

PARALLEL DISTRIBUTED
PROCESSING

Copyrighted Material

Computational Models of Cognition and Perception

Editors

Jerome A. Feldman
Patrick J. Hayes
David E. Rumelhart

Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Volume 1: Foundations, by David E. Rumelhart,
James L. McClelland, and the PDP Research Group

Parallel Distributed Processing: Explorations in the Microstructure 0/
Cognition. Volume 2: Psychological and Biological Models, by
James L. McClelland, David E. Rumelhart, and the
PDP Research Group

Neurophilosophy: Toward a Unified Science o/the Mind-Bra;n, by
Patricia S. Churchland

Qualitative Reasoning About Physical Systems, edited by
Daniel G. Bobrow

Visual Cognition, edited by Steven Pinker

Copyrighted Material

PARALLEL DISTRIBUTED
PROCESSING

Explorations in the Microstructure
of Cognition

Volume 1: Foundations

David E. Rumelhart James L. McClelland

and the PDP Research Group

Chisato Asanuma
Francis H. C. Crick
Jeffrey L. Elman

Geoffrey E. Hinton

Michael 1. Jordan

Alan H. Kawamoto
Paul W. Munro
Donald A. Norman
Daniel E. Rabin
Terrence 1. Sejnowski

Paul Smolensky
Gregory O. Stone
Ronald 1. Williams
David Zipser

Institute for Cognitive Science

University of California, San Diego

A Bradford Book

The MIT Press
Cambridge, Massachusetts

London, England

Copyrighted Material

Twelfth printing, 1999

© 1986 by The Massachusetts Institute of Technology

All ri ghts reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recordin g, or information

storage and retrieval) without permission in writi ng from the publisher.

Printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

Rumelhart, David E.
Parallel distributed processing.
(Computational models of cognition and perception)

Vol. I by David E. Rumelhart. James L. McClelland and the PDP Research Group.

"A Bradford book.'·

Includes bibliographies and indexes.
Contents: v.l. Foundations-v.2. Psychological

and biological models.

I. Human information processing. 2. Cognition. I. McClelland, James L.
II. University of California. San Diego. PDP Research Group. Ill. Title. IV. Series.

BF 45 S . R853 1986 153 85-24073

ISBN 0-262-18120-7 (v.1) he ISBN 0-262-68053-X (v. I) pb

0-262-13218-4 (v.2) 0-262-63110-5 (v.2)

0-262-18123-1 (set) 0-262-631 12-1 (set)

Copyrighted Material

Preface

Acknowledgments

VOLUME 1

FOUNDATIONS

Addresses of the PDP Research Group

Part I THE PDP PERSPECTIVE

Contents

ix

xv

xix

1 The Appeal of Parallel Distributed Processing 3
1. L. MCCLELLAND, D. E. RUMELHART, and G. E. HINTON

2 A General Framework for Parallel Distributed Processing 45
D. E. RUMELHART, G. E. HINTON, and 1. L. MCCLELLAND

3 Distributed Representations 77
G. E. HINTON, 1. L. MCCLELLAND, and D. E. RUMELHART

4 PDP Models and General Issues in Cognitive Science 110
D. E. RUMELHART and 1. L. MCCLELLAND

Copyrighted Material

VI PARALLEL DISTRIBUTED PROCESSING

Part II BASIC MECHANISMS 147

5 Feature Discovery by Competitive Learning 151
D. E. RUMELHART and D. Z1PSER

6 Information Processing in Dynamical Systems:
Foundations of Harmony Theory 194

P. SMOLENSKY

7 Learning and Relearning in Boltzmann Machines 282
G. E. HINTON and T. 1. SEJNOWSKI

8 Learning Internal Representations by Error Propagation 318
D. E. RUMELHART, G. E. HINTON, and R J. WILLIAMS

Part III FORMAL ANALYSES 363

9 An Introduction to Linear Algebra in Parallel Distributed
Processing 365

M. I. JORDAN

10 The Logic of Activation Functions 423
R. J. WILLIAMS

11 An Analysis of the Delta Rule and the Learning of
Statistical Associations 444

G.O STONE

12 Resource Requirements of Standard and Programmable
Nets 460

J L. MCCLELLAND

13 P3: A Parallel Network Simulating System 488
D. ZIPSER and D. E. RABIN

References 507

Index 517

Copyrighted Material

CONTENTS VII

VOLUME 2
PSYCHOLOGICAL AND BIOLOGICAL MODELS

Preface to Volume 2

Addresses of the PDP Research Group

Part IV PSYCHOLOGICAL PROCESSES

IX

xi

14 Schemata and Sequential Thought Processes in PDP Models 7
D. E. RUMELHART. P. SMOLENSKY, 1. L. MCCLELLAND, and G. E. HINTON

