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1. Introduction: A Sociological View of Scientific 
Controversies 

Neural networks, also called artificial neural networks, connectionist 
networks, parallel distributed systems, and neural computing systems, are 
information-processing systems composed of many interconnected process- 
ing units (simplified neurons) that interact in a parallel fashion to produce 
a result or output. The massively parallel architecture of these systems is 
remarkably different from that of a conventional von Neumann digital 
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computer. Furthermore, neural network systems are not programmed, but 
trained. Training a neural network in some classification task involves 
selecting a statistically representative sample of input/output pairs and an 
algorithm for adjusting the strengths (the weights) of the connections 
between processing units when the system does not produce the desired 
outputs. 

The neural network approach differs from the tradition that has domi- 
nated artificial intelligence (AI) and cognitive science in the last decades, 
namely the symbol-processing approach. Within the symbolic approach, 
intelligence and cognition are seen as processes of symbol manipulation and 
transformation. A symbol-processing A1 system relies on its representational 
structures and on the possibility of applying structure-sensitive operations 
to those structures. Representational structures are manipulated and trans- 
formed according to certain rules and strategies (algorithms), and the result- 
ing expression is the solution to a given problem. 

Researchers expect neural networks to have considerable success in tasks 
not easily programmable within the rule-based symbol-processing approach, 
such as pattern recognition and speech recognition. The learning capabilities 
of neural networks may be especially important for these types of tasks. 

In this chapter, I study the scientific controversies that have shaped 
neural network research from a sociological point of view. The sociology of 
science and technology deals with the social processes-both internal and 
external to the research community-through which scientific knowledge 
and technological systems are generated and validated. Of course by saying 
that science is produced and assessed socially I do not mean that it is in- 
adequate or “ideologically bad.” The sociology of science claims that all 
science, whether it is seen as “good” or “bad”, is socially generated and 
evaluated. 

Science and technology are often generated and validated through debates 
and controversies (Collins, 1985; Latour, 1987; Star, 1989). In controversies 
the “interpretative flexibility” (Collins, 1981) of scientific results (data, 
experiments, findings) is more evident than in periods of consensus. By 
“interpretative flexibility” I mean, using Donald MacKenzie’s terms, that 
“no knowledge possesses absolute warrant, whether from logic, experiment, 
or practice. There are always grounds for challenging any knowledge claim” 
(MacKenzie, 1990, p. 10). 

But showing the interpretative flexibility of scientific knowledge is only 
the first step in a sociological study of science. The second one is to study 
the processes through which that interpretative flexibility, which in principle 
could always go on, is inpructice brought to closure. The sociology of science 
claims that social factors-both internal to the research community and 
involving the wider society-are at the basis of those processes of closure. 
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Why some knowledge claims are challenged and why some are not, and why 
some challenges succeed and some fail, thus become interesting empirical 
questions. Central to the answers are matters of the interests, goals, traditions, 
and experiences of the social groups ([scientific], technological and other) 
involved ; of the conventions surrounding technological testing; and of the 
relative prestige and credibility of different links in the network of knowledge. 
(MacKenzie, 1990, pp. 10-1 1) 

This “controversy-closure’’ scheme is especially interesting in the case of the 
history of neural networks, which has been shaped by controversies. They 
were quite popular in the late 1950s and early 1960s, but were almost aban- 
doned in the second half of the 1960s when the “perceptron controversy” 
was closed and symbolic A1 emerged as “the right approach” to AI. How- 
ever, almost 20 years later, in a different context, the neural network controv- 
ersy reopened, and many of the conclusions of the early debate were revised 
and changed. Although this second controversy has not been closed yet, it 
has already brought about the acceptance of neural networks as an approach 
to A1 in its own right. 

Debate is a positive force in the generation of science and technology, 
which develop through processes of controversy and closure. In scientific 
controversies, participants make use of many types of rhetorical (or 
debating) tactics. Rhetoric is always used in the processes of closure of 
scientific controversies, and it is therefore an element of scientific activity. 
But I would like to emphasize that when I look at  the rhetoric used in the 
neural network controversies I am not criticizing any of the positions 
involved. My aim is to study the main developments of the history of neural 
networks, and I claim that those developments are best studied by looking 
at the neural network controversies. I do not aim at  evaluating the positions 
involved; my objective is to show how controversies have shaped neural 
network research. 

Here I analyze the main developments of the neural network controversy 
from a sociological point of view. In Section 2 I look at the controversy that 
surrounded Frank Rosenblatt’s perceptron machine in the late 1950s and 
early 1960s. It has often been argued that Rosenblatt made exaggerated 
claims, and that he somehow “provoked” the reaction of symbol-processing 
researchers. However, in Section 3 I show that Rosenblatt was well aware 
of the main problems of his machine, and that he even insisted on them in 
his books and papers. Section 4 concentrates on one of the main problems 
of early neural network research, namely the issue of training multilayer 
systems. 

In the middle of the perceptron controversy, Minsky and Papert embarked 
on a project aimed at showing the limitations of Rosenblatt’s perceptron 
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beyond doubt. In Section 5 ,  I analyze some of the main results of that 
project, and I show that Minsky and Papert (on the one hand) and neural 
network researchers (on the other) interpreted those results rather differently 
(this is therefore a case of interpretive flexibility). In Sections 6 through 8, 
I discuss the processes through which this interpretative flexibility was closed 
and the effects that the crisis of early neural network research had upon the 
three most important neural network groups of the time, namely Widrow’s 
group, Rosenblatt’s group, and the group at SRI. In Section 8, I also look 
at the influence that factors like the emergence of symbolic A1 and computer 
technology had on the closure of the neural network controversy. 

After the closure of the perceptron controversy, symbol-processing 
remained the dominant approach to A1 over the years, until the early 1980s. 
In Section 9, I review briefly some of the most important aspects of that 
changing context. In Section 10 I look at the history of back-propagation, 
and in particular at Werbos’ unsuccessful attempts to sell this idea in the 
1970s and early 1980s. Section 11 elaborates on back-propagation, one of 
the most successful neural network techniques of the second half of the 
1980s. The success of back-propagation has to be understood within the 
context of re-emergence of neural network research in the 1980s. But the 
idea of back-propagation has an interesting history. 

Neural networks research exploded in the late 1980s. In Section 12 some 
indicators of the growth of the neural network community are examined. 
The recent (re)emergence of neural networks in the late 1980s has brought 
about the reopening of the neural network controversy. In Section 13 I 
review some of the main positions that can be found in this new controversy, 
and I emphasize the open character of the current debate. Finally, at the 
end of Section 13 1 reflect briefly on some of the main issues discussed 
throughout this chapter. 

2. The Controversy of the Perceptron 

During the 195Os, neural networks and symbolic A1 emerged as the two 
main approaches to both studying cognition computationally (what today is 
called cognitive science) and building intelligent machines (today’s artificial 
intelligence). Probably because of the early, undeveloped stage of both neural 
networks and symbol-processing A1 at that time, these two approaches were 
seen by many as alternative (rather than complementary) solutions to the 
problems of those disciplines. In this and the following sections I analyze 
some of the main developments of the early phase of the history of neural 
network research. It is my view that those developments can be studied by 
looking closely at Frank Rosenblatt’s perceptron machine. 
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The controversy of the perceptron exploded as the results of Rosenblatt’s 
perceptron project received considerable attention outside the research com- 
munity. Rosenblatt published his first important papers on the perceptron 
in 1958 (Rosenblatt, 1958a, 1958b). At that time, a team of researchers 
started to build the Mark 1 perceptron at Cornell Aeronautical Laboratory 
(CAL, Buffalo, New York, today Arvin Calspan Advanced Technology 
Center) funded by the Office of Naval Research (ONR). The perceptron 
was a feedforward neural network machine with one layer of adjustable 
connections. Rosenblatt developed a “learning” algorithm that guaranteed 
that the perceptron could learn any classification task that could be 
embodied by its structure of units and connections. 

Figure 1 is a simplified representation of Rosenblatt’s perceptron machine. 
The perceptron can be defined as a single-layer feedforward neural network. 
Here single-layer means that there is only one layer of modifiable connections 
(namely the connections from association units to response unit in Fig. 1). 
As it is shown in the figure, the perceptron had two layers of connections, 
namely the ones from sensory units to association units and the ones from 
association units to the response unit. 

The perceptron built by Rosenblatt’s group at CAL had eight response 
units, but only one of them is represented in Fig. 1. The response units had 
modifiable incoming connections. Units of this type have been the building 
block of many neural computing systems since. The response units of the 
perceptron were basically McCulloch and Pitts formal neurons with modifi- 
able connections. A unit of this type fires if the sum of activation it receives 

association 

FIG. 1. Perceptron 
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from other units equals or exceeds its threshold value. Note that the 
activation that a unit receives through each of its input lines is multiplied 
by the value of those lines or connections. 

The question of learning was a very important one in Rosenblatt’s per- 
ceptron and in other early neural network machines. A perceptron is not 
programmed in the sense of conventional computers. In order for a percep- 
tron to improve its performance in some classification task, someone has to 
adjust its modifiable connections according to a rule (or learning algorithm). 
Two learning algorithms for single-layer neural networks were developed in 
1960, one by Rosenblatt (1960) himself, and the other one by Widrow 
and Hoff (1960). Rosenblatt’s (1960, 1962a, ch. 5) “perceptron convergence 
theorem” showed that if a perceptron was physically capable of performing 
a classification task then that perceptron could be “taught” that task in a 
finite number of training cycles. A training cycle involves presentation of a 
pattern, observation of the output given by the machine, and adjustment of 
the connections according to an algorithm.’ 

The perceptron convergence theorem was proved for the simplified percep- 
tron of Fig. 2 (representing the adjustable part of the original perceptron 
after removing the sensory-to-association fixed connections). The perceptron 
learning algorithm states that, for learning to occur, it is necessary that the 
perceptron architecture be capable of embodying the desired input/output 
classification. But proving whether a classification can be carried out by the 
simplified perceptron of Fig. 2 (let alone the Mark 1 perceptron with its first 
layer of randomly wired connections) is an NP-complete problem; that is, 
it is exponentially intractable (the time it takes to solve it grows exponentially 
with the size of the problem). Thus, although the perceptron rule is a power- 
ful learning algorithm, training a single-layer neural network in a classifica- 
tion task is very much an empirical (experimentation-based) matter, where 
factors like the input/output training sample used and the generalization 
abilities required after training are very important. 

It is important to remember that weight modification in the perceptron 
depends on evaluation of performance by an external agent, and it is 
therefore called supervised learning. Another important characteristic of the 
perceptron learning algorithm is that error is minimized for each output unit 
independently of the others. Widrow and Hoff’s LMS algorithm was differ- 
ent in this respect. LMS minimized error as summed over all the output 
units. 

’ “Given an elementary a-perceptron, a stimulus world W, and any classification C( W )  for 
which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus 
must reoccur in finite time; then beginning from an arbitrary initial state, an error correction 
procedure. . . will always yield a solution to C( W )  in finite time . . .” (Rosenblatt, 1962a, 
p. 111). 
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FIG. 2. Simplified perceptron 

Rosenblatt’s perceptron received a lot of attention both inside and outside 
the scientific community. In July 1958, the Perceptron Project was 
announced at a press release held in Washington, D.C.. Marshall Yovits 
from ONR and Frank Rosenblatt himself participated in it. There, ONR 
announced its financial support for Rosenblatt’s project, and Rosenblatt 
made a demonstration of the capabilities of the perceptron simulating it on 
a digital computer. As a consequence of that announcement, the perceptron 
project was widely reported in the press: 

The Navy revealed the embryo of an electronic computer today that it expects 
will be able to walk, talk, see, write, reproduce itself and be conscious of its 
existence . . . Later Perceptrons will be able to recognize people and call out 
their names and instantly translate speech in one language to speech and 
writing in another language, it was predicted. (New York Times, 1958a, p. 
25 :2) 

The concept of the Perceptron was demonstrated on the Weather Bureau’s 
$2,000,000 IBM 704. In one experiment, the 704 computer was shown 100 
squares situated at random either on the left or on the right side of a field. In 
100 trials, it was able to ‘say’ correctly ninety-seven times whether the square 
was situated on the right or left. Dr. Rosenblatt said that after having seen 
only thirty to forty squares the device had learned to recognize the difference 
between right and left almost the way a child learns . . . Later Perceptrons, Dr. 
Rosenblatt said, will be able to recognize people and call out their names. 
Printed pages, longhand letters and even speech commands are within its reach. 
Only one more step of development, a difficult step he said, is needed for the 



342 MIKEL OLAZARAN 

device to hear speech in one language and instantly translate it to speech or 
writing in another language. (New York Times, 1958b, p. iv 9:6) 

Other examples of this type of press reporting can be found.’ 
The experiment reported by the New York Times in the quotation just 

given which says that the perceptron learns between right and left, is a good 
example of the capabilities and the problems of the perceptron. In this case, 
the perceptron was distinguishing between right and left, but it was not 
recognizing the squares as the same object (I will come to this point later). 
However, the fact that the perceptron learned something at all was presented 
as a success. 

Much has been said about Rosenblatt’s “exaggerated claims.” In some 
widely held “popular” versions of the history of neural network research, 
these allegedly exaggerated claims have been given a prominent role. On 
occasions when a few comments on the history of neural networks are 
required, such as in short “historical” introductions to papers and books, it 
is not uncommon to find statements like the following: 

In 1957, Frank Rosenblatt proposed a very influential neural net model called 
the ‘Perceptron.’ Great expectations were laid on this self-organizing system; 
in fact, these claims and expectations were ouerblown (a danger to be avoided 
at all costs by current researchers). This overselling caused a lengthy setback 
for the neural nets field. In 1968, Minsky and Papert published a book called 
Perceptrons, pointing out some of the limitations of that model. What ensued 
was an almost total shift in research funding from neural nets to the nascent 
field of Artificial Intelligence which was being defined by Minsky, McCarthy, 
Newell, Simon and others. The resulting ‘dry spell’ for neural nets lasted until 
the early 1980s. (Cruz, 1988, p. 2, emphasis added) 

According to this “popular” version of the history of neural networks, 
symbolic A1 researchers’ strong reaction against the perceptron and neural 

’See, for example: New York Times (1958a, 1958b), Newsweek (1958), and The New Yorker 
(1958). In an article in the The New Yorker, the perceptron was compared with the 704 IBM 
digital computer in which the simulations of the 1958 press release were carried out : “Having 
told you about the giant digital computer known as IBM 704 and how it has been taught to 
play a fairly creditable game of chess, we’d like to tell you about an even more remarkable 
machine, the perceptron, which, as its name implies, is capable of what amounts to original 
thought. The first perceptron has yet to be built, but it has been successfully simulated on a 
704, and it’s only a question of time (and money) before it comes into existence. This about- 
to-be marvel is a lot more subtle than the 704; indeed, it strikes us as the first serious rival to 
the human brain ever devised, and our brain is thoroughly dazzled by the things it’s said to 
do” (The New Yorker, 1958, pp. 4445). See also these statements: “The question may well be 
raised at this point of where the perceptron’s capabilities actually stop” (Rosenblatt, 1958a, 
p. 110); “. . . for the first time, we have a machine which is capable of having original ideas” 
(Rosenblatt, 1959, p. 449). 
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network research in general (I examine this reaction later) was “justified” 
in order to stop neural network “overselling.” However, it is my view that 
this emphasis on overselling not only misses some very important points of 
the history of neural networks, but it could also be a reconstruction made 
by the “winning side” of the perceptron controversy once that controversy 
was closed. 

It is important to stress that the statements made by Rosenblatt in the 
1958 press release have to be understood within the context of legitimation 
of his research project outside the scientific ~ornmunity.~ Presenting and 
publicizing the perceptron project was important for ONR too. They also, as 
a government organization, had to justify their research-supporting activity. 
Marshall Yovits, who was responsible for the funding of the perceptron 
project at ONR (Information Systems Branch) at  the time, was also at the 
1958 press release. When I interviewed him, he complained strongly about 
the reaction from symbolic A1 researchers both to Rosenblatt’s work and 
to ONR’s involvement in supporting that work. 

Many of the people at MIT felt that Rosenblatt primarily wanted to get press 
coverage, but that wasn’t true at all. As a consequence many of them dispar- 
aged everything he did, and much of what the Office of Naval Research did 
in supporting him. They felt that we were not sufficiently scientific, and that 
we didn’t use the right criteria. That was just not true. Rosenblatt did get a 
lot of publicity, and we welcomed it for many reasons. At that time, he was 
with Cornell Aeronautical Laboratory, and they also welcomed it. But at 
ONR-as with any government organization-in order to continue to get 

Science is a social activity, and scientific knowledge the product of that activity. Every 
social activity has to be constantly sustained (i.e., it has a need of legitimation). The social 
legitimation of science can be studied at two (interrelated) levels, namely at the level of the 
scientific community and at  the level of the wider society. Right now I am talking about this 
second level (however, in the rest of the chapter I make many considerations of the first one). 
It is obvious that, because of the economic costs of scientific research, there is always competi- 
tion for resources and for legitimation in the wider society. Latour goes further to affirm that 
the bigger the “inside” of a research project, the bigger its “outside:” in other words, the bigger 
a research project (the more “allies” and resources it needs), the more “work” has to be done 
outside the laboratory. “Technoscience has an inside because it has an outside. . . The bigger, 
the harder, the purer science is inside, the further outside other scientists haue to g o .  . . If you 
get inside the laboratory. . . you see science isolated from society. But this isolation exists only 
in so far as other scientists are constantly busy recruiting investors, interesting and convincing 
people. The pure scientists are like helpless nestlings while the adults are building the nest and 
feeding them. It is because. . . the boss. . . [is] so active outside that the.  . . collaborator. . . 
[is] so much entrenched inside pure science” (Latour, 1987, p. 156). The topic of the relationship 
between A1 research and the wider society is especially interesting because there are many 
discourses about human intelligence and human action in society that may feel “affected” by 
AI’s methods and conclusions. For a study of the images of A1 in the wider society and the 
relationships between A1 and ideologies, see Fleck (1984). 
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public support, they have to have press releases, so that people know what 
you are doing. It is their right. If you do something good, you should publicize 
it, leading then to more support. (Yovits, interview) 

Rosenblatt himself complained about the press reporting of the perceptron 
p r ~ j e c t . ~  

But let me come to symbol-processing researchers’ reactions to Rosen- 
blatt’s claims. 

As time went on, the perceptron began to acquire a certain amount of 
notoriety. Besides its simplicity, there was another reason for its growing fame, 
and that was Frank Rosenblatt himself. Present day researchers remember 
that Rosenblatt was given to steady and extravagant statements about the 
performance of his machine. ‘He was a press agent’s dream,’ one scientist says 
[McCorduck does not disclose the name], ‘a real medicine man. To hear him 
tell it,  the Perceptron was capable of fantastic things. And maybe it was. But 
you couldn’t prove it by the work Frank did’ . . . (McCorduck, 1979, p. 87) 

The rhetoric used by researchers both in favor of and against neural net- 
works are a good indicator of the level of controversy reached. A frequent 
rhetorical move by Rosenblatt’s critics was to accuse him of “irritating 
people.” 

Case-Western’s Leon Harmon, who worked on the von Neumann machine at 
the Institute for Advanced Studies at Princeton, and who describes himself 
as perhaps the first computer operator, still seethes about walking into the 
Smithsonian and discovering that beside the von Neumann machine, which 
well deserved to be there, stood a Perceptron, sharing floor space as if it were 
equally important. Harmon doubts that we’ll ever learn much about brain 
operation from studying electronic hardware, and believes that the really inter- 
esting and potent things the computer in our heads does are inscrutable. . . 
Rosenblatt only irritated him. (McCorduck, 1979, p. 88) 

But opinions were divided, and a significant number of researchers were 
convinced by Rosenblatt’s arguments, charisma, and persuasion  effort^.^ A 
good example of this is Rosenblatt’s visit to Stanford Research Institute 

“. . . Reasons for the negative reactions to the [perceptron] program . . . [One of them] was 
the handling of the first public announcement by the popular press, which fell to the task with 
all the exuberance and sense of discretion of a pack of happy bloodhounds. Such headlines as 
‘Frankenstein Monster Designed by Navy Robot That Thinks’ (Tulsa, Oklahoma Times) were 
hardly designed to inspire scientific confidence” (Rosenblatt, 1962a, p. v). 
’ “. . . ‘He did irritate a lot of people,’ says W. W. Bledsoe of the University of Texas speaking 

of Rosenblatt, ‘but he also charmed at least as many, and 1 count myself among them. Just 
when you were thinking that Frank [Rosenblatt] didn’t have another trick up his sleeve, along 
he’d come, and he’d be so darn convincing, you know, he just had to be right’ . . .” 
(McCorduck, 1979, p. 88) 
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(SRI). Sometime after this visit, Charles Rosen’s group at SRI decided to 
start their Minos neural network project. 

Around 1959 or so, certainly not much later than that, we had an unsolicited 
visit from Frank Rosenblatt, who came around the country giving talks on 
what he called the perceptron. He had just begun to write some of the famous- 
well, I guess, pretty famous-early papers on it. He was a psychologist with 
not much of a background in engineering. He knew some mathematics. And, 
really [laughing], in our first view of him, he was not very prepossessing: a 
short fellow, with very heavy glasses. . . But he had a deep voice, and when 
he started to talk about what he was doing your picture of him completely 
changed. He was an interesting man, a very interesting man. Later, as we got 
to know him better, he earned our deep respect. (Rosen, interview) 

The controversy of the perceptron was often personalized in the figures of 
Rosenblatt and Minsky. They were frequently the leaders of the two con- 
tending positions. Minsky and Rosenblatt engaged in heated debates at 
scientific conferences in the late 1950s and early 1960s. 

Another who was irritated by Rosenblatt was Marvin Minsky, perhaps because 
Rosenblatt’s Perceptron was not unlike the neural-net approach Minsky was 
alternately intrigued and frustrated by. Many in computing remember as great 
spectator sport the quarrels Minsky and Rosenblatt had on the platforms of 
scientific conferences during the late 1950s and early 1960s. (McCorduck, 1979, 

. . . Rosenblatt’s claim was that after a finite number of adjustments the 
machine would learn to recognize patterns. Rosenblatt was an enormously 
persuasive man, and many people, following his example, began to work on 
Perceptrons. Minsky was not among them . . . Minsky and Rosenblatt engaged 
in some heated debates in the early sixties. During my discussions with Minsky, 
he described what the issues were. “Rosenblatt made a very strong claim 
[Minsky speaking], which at first I didn’t believe [referring to the perceptron 
convergence theorem] . . . Rosenblatt’s conjecture turned out to be mathemati- 
cally correct, in fact. . . However, I started to worry about what such a mach- 
ine could not do.” (Bernstein, 1981, pp. 96-99) 

That the aims and methods of perceptron research are in need of clarification 
is apparent from the extent of the controversy within the scientific community 
since 1957, concerning the value of the perceptron concept. (Rosenblatt, 1962a, 

P. 88) 

P. v) 

I think that there was a surmise that Minsky and others had not gotten any- 
where in their early work with neural nets and here was somebody [Frank 
Rosenblatt], an upstart;working on neural nets, and getting some fame, and 
getting a lot of press-Frank got a lot of press at the time-and Minsky was 
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very upset about a field he had abandoned due to limited success, and to the 
conviction that this was not the route to advance the science of intelligent 
machines. (Rosen, interview) 

I infer from my contacts with some of the researchers involved (see Appendix 
1) that the atmosphere of the controversy was rather bitter at times, and 
that there were moments when diplomacy was left behind. 

Minsky and Rosenblatt were often the leaders of the two main positions, 
but controversy extended to other neural network groups too. The SRI 
group is a good example of this. 

Minsky and his crew.. . thought that Frank Rosenblatt’s work was a waste 
of time, and they certainly thought that our work [at SRI] was a waste of 
time. . . Minsky really didn’t believe in perceptrons, he didn’t think it was the 
way to g o .  . . I know he knocked the hell out of our perceptron business. 
(Rosen, interview) 

Competition for funding resources seems to have been one of the main 
reasons for this strong controversy. In the late 1950s, both neural networks 
and symbol-processing were emerging areas of research. None of them had 
reached consolidation by that time, and therefore competition for funding- 
and for scientific legitimacy in general-was particularly strong. Symbol- 
processing researchers saw neural network researchers’ efforts to obtain 
funding for building more complex machines as a direct threat to their 
research interests. In this context, two of them-Marvin Minsky and 
Seymour Papert-decided to carry out a study that would show the limita- 
tions of neural networks beyond doubt. In later sections I will analyze 
Minsky and Papert’s work and its importance in the closure of the percep- 
tron controversy. But before that, I would like to turn my attention to some 
of the main problems that early neural network researchers were having with 
their machines. 

