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BACKGROUND

Technology to restore the ability to communicate in paralyzed persons who cannot 

speak has the potential to improve autonomy and quality of life. An approach that 

decodes words and sentences directly from the cerebral cortical activity of such 

patients may represent an advancement over existing methods for assisted com-

munication.

METHODS

We implanted a subdural, high-density, multielectrode array over the area of the 

sensorimotor cortex that controls speech in a person with anarthria (the loss of 

the ability to articulate speech) and spastic quadriparesis caused by a brain-stem 

stroke. Over the course of 48 sessions, we recorded 22 hours of cortical activity 

while the participant attempted to say individual words from a vocabulary set of 

50 words. We used deep-learning algorithms to create computational models for 

the detection and classification of words from patterns in the recorded cortical 

activity. We applied these computational models, as well as a natural-language 

model that yielded next-word probabilities given the preceding words in a se-

quence, to decode full sentences as the participant attempted to say them.

RESULTS

We decoded sentences from the participant’s cortical activity in real time at a 

median rate of 15.2 words per minute, with a median word error rate of 25.6%. In 

post hoc analyses, we detected 98% of the attempts by the participant to produce 

individual words, and we classified words with 47.1% accuracy using cortical sig-

nals that were stable throughout the 81-week study period.

CONCLUSIONS

In a person with anarthria and spastic quadriparesis caused by a brain-stem 

stroke, words and sentences were decoded directly from cortical activity during 

attempted speech with the use of deep-learning models and a natural-language 

model. (Funded by Facebook and others; ClinicalTrials.gov number, NCT03698149.)
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A
narthria is the loss of the ability 

to articulate speech. It can result from 

a variety of conditions, including stroke 

and amyotrophic lateral sclerosis.1 Patients with 

anarthria may have intact language skills and 

cognition, and some are able to produce limited 

oral movements and undifferentiated vocaliza-

tions when attempting to speak.2 However, para-

lyzed persons may be unable to operate assistive 

devices because of severe impairment of move-

ment. Anarthria hinders communication with 

family, friends, and caregivers, thereby reducing 

patient-reported quality of life.3 Advances have 

been made with typing-based brain–computer 

interfaces that allow speech-impaired persons to 

spell out messages by controlling a computer cur-

sor.4-8 However, letter-by-letter selection through 

interfaces driven by neural signal recordings is 

slow and effortful. A more efficient and natural 

approach may be to directly decode whole words 

from brain areas that control speech. Our under-

standing of how the area of the sensorimotor 

cortex that controls speech orchestrates the rapid 

articulatory movements of the vocal tract has 

expanded.9-14 Engineering efforts have used these 

neurobiologic findings, together with advances 

in machine learning, to show that speech can be 

decoded from brain activity in persons without 

speech impairments.15-19

In paralyzed persons who cannot speak, record-

ings of neural activity cannot be precisely aligned 

with intended speech because of the absence of 

speech output, which poses an obstacle for train-

ing computational models.20 In addition, it is un-

clear whether neural signals underlying speech 

control are still intact in persons who have not 

spoken for years or decades. In earlier work, a 

paralyzed person used an implanted, intracorti-

cal, two-channel microelectrode device and an 

audiovisual interface to generate vowel sounds 

and phonemes but not full words.21,22 To deter-

mine whether speech can be directly decoded to 

produce language from the neural activity of a 

person who is unable to speak, we tested real-

time decoding of words and sentences from the 

cortical activity of a person with limb paralysis 

and anarthria caused by a brain-stem stroke.

Me thods

Study Overview

This work was performed as part of the BCI 

Restoration of Arm and Voice (BRAVO) study, 

which is a single-institution clinical study to 

evaluate the potential of electrocorticography, a 

method for recording neural activity from the 

cerebral cortex with the use of electrodes placed 

on the surface of the cerebral hemisphere, and 

custom decoding techniques to enable commu-

nication and mobility. An investigational device 

exemption for the device used in this study was 

approved by the Food and Drug Administration. 

As of this writing, the device had been implant-

ed only in the participant described here. Because 

of regulatory and clinical considerations regard-

ing the proper handling of the percutaneous con-

nector, the participant did not have the opportu-

nity to use the system independently for daily 

activities but underwent testing at his home.