15 Interactive Processes in Speech Perception:
The TRACE Model 58

J. L. MCCLELLAND and J. L. ELMAN

16 The Programmable Bl ackboard Model of Reading 122
J L. MCCLELLAND

17 A Distributed Model of Human Learning and Memory 170
J. L. MCCLELLAND and D. E. RUMELHART

18 On Learning the Past Tenses of English Verbs
D. E. RUMELHART and J. L. MCCLELLAND

19 Mechanisms of Sentence Processing: Assigning Roles

216

to Constituents 272
J. L. MCCLELLAND and A. H. KAWAMOTO

Part V BIOLOGICAL MECHANISMS 327

20 Certain Aspects of the Anatomy and Physiology of the
Cerebral Cortex 333

F H c. CRICK and C. ASANUMA

21 Open Questions About Computation in Cerebral Cortex 372
T. 1. SEJNOWSKI

22 Neural and Conceptual Interpretation of PDP Models 390
P. SMOLENSKY

Copyrighted Material

viii PARALLEL DISTRIBUTED PROCESSING

23 Biologically Plausible Models of Place Recognition and
Goal Location 432

D. ZIPSER

24 State-Dependent Factors Influencing Neural Plasticity:
A Partial Account of the Critical Period 471

P. W. MUNRO

25 Amnesia and Distributed Memory
J. L. MCCLELLAND and D. E. RUMELHART

Part VI CONCLUSION

26 Reflections on Cognition and Parallel Distributed
Processing

D. A. NORMAN

Future Directions

References

Index

Copyrighted Material

503

529

531

547

553

581

Preface

One of the great joys of science lies in the moment of shared
discovery. One person's half-baked suggestion resonates in the mind of
another and suddenly takes on a definite shape. An insightful critique
of one way of thinking about a problem leads to another, better under
standing. An incomprehensible simulation result suddenly makes sense
as two people try to understand it together.

This book grew out of many such moments. The seeds of the book
were sown in our joint work on the interactive activation model of word
perception. Since then, each of us has worked with the other and with
other collaborators. The results of these collaborations are reported in
several of the chapters of this book. The book also contains many
chapters by other colleagues whose explorations have become
intertwined with ours. Each chapter has its own by-line, but each also
reflects the influences of other members of the group. We hope the
result reflects some of the benefits of parallel distributed processing!

The idea of parallel distributed processing-the notion that intelli
gence emerges from the interactions of large numbers of si mple pro
cessing units-has come and gone before. The idea began to seem
more and more attractive to us as the contrast between our convictions
about basic characteristics of human perception, memory, language, and
thought and the accepted formal tools for capturing mental processes
became more apparent. Symbol-processing machines, for all their Tur
ing equivalence , had fa�}RdHtlJ}j<Ai

a
Hfnt�1 frameworks for capturing

X PREFACE

the simple insights about the interactive nature of processing that had
lead to such models as the HEARSAY model of speech understanding.
More generally, they had failed to provide a framework for representing
knowledge in a way that allowed it to be accessed by content and effec
tively combined with other knowledge to produce useful automatic
syntheses that would allow intelligence to be productive. And they
made no contact with the real strengths and weaknesses of the
hardware in the brain. A Cray computer can perform on the order of
100 million double-precision multiplications in a second, but it does not
exhibit natural intelligence. How then are we to understand the capa
bilities of human thought, given the time constants and noisiness
inherent in neural systems? It seemed obvious that to get any process
ing done in real time, the slow, noisy hardware in the brain would have
to do massively parallel processing.

As our interest in parallel mechanisms developed, we began to study
the work of others who shared our convictions and to build on their
work. Particularly important in this regard was Hinton and 1. A.
Anderson's (1981) Parallel Models oj Associative Memory. Indeed, we
see our book as a descendant of their book on two accounts. First, the
material presented here represents further developments on the work
presented in Hinton and Anderson's book. Second, we owe a particular
intellectual debt to both Hinton and Anderson. Our interest in distrib
uted, associative memories goes back to interactions with Jim Ander
son, beginning as early as 1968. Our interest in these topics began in
earnest, however, during the period when we were developing the
interactive activation model of word perception, in 1979, shortly after
Geoffrey Hinton began a postdoctoral fellowship at UCSD. Geoffrey's
crisp explanations showed us the potential power and generality of
models created from connections among simple processing units, and
fit together nicely with our own developing conviction that various
aspects of perception, language processing, and motor control were best
thought of in terms of massively parallel processing (see McClelland,
1979, and Rumelhart, 1977, for our earliest steps in this direction).

The project culminating in this book formally began in December,
1981 when the two of us and Geoffrey Hinton decided to work together
exploring the implications of network models and to write a book out
lining our conclusions. We expected the project to take about six
months. We began in January 1982 by bringing a number of our col
leagues together to form a discussion group on these topics. During
the first six months we met twice weekly and laid the foundation for
most of the work presented in these volumes. Our first order of busi
ness was to develop a name for the class of models we were investigat
ing. It seemed to us that the phrase parallel distributed processing (PDP

Copyrighted Material

PREFACE XI

for short) best captured what we had in m ind . It emphasized the paral
lel nature of the processing, the use of distributed representations and
distributed control, and the fact that these were general processing sys
tems, not merely memories we were studying, as the phrase associative
memory suggests. Thus the PDP research group was born. Hinton and
McClelland left after the first six months- Hinton to CMU and
McClelland to MIT and later to CMU. The PDP research group, how
ever, has continued regular meetings at UCSD up to the present time.
The group has varied from five or six of us at times to as many as 15
or more at other times, and there is now a parallel group of about 15 or
so psychologists and computer scientists at CMU.

