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a b s t r a c t

We describe the approach that won the final phase of the German traffic sign recognition benchmark.
Our method is the only one that achieved a better-than-human recognition rate of 99.46%. We use a
fast, fully parameterizable GPU implementation of a Deep Neural Network (DNN) that does not require
careful design of pre-wired feature extractors, which are rather learned in a supervised way. Combining
various DNNs trained on differently preprocessed data into aMulti-ColumnDNN (MCDNN) further boosts
recognition performance, making the system insensitive also to variations in contrast and illumination.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The human visual system efficiently recognizes and localizes
objects within cluttered scenes. For artificial systems, however,
this is still difficult, due to viewpoint-dependent object variability,
and the high in-class variability of many object types. Deep hier-
archical neural models roughly mimic the nature of mammalian
visual cortex, and are among the most promising architectures for
such tasks. Themost successful hierarchical object recognition sys-
tems all extract localized features from input images, convolving
image patches with filters. Filter responses are then repeatedly
pooled and re-filtered, resulting in a deep feed-forward network
architecture whose output feature vectors are eventually classi-
fied. One of the first hierarchical neural systemswas the Neocogni-
tron by Fukushima (1980), which inspiredmany of themore recent
variants.

Unsupervised learning methods applied to patches of natural
images tend to produce localized filters that resemble off-
center-on-surround filters, orientation-sensitive bar detectors,
Gabor filters (Hoyer & Hyvärinen, 2000; Olshausen & Field,
1997; Schmidhuber, Eldracher, & Foltin, 1996). These findings in
conjunction with experimental studies of the visual cortex justify
the use of such filters in the so-called standard model for object
recognition (Mutch & Lowe, 2008; Riesenhuber & Poggio, 1999;
Serre, Wolf, & Poggio, 2005), whose filters are fixed, in contrast
to those of Convolutional Neural Networks (CNNs) (Behnke, 2003;
LeCun, Bottou, Bengio, & Haffner, 1998; Simard, Steinkraus, &
Platt, 2003), whose weights (filters) are randomly initialized and
learned in a supervised way using back-propagation (BP). A DNN,
the basic building block of our proposed MCDNN, is a hierarchical
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deep neural network, alternating convolutional with max-pooling
layers (Riesenhuber & Poggio, 1999; Scherer, Müller, & Behnke,
2010; Serre et al., 2005). A single DNN of our team won the
offline Chinese character recognition competition (Liu, Yin, Wang,
&Wang, 2011), a classification problemwith 3755 classes. Ciresan,
Meier, Gambardella, and Schmidhuber (2011) report state-of-the-
art results on isolated handwritten character recognition using
a MCDNN with 7 columns. Meier, Ciresan, Gambardella, and
Schmidhuber (2011) show that there is no need for optimizing
the combination of different DNNs: simply averaging their outputs
generalizes just as well or even better on the unseen test set.

Despite the hardware progress of the past decades, computa-
tional speed is still a limiting factor for deep architectures charac-
terized bymany building blocks. For our experiments we therefore
rely on a fast implementation on Graphics Processing Units (GPUs)
(Ciresan, Meier, Masci, Gambardella, & Schmidhuber, 2011a). Our
implementation is flexible and fully online (i.e., weight updates af-
ter each image). It allows for training large DNN within days in-
stead of months, thus making MCDNN feasible.

Recognizing traffic signs is essential for the automotive
industry’s efforts in the field of driver assistance, and for
many other traffic-related applications. The German traffic sign
recognition benchmark (GTSRB) (Stallkamp, Schlipsing, Salmen, &
Igel, 2011), a 43 class classification challenge, consisted of two
phases: an online preliminary evaluation followed by an on-site
final competition at the International Joint Conference on Neural
Networks in 2011. We won the preliminary phase (Ciresan, Meier,
Masci, & Schmidhuber, 2011b) using a committee of (Multi-Layer
Perceptrons) MLP trained on provided features, and a DNN trained
on raw pixel intensities. Here we present the method that won the
on-site competition using aMCDNN, instead of a committee ofMLP
and DNN. Our new approach does not use handcrafted features
anymore, relying only on the raw pixel images.