3. The Problems of Early Neural Networks 

In this section, I discuss briefly some of the problems that Rosenblatt was 
having with his perceptron machine in the late 1950s and early 1960s. I show 
that Rosenblatt and his colleagues were aware of the limitations of their 
single-layer neural network machine. 

In the previous section, I said that in the heat of the perceptron controv- 
ersy Rosenblatt was accused by his opponents of “irritating” a lot of people 
with his “exaggerated” claims about the capabilities of the perceptron. There 
I anticipated the view that this “popular version” misses important aspects 
of the history of early neural network research. In Section 2, I also pointed 
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out that the salience that the “overclaiming hypothesis” has gained over the 
years is probably a consequence of the closure of the perceptron controversy 
(to be analyzed later). Thus, it could have been the case that the accusation 
of overclaiming (a rhetorical element used by the neural network critics) 
became part of the “official” history of neural networks afrer (and not 
before) the controversy was closed against the neural network position. 

Rosenblatt and his colleagues were aware of the problems of the percep- 
tron, and acknowledged them openly in the scientific papers they published 
in the late 1950s and early 1960s. In this section, I will look at these problems 
in some detail. 

One of the limitations most frequently acknowledged by Rosenblatt was 
the lack of capacity of the perceptron to detect similarities between figures 
in its retina. The reason for this was, as Rosenblatt openly admitted, that the 
perceptron did not classify objects according to their geometrical similarity 
(Rosenblatt, 1958a, p. 96, 1962a, pp. 67-70, 1962b, pp. 390-391). Instead, 
classifications were based on the amount of overlap or intersection between 
objects in the perceptron’s input retina. If the amount of overlap between 
the retinal areas occupied by two objects was big enough, then the perceptron 
would be able to classify them under the same category (otherwise it would 
not).6 Rosenblatt used the term “weak generalization” to refer to this type 
of overlap-based recognition, as opposed to “pure generalization,” which 
the elementary perceptron was not capable of. 

For instance, the machine could, under the right circumstances, recognize the difference 
between two different kinds of stimuli (e.g., triangles and squares). But unfortunately “under 
the right circumstances” here means, as Rosenblatt acknowledged, that two stimuli (presented 
one after another) had to occupy nearly the same area of the retina in order to be classified as 
similar. This means that inputs A and B in Figure 3 would not be classified as belonging to 
the same category (“square”) by an elementary perceptron. 

input retina 

FIG. 3. 
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. . . A  pure generalization problem is one in which the . .  . perceptron is 
required to transfer a selective response from one stimulus (say, a square on 
the left side of the retina) to a ‘similar’ stimulus which activates none of the 
same sensory points (a square on the right side of the retina) . . . The simplest 
of perceptrons [the single-layer perceptrons] . . . have no capability for pure 
generalization, but can be shown to perform quite respectably in discrimination 
experiments, particularly if the test stimulus is nearly identical to one of the 
patterns previously experienced. (Rosenblatt, 1962a, pp. 68-69) 

The perceptron had other, equally worrying problems and limitations. 
Rosenblatt recognized them openly in his Principles of Neurodynamics book 
(e.g., Rosenblatt, 1962a, pp. 306-310). One of the problems, the issue of 
preprocessing (i.e., the problem of distinguishing the components of an 
image and the relationships between them), was related to the previously 
mentioned question of the similarity criterion used by the perceptron. The 
lack of an adequate preprocessing system meant that a set of association 
units had to be dedicated to the recognition of each possible object, and this 
created an excessively large layer of association units in the per~eptron.~ 
Other problems were excessive learning time, excessive dependence on exter- 
nal evaluation (supervision), and lack of ability to separate essential parts 
in a complex environment. Rosenblatt (1962a, pp. 309-310) included the 
“figure-ground’’ or “connectedness” problem within this last point. It will 
be seen later that this question (i.e., the problem of recognizing a figure as 
distinct from its background) was one of the most important points of 
Minsky and Papert’s (1 969) arguments against single-layer perceptrons. 

In dealing with the problem of recognizing similar objects appearing in 
different positions in the perceptron’s retina, Rosenblatt studied systems 
with two layers of association units, and also systems with connections 
among the units of the same layer (“cross-coupled” perceptrons). He also 
carried out some research on “four-layer’’ perceptrons with one or more 
layers of modifiable connections (today’s multilayer networks). Rosenblatt 
(1962a, p. 576) claimed that the perceptron’s generalization capability 
improved considerably with these changes.8 Nevertheless, he openly admit- 
ted that very important problems concerning four-layer (i.e., multilayer) and 
cross-coupled perceptron systems remained to be solved. 

’ “. . . The excessive size of the perceptrons necessary to deal with complex environmental 
situations is due largely to the necessity of having a characteristic set of association units 
representing every possible sensory field or sequence in its entirety. A preliminary coding of 
the field in terms of its parts and relations would greatly reduce the size of the system required 
to describe a given universe of situations” (Rosenblatt, 1962a, p. 306). 

* In a perceptron with two layers of association units (“four-layer” perceptrons in Rosen- 
blatt’s terms), the units of the first association layer, responded to similar features in different 
positions, would all activate the same unit in the second association layer, and in this way 
a feature in different positions could be recognized as the same (von der Malsburg, 1986, 
pp. 245-246). 
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Rosenblatt (1962a, pp. 577-579) summarized the limitations of percep- 
trons (both single-layer and more complex machines) in a list of 15 problems, 
some of which are reproduced below. 

A number of perceptrons analyzed in the preceding chapters have been 
analyzed in a purely formal way, yielding equations which are not readily 
translated into numbers, This is particularly true in the case of the four-layer 
and cross-coupled systems, where the generality of the equations is reflected 
in the obscurity of their implications. . . Those problems which appear to be 
foremost at this time include the following: 1) Theoretical learning curves for 
the error correction procedure. . . 2) Determination of the probability that a 
solution exists for a given problem . . , 3) The development of optimum codes 
for the representation of complex environments in perceptrons with multiple 
response units. 4) Development of an efficient reinforcement scheme for preter- 
minal connections. . . 7) Theoretical analysis of convergence-time and curves 
for adaptive four-layer and cross-coupled perceptrons . . . 12) Effect of spatial 
constraints in cross-coupled systems (e.g., limiting interconnections to pairs of 
association units with adjacent retinal fields). 13) Studies of possible figure- 
segregation (figure-ground) mechanisms. 14) Studies of abstract concept 
formation, and the recognition of topological or metrical relations. . . .” 
(Rosenblatt, 1962a, pp. 577-579)9 

This quotation shows beyond doubt that Rosenblatt was well aware of the 
considerable difficulties faced by early neural network research. In points 4 
and 7 in this quotation, the difficulties of training multilayer networks and, 
in particular, the lack of an effective algorithm for doing so, are clearly 
stated. Rosenblatt recognized that issues 4 and 7 were (in his words) 
“theoretical,” meaning that they could not be solved simply by carrying out 
more powerful simulations or by building more advanced machines: 

In the case of problem 4 . . . simulation studies seem to be indicated for prelimi- 
nary exploration, although it is hoped that some theoretical formulations may 
ultimately be achieved . . . The seventh question again is a theoretical one, 
although preliminary results obtained from simulation programs should prove 
enlightening. (Rosenblatt 1962a, 579-580) 

In point 13 of his list, Rosenblatt insists once again on the figure-ground or 
“connectedness” problem, one of the problems to which Minsky and Papert 
devoted a lot of attention in their critical study of perceptrons (Minsky and 
Papert, 1969). Rosenblatt’s most pessimistic comments were for problems 
13 (the figure-ground problem) and 14 (the recognition of topological 
relationships and abstract concepts). 

Here Rosenblatt uses the term “terminal” to refer to the connections between the second 
association layer and the response units, and “preterminal” to refer to the previous layers of 
connections. 
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These two problems [13 and 141 . . . represent the most baffling impediments 
to the advance of perceptron theory in the direction of abstract thinking and 
concept formation. The previous questions [from the 1st to the 12th] are 
all in the nature of ‘mopping-up’ operations in areas where some degree of 
performance is known to be possible. . . [However], the problems of figure- 
ground separation (or recognition of unity) and topological relation recogni- 
tion represent new territory, against which few inroads have been made. 
(Rosenblatt, 1962a, pp. 580-581) 

Rosenblatt and his colleague David Block insisted also on the problems 
found in recognizing topological and temporal relationships with the percep- 
tron (Rosenblatt, 1958a, pp. 110-1 11, 1962b, pp. 390-391 ; Block, 1962, p. 
149). These included predicates of the type “the object to the left of the 
square,” “the object which appeared before the circle,” “the square is inside 
the circle,” and “the dog is in front of the tree.” Rosenblatt openly acknowl- 
edged (see previous quotation) that progress toward solving these problems, 
as well as the figure-ground problem, had been almost insignificant. 

Thus, Rosenblatt was well aware of the problems of the single-layer per- 
ceptron. He thought that further progress in neural network research would 
come from perceptrons more complex than the single-layer one, but he 
recognized that many problems regarding more complex perceptrons 
(including multilayer ones) remained to be solved. 

4. Training Multilayer Networks: A ”Reverse Salient” 
of Neural Network Research 

In this section, I would like to look in more detail at one of the most 
important problems of early neural network research, namely training 
networks with more than one layer of modifiable connections (multilayer 
networks). 

In this discussion of the problem of training multilayer networks and its 
importance in the crisis of early neural network research I will use Thomas 
Hughes’ concepts of “reverse salient” and “critical problem” (Hughes, 
1983). Reverse salients are problems that obstruct the development of 
technological systems. lo According to Hughes, these problems are obvious 
to the agents involved in such a system. Therefore, the difficulty does not lie 

lo The term “reverse salient” has its origins in the field of military historiography. In that 
context, a reverse salient is a section of an advancing military front (represented as a continuous 
line) which has fallen behind for some (and varied) reasons (Hughes, 1983, p. 79). For Hughes 
this metaphor is useful because it refers to a complex situation in which many different factors 
may intervene, that is a situation shaped by a complex diversity of circumstances and 
determinants. 
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in localizing a reverse salient, but in giving a satisfactory solution to it. When 
a reverse salient is defined as a problem that can be solved, it becomes a 
critical problem. For Hughes, defining reverse salients as critical problems 
is the key to technological innovation and change (Hughes, 1983, pp. 14- 
15, 22). 

I showed earlier that the problem of learning in perceptrons with more 
than one layer of adjustable connections was seen by Rosenblatt and col- 
leagues as one of the most important barriers to making further progress in 
perceptron research. With his convergence theorem, Rosenblatt had shown 
that, if a single-layer perceptron was able to embody a classification task, 
then it was capable of learning it after a finite (i.e., noninfinite) number of 
repetitions of the presentation of input-adjustment of weights cycle. The 
problem was, of course, that there were some classification tasks that the 
single-layer perceptron could not realize. The typical example here is the 
exclusive-or function. 

The problem of the exclusive-or logical function is often shown in the 
simplest possible neural network: a device with two input units and one 
output unit (and the corresponding two modifiable connections). It is easy 
to see that this network can realize the AND function. Values for the param- 
eters of the system (connection weights and the threshold of the output unit) 
can be found that embody this function. The AND function is 1 only when 
both inputs are 1, and it is 0 otherwise. So the device of Fig. 4 below will 
only fire (i.e., will produce output 1) when both input units are activated 
(1, 1). Only in that case is the value of the threshold (1.5) exceeded. 

The input space of the network of Fig. 4 can be represented as a two- 
dimensional space. The computation realized by the output unit (where 
weights and threshold intervene) separates that input space into two regions, 
one corresponding to output value 1 and the other one to output value 0. 
The AND function is linearly separable (a straight line that separates the 
two classes of outputs can be drawn). 

input units 

FIG. 4. AND function. 
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The exclusive-or function cannot be embodied by the system of Fig. 4. 
This system can only realize linearly separable functions, and exclusive-or is 
not linearly separable. For a system with two input units and one output 
unit to be able to compute exclusive-or, the response to stimuli (0,O) and 
(1, 1) should be the same (namely 0). But if both input (1,O) and input 
(0, 1) have to exceed the threshold value, then it is impossible that input 
(1, 1) will not exceed that value. This problem can be solved by introducing 
an intermediate (or hidden) unit. The hidden unit is activated only when 
both input units are activated at the same time (input 1, 1). In this case, the 
hidden unit sends strong (-2) inhibition to the output unit. 

Early neural network researchers knew that a solution to some of the 
problems of single-layer networks was possible by introducing a layer of 
hidden units between the input and the output layers. The problem was that 
no weight modification rule had been developed for multilayer networks that 
guaranteed results comparable to those obtained with both the perceptron 
learning algorithm and Widrow and Hoff’s LMS (least mean square) algo- 
rithm for single-layer networks. Neural network researchers were aware of 
the problem of training multilayer perceptrons long before Minsky and 
Papert’s (1 969) study was published. A good example of the early salience 
of this problem can be found in J. K. Hawkins’ (1961) review about “self- 
organizing systems.” In this review the issue of training multilayer networks 
figured prominently among the problems of neural networks. 

For example, the AND [function] . . . can be realized with the [single-layer] 
linear-logic circuit. . . while the exclusive-or [functions] . . . require a cascade 
linear logic arrangement [hidden units] . . . [The limitations of single-layer net- 
works] are extremely severe. . . since the percentage of realizable logical 
functions becomes vanishingly small as the number of input variables increases. 
The chances of obtaining an arbitrary specified response are correspondingly 
reduced. More sophisticated approaches must therefore be undertaken. A 
number of alternatives are possible . . . The most attractive appears to be multi- 
ple-layer logical circuit arrangements, since it is known that any function can 
thercby be realized. . . However, no general criteria on the basis of which 
intermediate logical layers can be taught functions required for over-all net- 
work realization of the desired input-output relationship have been discovered 
(Hawkins, 1961, pp. 45-47) 

The problem of learning in multilayer systems figured prominently in the 
research agenda of the main neural network groups of the late 1950s and 
early 1960s. In the previous section, I showed that this problem was very 
important for Rosenblatt and his colleagues. In the rest of this section I will 
discuss how this issue affected both Widrow’s group at Stanford University 
and Rosen’s group at Stanford Research Institute (SRI). 
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Widrow and his colleagues were aware that their most powerful single- 
layer neural network machines had important problems and limitations. 
They were aware that there were important classification tasks that the 
single-layer Madaline could not realize, and that machines with more layers 
of modifiable connections had much greater classification power. They 
studied multilayer madalines and investigated some learning procedures for 
them. These were madalines in which the second layer of connections was 
also adaptable (they were what today is called multilayer networks). Figure 
5 shows one type of multilayer architecture studied by Widrow and his 
colleagues. 

The system represented in Fig. 5 is capable of classifying inputs into eight 
categories (it has three binary output units). In some of his experiments, 
Widrow used a 4 x 4 square retina (ie., 16 input units that could represent 
letters and other patterns). He also studied systems with bigger input 
“retinas.” The objective of Widrow’s experiments with the multilayer net- 
work of Fig. 5 was: 

. . . To teach the system to classify . . . patterns [belonging to the eight categor- 
ies] correctly by showing it only a very small randomly selected fraction of the 
total number of possible input patterns. If the first layer could be trained to 

connections 
connections 

ADA=adaline 

FIG. 5. Madaline with two layers of modifiable connections. 
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produce a set of output signals which are close to being independent of rota- 
tion, translation, size, and noise, the second layer could be trained to produce 
the specific desired responses. To do all this, some of the madalines shown in 
figure . . . [3-31 might have to be madalines, or a third (or more) adaptive layer 
might have to be added. (Widrow, 1962, p. 455) 

Widrow described a procedure for training a system like the one in 
Fig. 5 which “had been found by experiment to work well” (Widrow, 1962, 
p. 456). However, results could not be guaranteed in the same sense as 
Widrow and Hoff’s (1960) LMS algorithm guaranteed results for single- 
layer machines. Widrow reported some “successful” experiments on “wide 
varieties of specific responses” with a small scale version of the system of 
Fig. 5 ,  namely a system with three adalines in the first layer of units and one 
in the second (and therefore two layers of modifiable connections). He and 
his colleagues dedicated important research efforts to the problem of training 
multilayer machines. 

The above procedure [for adapting weights] and many variants upon it are 
currently being tested with larger networks, for the purpose of studying 
memory capacity, learning rates, and relationships between structural config- 
uration, training procedure, and nature of specific responses and generaliza- 
tions that can be trained in. (Widrow, 1962, p. 456) 

But even though many experiments were carried out, Widrow and his col- 
leagues were not able to develop a learning algorithm for multilayer networks 
comparable to the one they had earlier developed for single-layer networks. 
In part as a result of that, they started to shift their focus of attention to 
engineering applications of adalines and the LMS algorithm outside neural 
network research. 

We tried to adapt layered [i.e., multilayer] neural nets, but we never succeeded. 
We were able to adapt a two-layer network, the madaline, where the first layer 
was adaptive but the second layer was fixed. By knowing the nature of the 
second layer we were able to make rules for adapting the first layer. But if the 
second layer was completely free to do what it wanted, we didn’t have any 
general rule for adapting the first layer. . . We tried to adapt multilayer net- 
works. We were trying to make that breakthrough, and tried, and tried, but 
we never succeeded. I couldn’t imagine any way to do it. I think that-if 
anything-for lack of success on that problem I stopped working on neural 
networks and switched to other areas. (Widrow, interview) 

After looking at Widrow’s group’s attempts at solving the problem of 
training multilayer nets, I would like to turn now to the SRI group (the 
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other main center of early neural network research). The SRI researchers 
also saw that problem as one of the main issues of early neural network 
research. (In Section 3, I showed that Rosenblatt was also aware of this 
problem.) 

The SRI researchers were aware that more classification power could come 
from making the connections of the second layer of their Minos machine 
adjustable, but they could not develop adequate training techniques for that. 
This was openly admitted by Nils Nilsson (one of the leading members of 
the group) in his book Learning Machines (Nilsson, 1965). Nilsson himself 
(interview) and Charles Rosen (interview) confirmed it to me. 

In general, layered machines can be trained by varying the weights associated 
with each TLU [threshold logic unit or neuron] in the network. There do not 
exist however, efficient adjustment rules for such thorough training of a layered 
machine. . . The committee machine [Minos or the madaline] can be gen- 
eralized by allowing the committee [majority logic] TLUs to have different 
voting strengths. . . The possibility of such variants of the committee machine 
increases its classifying power but, unfortunately, no efficient training pro- 
cedures are known which simultaneously locate the weight vectors and adjust 
their voting strengths. (Nilsson, 1965, pp. 97-99) 

I got very interested for a while in the problem of training more than one layer 
of weights, and was not able to make very much progress on that problem. 
(Nilsson, interview) 

Our group never solved the problem of training more than one layer of weights 
in an automatic fashion. We never solved that problem. That was most critical. 
Everybody was aware of that problem. . . ." (Rosen, interview)" 

Of course, training multilayer systems was not the only problem faced by 
SRI neural network researchers. Much of what was said in the previous 
section about the problems of the single-layer perceptron also applied to 
Widrow's madaline machines and the SRI group's Minos. 

5. Interpretative Flexibility 

I said earlier that, as the perceptron controversy increased and developed, 
Minsky and Papert decided to intervene in it decisively and show once and 

I '  Rosen continued as follows: ". . . This problem has now been solved, and in the past ten 
years has led to an explosive increase of interest in the theory and applications of neural nets, 
a field that will probably remain important in Artificial Intelligence from now on" (Rosen, 
interview). 



356 MIKEL OLAZARAN 

for all the limits of the perceptron. Minsky and Papert’s intervention was 
one of the most important episodes in the perceptron controversy. In this 
section 1 look in detail at some of Minsky and Papert’s main arguments 
against the perceptron, and I show that they were interpreted rather differ- 
ently by researchers in favor of and contrary to neural network research. In 
the following sections I will analyze the importance of Minsky and Papert’s 
arguments in the closure of the perceptron controversy. 

Minsky and Papert had worked separately on neural networks long before 
they embarked on their common project in the early 1 9 6 0 ~ ’ ~  Approximately 
at the time when Seymour Papert went to MIT (in 1963, when the controv- 
ersy had reached its highest level), he and Marvin Minsky decided to carry 
out a study that would show the limitations of perceptrons beyond doubt. 
They decided to make a decisive “move” in the perceptron controversy, a 
move aiming at showing beyond doubt the limitations of the perceptron 
(and of neural network research in general). With this move, Minsky and 
Papert aimed at mobilizing as many (and as good) arguments as possible in 
their favor, so that their position could not be contested by their opponents. 

An important part of the motivation for carrying out this study came 
from the fact that some neural network researchers were trying to get funding 
to build more powerful machines. 

In the late 1950s, after Rosenblatt’s work, there was a great wave of neural 
network research activity. There wcre maybe thousands of projects in the early 
1960s, after Rosenblatt’s work. For example Stanford Research Institute had 
a good project. But nothing happened. The machines were very limited. So I 
would say by 1965 people were getting worried. They were trying to get money 
to build bigger machines, but they didn’t seem to be going anywhere. That’s 
when Papert and I tried to work out the theory of what was possible for the 
machines without loops [feedforward perceptrons]. (Minsky, interview) 

There was some hostility in the energy behind the research reported in 
Perceptrons . . . Part of our drive came, as we quite plainly acknowledged in 
our book, from the fact that funding and research energy were being dissipated 
o n .  . . misleading attempts to use connectionist methods in practical applica- 
tions. (Papert, 1988, pp. 4-5) 

In the middle nineteen-sixties Papert and Minsky set out to kill the perceptron, 
or, at least, to establish its limitations-a task that Minsky felt was a sort 
of social service they could perform for the artificial-intelligence community. 
(Bernstein, 1981, p. 100) 

I discuss Minsky’s early work on neural networks elsewhere (Olazaran, 1991, Section 2.1). 
For Papert’s early involvement, see Papert (1988, p. 11). 
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Similar statements by Minsky and Papert can be found el~ewhere.’~ 
But before turning to the discussion of Minsky and Papert’s study, it is 

very important to clarify some issues about the time frame of the perceptron 
controuersy. The final results of Minsky and Papert’s study about the limita- 
tions of perceptrons were not published until 1969 (Minsky and Papert, 
1969). Nevertheless, the main points of their critical arguments against per- 
ceptrons (and neural networks in general) were well known by the mid- 
1960s and had critically affected the development of neural network research 
by then. 

Minsky and Papert’s (1969) study was the “final push,” so to speak, for 
the closure of the controversy, but many of the main events in that closure- 
including the crises of both the SRI Minos project and Widrow’s madaline 
projects-happened in the mid-1960s. 

One reason for delaying publication of their results was that some of the 
mathematical work was harder than expected. Minsky and Papert delayed 
publication until they had given an elaborated mathematical form to many 
of their points. 

After working on the problem of Perceptrons for some three years, and coming 
to understand them at least partially, and proving some theorems about them, 
Minsky and Papert laid out their book. In the process of writing, loose ends 
appeared, and the two scientists kept working, tying up the loose ends and 
delaying publication. (McCorduck, 1979, p. 89) 

It took us many months of work to capture in a formal proof our strong 
intuition that perceptrons were unable to represent that predicate [the connect- 
edness predicate]. (Minsky and Papert, 1988, pp. 249-250) 

’’ “The popularity of the perceptron as a model for an intelligent, general purpose learning 
machine has roots, we think, in an image of the brain itself as a rather loosely organized, 
randomly interconnected network of relatively simple devices. This impression in turn derives 
in part from our first impressions of the bewildering structures of the brain. . . The,mystique 
surrounding such machines is based in part on the idea that when such a machine learns the 
information stored is not localized in any particular spot, but is, instead, ‘distributed 
throughout’ the structure of the machine’s network. It was a great disappointment, in the first 
half of the twentieth century, that experiments did not support nineteenth century concepts of 
the localization of memories (or most other ‘faculties’) in highly local areas . . . In this setting, 
Rosenblatt’s (1958a) schemes quickly took root, and soon there were perhaps as many as a 
hundred groups, large and small, experimenting with the model. . . The results of these hun- 
dreds of projects and experiments were generally disappointing, and the explanations 
inconclusive. . . The machines usually work quite well on very simple problems but deteriorate 
very rapidly as the tasks assigned to them get harder, .  . Both of the present authors (first 
independently and later together) became involved with a somewhat therapeutic compulsion : 
to dispel what we feared to be the first shadows of a ‘holistic’ or ‘Gestalt’ misconception that 
would threaten to haunt the fields of engineering and artificial intelligence as it had earlier 
haunted biology and psychology” (Minsky and Papert, 1969, pp. 18-20). 
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Minsky and I both knew perceptrons extremely well. We had worked on them 
for many years before our joint project of understanding their limits was 
conceived . . . Yet when we challenged ourselves to prove our intuitions it 
sometimes took years of struggle to pin one down-to prove it true or to 
discover that it was seriously flawed. I was left with a deep respect for the 
extraordinary difficulty of being sure of what a computational system can or 
cannot do. (Papert, 1988, p. 11) 

What I would like to emphasize here is that the main points of Minsky and 
Papert’s arguments against the perceptron were well known by the mid- 
1960s, and that those arguments had had a critical effect on neural network 
research by then. This was confirmed to me by the researchers of the early 
neural network period whom I could interview (see Appendix 1). The follow- 
ing remark by Dreyfus and Dreyfus, therefore, seems correct. 