Shortly after leaving UCSD in 1982, Hinton began working with
Terrence Sejnowski on the Boltzmann machine (Chapter 7) and decided
to dt"�p from the role of organizer of the project to a cont r i butor , so he
could spend more time working on the implications of the Boltzmann
machine. Thus, the primary responsibility for putting the book
together fell to the two of us. At first we expected to complete the
book within a year after we began our work. Soon, however, it became
clear that there was much work to be done and many directions to
explore. Thus, our work continued and expanded as we and our col
leagues followed the implications of the PDP approach in many dif
ferent ways .

A good deal has happened since we began this project. Though much
of the initial groundwork was laid in early 1982, most of the material
described in these volumes did not take its present form until much
later.

The work has been interdisciplinary and represents what we consider
a true cognitive science approach. Although the two of us have been
trained as cognitive psychologists, the PDP group as a whole includes
people from a wide range of backgrounds. It includes people trained in
physics, mathematics, neuroscience, molecular biology, and computer
sciences, as well as in psychology. We also envision an interdisciplinary
audience for our book. We are cognitive psychologists and we hope,
primarily , to present PDP models to the community of cognitive
psychologists as alternatives to the models that have dominated cogni
tive psychology for the past decade or so. We also, however, see our
selves as studying architectures for computation and methods for artifi
cial intelligence. Therefore, we hope that this book will be seen as
relevant to researchers in computer science and artificial intelligence.
Also, the PDP approach provides a set of tools for developing models
of the neurophysiological basis of human information processing, and
so we hope portions of these books will seem relevant to neuroscien
tists as well.

Copyrighted Material

xii PREFACE

ORGANIZATION OF THE BOOK

Our book consists of six parts, three in each of the two volumes.
The overall structure is indicated in the accompanying table. Part I pro
vides an overview. Chapter 1 presents the motivation for the approach
and describes much of the early work that lead to the developments
reported in later sections. Chapter 2 describes the PDP framework in
more formal terms. Chapter 3 focuses on the idea of distributed
representation, and Chapter 4 provides a detailed discussion of several
general issues that the PDP approach has raised and explains how these
issues are addressed in the various later chapters of the book.

The remaining parts of the book present different facets of our
explorations in parallel distributed processing. The chapters in Part II
address central theoretical problems in the development of models of
parallel distributed processing, focusing for the most part on fundamen
tal problems in learning. The chapters in Part III describe various
mathematical and computational tools that have been important in
the development and analysis of PDP models. Part IV considers

A CONDENSED TABLE OF CONTENTS

VOLUME I

I. THE PDP PERSPECTIVE II. BASIC MECHANISMS

1. The Appeal of PDP 5. Competitive Learning

2. A Framework for PDP 6. Harmony Theory

3. Distributed 7. Boltzmann Machines
Representations 8. Learning by

4. General Issues Error Propagation

IV. PSYCHOLOGICAL
PROCESSES

14. Schema ta and PDP

15. Speech Perception

16. Model of Reading
17. Learning and Memory
18. Morphology Acquisition

19. Sentence Processing

VOLUME II

V. BIOLOGICAL

MECHANISMS

20. Anatomy and

Physiology

21. Computation in

the Brain

22. Neural and

Conceptual Levels

23. Place Recognition

24. Neural Plasticity

25. Amnesia

Copyrighted Material

III. FORMAL ANALYSES

9. Linear Algebra
10. Activation Functions

II. The Delta Rule

12. Resource Requirements

13. Parallel Network

Simulator

VI. CONCLUSION

26. Renections

Future Directions

PREFACE xii i

applications and implications of PDP models to various aspects of
human cogni t ion , including perception, memory, language, and higher
level thought processes. Part V considers the relation between parallel
distributed processing models and the brain, reviews relevant aspects of
the anatomy and physiology, and describes several models that apply
PDP models to aspects of the neurophysiology and neuropsychology of
information processing , learning , and memory. Part VI contains two
short pieces: a reflection on PDP models by Don Norman and a brief
discussion of our thoughts about promising future directions .

How to read this book? It is too long to read straight through. Nor
is it designed to be read this way . Chapter 1 is a good entry point for
readers unfamiliar with the PDP approach, but beyond that the various
parts of the book may be approached in various orders, as one might
explore the different parts of a complex object or machine. The vari
ous facets of the PDP approach are interrelated, and each part informs
the others; but there are few strict sequential dependencies. Though
we have tried to cross- reference ideas that come up in several places,
we hope that most chapters can be understood without reference to the
rest of the book . Where dependencies exist they are noted in the intro
ductory sections at the beginn ing of each part of the book .

This book charts the explorations we and our colleagues have made
in the microstructure of cognition . There is a lot of terrain left to be
explored. We hope this book serves as a guide that helps others join us
in these ongoing explorat ions.

December 1985 James L. McClelland
PITTSBURGH, PENNSYLVANIA

David E. Rumelhart
LA JOLLA, CALIFORNIA

Copyrighted Material

Acknowledgments

As we have already said, nearly all the ideas in this book were born
out of interactions, and one of our most important acknowledgments is
to the environment that made these interactions possible. The Institute
for Cognitive Science at UCSD and the members of the Institute have
made up the core of this environment.

