Open Rubric

REVIEW Communicated by Vincent Vanhoucke

Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review

Waseem Rawat

wrawat10@gmail.com

Zenghui Wang

wangz@unisa.ac.za

Department of Electrical and Mining Engineering, University of South Africa,
Florida 1710, South Africa

Convolutional neural networks (CNNs) have been applied to visual tasks
since the late 1980s. However, despite a few scattered applications, they
were dormant until the mid-2000s when developments in computing
power and the advent of large amounts of labeled data, supplemented
by improved algorithms, contributed to their advancement and brought
them to the forefront of a neural network renaissance that has seen rapid
progression since 2012. In this review, which focuses on the application
of CNNs to image classification tasks, we cover their development, from
their predecessors up to recent state-of-the-art deep learning systems.
Along the way, we analyze (1) their early successes, (2) their role in the
deep learning renaissance, (3) selected symbolic works that have con-
tributed to their recent popularity, and (4) several improvement attempts
by reviewing contributions and challenges of over 300 publications. We
also introduce some of their current trends and remaining challenges.

1 Introduction

Image classification, which can be defined as the task of categorizing im-
ages into one of several predefined classes, is a fundamental problem in
computer vision. It forms the basis for other computer vision tasks such
as localization, detection, and segmentation (Karpathy, 2016). Although the
task can be considered second nature for humans, it is much more chal-
lenging for an automated system. Some of the complications encountered
include viewpoint-dependent object variability and the high in-class vari-
ability of having many object types (Ciresan, Meier, Masci, Gambardella, &
Schmidhuber, 2011). Traditionally, a dual-stage approach was used to solve
the classification problem. Handcrafted features were first extracted from
images using feature descriptors, and these served as input to a trainable
classifier. The major hindrance of this approach was that the accuracy of the
classification task was profoundly dependent on the design of the feature

Neural Computation 29, 2352-2449 (2017) ~ © 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00990

Deep Convolutional Neural Networks for Image Classification 2353

extraction stage, and this usually proved to be a formidable task (LeCun,
Bottou, Bengio, & Haffner, 1998).

In recent years, deep learning models that exploit multiple layers of
nonlinear information processing, for feature extraction and transforma-
tion as well as for pattern analysis and classification, have been shown to
overcome these challenges. Among them, CNNs (LeCun, Boser, Denker,
Henderson, Hubbard, & Jackel, 1989a, 1989b) have become the leading ar-
chitecture for most image recognition, classification, and detection tasks
(LeCun, Bengio, & Hinton, 2015). Despite some early successes (LeCun
et al., 1989a, 1989b; LeCun et al. 1998; Simard, Steinkraus, & Platt 2003),
deep CNNs (DCNNs) were brought into the limelight as a result of the deep
learning renaissance (Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006), which was fueled
by GPUs, larger data sets, and better algorithms (Krizhevsky, Sutskever, &
Hinton, 2012; Deng & Yu, 2014; Simonyan & Zisserman, 2014; Zeiler & Fer-
gus, 2014). Several advances such as the first GPU implementation (Chel-
lapilla, Puri, & Simard, 2006) and the first application of maximum pooling
(max pooling) for DCNNs (Ranzato, Huang, Boureau, & LeCun, 2007) have
all contributed to their recent popularity.

The most significant advance, which has captured intense interest in
DCNN, especially for image classification tasks, was achieved in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Rus-
sakovsky et al., 2015), when the winning entry, by Krizhevsky et al. (2012),
used a DCNN to classify approximately 1.2 million images into 1000 classes,
with record-breaking results. Since then, DCNNs have dominated subse-
quent versions of the ILSVRC and, more specifically, its image classification
component (Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy,
Liu, et al., 2015).

In addition, selected representative examples of other improvement at-
tempts related to the following different aspects of DCNNs—(1) network
architecture (Lin, Chen, & Yan, 2013; Zeiler & Fergus, 2013; Gong, Wang,
Guo, & Lazebnik, 2014; Szegedy, Vanhoucke, loffe, Shlens, & Wojna, 2015);
(2) nonlinear activation functions (He, Zhang, Ren, & Sun, 2015a; Xu, Wang,
Chen, & Li, 2015); (3) supervision components (Tang, 2013; Zhao & Grif-
fin, 2016); (4) regularization mechanisms (Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012; Zeiler & Fergus, 2013); and (5) optimiza-
tion techniques (Glorot & Bengio, 2010; Krizhevsky et al., 2012)—have also
been implemented in recent years. Moreover, some of their open challenges,
like their variance to geometric distortions (Gong, Wang, et al., 2014), the
fact that their models are often large and slow to compute (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014), and the intriguing discovery of adver-
sarial examples (Szegedy et al., 2014), have led to even more research focus-
ing on image classification with DCNNs.

Previously, several generic deep learning reviews (Bengio, 2009; Schmid-
huber, 2015; Deng, 2014; LeCun et al., 2015), reviews that deal with deep

2354 W. Rawat and Z. Wang

learning for visual understanding (Guo et al., 2016), reviews covering re-
cent advances in CNNs (Gu et al., 2015), and a taxonomy of DCNNs for
computer vision tasks (Srinivas et al., 2016) have been published. However,
given the surge in the popularity of DCNNSs for image classification tasks
and the subsequent plethora of related papers, we feel the time is right to re-
view them for this specific and momentous problem. With this in mind, this
review is intended for those who want to understand the development of
CNN technology and architecture, specifically for image classification, from
their predecessors up to modern state-of-the-art deep learning systems. It
also asserts brief insights into their future and provides several interesting
imminent directions making it suitable for researchers in the field.