About 1965, Minsky and Papert, who were running a laboratory at MIT 
dedicated to the symbol-manipulation approach and therefore competing for 
support with the perceptron projects, began circulating drafts of a book attack- 
ing the idea of the perceptron. (Dreyfus and Dreyfus, 1988, p. 21) 

In the rest of this section, I will analyze Minsky and Papert’s main critical 
arguments against the perceptron as they finally appeared in their 1969 book 
Perceptrons (Minsky and Papert, 1969) because they are best expressed there, 
but I would ask the reader to read them as if they had been written in the 
mid-1960s. I think that this is justified because, even though the book had 
an effect of its own when it was published-it was the last word in the 
perceptron controversy, the final push for its closure-most of the arguments 
published there had had a very important effect on the evolution of neural 
network research by then. 

I would like to distinguish two different issues in Minsky and Papert’s 
arguments against the perceptron (and neural network systems in general). 
One is their work on the limitations of single-layer perceptrons. The other 
is their “intuitive judgement” (in their own words) about the possibility of 
developing a learning algorithm for multilayer perceptrons. In popular ver- 
sions of the history of neural networks, Minsky and Papert’s Perceptrons 
study is usually taken as the proof that neural network research had so many 
problems that it was not worth pursuing, and that therefore it had to be 
abandoned. However, in my opinion, that common view was the result of 
the closure of the perceptron controversy, and not its cause. Before then, 
things were not clear at all. The two main parts of Minsky and Papert’s 
attack on the perceptron were open to interpretative flexibility (see Section 
1 for comments on this concept). This was so not only in principle; neural 
network researchers did try to take advantage of that interpretative flexibility 
in practice. The problem was-as always is-whether neural network 
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researcher’s response to Minsky and Papert’s criticism was strong enough (I 
will get to this issue in Section 8). 

In my analysis of Minsky and Papert’s (1969) discussion of the problems 
of neural networks I will use terms like reverse salient and anomalous prob- 
lem. I explained what I mean by reverse salient in Section 4. Thomas Kuhn 
(1970) used the term anomaly extensively in his historical studies of science. 
For Kuhn, anomalies are experimental results that do not fit within the 
accepted categories of a scientific theory. Kuhn argued that, when anomalies 
pile up and are important and persistent, their solution may require severe 
adjustments in the theoretical and methodological apparatus of a paradigm. 
But this is not the sense in which I would like to use the term anomalous 
problem here. By anomalous problem I mean a research problem that both: 
(a) resists solution within a scientific approach, and (b) has an acceptable 
solution within a competing paradigm. Nevertheless, I maintain the view that 
notions like resistance to solution and acceptable solution within a competing 
paradigm are the product of a process of social negotiation and decision. 
Scientific and technical problems are often evaluated differently by the 
diverse groups participating in a controversy. l4 

The concept of anomalous problem will be used in the discussion of the 
limitations of the (single-layer) perceptron, which I would like to distinguish 
in Minsky and Papert’s study. The concept of reverse salient will be used in 
the discussion of the next issue, namely Minsky and Papert’s challenge (or 
“intuitive judgement”) about more complex perceptrons. 

Some of the main problems of the single-layer perceptron analyzed in- 
depth by Minsky and Papert--e.g., the parity and connectedness problems- 
can be seen as anomalous problems. But it is important to emphasize that 
problems like parity and connectedness became anomalous not because of 
some intrinsic or necessary property, but because early neural network 
researchers were not strong enough to resist Minsky and Papert’s (1969) 
conclusions about their “anomalous character.” Those problems became 
anomalous because they were important in the closure of the perceptron 
controversy. In other words, the anomalous character of those problems was 
in part the result of that closure, and not its cause. There was nothing 
intrinsically anomalous in problems like parity and connectedness. I will 
show later that, before the perceptron controversy was closed, there were 
different interpretations of those problems, some of them favoring the 
continuation of neural network research. 

Figure 6 shows the single-layer perceptron analyzed by Minsky and Papert 
(1969) in their study. 

l4 My definition of anomalous problem is a sociological reinterpretation of Larry Laudan’s 
definition of anomaly (see Laudan, 1977, p. 29). 
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threshold 

retina 

FIG. 6. Perceptroii studied by Minsky and Papert. 

Minsky and Papert introduced some restrictions in the perceptron they 
studied. A very important restriction affected the connections from the input 
units to the association units (the layer of fixed connections in Fig. 6). This 
restriction was a consequence of their definition of computing in a percep- 
tron. They defined the computation realized by a neural network system as 
a parallel combination of local information. Minsky and Papert thought 
that, for this computation to be interesting or effective, it had to be simple 
in some meaningful sense.I5 

The computation realized by the output unit in Fig. 6-a sum of incoming 
weighted activation in parallel plus a comparison with a threshold-satisfied 
Minsky and Papert’s criterion. In the case of the association units, Minsky 
and Papert’s interpreted their “simple combination of local information” 
criterion as implying that each association unit could receive incoming con- 
nections only from a small part of the input retina. Minsky and Papert 
defined the “order” of a perceptron as the maximum number of incoming 
connections received by an association unit. (Therefore, the order of the 
perceptron of Fig. 6 is 6.) 

l 5  They defined this criterion of parallel combination of local information in the following 
way. “. . . The definition of conjunrfiue loculness. The intention of the definition was to divide 
the computation of a predicate Y into two stages. Stage I: The combination of many properties 
or features cpa which are easy to compute, either because each depends only on a small part of 
the input space R, or because they are very simple in some other interesting way. Stage 11: A 
dccision algorithm R that defines ~y by combining the results of the Stage I computations. For 
the division into two stages to be meaningful, this decision function must also be distinctively 
homogeneous, or easy to program, or easy to compute” (Minsky and Papert, 1969, p. 9). 
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The implications of Minsky and Papert’s criterion of “conjunctive local- 
ness” are better understood by looking at the parity and connectedness 
problems. The parity problem consists of saying whether the number on 
activated inputs in a perceptron retina (or set of input units) like the one in 
Fig. 7 is odd or even. (In Fig. 7, the number of inputs that are “on” is odd, 
namely 13 activated inputs.) 

The problem of parity is related to the exclusive-or logic function. In a 
network with two input units and one output unit, computing parity is 
equivalent to computing exclusive-or. Minsky and Papert (1969, ch. 3) 
showed that the order required for a single-layer perceptron like the one in 
Fig. 6 to compute parity was the whole retina, that is at least one association 
unit had to receive connections from all the input units. But, they went on, 
if one association unit had to “look at” all the input units in the retina, then 
the computation realized by the perceptron was not based on a combination 
of local information, and therefore the “conjunctive localness” criterion was 
not satisfied by the single-layer perceptron. 

The second of the single-layer perceptron’s problems studied by Minsky 
and Papert (1969) that I would like to look at here is the “connectedness” (or 
figure-ground) problem. I showed earlier (Section 3) that this issue worried 
Rosenblatt significantly. The connectedness predicate consists of saying 
whether a set of activated retina points belong to the same object (i.e., 
whether they are connected to each other) or not. The input pattern appear- 
ing in the retina of Fig. 8 is connected (all the activated input units belong 
to the same object). 

Minsky and Papert (1969, ch. 5 )  claimed that the order required for the 
perceptron of Fig. 6 to compute the connectedness property exceeded practi- 
cal and acceptable limits too. This order grew “arbitrarily large” as the input 

FIG. 7. Odd number of activated inputs. 
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FIG. 8. Connected. 

retina grew in size. (It could not be worse than parity, because parity was 
the worst case, with at least one association unit having to receive connec- 
tions from all the points of the retina.) 

An instructive example is provided by yconnected [the connectedness 
predicate] . . . Any perceptron for this predicate on a 100 x 100 toroidal retina 
needs partial functions that each look at many hundreds of points! In this case 
the concept of ‘local’ function is almost irrelevant : the partial functions are 
themselves global. (Minsky and Papert, 1969, p. 17) 

Of course, if some p [association unit] is allowed to look at all the points of 
R [retina] then vaonn&d can be computed, but this would go against any 
concept of the (p’s as local functions. (Minsky and Papert, 1969, p. 8) 

Minsky and Papert showed that the order required to compute parity and 
connectedness with a perceptron was not finite, i.e., that it increased with the 
size of the perceptron’s retina. This problem is equivalent to a conventional 
computer program having to be rewritten when changing the size of the 
task.I6 Minsky and Papert also studied the connectedness problem in per- 
ceptrons with a different kind of restriction in the input-to-association 
connections. Instead of order-limited, these were diameter-limited percep- 
trons. Each association unit was only allowed to “look at” a circle-shaped 

l6 Aleksander and Morton made this comparison, “Minsky and Papert’s [ 19691 central argu- 
ment is that perceptrons are only good if their order remains constant for a particular problem 
irrespective of the size of the input ‘retina.’ This is similar to the requirement that a program 
in conventional computing, such as a routine for sorting a list of numbers, should be largely 
invariant to the size of the task. It is accepted that such a program might need to be given the 
length of the list as input data, but it would be of little use if it had to be rewritten for lists of 
different lengths” (Aleksander and Morton, 1990, p. 41). 
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limited area of the retina. Minsky and Papert showed that diameter-limited 
perceptrons could not recognize the connectedness of a figure. The simplified 
version of their proof is easy to visualize (see Minsky and Papert, 1969, 

The anomalous (in the sense I am using this term here) character of a 
problem increases if researchers agree to compare the solution (or the lack 
of solution) given by a tradition of research to that problem with the solution 
given by a competing tradition of research. One important move in Minsky 
and Papert’s argumentative rhetoric (1969, ch. 9) was to claim that problems 
such as parity or connectedness could be solved easily using conventional 
algorithms in serial computers. 

The predicate Yconnccted seemed so important in this study that we felt it appro- 
priate to try to relate the perceptron’s performance to that of some other, 
fundamentally different, computation schemes. . . We were surprised to find 
that, for serial computers, only a very small amount of memory was required. 
(Minsky and Papert, 1969, p. 72) 

Many of the theorems show that perceptrons cannot recognize certain kinds of 
patterns. Does this mean that it will be hard to build machines to recognize those 
patterns? No. All the patterns we have discussed can be handled by quite 
simple algorithms for general-purpose computers. (Minsky and Papert, 1969, 
p. 227) 

By emphasizing that parity and connectedness could be easily computed by 
conventional algorithms in serial von Neumann computers, Minsky and 
Papert were trying to mobilize two very powerful factors in favor of their 
argumentative position : the symbol-processing approach to A1 and the 
digital computer.” 

But the importance of problems like parity and connectedness was not so 
clear for neural network researchers. The interpretative flexibility of the 
problems of parity and connectedness can be better shown with an example. 
Consider Figs. 9 and 10. It is not immediately obvious whether this type of 

pp. 12-14). 

” Aleksander and Morton described some simple algorithms for computing the parity and 
connectedness of the retinas appearing in Figs. 7 and 8: “(i) Scan the picture points line by 
line, left to right, starting at  the top left-hand corner of the image until the first black square 
is reached. (The blobs are assumed to be black on a white background.) (ii) Mark this square 
and find all its black nearest neighbours. Then mark these neighbours and all their nearest 
black neighbours and so on until no new black elements can be found. (This marks all the 
elements of a blob). (iii) Remove all the marked elements (by turning them from black to 
white. (This removes the blob.) (iv) Scan the image again and if any black element is found, 
the image is not connected. The parity task is executed just as easily: the scan-and-remove 
procedure can be used as before, it then becomes merely a question of counting the number of 
times the blobs have to be cleared. If this number is even, the image possesses parity” 
(Aleksander and Morton, 1990, pp. 39-40). 
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FIG. 9 

figure is connected or not. Figure 9 is not connected; Fig. 10 is. Consider 
now the white background as a figure, and look at the center of the drawing 
(this is another possible example). The object appearing in Fig. 9 is now 
connected; the one in Fig. 10 is now unconnected. But this is not obvious 
the first time one looks at those objects. A conscious, “serial” process is 
necessary to determine the connectedness of these figures. 

Early neural network researchers conceded that perceptrons were not very 
good at recognizing parity or connectedness, but-they went on-neither 
are human beings. They claimed that, far from being a problem, this could 
be a positive characteristic of perceptrons. For an example of the difficulty 
of the recognition of parity for humans, see Fig. 1 1. Are the number of little 

FIG. 10. 
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FIG. 1 1  

black squares on it odd or even? It is impossible to say without carefully, 
slowly, and “serially” counting them. 

The relative importance of the problems of parity and connectedness (and 
their possible “anomalous” character) was open to interpretative flexibility. 
Perceptron researchers replied to Minsky and Papert by indicating that, if 
one is trying to explain and model human cognitive capabilities, then prob- 
lems like parity and connectedness are not so worrying (let alone anomalous) 
after all, because human beings are not good at recognizing parity or con- 
nectedness either. David Block, a mathematician from Cornell University 
who was a colleague of Rosenblatt in the Perceptron Project, replied to 
Minsky and Papert’s insistence on the problems of parity and connectedness : 

Another indication of this difference of perspective [between Rosenblatt and 
Minsky-Papert] is Minsky and Papert’s concern with such predicates as parity 
and connectedness. Human beings cannot perceive the parity of large sets (is 
the number of dots in a newspaper photograph even or odd?), nor con- 
nectedness (on the cover of Minsky and Papert’s [1969] book there are two 
patterns; one is connected, one is not). It is virtually impossible to determine 
by visual examination which is which. Rosenblatt would be content to 
approach human capabilities, and in fact would tend to regard unfavorably a 
machine which went beyond them, since it is human perception he is trying to 
approximate. (Block, 1970, p. 517) 

The relationship between human information processing (at the psycho- 
logical or neurobiological level) and machine information processing has 
been a constant rhetorical resource throughout the history of AI. If the 
machine solves a certain task well, then one does not care about the 
neurobiological or psychological plausibility of the system’s architecture and 
functioning. But if one runs into trouble, as perceptron researchers did in 
this occasion, then one is happy with a machine that is as “stupid” as human 
beings. 

Thus, perceptron researchers replied to Minsky and Papert’s rhetoric with 
their own rhetoric. The point was, of course, whether this argumentative 
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rhetoric was strong enough to contest Minsky and Papert’s criticism. Minsky 
and Papert focused their attention on problems (such as parity and connect- 
edness) that were favorable to their position. In his reply, Block focused on 
a set of different arguments favoring the neural network position. Thus, 
the importance of the problems of parity and connectedness was open to 
interpretative flexibility. Different groups of scientists, with different goals 
and interests, interpreted them in diverse ways. For Minsky and Papert, 
they were very worrying, anomalous problems. However, neural network 
researchers not only claimed that they were not very important, but also that 
they were in a sense “successful evidence” in favor of their own approach. 

I showed earlier that neural network researchers were aware of the 
difficulties that single-layer perceptrons had in computing predicates like 
exclusive-or and connectedness well before Minsky and Papert started to 
circulate their drafts in the mid-1960s. But for them the existence of these 
problems was not a strong argument against the neural network approach. 
In their view, single-layer perceptrons were only the first stage of neural 
network research. Rosenblatt had openly admitted the limitations of single- 
layer perceptrons. In particular, his insistence on the connectedness problem 
was almost repetitive (see Section 3). But Rosenblatt and the other early 
neural network researchers had an approach to the limitations of the percep- 
tron that was remarkably different from that of Minsky and Papert. For 
Minsky, Papert, and many other symbolic A1 researchers, problems like 
connectedness and parity were decisive arguments against the whole neural 
network position, and not just against single-layer perceptrons. But for 
researchers like Rosenblatt, Block, Widrow and others, the limitations of 
single-layer perceptrons were a reason for carrying out further research on 
more complex perceptrons (systems with more than one layer of modifiable 
connections, with connections among the units of the same layer, with back- 
ward connections, etc.). Neural network researchers emphasized the positive 
properties of the single-layer perceptron (e.g., its learning algorithm, its 
brain-like character, its distributed memory, its resistance to damage, its 
parallelism), and claimed that further research on more complex models was 
needed in order to realize tasks more complex than those that could be 
carried out by the perceptron. 

. . .The simple perceptron (which consists of a set of inputs, one layer of 
neurons, and a single output, with no feedback or cross coupling) is not at all 
what a Perceptron enthusiast would consider a typical Perceptron. He would 
be more interested in Perceptrons with several layers, feedback and cross 
coupling . . . The simple Perceptron was studied first, and for it the ‘Perceptron 
convergence theorem’ was proved. This was encouraging, not because the 
simple Perceptron is itself a reasonable brain model (which it certainly is not; 
no existing Perceptron can even begin to compete with a mouse!), but because 
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it showed that adaptive neural nets, in their simplest forms, could, in principle, 
improve. This suggested that more complicated networks might exhibit some 
interesting behavior. Minsky and Papert view the r61e of the simple Perceptron 
differently . . . Thus, what the Perceptronists took to be a temporary handhold, 
Minsky and Papert interpret as the final structure. (Block, 1970, pp. 513-514) 

Here Block emphasizes the “promising future” of neural network research. 
The opinions of other neural network researchers of the time were similar 
in certain respects. Thus, Widrow complained that Minsky and Papert had 
defined perceptrons so narrowly that they could prove that those neural 
network machines could do nothing. He also emphasized that he and his 
colleagues were working on networks much more complex than the single- 
layer perceptron. 

When 1 first saw the book, years and years ago, I came to the conclusion that 
they had defined the idea of a perceptron sufficiently narrowly so that they 
could prove that it couldn’t do anything. I thought that the book was relevant, 
in the sense that it was good mathematics. It was good that somebody did 
that, but we had already gone so far beyond that. Not beyond the specific 
mathematics that they had done. But the structures of the networks, and the 
kinds of models that we were working on were so much more complicated and 
sophisticated than what they had discussed in the book. All the difficulties, all 
the things that they could prove that the perceptron couldn’t do were pretty 
much of noninterest, because we were working with things so much more 
sophisticated than the models that they were studying. The things they could 
prove you couldn’t do were pretty much irrelevant. (Widrow, interview) 

Thus, one of the main arguments used by neural network researchers was 
that they were working on neural network systems more complex than those 
studied in detail by Minsky and Papert. It is to this issue (the second one of 
the two I have distinguished in Minsky and Papert’s critical study) that I 
would like to turn to now. 

On the issue of perceptrons more complex than the single-layer one, 
Minsky and Papert made only a few comments in their 1969 book. They 
formulated a (by now famous) pessimistic “intuitive judgement” about the 
possibility of developing efficient techniques for training multilayer systems. 

The perceptron has shown itself worthy of study despite (and even because 
of!) its severe limitations. It has many features to attract attention: its linearity; 
its intriguing learning theorem; its clear paradigmatic simplicity as a kind of 
parallel computation. There is no reason to suppose that any of these virtues 
carry over to the many-layered version. Nevertheless, we consider it to be an 
important research problem to elucidate (or reject) our intuitive judgement 
that the extension is sterile. Perhaps some powerful convergence theorem will 
be discovered, or some profound reason for the failure to produce an interest- 
ing ‘learning theorem’ for the multilayered machine will be found. (Minsky 
and Papert, 1969, pp. 231-232) 
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I showed in earlier sections that the problem of learning in multilayer neural 
networks had been on neural network researchers’ agenda long before 
Minsky and Papert embarked on their criticism of neural networks. In fact, 
it was one of the main problems of neural network research from the late 
1950s onward. Nevertheless, because of the important role played by Minsky 
and Papert’s critical arguments in the closure of the perceptron controversy, 
the short comments they made there about the problem of learning in multi- 
layer networks emphasized its importance even more. By focusing only on 
that aspect of multilayer systems, they helped “construct” (so to speak) its 
“reverse salient” character. (I will come to this issue in later sections.) 

From the point of view of this section, I would like to stress that Minsky 
and Papert’s short comments on the problem of learning in multilayer 
networks were indeed open to interpretative flexibility. If a short intuitive 
judgement is not open to interpretative flexibility, then nothing is. Therefore, 
the question now is to analyze the process of closure of the controversy, i.e., 
the process through which the interpretative flexibility of Minsky and 
Papert’s results and critical arguments about the problems of both single- 
layer and multilayer perceptrons was reduced and the controversy closed. I 
will discuss this next. 

6. Closure of the Controversy 1 : Widrow‘s Group 

The crisis of early neural network research deepened as acceptable 
solutions to some of the main technical problems of the field could not be 
easily found and criticism by researchers in favor of the symbol-processing 
approach increased. In this section I will look at the crisis of Bernard 
Widrow’s neural network research group at Stanford University. I will later 
look at other research groups. 

The crisis of Widrow and colleagues’ neural network research project 
reached its peak toward the mid-1960s. By that time, further progress in 
neural networks started to look increasingly difficult to them. At about the 
same time, applications of their neural network ideas (mainly the adaline 
and the LMS algorithm) in areas like adaptive filtering and adaptive signal 
processing started to be more successful. One first successful application 
of Widrow’s adaline and LMS neural network techniques outside neural 
networks was in adaptive antennas.I8 

At the time that Hoff left, about 1965 or 1966, we had already had lots of 
troubles with neural nets. My enthusiasm had dropped. But we were beginning 
to have successful adaptive filters. We were finding good applications for our 

’* See Widrow et al. (1967). 
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neural network devices. We were using the LMS algorithm to adapt both 
neural nets and adaptive filters. I had some very good success with adaptive 
antennas. We were making antennas that had the capability of receiving a 
signal from any direction that you wished and, if anyone tried to jam it, it 
would automatically reduce its sensitivity in the direction of interference. It 
learned all by itself, using the LMS algorithm. It’s just taking an 
antenna. . . and connecting a neural net to it, but a neural net without the 
quantizers [thresholds]. It was just a single neuron without non-linearity. It 
worked unequivocally, you can prove it mathematically. We were all delighted, 
we were very happy with it. So you are happy with something, and another 
thing [neural networks] is frustrating, and it can’t overcome certain problems. 
Guess which direction you are going? So we stopped, basically stopped on 
neural nets, and began on adaptive antennas very strongly. (Widrow, 
interview) 

But adaptive antennas were not the only successful application for adalines 
and the LMS algorithm. In the second half of the 1960s, R. W. Lucky and 
his team at  Bell Laboratories applied adaptive filters to telephone systems 
in areas such as adaptive equalization in high-speed modems, and echo 
canceling in long-distance telephone and satellite circuits. l 9  

Modems also have echo cancellers, because you can’t have echo-even the 
slightest trace of echo-when you are transmitting digital data at high speed. 
So you can have an adaptive filter in the modem, for echo cancelling, and 
another one for equalization. And they must adapt to that particular phone 
line, because every phone line is different. The receiving filter must adapt to 
that line, you can’t use a fixed filter. (Widrow, interview) 

Because of all these developments, Bernard Widrow was awarded the 
Institute of Electrical and Electronic Engineers’ (IEEE) Alexander Graham 
Bell Prize in 1986 for his “exceptional contributions to the advancement of 
telecommunications.” 

What is most interesting from the point of view of this chapter is that, 
after the crisis of early neural network research, both the LMS algorithm 
and the adaline-first developed in the context of neural network research- 

l9 See Lucky (1965), Lucky er al. (1968), Widrow and Lehr (1990, pp. 1415-1416). By using 
adaptive filters in high-speed digital data transmission, the amount of data sent through the 
same telephone channel can he increased four times without loss of reliability (Widrow, inter- 
view). For that, a modem that has an adaptive filter has to he installed in the receiving 
telephone. On the other hand, by using an echo canceller with an adaptive filter capable of 
performing LMS weight adjustment, telephone line echo is canceled, and it is possible to have 
communication in both directions at the same time (other echo cancellers prevent communica- 
tion in two directions at the same time) (Widrow, interview). This device is especially useful 
for long-distance and satellite telephone communication because of the longer time delays 
produced in these cases. It can also be installed in modems, so that echo can be avoided in 
high-speed digital data transmission by telephone as well. 
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were rather successful in other engineering areas, leading, as Widrow and 
Lehr (1990, pp. 14-16) put it, to “major commercial applications.” 

