
et

al
.,
20

04
C
IF
A
R
-1
0

N
at
u
ra
l
co
lo
r
im

ag
es

32
×

32
60

,0
00

10
K
ri
zh

ev
sk
y,
20

09
C
IF
A
R
-1
00

N
at
u
ra
l
co
lo
r
im

ag
es

32
×

32
60

,0
00

10
0

K
ri
zh

ev
sk
y,
20

09
IL
S
V
R
C

H
ig
h
-r
es
o
lu
ti
o
n
co
lo
r
im

ag
es

V
ar
ia
b
le

si
ze

>
1.
2
m
il
li
o
n

10
00

R
u
ss
ak

o
v
sk
y
et

al
.,
20

15

2370 W. Rawat and Z. Wang

although modern classification systems are judged by their success on the
ILSVRC (Russakovsky et al., 2015), as the next section shows.

4.4 Representative Improvements Exemplify DCNN Dominance.
Since the groundbreaking work of Krizhevsky et al. (2012), DCNNs have
dominated image classification tasks, in particular the ILSVRC (Rus-
sakovsky et al., 2015). In fact, they were triumphant in every ImageNet
classification challenge since 2012 (Simonyan & Zisserman, 2014; Zeiler &
Fergus, 2014; Szegedy, Liu, et al., 2015; He, Zhang, Ren, & Sun, 2015b). In an
attempt to understand themandderiveways to improve their performance,
Zeiler and Fergus (2014) introduced a new visualization technique using a
multilayered deconvolutional network (Zeiler, Taylor, & Fergus, 2011) that
provided vision into the intermediate feature extraction layers of the net-
work. They used this in a diagnostic role to improve the DCNN architec-
ture and performance of Krizhevsky et al. (2012). Thus, when compared
to Krizhevsky et al. (2012), their model achieved better results on the Ima-
geNet classification benchmark, andmultiplemodels were averaged towin
the ILSVRC 2013 (Russakovsky et al., 2015). Furthermore, their model gen-
eralized excellently, and they demonstrated this by achieving the best pub-
lished results on the CALTECH-101 (Fei-Fei et al., 2006) and CALTECH-
256 data sets (Griffin et al., 2007). Although their visualization technique
worked well on relatively higher-dimensional color images, it would be
interesting to test its applicability on the popular MNIST data set (LeCun
et al., 1998), since it is conceivable that the deconvolutional networkmaynot
be able to reproduce the lower-dimensional gray-scale MNIST images with
the same accuracy. Another interesting direction from using the extracted
features in a diagnostic role will be to investigate its applicability to solve
some of the remaining DCNN challenges, specifically like those mentioned
in sections 6.2 and 6.4.

Szegedy, Liu, et al. (2015) introduced a DCNN architecture that they
called the Inception model. A particular incarnation of this model,
GoogLeNet, produced outstanding image classification and object detec-
tion results, winning both the ImageNet classification and detection chal-
lenges in 2014 (Russakovsky et al., 2015). Their success was brought about
by using a very large network, consisting of 22 layers. Since the cost of this
is a larger number of parameters, which makes the network more prone
to overfitting and a considerably larger computational burden, they used
a carefully engineered design, based on Hebbian principles, that allowed
them tomove from a fully to sparsely connected convolutional architecture,
whichwasmotivated by the findings ofArora, Bhaskara, Ge, andMa (2014).
Specifically, their architecture used 1 × 1 convolutions heavily, inspired by
Lin et al. (2013), to perform two functions. Most significant, they served as
dimension-reduction blocks prior to the more computationally costly 3 × 3
and 5 × 5 convolutions, and they included the use of rectified linear activa-
tions (Nair &Hinton, 2010), thusmaking them dual purpose. Subsequently,

Deep Convolutional Neural Networks for Image Classification 2371

they were able to increase the depth and width of their network, while only
marginally increasing the computational cost. Figure 8 (in section 5.1.1.1)
illustrates an Inception module, which incorporates the dimension reduc-
tion 1 × 1 convolution filters, illustrated by the bevel in the diagram. These
modules are the building blocks of the Inception model, which has since
been improved several times, as discussed in section 5.1.1.2.

Similar to Szegedy, Liu, et al. (2015), Simonyan and Zisserman (2014), the
runners-up in the same ILSVRC 2014 classification contest (Russakovsky
et al., 2015), also used a very deep DCNN, which consisted of 19 layers
compared to the 22 of their competitors. However, asserting that the Incep-
tion model was too complex, they kept all the parameters of their DCNN
architecture constant and steadily increased the depth alone. Thiswasmade
feasible by using smaller-sized convolutional (3 × 3) filters throughout the
network, which was inspired by Ciresan et al. (2011), who already used
smaller kernels, albeit for shallower networks applied to simpler tasks.

The winners of the ILSVRC 2015 (Russakovsky et al., 2015), He et al.
(2015b), used an even deeper DCNN, when compared to Simonyan and
Zisserman (2014) and Szegedy, Liu, et al. (2015). In fact, their model was
ultra-deep in that it consisted of 152 layers. Since deeper models are harder
to train and suffer from degradation (of training and thus test accuracy)
(He et al., 2015b; He & Sun, 2015; Srivastava, Greff, & Schmidhuber, 2015a,
2015b), they introduced a new residual learning framework.1 They refor-
mulated the layers of the network and forced them to learn residual func-
tions with reference to their preceding layer inputs rather than learning
unreferenced functions. This allowed errors to be propagated directly to
the preceding units, and thus made these networks easier to optimize and,
although they were ultra-deep, easier to train. They tried different residual
module configurations andnetwork architectures and found that optimized
residual modules worked more optimally compared to their initial mod-
ules. Figure 6 compares the difference between the original residualmodule
and its optimized successor, which resulted in faster computation. As illus-
trated, ReLUs (Nair & Hinton, 2010) feature heavily in both versions; how-
ever, optimized residual connections make use of the dimension-reducing
1 × 1 filters to cushion computation. Amore formal description of the orig-
inal residual learning technique, as well its improvements, is discussed in
section 5.5.4.

Table 2 illustrates the performance of DCNNs in the ILSVRC since its in-
ception. Significantly, the table highlights DCNN domination over earlier
methods that used feature extraction and compression, followed by clas-
sification with a shallow classifier (Perronnin, Sánchez, & Mensink, 2010;

1
Degradation is caused by the poor propagation of activations and gradients because

of stacking several nonlinear transformations on top of each other.

2372 W. Rawat and Z. Wang

Figure 6: Residual versus improved residual modules.

Lin et al., 2011; Sánchez & Perronnin, 2011), as well as an approximate
correlation between classification performance and network depth (see
section 5.5.4). Further results can be found in Table 4.

Notwithstanding degradation (He et al., 2015b; He & Sun, 2015; Srivas-
tava et al., 2015a, 2015b), deeper models are generally more accurate and
thus produce better empirical results; however, as depth increases, so do
computational costs. With this in mind, the representative work discussed
here has led to several attempts to improve the classification accuracy of
DCNNs bymodifying their architecture for improved performancewithout
losing sight of the computational burden imposed on such models. In par-
ticular, the models of Szegedy, Liu, et al. (2015), Simonyan and Zisserman
(2014), and He et al. (2015b) all focused on deeper or wider networks for
improved accuracy, with several tricks, ranging from dimension reduction
to residual learning, to handle the associated computational strain placed
on deeper networks. This has led to a classic engineering dilemma between
deeper models, which are more accurate but computationally expensive,
and shallower models, which are easier and cheaper to train but do not
produce the same classification accuracy. Thus, although there have been
several attempts to address this, maintaining accuracy with reduced com-
putational expenditures remains an open challenge forDCNNs. To this end,
section 5.5.4 deals with the swifter processing of deep models, while the

Deep Convolutional Neural Networks for Image Classification 2373

Table 2: ILSVRC Image Classification Results from 2010.

Number General
Year Team of Layers Contribution Position References

2010 NEC Shallow Fast feature extraction,
data compression, SVM
classifier

First Lin et al., 2011

2011 XRCE Shallow High-dimensional image
signatures, data
compression, SVM
classifier

First Perronnin et al.,
2010; Sánchez
& Perronnin,
2011

2012 SuperVision 8 Efficient GPU-based
DCNN, with Dropout
and several other
innovations

First Krizhevsky
et al., 2012

2013 Clarifai 8 DCNN architecture based
on deconvolutional
visualization technique

First Zeiler & Fergus,
2014; Zeiler
et al., 2011

2014 GoogLeNet 22 DCNN architectural
design based on
Hebbian principle and
multiscale ideas

First Szegedy,
Vanhoucke
et al., 2015

2014 VGG 19 Improvements to DCNN
convolutional layers,
increased network depth

Second Simonyan &
Zisserman,
2014

2015 MSRA 152 Introduction of deep
residual learning for
ultra DCNNs

First He et al., 2015b

latest developments, trends, and recommendations in this regard are intro-
duced in section 6.3.

5 A Deep Array of Further Improvements and Recent Advancements

In addition to the revolutionarywork of Krizhevsky et al. (2012) and the fur-
ther symbolic improvements described in the preceding section (Simonyan
& Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015; He
et al., 2015b), several other improvement attempts related to network ar-
chitecture, nonlinear activation functions, supervision components, regu-
larization mechanisms, optimization techniques, and swifter processing of
DCNNs have supplemented the popularity of DCNNs. In the sections
that follow, we survey these improvements in detail, focusing on their
employment to image classification applications. Along the way, we com-
pare and contrast the different methodologies and techniques used to de-
sign these improvements. Toward the end of the section, we empirically

2374 W. Rawat and Z. Wang

summarize their classification results on several popular image classifica-
tion benchmarks.

5.1 Network Architecture. This section first introduces the improve-
mentsmade to the convolutional layers of DCNNs, followed by discussions
that deliberate several pooling schemes, including the latest advancements
in this regard.

5.1.1 Convolutional Layers. The convolutional layers learn the feature
representations of their input images, and this makes them the main build-
ing block of DCNNs. Thus, it is natural to try to improve this aspect of
DCNN architecture. Here we introduce the motivations behind some of the
key innovations in this area.