The remainder of this review is organized as follows: Section 2 briefly
introduces CNNs and acquaints readers with the key building blocks of
their architecture. Section 3 covers the early development of CNNs. Among
other highlights, it briefly touches on the first applications of backpropaga-
tion and max pooling, as well as the introduction of the famous MNIST
data set (LeCun et al., 1998). In section 4, we deal with the role of DC-
NNs in the deep learning renaissance, and this is followed by discussions
on selected representative works that have contributed to their popularity
for image classification tasks. Section 5 deals with several DCNN improve-
ment attempts in various aspects, including network architecture, nonlinear
activation functions, supervision components, regularization mechanisms,
optimization techniques, and computational cost developments. Section 6
concludes the review by introducing some of the remaining challenges and
current trends.

2 Overview of CNN architecture

CNNs are feedforward networks in that information flow takes place in
one direction only, from their inputs to their outputs. Just as artificial neu-
ral networks (ANN) are biologically inspired, so are CNNs. The visual cor-
tex in the brain, which consists of alternating layers of simple and complex
cells (Hubel & Wiesel, 1959, 1962), motivates their architecture. CNN ar-
chitectures come in several variations; however, in general, they consist
of convolutional and pooling (or subsampling) layers, which are grouped
into modules. Either one or more fully connected layers, as in a standard
feedforward neural network, follow these modules. Modules are often
stacked on top of each other to form a deep model. Figure 1 illustrates typ-
ical CNN architecture for a toy image classification task. An image is input
directly to the network, and this is followed by several stages of convolu-
tion and pooling. Thereafter, representations from these operations feed one
or more fully connected layers. Finally, the last fully connected layer out-
puts the class label. Despite this being the most popular base architecture
found in the literature, several architecture changes have been proposed in
recent years with the objective of improving image classification accuracy or

Deep Convolutional Neural Networks for Image Classification 2355

Input image Convolutional layers Fully connected layer Output class

A A
r A N

Convolution Pooling

Figure 1: CNN image classification pipeline.

reducing computation costs. Although for the remainder of this section, we
merely fleetingly introduce standard CNN architecture, in section 5 we deal
with several architectural design changes that have facilitated enhanced im-
age classification performance.

2.1 Convolutional Layers. The convolutional layers serve as feature
extractors, and thus they learn the feature representations of their input
images. The neurons in the convolutional layers are arranged into feature
maps. Each neuron in a feature map has a receptive field, which is con-
nected to a neighborhood of neurons in the previous layer via a set of train-
able weights, sometimes referred to as a filter bank (LeCun et al., 2015).
Inputs are convolved with the learned weights in order to compute a new
feature map, and the convolved results are sent through a nonlinear acti-
vation function. All neurons within a feature map have weights that are
constrained to be equal; however, different feature maps within the same
convolutional layer have different weights so that several features can be
extracted at each location (LeCun et al., 1998; LeCun et al., 2015). More for-
mally, the kth output feature map Y} can be computed as

Y = f(We x) (2.1)

where the input image is denoted by x; the convolutional filter related to
the kth feature map is denoted by W;; the multiplication sign in this con-
text refers to the 2D convolutional operator, which is used to calculate the
inner product of the filter model at each location of the input image; and
f() represents the nonlinear activation function (Yu, Wang, Chen, & Wei,
2014). Nonlinear activation functions allow for the extraction of nonlinear
features. Traditionally, the sigmoid and hyperbolic tangent functions were
used; recently, rectified linear units (ReLUs; Nair & Hinton, 2010) have
become popular (LeCun et al., 2015). Their popularity and success have

2356 W. Rawat and Z. Wang

opened up an area of research that focuses on the development and ap-
plication of novel DCNN activation functions to improve several charac-
teristics of DCNN performance. Thus, in section 5.2, we formally introduce
the ReLU and discuss the motivations that led to their development, before
elaborating on the performance of several rectification-based and alterna-
tive activation functions.

2.2 Pooling Layers. The purpose of the pooling layers is to reduce the
spatial resolution of the feature maps and thus achieve spatial invariance to
input distortions and translations (LeCun et al., 1989a, 1989b; LeCun et al.,
1998, 2015; Ranzato et al., 2007). Initially, it was common practice to use av-
erage pooling aggregation layers to propagate the average of all the input
values, of a small neighborhood of an image to the next layer (LeCun et al.,
1989a, 1989b; LeCun et al., 1998). However, in more recent models (Ciresan
et al., 2011; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Zeiler &
Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015), max pooling aggre-
gation layers propagate the maximum value within a receptive field to the
next layer (Ranzato et al., 2007). Formally, max pooling selects the largest
element within each receptive field such that

Yk{]‘ = max kaq, (22)
(P i

where the output of the pooling operation, associated with the kth feature
map, is denoted by Y, xkp; denotes the element at location (p, q) contained
by the pooling region ;;, which embodies a receptive field around the po-
sition (7, j) (Yu et al., 2014). Figure 2 illustrates the difference between max
pooling and average pooling. Given an input image of size 4 < 4,ifa 2 x 2
filter and stride of two is applied, max pooling outputs the maximum value
of each 2 x 2 region, while average pooling outputs the average rounded
integer value of each subsampled region. While the motivations behind the
migration toward max pooling are addressed in section 4.2.3, there are also
several concerns with max pooling, which have led to the development of
other pooling schemes. These are introduced in section 5.1.2.