Don Norman, our colleague and friend, the Founder and Director of
the Institute, deserves special credit for making ICS an exciting and
stimulating place, for encouraging our explorations in parallel distrib
uted processing, and for his central role in arranging much of the finan
cial support this book has benefited from {of which more below} . The
atmosphere depends as well on the faculty , visiting scholars, and gradu
ate students in and around ICS. The members of the PDP Research
Group itself, of course, have played the most central role in helping to
shape the ideas found in this book. All those who contributed to the
actual contents of the book are listed on the cover page; they have all
contributed, as well, in many other ways. Several other participants in
the group who do not have actual contributions to the book also
deserve mention. Most prominent among these are Mike Mozer and
Yves Chauvin, two graduate students in the Cognitive Science Lab, and

Gary Cottrell, a recent addition to the group from the University of
Rochester.

Several other members of the intellectual community in and around
ICS have played very important roles in helping us to shape our
thoughts. These include Liz Bates, Michael Cole, Steve Draper, Don

Copyrighted Material

xvi ACKNOWLEDGMENTS

Gentner. Ed Hutchins, Jim Hollan, Jean Mandler, George Mandler,
Jeff Miller, Guy van Orden, and many others, including the participants
in Cognitive Science 200.

There are also several colleagues at other universities who have
helped us in our explorations. Indeed, the annual connectionist
workshops (the first of which resulted in the Hinton and Anderson
book) have been important opportunities to share our ideas and get
feedback on them from others in the field. and to learn from the con
tributions of others. Jim Anderson, Dana Ballard, Jerry Feldman,
Geoff Hinton and Terry Sejnowski all had a hand in organizing dif
ferent ones of these meetings; and we have learned a great deal from
discussions with them and other participants, particularly Andy Barto,
Scott Fahlman, Christof von der Malsburg, John Hopfield, Dave
Touretzky, and more recently Mark Fanty and Gene Charniak.
McClelland's discussions at MIT (particularly with Jerry Fodor and
Molly Potter) helped in the clarification of several aspects of our think
ing, and various colleagues at and around CMU -particularly John
Anderson, Mark Derthick, Dave Klahr, Brian MacWhinney, and Jeff
Sokolov-have contributed a great deal through discussions over the
last year and a half or so, as we have worked toward the completion of
the book. Others one or both of us have interacted with a great deal
include Bill Brewer, Neal Cohen, AI Collins, Billy Salter, Ed Smith, and
Walter Schneider. All of these people have contributed more or less
directly to the development of the ideas presented in this book.

An overlapping group of colleagues deserves credit for helping us
improve the book itself. Jim Anderson, Andy Barto, Larry Barsalou,
Chris Reisbeck, Walter Schneider, and Mark Seidenberg all read several
chapters of the book and sent useful comments and suggestions. Many
other people read and commented on individual chapters, and we are
sincerely grateful for their careful contributions, which we acknowledge
in the appropriate chapters.

This project owes a tremendous amount to the help of the excellent
staff of the Institute for Cognitive Science. Kathy Farrelly, in particu
lar, has played an enormous role in all aspects of the production of the
book; her cheerful, thoughtful, and very careful assistance made the
production of the book run much more smoothly than we have had any
right to hope and allowed us to keep working on the content of some of
the chapters even as the final production was rolling forward on other
sections. Eileen Conway's assistance with graphics and formatting has
also been invaluable and we are very grateful to her as well. Mark Wal
len kept the computers running, served as chief programming consul
tant and debugger par excellence, and tamed troff, the phototypesetter.
Without him we would never have gotten all the formatting to come
out right. Karol Lightner worked very hard toward the end of the

Copyrighted Material

ACKNOWLEDGMENTS xvii

project on final proofing and indexing, and Sondra Buffett, as the
Administrative Director of ICS, held everything together and kept
everything running throughout the entire four years of the project.

Our project has been supported by a number of different agencies
and foundations. Primary support came from the System Development
Foundation and the Office of Naval Research. The System Develop
ment Foundation has provided direct support for the PDP research
group through a grant to Norman and Rumelhart, and has also sup
ported several of the individual members of the group (Crick, Hinton,
Sejnowski, and Zipser). ONR contracts that have contributed support
include N00014-79-C-0323, NR 667-437; N00014-85-K-0450, NR 667-
548; and N00014-82-C-0374, NR 667-483.

The people behind both SDF and ONR deserve acknowledgment too.
The entire PDP enterprise owes a particular debt of gratitude to Charlie
Smith, formerly of SDF, who appreciated the appeal of para\1el distrib
uted processing very early on, understood our need for computing
resources, and helped provide the entire PDP research group with the
funds and encouragement needed to complete such project. Henry
Halfr, formerly of ONR, was also an early source of support,
encouragement, and direction. Charlie Smith has been succeeded by
Carl York, and Henry Halff has been succeeded by Susan Chipman,
Michael Shafto, and Harold Hawkins. We are grateful to a\1 of these
people for their commitment to the completion of this book and to the
ongoing development of the ideas.

Several other sources have contributed to the support of individual
members of the group. These include the National Institute of Mental
Health, through a Career Development Award-PHS-MH-00385-to
McCle\1and and post-doctoral fe\1owships to Paul Smolensky and Paul
Munro under Grant PHS-MH-14268 to the Center for Human Informa
tion Processing at UCSD. Smolensky received support in the form of a
fellowship from the Alfred P. Sloan Foundation, and some of
McClelland's work was supported by a grant from the National Science
Foundation (BNS-79-24062). These and other sources of support for
specific individuals or projects are acknowledged in the appropriate
chapters.