We first give a brief description of our MCDNN architecture,
then describe the creation of the training set and the data
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Fig. 1. (a) DNN architecture. (b) Training a DNN: the dataset is preprocessed (P) before training starts; during training all original or preprocessed images are randomly
distorted before each epoch (D). (c) MCDNN architecture: the input image is preprocessed by n different preprocessors P0 − Pn−1 and an arbitrary number of columns is
trained on each preprocessed input. The final predictions are obtained by averaging individual predictions of each DNN.

preprocessing. We conclude by summarizing the results obtained
during the on-site competition.

2. Multi-column deep neural networks

As a basic building block we use a deep hierarchical neural
network that alternates convolutional with max-pooling layers,
reminiscent of the classic work of Hubel and Wiesel (1962) and
Wiesel and Hubel (1959) on the cat’s primary visual cortex, which
identified orientation-selective simple cells with overlapping local
receptive fields and complex cells performing down-sampling-like
operations. Such architectures vary in how simple and complex cells
are realized and how they are initialized/trained. Here we give a
brief description of our architecture; a detailed description of the
GPU implementation can be found in Ciresan et al. (2011a).

2.1. DNN

A DNN (Fig. 1a) consists of a succession of convolutional and
max-pooling layers, and each layer only receives connections from
its previous layer. It is a general, hierarchical feature extractor that
maps raw pixel intensities of the input image into a feature vector
to be classified by several, usually 2 or 3, fully connected layers. All
adjustable parameters are jointly optimized throughminimization
of the misclassification error over the training set.

2.1.1. Convolutional layer

Each convolutional layer performs a 2D convolution of its
Mn−1 input maps with a filter of size K n

x × K n
y . The resulting

activations of theMn outputmaps are given by the sumof theMn−1

convolutional responses which are passed through a nonlinear
activation function:

Yn
j = f





Mn−1


i=1

Yn−1
i ∗ Wn

ij + bnj





, (1)

where n indicates the layer, Y is a map of size Mx × My, and Wij

is a filter of size Kx × Ky connecting input map i with output map
j, bnj is the bias of output map j, and ∗ is the valid 2D convolution.

That is, for an input map Yn−1 of size Mn−1
x × Mn−1

y and a filter W

of size K n
x × K n

y the output map Yn is of sizeMn
x = Mn−1

x − K n
x + 1,

Mn
y = Mn−1

y −K n
y +1. Note that the summation in Eq. (1) runs over

all Mn−1 input maps.

2.1.2. Max-pooling layer

The biggest architectural difference between our DNN and
the CNN of LeCun et al. (1998) is the use of max-pooling layers
(Riesenhuber & Poggio, 1999; Scherer et al., 2010; Serre et al.,
2005) instead of sub-sampling layers. The output of a max-pooling
layer is given by the maximum activation over non-overlapping
rectangular regions of size Kx × Ky. Max-pooling creates slight
position invariance over larger local regions anddown-samples the
input image by a factor of Kx and Ky along each direction.

2.1.3. Classification layer

Kernel sizes of convolutional filters andmax-pooling rectangles
are chosen such that either the output maps of the last
convolutional layer are down-sampled to 1 pixel permap, or a fully
connected layer combines the outputs of the last convolutional
layer into a 1D feature vector. The last layer is always a fully
connected layer with one output unit per class in the recognition
task. We use a softmax activation function for the last layer such
that each neuron’s output activation can be interpreted as the
probability of a particular input image belonging to that class.

2.1.4. Training a single DNN

The training procedure of a single DNN is illustrated in Fig. 1b.
A given dataset is preprocessed (P) before training starts, and
then continually distorted (D) during training. Note that the
preprocessing (details in Section 3.1) is not stochastic and is
done for the whole dataset prior to training. Distortions on the
other hand are stochastic and applied to each preprocessed image
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Fig. 2. Histogram of pixel intensities for image 11,917 from the test set of the preliminary phase of the competition, before and after normalization, as well as an additional
selection of 5 traffic signs before and after normalization.

during training, using random but bounded values for translation,
rotation and scaling. These values are drawn from a uniform
distribution in a specified range, i.e. ±10% of the image size for
translation, 0.9–1.1 for scaling and ±5◦ for rotation. The final,
fixed sized image is obtained using bilinear interpolation of the
distorted input image. These distortions allowus to train DNNwith
many free parameters without overfitting and greatly improve
generalization performance (i.e. the error rate on the first phase
of GTSRB decreases from 2.83% to 1.66%, Ciresan et al., 2011b). All
DNN are trained using on-line gradient descent with an annealed
learning rate.