I didn’t invent the echo canceller, I didn’t invent the adaptive equalizer. Lucky 
invented the adaptive equalizer. But what Hoff and I invented is the LMS 
algorithm. I had been using it for years on adaptive filters. You see, no person 
does all this, it’s a combination of contributions that accumulate together to 
make these things possible. Now the adaptive equalizer is so popular, that 
even the cheapest modems have it. It has a chip on it that does LMS, so it’s 
got effectively one neuron inside the equalizer. It’s a neural net with one 
neuron. LMS has been a successful algorithm, probably the most widely used 
one in the world of adaptive systems today. And now it’s so old, from 1959, 
when we discovered it. The LMS algorithm was developed for neural nets, 
then used in adaptive filters, and now, 20 years later, it is used back in neural 
nets again. (Widrow, interview) 

In Section 12, I will show the amazing way in which Bernard Widrow was 
“rediscovered” in the recent re-emergence of the neural network field. From 
the point of view of this section, it is interesting to note that, because of the 
crisis of neural network research, Widrow and his colleagues decided to look 
for applications of their neural network devices and techniques outside the 
neural network field. Techniques like the adaline and the LMS learning 
algorithm, which had been first developed in neural network research, 
became parts of new configurations of technology in a different area of 
applications, namely telecommunications. Therefore, they did not disappear 
after Widrow abandoned neural network research. 

7. Closure of the Controversy 2: The S R I  Group 

I would like to turn now to another main neural network center of the 
time, namely Stanford Research Institute (SRI). By the mid-1960s the crisis 
of neural networks was affecting this group strongly. Financial support for 
their neural network project was running out, and the limitations of Minos- 
their single-layer neural network machine, probably the biggest one from 
the early neural network period-were becoming increasingly apparent. I 
showed earlier that the SRI researchers were well aware of the problems of 
single-layer and multilayer neural networks. Problems like that of training 
multilayer systems could not be easily solved, and criticism from researchers 
favoring the symbol-processing approach was increasing. On the other hand, 
symbol-processing A1 (the long-time rival of neural networks) was emerging 
with considerable success by then (for a study of the emergence of symbolic 
AI, see Fleck [1978, 19821). In this context of crisis, the SRI researchers 
decided to abandon neural networks and to start a robotics project within 
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the symbolic perspective. They had a feeling that they had gone as far as 
they could within the neural network paradigm. 

When we stopped the neural net studies at SRI, research money was running 
out, and we began looking for new ideas. It was getting harder to do a little 
more each time, and it didn’t look like it was worth that much. (Rosen, 
interview). 

About 1965 or 1966 we decided that we were more interested in the other 
artificial intelligence techniques. I still thought that neural networks would 
have some use at some future time, but I thought that we had reached pretty 
much as far as we could go. (Nilsson, interview) 

The SRI group started to work on robotics and machine vision within 
symbol-processing AI. Machine vision was a part of symbolic AI, but it had 
its own peculiarities. It was closer to SRI researchers’ interests in perception 
and vision than symbolic A1 models of “higher” cognitive processes. Work 
on machine vision within symbolic AI, mainly that of Larry Roberts (1963) 
of MIT’s Lincoln Laboratory, had a significant impact on the SRI 
researchers, especially on those more oriented toward pattern recognition, 
like Richard Duda and Peter Hart. Within symbolic AI, machine vision 
emphasis was on scene analysis of digitized pictures in terms of lines, edges, 
vertices, relative brightness, and linguistic descriptions, rather than on neural 
network-like pattern classification. For scene analysis, the computer system 
needed an internal representation or model of its surrounding block world 
(i.e., its knowledge and expectations about that world). The SRI researchers 
were impressed by this type of A1 research on machine vision. 

The trends toward the symbolic approach in machine vision affected other 
researchers too. One significant case in this respect is David Marr’s. In the 
late 1960s Marr had carried out some research related to neural networks 
(Marr, 1969, 1970, 1971), but in the early 1970s he changed his direction of 
research toward the symbolic paradigm. His words reflect the closure of the 
perceptron controversy : 

There seemed no reason why the reductionist approach could not be taken all 
the way. I was myself caught up in this excitement . . . [But] in the early 1970s 
it gradually became clear that something important was missing that was not 
present in either of the disciplines of neurophysiology or psychophysics . . . 
[Now] gone is any explanation in terms of neurons-except as a way of imple- 
menting a method. . . The message [in the 1970~1 was plain. There must exist 
an additional level of understanding at which the character of the information- 
processing tasks carried out during perception are analyzed and understood 
in a way that is independent of the particular mechanisms and structures that 
implement them in our heads. (Marr, 1982, pp. 14-15, 18-19) 
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Robotics was also closer to the SRI group’s interests than other areas of 
symbolic AT. One of the most interesting aspects of these robotics projects 
of the late 1960s and early 1970s was the integration in the same system of 
interacting subsystems for vision, planning, and object manipulation. 

The criticisms made by researchers who opposed neural network research 
in the perceptron controversy had a big influence in SRI researchers’ decision 
of changing their research direction from neural networks to symbol- 
processing AI. In particular, Minsky’s active criticisms seem to have been 
quite important in this respect. 

Minsky and his crew. . . thought that Frank Rosenblatt’s work was a waste 
of time, and they certainly thought that our work [at SRI] was a waste of 
time. . . Minsky really didn’t believe in perceptrons, he didn’t think it was the 
way to go . .  . I know he knocked the hell out of our perceptron business. 
(Rosen, interview) 

Minsky had been aware of the neural network activity at SRI. 

There was a growing interest in [symbolic] artificial intelligence. By the time 
Raphael joined the group, the group became a [symbolic] artificial intelligence 
center. Raphael was one of Marvin Minsky’s students. There had been connec- 
tions between Minsky and SRI before that too. Marvin had been a consultant 
to us, and he was certainly quite familiar with Minos. (Duda, interview) 

For Minsky, the change of research direction at SRI in the mid-1960s shows 
that by that time neural network research “was really dead” : 

A good example, SRI, had given up perceptrons by that time [the mid-1960~1. 
They hired Raphael, one of my students. They started to use LISP, and they 
became one of the great centres of heuristic programming. They got the 
‘Shakey’ robot, and things like that. By that time the perceptron project was 
really dead. (Minsky, interview) 

But the SRI group’s transition from neural networks to symbolic A1 was 
not something that could be done immediately. It is interesting to point out 
in this respect that the SRI researchers had to  hire Bertram Raphael (a 
former student of Minsky) to teach them LISP (list processing language) 
and help them in their robot project.20 LISP had been developed by John 
McCarthy in 1960, and had already become the most widely used program- 
ming language in symbolic AI. The fact that the SRI neural network 

“We hired Bert Raphael from MIT who taught us LISP. We were interested in learning 
LISP programming, and that started to be more interesting than neural networks” (Nilsson, 
interview). “Raphael. . . had been hired by SRI for this project [the Shakey robot] as the only 
one who knew LISP and who had had experience with the LISP language and large computers” 
(McCorduck, 1979, p. 231). 

20 
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researchers had not used LISP before they switched to symbolic A1 shows 
the distance that separated neural networks and symbolic A1 in the early 
1960s. 

The difficulties that Rosen found in getting funding for their new project 
from DARPA are another interesting aspect of the SRI group’s transition 
from neural networks to symbolic AI. Rosen had to “sell” their robot project 
to people who did not like neural networks, that is to people who had 
been convinced by the anti-neural network position in the perceptron 
controversy. 

By the time when we stopped the neural network project at SRI, computers 
had become available, simulations were possible. I gathered together a group 
of about 15-25 people. We brainstormed, meeting once or twice a week, and 
asked: What project shall we select to get into the main fields of artificial 
intelligence? Starting with what we knew about-neural nets-and going from 
there to [symbolic] artificial intelligence. It took about three to four months, 
with a lot of ideas being examined. We then decided to propose making a 
robot, a mobile robot. It took me and my colleagues one year and a half to 
two to sell that program to ARPA. It was very difficult, we had to sell it to 
some of the people who didn’t like perceptrons, and that was our background, 
but on the other hand we had a crew of very able people. Finally we got ARPA 
money, and for six or seven years we built, I’d say, the first really smart robot 
in the world. This robot (“Shakey”), served as a test bed for studies and 
experimental verification in important sub-fields in AI, such as pattern recogni- 
tion, scene analysis, natural language processing, navigation and obstacle 
avoidance, problem solving, and more. (Rosen, interview) 

There was some controversy about how funding for the SRI robot project 
was given and (years later) cut, but looking at it is out of the scope of this 
chapter.*l But that was not the only controversy in which that project was 
involved. The SRI Shakey robot became quite popular outside the scientific 
community thanks to a polemical article published in Life magazine 
(Darrach, 1970). This article, which was widely read (McCorduck, 1979, 
p. 235), contained some rather optimistic claims about artificial intelligence 

“Rosen recalls how they found someone in the defense department who was willing to 
support the research, though for what Rosen himself considered foolish reasons, namely, that 
somehow a robot could be developed that could go about surreptitiously gathering informa- 
tion-a mechanical spy” (McCorduck, 1979, p. 233). For the controversy about the cut in 
ARPA funding for Shakey in the 1970s, see McCorduck (1979, pp. 233-235). The cut in 
robotics funding was a wider phenomenon, and was related to Lighthill’s (1973) negative report 
about robotics in Britain. Although important A1 ideas (e.g., in machine vision, or others like 
Minsky’s “frames”), as well as hardware devices, had been developed in the robotics projects 
of the late 1960s and early 1970s, funding for robotics was significantly cut in the 1970s. 

21 



374 MlKEL OLAZARAN 

(this is certainly another episode of allegedly “exaggerated claims” within 
AI-but many of the considerations I made in Section 2 about Rosenblatt’s 
exaggerated claims apply here too) .22 

In their Shakey robot, the SRI researchers combined perceptual, motor- 
control, problem solving, knowledge-representation (including internal 
representations and models of the block world), and plans (McCorduck, 
1979, pp. 223-235).23 Some robotics projects of that period (e.g., those 
at MIT, Stanford University, and Edinburgh University) were “hand-eye” 
systems, but Shakey was a mobile robot that could navigate in a room 
containing large blocks (obstructions). Shakey could also carry out simple 
tasks like taking a block from one room to another (for details of Shakey 
see Nilsson and Raphael { 19671 and Raphael [ 1976, pp. 275-2821). 

The change in SRI neural network group’s direction of research reflects 
clearly the situation of deepening crisis of neural networks and the (by then 
quite successful) process of institutionalization of symbolic AI. For the SRI 
group, the Shakey project meant the change from neural network research 

Darrach’s (1970) article contained comments like these: “Marvin Minsky . . . recently told 
me with quiet certitude: ‘In from three to eight years we will have a machine with the general 
intelligence of an average human being. I mean a machine that will he able to read Shakespeare, 
grease a car, play office politics, tell a joke, have a fight. At that point the machine will begin 
to educate itself with fantastic speed. In a few months it will be at genius level and a few months 
after its powers will be incalculable.’ . . . In the interests of efficiency, cost-cutting and speed of 
reaction, the Department of Defense may well be forced more and more to surrender human 
direction of military policies to machines that plan strategy and tactics. In time, say the scien- 
tists, diplomats will abdicate judgement to computers that predict, say, Russian policy by 
analyzing their own simulations of the entire Soviet state and of the personalities-or the 
computers-in power there” (Darrach, 1970, pp. 58d, 66). Some of the SRI researchers criti- 
cized this article heavily, and Minsky denied the quotations attributed to him (McCorduck, 
1979, pp. 234-235). However, it seems that Darrach’s article was beneficial for the SRI 
researchers, at least in terms of getting funding. C. Rosen gave me his view of the episode: “A 
writer came [to SRI], and interviewed me, and also interviewed Minsky, and other people in 
AI. Then he wrote an article [Darrach, 19701. There was some good stuff in it, but he also 
wrote much rubbish.. . Minsky got very m a d . .  . Shakey was described pretty well, but there 
was also a lot of rubbish. Anyhow, it was a good article in some ways. We got a lot of notoriety 
from it!” (Rosen, interview). 

23 ‘I, . . ‘So there’s an interesting research area [Raphael speaking] that we made some pro- 
gress on-how to build robust systems, and what kinds of monitoring are needed and how the 
system has to check whether it accomplishes what it tries to accomplish. We developed ways 
of using the TV camera and sensory feedback to monitor and update Shakey’s own model of 
the world. We built various ideas of representing information in the robot’s mind as in a 
computer. In a sense, the robot has a model of itself and of its environment.’. . .” (Raphael, 
as quoted in McCorduck, 1979, p. 232). “. . . ‘Those of us at SRI [Nilsson speaking] were. . . 
interested . . . in general problem-solving mechanisms for reasoning out the solutions to 
problems. . . We also concentrated.. . on the interaction between the plan that was developed 
by the problem-solving system and the execution of that plan.’. . .” (Nilsson, as quoted in 
McCorduck, 1979, p. 231). 
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to symbolic AI, and in particular to machine vision and robotics. Symbolic 
representation and knowledge issues became increasingly important for 
them, and they devoted their attention to combining problem solving and 
reasoning mechanisms with sensory and vision processes. It is also interesting 
to point out that, with their robot project, the SRI group became one of the 
leading groups in symbolic AI. 

By the time I joined the group, 1966, the point of view was much more 
computational architecture than it was networks of devices. At that time, in 
1966, we started the famous ‘Shakey’ robot program, and there the point of 
view was strictly what kind of computer program, what kind of representation 
do we need inside the computer to enable a robot to deal with various kinds 
of real world phenomena. By the late 1960s perceptrons, adaiines, learning 
machines, by that time all that was pretty much over. By that time people 
thought that it was not the most promising approach. I think that the approach 
had intellectually run out of steam. (Hart, interview) 

Thus, the effects that the crisis of the neural network had on the SRI group 
were different from the effects it had on Widrow’s group. Unlike Widrow, 
the SRI researchers chose to stay within AI. But staying within the A1 field 
meant switching to the symbol-processing paradigm and abandoning neural 
networks. The emergence and institutionalization of symbolic A1 in the early 
and mid- 1960s was an important “closing factor” in the neural network 
controversy. From the point of view of this chapter, it is important to 
emphasize that, in the early stages of the history of AI, neural networks and 
symbol-processing were seen by most as alternative, excluding approaches. 
Therefore, embracing the emergent symbolic A1 approach meant abandon- 
ing neural networks completely. I will come to this issue in the next section. 

8. Closure of the Controversy 3: Rosenblatt 

After discussing how the crisis of early neural network research affected 
both Widrow’s group at Stanford University and Rosen’s group at SRI, I 
would like to turn now to Rosenblatt’s response to Minsky and Papert’s 
critical challenge. Unlike Widrow and his colleagues or the SRI researchers, 
Rosenblatt did not abandon neural networks in the mid-1960s. He and his 
colleagues tried to exploit in their own favor the interpretative flexibility of 
Minsky and Papert’s criticism of neural networks, but they were increasingly 
isolated, and could not stop the process of closure of the controversy. In 
this section, I also discuss some factors that were very important in the 
closure of the perceptron controversy, such as the emergence of symbolic A1 
and developments in computer technology. 
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I pointed out in Section 1 that, in principle, scientific controversies could 
always go on. The point is then to analyze how the plausibility of the 
positions involved in a controversy evolve, and how the possibility (in 
principle) of going on arguing is in practice reduced and controversies are 
closed. This process of closure of controversies is especially important in the 
generation and validation of scientific knowledge. In this section I study 
the process through which the interpretative flexibility of the criticisms of 
the perceptron was closed against the position maintained by (a decreasing 
number of) neural network researchers. 

One important issue here is that, in part as a result of the perceptron 
controversy and the criticisms of neural networks by researchers favoring 
symbolic AI, Rosenblatt was unable to get economic support for his projects 
from the funding agencies in the mid-1960s. I showed earlier that the rise of 
the perceptron controversy goes back to ONR’s funding of Rosenblatt’s 
project in the late 1950s. It is very important to remember here that the issue 
of funding was one of Minsky and Papert’s main motives for starting their 
critical perceptrons project. (I looked at this in the beginning of Section 5.) 

Information about funding for the perceptron project throughout the 
1960s is not easy to obtain. Nevertheless, I was able to talk with two people 
who were at ONR at the time: Marshall Yovits and Marvin D e n i ~ o f f . ~ ~  
Yovits was at ONR in the late 1950s and early 1960s, and was responsible 
for the funding for Rosenblatt’s projects during that period. Denicoff was 
at ONR from the mid-1950s to the early 1980s. Their testimony is important, 
because ONR was probably the only source of financial support for 
Rosenblatt’s projects over the years. 

Rosenblatt’s relationships with the U.S .  military do not seem to have been 
too easy. One factor that might have had some kind of influence on this 
issue was Rosenblatt’s involvement in the peace movement at the time of 
the Korean War. As a consequence of that, he never got security clearance 
from the U.S. mi1ita1-y.~’ 

Marshall Yovits is now at Purdue University, Department of Computer and Information 
Science, Indianapolis, Indiana. Marvin Denicoff now works at  Thinking Machines Corporation, 
Chevy Chase, Maryland. 

“Rosenblatt was somehow involved in some peace movements. This was during the Korean 
War, and as a consequence he was never able to receive a security clearance. In those days, 
after World War 11-it was the era of McCarthy-there was much emotional anticommunist 
concern. If you were accused of being a ‘left-winger’ you’d lose your security clearance, and so 
on. This let up somewhat after McCarthy died, but not a lot, and it went on through the 
Korean War. Remember that this was during the Eisenhower presidency when even J. Robert 
Oppenheimer lost his security clearance. Rosenblatt was not in favor of the Korean war, and 
he was involved with some sort of a peace movement. As a consequence, he never did receive 
any sort of security clearance. In those days things were very tight, but we were able to work 
with him nevertheless” (Yovits, interview). 

24 
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Yovits was at ONR in the late 1950s and early 1960s, when interest in the 
perceptron was at its highest After that Rosenblatt was not as success- 
ful in getting funding from the U.S. military agencies. It seems that later in 
the 1960s he was not able to get funding for a “large” perceptron research 
project. Financial support for Rosenblatt’s perceptron projects was cut at 
some point, although it is difficult to establish the exact date at which this 
happened. Nevertheless, it seems to be the case (many of my interviewees- 
see Appendix ILconfirmed this) that in the second half of the 1960s, 
Rosenblatt was unable to get economic support for his projects from ONR 
and DARPA (then ARPA). 

The Office of Naval Research, which I believe was Rosenblatt’s main source 
of support, and maybe his only source of support, rarely supported big pro- 
jects. Our programs were small, and supported key scientists to get their work 
going. Rosenblatt was never able to get the big dollars that were needed in 
order to build the machinery that he thought had to be built. But even if he 
had been able to get the dollars, he lived in the wrong period; the means of 
implementation were not there. [Even] if more money had been available, I’m 
not quite sure what would have been done with it. A large machine in my 
opinion would have been pointless. As far as I recall, at that time, investigators 
just began to lose interest in the neural net field. The attitude was, we had 
shown that Rosenblatt’s device works in a simple way, but it didn’t really have 
any future. This was before VLSI. (Yovits, interview) 

In this quotation, Yovits seems to be implying that Rosenblatt was not 
successful in convincing another funding agency (“our programmes were 
small”). That agency could well have been DARPA. “Big dollars” for AI- 
like research in the 1960s (and thereafter) came from DARPA. Marvin 
Denicoff confirmed this. Denicoff was at ONR after Yovits left, and he was 
involved in funding projects in A1 and related fields, sometimes in partner- 
ship with DARPA (therefore, he was well informed about DARPA’s 
activities). 

At that time [in the 1960~1, the Office of Naval Research had funds a t  the level 
of $40 or 50 K .  ARPA was able to fund hundreds of thousands, or even 

One indicator of the level of activity in neural network-like research at the time, and 
ONR’s involvement in it, are the three important conferences on “self-organization,” which 
were held in 1959, 1960, and 1962. The proceedings were published as (Yovits and Cameron 
1960), (von Foerster and Zopf, 1962), and (Yovits et al. 1962), respectively. Yovits himself was 
one of the organizers of these conferences, and contributions presented there are a good sample 
of the work that was being carried out in neural networks and related fields in the late 1950s 
and in the first years of the 1960s. They also show the variety of approaches to the brain- 
machine problem, which were tried within the cybernetics movement. 
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millions. Rosenblatt never attracted that kind of money, because he wasn’t 
offering a large pay-off. By pay-off I mean not in the scientific sense, but in 
the application sense, world problem solving. Again, his work was much more, 
I would say, traditional science. The Office of Naval Research never gave him 
the kind of money that he really required, and he was not successful in getting 
the money from the Science Foundation or from ARPA. One can draw the 
conclusion that if he had had the money he would have made even greater 
progress. That’s too easy an answer, because it doesn’t always follow that large 
amounts of money make the difference . . . Well before the Minsky and Papert 
[ 19691 book came, he [Rosenblatt] was not successful in attracting more 
money, that I know for a fact . .  . Again, each thing has its moment in time, 
that’s another point. I will give you one theory that I have. For any funding 
program, whatever it is, within a few years you’ve got an 80 or 90% of the 
progress that you will ever get. All of the bright ideas come out very quickly. 
From there on, the hill climbing is very steep and very slow . . . The money 
very seldom grows, it keeps getting redistributed. So as each new exciting field 
comes along, something else gets sort of pushed aside a little bit, and then 
there are a wing of people who can claim (I am not saying that all of that is 
unjustified) : ‘What a serious mistake they made.’ If you knew how many times 
I’ve heard ‘If I had had one more year, one more year, I would have done it, 
just one more million dollars’ . . . (Denicoff, interview) 

Denicoff’s remark about Rosenblatt not offering a big pay-off in terms of 
applications could be related to the general patterns of science policy in the 
United States in the 1960s. From the late 1950s to the mid-l960s, funding 
for science in the U.S. had a period of unprecedented growth (Dickson, 
1988, pp. 5-7). The beginning of this growth goes back to the post-World 
War I1 period, but the peak in the growth rate corresponds to the late 1950s 
and early 1960s.*’ ONR’s support for Rosenblatt’s perceptron in the late 
1950s and early 1960s happened within this context. At that time ONR had 
a reputation of working without worrying too much about the pay-offs in 
terms of applications.28 The situation did not last long, however, and the 
growth rate in funding for scientific research decreased significantly from 

The opening of the space race with the launching of the Sputnik satellite in October 1957 
by the Soviet Union was the catalyzer. Support for science increased to unprecedented levels. 
ARPA itself was created within the Defense Reorganization Act of 1958, a reaction to the 
Sputnik launch. 

28 “[In the early 1980~1 Many scientists looked back with nostalgia at the postwar period 
when, taking their lead from the organization of the wartime Manhattan Project, agencies such 
as the Office of Naval Research provided generous funding for universities with virtually no 
strings attached. This approach is compared unfavorably with the many social demands on the 
research community introduced in the late 1960s and 1970s-in particular, the demand for 
direct social accountability (illustrated, in the case of military research, by the requirements of 
the Mansfield Amendment , . .)” (Dickson, 1988, p. 113). 
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about 1965.29 The growing concern in the Defense agencies with the short- 
term applications of the research they funded was reflected in the Mansfield 
Amendment to the Pentagon’s budget for 1970, which stated explicitly that, 
“research should be supported only if it could demonstrate direct relevance 
for some military need” (Dickson, 1988, p. 30). 

This context of science policy did not favor Rosenblatt’s chances of being 
funded. In the “Tribute to Frank Rosenblatt,” celebrated in July 1971 after 
Rosenblatt’s death, Richard O’Brien, head of the Division of Biological 
Sciences of Cornell University, Ithaca, New York, (where Rosenblatt was 
working at the time), made the following comment in his speech: 

. . . It was only a few years ago that he [Rosenblatt] enjoyed hundreds of 
thousands of dollars a year in research grants, from agencies that thought his 
work was worth doing, and he was a victim of the Mansfield amendment, and 
within a few years that money melted like summer snow and soon he had very 
little left in the last few months. (Congressional Record, 1971, p. 3) 

In the mid- and late 1960s, Rosenblatt worked on perceptrons and some 
other  project^.^' From the point of view of this chapter, it is important to 
emphasize that, unlike Widrow’s group or the SRI group, Rosenblatt did 
not abandon neural network research. Despite the crisis of neural networks 
and the process of closure of the controversy in the mid- and late 1960s, 
Rosenblatt kept working on perceptrons until his final years. 

. . . Frank became interested in a massive expansion of fabricated perceptrons, 
as follows (I  am sure you are aware that, until his final years, he was working 
simultaneously upon computer simulations of perceptrons and physical 
assemblage of them. An enormous assemblage filled a large room in the Lang- 
muir Laboratory where he worked). He wanted to create a synthetic perceptron 
called Tobermory, named after the infamous cat in the short story by Saki. 
Tobermory was going to be able to perceive a mouse running across the room 
and say (out loud) : ‘I see a white object with a long tail making a squeaking 
noise and it must be a mouse.’ Thus, Tobermory would be able to see, hear, 
and speak, and to synthesize all three elements appropriately. (Richard D. 
O’Brien, personal communication) 

. . . Political enthusiasm, grounded in the success of the Manhattan Project, spurred by 
the shock of the Russian Sputnik, and reaching its apogee during the Kennedy administration, 
provided scientists with both lavish financial support and high social status. This period was 
followed, from the mid-l960s, by a stage of questioning and doubt, when more direct payoffs 
were asked. . . The decline had in fact started in 1965, well before the Mansfield Amendment 
was passed” (Dickson, 1988, pp. 5-6, 123). 