Fina\1y, we would like to thank our wives, Heidi and Marilyn. Their
understanding, encouragement, and support throughout the four years
of this project helped to make the process of bringing this book to life
much more rewarding than it might have been.

JLM/DER

Copyrighted Material

Addresses of the PDP Research Group

Chisato Asanuma

Francis H. C. Crick

Jeffrey L. Elman

Geoffrey E. Hinton

Michael I. Jordan

Alan H. Kawamoto

Salk Institute
P.O. Box 85800
San Diego, C A 92138

Salk Institute
P.O. Box 85800
San Diego, CA 92138

Department of Linguistics
University of California, San Diego

La Jolla, CA 92093

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Department of Computer and
Information Science

University of Massachusetts
Amherst, MA 01003

Department of Psychology
Carnegie-Mellon Uni versity
Pittsburgh, PA 15213

Copyrighted Material

XX ADDRESSES O F THE PDP RESEARCH GROUP

James L. McClelland

Paul W. Munro

Donald A. Norman

Daniel E. Rabin

David E. Rumelhart

Terrence J. Sejnowski

Paul Smolensky

Gregory O. Stone

Ronald 1. Williams

David Zipser

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Department of Information Science
University of Pittsburgh
Pittsburgh, PA 15260

Institute for Cognitive Science
University of California, San Diego
La Jolla, CA 92093

Intellicorp
1975 EI Camino Real West
Mountain View, CA 94040

Institute for Cognitive Science
University of California, San Diego
La Jolla, CA 92093

Department of Biophysics
Johns Hopkins University
Baltimore, MD 21218

Department of Computer Science
University of Colorado
Boulder, CO 80309

Center for Adaptive Systems
Department of Mathematics
Boston University
Boston, MA 02215

Institute for Cognitive Science
Universi�y of California, San Diego
La Jolla, CA 92093

Insitute for Cognitive Science
University of California, San Diego
La Jolla, CA 92093

Copyrighted Material

PART I

THE PDP PERSPECTIVE

Copyrighted Material

CHAPTER 1

The Appeal of
Parallel Distributed Processing

J. L. McCLELLAND, D. E. RUMELHART, and G. E. HINTON

What makes people smarter than machines? They certainly are not
quicker or more precise. Yet people are far better at perceivi ng objects
in natural scenes and noting their relations , at understanding language

and retr i eving contextually appropriate information from memory, at
making plans and carrying out contextually appropriate actions, and at a
wi de range of other natural cogn i t i ve tasks. People are also far better at
learning to do these things more accurately and nuently through pro
cessing experience .

What is the basis for these differences? One answer, perhaps the
classic one we might expect from artificia l intel ligence , is " software ." If
we only had the right computer program, the argum ent goes, we might
be able to capture the nuidity and adaptab il ity of human informat ion
processing.

Certainly this answer is partially correct . There have been great

breakthroughs in our understanding of cogn ition as a result of the

development of express ive high- leve l computer languages and powerful
algorithms. No doubt there will be more such breakthroughs in the
future . However, we do not think that software is the whole story.

In our view, people are smarter than today's computers because the

brain employs a basic computational architecture that is more suited to
deal with a central aspect of the natural information processing tasks

that people are so good at. In this chapter, we will show t hrough exam
ples that these tasks generally requi re the simul taneous consideration of

many pieces of i nformat ion or const raints . Each constraint may be

imperfectly specified ancl ambiguaus.. .yet fach can play a potentia l ly copyngme M8rena

4 THE POP PERSPECTIVE

decisive role i n determin ing the outcome of processing. After examin
ing these points , we will introduce a computational framework for
model ing cogni t ive processes that seems wel l sui ted to exploi t ing these
constaints and that seems closer than other frameworks to the style of
computation as it might be done by the bra in. We wi l l review several
early examples of models developed in this framework, and we wi l l
show that the mechanisms these models employ can give rise to power
ful emergent properties that begin to suggest attracti ve alternati ves to
tradi t ional accounts of various aspects of cogni tion . We wi l l also show
that models of this class provide a basis for understanding how learning
can occur spontaneously, as a by-product of processing act ivity .

Multiple Simultaneous Constraints

Reaching and grasping. Hundreds of t i mes each day we r�ach for
things. We nearly never th ink about these acts of reach ing . And yet,
each t ime, a large number of different considerations appear to jointly
determine exactly how we wi l l reach for the object. The posi t ion of the
object , our. posture at the t ime, what e lse we may also be holding, the
size, shape, and antici pated weight of the object , any obstacles that may
be in the way-al l of these factors jointly determine the exact method
we wil l use for reaching and grasping.