2.1.5. Forming the MCDNN

Finally, we form anMCDNN by averaging the output activations
of several DNN columns (Fig. 1c). For a given input pattern,
the predictions of all columns are averaged. Before training, the
weights of all columns are randomly initialized. Various columns
can be trained on the same inputs, or on inputs preprocessed in
different ways. If the errors of P different models have zero mean
and are uncorrelated, the average error might be reduced by a
factor of P simply by averaging the P models (Bishop, 2006). In
practice, errors of models trained on similar data tend to be highly
correlated. To avoid this problem, our MCDNN combines various
DNN trained on differently normalized data. A key question is
whether to optimize the combination of outputs of various models
or not (Duin, 2002). Common problems during training include:
(a) additional training data is required, and (b) there is no
guarantee that the trained MCDNN generalize well to the unseen
test data. For handwritten digits it was shown (Meier et al.,
2011), that simply averaging the outputs of many DNN generalizes
better on the test set than a linear combination of all the
DNN with weights optimized over a validation set (Hashem &
Schmeiser, 1995; Ueda, 2000). We therefore form the MCDNN by
democratically averaging the outputs of each DNN.

3. Experiments

We use a system with a Core i7–950 (3.33 GHz), 24 GB
DDR3, and four graphics cards of type GTX 580. Images from

the training set might be translated, scaled and rotated, whereas
only the undeformed, original or preprocessed images are used
for validation. Training ends once the validation error is zero
(usually after 15–30 epochs). Initial weights are drawn from
a uniform random distribution in the range [−0.05, 0.05].
Each neuron’s activation function is a scaled hyperbolic tangent
(e.g. LeCun et al., 1998).

3.1. Data preprocessing

The original color images contain one traffic sign each, with a
border of 10% around the sign. They vary in size from 15 × 15
to 250 × 250 pixels and are not necessarily square. The actual
traffic sign is not always centered within the image; its bounding
box is part of the annotations. The training set consists of 39,209
images; the test set of 12,630 images. We crop all images and
process only the image within the bounding box. Our MCDNN
implementation requires all training images to be of equal size.
After visual inspection of the training image size distribution
we resize all images to 48 × 48 pixels. As a consequence, the
scaling factors along both axes are different for traffic signs with
rectangular bounding boxes. Resizing forces them to have square
bounding boxes.

High contrast variation among the images calls for contrast
normalization. We use the following standard normalizations:

• Image adjustment (Imadjust) increases image contrast by
mapping pixel intensities to new values such that 1% of the data
is saturated at low and high intensities (MATLAB, 2010).

• Histogram equalization (Histeq) enhances contrast by transform-
ing pixel intensities such that the output image histogram is
roughly uniform (MATLAB, 2010).

• Adaptive histogram equalization (Adapthisteq) operates (unlike
Histeq) on tiles rather than the entire image: the image is tiled
in 8 nonoverlapping regions of 6 × 6 pixels each. Every tile’s
contrast is enhanced such that its histogram becomes roughly
uniform (MATLAB, 2010).
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Fig. 3. DNN architecture from Table 1 together with all the activations and the learned filters. Only a subset of all the maps and filters are shown, the output layer is not
drawn to scale and weights of fully connected layers are not displayed. For better contrast, the filters are individually normalized.

• Contrast normalization (Conorm) enhances edges through filter-
ing the input image by a difference of Gaussians. We use a filter
size of 5 × 5 pixels (Sermanet & LeCun, 2011).

Note that the above normalizations, except Conorm, are not
performed in RGB-color space but rather in a color space that
has image intensity as one of its components. For this purpose
we transform the image from RGB- to Lab-space, perform the
normalization and then transform the normalized image back
to RGB-space. The effect of the four different normalizations is
illustrated in Fig. 2, where histograms of pixel intensities together
with original and normalized images are shown.