2.3 Fully Connected Layers. Several convolutional and pooling layers
are usually stacked on top of each other to extract more abstract feature
representations in moving through the network. The fully connected layers
that follow these layers interpret these feature representations and perform
the function of high-level reasoning (Hinton et al., 2012; Simonyan & Zisser-
man, 2014; Zeiler & Fergus, 2014). For classification problems, it is standard
to use the softmax operator (see sections 5.3.1 and 5.3.5) on top of a DCNN
(Krizhevsky et al.,, 2012; Lin et al.,, 2013; Simonyan & Zisserman, 2014;
Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015). While early

Deep Convolutional Neural Networks for Image Classification 2357

Max pooling

Average pooling

Figure 2: Average versus max pooling.

success was enjoyed by using radial basis functions (RBFs), as the classifier
on top of the convolutional towers (LeCun et al., 1998), Tang (2013) found
that replacing the softmax operator with a support vector machine (SVM)
leads to improved classification accuracy (see section 5.3.4 for further de-
tails). Moreover, given that computation in the fully connected layers is
often challenged by their compute-to-data ratio, a global average-pooling
layer (see section 5.1.1.1 for further details), which feeds into a simple lin-
ear classifier, can be used as an alternative (Lin et al. 2013). Notwithstanding
these attempts, comparing the performance of different classifiers on top of
DCNNEs still requires further investigation and thus makes for an interest-
ing research direction (see section 6 for other intrinsic DCNN trends).

2.4 Training. CNNs, and ANNSs in general use learning algorithms to
adjust their free parameters (i.e., the biases and weights) in order to at-
tain the desired network output. The most common algorithm used for
this purpose is backpropagation (LeCun, 1989; LeCun et al., 1998; Bengio,
2009; Deng & Yu, 2014; Deng, 2014; Srinivas et al., 2016). Backpropaga-
tion computes the gradient of an objective (also referred to as a cost/loss/
performance) function to determine how to adjust a network’s parameters
in order to minimize errors that affect performance. A commonly experi-
enced problem with training CNNs, and in particular DCNNs, is overfit-
ting, which is poor performance on a held-out test set after the network is
trained on a small or even large training set. This affects the model’s ability
to generalize on unseen data and is a major challenge for DCNNs that can
be assuaged by regularization, which is surveyed in section 5.4.

2358 W. Rawat and Z. Wang

2.5 Discussion. This section briefly highlighted some of the fundamen-
tal aspects related to the basic building blocks of CNNs. Further detailed
explanations on the convolution function and its variants and the con-
volutional and pooling layers, can be found in Goodfellow, Bengio, and
Courville (2016). Furthermore, for convolutional and pooling arithmetic,
reader’s are referred to Dumoulin and Visin (2016). Detailed explanations
on the backpropagtion algorithm and general training protocols for deep
neural networks (DNNSs) are available in LeCun et al. (1998) and Goodfel-
low et al. (2016), while LeCun et al. (2015) provides a concise summary of
the algorithm and supervised learning (one of the major machine learn-
ing paradigms, together with unsupervised and reinforcement learning)
in general. A brief history on the development of this popular algorithm,
specifically for CNNSs, is provided in section 3.2. Finally, some of the DCNN
theoretical considerations, many of which are concisely summarized by
Koushik (2016), are introduced in section 6.1.

3 Early CNN Development

In this section, we cover the early developments and significant advance-
ments of CNNs, from their predecessors up to successful applications prior
to the deep learning renaissance (Hinton et al., 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006).

3.1 CNN Predecessors Inspired by Neuroscience. Biology has inspired
several artificial intelligence techniques such as ANNSs, evolutionary algo-
rithms, and cellular automata (Floreano & Mattiussi, 2008). However, per-
haps the greatest success story among them are CNNs (Goodfellow et al.,
2016). Their history began with the neurobiological experiments conducted
by Hubel and Wiesel (1959, 1962) from as early as 1959. The main contribu-
tion of their work was the discovery that neurons in different stages of the
visual system, responded strongly to specific stimulus patterns while ignor-
ing others. More specifically, they found that neurons in the early stages of
the primary visual cortex responded strongly to precisely oriented patterns
of light, such as bars, but ignored more complex patterns of the input stimu-
lus that resulted in strong responses from neurons in later stages. They also
found that the visual cortex consisted of simple cells, which had local recep-
tive fields, and complex cells, which were invariant to shifted or distorted
inputs, arranged in a hierarchical fashion. These works provided the early
inspiration to model our automated vision systems based on characteristics
of the central nervous system.

In 1979, a novel multilayered neural network model, nicknamed the
neocognitron, was proposed (Fukushima, 1979). Modeled based on the
findings of Hubel and Wiesel (1959, 1962), it also consisted of simple and
complex cells, cascaded together in a hierarchical manner. With this archi-
tecture, the network proved successful at recognizing simple input patterns

Deep Convolutional Neural Networks for Image Classification 2359

irrespective of a shift in the position or considerable distortion in the shape
of the input pattern (Fukushima, 1980; Fukushima & Miyake, 1982). Sig-
nificantly, the neocognitron laid the groundwork for the development of
CNN:s. In fact, CNNs were derived from the neocognitron, and hence they
have a similar architecture (LeCun et al., 2015).