5.1.1.1 Network in network. Since the convolutional layers use linear fil-
ters, which are more suited to learning latent features (hidden properties
of an image) that are linearly separable, they are not cable of extracting
abstract representations from images.2 Thus, Lin et al. (2013) proposed
replacing them with universal function approximators. Specifically, they
replaced the conventional local convolutional filters with multilayered
perceptrons (MLPs), which are compatible with the architecture and train-
ing procedures of DCNNs, to convolve over the input resulting in a MLP
convolutional layer. The computation performed by this layer, when the
ReLU (Nair & Hinton, 2010) is used as the activation function, can be ex-
pressed mathematically as

f ni, j,kn = max (wnT
kn

f n−1
i, j + bkn , 0) (5.1)

where the pixel index of the featuremap is denoted by (i, j); the input patch,
centered at location (i, j), is denoted by xi, j; the feature map channels are
indexed by k; and n represents the number of layers in the MLP.

The proposed method demonstrated that these MLP convolutional lay-
ers model local image patches better than standard convolutional layers.
When combinedwith a novel global average pooling technique, which spa-
tially averaged the feature maps of the final layer, was used to replace
the standard fully connected layer, they produced state-of-the-art results
on two versions of the CIFAR-10 (Krizhevsky, 2009; Wan, Zeiler, Zhang,
LeCun, & Fergus, 2013; Goodfellow, Warde-Farley, Mirza, Courville, &
Bengio, 2013) and CIFAR-100 benchmarks (Krizhevsky, 2009; Srivastava &
Salakhutdinov, 2013), and very close to the state of the art on the MNIST

2
Abstract in this contents relates to features that are invariant to features of an equiva-

lent concept (Bengio, Courville, & Vincent, 2013).

Deep Convolutional Neural Networks for Image Classification 2375

Figure 7: Convolutional versus MLP convolutional layers.

data set (LeCun et al., 1998; Goodfellow et al., 2013). Although the pro-
posed global average pooling technique, which has fewer parameters and
thus cheaper computational costs compared to fully connected layers, con-
tributed to a reduction in overfitting for the relatively small MNIST (LeCun
et al., 1998) and CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) data sets, a
study into overfitting using this type of layer to replace the conventional
fully connected layers of other DCNNmodels is still at large for larger data
sets like ImageNet (Russakovsky et al., 2015). Figure 7 illustrates the differ-
ence between a conventional convolutional module and an MLP convolu-
tional module, which is the main building block of the network in network
(NIN) model. While both variants map the local receptive field represent-
ing the hidden input features to a succeeding layer, panel b uses amicronet-
work for enhanced representation.

5.1.1.2 Inception and improved Inception models. The Inception model
(Szegedy, Liu, et al., 2015), inspired by Lin et al. (2013) and discussed in
section 4.4, used a dimension-reduction (1 × 1 convolutional filters) tech-
nique to lessen the computational burden of the expensive convolutional
operation. In order to scale up and further improve DCNN classification ac-
curacy in a computationally efficient manner, the Inceptionmodel was later
enhanced by using factorized convolutions (see section 6.6) and aggres-
sive dimension reductions within the network.While the original Inception
module still used 5 × 5 convolutions, the improved version replaced this

2376 W. Rawat and Z. Wang

Figure 8: Inception versus improved Inception modules.

with two computationally cheaper 3× 3 convolutions (Szegedy, Vanhoucke
et al., 2015). Figure 8 illustrates the differences between the two modules.

Inspired by the image classification accuracy accomplished by residual
networks (He et al., 2015b), discussed in sections 4.4 and 5.5.4, the Inception
architecture (Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke et al., 2015) was
further refined and combinedwith residual connections to form residual In-
ception networks (Szegedy, Ioffe, & Vanhoucke, 2016). The paper provided
clear evidence advocating that training with residual connections signifi-
cantly accelerated the training of Inception networks. Although they tested
several Inception-only and residual Inception architectures, they found that
a hybrid residual Inception architecture yielded the best single-model clas-
sification accuracy, albeit at a higher computation cost when compared
to the improved Inception architecture described by Szegedy, Vanhoucke
et al. (2015). Furthermore, when they combined a new, improved Incep-
tion model, which had a simpler architecture and more Inception modules
compared to their earlier model (Szegedy, Vanhoucke et al., 2015), into an
ensemble with three residual Inception networks, they achieved the best
published results on the challenging ImageNet image classification bench-
mark (Russakovsky et al., 2015; He et al., 2015b). Despite this success, fur-
ther work is required in order to reduce the computational burden imposed
on the hybrid architecture.

5.1.1.3 Doubly convolution. Motivated by intuition, followed by a theo-
retical analysis, which advocated that several of the learned filters of well-
trained DCNNS are slightly translated versions of each other, Zhai, Cheng,

Deep Convolutional Neural Networks for Image Classification 2377

Lu, and Zhang (2016) newly proposed doubly convolutional neural net-
works, which make use of a double convolution operation in the convolu-
tional layers. This allows them to learn clusters of filters,where filterswithin
each cluster are translated forms of each other. In order to accomplish this,
a set of meta-filters is allocated to a doubly convolutional layer. The sizes of
these meta-filters are larger than the effective filter size, which are extracted
from each of them. This corresponds to convolving the meta-filters with an
identity kernel. By concatenating the extracted filters and then convolving
it with the input, the technique attains double convolution. This technique
is also complementary toMaxout (Goodfellow et al., 2013), which we intro-
duce in section 5.2.8, since there is an opportunity to pool along the activa-
tions generated by the samemeta-filter. They outperformed the NINmodel
(Lin et al., 2013), which also altered the standard convolutional layer for
improved classification accuracy, on the CIFAR-10 and CIFAR-100 data sets
(Krizhevsky, 2009); furthermore, since the architecture of the doubly con-
volutional networks can be amenably varied, they are parameter efficient,
thus reducing their storage space requirements without a loss in accuracy.
The downside of such an approach is that the double convolution opera-
tion will incur additional computational costs in comparison to a standard
convolutional layer.

5.1.1.4 Analysis and outlook. The convolutional filters, the workhorses
of DCNNs, are generalized linear models of the underlying image patches
that they convolve, and although they work well for extracting features
that have a low level of abstraction, they are challenged when they need
to extract highly nonlinear functions of our input images. This advocated
the need for more effective nonlinear feature extractors, starting with the
NIN model. The architecture introduced by Lin et al. (2013) led to a series
of other improvements that also focused on the convolutional layers. At
the heart of these approaches were the Inception (Szegedy, Liu, et al., 2015)
and improved Inception models (Szegedy, Vanhoucke et al., 2015; Szegedy
et al., 2016), which were meticulously engineered to mitigate any compu-
tational constraints, and this facilitated increased network size (width and
depth) for enhanced classification accuracy. However, notwithstanding
the promising empirical results of these models, a theoretical justification
for their successes is still lacking. Furthermore, their complex and highly
optimized architectures do not warrant modification without possible
performance constraints, thus the need to exercise caution when adopting
them. Future work should attempt to justify the reasons for the empirical
successes of the innovative convolutional layers discussed here, and this
should be supplemented by novel convolutional-related modifications
that address the concerns associated with our current models, such as the
computational encumbrance imposed by the convolutional operation, their
inability to extract potent features, and the complexity of the current mod-
els that mitigate these concerns. This will not only advance classification

2378 W. Rawat and Z. Wang

accuracy and robustness and promote swifter computation but will lead to
models that are easily adaptable to different tasks. Some of the promising
recent developments along these lines include double convolution (see
section 5.1.1.3), tiled convolution (Ngiam et al., 2010; Wang & Oates, 2015),
and, in particular, dilated convolution (Yu & Koltun, 2015), which has
shown promising results for diverse tasks such as speech recognition
and synthesis (Sercu & Goel, 2016; Oord et al., 2016), machine translation
(Kalchbrenner et al., 2016), and scene segmentation (Yu & Koltun, 2015).

5.1.2 Pooling Layers. After the convolutional layers, the pooling layers
are perhaps the most important. They recapitulate the responses of neigh-
boring neurons from the same kernel map and thus reduce the dimensions
of their input representations. Significantly, they provideDCNNswith their
spatial invariance (Krizhevsky et al., 2012; LeCun et al., 2015). In addi-
tion to average and max pooling, introduced in sections 2.2 and 4.2.3, we
survey some of the other successful pooling techniques mentioned in the
literature.

5.1.2.1 Lp pooling. Although the use of max pooling has resulted in ex-
cellent empirical results (Ciresan et al., 2011; Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke
et al., 2015), it can overfit the training data and does not guarantee gener-
alization on test data. Average pooling, on the other hand, considers all the
elements in the pooling region and thus areas of low activation may lessen
the effect of areas of high activation (Zeiler & Fergus, 2013; Sainath, Kings-
bury, Mohamed et al., 2013). To address these issues, a viable alternative
is the biologically inspired Lp pooling, which is modeled on complex cells
(Simoncelli & Heeger, 1998; Hyvärinen & Köster, 2007). In a given pooling
region R j, it takes the weighted average of the activations ai, as illustrated
by equation 5.1:

s j =

�

�
�

iεR j

a
p
i

�

	

1/p

(5.2)

Notably, when p = 1 the equation corresponds to average pooling, while
p = ∞ translates to max pooling. For values of 1 < p < ∞,Lp pooling can
be seen as a trade-off between average and max pooling (Sainath, Kings-
bury, Mohamed et al., 2013). Although Lp pooling has been applied pre-
viously (Yang, Yu, Gong, & Huang, 2009; Kavukcuoglu, Ranzato, Fergus,
& LeCun, 2009), when it was combined with DCNNs (Sermanet, Chintala,
& LeCun, 2012), it resulted in exceptional image classification results and
a new state of the art on the Street View House Numbers (SVHN) classi-
fication benchmark, beating the previous best set by Netzer et al. (2011).

Deep Convolutional Neural Networks for Image Classification 2379

Moreover, theoretical analysis conducted by Boureau et al. (2010), Bruna,
Szlam, and LeCun (2013), and Gulcehre, Cho, Pascanu, and Bengio (2014)
suggests that it provides better generalization when compared to max
pooling.