This work was approved by the Committee on 

Human Research at the University of California, 

San Francisco, and was supported in part by a 

research contract under Facebook’s Sponsored 

Academic Research Agreement. All the authors 

were involved in the design and execution of the 

clinical study; the collection, storage, analysis, 

and interpretation of the data; and the writing 

of the manuscript. No study hardware or data 

were transferred to any sponsor, and we did not 

receive any hardware or software from a sponsor 

to use in this work. All the authors vouch for the 

accuracy and completeness of the data and for 

the fidelity of the study to the protocol (available 

with the full text of this article at NEJM.org) and 

confirm that the study was conducted ethically. 

Informed consent was obtained from the par-

ticipant after the reason for and nature of im-

plantation and the training procedures and risks 

were thoroughly explained to him.

Participant

The participant was a right-handed man who 

was 36 years of age at the start of the study. At 

20 years of age, he had had an extensive pontine 

stroke associated with a dissection of the right 

vertebral artery, which resulted in severe spastic 

quadriparesis and anarthria, as confirmed by a 

speech–language pathologist and neurologists 

(Video 1 and Fig. S1 in the Supplementary Ap-

pendix, both available at NEJM.org). His cogni-

tive function was intact, and he had a score of 

26 on the Mini–Mental State Examination (scores 

range from 0 to 30, with higher scores indicat-

ing better mental performance); because of his 

paralysis, it was not physically possible for his 

score to reach 30. He was able to vocalize grunts 

A Quick Take 
is available at 

NEJM.org

Videos showing 
speech decoding 
are available at 

NEJM.org
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and moans but was unable to produce intelligi-

ble speech; eye movement was unaffected. He 

normally communicated using an assistive com-

puter-based typing interface controlled by his 

residual head movements; his typing speed was 

approximately 5 correct words or 18 correct 

characters per minute (Section S1).

Implant Device

The neural implant used to acquire brain sig-

nals from the participant was a customized com-

bination of a high-density electrocorticography 

electrode array (manufactured by PMT) and a 

percutaneous connector (manufactured by Black-

rock Microsystems). The rectangular electrode 

array was 6.7 cm long, 3.5 cm wide, and 0.51 mm 

thick and consisted of 128 flat, disk-shaped 

electrodes arranged in a 16-by-8 lattice forma-

tion, with a center-to-center distance between 

adjacent electrodes of 4 mm. During surgical 

implantation, general anesthesia was used, and 

the sensorimotor cortex of the left hemisphere, 

as identified by anatomical landmarks of the 

central sulcus, was exposed through craniotomy. 

The electrode array was laid on the pial surface 

of the brain in the subdural space. The elec-

trode coverage enabled sampling from multiple 

cortical regions that have been implicated in 

speech processing, including portions of the 

left precentral gyrus, postcentral gyrus, poste-

rior middle frontal gyrus, and posterior inferior 

frontal gyrus.9,11-13 The dura was closed with su-

tures, and the cranial bone flap was replaced. 

The percutaneous connector was placed extra-

cranially on the contralateral skull convexity 

and anchored to the cranium. This percutane-

ous connector conducts cortical signals from 

the implanted electrode array through externally 

accessible contacts to a detachable digital link 

and cable, enabling transmission of the acquired 

brain activity to a computer (Fig. S2). The par-

ticipant underwent surgical implantation of the 

device in February 2019 and had no compli-

cations. The procedure lasted approximately 

3 hours. We began to collect data for this study 

in April 2019.

Real-Time Acquisition and Processing  

of Neural Data

A digital-signal processing system (NeuroPort 

System, Blackrock Microsystems) was used to 

acquire signals from all 128 electrodes of the 

implant device and transmit them to a computer 

running custom software for real-time signal 

analysis (Section S2 and Figs. S2 and S3).18,23 As 

informed by previous research that had corre-

lated neural activity in the 70 to 150 Hz (high-

gamma) frequency range with speech process-

ing,9,12-14,18 we measured activity in the high-gamma 

band for each channel to use in subsequent 

analyses and during real-time decoding.

Word and Sentence Task Design

The study consisted of 50 sessions over the 

course of 81 weeks and took place at the par-

ticipant’s residence or a nearby office. The partic-

ipant engaged in two types of tasks: an isolated-

word task and a sentence task (Section S3 and 

Fig. S4). On average, we collected approximately 

27 minutes of neural activity during these tasks 

at each session. In each trial of each task, a tar-

get word or sentence was presented visually to 

the participant as text on a screen, and then the 

participant attempted to produce (say aloud) that 

target.