Consider the situation shown in Figure 1 . Figure 1 A shows Jay
McClel land's hand, in typing posi t ion at his terminal . Figure 1B indi
cates the posi tion his hand assumed in reach ing for a smal l knob on the
desk beside the terminal. We wil l let h im describe what happened in
the fi rst person:

On the desk next to my terminal are several objects-a chi pped
coffee mug, the end of a computer cable, a knob from a clock
radio. I decide to pick the knob up. At first I hesitate , because
i t doesn' t seem possible. Then I just reach for i t , and find
myself grasping the knob i n what would normal ly be considered
a very awkward posit ion - but it solves all of the constrai nts .
I 'm not sure what al l the deta i ls of the movement were , so I let
myself try i t a few times more. I observe that my right hand is
carried up off the keyboard, bent at the elbow, unt i l my
forearm is at about a 30° angle to the desk top and paral lel to
the side of the terminal . The palm is facing downward through
most of this. Then , my arm extends and lowers down more or
less paral le l to the edge of the desk and parallel to the side of
the termi nal and, as it drops, i t turns about 90° so that the

Copyrighted Material

A

B

I. THE APPEAL OF POP 5

FIGURE I. A: An everyday situat ion i n which i t is necessary to take i nto account a large
n u m ber of constraints to grasp a desi red object. In t his case the target object is the small
knob to the left of the cup. B: The posture the arm arrives at in meeting these

constraints.

Copyrighted Material

6 THE POP PERSPECTIVE

palm is facing the cup and the thumb and index finger are
below. The turning motion occurs just in ti me, as my hand
drops , to avoid h i t t ing the coffee cup. My index finger and
thumb close in on the knob and grasp i t, wi th my hand com
pletely upside down.

Though the detai l s of what happened here might be quibbled wi th,
the broad outl ines are apparent. The shape of the knob and i ts position
on the table; the start ing posi t ion of the hand on the keyboard; the
pos i t ions of the termi nal, the cup, and the knob; and the constra in ts
i mposed by the structure of the arm and the musculature used to con
trol i t -al l these th ings conspired to lead to a solut ion which exact ly
su i ts the problem. If any of these constra in ts had not been inc luded,
the movement would have fai led. The hand would have h i t the cup or
the termi nal - or it would have missed the knob.

The mutual itifluence of syntax and semantics. MUltiple const raints
operate j ust as strongly in language processing as they do in reaching
and graspi ng. Rumelhart (977) has documented many of these multi
ple constrai nts . Rather than catalog them here, we wi l l use a few
examples from language to illustrate the fact that the constraints tend
to be reci procal: The example shows that they do not run only from
syntax to semantics-they also run the other way .

It is clear , of course, that syntax constrai ns the assignment of mean
i ng. Without the syntactic rules of English to guide us, we cannot
correctl y understand who has done what to whom i n the fol lowing sen
tence:

The boy the man chased kissed the gi rl .

But consider these examples (Rumelhart, 1977; Schank , 1973):

I saw the grand canyon flying to New York .
I saw the sheep grazing i n the field.

Our knowledge of syntactic rules alone does not tell us what grammati
cal role is played by the prepositional phrases in these two cases. In the
first, "flying to New York" i s taken as descri b i ng the context in which
the speaker saw the Grand Canyon-wh i le he was flying to New York.
I n the second , "grazing in the fie ld" could syntact ically descri be an
analogous s i tuat ion, i n which the speaker is grazing in the field, but th is
possi b i l i ty does not typical ly become available on first reading. Instead
we assign "grazing in the field" as a modifier of the sheep (roughly,
.. who were grazing in the field"). The syntact ic structure of each of

Copyrighted Material

I. THE APPEAL OF POP 7

these sentences, the n , is determined i n part by the semantic re lations
that the constituents of the sentence might plausibly bear to one
another. Thus, the i nfluences appear to run both ways , from the syn
tax to the semantics and from the semantics to the syntax .

In these examples , we see how syntactic considerations influence
semantic ones and how semantic ones infl uence syntactic ones . We
cannot say that one k ind of constrai nt is primary.

Mutual constraints operate , not only between syntactic and semant ic
processing, but also with i n each of these domains as wel l. Here we
consider an example from syntact ic processing, namely, the ass ignment
of words to syntactic categories . Consider the sentences:

I l ike the joke.
I like the dri ve .
I like to joke.
I l i ke to drive.

In th i s case it l ooks as though the words the and to serve to determi ne
whether the fol lowing word wi l l be read as a noun or a verb. Th is , of
course, is a very strong constraint in English and can serve to force a
verb interpretat ion of a word that is not ordinari ly used this way:

I li ke to mud.

On the other hand, i f the informat ion spec ifying whether the function
word preceding the final word is to or the is ambiguous, then the typical
readi ng of the word that follows it wi l l determine which way the func
t ion word is heard. This was shown in an experiment by Isenberg,
Walker, Ryder, and Schweikert (1 980). They presented sounds halfway
between to (actual ly /0) and the (actua l ly / er f) and found that words
l i ke joke, which we tend to th ink of first as nouns, made subjects hear
the margi nal st imu l i as the. while words l i ke drive, which we tend to
th ink of first as verbs, made subjects hear the marginal sti mul i as to.
General ly, then, it would appear that each word can help constrai n the
syntactic role , and even the ident i ty , of every other word .