3.2 Brief History of Backpropagation and the First Application to
CNNs. Backpropagation was derived in the 1960s. In particular, S. E. Drey-
fus (1962) derived a simplified version of the algorithm that used the chain
rule alone. Nevertheless, the early versions of backpropagation were inef-
ficient since they backpropagated derivative information from one layer
to the preceding layer without openly addressing direct links across lay-
ers. Furthermore, they did not consider potential efficiency gains due to
network sparseness (Schmidhuber, 2015). The modern efficient form of the
algorithm that addressed these issues was derived in 1970 (Linnainmaa,
1970); however, there was no mention of its use for ANNs. Preliminary
discussions for its use for ANNs date back to 1974 (Werbos, 1974); how-
ever, the first known application of efficient backpropagation, specifically
for ANNSs, was described in 1981 (Werbos, 1982), but this remained rela-
tively unknown. Nevertheless, it was “significantly popularized” (Schmid-
huber, 2015) due to a seminal paper in 1986 by D. E. Rumelhart et al. (1986),
which demonstrated that by using the backpropagation learning algorithm,
the internal hidden neurons of an ANN could be trained to represent im-
portant features of the task domain.

In 1989, LeCun et al. (1989a, 1989b) proposed the first multilayered
CNNs and successfully applied these large-scale networks, to real (hand-
written digits and zip codes) image classification problems. These ini-
tial CNNs were reminiscent of the neocognitron (Fukushima, 1979, 1980;
Fukushima & Miyake, 1982). However, the key difference was that they
were trained in a fully supervised fashion using backpropagation, which
was in contrast to the unsupervised reinforcement scheme used by their
predecessor. This allowed them to rely more profoundly on automatic
learning rather than hand-designed preprocessing for feature extraction
(LeCun et al., 1989a, 1989b; LeCun, 1989), which previously proved to be
extremely challenging; hence, they form an essential component of many
recent competition-winning DCNNs (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015).

3.3 Introduction of the MNIST Data Set. In 1998, the CNNs described
earlier (LeCun et al., 1989a, 1989b), were improved on and used for the
task of individual character classification in a document recognition appli-
cation. This work was published in a detailed seminal paper (LeCun et al.,
1998) that highlighted the main advantages of CNNs when compared to
traditional ANNSs: they require fewer free parameters (because of weight
sharing), and they consider the spatial topology of the input data, thereby

2360 W. Rawat and Z. Wang

Figure 3: Architecture of LeNet-5 (LeCun et al., 1998).

allowing them to deal with the variability of 2D shapes. In addition to the
proposed CNNs, LeCun et al. (1998) introduced the popular Modified Na-
tional Institute of Standards and Technology (MNIST) data set of 70,000
handwritten digits, which has since been used extensively for several com-
puter vision tasks and, in particular, for image classification and recognition
problems. Figure 3 illustrates the architecture of the CNN, called LeNet-5,
proposed by LeCun et al. (1998). The diagram clearly illustrates the design
of LeNet-5, which consists of alternating convolutional and subsampling
layers, followed by a single fully connected layer.

3.4 Early CNN Successes Despite Perceived Issues with Gradient De-
scent. Inthelate 1990s and early 2000s, neural network research had dimin-
ished (Simard et al., 2003; LeCun et al., 2015). It was little used for machine
learning tasks, and computer vision and speech recognition tasks over-
looked them. It was widely believed that learning useful multistage feature
extractors, with little prior knowledge, was infeasible due to issues with
the popular optimization algorithm, gradient descent. Specifically, it was
thought that basic gradient descent would not recover from poor weight
configurations that inhibited the reduction of the average backpropagated
error, a phenomenon known as poor local minima (LeCun et al., 2015). In
contrast, other statistical methods and, in particular, SVMs, became popular
due to their successes (Decoste & Schélkopf, 2002). Contrary to this trend, a
CNN was proposed for the application of visual document analysis in 2003
(Simard et al., 2003).

At a time when CNNs were not popular in the engineering community,
Simard et al. (2003) were able to achieve the best-known classification re-
sult on the MNIST data set (LeCun et al., 1998), improving on the previous
best results obtained by the SVMs of Decoste and Scholkopf (2002). Cit-
ing the advantages that were mentioned by LeCun et al. (1998), utilizing
CNNs for visual tasks, they expanded the size and quality of the MNIST
data set and proposed the use of simple software loops for the convolu-
tional operation. These loops exploited the property of backpropagation
that allows an ANN to be expressed in a modular fashion, and this allowed

Deep Convolutional Neural Networks for Image Classification 2361

for modular software debugging. Although LeCun et al. (1998) had already
hypostasized and proved that by increasing the size of the data set, using ar-
tificially generated affine transformations, the network’s performance will
improve, Simard et al. (2003) improved the quality of the increased por-
tion of the data set to further improve performance. This was accomplished
by using elastic image deformations. This work formed part of a series of
several optical character recognition applications that used CNNs. In par-
ticular, Microsoft used them for English handwritten digits (Simard et al.,
2003; Chellapilla, Shilman, & Simard, 2006), Arabic handwriting recogni-
tion (Abdulkader, 2006) and East Asian handwritten character recognition
(Chellapilla & Simard, 2006). Thus, these applications, together with the
work described by LeCun et al. (1989a, 1989b, 1998), represent some of the
early image classification successes enjoyed by CNNs. The background to
the next section highlights several other successes.