He worked on a memory transfer project and an astronomy project. He carried out several 
memory transfer experiments with rats (e.g., Rosenblatt et al., 1966), and he was also interested 
in a problem in astronomy, namely photometric detection of extra-solar planetary systems 
(Scattergood, personal communication). 

29 ‘ I  
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The importance of Rosenblatt as an individual cannot be forgotten in an 
analysis of the closure of the perceptron controversy. I stated in earlier 
sections that Rosenblatt was often the leader of the neural network position 
in the 1950s and 1960s. His death in a tragic boating accident in 1971 
left neural network research without its most enthusiastic and charismatic 
defender.31 Rosenblatt’s death makes research on the reaction of Rosen- 
blatt’s group to the crisis of early neural networks (and to Minsky and 
Papert’s criticism of the perceptron) much more difficult. Some elements of 
that reaction can be inferred from David Block’s review of Minsky and 
Papert’s 1969 Perceptrons (Block, 1970) (some aspects of this response were 
discussed in Section 5 ) .  

Block’s response to Minsky and Papert was based on two main points. 
First, Block accused Minsky and Papert of trying to control the focus of the 
debate for their own advantage. He criticized them for having focused on 
the single-layer perceptron which was “not at all what a Perceptron enthu- 
siast would consider a typical Perceptron” (Block, 1970, p. 513). He also 
accused them of taking “a temporary handhold” (i.e., the single-layer 
perceptron) as if it were the “final” neural network structure (Block, 1970, 
p. 514). Furthermore, Block attacked at the point where Minsky and 
Papert’s argument was most open to interpretative flexibility, namely their 
comments on the problem of learning in multilayer perceptrons. Block was 
optimistic about the promising possibilities of more complex perceptrons 
“with several layers, feedback, and cross coupling” (Block, 1970, p. 513). 
He tried to gather as many argumentative elements as he could in favor of 
the neural network position. The number of authors cited in the following 
quotation is an example of this. Block’s reply to Minsky and Papert’s pes- 
simistic “intuitive judgement” on multilayer perceptrons was an appeal to 
the promising sides of neural network research. 

Work on the four-layer Perceptrons has been difficult; but the results suggest 
that such systems may be rich in behavioral possibilities, once the mathematical 
tools become available for analyzing them (cf. Rosenblatt [1960, 19641, Block 
et al., [ 19621, Konheim . . .). Even more suggestive are the multilayer machines 
with feedback (the C-systems and F-systems of Rosenblatt [ 19671). The models 
studied extensively by Grossberg,. . . although differing from the perceptron 
in several respects (continuous variables, instead of discrete; linear, instead of 
a step-thresholding function, etc.) are nevertheless much closer to the spirit of 
Rosenblatt’s Perceptron than the work under review [Minsky and Papert, 
19691. The same can be said of other brain models, such as those of 
Kabrisky . . . or Baron. . . . From this point of view, the potential capabilities 
of Perceptrons are still mostly unexplored. (Block, 1970, pp. 516-517) 

” Rosenblatt died in a boat accident while sailing with two students from Cornell University 
in the Chesapeake Bay near Easton, MD, on his 43rd birthday (see New York Times, 1971). 
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But Block’s efforts were not enough. His arguments-and in general the 
arguments used by the researchers in favor of neural networks-did not 
have enough credibility. Closure against their position was approaching. 
There was nothing intrinsically superior in Minsky and Papert’s pessimistic 
“intuitive judgement” about multilayer perceptrons as compared with 
Block’s conclusion that “the potential capabilities of Perceptrons were still 
mostly unexplored.” However, Rosenblatt and his colleagues were 
increasingly isolated, and very much on the losing side of the controversy. 

The key to the process of closure of the perceptron controversy was, in 
my view, the linkage between the criticism of neural networks and certain 
“closure factors,” the most important of them being the emergence of 
symbolic AI. When an area of research is emerging, it has a special need of 
resources and legitimation, both inside and outside the research community. 
In this sense, the closure of the perceptron controversy was more important 
than what is usually thought for the development of symbolic AI. In the late 
1950s and early 1960s, neural networks and symbolic A1 were both in their 
early phase (they both originated in the post-war cybernetics movement). In 
such a situation, when two paradigms are emerging and have a low level of 
development, competition for resources and legitimation can be particularly 
strong. This may well have been the reason with symbolic A1 researchers 
were especially interested in criticizing neural network research, and in clos- 
ing the neural network controversy once and for all. The view resulting from 
that closure-that there was no credible alternative to symbol-processing- 
helped legitimize the institutionalization of the symbolic approach. 

In the context of competition for resources and legitimation between 
neural networks and symbolic A1 in the 1960s, Minsky and Papert’s criticism 
of neural networks was interpreted as the “final proof” showing the lack of 
validity of neural networks and the adequacy of the remaining approach 
(symbol-processing) as the only approach to AI. The following quote from 
Allen Newell and Herbert Simon’s important “Computer Science as 
Empirical Enquiry: Symbols and Search” paper on the foundations of 
symbol-processing AT is an example of this view of symbol-processing as the 
“only approach” to AT: 

The principal body of evidence for the symbolic hypothesis that we have not 
considered [so far in this chapter] is negative evidence: the absence of specific 
competing hypotheses as to how intelligent activity might be accomplished- 
whether by man or by machine. (Newell and Simon, 1976, p. 50) 

I think that the closure of the perceptron controversy was the origin of this 
view. That closure is the “marker event” that Newell was looking for in his 
paper on the history of A1 (Newell, 1983). There Newell indicated that the 
process of emergence of symbolic A1 was “essentially complete by 1965,” 
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although he could not find a “marker event.” This marker event was, in my 
view, the crisis of neural network research, which happened in the mid- 
1960s, and the closure of the perceptron controversy, which started then and 
was finally completed by the end of the 1960s. 

Through the early 1960s, all the researchers concerned with mechanistic 
approaches to mental functions knew about each other’s work and attended 
the same conferences. It was one big, somewhat chaotic, scientific happening. 
The four issues I have identified-continuous versus symbolic systems, 
problem solving versus recognition, psychology versus neurophysiology, and 
performance versus learning-provided a large space within which the total 
field sorted itself out. Workers of a wide combination of persuasions on these 
issues could be identified. Until the mid-l950s, the central focus had been 
dominated by cybernetics, which had a position on two of the issues-using 
continuous systems and orientation towards neurophysiology-but no strong 
position on the other two. . . The emergence of programs as a medium of 
exploration activated all four of these issues, which then gradually led to the 
emergence of a single composite issue defined by a combination of all four 
dimensions [symbolic, problem solving, psychology, performance]. This pro- 
cess was essentially complete by 1965, although I do not have any marker 
event. . . . [Later Newell points out at one more “issue”] Most pattern recogni- 
tion and self-organizing systems were highly parallel network structures. 
Many . . . were modelled after neurophysiological structures. Most symbolic- 
performance systems were serial programs. Thus, the contrast between serial 
and parallel (especially highly parallel) systems was explicit during the first 
decade of AI. The contrast was coordinated with the other four issues I have 
just discussed. (Newell, 1983, pp. 201-202, emphasis and bold added) 

Thus, the crisis of neural networks and the closure of the perceptron 
controversy may well have been more important than what most historical 
accounts of A1 usually concede. As a consequence of that closure, the accept- 
ance of the symbol-processing approach was linked to the rejection of neural 
networks. Both Minsky and Papert have admitted that a link was made 
(by many researchers and people in the funding agencies) between their 
Perceptrons book and the rejection of the whole neural network paradigm 
(including multilayer systems). Papert’s words about “universalistic atti- 
tudes” (see quotation to follow) in the A1 culture are especially interesting 
in this respect, and Minsky is reported to  have “regretted the chilling effect 
of his Perceptrons book on neural networks” in a neural network conference 
in 1988 (Alternulive Computers, 1989, p. 51). 

Its universalism made it almost inevitable for A1 to appropriate our work as 
a proof that neural nets were universally bad . , . In fact, more than half of our 
book is devoted to ‘properceptron’ findings about some very surprising and 
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hitherto unknown things that perceptrons can do. But in a [scientific] culture 
set up for global judgement of mechanisms, being understood can be a fate as 
bad as death. (Papert, 1988, pp. 7-8) 

Of course both the universalistic A1 culture mentioned by Papert and the 
interpretation of Minsky and Papert’s (1969) study as showing that the whole 
neural network approach had to be abandoned were social phenomena. 
These phenomena went well beyond Minsky and Papert’s involvement in 
the controversy as individuals. 

So far, I have looked at one closing factor of the perceptron controversy 
(perhaps the most important one), namely the emergence of symbolic AI. I 
would like to turn now to another very important closing factor, i.e., the 
“linkage” between symbolic A1 and digital computer technology. Four 
things could be said about this linkage. First, the von Neumann style of 
computation is based on the same information processing principles as those 
of the symbolic-processing approach.32 Second, from the beginning the 
digital computer was the experimentation tool of symbolic A1 researchers 
(a great part of research activity in symbolic A1 consisted of digital computer 
simulations using list processing programming languages like LISP). Third, 
in the late 1950s and early 196Os, symbolic A1 researchers at DARPA-funded 
centres like MIT, Carnegie-Mellon University, and Stanford University had 
a privileged access to digital computer resources (see Fleck, 1982). Finally, 
the von Neumann computer was somehow “emblematic” for symbol- 
processing A1 researchers, because it showed that one could study intelli- 
gence and still be a “materialist.” Computer mechanisms (hardware and 
software) were capable of carrying out certain tasks for which intelligence 
was thought necessary. 

The impressive developments in digital computer technology from the 
mid- 1960s onward strengthened the position of the symbol-processing 
approach. Developments in digital computer technology from the late 1960s 
onward have been spectacular (for a review, see Molina, 1987, ch. 2). Hard- 
ware developments include miniaturization of electronic components (small 
scale integrated circuits in the mid-1 960s, medium scale integration by the 
late 1960s, large scale integration in the 1970s, very large scale integration 
in the 1980s), reductions in cost per electronic component, and developments 
in computer power and speed (e.g., operations per second, instructions per 
second). 

Analog and neural network technologies were very much on the losing 
side of the computer technology race. The eclipse of analog computers in 

32 Although, of course, symbol-processing is compatible with some degree of parallelism, and 
therefore it does not have to be serial, as in the von Neumann computer. 
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the mid-1960s is especially interesting here. The history of the analog com- 
puter goes back (at least) to the 1930s, but its “golden age” was the 1950s 
and early 1960s (Alternative Computers, 1989, p. 26). Analog computers 
were used for solving differential equations. It is interesting to note that the 
demise of analog computers happened approximately the same time as the 
crisis of neural network research. The authors of Alternative Computers 
(1989) point this out at both voltage precision problems in analog computers 
and the accuracy and storage capacity of digital computers, and conclude 
that 

By about 1965, improvements in digital-computer speed and memory capacity, 
combined with advances in programming techniques, had made digital the 
technology of choice for most computer customers. (Alternative Computers, 
1989, p. 27) 

Early neural network computers, such as the perceptron, Madaline, and 
Minos were in a sense on the analog side (remember their modifiable 
weights), and neural network technology was also on the losing side with 
the advent and development of digital computer technology. The issue of 
the analog weights of Rosenblatt’s perceptron is a good example of the 
limitations of early neural network technology. The analog weights (continu- 
ously variable quantities) of the association-to-response connections of the 
perceptron were implemented using motor-driven potentiometers. These 
devices had an important limitation: their size. The 512-weight Mark 1 
perceptron occupied a whole laboratory room. This meant that a machine 
with thousands (let alone millions) of modifiable weights would be impracti- 
cally large. Rosenblatt was rather worried about the problem of analog 
weight implementation, and he tried to encourage other groups of engineers 
to produce more adequate solutions. In fact this is how the neural network 
project at Stanford Research Institute started (these researchers developed 
their own solution for implementing the modifiable weights, namely mag- 
netic cores). At Stanford University, Widrow and his colleagues developed 
another technological solution, the so-called “memistors.” But all these 
analog neural network devices had important limitations. 

Early neural network researchers started to use digital computers for 
simulating neural networks, but the association between their theoretical 
approach and the digital computer was much weaker than the one between 
symbolic A1 and the digital computer. The sequential character of the von 
Neumann computer did not favor radically parallel approaches to A1 and 
cognitive modeling such as neural networks. Furthermore, at that time 
simulating neural networks in a sequential computer did not seem to many 
to be the most adequate way of using the digital computing resources avail- 
able. After all, Rosenblatt had characterized the philosophy of the neural 
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network approach in radical opposition to the digital computer. Rosenblatt’s 
comments on the issue of (“brain-style”) distributed memory (where each 
processing unit participates in many representations and each representation 
is formed by the activation of many units) are a good example of this. The 
distributed memory of the perceptron was very different from the typical von 
Neumann computer memory (where data are stored in discrete, unrelated 
locations). 

Theorists are divided on the question of how closely the brain’s methods of 
storage, recall, and data processing resemble those practised in engineering 
today. On the one hand, there is the view that the brain operates by built-in 
algorithmic methods analogous to those employed in digital computers, while 
on the other hand, there is the view [Rosenblatt’s view] that the brain operates 
by non-algorithmic methods, bearing little resemblance to the familiar rules of 
logic and mathematics which are built into digital devices. (Rosenblatt, 1962a, 
P. 10) 

The models which conceive of the brain as a strictly digital, Boolean algebra 
device, always involve either an impossibly large number of discrete elements, 
or else a precision of the “wiring diagram” and synchronization of the system 
which is quite unlike the conditions observed in a biological nervous system. 
(Rosenblatt, 1959, p. 422) 

In this section, I have looked at several factors that made Rosenblatt and 
his colleagues’ efforts to stop the closure of the perceptron controversy vain. 
First, the emergence of symbolic AI, which was linked to the rejection of 
the whole neural network approach. Second, the funding agencies lost their 
confidence on neural network research and cut the funding for Rosenblatt’s 
projects. Third, Rosenblatt was increasingly isolated in his defense of the 
neural network approach (other neural network researchers abandoned the 
field, as I showed earlier). Finally, the development of digital computer 
technology favored the symbolic A1 approach. 

Early neural network research had important technical problems, like 
learning in multilayer systems or the lack of computer power for carrying 
out large simulations. Nevertheless, these technical problems cannot be dis- 
cussed out of their broader context. The same technical problems, or the 
same technical solutions, can be evaluated differently in different situations. 
Furthermore, they can be evaluated differently in the same situation by 
different groups of scientists. Thus, the importance of “pure” technical prob- 
lems has to be put in context. I would like to finish this section with a short 
“science fiction” comment about the importance of one of the main technical 
problems of early neural network research, namely that of training multi- 
layer networks. I think that this comment shows the importance of looking 
at the context when “technical problems” are analyzed. 
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The science fiction question I would like to ask is the following: What 
would have happened if someone had developed a learning technique for 
multilayer networks like back-propagation (which was so successful in the 
late 1980s) in the early period of neural network research? I agree partly 
with the reply that Papert gave me when I asked him this question: 

Clearly, if someone had wanted to work on back-propagation in the 1960s or 
1970s, he wouldn’t have gotten much funding. . . But on the other hand, if 
you look in the PDP book (Rumelhart et al., 1986a) the experiments they did 
are computationally very tiny, you can run them in your ‘PC,’ or in your 
‘Apple.’ Anybody could have done them without much funding even in the 
1960s. The influential recent demonstrations of new networks all run on small 
computers and could have been done in 1970 with ease. . . . (Papert, interview) 

1 agree with Papert in that it seems that someone wanting to develop 
back-propagation in the 1970s would not have gotten much funding. But, 
although funding is very important, it is not the whole issue here. One should 
talk about acceptance and credibility also. Someone wanting to develop 
something like back-propagation in the 1970s (that is after the perceptron 
controversy was closed) would not have gotten much recognition or 
acceptance from the research community. Developing something like back- 
propagation would not have been enough to reopen the controversy in the 
1970s. In Section 10, I will show that something like this did actually happen 
in the 1970s. 

9. The 1980s: A Changing Context 

One important effect of the closure of a controversy is the consolidation 
of the “balance of power” emerging from it. As the “winning” view gets 
institutionalized and researchers carry out their work within the accepted 
framework of research activity, it becomes increasingly difficult for the 
“losing” side to counterbalance that framework. Because of the inertia of 
institutions and patterns of activity (i.e., their tendency to reproduce them- 
selves), time runs against the losing position. 

. . . Accepted beliefs very quickly cease to be easily comparable with rejected 
beliefs, because the former become the basis for future practice. . . Even when 
it is pointed out that the viewpoint of the losers remains logically tenable, it 
is difficult for the reader to remain impartial in the face of the sheer weight of 
numbers in the ‘winning’ camp. (Harvey, 1981, 126) 

As a consequence of this inertia, the conventional character of the process 
of generation and validation of scientific knowledge is quickly buried and 
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forgotten. Something like this happened at the end of the perceptron con- 
troversy. Minsky and Papert’s arguments about the problems of single- 
layer perceptrons were widely interpreted as showing that the whole neural 
network approach had to be rejected, and symbolic A1 emerged as the 
approach both to building intelligent machines and to studying and modeling 
cognition computationally. Some individuals continued working on neural 
networks throughout the 1970s, and the work they carried out was very 
important indeed, but they were working as isolated individuals ; they were 
not powerful enough to develop a position. 

After the closure of the perceptron controversy, activity in neural networks 
decreased to its minimum levels. Throughout the 1970s a small number of 
researchers continued research in neural networks and related topics, but 
they were far from the main centers of A1 and cognitive science research 
activity, where symbol processing continued to be the dominant approach 
over the  year^.'^ Analyzing the development of neural network-like research 
in the 1970s is of course out of the scope of this chapter.34 Here I would just 
like to point out that the main feature of this period was the retreat of neural 
network researchers from A1 to more neuroscience- and psychology-oriented 
research areas. 

Toward the early 1980s, several new developments started to alter this 
situation. Symbolic A1 went from a stage of emergence and institutionaliza- 
tion to one of greater growth and even commercialization (Fleck, 1987). 
This new phase was triggered by the Japanese Fifth Generation Project. In 
October 1981, the Ministry of International Trade and Industry of Japan 
(MITI) launched a 10-year, $850 million computer technology project, in 
which they emphasized the importance of A1 (especially natural language 
and knowledge-based information processing). The US. and U.K. govern- 
ments reacted quickly by launching their own computer technology pro- 
grams (namely Microelectronics and Computer Technology Corporation, 
DARPA’s Strategic Computing program, and the Strategic Defense Initi- 
ative in the United States, and the Alvey program in Britain). This climate 
favored A1 research. 

The early 1980s were the time of the most important commercialization 
of symbolic A1 so far, i.e., expert systems. Basically, expert systems are 

This was much more so in the United States than in Europe, where activity related to 
neural networks (but more oriented toward neurobiology and psychology) remained relatively 
strong. The larger relative importance of neural network-like research in Europe was reflected 
in Sir James Lighthill’s (1973) important report on the state of A1 in the early 1970s for the 
U.K. Science Research Council. 

A4 Areas in which neural network researchers worked in this period include unsupervised 
neural networks and associative memory. Many of the most important neural network contribu- 
tions of the 1970s were reprinted by Anderson and Rosenfeld (1988). 

33 
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composed of a knowledge base (where knowledge relevant for a certain 
domain is represented) and techniques for making inferences from that base 
in a particular situation or  problem. In these knowledge-based information 
processing systems, emphasis is laid on symbolic representation and on the 
ability of the computer to carry out structure-sensitive transformations of 
those representations. Expert systems have been (and are being) applied to 
a great variety of situations. However, symbolic A1 research has not been 
so successful in other areas such as speech recognition, pattern recognition, 
and commonsense and heterogeneous reasoning. In the early 1980s some 
researchers started to claim that neural network systems could offer solutions 
to some problems that were difficult to handle within the symbol-processing 
framework. 

Computer technology developments were another important aspect of the 
early 1980s. Hardware developments included miniaturization, increases in 
computing power, and reduction in costs. The early 1980s was the time of 
very large scale integration (VLSI), i.e., the development of single chips 
with hundreds of thousands of components on them. At the same time, 
the limitations of the von Neumann computer architecture were becoming 
increasingly apparent, The separation between memory and central process- 
ing unit (linked by a connecting tube) in a von Neumann computer imposes 
a sequential (one operation at a time) style of computation. One obvious 
limitation of this style of computing is speed. By the early 1980s, several 
approaches to parallel computing (the use of more than one processor work- 
ing concurrently in a problem) were emerging.35 The cost of microprocessors 
had decreased significantly by then, but parallelism involves many issues 
that have not been completely understood or developed yet, like the software 
issue. The problem of parallelism can be seen as the question of “how 
problem-solving can be distributed across a network of interacting, con- 
currently active processors” (Arbib, 1989, p. 186). This question is being 
developed from many different points of view, including computer architec- 
tures, distributed AI, computer networking, parallelism in machine vision 
systems, and neural networks. 

These trends toward parallel computing in the 1980s favored the resur- 
gence of interest in neural networks. However, neural network research is a 
radical approach to parallelism, and it has to compete with other, less radical 
views. In neural networks, computation is defined at  the subsymbolic level, 

According to “granularity,” parallel architectures can be “coarse grain” (small number of 
sophisticated processors), or “fine grain” (large number of simpler processors). According to 
the instructions received by each processor, they can be single instruction/multiple data (SIMD) 
or multiple instruction/multiple data (MIMD, with each processor receiving its own instruc- 
tions). For a history of parallelism and supercomputing, see Hockney and Jesshope (1988, 

3s 

pp. 2-53). 
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and symbolic entities are seen as properties emerging from the parallel 
interaction of many simple processing units (simplified neurons). Neural 
network parallelism is massive and brain-like, very different from other 
parallel architectures. 

In the early 1980s, researchers started to argue that the information- 
processing power of the brain comes from its parallelism. Feldman and 
Ballard (1982) formulated the so-called “100 step constraint.” This con- 
straint is an approximate measure of the time required by the human brain 
to carry out certain complex cognitive processes, such as recognizing a 
human face.36 With the advent of parallel computers and supercomputers, 
researchers started to compare computer power and brain-style information 
p roce~s ing .~~  But although computing power in abstract is important for 
neural network research (it allows increasingly more powerful simulations 
of and experiments with neural network systems), many problems remain 
(e.g., architecture and organization of the network, and learning). 

I said earlier that the development of symbolic A1 was linked to the 
development of the von Neumann computer, and that in the 1960s this 
association did not favor neural networks, which are naturally parallel. 
Recent developments in parallel computing are more favorable for neural 
computing. The connection between trends in computer technology and 
neural network research is stronger this time round, but one should not 
forget that neural network researchers have to compete with other (less 
radical) approaches to parallelism. 

One subarea of symbolic A1 where parallelism has sometimes been used 
is machine vision. In the 1970s machine vision was very much within the 
symbolic A1 umbrella. One example of this was the change at SRI from 
neural networks to scene analysis in the mid-1960s (see Section 7). Another 

“Neurons whose basic computational speed is a few milliseconds must be made to account 
for complex behaviors which are carried out in a few hundred milliseconds. . . This means that 
entire complex behaviors are carried out in less than a hundred time steps. Current A1 and 
simulation programs require millions of time steps. . . The firing frequencies of neurons range 
from a few to a few hundred impulses per second. In the 1/10 second needed for basic mental 
events, there can only be a limited amount of information encoded in frequencies” (Feldman 
and Ballard, 1982, pp. 484, 487). 

Speculations were made about the number of operations per second in the brain as com- 
pared with the most powerful computers. Sejnowski estimated the minimal amount of digital 
computation necessary to simulate neural operations in real time in 10’’ operations per second, 
about lo5 times greater than the largest general purpose digital computer, and concluded that: 
“The cost of comp.uting has decreased by a factor of about 10 every 5 years over the last 35 
years . . . If this continues, then it will take about 25 more years (2015) before processing power 
comparable to that in the brain can be purchased for $3 Million . . . It is very unlikely, however, 
that this goal can be achieved with the current technology: new technologies, perhaps based 
on optical computing, are needed” (Sejnowski, 1987, pp. 206-207). 