3.2. Results

Initial experiments with varying network depths showed
that deep nets work better than shallow ones, consistent with
our previous work on image classification (Ciresan, Meier,
Gambardella, & Schmidhuber, 2010; Ciresan et al., 2011a). We
report results for a single DNN with 9 layers (Table 1); the same
architecture is shown in Fig. 3 where the activations of all layers
together with the filters of a trained DNN are illustrated. Filters
of the first layer are shown in color but consist in principle of
three independent filters, each connected to the red, green and
blue channel of the input image, respectively. The input layer has

Fig. 4. The learned filters of the first convolutional layer of a DNN. The layer has
100 maps each connected to the three color channels of the input image for a total
of 3 × 100 filters of size 15 × 15. Every displayed filter is the superposition of
the 3 filters that are connected to the red, green and blue channel of the input
image respectively. For better contrast, the filters are individually normalized. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

three maps of 48 × 48 pixels for each color channel; the output
layer consists of 43 neurons, one per class. The used architecture
has approximately 1.5 million free parameters, half of which are
from the last two fully connected layers. It takes 37 h to train the
MCDNN with 25 columns on four GPUs. After training, 87 images
per second can be processed on a single GPU.

We also train a DNNwith bigger filters, 15×15 instead of 7×7,
in the first convolutional layer and plot them in Fig. 4. They are
randomly initialized, and learn to respond to blobs, edges and other
shapes in the input images. This illustrates that even the first layer
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Table 1

9 layer DNN architecture.

Layer Type # Maps & neurons Kernel

0 Input 3 maps of 48 × 48 neurons
1 Convolutional 100 maps of 42 × 42 neurons 7 × 7
2 Max pooling 100 maps of 21 × 21 neurons 2 × 2
3 Convolutional 150 maps of 18 × 18 neurons 4 × 4
4 Max pooling 150 maps of 9 × 9 neurons 2 × 2
5 Convolutional 250 maps of 6 × 6 neurons 4 × 4
6 Max pooling 250 maps of 3 × 3 neurons 2 × 2
7 Fully connected 300 neurons 1 × 1
8 Fully connected 43 neurons 1 × 1

of a very deep (9 layers) DNN can be successfully trained by simple
gradient descent, although it is usually the most problematic one
(Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001).

In total we trained 25 nets, 5 randomly initialized nets for each
of the five datasets (i.e. original plus 4 different normalizations).
The results are summarized in Table 2. Each column shows
the recognition rates of 5 randomly initialized DNN. Mean and
standard deviations are listed for each of the five distinct datasets
as well as for all 25 DNN. The MCDNN results (but not the
recognition rates) after averaging the outputs of all 25 DNN are
shown as well. All individual DNN are better than any other
method that entered the competition. Moreover, the resulting
MCDNN with 25 DNN columns achieves a recognition rate of
99.46% and a drastic improvement with respect to any of the
individual DNN.

Fig. 5 depicts all errors, plus ground truth and first and second
predictions. Over 80% of the 68 errors are associated with correct
second predictions. Erroneously predicted class probabilities tend
to be very low – here the MCDNN is quite unsure about its
classifications. In general, however, it is very confident – most of
its predicted class probabilities are close to one or zero. Rejecting
only 1% of all images (confidence below 0.51) results in an even
lower error rate of 0.24%. To reach an error rate of 0.01% (a single
misclassification), only 6.67% of the images have to be rejected
(confidence below 0.94).

4. Conclusion

Our MCDNN won the German traffic sign recognition bench-
mark with a recognition rate of 99.46%, better than the one of hu-
mans on this task (98.84%), with three times fewer mistakes than
the second best competing algorithm (98.31%). Forming a MCDNN
from 25 nets, 5 per preprocessing method, increases the recogni-
tion rate from an average of 98.52%–99.46%. None of the prepro-
cessing methods are superior in terms of single DNN recognition
rates, but combining them into a MCDNN increases robustness to
various types of noise and leads to more recognized traffic signs.

We plan to embed our method in a more general system that
first localizes traffic signs in realistic scenes and then classifies
them.

Fig. 5. The 68 errors of the MCDNN, with correct label (left) and first (middle) and second best (right) predictions. Best seen in color. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2

Recognition rates (%) of the MCDNN and its 25 DNN.

Trial Original Imadjust Histeq Adapthisteq Conorm

1 98.56 98.39 98.80 98.47 98.63
2 98.16 98.58 98.27 98.47 98.33
3 98.64 98.77 98.51 98.51 98.46
4 98.46 98.61 98.31 98.53 98.62
5 98.54 98.77 98.58 98.58 98.66

Avg. 98.47± 0.18 98.62± 0.15 98.48± 0.22 98.50± 0.04 98.54± 0.14
Average DNN recognition rate: 98.52 ± 0.15
MCDNN: 99.46
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