5.1.2.2 Stochastic and fractional max pooling. Motivated by the problems
with average and max pooling and the regularization effect of Dropout
(Turaga et al., 2010; Hinton et al., 2012), Zeiler and Fergus (2013) introduced
stochastic pooling to replace the deterministic average and max pooling
techniques. Specifically, in stochastic pooling, by normalizing the activa-
tions within each region j, the probabilities p for the region are first com-
puted by

pi =
ai

kεR j

ak
(5.3)

Then, based on p, a sample is taken from the multinomial distribution,
formed from the activations of each pooling region, in order to pick a lo-
cation l within the region. Thus, the pooled activation is simply al :

s j = al where l ∼ P(p1, . . . , p|R j |). (5.4)

Although stochastic pooling has the same benefits as max pooling, its
stochastic nature helps it prevent overfitting, thus making it an effective
network regularization technique that can be combined with other ap-
proaches such as Dropout (Hinton et al., 2012; Srivastava et al., 2014) and
data augmentation (LeCun et al., 1998; Simard et al., 2003; Ciresan et al.,
2011, 2012; Montavon, Orr, & Müller, 2012). When applied to image clas-
sification tasks, stochastic pooling outperformed average and max pooling
on the MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky,
2009), and SVHN (Netzer et al., 2011) benchmarks.

Similar to stochastic pooling, fractional max pooling (Graham, 2014),
also introduces stochastic attributes to the pooling process. However, di-
vergent from stochastic pooling, the selection of the pooling regions, rather
than the pooling operations within them, has a stochastic nature. More
specifically, while stochastic and traditional max pooling use β × β max
pooling, where β = 2 (see section 2.2), fractional max pooling introduces a

fractional factor β (e.g.,
√
2), which is selected either randomly or pseudo-

randomly from the range 1 < β < 2, to reduce the spatial dimensions of the
pooling input. They obtained state-of-the-art results on the CIFAR data sets
(Krizhevsky, 2009; see Table 6); however, their observations lacked suitable
motivation and the technique still needs to be tested on other architectures
such as Inception (Szegedy, Liu, et al., 2015) and Residual networks (He
et al. 2015b).

2380 W. Rawat and Z. Wang

5.1.2.3 Mixed pooling. Inspired by the stochastic nature of the pool-
ing technique described by Zeiler and Fergus (2013) and other successful
stochastic regularization techniques such as Dropout (Hinton et al., 2012;
Srivastava et al., 2014) andDropConnect (Wan et al., 2013) (see section 5.4.2),
Yu, Wang, Chen, and Wei (2014) introduced a novel mixed pooling tech-
nique to further boost the regularization abilities of DCNNs and address
the known issues associated with average and max pooling (Zeiler & Fer-
gus, 2013; D. Yu et al., 2014; Sainath, Kingsbury,Mohamed et al., 2013). They
also employed a stochastic procedure to utilize, randomly, max or average
pooling during DCNN training. Expressedmathematically, the mixed-pool
output yki j in relation to the kth feature map is computed by:

yki j = λ · max
(p,q)∈�i j

xkpq + (1 − λ) ·
1

|�i j|
�

(p,q)∈�i j

xkpq, (5.5)

where the element at location (p, q), within the pooling region �i j with size
|�i j|, is represented by xkpq, and either max or average pooling is selected
by λ, which has a random value of either one or zero. Similar to stochas-
tic pooling, the combination of mixed pooling with other regularization
techniques is possible. Comparatively, when tested on the SVHN (Netzer
et al., 2011) classification challenge, thismethod proved superior to average,
max, stochastic, and Lp pooling (Sermanet et al., 2012). Additionally, when
tested on the CIFAR-10 and CIFAR-100 benchmarks (Krizhevsky, 2009), it
also provided enhanced classification performance over average, max, and
stochastic pooling (Zeiler & Fergus, 2013), and the parameterized scheme
introduced by Malinowski and Fritz (2013).

5.1.2.4 Mixed, gated, and tree pooling. Experiments conducted byLee,Gal-
lagher, and Tu (2016) support the findings of Boureau et al. (2010), who also
found that there were instances where either max or average pooling per-
formed better than the other did. Thus, they explored learning the pool-
ing function by combining max and average pooling using a responsive
(achieved via a gate) and unresponsive strategy. The output of the gated
max-average method can be computed by

fgate(x) = σ (wTx) fmax(x) + (1 − σ (wTx)) favg(x), (5.6)

where the values in the pooling region are denoted by x and the val-
ues of the gating mask are denoted by w. Furthermore, inspired by Bulo
and Kontschieder (2014), who incorporated MLPs with decision trees,
Lee et al. (2016) used a binary decision tree to learn a combination of
previously learned individual pooling filters. A particular incarnation of
their approach, which combined their tree and max-average methods,
achieved state-of-the-art results on several benchmarks. In particular, they

Deep Convolutional Neural Networks for Image Classification 2381

outperformed several high-performing convolutional networks such as
NIN (Lin et al., 2013), stochastic pooling DCNNs (Zeiler & Fergus, 2013),
the DCNNs presented by Jarrett et al. (2009), Maxout networks (Goodfel-
low et al., 2013), and DropConnect networks (Wan et al., 2013) on vari-
ous image classification benchmarks, including the MNIST (LeCun et al.,
1998), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer
et al., 2011) data sets. Notably, despite their successes, RCNNs (Liang &Hu,
2015) outperformed them on the CIFAR-100 data set. Furthermore, for fu-
ture DCNNs to readily incorporate decision analysis tools such as decision
trees into their architectures, further work on reducing the computational
costs and exorbitant number of model parameters required by suchmodels
is still required.

5.1.2.5 Spectral pooling. Rather than focus on the computational speed
gains of moving the convolutional operation out of the spatial domain,
similar to the work described by Mathieu, Henaff, and LeCun (2013), Rip-
pel, Snoek, and Adams (2015) proposed learning the convolutional filters
of DCNNs directly in the frequency domain. More significant, the authors
proposed spectral pooling, which projected spectral representations into
the frequency domain and then truncated these representations as an un-
conventional dimensionality-reduction technique, when compared to the
popular max pooling. More precisely, spectral pooling first computes the
discrete Fourier transform (DFT) of an input feature map x ∈ RM×N and
then crops the frequency representation by maintaining only the central
H ×W sub-matrix of frequencies that are governed by the dimensions of
the desired output feature map H ×W . Finally, the inverse DFT maps the
truncated representation back to the spatial domain. Their method pro-
vided a viable solution to the loss of spatial information associated with
max pooling (Ranzato et al., 2007; Scherer et al., 2010; Szegedy, Liu, et al.,
2015; Rippel et al., 2015) and a new form of stochastic regularization similar
to a Dropout (Hinton et al., 2012; Srivastava et al., 2014) variant, known as
Nested Dropout (Rippel, Gelbart, & Adams, 2014). On the CIFAR-10 and
CIFAR-100 benchmarks (Krizhevsky, 2009), they outperformed several of
the works already introduced in this review (Lin et al., 2013; Zeiler & Fer-
gus, 2013; Goodfellow et al., 2013; Liang & Hu, 2015), as well as the deeply
supervised DCNNs proposed by Lee, Xie, Gallagher, Zhang, and Tu (2015),
but not the combined tree-mixed pooling technique of Lee et al. (2016). The
successes described by thiswork advocate the need for further research into
hybrid DCNNs that make use of digital signal processing fundamentals to
improve the accuracy of our current classification systems.

5.1.2.6 Spatial pyramid pooling. DCNNs are restricted in that they can
only handle a fixed input image size (e.g., 96 × 96). In order to make them
more flexible and thus handle images of different sizes, scales, and aspect
ratios, inspired by the spatial pyramid matching described in papers by

2382 W. Rawat and Z. Wang

Figure 9: Conventional versus SPP DCNNs.

Grauman andDarrell (2005), Lazebnik, Schmid, and Ponce (2006), andYang
et al. (2009),He, Zhang, Ren, and Sun (2014) proposed spatial pyramidpool-
ing (SPP). They used multilevel spatial bins, which have sizes proportional
to the image size, and this allowed them to generate a fixed-length rep-
resentation, irrespective of the image size or scale. The SPP layer was in-
tegrated into DCNN architecture between the final convolutional/pooling
layer and the first fully connected layer (see Figure 9) and thus performed
information aggregation deep in the network to prevent fixing the size (via
cropping or warping) of the image at the input. Unlike stochastic (Zeiler &
Fergus, 2013) and Lp pooling (Sermanet et al., 2012), SPP is designed towork
with max pooling layers rather than replace them. Among other successes,
they set a new record on the CALTECH-101 data set (Fei-Fei et al., 2006),
beating the previous best set by Chatfield, Simonyan, Vedaldi, and Zisser-
man (2014), and they came in third in the classification component of the
ILSVRC 2014 (Russakovsky et al., 2015), behind Simonyan and Zisserman
(2014) and Szegedy, Liu, et al. (2015). Further work along these lines is re-
quired to facilitate commercial DCNN deployment on a variety of portable
devices, since this will relax the constraints placed on the image capturing
system. Furthermore, this work has shown that tried and tested computer
vision-based techniques need not be forsaken in the face of deep learning
and that room for this type of traditional computer vision integration is still
available.

5.1.2.7 Multiscale orderless pooling. Inspired by Lazebnik et al. (2006),
Gong, Wang, et al. (2014) attempted to make DCNNs more robust to in-
variance without compromising their discriminative power. Asserting that
max poolingmay not provide invariance to large-scale global deformations,
they proposed multiscale orderless pooling (MOP), which extracts patches
at multiple scales, beginning with the complete image and then pools each
scale disregarding spatial information. Specifically, they extract deep activa-
tion features from the whole image, to preserve global spatial layout, and
from local patches, to capture fine-grained details. Next, the fine-grained
details are aggregated via VLAD encoding (Jegou et al., 2012), which has

Deep Convolutional Neural Networks for Image Classification 2383

an orderless nature and thus contributes to amore invariant representation.
Finally, the initial global deep activations and the VLAD encoded features
are concatenated to form a new image representation. Their method proved
successful at a wide variety of applications, including scene classification,
data retrieval, and, most significant, image classification producing com-
petitive results on the ILSVRC 2012/2013 (Russakovsky et al., 2015). With
the ever rising size of image data sets (see Table 1), further investigation
into the merge of feature compression techniques, such as VLAD encoding
and DCNN technology, is warranted.