4 The Deep Learning Renaissance and the Rise of DCNNs

This section briefly introduces the deep learning renaissance and focuses on
the significant contributions of DCNNSs to the current surge in deep learning
research. It also covers a seminal paper and several representative works
that have led to their recent ascendancy over other image classification
techniques.

4.1 Background to the Deep Learning Renaissance. The first feedfor-
ward multilayered neural networks were trained in 1965 (Ivakhnenko &
Lapa, 1966), and although they did not use backpropagation, they were per-
haps the first deep learning systems (Schmidhuber, 2015). Although deep
learning-like algorithms have a long history, the term deep learning became a
catchphrase around 2006, when deep belief networks (DBNs) and autoen-
coders trained in an unsupervised fashion were used to initialize DNNs,
trained using backpropagation (Hinton et al., 2006; Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006). Prior to this, it was taught that deep
multilayered networks (including DCNNs) were too hard to train due to
issues with gradient descent and thus were not popular (Bengio et al., 2006;
Bengio, 2009; Deng & Yu, 2014; Schmidhuber, 2015; Goodfellow et al., 2016).
Conversely, CNNs were a notable exception and proved easier to train
when compared to fully connected networks (Simard et al., 2003, Bengio,
2009; LeCun et al., 2015; Goodfellow et al., 2016). In addition to the suc-
cesses discussed in section 3.3, some of the other successful applications that
incorporated CNNs for their image classification component prior to the
resurgence of neural networks in 2006 include medical image segmentation
(Ning et al., 2005); facial recognition, detection, and verification (Lawrence,
Giles, Tsoi, & Back, 1997; Garcia & Delakis, 2002; Chopra, Hadsell, & Le-
Cun, 2005); off-road obstacle avoidance (Muller, Ben, Cosatto, Flepp, &

2362 W. Rawat and Z. Wang

LeCun, 2005); and generic object classification (LeCun, Huang, & Bottou,
2004; Huang & LeCun, 2006).

However, since neural network research had slowed in the late 1990s and
early 2000s (Simard et al., 2003; LeCun et al., 2015), CNN development was
also hindered, but it revived around 2006. Using an energy-based model to
extract sparse features, which has several applications that include classi-
fication and segmentation, and then using the resultant output to initialize
the first layer of a DCNN, Ranzato, Poultney, Chopra, and LeCun (2006)
slightly improved the previous best-reported classification result (Simard
et al., 2003) on the MNIST data set (LeCun et al., 1998). Citing Hinton et al.
(2006), their DCNN model, which had a similar architecture to that of Le-
Cun et al. (1998) but used a considerably larger number of feature maps
to produce sparse features, was pretrained in an unsupervised fashion and
consisted of three essential components. An encoder interrogated the in-
put image and computed a code vector of the image, which was then trans-
formed into a sparse code vector by a nonlinear-sparsifying logistic module.
A decoder that computed a restored version of the input image deciphered
the sparse code vector, and its output was used to initialize the first-layer
weights of the CNN. This work was the first to use DCNNSs initialized by
unsupervised training techniques during the period of the deep learning
renaissance and led to several other unsupervised pretraining attempts be-
tween 2006 and 2011, as the next section shows.

4.2 The Deep Learning Renaissance Fueled by GPUs and Improved
Algorithms.

4.2.1 Unsupervised Pretraining. Inspired by the speed and accuracy
advantages of unsupervised pretraining (Hinton et al., 2006; Hinton &
Salakhutdinov, 2006; Bengio et al., 2006; Ranzato et al., 2006), Ranzato et al.
(2007) used a DCNN-like architecture trained in an unsupervised manner to
learn hierarchical sparse features that were locally invariant to small shifts
and distortions. Their approach, which introduced max pooling (see sec-
tions 2.2 and 4.2.3), achieved results very close to the state-of-the-art for
the MNIST (LeCun et al., 1998; Ranzato et al., 2006) and the California
Institute of Technology (CALTECH-101—Fei-Fei, Fergus, & Perona, 2006;
Zhang, Berg, Maire, & Malik, 2006) benchmarks. Despite this early success,
DCNN:s are still not immune to large-scale shifts and distortions; this is still
an open area of research (see section 6.2).

Asserting that the pretraining methods that Hinton et al. (2006), Ben-
gio et al. (2006), and Ranzato et al. (2007), used were complicated and
restricted, Weston, Ratle, Mobahi, and Collobert (2008) presented a sim-
pler way to perform deep learning by fusing nonlinear embedding algo-
rithms with deep multilayered architectures (including DCNNS), trained in
a supervised fashion. The resulting semisupervised deep learning scheme
was inspired by the Laplacian SVMs presented by Belkin, Niyogi, and

(3) i Embedded
Layer

Figure 4: Different modes of embedding regularizes into deep architectures.

Sindhwani (2006) and brought about competitive error rates on the MNIST
data set (LeCun et al., 1998), when compared to other shallow semisuper-
vised techniques (Belkin, Niyogi, & Sindhwani, 2006; Collobert, Sinz, We-
ston, & Bottou, 2006) and the existing deep learning approaches of the time
(Hinton et al., 2006; Ranzato et al., 2007; Salakhutdinov & Hinton, 2007).
Figure 4 shows how the embedding algorithms were added to regularize
either the entire network output, the hidden layers, or an auxiliary network
that had the same initial layers of the original network but a new final set
of weights. In the figure, the broken red lines illustrate the point at which
the embedding algorithms were incorporated.