Simultaneous mutual constraints in word recognition. Just as the
syntactic role of one word can i nfluence the role assigned to another in
analyzing sentences, so the iden t ity of one letter can influence the iden
tity assigned to another in reading . A famous example of this , from
Selfridge, is shown in Figure 2 . Along with this is a second example i n
which none of the letters, considered separately , can be identified
unambiguously, but in which the poss ib i l ities that the visual

Copyrighted Material

8 THE POP PERSPECTIVE

TAE CAT

��8
S�OT

�ISH
DEQT

FIGURE 2. Some am biguous d i splays. The first one is fro m Selfridge, 1955. The
second line shows that th ree am biguous characters can each constrain the ident i ty of the
others. The th i rd, fourth, and fifth lines show that t hese characters are indeed a m bigu
ous in that they assume other ident i t ies in other contexts. (The ink-b lot techn i que of

making letters ambiguous is due to Lindsay and Norman, 1972).

information leaves open for each so constra in the possi ble identities of
the others that we are capable of identi fy ing al l of them.

At fi rst glance, the situation here must seem paradoxical: The iden
tity of each letter is constrai ned by the identities of each of the others.
But since in general we cannot know the identities of any of the letters

Copyrighted Material

I THE APPEAL OF PDP 9

unt i l we have established the ident i ties of the others, how can we get
the process started?

The resolut ion of the paradox , of cou rse, is simple. One of the dif
ferent possible letters i n each posi tion fits together wi th the others. It
appears then that our perceptual system is capable of exploring all these
possibi lit ies without committing itself to one unti l all of the constraints
are taken into accoun t .

Understanding through the interplay of mUltiple sources of
knowledge. I t is clear that we know a good deal about a large number
of d ifferen t standard s i tuat ions. Several theorists have suggested that
we store this knowledge in terms of structures called variously: scripts
(Schank, 1976), frames (Mi nsky, 197 5) , or schemata (Norman &
Bobrow, 1976; Rumelhart, 1975). Such knowledge st ructures are
assumed to be the basis of comprehension. A great deal of progress
has been made with i n the context of this view.

However, it is i m portant to bear i n mind that most everyday situa
t ions cannot be rigidly assigned to just a s ingle script. They general ly
i n volve an in terplay between a number of d ifferent sources of informa
tion. Consider, for example, a chi ld's birthday party at a restaurant.
We know things about birthday parties, and we know things about res
taurants, but we would not want to assume that we have explicit
knowledge (at l east , not i n advance of our first restaurant bi rthday
party) about the conjunction of the two. Yet we can imagine what such
a party might be l ike. The fact that the party was bei ng held in a res
taurant would modify certain aspects of our expectations for birthday
parties (we would not expect a game of Pin-the-Tail-on-the-Donkey ,
for example), whi le the fact that the event was a bi rthday party would
inform our expectations for what would be ordered and who would pay
the bi l l.

Representations l i ke scri pts, frames, and schemata are useful struc
tures for encod i ng knowledge, although we believe they only approxi
mate the underlying structure of knowledge representation that emerges
from the class of models we consider i n this book , as explained i n
Chapter 1 4 . Our mai n point here i s that any theory that tries to
account for h uman knowledge using scri pt-like knowledge structures
wil l have to al low them to i nteract with each other to capture the gen
erati ve capacity of h uman u nderstanding in novel situations. Achieving
such i n teractions has been one of the greatest difficult ies associated
with implementing models that real ly th ink generatively using script- or
frame-l ike representat ions .

Copyrighted Material

10 THE PDP PERSPECTIVE

PARALLEL DISTRIBUTED PROCESSING

In the examples we have considered , a number of d ifferent pieces of
i nformation must be kept in mind at once. Each plays a part, con
stra in ing others and being constrai ned by them. What kinds of
mechanisms seem well sui ted to these task demands? Intui tively, these
tasks seem to require mechanisms in which each aspect of the informa
t ion i n the situation can act on other aspects, simultaneously influenc
i ng other aspects and being i nfluenced by them . To art iculate these
intu i t ions, we and others have turned to a c lass of models we call Paral
lel Distributed Processing (POP) models. These models assume that
information processing takes place through the interactions of a large
n umber of s imple processing elements called un i ts, each sending excita
tory and inhib i tory signals to other uni ts. In some cases, the units
stand for possible hypotheses about such things as the letters in a par
ticular display or the syntactic roles of the words i n a particular sen
tence . In these cases , the activations stand roughly for the strengths
associated with the different possible hypotheses , and the in terconnec
tions among the units stand for the constraints the system knows to
exist between the hypotheses. In other cases , the un i ts stand for possi
ble goals and act ions, such as the goal of typing a particular letter , or
the action of moving the left i ndex finger, and the connecti ons relate
goals to subgoals, subgoals to actions, and act ions to muscle move
ments. In still other cases, un i ts stand not for part icular hypotheses or
goals , but for aspects of these things. Thus a hypothesis about the
identity of a word, for example , is i tse lf distributed i n the acti vations of
a large number of units.

PDP Models: Cognitive Science or Neuroscience?

One reason for the appeal of POP models is the ir obvious "physiolog
i cal" flavor: They seem so much more closely t ied to the physiology of
the brain than are other kinds of information-processing models . The
brain consists of a large number of highly in terconnected elements
(Figure 3) which apparently send very simple exci tatory and inhibitory
messages to each other and u pdate their exci tations on the basi s of
these s imple messages. The properties of the uni ts in many of the POP
models we will be exploring were i nspi red by basic properties of the
neural hardware. In a later section of this book, we will examine i n
some detail the relation between PDP models and the brain .