5.1.2.8 Transformation invariant pooling. Since the features extracted by
DCNNs lack invariance to known nuisance variations in data, inspired by
max pooling (Boureau et al., 2010) and multiple instance learning (Wu, Yu,
Huang, & Yu, 2015), Laptev, Savinov, Buhmann, and Pollefeys (2016) intro-
duced a new pooling technique to generate transformation-invariant fea-
tures. Given an input image x, they formulate new features gk(x) from a
predefined set of possible transformations φ, such that the new features are
independent of any known nuisance variations of the input. Formally, these
features are formulated in the following manner:

gk(x) = max
∅∈�

fk(∅(x)). (5.7)

Subsequently, they refer to this max pooling over transformations as
transformation-invariant pooling (TI pooling). By applying the maximum
operator, learned features are less dependent on the known nuisance varia-
tions. Furthermore, for specific transformation sets, they theoretically prove
complete transformation invariance. Similar to the SPP integration into
DCNN architecture (He et al., 2014), the authors proposed integrating TI
pooling at the same point in the network; however, they used parallel
Siamese architectures—two or more identical subnetworks that share the
same weights (Bromley et al., 1993)—and applied TI pooling at their out-
puts prior to the fully connected layers. On two variations of the MNIST
data set (Larochelle, Erhan, Courville, Bergstra, & Bengio, 2007; Jader-
berg, Simonyan, & Zisserman, 2015), which were designed to benchmark
rotation-invariant algorithms, their method obtained results comparable to
or better than other state-of-the-art DCNNs, with the added advantage of
requiring fewer model parameters since they did not use data augmenta-
tion, a popular technique for invariant tasks (Van Dyk & Meng, 2012).

5.1.2.9 Analysis and outlook. Pooling is imperative to diminish the com-
putational burden of the expensive convolutional layers; however, de-
spite the initial successes of average pooling and the contribution of max
pooling to the recent rise of DCNNs, inadequacies associated with them
(see sections 4.2.3 and 5.1.2.1) have led researchers to investigate other

2384 W. Rawat and Z. Wang

pooling strategies. Although Lp pooling is biologically plausible and there
is theoretical evidence to show it results in better generalization compared
to max pooling, the latter continues to enjoy greater popularity for image
classification tasks, probably because of its known ability to capture invari-
ance from visual data. The stochastic nature of stochastic pooling (Zeiler
& Fergus, 2013) and mixed pooling (D. Yu et al., 2014) gives them an ad-
vantage over max pooling with relation to their intrinsic ability to avoid
overfitting. The downside is that their inherent probability computations
put them at a disadvantage concerning their computational burden when
compared to other deterministic techniques such as max or average pool-
ing. The tree-based scheme of Lee et al. (2016) produced exceptional classi-
fication performance, but utilizing decision analysis tools adds complexity
and computational strain. Although SPP (He et al., 2014) addresses varia-
tions in image properties and is fast and effective, architectures that use it
cannot be trained in an end-to-end manner. While TI pooling (Laptev et al.,
2016) advances DCNN invariance, making DCNNs invariant to geometric
transformations and translations, and in particular, large-scale variances, is
still an open area of research requiring further efforts, some of which are
touched on in section 6.2.

From the analysis, we can conclude that the different pooling strategies
have various pros and cons, and thus a particular superlative and generic
strategy cannot be singled out. Although max pooling is probably the most
established, the choice of strategy will depend largely on the requirements
of a particular classification task and the resources available to accomplish
it. Some of the key factors to consider here are system complexity, since it
is possible to incorporate techniques from digital signal processing (Rippel
et al., 2015), decision analysis (Lee et al., 2016), and traditional computer
vision (He et al., 2014; Gong, Wang, et al., 2014), required classification ac-
curacy, the consequences of overfitting, and the available computational
resources. Future pooling innovations should focus on harmonizing these
conflicting requirements, while not losing cognizance of the need for them
to be biologically conceivable, so that we are able to both improve ourmod-
els and understand more about our current vision system.

5.2 NonlinearActivations. The choice of activation function affects net-
work training time, and this has a significant influence on the performance
of large DCNNs on large data sets (Krizhevsky et al., 2012). Introduced by
Nair and Hinton (2010) for deep Boltzmann machines, ReLUs were made
popular for DCNNs by Krizhevsky et al. (2012), although Glorot, Bordes,
and Bengio (2011) had already shown that they lead to faster training times
in fully supervised networks without the need for unsupervised pretrain-
ing. Figure 10 compares the training times of ReLUs (solid line) to hyper-
bolic tangent (dashed line) activations for a four-layer DCNN (Krizhevsky
et al., 2012), trained on the CIFAR-10 data set (Krizhevsky, 2009). The
DCNN with ReLUs was trained six times faster than an equivalent

Deep Convolutional Neural Networks for Image Classification 2385

Figure 10: Training times of ReLUs versus tanh activations (Krizhevsky et al.,
2012).

network that used hyperbolic tangent activations (Krizhevsky et al., 2012).
We next briefly introduce this nonsaturating activation function anddiscuss
the motivations that have led to several of their successors.

5.2.1 ReLU Activations. Traditional activation functions, such as the sig-
moid or hyperbolic tangent are given by f (x) = 1/(1 + e − x) and f (x) =
tanh(x), respectively, where f is the neuron’s output as a function of its in-
put x (the samenotation is used for the remainder of the activation functions
that follow). The ReLU (Nair & Hinton, 2010), a piecewise linear function,
has the simplified form f (x) = max(x, 0). The ReLU retains only the posi-
tive part of the activation, by reducing the negative part to zero, while the
integrated maximum operator promotes faster computation. The ReLU has
been used in several state-of-the-art image classification systems (Zeiler &
Fergus, 2013, 2014; Lin et al., 2013; Gong, Wang, et al., 2014; Simonyan &
Zisserman, 2014; Szegedy, Vanhoucke et al., 2015; Szegedy, Liu et al., 2015).
An in-depth discussion and further motivations on them can be found in
the work presented by Glorot et al. (2011).

5.2.2 LReLU Activations. Even though ReLUs (Nair &Hinton, 2010) lead
to faster convergence (Nair & Hinton, 2010; Glorot et al., 2011; Krizhevsky
et al., 2012; Maas, Hannun, & Ng, 2013) and do not suffer from the vanish-
ing gradient problem, in which the lower layers have gradients near zero
because high layers are almost saturated (Bengio, Simard, & Frasconi, 1994),
they are at a possible disadvantage during optimization since the gradient
is zero when the unit is not active (Glorot et al., 2011; Maas et al., 2013). This

2386 W. Rawat and Z. Wang

may lead to cases where units never get activated, since popular gradient
descent optimization algorithms fine-tune only the weights of units previ-
ously activated. Thus, similar to the vanishing gradient problem, ReLUs
suffer from slow convergence when training networks with constant zero
gradients. To compensate for this, Maas et al. (2013) introduced leaky rec-
tified linear units (LReLU), which allow for small nonzero gradients when
the unit is not active yet is saturated. Mathematically, the LReLU is given
by

f (x) = max(x, 0) + λmin(x, 0), (5.8)

where λ is a predefined parameter within the range (0, 1). LReLUs were
initially applied to acoustic models (Maas et al., 2013); however, Xu et al.
(2015) found that they perform slightly better than ReLU for image clas-
sification tasks after conducting an empirical evaluation on the CIFAR-10
and CIFAR-100 data sets (Krizhevsky, 2009). A measure on the modern
ImageNet (Russakovsky et al., 2015) will facilitate the comparison of this
rectification-based nonlinearity to other similar activations.

5.2.3 PReLU Activations. While LReLUs (Maas et al., 2013) rely on a pre-
defined parameter to compress the negative part of the activation signal, He
et al. (2015a) proposed a parametric rectified linear unit (PReLU) to adap-
tively learn the parameters of the activation units during backpropagation.
Mathematically, the PReLU is the same as the LReLU, except that λ is re-
placed with the learnable λk, which is allowed to vary for different input
channels, denoted by k. Thus, the PReLU can be expressed as

f (xk) = max(xk, 0) + λkmin(xk, 0). (5.9)

Utilizing a previously designed DCNN model and training implementa-
tion (He & Sun, 2015), He et al. (2015a) compared the performance of
ReLUs (Nair & Hinton, 2010) to PReLUs and found a greater than 1%
performance increase on the ILSVC data set (Russakovsky et al., 2015). Fur-
thermore, when this method was combined with a robust weight initializa-
tion method that specifically considered the rectified nonlinearities, they
surpassed human-level performance for the first time on this challenging
benchmark (Russakovsky et al., 2015). At the time, their results were the
state of the art on this data set, and although outside of the yearly competi-
tion, they beat the winning entry from 2014 (Simonyan & Zisserman, 2014).
Despite this, Xu et al. (2015) found that the PReLU always performed bet-
ter than other rectified units, such as the ReLU (Nair & Hinton, 2010) and
LReLU (Zeiler & Fergus, 2014), on the training set, thus alerting to the fact
that they suffer from a severe overfitting problem on smaller data sets.

Deep Convolutional Neural Networks for Image Classification 2387

5.2.4 APL Activations. Similar to PReLUs (He et al., 2015a), Agostinelli,
Hoffman, Sadowski, and Baldi (2014) concurrently proposed adaptive
piecewise linear (APL) activation functions, which are parameterized, learn
independently for every neuron by using conventional gradient descent,
and can represent both convex and nonconvex functions of the input.Math-
ematically, the APL is expressed as the sum of hinge-shaped functions,

hi(x) = max(0, x) +
S=1�

s

asi max(0, −x + bsi), (5.10)

where S is the number of hinges, which is a hyperparameter set in advance,
and the variables asi , b

s
i for i ∈ 1, . . . ,S are learned during training. In equa-

tion 5.7, the asi variables control the slopes of the linear segments, while
the location of the hinges is determined by the bsi variables. Although they
obtained new state-of-the-art results on the CIFAR-10 and CIFAR-100 data
sets (Krizhevsky, 2009), beating the high-performing NIN (Lin et al., 2013),
unlike PReLUs (He et al., 2015a), their image classification experimentation
did not include the challenging ILSVRC data set (Russakovsky et al., 2015).
Thus, the relative performance between these similar techniques cannot be
evaluated.