In the isolated-word task, the participant at-

tempted to produce individual words from a set 

of 50 English words. This word set contained 

common English words that can be used to cre-

ate a variety of sentences, including words that 

are relevant to caregiving and words requested 

by the participant. In each trial, the participant 

was presented with one of these 50 words, and, 

after a 2-second delay, he attempted to produce 

that word when the text of the word on the 

screen turned green. We collected 22 hours of 

data from 9800 trials of the isolated-word task 

performed by the participant in the first 48 of 

the 50 sessions.

In the sentence task, the participant attempt-

ed to produce word sequences from a set of 50 

English sentences consisting of words from the 

50-word set (Sections S4 and S5). In each trial, 

the participant was presented with a target sen-

tence and attempted to produce the words in that 

sentence (in order) at the fastest speed he could 

perform comfortably. Throughout the trial, the 

word sequence decoded from neural activity was 

updated in real time and displayed as feedback to 

the participant. We collected data from 250 trials 

of the sentence task performed by the participant 

in 7 of the final 8 sessions. This task is shown 

in Video 2. A conversational variant of this task, 

in which the participant was presented with 

prompts and attempted to respond to them, is 

shown in Figure 1 and Video 1.
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Modeling

We used neural activity data collected during the 

tasks to train, fine-tune, and evaluate custom 

models (Sections S6 and S7 and Table S1). Spe-

cifically, we created speech-detection and word-

classification models that used deep-learning 

techniques to make predictions from the neural 

activity. To decode sentences from the partici-

pant’s neural activity in real time during the 

sentence task, we also used a natural-language 

model and a Viterbi decoder (Fig. 1). The speech-

detection model processed each time point of 

neural activity during a task and detected onsets 

and offsets of word-production attempts in real 

time (Section S8 and Fig. S5). We fitted this 

model using neural activity data and task-timing 

information collected only during the isolated-

word task.

For each attempt that was detected, the word-

classification model predicted a set of word 

probabilities by processing the neural activity 

spanning from 1 second before to 3 seconds 

after the detected onset of attempted speech 

(Section S9 and Fig. S6). The predicted probabil-

ity associated with each word in the 50-word set 

quantified how likely it was that the participant 

was attempting to say that word during the de-

tected attempt. We fitted this model to neural 

data collected during the isolated-word task.

In English, certain sequences of words are 

more likely than others. To use this underlying 

linguistic structure, we created a natural-lan-

guage model that yielded next-word probabilities 

given the previous words in a sequence (Section 

S10).24,25 We trained this model on a collection 

of sentences that included only words from the 

50-word set; the sentences were obtained with 

the use of a custom task on a crowd-sourcing 

platform (Section S4).

The final component in the decoding approach 

involved the use of a custom Viterbi decoder, 

which is a type of model that determines the 

most likely sequence of words given predicted 

word probabilities from the word classifier and 

word-sequence probabilities from the natural-

language model (Section S11 and Fig. S7).26 With 

the incorporation of the language model, the 

Viterbi decoder was capable of decoding more 

plausible sentences than what would result from 

simply stringing together the predicted words 

from the word classifier.

Evaluations

To evaluate the performance of our decoding 

approach, we analyzed the sentences that were 

decoded in real time using two metrics: the word 

error rate and the number of words decoded per 

minute (Section S12). The word error rate of a 

decoded sentence was defined as the number of 

word errors made by the decoder divided by the 

number of words in the target sentence.

To further characterize the detection and 

classification of word-production attempts from 

the participant’s neural activity, we processed 

the collected isolated-word data with the speech-

detection and word-classification models in 

off line analyses performed after the recording 

sessions had been completed (Section S13). We 

measured classification accuracy as the per-

centage of trials in which the word classifier 

correctly predicted the target word that the 

participant attempted to produce. We also mea-

sured electrode contributions as the size of the 

effect that each individual electrode had on the 

Figure 1 (facing page). Schematic Overview of the Direct 

Speech Brain–Computer Interface.