Along the lines of unsupervised DCNN pretraining (Ranzato et al., 2006,
2007) and semi-supervised embedding (Weston et al., 2008), Ahmed, Yu,
Xu, Gong, and Xing (2008) first performed a set of pseudo-tasks on data
in an unsupervised fashion and then transferred the resultant knowledge
to DCNNSs via transfer learning. All the layers of the DCNN, including the
final classification layer, were trained with backpropagation. Their results
inferred that knowledge transfer followed by supervised training improved
DCNN performance and could be applied to a range of visual tasks, includ-
ing object, gender, and ethnicity recognition. Further details are available in
the original paper (Ahmed et al., 2008); an overview on the different forms
of knowledge transfer and some of its early successes is provided by Fei-
Fei (2006). Recently, the features extracted by DCNNs have been shown to
provide an astounding baseline for various computer vision tasks, includ-
ing scene recognition, fine-grained recognition, attribute detection, image
retrieval, and, most significant, image classification (Razavian, Azizpour,

2364 W. Rawat and Z. Wang

Sullivan, & Sarlsson, 2014). The obvious advantage for computer vision sys-
tems that use knowledge transferred from DCNNSs is that their exorbitant
training times can be eliminated, thus reducing the development and de-
ployment times of such schemes.

A detailed study that investigated the effect of the nonlinearities that
follow convolutional filters in DCNNSs; the performance of supervised, un-
supervised, and randomly learned convolutional filters; and the advan-
tages (if any) of using two stages of feature extraction compared to one
was undertaken by Jarrett, Kavukcuoglu, and LeCun (2009), and LeCun,
Kavukcuoglu, and Farabet (2010). They found that nonlinearities that com-
prise rectification and local contrast normalization were key to good accu-
racy on the MNIST (LeCun et al., 1998), CALTECH-101 (Fei-Fei et al., 2006),
and NYU Object Recognition Benchmark (NORB—LeCun et al., 2004) data
sets, and that better classification accuracy was obtained from two stages
of feature extraction rather than one. In particular, they set a new record
on the unmodified MNIST data set, improving on the previous best perfor-
mance (Ranzato et al., 2006) by following unsupervised pretraining, using a
method called predicative sparse decomposition (PSD; Kavukcuoglu, Ran-
zato, & LeCun, 2010), with supervised reinforcement. The PSD technique,
like the work proposed by Ranzato et al. (2006), is based on an encoder-
decoder architecture that enforces sparse constraints on the feature vec-
tor by utilizing a basic feedforward regressor that is trained to estimate a
sparse solution for all the vectorized patches or their stacks in a prescribed
training set. Although sparse coding algorithms are generally computation-
ally exorbitant, since the PSD technique approximates the sparse codes, it is
computationally cheaper, making it very fast relative to other sparse coding
schemes.

Unsupervised (including semisupervised) pretraining, followed by su-
pervised refinement, discussed in this section, was made popular by the
deep belief networks proposed at the rise of the deep learning renaissance
(Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Bengio et al., 2006). The
most common unsupervised schemes used contrastive divergence (Hin-
ton, 2002) methods (see Lee, Grosse, Ranganath, & Ng, 2009), sparse con-
straints (Ranzato et al., 2006, 2007), or PSD (Kavukcuoglu et al., 2010;
LeCun et al., 2010). In general, for these techniques, the feature extraction
filters are trained such that representations at a particular stage can be re-
constructed from representations of a preceding stage. The major hindrance
of this approach is that the feature learning process is independent of the
task, although Bengio et al. (2006), Mairal, Bach, Ponce, Sapiro, and Zisser-
man (2008), and Ranzato and Szummer (2008) attempted to alleviate this
by assimilating supervised criteria with unsupervised techniques.

Furthermore, despite the initial promising results obtained from unsu-
pervised pretraining (see Erhan et al., 2010, for a detailed analysis), in recent
years, supervised learning has become the leading paradigm for train-
ing DCNNs (see section 5.3). However, semisupervised learning is more

Deep Convolutional Neural Networks for Image Classification 2365

biologically plausible. For example, consider how children learn about their
environments or, more specifically, how they learn to recognize or classify
objects. They are usually supplied a few examples by their caregivers, anal-
ogous to semi- or weakly supervised learning, and they use this to general-
ize on unseen objects. Thus, to align our current heavily supervised models
closer to nature, it is envisaged that future DCNNs will go back to using
semisupervised schemes, similar to those introduced in this section. These
schemes will incorporate, at least initially, supervised criteria to overcome
the known issues with their unsupervised counterparts. Such progress will
eventually lead to independent, unsupervised systems to tackle the increas-
ingly immense expanses of unannotated data currently available (see sec-
tion 6.6 for further insight).