5.2.5 RReLU Activations. In order to address the overfitting problem as-
sociated with the PReLU (He et al., 2015a), the randomized rectified lin-
ear unit (RReLU) was proposed in a Kaggle National Data Science Bowl
Competition (National Data Science Bowl |Kaggle, 2016). For RReLUs, the
negative components of the activation function are randomly selected from
a uniform distribution during training. During testing, they are averaged,
similar to the Dropout technique (Hinton et al., 2012; Srivastava et al., 2014)
before being fixed, thus allowing them to obtain a deterministic result (Xu
et al., 2015). Mathematically, the PReLU can be expressed as

f (x(n)k) = max(x(n)k , 0) + λ
(n)
k min(x(n)k , 0), (5.11)

where λ
(n)
k denotes the randomized sampled parameter on the kth channel

of the nth example. On the CIFAR-10 and CIFAR-100 (Krizhevsky, 2009),
and a private plankton classification data set (National Data Science Bowl |
Kaggle, 2016), their classification accuracy outperformed the ReLU (Nair &
Hinton, 2010), LReLU (Maas et al., 2013), and PReLU activations (He et al.,
2015a).

5.2.6 ELU Activations. While ReLUs (Nair & Hinton, 2010), LReLUs
(Maas et al., 2013), and PReLUs (He et al., 2015a) are all nonsaturating and
thus lessen the vanishing gradient problem (Bengio et al., 1994), only ReLUs

2388 W. Rawat and Z. Wang

ensure a noise-robust deactivation state (Nair & Hinton, 2010; Clevert, Un-
terthiner, &Hochreiter, 2016); however, they are nonnegative and thus have
a mean activation larger than zero. To deal with this, Clevert et al. (2016)
proposed the exponential linear unit (ELU), which has negative values to
allow for activations near zero, but also saturates to a negative value with
smaller arguments. Since the saturation decreases the variation of the units
when deactivated, the precise deactivation argument becomes less relevant,
thereby making ELUs robust against noise. Formally:

f (x) = max(x, 0) + min(λ(ex−1), 0), (5.12)

where λ is a predetermined parameter that controls the amount an ELU
will saturate for negative inputs. ELUs sped up DCNN learning and led
to higher classification accuracy when compared to other activation func-
tions such as ReLUs. In particular, among other successes, they set a new
record on the CIFAR-100 data set (Krizhevsky, 2009), beating the previous
best obtained by the fractional max pooling DCNNs proposed by Graham
(2014), and they obtained encouraging convergence speeds on the stimu-
lating ImageNet (Russakovsky et al., 2015). Even though these activations
provide promising image classification results and considerably reduce the
computational strain on DCNNs, further experimentation using them, in
particular with different architectures, is required.

5.2.7 SReLU Activations. Despite the successes of ReLUs (Nair & Hin-
ton, 2010), LReLUs (Maas et al., 2013), and PReLUs (He et al., 2015a),
they all have a limited ability to learn nonlinear transformations. Specif-
ically, since all of these activations are convex, they are not able to learn
nonconvex functions. Although the APL activation can approximate con-
vex functions, it does so with inappropriate constraints that undermine its
representation ability. To alleviate these concerns, taking inspiration from
psychophysics and neural sciences, Jin et al. (2015) proposed a new type of
activation, called the S-shaped rectified linear unit (SReLU). This activation
combines three linear functions and performs a R → R mapping with the
following mathematical expression:

f (xi) =

�
�

��

tri + ari (xi − tri), xi ≥ tri

xi, tri > xi > tli

tli + ali (xi − tli), xi ≥ tli

, (5.13)

where {tri , a
r
i , t

l
i , a

l
i} are the learnable parameters used to model each indi-

vidual SReLU activation unit, and the subscript i indicates that SReLUs are
allowed to vary on different input channels. Briefly, in the positive direc-
tion, when the inputs exceed the threshold tri , the slope of the right line
of the activation curve is given by ari , while tli represents a symmetrical

Deep Convolutional Neural Networks for Image Classification 2389

threshold in the negative direction. For inputs smaller than tli , the left line
of the activation curve calculates the outputs. For inputs within the range
(tli , t

r
i), the outputs are linear functions with a slope of one and no bias. SRe-

LUs were incorporated into the state-of-the-art models of Lin et al. (2013)
and Szegedy, Liu, et al. (2015), and the empirical results attained, after sev-
eral image classification experiments on the MNIST (LeCun et al., 1998),
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and ILSVRC (Russakovsky
et al., 2015) data sets, illustrated their superiority over several other high-
performing activations (Nair & Hinton, 2010; Goodfellow et al., 2013; Maas
et al., 2013; He et al., 2015a; Xu et al., 2015). With this promising outcome,
it is interesting to think about whether future deep learning advances will
also rely on further inspiration from psychophysics and neural sciences.

5.2.8 Maxout and Probout Activations. Goodfellow et al. (2013) proposed
an alternative to the several rectification-based activation units called Max-
out, which are activations that output the maximum value from a set of
inputs. For a given input x ∈ Rd, a hidden layer in a Maxout network im-
plements the following activation function,

f (xi) = max
j∈[1,k]

xTW···i j + bi j, (5.14)

where W ∈ Rd×m×k and b ∈ Rm×k are both learnable parameters. Specif-
ically, for a DCNN, a Maxout feature map can be attained by taking
the maximum across k affine feature maps, which corresponds to a sub-
space pooling across channels in additional spatial locations. In addition to
achieving state-of-the-art image classification results on several popular
benchmarks, the authors provided empirical proof that Maxout was well
suited for DCNN training with Dropout (Hinton et al., 2012; Srivastava
et al., 2014), and that it aided in model averaging and DCNN optimiza-
tion. Despite this, it suffers from the same faith as ReLUs (Nair & Hinton,
2010), LReLUs (Maas et al., 2013), and PReLUs (He et al., 2015a) concerning
their inability to learn nonconvex functions; furthermore, it requires a large
number of extra parameters, which increases the storage andmemory costs
and requires a significantly longer training time (Jin et al., 2015).

As mentioned above, Maxout (Goodfellow et al., 2013) performs a sub-
space pooling operation over a group of linear transformations, and this
makes it partially invariant to variations in the input. In order to improve
this invariance property and maintain the desirable properties of Maxout
units, Springenberg and Riedmiller (2013) proposed a probabilistic vari-
ant of Maxout, called Probout, in which the maximum operator is replaced
with a probabilisti sampling technique. On the CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) and SVHN (Netzer et al., 2011) data sets, Probout ac-
tivations achieved better classification results compared to Maxout acti-
vations; however, in comparison to their competitors, they have a greater

2390 W. Rawat and Z. Wang

computational burden due to their inherent yet computationally expensive
probability calculations.

5.2.9 Analysis and Outlook. Using the correct nonlinear activation for a
specific task improves the classification accuracy and computational perfor-
mance of a DCNN. Although our initial models used sigmoid activations,
they saturate during backpropagation, which exterminates the local gradi-
ent, and they negatively affect network dynamics during gradient descent,
since their outputs are nonzero centred. This led to the development of the
popular ReLU (Nair & Hinton, 2010) activation, which significantly accel-
erates network convergence. However, when large gradients pass through
them during network training, they may irreversibly perish, and this led to
other innovations such as the ReLU (Maas et al., 2013), PReLU (He et al.,
2015a), and APL activations (Agostinelli et al., 2014). Despite the promis-
ing empirical results of these methods, further investigation to gauge their
reliability on diverse classification tasks still needs to be conducted. ELU
Clevert et al. (2016) and SReLU (Jin et al., 2015) activations have addressed
other shortcomings of ReLUs, such as their positive mean activation and
inability to deal with nonconvex functions, but their consistency is also rel-
atively uncertified. Furthermore, activations such as Maxout and Probout
appear particularly well suited to training DCNNs with Dropout (Hinton
et al., 2012), but they require a high number of parameters and can be com-
putationally exorbitant, therefore advocating the need for further innova-
tions in this area.

From this analysis, we can conclude there is no clear-cut solution for
which activation to use for a specific task, but a trial-and-error approach
starting with ReLUs and progressing to the other activations and that mon-
itors their shortfalls against required performance can be adopted.While an
interesting future direction is to combine the use of different activation func-
tionswithin the sameDCNNmodel for their diverse benefits, a detailed the-
oretical analysis of why our current rectification-based activations succeed
empirically is also of paramount importance. To supplement this, although
it has been proven by Baldi and Sadowski (2013, 2014) that any continuous,
twice-differentiable piece-wise activation function, of which ReLUs are a
special case, can be used in conjunction with the Dropout model averag-
ing technique (Hinton et al., 2012; Goodfellow et al., 2013; Srivastava et al.,
2014; see sections 5.4.1 and 5.4.3), the effect of the different activations on
the generalization characteristics of Dropout or even other regularization
techniques still needs to be fundamentally analyzed, thus opening up the
door for stimulating future work.

5.3 Supervision Component. After the innovative work of Krizhevsky
et al. (2012), the preceding unsupervised DCNNpretrainingmethods (Ran-
zato et al., 2006, 2007; Weston et al., 2008; Ahmed et al., 2008; Jarrett et al.,
2009; Lee et al., 2009; LeCun et al., 2010) were largely abandoned for fully

Deep Convolutional Neural Networks for Image Classification 2391

supervised training. In general, learning in DCNNs is achieved by mini-
mizing a specific loss function, with the most common classification loss
being the softmax loss (Krizhevsky et al., 2012; Lin et al., 2013; Goodfellow
et al., 2013; Zeiler & Fergus, 2013, 2014; Chatfield et al., 2014; Simonyan &
Zisserman, 2014; Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke, et al., 2015;
He et al., 2015a, 2015b). In this section, we briefly introduce this loss and
deal with some motivations for using alternative losses in DCNNs.