36 

37 
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one was the change in David Marr’s direction of research in the beginning 
of the 1970s from neural network-like research to machine vision within 
symbolic A1 (I also mentioned Marr’s case briefly in Section 7). These 
changes were related to the closure of the perceptron controversy. But in the 
early 1980s, researchers started to use some parallelism in vision research. 
Notions such as the parallel interaction between many local features in the 
interpretation of an image were an area where symbolic A1 was closer than 
usual to neural network research (Ballard et al., 1983). Hinton and his 
colleagues were motivated by this type of problem when they developed their 
“Boltzmann machine” multilayer neural network learning algorithm in the 
mid-1980s (Ackley et al., 1985). In the changing context of the 1980s, some 
vision researchers started to criticize the view that the representational and 
abstract computational theory levels are independent of the implementation 
level (I will discuss some aspects of this question in Section 1 3).38 

In this section, I reviewed some factors and forces that could be aligned 
in order to bring neural network research back to the A1 front in the early 
1980s. It is interesting to note that, even though neural network researchers 
who had continued in the field throughout the 1970s had made some very 
important contributions, the intervention of a new generation of researchers 
was decisive in bringing neural networks back to the A1 arena. The Parallel 
Distributed Processing (PDP) group from the University of California, San 
Diego, was especially important in this respect. Researchers from physics 
(like T. Sejnowski and P. Smolensky), mathematics (like R. Williams), 
symbolic A1 and cognitive science (like D. Rumelhart and J. McClelland), 
and other disciplines, saw a potential in neural networks and started to work 
in the field. They worked with some people who had been in the field from 
an earlier period (like G. Hinton), although they did not have as good 
communication with other such researchers (notably S .  Grossberg). 

10. History of Back-Propagation 

The most successful technique developed in the period of re-emergence 
of connectionism in the mid- 1980s was Rumelhart and colleagues’ back- 
propagation learning algorithm for multilayer networks (Rumelhart et al., 
1986). I will look at the importance of back-propagation in the coming 

Vision researcher Harry Barrow (1989, p. 12) admitted that the separation between the 
implementational level and the other levels has sometimes been espoused to extremes by mach- 
ine vision researchers, and concluded that: “The effects of the third (hardware implementation) 
and second (representation and algorithm) levels may, in fact, make themselves felt even at the 
first level [abstract computational theory level] and should affect assumptions and decisions 
there.” 

3m 
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section, but before that I would like to make a short historical digression 
about the historical antecedents of that technique. 

I said earlier that, in a way, Minsky and Papert’s critical study of Rosen- 
blatt’s perceptron was a positive contribution to neural network research. 
Studying the problems of the single-layer perceptron as rigoroudy as they 
did (even though the existence of those problems was known long before 
they carried out their study) was indeed a contribution to neural networks. 

On the multilayer network side, Minsky and Papert’s criticism can also be 
seen as a positive contribution to the evolution of neural network research, 
although of a different kind. With their famous challenge about the problem 
of learning in multilayer neural networks, they directed the attention of 
future researchers to this problem. The problem was well known for early 
neural network researchers, but after Minsky and Papert’s (1969) study its 
“reverse salient” (in Hughes’ terms) character became even clearer, because 
of the importance of that study for the closure of the perceptron controversy. 
By being published so late in the perceptron controversy, Minsky and 
Papert’s “Perceptrons” study had an interesting effect, Although in the short 
term the study was the “last word” in the controversy, in the long term some 
of the weak points of neural network research became clearer after it. In 
particular, the problem of training multilayer systems remained as a 
challenge for future neural network researchers. 

In the early 1980s, the new generation of neural network researchers did 
indeed take Minsky and Papert’s “pessimistic intuitive judgement” about 
that problem as a challenge, and developed important solutions for it (I will 
come to this in Section 11). But, because of the importance of Minsky and 
Papert’s study for the closure of the perceptron controversy, it would not 
be surprising to find that someone had tried to solve that problem before 
Rumelhart and his colleagues developed their technique in the mid-1980s. 

In fact, Rosenblatt himself was quite close to the idea of back- 
propagation. 

. . . Considerable improvement in performance might be obtained if the values 
of the S [sensory units] to A [association units] connections could somehow 
be optimized by a learning process. . . The difficulty is that whereas R*, the 
desired response, is postulated at the outset, the desired state of the A-unit is 
unknown. . . The ‘back-propagating error correction procedure’ . . . takes its 
cue from the error of the R-units [response or output units], propagating 
corrections [Rosenblatt probably means ‘propagating errors’] back towards 
the sensory end of the network if it fails to make a satisfactory correction 
quickly at the response end. . . At present, no quantitative theory of the per- 
formance of systems with variable S-A connections is available. (Rosenblatt, 
1962a, pp. 287-298) 

It has been pointed out that techniques of some similarity with back- 
propagation were being used in control theory by the 1950s (le Cun, 1988; 
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Hecht-Nielsen, 1990).39 Nevertheless, it seems that the first attempt to apply 
something similar to back-propagation to neural network research was Paul 
Werbos’. Werbos works now at the National Science Foundation (NSF), 
where he is responsible for the funding of some neural network projects. In 
the early 1970s, Paul Werbos was carrying out Ph.D. research in applied 
mathematics at Harvard University. He considered the idea of applying 
steepest descent techniques plus “dynamic feedback” (a technique that he 
developed) to neural network-like problems. In a multilayer neural network 
there are (at least) two layers of adjustable connections. The error made by 
the units in the output layer is easy to calculate. It is just the difference 
between the actual output and the desired output for those units. The main 
problem for minimizing a total error function is to calculate the contribu- 
tions of the internal (or hidden) units of the system to that error. This has 
to be known in order to modify the connections from input units to hidden 
units. The main problem is therefore to calculate the derivatives of the 
error with respect to the outputs of the hidden units. In the 1970s, Werbos 
developed a technique that he called “dynamic feedback” as a solution 
to that problem (Werbos, 1974). The idea was to propagate information 
backward along the network, so that the derivatives of the error with respect 
to the intermediate units could be calculated. Werbos acknowledged that 
ideas of some similarity with his “dynamic feedback” had been used in 
control theory earlier.40 

Werbos’ attempts at applying his dynamic feedback method to neural 
network-like systems found strong resistance in the scientific community. At 
that time, A1 was dominated by the symbol-processing approach, and neural 
network-like techniques were not popular. Werbos believes that some of the 

l9 “In fact, back-propagation is little more than an extremely judicious application of the 
chain rule and gradient descent.. . Some of the applications and algorithms described in the 
optimal control literature so closely resemble back-propagation that one could credit Pontrya- 
gin (among others) for its discovery [in the late 1950~1 . . . From a historical point of view, 
back-propagation had been used in the field of optimal control long before its application to 
connectionist systems has been (independently) proposed” (le Cun, 1988, pp. 21, 22, and 27). 
“A mathematically similar [to back-propagation] recursive control algorithm was presented by 
Arthur Bryson and Yu-Chi Ho . . . in 1969. The primary learning law used can be shown to 
follow from the Robbins/Monro technique introduced in 1951 . . . The earliest incarnation of 
backpropagation has probably not yet been found” (Hecht-Nielsen, 1990, pp. 124-125). 

“Werbos (1974) also cited related work in control theory, which also used backwards flows 
of information to identify systems, albeit in a different way. [My] formulation [of ‘dynamic 
feedback’] could have been derived as an extension of control theory, but I found it easier 
simply to prove . . . [it] directly . . . The problem of ‘adapting weights’ in a neural network is 
just a special case of the problem of estimating the parameters of a general functional model. 
The use of square error and steepest descent in estimating a model had been established decades 
before; therefore, the novel feature o f .  . . [my formulation of back-propagation] was the use 
of dynamic feedback in combination with those two components” (Werbos, 1988, p. 341). 
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difficulties he had throughout his doctoral research at Harvard University 
were related to that. The  members of  his thesis committee had doubts about 
the validity of his work, and  he was told to talk to  someone with enough 
expertise and credibility. This is when (the early 1970s) Werbos went t o  talk 
to Marvin Minsky. 

The response of the Harvard thesis committee was, ‘We don’t know what to 
make of this, this is too complicated. You have to prove it to us, and you have 
to speak to someone reputable.’ That’s when I spoke to Marvin Minsky . . . I 
remember going to Minsky at one point saying, ‘I have a new model of intelli- 
gence.’ I gave him some papers. It included back-propagation as a part, only 
as a part of that. He had a very irascible sense of humour, and said, ‘You’ve 
been spending all this time, and this is all you come out with. It’s not very 
promising, I don’t want you to be working with us at MIT, because this is not 
promising.’ I said, ‘Look, neurons operate this way.’ And he said, ‘Every 
neural modeller in the business knows that it follows McCulloch and Pitts 
[binary threshold function].’ I said, ‘Yes, the modellers will tell you that, but 
look at  the textbooks where they show you the firing patterns, it may be time 
sequenced, but it’s clearly varying on a whole continuum. So you can get a 
different model of the neuron that lets you do derivatives, and lets you make 
these things work, and that overthrows what you did in your Perceptrons 
[Minsky and Papert, 19691 book.’ Do you know how enthusiastic Minsky was 
about that? I believe it was 1970 or 1971 when I presented it to Minsky, and 
I remember his reaction very vividly. I think that part of it was that I was 
saying, ‘This is a way of getting around your conclusions in the Perceptrons 
book,’ and he wasn’t very interested in that kind of thing. I am not afraid 
to name Minsky because everyone will continue to value his contributions, 
regardless. His theorems-though misused in the past-are still of use today, 
and I cite them in my most important work in the Handbook of Intelligent 
Control [White and Sofge, eds., 19921.’ (Werbos, interview) 

Minsky told me about Werbos accidentally, without having been asked 
about him. I told him that some people say that neural network researchers 
were trying to get funding in the early 1960s and  that they could not, that 
DARPA would not fund them. This was his reply: 

‘I don’t know what they would have done with the money. The story of 
DARPA and all that is just a myth. The problem is that there were no good 
ideas. The modern idea of back-propagation could be an old idea. There was 
someone . , . [trying to remember]. Question: Paul Werbos? Answer: That’s it! 
[excited]. But, you see, it’s not a good discovery. It’s alright, but it takes 
typically 100,000 repetitions. It converges slowly, and it cannot learn anything 
difficult. Certainly, in 1970 the computers were perhaps too slow and expensive 
to do it. I know that Werbos thought of that idea. It’s certainly trivial. The 
idea is how you do gradient descent. I didn’t consider it practical. Question: 
Because of the computational costs? Answer: Yes, but also, with artificial 
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intelligence, we had the experience that when you make a process like that you 
usually get stuck at  a local minimum. We still don’t have any theory of what 
range of problems they work well for. (Minsky, interview) 

Thus, in the early 1970s, Minsky thought that the idea of back-propagation 
was not practical (he still has many doubts about it today, as I will show 
later). But what interests me most in this section is that Werbos was unable 
to “sell” his idea in the A1 community. The idea of back-propagation is 
important within a neural network context, but in the 1970s (after the closure 
of the controversy) neural network research simply did not count as a legiti- 
mate approach to AI. 

But let me come back to Werbos’ story. As time went by in the early 
1970s, and pressure from the Harvard thesis committee was rising, he wrote 
a simpler and clearer paper about the back-propagation idea. Werbos claims 
that in that paper he developed the idea of dynamic feedback in the context 
of multilayer perceptrons. 

So I pulled off a small piece and said, ‘Look, I can use this back-propagation 
part to do pattern recognition in a multilayer perceptron.’ I wrote a 20-page 
paper on how to do this, really straightforward and clean. That was 1972. I 
can still remember very vividly a good scientist from Harvard University, 
whose work I strongly respect, saying, ‘Well, now we understand this. This is 
all very straightforward. I understand exactly what you want to do, it’s clear, 
it will work. But, you know, this is enough meat for a seminar paper now, this 
is still not important enough, it isn’t good enough to qualify for a Harvard 
Ph.D. thesis. We can’t graduate you on this.’ I think that part of the reason 
why he said this is that he was responding to pressure from some of these 
peers who didn’t like the whole area. (Werbos, interview) 

Finally, K. Deutsch (at the time president of the International Political 
Science Association) suggested that Werbos’ technique could be applied to 
a political science example, and that was accepted by the thesis committee 
(see Werbos, 1988, p. 342). Thus, Werbos did not apply his dynamic feed- 
back algorithm to neural networks in his thesis, although he made some 
comments about the possibility of doing ~ 0 . ~ ’  

‘‘ ‘Dynamic feedback’ is essentially a technique for calculating derivatives inexpensively, 
for use with the classic method of steepest descent . . . We discuss how our experience here with 
steepest descent has led to new ways of adjusting the ‘arbitrary convergence weights’ of steepest 
descent; these methods speeded up the process of convergence by a large factor. . . We also 
point out that the algorithms of chapter 2 [the ‘dynamic feedback’ algorithms], taken as part 
of ‘cybernetics,’ have a direct value as paradigms, to help us understand the requirements of 
the complex information-processing problems faced by human societies and by human brains” 
(Werbos, 1974, pp. xv-xvi). “The mathematics of back-propagation given in the thesis do not 
elaborate on neural nets, although I made sure that I had a chapter which talked about it, and 
I did discuss neural networks in there. I gave examples in chapter 2 [of Werbos, 19741 which 
are still useful in the neural net profession today” (Werbos, interview). 

41 
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Later, Werbos made further attempts at applying his technique to 
multilayer neural networks. In the early 1980s he was working at the US. 
Department of Energy under Charles Smith’s direction, where he had carried 
out some nonneural applications of back-propagation. According to 
Werbos, he applied to Smith for a project aiming at applying his dynamic 
feedback technique to neural networks, but without success. Werbos com- 
plains that Smith was afterward among the people who funded the PDP 
group, the group that finally developed the back-propagation technique 
within the neural network context.42 

Werbos thinks that the paper he presented at the 198 1 International Feder- 
ation for Information Processing (IFIP) conference in New York (Werbos, 
1982)-a condensed version of an EIA paper he had written for Smith- 
guarantees his priority claims about back-propagation. In that paper, there 
were some comments about the possibility of applying this algorithm to 
neural network systems (see Werbos, 1982, p. 765). After the paper was 
published, Werbos felt that his priority was guaranteed, and tried hard to 
communicate and extend his idea. In sum, Werbos claims that the idea of 
back-propagation originated from him. 

I am not accusing anyone of plagiarism, but on the other hand I do believe 
that, causally, I originated the idea, and it spread from me, maybe not always 
in the form of published papers, but I do believe that the idea did spread from 
me to the relevant places. . . In 1982 [after the IFIP paper was published] I 
was very free and open, and did my best to push the nondocumented com- 
munication. Thus I feel it is no coincidence that the method was suddenly 
rediscovered in three places in the mid-l980s, two of them being places I had 
directed my efforts towards. (Werbos, interview) 

Priority controversies are a classic theme in the sociology of science.43 These 
disputes are a consequence of the social organization of science. Scientific 

“I had carried out a successful application of back-propagation under Charles Smith’s 
authority. . . [After that, one day] I gave him [Smith] a little flow chart saying, ‘Here are 
multilayer perceptrons, here are derivatives, you can combine them. Furthermore, here is a 
paper, and I want to do it.’ . . . Now, Charlie Smith looked at me, and said, ‘This is a workable 
idea, it does show that we can do something, but you are not the right person, you are a civil 
servant.’ I said, ‘But what do you mean? I’ve only been in the government for two years, you 
know, and I figured this thing out, and here it is!’. . . I wasn’t a member of the right social 
elite. Then he went out to the System Development Foundation [Menlo Park, California], and 
was among the people who financed the PDP group’s work. He is acknowledged in the begin- 
ning of the PDP book for his prominent role in this business” (Werbos, interview). 

4’See, for example, Hagstrom (1965) and Merton (1973). W. Hagstrom pointed at a case 
quite similar to Werbos’: “In science, the failure to recognize discovery may give rise. . . to 
strong antagonisms and, at times, to intense controversy. . . [Hagstrom gives the example of 
an experimental physicist] . . . Something like this [i.e., failure to recognize his accomplish- 
ments] had happened earlier in his career, when a grant he had requested was rejected, and 
shortly afterward someone else had become famous for doing essentially what he had proposed 
to do” (Hagstrom, 1965, pp. 14-15). 

42 
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knowledge is produced and validated in a system of communication and 
control in which recognition is given as a reward for novelties (discoveries, 
inventions, new developments). Recognition is a sort of symbolic “capital,” 
which is used by scientists to carry out further research (e.g., larger or more 
important projects). But the notion of discovery is problematic. In its usual 
sense, this term refers to a single, discrete act, localizable in time and space. 
The notion of discovering something belongs to a contemplative, passive, 
realist (and inadequate) model of science (the underlying reality, phenom- 
enon, or procedure is suddenly “uncovered”). After carrying out several 
case studies, Robert Merton problematized this notion, and claimed that all 
scientific discoveries are  multiple^."^^ But one could go even further and 
affirm that the “discovery” or “non-discovery” of a new result or technique is 
(at least sometimes) linked to the controversy about the validity of that result, 
experiment, or technique (see Collins, 1985, p. 89; Barnes, 1982, p. 45). 

Werbos’ claim about the influence of his work on the development of 
back-propagation by Rumelhart, Hinton, and Williams will have to remain 
as an allegation. In a social activity such as science, the interactions and 
relationships among the actors involved are of multiple kinds and go in 
many different directions. Furthermore, a good deal of the knowledge devel- 
oped, used, transmitted, and transformed in the interactions among scientists 
is tacit, and this makes priority disputes bitter and difficult to solve. 

What is interesting from the point of view of this chapter is that Werbos was 
unable to overcome the resistance that he found to the very idea of applying a 
technique similar to back-propagation in A1 research. Werbos’ technique 
could have been used as an argument in favor of neural networks in the 1970s, 
but A1 was very much dominated by the symbol-processing approach, and 
neural networks were still a paradigm without scientific value. Within this con- 
text, it is not surprising that Werbos was unsuccessful in his attempts at apply- 
ing his dynamic feedback technique to neural networks. The anti-neural 
network position remained unchallenged until the mid- and late 1980s, when 
neural networks re-emerged as an A1 paradigm in its own right. 

11. Back-Propagation: Learning in Multilayer 
Percept rons 

A good part of the work done in neural networks in the 1980s was directed 
toward solving the problem of training multilayer systems. Building on work 

‘ I .  . . Far from being odd or curious or remarkable, the pattern of independent multiple 
discoveries in science is in principle the dominant pattern rather than a subsidiary one. It is the 
singletonsdiscoveries made only once in the history of science-that are residual cases, 
requiring special explanation. Put even more sharply, the hypothesis states that all scientific 
discoveries are in principle multiples, including those that on the surface appear to be single- 
tons” (Merton, 1961, p. 356). 

44 
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by Hopfield (1982) and others, Ackley, Hinton, and Sejnowski, from the 
PDP group, developed a first solution to that problem, the so-called 
Boltzmann machine learning algorithm (Ackley et al., 1985).45 The architec- 
ture of their network (with symmetric connections) was different from the 
usual feedforward one. The Boltzmann learning algorithm was rather slow 
(it is currently being developed in different directions to make it faster), 
but it encouraged researchers to develop other techniques for multilayer 
networks. In 1986, Rumelhart, Hinton, and Williams, from the PDP group, 
developed the back-propagation technique. They derived their back- 
propagation learning equations as a generalization of Widrow and Hoff’s 
(1 960) weight-modification algorithm for single-layer networks using the 
chain rule for differentiation (Rumelhart et al., 1986a, pp. 322-328). 

Figure 12 shows the architecture of the neural network studied by 
Rumelhart, Hinton, and Williams (1986a). It is a feedforward, perceptron- 
like network (that is why it is sometimes called “multilayer perceptron”). 
The network is divided into layers, and the units are connected in a feed- 
forward way. The units in one layer (e.g., the hidden layer) are fully 
connected to the units in the following layer (e.g., the output layer). Unlike 
in Rosenblatt’s perceptron, in a multilayer network all the connections have 
modifiable values. The back-propagation network of Fig. 12 is very similar 
to some networks studied by Widrow and his colleagues in the 1960s (see 
Section 4). However, there are important differences too, and these differ- 
ences were also important for the development of the back-propagation 
algorithm. 

There is one important difference between the processing units used by 
early researchers, such as Rosenblatt and Widrow, and the ones used by 
Rumelhart and colleagues. Rumelhart and his colleagues used a continuous, 
differentiable, sigmoid threshold function instead of the step function used 
by early neural network researchers. Thanks to this change, the reverse 
salient of training multilayer nets could be redefined as a problem that could 
be solved. 

Hinton and his colleagues developed John Hopfield’s (1982) neural network model further 
to give a first solution to the problem of learning in multilayer systems. The crucial aspect of 
Hopfield’s contribution-a consequence of his use of the spin glass metaphor-was the notion 
of “energy” of a (symmetrically connected) neural network. The energy of a Hopfield system 
(a global measure of its performance) decreases every time a unit updates its state (a local 
operation), until a local minimum (a stable state of the system) is reached. Thus, the local 
activity of each unit contributes to the minimization of a global property of the whole system. 
Patterns are stored in local minima of the energy function. One of the most important properties 
of this type of network is that it can work as a content-addressable memory, so that, under the 
right circumstances, the network will retrieve correct whole patterns when presented with 
degraded versions of (input) patterns. 

45 
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FIG. 12. Multilayer perceptron. 

It is really interesting to reread Nilsson’s book on early neural networks 
[Nilsson, 19651 because you can see the exact assumptions, often they are very 
small assumptions, having to do with how you define the input-output func- 
tion. They used discontinuous step functions. Now we use sigmoids, which 
have a continuous transition. It may seem like a very small change, because 
they are very similar functions in terms of their overall nonlinearity, but 
mathematically it’s like night to day. A function like that made it possible 
learning in multilayer networks. The thing about mathematics is that you can 
prove beautiful theorems, but you have to make assumptions. You change one 
of the assumptions, even the smallest, and then a lot of things will change. In 
particular, something that you couldn’t see beyond, suddenly dissolves, or you 
find a way of getting around it. (Sejnowski, interview) 

What one needs to know in order to adjust the weights in a multilayer back- 
propagation network is the error made by each unit. The error made by the 
units in the output layer is easy to calculate. It is the difference between the 
actual output pattern produced by the network and the desired output pat- 
tern. But it is not obvious how to calculate the error made by each of the 
units in the hidden layer (and this is necessary to be able to adjust the 
connections between input units and hidden units). The intuitive idea of 
back-propagation is that the error made by a hidden unit should depend on 
the errors made by the output units to which that unit is connected. These 
errors are back-propagated, so that the weights between input units and 
hidden units can then be adjusted. In a back-propagation network, each 
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output unit demands from the hidden units exactly what it needs, and the 
hidden units try to accommodate the conflicting demands. 

A learning cycle in a back-propagation network can be summarized as 
follows, A pattern p is presented, activity propagates forward throughout 
the units, and the network produces an output. This output is compared 
with the desired output, and the error made by the output units is calculated. 
Then, before any weight adjustment is made, the backward stage starts. The 
errors made by the output units are back-propagated to the hidden units, 
so that the error made by each hidden unit can be calculated. Now all the 
connections in the system can be changed. If there were more layers of 
connections, those layers would be adjusted in the same way. It is important 
to note that the whole backward pass has to be completed before any weight 
adjustment is made. By adjusting the connections of the system according 
to the back-propagation technique, the total error measure for a set of 
input/output patterns is minimized in a gradient descent 

Multilayer systems with back-propagation became the most popular 
neural networks of the late 1980s. Rumelhart, Hinton, and Williams’ back- 
propagation technique was an important element for the reopening of the 
neural network controversy. Of course, this importance has to be understood 
within the context of emergence of neural networks in the 1980s. (I discussed 
some of the main aspects of this context in Section 9.) 

At the same time as Rumelhart, Hinton, and Williams developed their 
back-propagation network in the mid- 1980s two other researchers-Parker 
(1985) in the United States and le Cun (1985) in France-developed similar 
techniques. There have been no open priority disputes between le Cun, 
Parker, and Rumelhart and his colleagues, and it is usually accepted that 
the success of introducing back-propagation in neural computing was due 
to Rumelhart, Hinton, and Williams. According to Rumelhart, their work 
on back-propagation was carried out independently from Parker, le Cun’s, 
and (importantly) Werbos’. 

We later [after developing the back-propagation algorithm] found that in fact, 
also I guess as early as 1982, pretty much the same time I guess, David Parker 
had been working on a similar idea. We also found that Yann le Cun had been 
working on a similar scheme, although I think that Parker’s idea is more 
similar than le Cun’s scheme. . . Some years later we learned that some idea 
like this had also been proposed by Paul Werbos in the mid-I970s, although 
it had been totally hidden as far as I know. (Rumelhart, interview) 

To minimize E [total error] by gradient descent it is necessary to compute the partial 
derivative of E with respect to each weight in the network. This is simply the sum of the partial 
derivatives for the input-output cases. For a given case, the partial derivatives of the error with 
respect to the weight are computed in two passes [the forward pass and the backward pass]” 
(Rumelhart et al., 1986b, p. 697). 