4.2.2 GPUs Stimulate Research into DCNNs. Even though the deep learn-
ing algorithms that work currently have been available since the 1980s
(LeCun et al., 1989a, 1989b), they were taught to be too computationally ex-
pensive to allow a great deal of research on the hardware available prior
to 2006 (Goodfellow et al., 2016). Furthermore, during program execu-
tion, convolution operations are computationally costly and thus make DC-
NNs significantly slower to evaluate when compared to standard ANNs
of the same magnitude. To overcome these constraints, Chellapilla, Puri,
and Simard (2006) proposed three novel methods to speed up DCNNs: un-
rolling convolution, using basic linear algebra software subroutines, and us-
ing GPUs. Although GPUs had already been applied to ANNs (Oh & Jung,
2004; Steinkrau, Simard, & Buck, 2005), this work was significant since it
was the first implementation of a DCNN using GPUs. Over time, this has
become a momentous facet of most award-winning or state-of-the-art DC-
NNs (Ciresan et al., 2011; Krizhevsky et al., 2012; Hinton et al., 2012; Zeiler
& Fergus, 2013, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He
etal.,, 2015a). Although the development of enhanced hardware to facilitate
DCNN computation is still an open area of research, it has become largely
commercialized in recent years. With this trend, much of the academic fo-
cus has been on either the application of this commercially available hard-
ware or algorithmic development to aid swifter processing. Although this
is not envisaged to change in the near future, there is an expectation that
imminent hardware and software advances will focus on the deployment
of DCNNs to mobile devices (see section 6.3).

4.2.3 Max Pooling Leads to Improved Generalization. In 2007, backpropa-
gation was applied for the first time to a DCNN-like architecture that used
max pooling (Ranzato et al., 2007). In 2010, Scherer, Miiller, and Behnke
(2010) showed empirically that the max pooling operation was vastly supe-
rior for capturing invariance in image-like data and could lead to improved
generalization and faster convergence when compared to a subsampling
operation. They demonstrated this by achieving the best published results

ReLU ReLU
A A
» »
L L
A A
A A
Conv Conv
Ar A
Conv 1x1
ReLU ReLU
A A
» »
L >
a) Original residual connections b) Optimized residual connections

Figure 6: Residual versus improved residual modules.

Lin et al., 2011; Sdnchez & Perronnin, 2011), as well as an approximate
correlation between classification performance and network depth (see
section 5.5.4). Further results can be found in Table 4.

Notwithstanding degradation (He et al., 2015b; He & Sun, 2015; Srivas-
tava et al., 2015a, 2015b), deeper models are generally more accurate and
thus produce better empirical results; however, as depth increases, so do
computational costs. With this in mind, the representative work discussed
here has led to several attempts to improve the classification accuracy of
DCNNs by modifying their architecture for improved performance without
losing sight of the computational burden imposed on such models. In par-
ticular, the models of Szegedy, Liu, et al. (2015), Simonyan and Zisserman
(2014), and He et al. (2015b) all focused on deeper or wider networks for
improved accuracy, with several tricks, ranging from dimension reduction
to residual learning, to handle the associated computational strain placed
on deeper networks. This has led to a classic engineering dilemma between
deeper models, which are more accurate but computationally expensive,
and shallower models, which are easier and cheaper to train but do not
produce the same classification accuracy. Thus, although there have been
several attempts to address this, maintaining accuracy with reduced com-
putational expenditures remains an open challenge for DCNNS. To this end,
section 5.5.4 deals with the swifter processing of deep models, while the

Input Convolutional layer Pooling layer

:I_IZL|

b) MLP convolutional module

Figure 7: Convolutional versus MLP convolutional layers.

data set (LeCun et al., 1998; Goodfellow et al., 2013). Although the pro-
posed global average pooling technique, which has fewer parameters and
thus cheaper computational costs compared to fully connected layers, con-
tributed to a reduction in overfitting for the relatively small MNIST (LeCun
et al., 1998) and CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) data sets, a
study into overfitting using this type of layer to replace the conventional
fully connected layers of other DCNN models is still at large for larger data
sets like ImageNet (Russakovsky et al., 2015). Figure 7 illustrates the differ-
ence between a conventional convolutional module and an MLP convolu-
tional module, which is the main building block of the network in network
(NIN) model. While both variants map the local receptive field represent-
ing the hidden input features to a succeeding layer, panel b uses a micronet-
work for enhanced representation.

5.1.1.2 Inception and improved Inception models. The Inception model
(Szegedy, Liu, et al., 2015), inspired by Lin et al. (2013) and discussed in
section 4.4, used a dimension-reduction (1 % 1 convolutional filters) tech-
nique to lessen the computational burden of the expensive convolutional
operation. In order to scale up and further improve DCNN classification ac-
curacy in a computationally efficient manner, the Inception model was later
enhanced by using factorized convolutions (see section 6.6) and aggres-
sive dimension reductions within the network. While the original Inception
module still used 5 % 5 convolutions, the improved version replaced this

Succeeding
layer

Succeeding ﬁ

layer
Filter result
integration

3x3 filters

o

Filter result
integration

I Ix1 filters 3x3 filters 1x1 filters I 1x1 filters 3x3 filters 1x1 filters ‘

1x1 filters ‘ 1x1 filters -J 1x1 filters 1x1 filters
9 |

Preceding / Preceding _/

layer layer
a) Inception module b) Improved inception module

Figure 8: Inception versus improved Inception modules.

with two computationally cheaper 3 % 3 convolutions (Szegedy, Vanhoucke
et al., 2015). Figure 8 illustrates the differences between the two modules.