5.3.1 Softmax Loss. The softmax activation function is widely used in the
last fully connected layer of DCNNs, owing to its simplicity and probabilis-
tic interpretation.When this activation function is combinedwith the cross-
entropy loss (or multinomial logistic regression) in the last fully connected
layer of a DCNN, they form the extensively used softmax loss. Formally, for
the ith input feature xi that has a corresponding label yi, the softmax loss can
be written as

L =
1

N

�

i

Li =
1

N

�

i

− log

�
e fyi

j e

f j

�

, (5.15)

where the jth element (j ∈ [1,K],K is the number of classes) of the vector
of class scores f is represented by f j, and N is the amount of training data.
For this loss, f is typically the activations of a fully connected layerW ; thus,
fyi , can be denoted as fyi = WT

yi
xi in whichWyi is the yith column ofW (Liu,

Wen, Scut, Yu, & Yang, 2016).

5.3.2 Contrastive and Triplet Losses. In order to enforce further intra-
class compactness and interclass separability, and thus reinforce DCNNs
with more discriminative information, the contrastive loss, also called the
margin-based loss (Hadsell, Chopra, & LeCun, 2006), and the triplet loss
(Schroff, Kalenichenko, & Philbin, 2015), were independently proposed
(Liu, Wen et al., 2016). The contrastive loss was first implemented in a
Siamese DCNN to reduce the dimensionality of data by learning mappings
that are invariant to geometric distortions (Hadsell et al., 2006), while the
embedded DCNNs described by Weston et al. (2008), combined it with the
hinge loss for image classification and semantic role labeling tasks. Other
image classification–related applications that have used the contrastive loss
as part ofDCNNarchitecture include face representation (Sun, Chen,Wang,
& Tang, 2014) and visual similarity for visual search (Bell & Bala, 2015),
where the contrastive loss was used in combination with the softmax loss.
Furthermore, it was also used for image instance retrieval (Lin, Morere,
Chandrasekhar, Veillard, & Goh, 2015), in which the authors proposed a
double-margin loss. For the contrastive loss, the loss function runs over
pairs of samples, which is dissimilar to conservative systems, where it is
the run over individual samples. Formally, as introduced by Hadsell et al.

2392 W. Rawat and Z. Wang

(2006), for a pair of input vectors
−→
X1 ,

−→
X2 ∈ I, with binary label Y(if Y = 0

−→
X1 and

−→
X2 are deemed similar and Y = 1 if dissimilar), the general form of

the contrastive loss is

L =
P�

i=1

L(W, (Y,
−→
X1 ,

−→
X2)

i
) = (1 −Y)LS(D

i
W) +YLD(D

i
W), (5.16)

whereDW (
−→
X1 ,

−→
X2) is written asDW (to shorten notation), (Y,

−→
X1 ,

−→
X2)

i
is the

ith labeled sample pair, the partial loss function for a pair of similar points
and dissimilar points is represented by LS and LD, respectively, and P rep-
resents the number of training pairs.

The triplet loss for DCNNs (Schroff et al., 2015), which was previously
used for large-margin nearest-neighbor classification (Weinberger, Blitzer,
& Saul, 2005), requires training samples in multiples of three. It minimizes
the distance between a shared identity anchor sample and a positive sam-
ple while maximizing the distance between the anchor sample and a nega-
tive sample that has a different identity. Formally, for face classification, the
minimized loss L is then

L =
N�

i

[‖ f (xai) − f (xai)‖
2
2 − ‖ f (xai) − f (xni)‖

2
2 + α]+, (5.17)

where xai , is an anchor image of a specific person, x
p
i are positive images of

the same person, negative images of any other person are denoted by xni , α is
the enforcedmargin betweenpositive andnegative pairs, andN is the cardi-
nality of all the possible triplets in the training set. For the triplet loss, the an-
chor image needs to be closer to all other positive images of the same person
than it is to any negative image of any other person. By combining the triplet
loss with embedded image mappings, optimized by a DCNN, to a compact
Euclidean space in which distance corresponds directly to face similarity,
Schroff et al. (2015) achieved the best published results on the popular La-
belled Faces in the Wild (LFW; Huang, Ramesh, Berg, & Learned-Miller,
2007) and YouTube Faces (Wolf, Hassner, & Maoz, 2011) databases. These
results were a significant improvement compared to the previous best error
rates reported in the literature (Sun, Wang, & Tang, 2015).

The LWF data set (Huang et al., 2007) was introduced in 2007 and has
since become the de facto academic standard for face verification and iden-
tification (Sun, Chen et al., 2014; Taigman, Yang, Ranzato, & Wolf, 2014;
Schroff et al., 2015; Zhou, Cao, & Yin, 2015). Initially, most face verifica-
tion and identification attempts on this data set used individual or com-
bined feature extractors, with the leading systems (Barkan, Weill, Wolf, &
Aronowitz, 2013; Cao, Wipf, Wen, Duan, & Sun, 2013; Chen, Cao, Wen,
& Sun, 2013) using greater than 10,000 image descriptors. However, more

Deep Convolutional Neural Networks for Image Classification 2393

recently, fully supervised DCNNs have been at the heart of most of the
top-achieving systems, as illustrated by Table 3. The table compares the
accuracy of the highest-performing DCNNs against human-level perfor-
mance (HLP; Kumar, Berg, Belhumeur, &Naya, 2009). For significance, only
the results published in academic papers are included; further results, in-
cluding non-DCNN techniques, are deliberated in the data sets–related sur-
vey paper (Learned-Miller, Huang, RoyChowdhury, Li, & Hua, 2016). De-
spite these successes, the mechanisms used by the human brain to be able
to easily identify and recognize faces, in a short period of time, are still
at large. Interestingly, it may be possible that the central nervous system
has evolved to process faces in a different fashion when compared to ob-
jects (Leibo, Mutch, & Poggio, 2011), and thus future face classification and
recognition DCNNmodels may need to incorporate this type of evidence.

5.3.3 Large Margin Loss. Asserting that a larger angular similarity will
lead to larger angular seperability between learned features, which in turn
will result in the generation of more discriminative features, Liu, Wen et al.
(2016) introduced an angular margin between the input feature vector and
theweightmatrix for amore general, large-margin softmax loss, which they
called the large-margin softmax (L-Softmax). Formally, the L-Softmax is de-
fined as

L-Softmax = − log

�
e‖Wyi

‖‖xi‖ψ (θYi)

e‖Wyi
‖‖xi‖ψ (θYi)+

j �=yi

e
‖Wj‖‖xi‖cos(θ j)

�

, (5.18)

in which

ψ (θ) =

�

�

cos (mθ), 0 ≤ θ ≤ π
2

D(θ),
π

m
≤ θ ≤ π

, (5.19)

where θ j is the angularmargin, a(i) is the input vector,w j is the jth column of
the weight matrix, and m regulates the margin among classes. In addition
to fashioning more discriminative features, other desirable advantages of
the L-Softmax include the fact that its geometric interpretation is very clear
and that it partially avoids overfitting.When applied to image classification
tasks, it outperformed the original softmax loss (for the same architecture)
and achieved results onparwith the state of the art for theMNISTdata set. It
also accomplished new state-of-the-art results on the CIFAR-10 and CIFAR-
100 data sets (LeCun et al., 1998; Krizhevsky, 2009; Bulo & Kontschieder,
2014; Liang & Hu, 2015; Liu, Wen, et al., 2016).

While others have proposed using a specially designed hybrid loss func-
tion that combines the negative logarithm of a normalized value with
weighted errors of varying order to improve the adversarial robustness

2394 W. Rawat and Z. Wang

T
ab

le
3:

D
C
N
N

P
er
fo
rm

an
ce

o
n
L
F
W

D
at
a
S
et
.

N
u
m
b
er

N
u
m
b
er

M
o
d
el

D
es
cr
ip
ti
o
n

o
f
L
ay

er
s

o
f
M
o
d
el
s

A
cc
u
ra
cy

H
.P

R
ef
er
en

ce

C
an

o
n
ic
al

v
ie
w

D
C
N
N

D
C
N
N
,P

C
A
,S

V
M

7
60

96
.4
5

±
0.
25

97
.5
3

Z
h
u
,L

u
o
,W

an
g
,&

T
an

g
,2

01
4

D
ee
p
F
ac
e

3D
F
ac
e
m
o
d
el
li
n
g
,D

C
N
N

8
4

97
.3
5

±
0.
25

97
.5
3

T
ai
g
m
an

et
al
.,
20

14
D
ee
p
ID

D
C
N
N
,P

C
A

7
60

97
.4
5

±
0.
26

97
.5
3

S
u
n
,W

an
g
,&

T
an

g
,2

01
4

D
ee
p
ID

2
D
C
N
N
,P

C
A
,c
o
m
b
in
ed

lo
ss

7
25

99
.1
5

±
0.
15

97
.5
3

S
u
n
,C

h
en

et
al
.,
20

14
D
ee
p
ID

2+
D
C
N
N
,P

C
A
,l
o
ss

at
m
u
lt
ip
le

la
y
er
s

7
25

99
.4
7

±
0.
12

97
.5
3

S
u
n
,W

an
g
,&

T
an

g
,2

01
5

F
ac
e+

+
D
C
N
N
,P

C
A

10
1

99
.5
0

±
0.
36

97
.5
3

Z
h
o
u
et

al
.,
20

15
D
ee
p
ID

3
D
C
N
N
,I
n
ce
p
ti
o
n
la
y
er
s,
P
C
A

10
–1

5
25

99
.5
3

±
0.
10

97
.5
3

S
u
n
,L

ia
n
g
et

al
.,
20

15
;S

ze
g
ed

y,
V
an

h
o
u
ck

e
et

al
.,
20

15
F
ac
eN

et
D
C
N
N
,t
ri
p
le
t
lo
ss
,e
m
b
ed

d
ed

im
ag

es
22

1
99
.6
3

±
0.
09

97
.5
3

S
ch

ro
ff
et

al
.,
20

15

N
o
te
:T

h
e
ac
cu

ra
cy

o
f
th
e
m
o
d
el
s
in

it
al
ic
s
h
as

su
rp
as
se
d
h
u
m
an

-l
ev

el
p
er
fo
rm

an
ce
s.

Deep Convolutional Neural Networks for Image Classification 2395

(see section 6.4) of DCNNs (Zhao & Griffin, 2016), the application of the
L-Softmax loss to this specific challenge is still at large. Specifically, since
this loss results in the generation of more discriminative features, its ap-
plication to the challenge of adversarial examples will contribute to under-
standing if holistic changes to the way we train DCNNs are required to
address their remaining challenges.