46 “ 
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Had I known about Werbos’ work, I would have been happy to list his name, 
but we didn’t. As far as I know his work was entirely hidden, and nobody 
knew about it. Werbos is probably sorry that his work didn’t have more 
impact. I’m sure he is, but I think the fact is it didn’t. I had no idea of the 
man. I never heard of the man until well after we published the back- 
propagation work. (Rumelhart, interview) 

Within the context of the re-emergence of neural network research in the 
1980s, the reaction to back-propagation within the emerging neural network 
community was rather optimistic. Back-propagation was seen by many 
neural network researchers as the most important technical result of the 
mid- and late 1980s. For the growing neural network research community 
of the late 1980s, back-propagation was a successful solution to the historical 
reverse salient of training multilayer perceptrons. 

A great part of the importance of the back-propagation algorithm is due 
to the classification power of multilayer neural networks. This has been an 
attractive property of multilayer systems since the early 1960s (see Hawkins, 
1961, p. 47). After Rumelhart and colleagues’ results on back-propagation, 
the classification power of multilayer networks received increasing attention. 
Classifications realized by neural networks can be represented as decision 
regions in pattern space. Multilayer neural networks with two layers of 
hidden units and three layers of modifiable connections can form any 
decision region in pattern space, that is they can realize decision regions 
(classifications) of arbitrary complexity (this complexity being limited by the 
number of units in the system) (Lippmann, 1987, pp. 15-18; DARPA, 1988, 
pp. 78-80), i.e., any input/output function (or classification). (Remember 
that the back-propagation weight modification algorithm applies equally to 
a network with three layers of connections.) 

But even though it is very important, “theoretical” classification power is 
only one issue in neural computing. Other very important issues are the 
number of learning cycles required for a classification task, and the number 
of units needed. It will be seen that Rumelhart and colleagues’ claims about 
their back-propagation results and experiments were pretty much about 
questions of practice. 

From the point of view of this chapter, it is important to note that, from 
the very beginning, Rumelhart and his colleagues situated their contribution 
in the context of the perceptron controversy, and in particular in the context 
of Minsky and Papert’s (1969) criticism of single-layer networks and their 
challenge (their “intuitive judgement”) about multilayer networks. Rumel- 
hart, Hinton, and Williams claimed that their back-propagation learning 
algorithm was a successful response to Minsky and Papert’s challenge. They 
acknowledged that sometimes the network gets trapped in local (or false) 
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minima of the error landscape, but they claimed that, in practice, this was 
not a significant problem. 

The problem, as noted by Minsky and Papert, is that whereas there is a very 
simple guaranteed learning rule for all the problems that can be solved without 
hidden units, namely, the perceptron convergence procedure (or the variation 
originally due to Widrow and Hoff, which we call the delta rule), there is no 
equally powerful rule for learning in networks with hidden units. . . The stan- 
dard delta rule [Widrow’s LMS or delta rule algorithm] essentially implements 
gradient descent in sum-squared error for linear activation functions. In this 
case, without hidden units, the error surface is shaped like a bowl with only 
one minimum, so gradient descent is guaranteed to find the best set of weights. 
With hidden units, however, it is not so obvious how to compute the deriva- 
tives, and the error surface is not concave upwards, so there is the danger of 
getting stuck in local minima. The main theoretical contribution of this [paper] 
is to show that there is an efficient way of computing the derivatives. The main 
empirical contribution is to show that the apparently fatal problem of local 
minima is irrelevant in a wide variety of learning tasks.. . Although our 
learning results do not guarantee that we can find a solution for all solvable 
problems, our analysis and results have shown that as a practical matter, the 
error propagation scheme leads to solutions in virtually every case. In short, 
we believe that we have answered Minsky and Papert’s challenge and haw 
found a learning result sufficiently powerful to demonstrate that their pessi- 
mism about learning in multilayer machines was misplaced. (Rumelhart et al., 
1986a, pp, 321, 324, 361) 

Thus, Rumelhart and his colleagues claimed that they had given a response 
to Minsky and Papert’s challenge about the possibility of developing a 
learning algorithm for multilayer systems. But Minsky and Papert “counter- 
attacked” and criticized Rumelhart and colleagues’ optimistic evaluation of 
back-propagation (Minsky and Papert, 1988). The difference between 
Minsky and Papert’s evaluation of the back-propagation results and Rumel- 
hart and colleagues’ original claims is striking. This is of course another case 
of interpretative flexibility of scientific results. 

We have the impression that many people in the connectionist community do 
not understand that this [back-propagation] is merely a particular way to 
compute a gradient and have assumed instead that back-propagation is a 
new learning scheme that somehow gets around the basic limitations of hill- 
climbing. . . Virtually nothing has been proved about the range of problems 
upon which GD [the generalized delta rule, or back-propagation] works both 
efficiently and dependably. Indeed, GD can fail to find a solution when one 
exists, so in that narrow sense it could be considered less powerful than PC 
[the perceptron convergence procedure]. In the early years of cybernetics, 
everybody understood that hill-climbing was always available for working easy 
problems, but that it almost always became impractical for problems of larger 
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sizes and complexities . . . The situation seems not to have changed much-we 
have seen no contemporary connectionist publication that casts much new 
theoretical light on the situation. . , We fear that its [back-propagation’s] 
reputation also stems from unfamiliarity with the manner in which hill- 
climbing methods deteriorate when confronted with larger-scale problems. In 
any case, little good can come from statements like “as a practical matter, GD 
leads to solutions in virtually every case” or “GD can, in principle, learn 
arbitrary functions.” Such pronouncements are not merely technically wrong; 
more significantly, the pretense that problems do not exist can deflect us from 
valuable insights that could come from examining things more carefully. As the 
field of connectionism becomes more mature, the quest for a general solution to 
all learning problems will evolve into an understanding of which types of 
learning processes are likely to work on which classes of problems. And this 
means that, past a certain point, we won’t be able to get by with vacuous 
generalities about hill-climbing. We will really need to know a great deal more 
about the nature of those surfaces for each specific realm of problems that we 
want to solve. (Minsky and Papert, 1988, pp. 260-261) 

I asked Minsky about the claim by Rumelhart and his colleagues that 
Minsky and Papert’s “intuitive judgement” about training multilayer 
systems was misplaced and that an effective training technique for multilayer 
perceptrons has now been developed. 

The book [Minsky and Papert, 19691 does say that we don’t think that there 
is an efficient way to make multilayer networks learn. Now, ‘efficiently’ in the 
1960s meant a few thousand trials. Of course now if it does it in a million 
trials it is not so bad. . . There are two issues here. One is that one sense of 
‘efficiency’ has changed. We don’t care if it is a million now. The other is that 
we don’t know if the new networks [back-propagation networks] solve any 
difficult problems. . . When someone demonstrates that a neural network 
learns some task, that does not mean that a symbolic system cannot do 
i t .  . . But I agree that the symbolic approach will have a good deal of trouble 
if they don’t have some fuzziness. (Minsky, interview) 

I discussed at the end of Section 5 what Minsky and Papert said on the 
problem of training multilayer networks. However, what Minsky and Papert 
said was widely interpreted as showing that learning in multilayer systems 
was a very important problem and that the neural network approach was 
not worth pursuing. In the quotation just given, Minsky suggests that many 
of his 1969 conclusions still hold. He points out that, even though the concept 
of efficiency has changed (because of developments in computer technology), 
“we don’t know if back-propagation networks solve any difficult problems.” 
But the way Rumelhart and his colleagues see the problems of hill-climbing 
(or gradient descent) techniques is remarkably different. 
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. . . The procedure we have produced [back-propagation] is a gradient descent 
method and, as such, is bound by all the problems of any hill-climbing 
procedure-namely, the problem of local maxima or (in our case) minima. 
Moreover, there is a question of how long it might take a system to learn. . . 
However, we have carried out many simulations which lead us to be optimistic 
about the local minima and time questions. . . . (Rumelhart et al., 1986a, 
p. 328) 

These disagreements in the evaluation of the back-propagation technique 
between Minsky and Papert on the one hand and the PDP researchers on 
the other are another case of interpretative flexibility (i.e., of divergent views 
about the same experimental results). What for Rumelhart, Hinton and 
Williams is a technique “that leads to solutions in virtually every case,” for 
Minsky and Papert is an impractical technique that deteriorates as problems 
become larger (and more realistic) than those small-scale examples studied 
by Rumelhart and his colleagues in their 1986 paper.47 Thus, different groups 
of researchers with different goals and interests disagree on the evaluation 
of the solution given to the reverse salient of learning in multilayer neural 
networks. 

In the late 1980s, problems like parity and connectedness were again 
a matter of controversy between Minsky and Papert and neural network 
researchers (PDP researchers this time round), as they had been at the time 
of earlier neural network research (see last footnote). There are certain 
parallels between Minsky and Papert’s (1988) criticism of back-propagation 
and their earlier criticisms of the perceptron and neural networks. In 1988, 
Minsky and Papert claimed that problems like parity had not been success- 
fully solved, and they also criticized the adequacy of back-propagation- 
and gradient descent methods in general-for A1 research, as they had done 
earlier (remember the Werbos story). 

It is interesting to look at Minsky’s discussion of the small examples used by Rumelhart 
and his colleagues in their 1986 paper. Rumelhart, Hinton, and Williams (1986a, pp. 334-335) 
described a small network that was able to compute parity. The (mini) network had four input 
units, four hidden units, and one output unit. Since it had four input units, and the input 
patterns are vectors of 1s and Os, there can be up to 16 different input patterns. After presenting 
these 16 input vectors to the system 2,825 times each, that is after 45,200 input presentation/con- 
nection adjustment cycles, the network learned to classify the patterns correctly. For Rumelhart 
and colleagues this showed that back-propagation was a successful learning algorithm for 
multilayer networks. Minsky and Papert doubted it: “. . . Thus consuming 45,200 trials for the 
network to learn to compute the parity predicate for only four inputs. Is this a good result or 
a bad result? We cannot tell without more knowledge about why the procedure requires so 
many trials” (Minsky and Papert, 1988, p. 254). I asked Minsky about the parity problem. 
“We don’t have any theory of what range of problems they [back-propagation networks] work 
well on. For example, they don’t work on parity, as far as I know, and yet the connectionists 
say, ‘Yes, my machine learned to find the exclusive or for six inputs,’ or something like that” 
(Minsky, interview). 

47 
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Minsky and Papert’s earlier criticism was very important in the crystalliza- 
tion of the consensus against neural networks in the late 1960s, but their 
renewed criticism did not have the same effect in the late 1980s. Their 
renewed arguments were not seen as decisive against neural networks in the 
context of re-emergence of neural network research in the late 1980s. The 
neural network controversy was reopening, and this process could not be 
stopped. Arguments that had a strong weight in the late 1960s were not so 
important in the new context. In spite of Minsky and Papert’s (1988) 
renewed criticism, many researchers now see gradient descent methods like 
back-propagation as perfectly adequate in A1 research, and Rumelhart and 
colleagues’ back-propagation results are widely seen as an adequate solution 
to the historical “reverse salient” of training multilayer networks. Of course 
I do not mean that Minsky and Papert’s (1988) renewed criticism was mis- 
placed or exaggerated (my purpose here is not to evaluate it). This criticism, 
like the 1969 one, created (constructed) problems for neural network 
research, and therefore it was in a sense a positive contribution to the 
development of the connectionist paradigm. 

Nowadays, back-propagating multilayer networks have become a subarea 
of research in its own right, with an increasing number of researchers dedicat- 
ing important efforts to developing, improving and applying them.48 One of 
the earliest important applications of back-propagation was Sejnowski and 
Rosenberg’s NETtalk network, a multilayer neural network with back- 
propagation that learns to pronounce an English text (Sejnowski and Rosen- 
berg, 1986, 1987). In one of their experiments, Sejnowski and Rosenberg 
used a training set consisting of 1,024 words. They reported that (1986, 
p. 665), after 50,000 training cycles, roughly 12 CPU hours of training on a 
DEC VAX computer, according to Anderson and Rosenfeld (1988, p. 662), 
the network’s performance reached 95% accuracy. Afterward, the network’s 
capacity for generalization was tested by presenting to it a 493-word continu- 
ation from the same speaker without training. Sejnowski and Rosenberg 
(1986, p. 667) reported an accuracy of 78% for this case. 

Experiments like those carried out with NETtalk caused a good deal of 
excitement about neural networks in the second half of the 1980s. From 
the very beginning, NETtalk was compared with DECtalk (from Digital 
Equipment Corporation), at that time the state-of-the-art, commercially 
available rule-based expert system for text to speech synthesis. DECtalk (a 
result of many years of research) outperformed NETtalk (developed in a 
summer), but researchers were impressed by the speed of learning of 
NETtalk, and saw it as a promise of the capabilities of neural networks. 

For a review on some attempts to minimize the occurrences of local minima when using 48 

back-propagation see Beale and Jackson (1990, pp. 91-97), 



HISTORY OF THE NEURAL NETWORK CONTROVERSY 405 

DECtalk (based on D. Klatt’s work) took about 15 years of research to 
develop. For neural network researchers, NETtalk was an example of the 
advantages of neural computing. However, D. Klatt recently “counter- 
attacked” by claiming that the (acoustic-phonetic rule-based) alphabetic-to- 
phonetic representation system of DECtalk took only three years to develop 
(DARPA, 1988, p. 219). NETtalk was not pursued further toward 
commercialization (p. 220), but it is a good example of the early, and for 
many researchers promising, applications of networks with back- 
propagation. 

Some of the early applications of back-propagation were summarized 
in DARPA’s 1988 neural network study. According to this study, back- 
propagation was being used at that time in application areas including 
pattern recognition and classification, signal processing, and speech 
recognition. Pattern recognition and classification applications of multilayer 
back-propagation networks included “tactical target recognition using radar 
imagery,” “discrimination between two different sonar targets,” and “smart 
weapons.” Signal processing applications included “recovery of noise- 
corrupted or distorted waveforms,” and “prediction of time series.” Finally, 
speech applications included “text-to-speech synthesis” and “speech recogni- 
tion” (DARPA, 1988, pp. 203-221). 

Since then, multilayer back-propagation perceptrons are being applied to 
a great variety of problems. A discussion of these applications is out of the 
scope of this chapter. For a review of some neurobiology-oriented applica- 
tions, see Anderson (1988). Le Cun et al. (1989) applied multilayer back- 
propagation networks to handwritten post-code recognition in the United 
States. Beale and Jackson (1990, pp. 97-104) reviewed applications in areas 
such as predicting seat demand in airlines (Airline Marketing Tactician), 
electrocardiograph noise filtering, movement of financial markets, bank loan 
scoring, aircraft identification, terrain matching for navigation systems, 
target identification from sonar traces, monitoring level crossings (British 
Rail), speech processing, recognition and synthesis (British Telecom), and 
check signature verification. Another application, developed by Lehky and 
Sejnowski in 1988, is a neural network that computes curvature (shapes, 
depth) from shading in an image (see Anderson, 1988, p. 657). More 
recently, Hertz et al. (1991, pp. 134-141) reviewed applications of back- 
propagation networks in several problems. These include NETtalk-like sys- 
tems for prediction of secondary structure of proteins (Qian and Sejnowski 
1988), which allegedly outperformed the best available alternative method, 
and for hyphenation. Other application areas are sonar target recognition, 
navigation of a car, image compression, signal prediction and forecasting, 
and backgammon. The Neurogammon system was developed by G. Tesauro 
and T. Sejnowski in 1988, and a later version of it (Tesauro, 1990) defeated 
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all other programs (five commercial and two noncommercial) at the 1989 
London “computer olympiad” (Hertz et al., 1991, p. 137). 

Most of these applications are in their early stages (research and develop- 
ment is still being done), and they have not reached commercialization yet. 
However, they show clearly that a considerable amount of research and 
development activity is now being carried out in neural computing. Although 
it is not yet clear how far the institutionalization of neural network research 
will go, and how complementary the neural network and the symbolic para- 
digms will be, it can now be said that neural computing has emerged as an 
accepted line of research in its own right. The consensus that resulted from 
the closure of the perceptron controversy in the late 1960s was broken in 
the late 1980s, and the neural network controversy reopened. The develop- 
ment of the back-propagation learning algorithm in the context of re- 
emergence of connectionism was of great importance for the reopening of 
the controversy. In section 13, I will look at the new neural network debate, 
but before that I would like to review briefly some aspects of the “neural 
network explosion” of the late 1980s. 

12. The Neural Network Explosion 

In this section I will characterize briefly some aspects of the growth and 
institutionalization of neural network research in the late 1980s. I use the 
term “neural network explosion” to refer to the peak in the growth of the 
neural network research community in the late 1980s. This peak happened 
approximately between 1986 and 1988. Since then, neural networks have 
become a research specialty and a research and development (R&D) 
community in its own right. 

The growth of the neural network community can be measured in terms 
of conferences, publications, funding, and migration of scientists and 
engineers to the neural network field. Michel Rappa and Koenraad 
Debackere, from the MIT Alfred P. Sloan School of Management, carried 
out quantitative research of this kind (Rappa and Debackere, 1989, 1990). 

After building a relational database containing 2,740 abstracts of journal 
and conference proceedings papers on neural networks published between 
1969 and 1988, Rappa and Debackere (1989, pp. 9-10) concluded that the 
biggest increase in the rate of growth of the neural network research com- 
munity happened from 1986 to 1988. The rate of growth of the community 
was 60% during those years: the community expanded from 200 members 
to 1,200. In a later study, Rappa and Debackere (1990) carried out a statis- 
tical survey of 700 neural network researchers from 30 countries. The survey 
was done between February and May, 1990, and it confirmed that the first 
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peak in the entry of researchers to  the field took place in 1986 and 1987. 
Rappa and his colleague concluded that 75% of their respondents had 
entered the field between 1984 and 1990, whereas only 25% had entered 
before 1984. 

One of the characteristics of the emergence and institutionalization of 
research specialties is the proliferation of scientific conferences. This seems 
to be a good “thermometer” of the growth of neural network research also. 
The Santa Barbara (California) Neural Networks for Computing meeting, 
organized by the American Institute of Physics (AIP) in 1985, was one of 
the first meetings of the new neural network period, and it showed the 
interest of the physicists in the field. The migration of physicists to  neural 
networks was a significant feature of the re-emergence of the field in the 
1980s (Hopfield’s case is an example of this). The Santa Barbara meeting 
had 60 participants (Denker, 1986, preface). One year later, in April 1986, 
the American Institute of Physics organized its second Neural Networks 
for Computing conference in Snowbird, Utah (Denker, 1986). 160 people 
attended the meeting, and the organizers were short of space to accept more 
participants. 

There is an interesting anecdote about that 1986 Snowbird conference that 
illustrates some features of the emergence of neural networks in the 1980s. 
Bernard Widrow was “rediscovered” there-but he had to raise his hand 
and introduce himself, because nobody had recognized him. 

In the 1970s and 1980s we continued working on adaptive filtering and adap- 
tive signal processing until about 4 years ago, when I heard about a meeting 
at Snowbird [on neural networks]. I went to the Snowbird conference. I found 
people there that were so enthusiastic about neural networks! There were 200 
people there, tremendous support for one another. Instead of hostility and 
people trying to tear each other down, people were giving papers. I knew that 
some of them made sense and some of them didn’t make sense, but no-one 
was being terribly critical, everyone was being very supportive. It was like a 
family, it was like a family reunion, but they were all people whom I had never 
met before. John Hopfield was there, and I didn’t know him at that time, I 
think that Rumelhart was there although I’m not sure. Terry Sejnowski was 
definitely there. There were many people, key people in the field in the United 
States, and-I think-quite a few from overseas, from Europe and Japan, a 
few from Japan, a number from Europe, definitely. So I knew I had to go 
back into neural nets. It was funny that someone was giving a paper at the 
Snowbird meeting, and he said, “You know, Widrow did that back in 1963,” 
or something like that. No-one had known me, not a soul, so I thought I 
should raise my hand, and introduce myself. And so I did, and then everybody 
wanted to hear about the olden days, so I had lots of people to talk to about 
the history of neural networks. (Widrow, interview) 
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Since then Widrow has become a leading member of the new neural 
network community, and he therefore is one of the few researchers who 
have played an active role in the two main peaks of activity in the history 
of neural networks. In 1988, Widrow was the director of the DARPA 
neural network study (DARPA, 1988; after this study, DARPA decided 
to start funding some neural network projects), and in the same year he 
was appointed president of the International Neural Network Society 
(INNS). 

1987 was the year of the first massive neural network conference. In June 
the Institute for Electrical and Electronic Engineers (IEEE) organized the 
First International Conference on Neural Networks (ICNN) in San Diego, 
California. This first ICNN was attended by 1,500 people, and there were 
25 vendors of neural network technology products. The International Neural 
Network Society (INNS) was announced at that conference, and by the end 
of that year it had 1,200 members. In the July 1987 annual meeting of the 
American Association of Artificial Intelligence (AAAI) a workshop on 
neural networks was organized for the first time, and some technology 
products related to neural networks were exhibited there. Since then a lot of 
conferences on neural networks have been organized. Rappa and Debackere 
(1989, p. 28) pointed out that in 1988 and early 1989 there were about 31 
conferences on neural networks. One of the most important ones in 1988 
was IEEE’s second ICNN conference, attended by 2,200 people (EE  Times, 
1988, p. 49). A talk by Marvin Minsky seems to have been one of the most 
exciting moments of the conference. 

Minsky who has been criticized by many for the conclusions he and Papert 
make in ‘Perceptrons,’ opened his defense with the line ‘Everybody seems to 
think I’m the devil.’ Then he made the statement, ‘I was wrong about Dreyfus 
too, but I haven’t admitted it yet,’ which brought another round of applause. 
(Zeitvogel, 1988a. pp. 10-1 1). 

An important event that occurred at the 1988 ICNN was DARPA’s 
announcement of its neural network program. 

Another important conference held that year was the INNS’S first annual 
conference. About 600 papers were presented there, twice the number of 
papers presented at the 1988 ICNN (Zeitvogel, 198813, p. 12). Also in 1988, 
INNS created the Neural Networks journal, one of the most important 
publications in neural network research. By 1989, INNS had 3,500 members 
from 38 countries (Rappa and Debackere, 1989, p. 27). 

The DARPA Neural Network Study (DARPA, 1988), and DARPA’s 
subsequent decision to support (to some degree at least) neural networks 
helped legitimize neural network research. DARPA’s support for neural 
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network research was especially significant because of the agency’s role in 
the development of symbolic A1 throughout the years.4y One of the three 
goals of the DARPA program was, significantly, the comparison between 
neural networks and conventional information processing technologies, 
including symbolic AI, signal processing, and control theory in problems 
like automatic target recognition and continuous speech recognition. The 
other two goals were the development of neural network theory and 
modeling on the one hand, and neural network hardware implementation 
technology on the other (see DARPA, 1988, pp. 10-11). 

By 1989, most of the major U.S. funding agencies had launched programs 
in neural networks. Those agencies include NSF, ONR, AFOSR, NASA, 
and NIH. Neural network programs were also launched by the European 
Community in 1988 and 1989, and by several European governments (the 
program of the West German government, starting in 1988, was the biggest 
one). Important neural network projects are under way in Japan too in large 
companies and government laboratories, and it is expected that a neural 
network program will be a part of the Sixth Generation Computer Program 
to be launched after the Fifth Generation Project comes to an end in 1991.50 
Many major information technology companies in the U.S., Japan, and 
Europe, as well as small companies specialized in neural networks (mainly 
in the U.S.), are now developing neural network products. In December 
1990 it was estimated that there were some 300 vendors of neural network 
technology products world-wide (Molina, 1990, p. 368), but the com- 
mercialization of neural computing is still in its early stages. 

In the academic world, there are an increasing number of Ph.D. students 
in many universities carrying out research on neural networks in departments 
like AI, cognitive science, electrical engineering, computer science, and 
physics. Neural computing is being included as a subject in many post- 
graduate courses, and research groups and centers dedicated to neural 
computing are emerging. The disciplinary origins of current neural network 
researchers is another interesting aspect of the recent growth and institu- 
tionalization of the neural network community. Rappa and Debackere 

This legitimizing role of DARPA is recognized within the DARPA study itself, and com- 
pared with the agency’s lack of support for neural networks in the past (DARPA, 1988, p. 23). 
According to a report by J. M. Brady, DARPA provided about 75% of funding for A1 in the 
United States in the decade from 1964 to 1974 (Fleck, 1982, pp. 181, 212). In his report on 
DARPA’s involvement in computer science and engineering in the 1962-1982 period, Arthur 
Norberg of the Charles Babbage Institute (University of Minnesota) concluded that “. . .We 
could point to almost the entire field of artificial intelligence research in the United States as a 
DARPA affect” (Norberg, 1990, p. 21). 