Shown is how neural activity acquired from an investi-

gational electrocorticography electrode array implanted 

in a clinical study participant with severe paralysis is 

used to directly decode words and sentences in real 

time. In a conversational demonstration, the participant 

is visually prompted with a statement or question (A) 

and is instructed to attempt to respond using words 

from a predefined vocabulary set of 50 words. Simulta-

neously, cortical signals are acquired from the surface 

of the brain through the electrode array (B) and pro-

cessed in real time (C). The processed neural signals 

are analyzed sample by sample with the use of a speech-

detection model to detect the participant’s attempts  

to speak (D). A classifier computes word probabilities 

(across the 50 possible words) from each detected win-

dow of relevant neural activity (E). A Viterbi decoding 

algorithm uses these probabilities in conjunction with 

word-sequence probabilities from a separately trained 

natural-language model to decode the most likely sen-

tence given the neural activity data (F). The predicted 

sentence, which is updated each time a word is decod-

ed, is displayed as feedback to the participant (G). Be-

fore real-time decoding, the models were trained with 

data collected as the participant attempted to say indi-

vidual words from the 50-word set as part of a separate 

task (not depicted). This conversational demonstration 

is a variant of the standard sentence task used in this 

work, in that it allows the participant to compose his 

own unique responses to the prompts.
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predictions made by the detection and classifi-

cation models.19,27

To investigate the viability of our approach 

for a long-term application, we evaluated the 

stability of the acquired cortical signals over 

time using the isolated-word data (Section S14). 

By sampling neural data from four different date 

ranges spanning the 81-week study period, we 

assessed whether classification accuracy on a 

subset of data collected in the final sessions 

could be improved by including data from ear-

lier subsets as part of the training set for the 

classification model; such improvement would 

indicate that training data accumulated across 

months or years of recording could be used to 

reduce the need for frequent model recalibration 

in practical applications of our approach.

Statistical Analyses

Results for each experimental condition are pre-

sented with 95% confidence intervals when ap-

propriate (Section S15). No adjustments were 

made for multiple comparisons. The evaluation 

metrics (word error rate, number of words de-

coded per minute, and classification accuracy) 

were specified before the start of data collection. 

Analyses to assess the long-term stability of 

speech-detection and word-classification perfor-

mance with our implant device were designed 

post hoc.

R esult s

Sentence Decoding

During real-time sentence decoding, the median 

word error rate across 15 sentence blocks (each 

block comprised 10 trials) was 60.5% (95% con-

fidence interval [CI], 51.4 to 67.6) without lan-

guage modeling and 25.6% (95% CI, 17.1 to 37.1) 

with language modeling (Fig. 2A, top). The low-

est word error rate observed for a single sentence 

block was 7.0% (with language modeling). When 

chance performance was measured with the use 

of sentences that had been randomly generated 

by the natural-language model (Section S12), the 

median word error rate was 92.1% (95% CI, 85.7 

to 97.2). Across all 150 trials, the median num-

ber of words decoded per minute was 15.2 with 

the inclusion of all decoded words and 12.5 with 

the inclusion of only correctly decoded words 

(with language modeling) (Fig. 2A, middle). In 

92.0% of the trials, the number of detected 

words was equal to the number of words in the 

target sentence (Fig. 2A, bottom). Across all 15 

sentence blocks, five speech attempts were erro-

neously detected before the first trial in the 

block and were excluded from real-time decod-

ing and analysis (all other detected speech at-

tempts were included). For almost all target sen-

tences, the mean number of word errors decreased 

Figure 2 (facing page). Decoding a Variety of Sentences 

in Real Time through Neural Signal Processing  

and Language Modeling.

Panel A shows the word error rates, the numbers of 

words decoded per minute, and the decoded sentence 

lengths. The top plot shows the median word error rate 

(defined as the number of word errors made by the de-

coder divided by the number of words in the target sen-

tence, with a lower rate indicating better performance) 