5.3.4 L2-SVM Loss. While SVMs have previously been used in combina-
tion with CNNs (i.e., by replacing the softmax layer with an SVM) for im-
proved classification performance (Huang & LeCun, 2006; Lee et al., 2009;
Coates et al., 2011), the downside is that the lower-level features of the CNN
are not learned with respect to the SVM’s objective. To address this issue,
Collobert and Bengio (2004) and Nagi, Di Caro, Giusti, Nagi, and Gam-
bardella (2012) proposed joint training at the lower levels by, respectively,
introducing new cost functions to integrate SVMs with MLPs and CNNs.
Inspired by this, Tang (2013) also proposed integrating SVMs with DCNNs
but they replaced the standard SVM hinge loss (L1-SVM) with the L2-SVM
loss (Hinton, 1989). When compared to the L1-SVM loss, the L2-SVM loss
is differentiable and penalizes errors more profoundly. SVMs were initially
formulated for binary classification. Therefore, given training samples and
their corresponding labels (xn, yn),n = 1, . . . ,N, xn ∈ RD, tn ∈ {−1, +1}, the
L2-SVMminimizes the squared hinge loss, denoted formally by the follow-
ing unconstrained optimization problem,

min
w

1

2
wTW +C

N�

n=1

max (1 − wTxntn, 0)
2
, (5.20)

where W is the weight connecting the penultimate layer to the softmax
layer. The class label for test data x can be predicted by arg maxt (wTx)t,
while for a multiclass SVM (Vapnik, 1995), where the output of the kth SVM
is denoted as ak(x) = wTx, the predicted class is argmaxk ak(x). When com-
pared to the conventional softmax loss, for the sameDCNNarchitecture, the
L2-SVM loss showed improved classification performance on the CIFAR-10
data set (Krizhevsky, 2009), obtaining results comparable with the current
(at the time) state of the art, which utilized amuchmore complexmodel that
included contrast normalization layers and Bayesian parameter fine tuning
(Snoek, Larochelle, & Adams, 2012).

5.3.5 Analysis and Outlook. The softmax loss is an extremely popular
choice for CNNs owing to its simplicity, probabilistic elucidation, and the
intuitive output it produces. However, to furnish CNNs with the ability to
extract more discriminative features, other losses, such as the contrastive
loss (Hadsell et al., 2006) and the triplet loss (Schroff et al., 2015), were sug-
gested. Although these losses encourage discriminative learning, a conse-
quent problem is that in theory, the number of required training pairs or

2396 W. Rawat and Z. Wang

triplets can go up toO(N2), whereN is the total number of training samples.
Moreover, for a large data set, like the data set used for the ILSVRC (Rus-
sakovsky et al., 2015), which consists of over 1 million images, the subset
of training samples will require careful online or offline selection for both
of these losses. This led to the recently proposed coupled clusters loss (see
Liu, Tian, Yang, Pang, & Huang, 2016), which accelerated network conver-
gence and stabilized the training process. Although it produced promising
vehicle reidentification results, more traditional classification tasks are yet
to be tested. Despite its benefits andwell-established and acceptable perfor-
mance, the softmax loss does not explicitly encourage intraclass compact-
ness and interclass separability. It uses the cosine distance between classes
for its classification score; thus, the predication of a label for a given input is
determined predominantly by the angular similarity to each class. This in-
spired the proposal of the L-Softmax loss (Liu, Tian et al., 2016), which still
needs to be commissioned on DCNN’s open issues (see sections 5.3.3 and
6.4). Integrating the L2-SVM loss, traditionally associated with SVMs, facil-
itated improved classification accuracy, but like the coupled clusters loss,
its consistency across diverse tasks remains unknown.

Despite the innovations summarized above, the softmax loss remains a
reputable choice for traditional academic benchmarks such as MNIST (Le-
Cun et al., 1998) and ImageNet (Russakovsky et al., 2015), or other tasks
where a single output class (label) per image is required. For real-world
tasks requiring multiple classes per image, per class multiple logistic re-
gression is recommended as a starting point. Based on the requirements of
the task, experimentation with the other losses mentioned in this section
can be explored. For example, fine-grained classification could benefit par-
ticularly by employing the coupled clusters loss, while for face verification
or other verification tasks not constrained by computational resources, the
triplet loss could produce excellent verification performance. In closing, it is
recommended that future work should challenge the development of novel
loss functions that address DCNN’s open issues, supporting the work pro-
posed by Zhao and Griffin (2016), while the use of other multiclass SVM
formulations, or even other classifiers such as RBFs, which further investi-
gate the performance improvements presented by LeCun et al. (1998) and
Tang (2013), should also be explored.

5.4 Regularization Mechanisms. DCNNs are very expressive models,
capable of learning exceptionally complicated relationships between their
inputs and outputs. However, with limited training data, even for larger
data sets (Krizhevsky et al., 2012), many of these complicated mappings
are due to sampling noise. Thus they exist in the training set rather than
in the test set, irrespective of whether they are drawn from the same data
distribution. This leads to overfitting, which can bemitigated by regulariza-
tion. Although the easiest and most common method to reduce overfitting
is data augmentation (LeCun et al., 1998; Simard et al., 2003; Ciresan et al.,
2011, 2012; Krizhevsky et al., 2012; Montavon et al., 2012; Chatfield et al.,

Deep Convolutional Neural Networks for Image Classification 2397

2014), it requires a larger memory footprint and comes at a higher com-
putational cost (Szegedy, Liu, et al., 2015). Furthermore, despite the reg-
ularization effects of several other diverse methods, including L1 and L2
regularization, stopping training early, stochastic pooling (Zeiler & Fergus,
2013), unique activation functions (He et al., 2015a; Xu et al., 2015), model
averaging (Goodfellow et al., 2013; Srivastava et al., 2014), novel loss func-
tions (Liu, Wen et al., 2016), and soft-weight sharing (Nowlan & Hinton,
1992), the successful application of Dropout (Hinton et al., 2012; Srivastava
et al., 2014) to DCNNs (Krizhevsky et al., 2012) has led to its extensive use
and inspired numerous improvements. We next provide a formal descrip-
tion of Dropout and discuss several of its variants. We also introduce some
of the latest regularization developments that can be used in conjunction
with Dropout.

5.4.1 Dropout. In Dropout (Hinton et al., 2012; Srivastava et al., 2014),
each unit of a layer’s output is retained with probability p; else, it is
set to zero with probability 1 − p, with 0.5 being a common value of p
(Krizhevsky et al., 2012; Hinton et al., 2012). When Dropout is applied to
a fully connected layer of a DCNN (or any DNN), the output of the layer
r = [r1, r2,, . . . , rd]

T , can be expressed as

r = m � a(Wv), (5.21)

where � denotes the element-wise product between a binary mask vectorm
and the matrix product between the input vector v = [v1, v2,, . . . , vn]T and
the weight matrixW (with dimensions d × n), followed by a nonlinear ac-
tivation function, a. In equation 5.16, the binary mask vector has size d, and
each element j is drawn independently from a Bernoulli(p) distribution m j,
while the biases are included inW and fixed to one for simplicity (Wan et al.,
2013). The primary benefit of Dropout is its proven ability to significantly
reduce overfitting by effectively preventing feature coadaptation (Hinton
et al., 2012); it is also capable of attaining model averaging (Goodfellow
et al., 2013; Srivastava et al., 2014). Further, to the various improvements and
Dropout variants discussed below, Wager, Wang, and Liang (2013) high-
lighted its adaptive regularization characteristics; its efficiency and ensem-
ble learning characteristics were examined by Warde-Farley, Goodfellow,
Courville, and Bengio (2013), while Baldi and Sadowski (2013, 2014) pro-
vided a detailed mathematical analysis of its static and dynamic properties
and characterized its averaging properties for DNNs by formal recursive
equations.

5.4.1.1 Fast dropout. Despite the highlighted advantages of Dropout
(Hinton et al., 2012; Srivastava et al., 2014), the actual sampling or train-
ing of multiple models makes training slower. Furthermore, in the case of

2398 W. Rawat and Z. Wang

nonredundant data, depending on the how the data are sampled, train-
ing efficiency may be further reduced. To assuage these concerns yet still
achieve the advantages of Dropout trainingwithout actually sampling, and
thus use all the data efficiently, Wang and Manning (2013) proposed Fast
Dropout. Fast Dropout training is accomplished by sampling from or in-
tegrating with a gaussian approximation, which is justified by the central
limit theorem and empirical evidence. Specifically, when Fast Dropout is
integrated with the commonly used softmax loss, the loss can be computed
by the following loss function:

L = Es∼N(µ,

)

�

�
|y|�

i=1

ti log(softmax(S)i)

�

� , (5.22)

where samples are taken directly from an input gaussian approximation,
with S ∈ R|y|, and the set y represents all the possible predications. Fast
Dropout can also be integrated with the hinge loss traditionally associated
with SVMs (see section 5.3.4) and the Maxout technique (Goodfellow et al.,
2013) and has produced promising results on regression, document classi-
fication, and, most significant, noteworthy speed gains on image classifi-
cation tasks benchmarked on the CIFAR-10 (Krizhevsky, 2009) and MNIST
data sets (LeCun et al., 1998). Although training with backpropagation is
possible with certain limitations (see section 5.4.3), further research to as-
sert its benefits and shortcomings when applied to different DCNN archi-
tectures is still required.

5.4.1.2 Adaptive dropout (standout). Since Dropout (Hinton et al., 2012)
uses a constant probability to randomly drop units, it is conceivable that
even units that can make confident predictions for the presence or ab-
sence of a feature will be dropped 50% (if p = 0.5) of the time. Motivated
to improve this, Ba and Frey (2013) presented a Dropout variation, called
Standout, in which a binary belief network that shares parameters with
a deep network computes the Dropout probability for each hidden unit.
More specifically, the dropout probability is adaptive, and unlike in stan-
dard Dropout, where the unit activity is masked by a Bernoulli(p) distribu-
tion m j, with probability 0.5, in Standout it depends on the input activities

P(m j = 1|{ai : i < j}) = f

�

�
�

i:i< j

π j,ia,i

�

	 , (5.23)

where the weight from unit i to unit j in the adaptive dropout network is
denoted by π j,i and f (·) is a sigmoidal function, with f : R → [0, 1]. With
this method, units that make confident predications for the presence of

Deep Convolutional Neural Networks for Image Classification 2399

features have a higher probability of being retained, and vice versa. The
paper’s empirical work on popular classification benchmarks did not in-
clude experiments onDCNNs; however, since Standout is designed towork
with backpropagation, using stochastic gradient descent, it seems plausible
to incorporate it into DCNN architecture for image classification–related
applications.