Inspired by the image classification accuracy accomplished by residual
networks (He et al., 2015b), discussed in sections 4.4 and 5.5.4, the Inception
architecture (Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke et al., 2015) was
further refined and combined with residual connections to form residual In-
ception networks (Szegedy, loffe, & Vanhoucke, 2016). The paper provided
clear evidence advocating that training with residual connections signifi-
cantly accelerated the training of Inception networks. Although they tested
several Inception-only and residual Inception architectures, they found that
a hybrid residual Inception architecture yielded the best single-model clas-
sification accuracy, albeit at a higher computation cost when compared
to the improved Inception architecture described by Szegedy, Vanhoucke
et al. (2015). Furthermore, when they combined a new, improved Incep-
tion model, which had a simpler architecture and more Inception modules
compared to their earlier model (Szegedy, Vanhoucke et al., 2015), into an
ensemble with three residual Inception networks, they achieved the best
published results on the challenging ImageNet image classification bench-
mark (Russakovsky et al., 2015; He et al., 2015b). Despite this success, fur-
ther work is required in order to reduce the computational burden imposed
on the hybrid architecture.

5.1.1.3 Doubly convolution. Motivated by intuition, followed by a theo-
retical analysis, which advocated that several of the learned filters of well-
trained DCNNS are slightly translated versions of each other, Zhai, Cheng,

Input image | Size standardization — Conv./ pooling layers | Fully connected layers

a) Conventional DCNN

Input image > Conv. / pooling layers —| SPP layer —{ Fully connected layers

b) DCNN with SPP layer

Figure 9: Conventional versus SPP DCNNSs.

Grauman and Darrell (2005), Lazebnik, Schmid, and Ponce (2006), and Yang
etal. (2009), He, Zhang, Ren, and Sun (2014) proposed spatial pyramid pool-
ing (SPP). They used multilevel spatial bins, which have sizes proportional
to the image size, and this allowed them to generate a fixed-length rep-
resentation, irrespective of the image size or scale. The SPP layer was in-
tegrated into DCNN architecture between the final convolutional /pooling
layer and the first fully connected layer (see Figure 9) and thus performed
information aggregation deep in the network to prevent fixing the size (via
cropping or warping) of the image at the input. Unlike stochastic (Zeiler &
Fergus, 2013) and L, pooling (Sermanet et al., 2012), SPP is designed to work
with max pooling layers rather than replace them. Among other successes,
they set a new record on the CALTECH-101 data set (Fei-Fei et al., 2006),
beating the previous best set by Chatfield, Simonyan, Vedaldi, and Zisser-
man (2014), and they came in third in the classification component of the
ILSVRC 2014 (Russakovsky et al., 2015), behind Simonyan and Zisserman
(2014) and Szegedy;, Liu, et al. (2015). Further work along these lines is re-
quired to facilitate commercial DCNN deployment on a variety of portable
devices, since this will relax the constraints placed on the image capturing
system. Furthermore, this work has shown that tried and tested computer
vision-based techniques need not be forsaken in the face of deep learning
and that room for this type of traditional computer vision integration is still
available.

5.1.2.7 Multiscale orderless pooling. Inspired by Lazebnik et al. (2006),
Gong, Wang, et al. (2014) attempted to make DCNNs more robust to in-
variance without compromising their discriminative power. Asserting that
max pooling may not provide invariance to large-scale global deformations,
they proposed multiscale orderless pooling (MOP), which extracts patches
at multiple scales, beginning with the complete image and then pools each
scale disregarding spatial information. Specifically, they extract deep activa-
tion features from the whole image, to preserve global spatial layout, and
from local patches, to capture fine-grained details. Next, the fine-grained
details are aggregated via VLAD encoding (Jegou et al., 2012), which has

Training
error rate

Epochs

Figure 10: Training times of ReLUs versus tanh activations (Krizhevsky et al.,
2012).

network that used hyperbolic tangent activations (Krizhevsky et al., 2012).
We next briefly introduce this nonsaturating activation function and discuss
the motivations that have led to several of their successors.

5.2.1 ReLU Activations. Traditional activation functions, such as the sig-
moid or hyperbolic tangent are given by f(x) =1/(1+e—x) and f(x) =
tanh(x), respectively, where f is the neuron’s output as a function of its in-
put x (the same notation is used for the remainder of the activation functions
that follow). The ReLU (Nair & Hinton, 2010), a piecewise linear function,
has the simplified form f(x) = max(x, 0). The ReLU retains only the posi-
tive part of the activation, by reducing the negative part to zero, while the
integrated maximum operator promotes faster computation. The ReLU has
been used in several state-of-the-art image classification systems (Zeiler &
Fergus, 2013, 2014; Lin et al., 2013; Gong, Wang, et al., 2014; Simonyan &
Zisserman, 2014; Szegedy, Vanhoucke et al., 2015; Szegedy, Liu et al., 2015).
An in-depth discussion and further motivations on them can be found in
the work presented by Glorot et al. (2011).

5.2.2 LReLU Activations. Even though ReLUs (Nair & Hinton, 2010) lead
to faster convergence (Nair & Hinton, 2010; Glorot et al., 2011; Krizhevsky
et al., 2012; Maas, Hannun, & Ng, 2013) and do not suffer from the vanish-
ing gradient problem, in which the lower layers have gradients near zero
because high layers are almost saturated (Bengio, Simard, & Frasconi, 1994),
they are at a possible disadvantage during optimization since the gradient
is zero when the unit is not active (Glorot et al., 2011; Maas et al., 2013). This