derived from the word sequences decoded from the 

participant’s cortical activity during the performance  

of the sentence task. Data points represent sentence 

blocks (each block comprises 10 trials); the median 

rate, as indicated by the horizontal line within a box, is 

shown across 15 sentence blocks. The upper and lower 

sides of the box represent the interquartile range, and 

the I bars 1.5 times the interquartile range. Chance per-

formance was measured by computing the word error 

rate on sentences randomly generated from the natu-

ral-language model. The middle plot shows the median 

number of words decoded per minute, as derived across 

all 150 trials (each data point represents a trial). The 

rates are shown for the analysis that included all words 

that were correctly or incorrectly decoded with the nat-

ural-language model and for the analysis that included 

only correctly decoded words. Each violin distribution 

was created with the use of kernel density estimation 

based on Scott’s rule for computing the estimator band-

width; the thick horizontal lines represent the median 

number of words decoded per minute, and the thinner 

horizontal lines the range (with the exclusion of outliers 

that were more than 4 standard deviations below or 

above the mean, which was the case for one trial). In 

the bottom chart, the decoded sentence lengths show 

whether the number of detected words was equal to 

the number of words in the target sentence in each of 

the 150 trials. Panel B shows the number of word er-

rors in the sentences decoded with or without the natu-

ral-language model across all trials and all 50 sentence 

targets. Each small vertical dash represents the num-

ber of word errors in a single trial (there are 3 trials per 

target sentence; marks for identical error counts are 

staggered horizontally for visualization purposes). Each 

dot represents the mean number of errors for that tar-

get sentence across the 3 trials. The histogram at the 

bottom shows the error counts across all 150 trials. 

Panel C shows seven target sentence examples along 

with the corresponding sentences decoded with and 

without the natural-language model. Correctly decoded 

words are shown in black and incorrect words in red.
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when the natural-language model was used 

(Fig. 2B), and in 80 of 150 trials with language 

modeling, sentences were decoded without er-

ror. Use of the natural-language model during 

decoding improved performance by correcting 

grammatically and semantically implausible word 

sequences in the predictions (Fig. 2C). Real-time 

demonstrations are shown in Videos 1 and 2.

Word Detection and Classification

In the offline analyses that included data from 

9000 attempts to produce isolated words (and 

excluded the use of the natural-language model), 

the mean classification accuracy was 47.1% with 

the use of the speech detector and word classi-

fier to predict the identity of the target word 

from cortical activity. The accuracy of chance 

performance (without the use of any models) 

was 2%. Additional results of the isolated-word 

analyses are provided in Figures S8 and S9. A 

total of 98% of these word-production attempts 

were successfully detected (191 attempts were 

not detected), and 968 detected attempts were 

spurious (not associated with a speech attempt) 

(Section S8). Electrodes in the most ventral as-

pect of the ventral sensorimotor cortex contrib-

uted to word-classification performance to a 

greater extent than electrodes in the dorsal as-

pect of the ventral sensorimotor cortex, whereas 

the electrodes in the dorsal aspect contributed 

more to speech-detection performance (Fig. 3A). 

Classification accuracy was consistent across 

most of the target words (mean [±SD] classifi-

cation accuracy across the 50 target words, 

47.1±14.5%) (Fig. 3B).

Long-Term Stability of Acquired Cortical 

Signals

The long-term stability of the speech-related cor-

tical activity patterns recorded during attempts 

to produce isolated words showed that the 

speech-detection and word-classification models 

performed consistently throughout the 81-week 

study period without daily or weekly recalibration 

(Fig. S10). When the models were used to ana-

lyze cortical activity recorded at the end of the 

study period, classification accuracy increased 

when the data set used to train the classification 

models contained data recorded throughout the 

study period, including data recorded more than 

a year before the collection of the data used to 

test the models (Fig. 4).

Discussion

We showed that high-density recordings of cor-

tical activity in the speech-production area of the 

sensorimotor cortex of an anarthric and para-

lyzed person can be used to decode full words 

and sentences in real time. Our deep-learning 

models were able to use the participant’s neural 

activity to detect and classify his attempts to 

produce words from a 50-word set, and we could 

use these models, together with language-model-

ing techniques, to decode a variety of meaning-

ful sentences. Our models, enabled by the long-

term stability of recordings from the implanted 

device, could use data accumulated throughout 

the 81-week study period to improve decoding 

performance when evaluating data recorded near 

the end of the study.

Previous demonstrations of word and sen-

tence decoding from cortical neural activity have 

been conducted with participants who could 

speak without the need for assistive technology 

to communicate.15-19 Similar to the problem of 

decoding intended movements in someone who 

is paralyzed, the lack of precise time alignment 

between intended speech and neural activity 

poses a challenge during model training. We 

addressed this time-alignment problem with 

Figure 3 (facing page). Distinct Neural Activity Patterns 

during Word-Production Attempts.