5.4.1.3 Multinomial dropout and evolutional dropout. Asserting that stan-
dard Dropout (Hinton et al., 2012) resulted in suboptimal convergence and
that it was more logical to use nonuniform multinomial sampling proba-
bilities for different neurons and their associated features, Li, Gong, and
Yang (2016) freshly proposed multinomial dropout. More specifically, to
determine the optimal Dropout probabilities rather than the original tech-
nique that determined them independently and identically and to jus-
tify the application of multinomial sampling to shallow learning systems,
they formally established a risk bound for stochastic optimization with
multinomial dropout. This allowed them to attain, by minimizing a sam-
pling reliant factor from the risk bound, a distribution-dependent dropout.
This distribution-dependent dropout demanded sampling probabilities
thatwere based on the second-order statistics of the data distribution. Based
on this multinomial distribution-dependent dropout, they proposed an ef-
ficient yet adaptive Dropout version called Evolutional Dropout, with the
objective of solving the deep learning issue of internal covariate shift, which
is discussed further in section 5.5.3.

The dropout probabilities for Evolutional Dropout can be computed by
the following expression,

pli =

�
1
m

 m
j=1[X

l
j]
2
i]

 d
i′

�
1
m

 m
j=1[X

l
j]
2
i′]

, i = 1, . . . , d, (5.24)

where the probabilities pli evolve as the output layers’ distribution evolves
(hence, the name Evolution), and the outputs of the lth layer, for a mini-
batch of m examples is represented by X l = (X l, . . . ,X l

m). On popular
image classification benchmarks such as MNIST (LeCun et al., 1998),
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer et al.,
2011), they provided empirical proof that these latest Dropout additions
lead to faster convergence and smaller testing error when compared to
vanilla Dropout, advocating the need for further investigation.

5.4.1.4 Spatial dropout. In an object localization application that used a
DCNN, the authors found that applying regular Dropout before a 1× 1 con-
volution layer (see the paper for detailed architecture) increased the training
time but did not prevent overfitting. Thus, they proposed Spatial Dropout

2400 W. Rawat and Z. Wang

(Tompson, Goroshin, Jain, LeCun, & Bregler, 2015). Specifically, for a given
convolutional feature tensor, with dimensions n f eats × height × width, they
performed only n f eats Dropout and used the entire featuremap to extend the
Dropout value. Subsequently, adjacent pixels in a dropped-out feature map
were either all zero (omitted) or all active. Initial results indicate that Spatial
Dropout is well suited to a data set that has a small number of training sam-
ples, thus making it a good candidate to reduce overfitting for smaller data
sets, where generalization is usually an issue. Furthermore, although the
method demonstrated promising results in human pose and joint motion
estimation, further work is warranted for classification-specific tasks. In
particular, its application to fine-grained classification seems conceivable,
since the technique recovers information lost during the pooling operation
without losing the computational gains achieved by pooling.

5.4.1.5 Nested dropout. To learn ordered representations of data in which
different dimensions have different degrees of importance, such that the in-
formation contained in each dimension of the representation decreases as
a function of the dimension index according to a predefined decay func-
tion, Rippel et al. (2014) proposed Nested Dropout. Nested Dropout ran-
domly draws unit indices from a geometric distribution. Rather than inde-
pendently drop units with a predefined probability, as in standard Dropout
(Hinton et al., 2012) it omits all the units that follow the drawn number.
More specifically, for a representation space with dimension K, a distribu-
tion pB(·) defined over the representation index subset Sb = {1, . . . , b}, b =
1, . . . ,K has the characteristic that if the jth unit appears in a particular
mask, then all the preceding units 1, . . . , j − 1, do so as well, thereby allow-
ing the jth unit to rely on them. Thus, while Dropout enforces a distribution
over each individual unit in amodel, NestedDropout assigns a distribution
over nested subsets of representation units. Inspired by its application to
unsupervised autoencoders (Rippel et al., 2014), Finn et al. (2015) used it to
train, by standard backpropagation, compact DCNNs that adapt to differ-
ent tasks and data complexity.

5.4.1.6 Max pooling dropout. Dropout was initially designed to work on
the fully connected layers of deep architectures (Krizhevsky et al., 2012;
Hinton et al., 2012; Wan et al., 2013), with little attention paid to the other
layers. Motivated by this, empirical work by Wu and Gu (2015) found that
the effect of Dropout on the max pooling layers of DCNNs is equivalent
to randomly picking an activation based on a multinomial distribution at
training time, which is similar in nature to stochastic pooling (Zeiler & Fer-
gus, 2013). Thus, to get amore accurate approximation of averaging all pos-
sibleDropout units, they proposed a probabilisticweighted pooling scheme
instead of the commonly used max pooling. For the proposed scheme, the
pooled activity of all activations in each region is computed by

Deep Convolutional Neural Networks for Image Classification 2401

a(l+1)
j =

n�

i=0

pia
′(l)
i =

n�

i=1

pia
′(l)
i , i ∈ R(l)

j , (5.25)

where the pooling region j at layer l is represented by R(l)
j , and pi is the

probability computed by

Pr(a(l+1)
j = a′(l)

i = pi = pqn−i, (i = 1, 2, . . . ,n), (5.26)

in which p is the retaining property, q = 1 − p is the dropout probability,
and i is an index in themultinomial distribution. The proposed scheme is ca-
pable of regularization andmodel averaging similar to the effect of Dropout
(Srivastava et al., 2014) andMaxout (Goodfellow et al., 2013). For classifica-
tions tasks on theMNIST (LeCun et al., 1998) and CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) data sets, their method outperformed max pooling and
scaled max pooling, while they also found that Dropout on the max pool-
ing layers outperformed the stochastic pooling technique (Zeiler & Fergus,
2013), discussed in section 5.1.2.2.

5.4.2 DropConnect. Another popular generalization of Dropout (Hinton
et al., 2012) is DropConnect (Wan et al., 2013), which, rather than randomly
dropping a subset of activations, as in traditional Dropout, randomly drops
a subset of the weights with probability 1 − p. As with Dropout, DropCon-
nect is suitable for the fully connected layers of DNNs (DCNNs included)
only. Formerly, using the same notation as equation 5.16, the output of a
DropConnect layer can be expressed as

r = a((M �W)v), (5.27)

whereM is a binarymaskmatrix that encodes the connection information of
theweights, drawn from a Bernoulli (p) distributionmi j. During the training
process, each element of the mask is drawn independently for each sam-
ple, thus resulting in a different connectivity for each example observed.
Furthermore, during this process, the biases are also masked out. During
inference, samples are drawn from a 1D gaussian approximation through
moment matching and are averaged and presented to the next layer after
being passed through the activation layer.

The DropConnect paper compared the image classification performance
of Dropout and DropConnect on several popular classification bench-
marks and found that DropConnect outperformed Dropout on the MNIST
(LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009), and SVHN (Netzer
et al., 2011) data sets, while on the NORB data set (LeCun et al., 2004),
Dropout produced better results. Moreover, when they combined vari-
ous DCNNs trained with DropConnect into ensembles, motivated by the

2402 W. Rawat and Z. Wang

voting scheme presented by Ciresan et al. (2012), they achieved new state-
of-the-art results on the SVHN,MNIST andNORB, and CIFAR-10 data sets,
respectively, beating the previous best results of Zeiler and Fergus (2013),
Ciresan et al. (2012), and Snoek et al. (2012). Although there have been sev-
eral high-performing DCNNs since (see Table 5), the DropConnect model,
which used data augmentation, still holds the record for the lowest classi-
fication error on the famous MNIST benchmark. Since the empirical work
of Wan et al. (2013) was conducted only on small data sets, Smirnov, Tim-
oshenko, and Andrianov (2014) extended the comparison and found that
Dropout provided better regularization than DropConnect on the much
larger ILSVRC 2013 (Russakovsky et al., 2015). Figure 11 illustrates the dif-
ference between a feedforward fully connected network without Dropout,
withDropout, andwithDropConnect. As illustrated, in aDropConnect net-
work, the connections with their associated weights are randomly dropped
rather than the nodes.

5.4.3 Recent Regularization Advances. Further to themodel regularization
techniques mentioned in the introduction to this section, another mostly
uncharted alternative is to regularize a DCNN’s output distribution. One
of the signs of overfitting is when a model assigns all class probabilities to a
single class from the training set. These confident estimates usually resem-
ble low-entropy output distributions. Todealwith this, Szegedy,Vanhoucke
et al. (2015) introduced label smoothing regularization (LSR), which main-
tains a realistic ratio between the unnormalized log probabilities (logits) of
erroneous classes by estimating, during training, the marginalized conse-
quence of label dropout. This averts the model from allocating a complete
likelihood for each training case. The LSR technique can be considered the
equivalent of replacing a single cross-entropy loss with a pair of losses, the
second of which looks at a prior distribution and penalizes the deviation
of the predicted label relative to it. Inspired by the regularization effect of
LSR, confident output distributions are also penalized by Pereyra, Tucker,
Chorowski, Kaiser, and Hinton (2017), who present a confidence penalty
based on maximum entropy supplemented by uniform and unigram label
smoothing. Their technique improves several state-of-the-art models on a
wide variety of tasks, which include image classification. Recently another
output regularization technique,which addednoise to the output layer,was
also proposed (Xie, Wang, Wei, Wang, & Tian, 2016), hinting at a possible
new trend to tackle overfitting.

5.4.4 Analysis and Outlook. A suitable way to regularize a model is to
average the results from several different networks; however, for large DC-
NNs, the computational resources required to do this will be astronomical.
This led to the presentation ofDropout (Hinton et al., 2012), which provided
a means to roughly merge an exponential number of DCNNs in an effec-
tive manner (Hinton et al., 2012; Goodfellow et al., 2013; Srivastava et al.,
2014), and this contributed to numerous empirical successes that stimulated