For short reviews on government funding for neural networks in Japan, the United States, 
and Europe see Molina (1990) and Johnson and Schwartz (1990). 

4Y 

50 
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concluded that, in 1990, electrical engineering (34.2%), physical science 
(19.2%), and computer science (17.8%) were the main disciplines of origin 
of neural network researchers, with the rest distributed as follows : 
biological science and engineering 7%, mathematics 6.9%, psychology and 
cognitive science 5.4%, and neural networks 4.7% (Rappa and Debackere, 
1990, p. 12). 

Another feature of the institutionalization of neural network research is 
the appearance of scientific journals exclusively dedicated to it. Apart from 
the journal of the INNS, called Neural Networks, which debuted in 1988, an 
increasing number of specialized journals dedicated to neural computing 
have appeared more recently. These include two in 1989: Neural Computa- 
tion (U.S., edited by T. Sejnowski; it publishes short papers) and Connection 
Science: Journal of Neural Computing, Artijicial Intelligence, and Cognitive 
Research (Britain, Carfax Publishing Company) ; and two in 1990: Network: 
Computation in Neural Systems (Britain, Bristol, IOP Publishing) and IEEE 
Transactions on Neural Networks. There has also been a proliferation of 
newsletters on neural networks like Neural Network Review and Neural 
Technology Update (formerly Synapse Connection) in the U.S. 

Apart from this, most AI, cognitive science, electronic engineering, and 
many philosophy journals have published special issues on neural 
c~mputing.~’ A number of books on the foundations of neural networks and 
collections of historical papers have also been published.’* Books on neural 
networks for the general public have also come Recent books on the 
foundations of AI, such as Graubard (1988) and Patridge and Wilks (1990), 
dedicate considerable attention to neural network research. 

All these indicators (conferences, applications, publications, migration of 
researchers, and funding) show that the emergence of neural networks as a 
research community of its own is well under way. The first important peak 
in this process happened at the end of the 1980s, when an increasing number 
of researchers from various disciplines started to “migrate” toward the 
neural network area. 

” Examples of these are Cognition (Vol. 28, 1988), Brain and Behavioral Sciences (Vol. 1 1 ,  
1988), Southern Journal of Philosophy (Vol. 26, suppl., 1987), IEEE Computer (Vol. 21, 1988), 
Journal of Memory and Language (Vol. 27, 1988), Artificial Intelligence Review (Vol. 3, 1989), 
Proceedings of the IEEE (Vol. 78, 1990), ArtiJicial Intelligence (Vol. 46, 1990), and AI  and 
Society (Vol. 4, 1990). Papers and letters on neural networks appear now regularly in general 
science journals such as Nature and Science as well as in most general AI, electronic engineering, 
and cognitive science journals. A significant number of textbooks on neural networks have now 
been published also. These include Beale and Jackson (1990), Aleksander and Morton (1990), 
Hecht-Nielsen (1990), and Hertz et al. (1991). 

’* Such as Nadel et al. (1989) and Anderson and Rosenfeld (1988). 
53 Examples of these are Johnson and Brown (1988), Allman (1989), and Brunak and Lautrup 

(1990). 
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13. The Current Debate: Conclusions 

13.1 Debate Continues 

In the previous section I showed that the process of emergence and institu- 
tionalization of neural network research is well under way. Neural network 
research is now generally accepted as an approach to A1 and cognitive 
science in its own right. However, there is still quite a lot of debate about 
the exact “place” of neural network research in AI. This debate is going on 
right now, and it is very much open. After being closed in the 1960s, the 
neural network controversy has now been reopened. In this section I will 
review some of the main positions of the new controversy then make some 
concluding comments. 

The three main positions (three interpretations of neural networks) that 
were emerging at the end of the 1980s I will call implementationism, 
moderate connectionism, and radical connectionism. The implementationist 
position is the most negative view of neural network research. Researchers 
favoring this position maintain that neural network research (including the 
neural network developments of the 1980s) does not suppose any innovation 
in the explanation of cognition. For them neural computing is at most a 
theory about how symbol-processing could be implemented in some kind of 
nonsymbolic substratum. Broadbent (1985) was one of the first researchers 
who espoused this interpretation of neural networks in his criticism of a 
paper by McClelland and Rumelhart (1985), in which these researchers 
advocated a distributed model of memory. More recently, cognitive science 
researchers Jerry Fodor and Zenon Pylyshyn (1988) made a strong defense 
of the implementationist hypothesis in a paper that created a good deal of 
controversy. Fodor and Pylyshyn situated their discussion at the level of 
representation and algorithm (on the notion of “information processing 
levels” [see Marr, 1982, ch. I]) .  They claimed that connectionism is irrelevant 
at that level, and concluded that it does not bring any revolutionary changes 
to cognitive science. 

. . . The implementation, and all properties associated with the particular 
realization of the algorithm that the theorist happens to use in a particular 
case, is irrelevant to the psychological theory; only the algorithm and the 
representation on which it operates are intended as psychological 
hypothesis. . . Given this principled distinction between a model and its 
implementation, a theorist who is impressed by the virtues of Connectionism 
has the option of proposing PDP’s [neural network systems] as theories of 
implementation. But then, far from providing a revolutionary new basis for 
cognitive science, these models are in principle neutral about the nature of 
cognitive processes. (Fodor and Pylyshyn, 1988, p. 65) 
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The reasons offered by Fodor and Pylyshyn to support the implementationist 
hypothesis are based on the priority given by the symbolic paradigm to the 
logicosyntactic structure of cognitive processes. Their view is that the neural 
network approach cannot account for some of the basic elements of human 
cognition like compositionality. Thoughts and mental states have a composi- 
tional structure, and cognitive processes depend on that structure.54 Fodor 
and Pylyshyn claimed that neural networks could not explain (or artificially 
model) compositionality, because the only kind of relationship between the 
components (units) of a neural network is causal, or numerical, namely 
the interaction between them through the connecting weights. The kind of 
reasoning that connectionist models carry out is based on statistical associ- 
ation, which is rather different from the formally or syntactically driven 
inferential processes favored by the symbolic appr~ach . ’~  Fodor and 
Pylyshyn (1988, p. 68) doubted whether association is useful at all in study- 
ing and modeling cognitive processes. 

For Fodor and Pylyshyn, neural networks would be at the most a theory 
about the implementation of symbol-processing processes. But how this can 
be interpreted is unclear to them. They pointed out that trying to implement 
symbolic processes in massively or  fine-grained parallel neural network hard- 
ware would cause important problems, and that there are more adequate 
ways of implementing symbol-processing. 

We have no principled objection to this view [treating connectionism as an 
implementation theory] (though there are, as Connectionists are discovering, 
technical reasons why networks are often an awkward way to implement classi- 
cal machines). This option would entail rewriting quite a lot of the polemical 
material in the Connectionist literature, as well as redescribing what the net- 
works are doing as operating on symbol structures, rather than spreading 
activation among semantically interpreted nodes. (Fodor and Pylyshyn, 1988, 
pp. 67-68)56 

Fodor and Pylyshyn argued that it is not possible to be able (for example) to entertain the 
thought “a and b,” and not be able to have the thought “a;” or to be able to entertain the 
thought that “Mary loves Paul” and not be able to entertain the thought that “Paul loves 
Mary.” The other side of the property of compositionality is that the same atomic symbol (i.e., 
“a”) can take part in many different symbolic expressions (or composite symbol structures). 
Nevertheless, the principle of compositionality has been criticized from cognitive science itself: 
“We would not want a demonstration that an organism-with-systematicity having encountered 
‘Lions eat people’ as a sentence then knows ipsofucto that ‘People eat lions’ is one too. The 
implausibility of the content often renders people unable to accept (at the simplest crudest level 
of acceptance) such sentences as sentences.. .” (Wilks, 1990, p. 334). 

But contrary to what Fodor and Pylyshyn seem to indicate in their paper, connectionist 
inferential processes would happen at system level, and not at unit level. 

But see previous footnote. 

54 

5s 

56 
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It does not seem likely that neural network researchers are going to follow 
Fodor and Pylyshyn’s appeal and “rewrite much of the polemical literature” 
or “redescribe their systems as operating on symbol structures.” Neural 
network researchers have already won recognition for their paradigm as an 
approach to A1 of its own, and accepting Fodor and Pylyshyn’s suggestions 
would mean going backward. It is interesting to note that the implementa- 
tionist interpretation of neural networks is often linked-as it is in Fodor 
and Pylyshyn’s case-with a view according to which “nothing has changed 
in A1 and cognitive science in spite of the recent developments in neural 
network research.” This type of hypothesis is the most critical interpretation 
of neural network research. 

[There] is a real disagreement about the nature of mental processes and mental 
representations. But it seems to us that it is a matter that was substantially 
put to rest about thirty years ago; and the arguments that then appeared to 
militate decisively in favor of the Classical [i.e., symbolic] view appear to us 
to do so still . . . As far as Connectionist architecture is concerned, there is 
nothing to prevent minds that are arbitrarily unsystematic. But that result is 
preposterous. Cognitive capacities come in structurally related clusters ; their 
systematicity is pervasive. All the evidence suggests that punctuate minds can’t 
happen. This argument seemed conclusive against the Connectionism of Hebb, 
Osgood, and Hull twenty or thirty years ago. So far as we can tell, nothing of 
any importance has happened to change the situation in the meantime. (Fodor 
and Pylyshyn, 1988, pp. 6, 49) 

Fodor and Pylyshyn are not the only ones who have espoused this “nothing 
has changed” interpretation of neural network research. Leading researchers 
like Minsky and Papert (1988, p. vi), Tomaso Poggio (a leading machine 
vision researcher from MIT’s A1 laboratory and Thinking Machines 
Corporation), and Daniel Hillis (the computer scientist who developed the 
Connection Machine parallel computer) have made some remarks in that 
dire~tion.~’ The openness of the current debate is quite clear when one looks 
at the “implementationist” or  “nothing has changed” positions. 

“Poggio . , .jokes about a virus that infects brain scientists, starting a new epidemic every 
20 years. The epidemic takes the form of uncritical enthusiasm for a new idea. In the 1920s, 
the idea was Gestalt psychology: in the 1940s, cybernetics; in the 1960s, perceptrons. In the 
1980s it is connectionism” (The Economist, 1987, p. 94). “ ‘Neural networks are accompanied 
by a lot of irritating hype,’ Poggio declares, ‘. . . Neural nets point out interesting problems, 
but have not solved the big problems of vision or speech. Ultimately, in my view, when the 
hype disappears, there’s a good possibility they will go the way of perceptrons’. . . ” (Poggio, 
as quoted by Finkbeiner, 1988, p. 1 I ) .  “. . . To build a thinking machine by simply hooking 
together a sufficiently large network of artificial neurons. The notion of emergence would 
suggest that such a network, once it reached some critical mass, would spontaneously begin to 
think. This is a seductive idea because it allows for the possibility of constructing intelligence 
without first understanding it. Understanding intelligence is difficult and probably a long way 

57 
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Neural network researchers have replied to the implementationist criti- 
cisms in several ways. Here I will only look at a few of them. Paul Smolensky 
(1987) claimed that, contrary to Fodor and Pylyshyn’s argument, connec- 
tionism does indeed offer an account of the compositionality of cognitive 
processes. However, connectionist compositionality is defined in rather 
different terms. In a connectionist system there are no symbols (in the usual 
A1 sense), but activation patterns. Representations are distributed 
throughout the parameters of the system. Smolensky argued that connection- 
ist representations, unlike symbolic representations, are sensitive to the 
context in which they appear (e.g., different activation patterns would corre- 
spond to the same word appearing in different contexts). Smolensky claimed 
that connectionist representations can be decomposed into parts or constit- 
uents, but that these simpler parts are not defined in a discrete or symbolic 
way. They vary in different situations (see Smolensky, 1987, p. 151). 

Other responses to Fodor and Pylyshyn criticized their assumption about 
the “independence of information-processing levels” (and particularly the 
independence between the symbol-processing level and the hardware level) .58 

The degree of neurobiological constraint in neural network architectures 
varies considerably from system to system, but the interaction between 
neural network research and neuroscience is probably going to be one of the 
main neural network research areas in the future.59 

The second position in the current debate about neural network research 
that I would like to look at briefly in this section could be called radical 
connectionism. Researchers in favor of this view claimed that neural net- 
works will offer an alternative and sufficient way of explaining and modeling 
most cognitive processes. For them, the symbolic paradigm would only 
be a useful approximation to the connectionist description-the “right” 
description-of cognitive processes.60 PDP researchers did not deny the 

. . . We.  . . consistently urge that the cognitive level must interact with properties of the 
implementation and so cognitive performance cannot be explained implementation- 
independently” (Chater and Oaksford, 1990, p. 94). 

This interdisciplinary research area is sometimes called “computational neuroscience” or 
“cognitive neuroscience.” See Churchland and Sejnowski (1988) and Sejnowski et al. (1988). 

The following comments are examples of this radical connectionist position. “It is a mistake 
to claim that the connectionist approach has nothing new to offer cognitive science. The issue 
at stake is a central one: Does the complete formal account of cognition lie at the conceptual 

58 “ 

59 

60 

off, so the possibility that it might spontaneously emerge from the interactions of a large 
collection of simple parts has considerable appeal to the would-be builder of thinking machines. 
Unfortunately, that idea does not suggest a practical approach to construction. The concept 
of emergence in itself offers neither guidance on how to construct such a system nor insight 
into why it would work” (Hillis, 1989, pp, 175-176). 
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importance of “symbolic” concepts such as consciousness, sequential 
thought, and mental models, but they claimed that these phenomena could 
be modeled with purely connectionist systems (Rumelhart et al. 1986~). (For 
recent developments in neural network studies of symbol-processing, see 
ArtlJcial Intelligence, 1990.) 

Of course it remains to be seen to what extent the neural network approach 
is going to offer useful tools for the study and modeling of the more 
sequential, structure-sensitive cognitive and intelligent processes. Radical 
connectionism poses a research agenda for neural network research for the 
years to come. Furthermore, radical connectionist pronouncements have a 
rhetorical element of promise. However, one should not forget that the 
rhetoric of promise does play a role in science. Kuhn’s comments about the 
function of the rhetoric of promise in the early stages of the evolution of a 
line of research seem to apply here. 

. . . The issue [in paradigm debates] is which paradigm should in the future 
guide research on problems many of which neither competitor can yet claim 
to resolve completely. A decision between alternate ways of practicing science 
is called for, and in the circumstances that decision must be based less on past 
achievement than on future promise. The man who embraces a paradigm at 
an early stage must often do so in defiance of the evidence provided by problem 
solving. He must, that is, have faith that the new paradigm will succeed. . . 
(Kuhn, 1970, pp. 157-58) 

The third and last position I would like to examine here is what I call the 
moderate connectionist view, a more eclectic view of the current debate 
between connectionism and symbolic AI. One of the researchers who has 
elaborated this position most explicitly is Andy Clark (1989a, 1989b), a 
philosopher from the School of Cognitive and Computing Sciences of the 
University of Sussex (Brighton, England). Clark defended hybrid (partly 
symbolic, partly connectionist) systems. He claimed that (at least) two kinds 
of theories are needed in order to study and model cognition. On the one 
hand, for some information-processing tasks (such as pattern recognition) 
connectionism has advantages over symbolic models. But on the other hand, 
for other cognitive processes (such as serial, deductive reasoning, and 
generative symbol manipulation processes) the symbolic paradigm offers 
adequate models, and not only “approximations” (contrary to what radical 

level? The position taken by the subsymbolic [i.e., neural network] paradigm is: No-it lies at 
the subconceptual level” (Smolensky, 1988, p. 7). I ‘ .  . . We take the symbolic level of analysis 
to provide us with an approximation to the underlying system. In many cases these approxima- 
tions will prove useful; in some cases they will be wrong and we will be forced to view the 
system from the level of units to understand them in detail” (Rumelhart et d., 1986c, p. 56). 
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connectionists would ~ l a i m ) . ~ ’  Clark maintained that, even though from 
an evolutionary point of view neural network-like systems existed earlier 
(connectionist-like systems-the brain-had to learn to simulate a von 
Neumann-style architecture for tasks like addition or subtraction), what 
matters is not the evolutionary origin of cognitive faculties and processes, 
but the way those processes “function” (Clark, 1989a, p. 63, 1987, p. 13). 

The hybrid approach is also being used from a more practically oriented 
perspective by researchers who need both symbol-processing and neural 
network elements in their systems. An example is Teuvo Kohonen’s (1988) 
“neural phonetic typewriter” speech recognition system. The central part 
of the system is an unsupervised neural network that classifies phonemes. 
However, the preprocessing part is based on conventional digital signal 
processing techniques, and the postprocessing part is a symbolic rule base.62 

So far in this section I have discussed briefly three positions of the current 
debate about neural networks. In spite of “nothing has changed” views, 
neural network research has been accepted as an approach to A1 and 
cognitive science in its own right, but the controversy provoked by its re- 
emergence has not been closed. The definition of the relationships between 
the symbol-processing and the neural network approaches to A1 and cogni- 
tive science is right now a matter open to controversy and negotiation. The 
current debate about the place of neural network research within A1 and 
cognitive science (the current, in a sense, “territorial dispute”) will shape 
these disciplines for years to come. The future shape of the map of A1 and 
cognitive science is difficult to predict, but one thing seems clear: this time 
around the new neural network controversy is not going to end with the 
total rejection of one of the contending positions. 

13.2. Conclusions 

In this chapter I analyzed the main developments of the history of neural 
network research from a sociological and historical point of view. I have 

‘’ “. . , The computational substrate of human thought comprises (at least) two strands. One, 
the fast, pattern-seeking operations of a PDP mechanism; the other the slow, serial, gross 
symbol using, heuristic guided search of classic cognitivism” (Clark, 1989a, p. 63). “. . . The 
kinds of operation we would perform on real, external symbolic structures (and hence the kind 
we would use in any mental model of the same) are just the operations found in a conventional 
processor, Operations such as complete copying of a symbol from one location to another, 
deletion and addition of whole symbols. . . and whole symbol matching operations. In these 
special cases , . . the conventional model is not any kind of approximation to the truth; it is the 
truth” (Clark, 1989a. pp. 61-62). 

Kohonen (1990, p. 1477) warned against insisting too much on distribution, and forgetting 
localization and organization of information into separate parts. 

62 
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shown that the controversy-closure scheme from the sociology of science 
(Collins, 1981, 1985) can help interpret those developments. The neural 
network controversy was once closed (in the late 1960s) and has recently 
reopened. 

The controversy of the 1960s ended with the rejection of the neural 
network approach (see Sections 2 through 8). Neural networks had many 
technical problems (including limitations of single-layer machines, and the 
lack of algorithms for training multilayer systems), but the importance of 
those problems was a matter of controversy (see Section 5 ) .  There were 
important technological limitations too, like the lack of computing power 
to simulate large networks efficiently. However, there was not a logically 
necessary connection between these problems and the rejection of neural 
networks as a whole. This rejection, i.e., the conclusion that the whole neural 
network paradigm lacked scientific validity, was a consequence of the closure 
of the perceptron controversy. That process of closure was a social, contin- 
gent process, and therefore its result (i.e., the total rejection of neural 
networks) was not the only possible result (at least in principle). Factors 
like the emergence and institutionalization of symbolic A1 help explain the 
radical rejection and abandonment of neural networks (see Section 8). In a 
different context, neural networks re-emerged as a legitimate approach to 
A1 in the late 1980s (see Sections 9 through 13). The consensus that emerged 
at the end of the perceptron controversy in the 1960s was revised, and 
controversy reopened. 

But having said this, I want to make clear that by analyzing the neural 
network controversy sociologically I am not condemning any of the positions 
of the participants involved. As I said in Section 1, science is often generated 
and validated through controversies, and therefore debate can be seen as a 
positive force in the development of scientific knowledge. Controversy can 
be bitter at times, and the rhetoric used can be quite strong, but that is how 
science is produced, validated, and developed. 

Appendix 1. 

Aleksander, Igor, Imperial College of Science, Technology, and Medicine, London, May 15, 
1989. Anderson, James A,, Brown University, Providence, Rhode Island, October 20, 1989. 
Arbib, Michael A., University of Southern California, Los Angeles, California, November 7, 
1989. Churchland, Patricia S., University of California at San Diego, La Jolla, California, 
November 8, 1989. Cicourel, A., Cognitive Science, University of California at San Diego, 
La Jolla, California, November 9, 1989. Denicoff, Marvin, Potomac, Maryland, November 
29, 1989 (by telephone). Duda, Richard, San Jose State University, San Jose, California. 
November 17 (by telephone). Feldman, Jerome A., International Computer Science Institute, 
Berkeley, California, November 10, 1989. Grossberg, Stephen, Boston University, Boston, 
Massachusetts, October 18 and 24, 1989. Hart, Peter, Menlo Park, California, November 19, 
1989 (by telephone). Hopfield, John J., California Institute of Technology, Pasadena, 

List of Those Interviewed 
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California, November 6, 1989. Hutchins, E., University of California at San Diego, La Jolla, 
California, November 9, 1989. Klopf, Harry A,, Wright-Patterson Air Force Base, Ohio, 
November 27, 1989 (by telephone). Lazzaro, J., California Institute of Technology, 
Pasadena, California, November 6, 1989. Licklider, J. C. R., Arlington, Massachusetts, 
November 30, 1989. McClelland, James L., Carnegie Mellon University, Pittsburgh, 
Pennsylvania, November 1, 1989. McKenna, Thomas, Office of Naval Research, Arlington, 
Virginia, November 21, 1989. Mead, Carver A,, California Institute of Technology, 
Pasadena, California, November 6, 1989. Minsky, Marvin L., Massachusetts Institute of 
Technology, Cambridge, Massachusetts, October 25, 1989. Nilsson, Nils J., Stanford 
University, Stanford, California, November 3, 1989 (by telephone). Norman, Donald A., 
University of California at San Diego, La Jolla, California, November 8, 1989. Papert, 
Seymour A,, Massachusetts Institute of Technology, Cambridge, Massachusetts, December 
4, 1989. Reece, Michael, University College, London, May 16, 1989. Rosen, Charles, 
Atherton, California, November 10, 1989. Rumelhart, David E., Stanford University, 
Stanford, California, November 13, 1989. Schwartz, Daniel B., GTE Laboratories, Waltham, 
Massachusetts, October 26, 1989. Sejnowski, Terrence J., Salk Institute, San Diego, 
California, November 8, 1989. Selfridge, Oliver G., GTE Laboratories, Waltham, 
Massachusetts, October 27, 1989. Selviah, Dr., Dept. of Electrical and Electronic 
Engineering, University College, London, May 16, 1989. Smolensky, Paul, University of 
Colorado, Boulder, Colorado, November 14, 1989. Sutton, Richard S., GTE Laboratories, 
Waltham, Massachusetts, October 27, 1989. Tangney, John, Air Force Office for Scientific 
Research/NL, Washington, D.C., November 21, 1989. Treleavan, Philip, University College, 
London, May 16, 1989. von der Malsburg, Christoph, University of Southern California, Los 
Angela, California, November 7, 1989. Werbos, Paul, National Science Foundation, 
Washington, D.C., November 20, 1989. Widrow, Bernard, Stanford University, Stanford, 
California, November 13, 1989. Will, Craig, Institute for Defense Analysis-CSED, 
Alexandria, Virginia, November 20, 1989. Williams, Ronald J., Northeastern University, 
Boston, Massachusetts, November 3, 1989. Willshaw, David J., MRC, Centre for Cognitive 
Science, University of Edinburgh, Edinburgh, December 5, 1990. Yoon, Barbara, Defense 
Advance Research Projects Agency, DARPA, Arlington, Virginia, November 20, 1989. 
Yovits, Marshall, Purdue University, Indianapolis, Indiana, November 28, 1989 (by 
telephone). Zipser, David, University of California at San Diego, La Jolla, California, 
November 9, 1989. 

Appendix 2. List of Personal Communications by Letter 

Gwin. Cecil W., Martins Ferry, Ohio. O’Brien, Richard D., University of Massachusetts at 
Amherst. Rosenblatt, Maurice, Washington D.C. Scattergood, Mark, Englewood, Colorado. 

Abbreviations Used 

AFOSR: Air Force Office of Scientific Research 
A1 : artificial intelligence 
DARPA : Defense Advanced Research Projects Agency (U.S.A.) 
IEEE : Institute for Electrical and Electronic Engineers 
ICNN : International Conference on Neural Networks 
INNS : International Neural Network Society 
LMS: least mean square 
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MIT : Massachusetts Institute of Technology 
NASA : National Aeronautics and Space Administration 
NIH : National Institutes of Health 
NSF: National Science Foundation 
ONR: Office of Naval Research (U.S.A.). 
PDP: parallel distributed processing 
SRI: Stanford Research Institute 
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