Panel A shows the participant’s brain reconstruction 

overlaid with the locations of the implanted electrodes 

and their contributions to the speech-detection and 

word-classification models. Plotted electrode size (area) 

and opacity are scaled by relative contribution (impor-

tant electrodes appear larger and more opaque than 

other electrodes). Each set of contributions is normal-

ized to sum to 1. For anatomical reference, the precen-

tral gyrus is highlighted in light green. Panel B shows 

word confusion values computed with the use of the 

isolated-word data. For each target word (each row), 

the confusion value measures how often the word classi-

fier predicted (regardless of whether the prediction was 

correct) each of the 50 possible words (each column) 

while the participant was attempting to say that target 

word. The confusion value is computed as a percentage 

relative to the total number of isolated-word trials for 

each target word, with the values in each row summing 

to 100%. Values along the diagonal correspond to cor-

rect classifications, and off-diagonal values correspond 

to incorrect classifications. The natural-language model 

was not used in this analysis.
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speech-detection approaches18,28,29 and word clas-

sifiers that used machine-learning techniques, 

such as model ensembling and data augmenta-

tion (Section S9), to increase reliability of the 

model to minor temporal variabilities in recorded 

signals.30,31 Decoding performance was largely 

driven by neural-activity patterns in the ventral 

sensorimotor cortex, a finding consistent with 

previous work implicating this area in speech 

production.9,12,13 This finding may inform elec-

trode placement in future studies. We were also 

able to show the preservation of functional cor-

tical representations of speech in a person who 

had had anarthria for more than 15 years, a 

finding analogous to previous findings of limb-

related cortical sensorimotor representations in 

tetraplegic persons years after the loss of limb 

movement.32,33

The incorporation of language-modeling tech-

niques in this study reduced the median word 

error rate by 35 percentage points and enabled 

perfect decoding in more than half the sentence 

trials. This improvement was facilitated through 

the use of all of the probabilistic information 

provided by the word classifier during decoding 

and by allowing the decoder to update previ-

ously predicted words each time a new word was 

decoded. These results show the benefit of inte-

grating linguistic information when decoding 

speech from neural recordings. Speech-decoding 

approaches generally become usable at word er-

ror rates below 30%,34 which suggests that our 

approach may be applicable in other clinical set-

tings.

In previously reported brain–computer inter-

face applications, decoding models often require 

daily recalibration before deployment with a 

user,6,35 which can increase the variability of de-

coder performance across days and impede long-

term adoption of the interface for real-world 

use.35,36 Because of the relatively high signal 

stability of electrocorticographic recordings,5,37-39

we could accumulate cortical activity acquired by 

the implanted electrodes across months of re-

cording to train our decoding models. Overall, 

decoding performance was maintained or im-

proved by the accumulation of large quantities 

of training data over time without daily recali-

bration, which suggests that high-density elec-

trocorticography may be suitable for long-term 

direct-speech neuroprosthetic applications.
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Figure 4. Signal Stability and Long-Term Accumulation of Training Data 

to Improve Decoder Performance.

Each bar depicts the mean classification accuracy (the percentage of trials 

in which the target word was correctly predicted) from isolated-word data 

sampled from the final weeks of the study period (weeks 79 through 81) 

 after speech-detection and word-classification models were trained on dif-

ferent samples of the isolated-word data from various week ranges. Each 

result was computed with the use of a 10-fold cross-validation evaluation 

approach. In this approach, the available data were partitioned into 10 equal-

ly sized, nonoverlapping subsets. In the first cross-validation “fold,” one of 

these data subsets is used as the testing set, and the remaining 9 are used 

for model training. This was repeated 9 more times until each subset was 

used for testing (after training on the other subsets). This approach ensures 

that models were never evaluated on the data used during training (Sections 

S6 and S14). I bars indicate the 95% confidence interval of the mean, each 

computed across the 10 cross-validation folds. The data quantities specify 

the average amount of data used to train the word-classification models 

across cross-validation folds. Week 0 denotes the first week during which 

data for this study was collected, which occurred 9 weeks after surgical im-

plantation of the study device. Accuracy of chance performance was calcu-

lated as 1 divided by the number of possible words and is indicated by a 

horizontal dashed line.
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