Copyrighted Material

I. THE APPEAL OF PDP 1 I

FIGURE 3. The arborizations of about I percent of the neurons near a vertica' , l ice
th rough t he cerebral cortex. The full heigh t of the figure corresponds to the thickness of
the cortex, which is in this instance about 2 mm. (From Mechanics of the Mind, p. 84, by
C. Blakemore, 1977, Cambridge, England : Cambridge Un iversity Press. Copyright 1977
by Cam bridge University Press. Reprinted by permission.)

Though the appeal of POP models is defin i tely enhanced by their
physiological plausi b i l i ty and neural inspi ration , these are not the pr i
mary bases for thei r appeal to us . We are, after all, cognitive scientists,
and POP models appeal to us for psychological and computational rea
sons. They hold out the hope of offer i ng computat ional ly sufficient
and psychologically accurate mechan ist ic accounts of the phenomena of
human cognition which have eluded successful expl ication in conven
tional computational formalisms; and they have radically al tered the
way we th ink about the t ime-course of processing , the nature of
representat ion , and the mechanisms of learn ing.

Copyrighted Material

12 THE POP PERSPECTIV E

The Microstructure of Cognition

The process of human cognit ion , examined on a ti me scale of
seconds and minutes, has a distinctly sequentia l character to i t . Ideas
come, seem promising, and then are rejected; leads in the solut ion to a
problem are taken up, then abandoned and replaced with new ideas.
Though the process may not be discrete , i t has a decidedly sequential
character, with transit ions from state-to-state occurring, say, two or
three t i mes a second. Clearly , any useful descript ion of the overa l l
organizat ion of th is sequential flow of thought wi l l necessar i ly describe
a sequence of states.

But what is the internal structure of each of the states in the
sequence, and how do they come about? Serious attempts to model
even the simplest macrosteps of cognit ion -say, recognit ion of s ingle
words - require vast numbers of microsteps if they are i mplemented
sequentially. As Feldman and Ballard (I982) have pointed out , the
biological hardware is j ust too sluggish for sequential models of the
microstructure to provide a plausible account , at least of the
microstructure of human thought . And the t ime l i mi tat i on only gets
worse, not bet ter, when sequential mechanisms try to take large
numbers of constraints i nto account. Each addi t ional constraint
requi res more time i n a sequential machine , and, i f the constrai nts are
imprecise, the constraints can lead to a computat ional explosion. Yet
people get faster, not slower, when they are able to exploi t addi t ional
constraints .

Paral le l distri buted processing models offer al ternatives to serial
models of the microstructure of cogni t ion . They do not deny that there
is a macrostructure , just as the study of subatomic particles does not
deny the existence of in teractions between atoms. What POP models
do i s describe the i nternal structure of the larger uni ts , just as
subatomic physics describes the i nternal structure of the atoms that
form the const i tuents of larger uni ts of chemical structure.

We shal l show as we proceed through this book that the analysis of
the microstructure of cogn i t ion has important impl icat ions for most of
the central issues in cognitive science. In general , from the POP poi nt
of view, the objects referred to in macrostructural models of cogn i t ive
processing are seen as approx imate descri ptions of emergent properties
of the microstructure. Somet imes these approxi mate descri pt ions may
be sufficient ly accurate to capture a process or mechan ism well enough;
but many ti mes, we wi l l argue , they fail to provide suffic ient ly elegant
or t ractable accounts that capture the very flexibili ty and open
endedness of cognition that their in ventors had originally i ntended to
capt ure. We hope that our analysis of POP models wi l l show how an

Copyrighted Material

I. THE APPEAL OF POP 13

examination of the microstructure of cognition can lead us closer to an
adequate description of the real extent of human processing and learn
ing capacities.

The development of PDP models is still in its infancy. Thus far the
models which have been proposed capture simplified versions of the
kinds of phenomena we have been describing rather than the full ela
boration that these phenomena display in real settings. But we think
there have been enough steps forward i n recent years to warrant a con
certed effort at describing where the approach has gotten and where it
is going now, and to point out some directions for the future.

The first section of the book represents an introductory course in
parallel distributed processing. The rest of this chapter attempts to
describe in informal terms a number of the models which have been
proposed in previous work and to show that the approach is indeed a
fruitful one. It also contains a brief description of the major sources of
the inspiration we have obtained from the work of other researchers.
This chapter is followed, in Chapter 2, by a description of the quantita
tive framework within which these models can be described and exam
ined. Chapter 3 explicates one of the central concepts of the book: dis
tributed representation. The final chapter in this section, Chapter 4 ,
returns to the question of demonstrating the appeal o f parallel
distributed processing models and gives an overview of our explorations
in the microstructure of cognition as they are laid out in the remainder
of this book.

EXAMPLES OF PDP MODELS

In what follows, we review a number of recent applications of PDP
models to problems in motor control, perception, memory, and
language. In many cases, as we shall see, parallel distributed processing
mechanisms are used to provide natural accounts of the exploitation of
multiple, simultaneous, and often mutual constraints. We will also see
that these same mechanisms exhibit emergent properties which lead to
novel interpretations of phenomena which have traditionally been inter
preted in other ways.

Motor Control

Having started with an example of how l)1ultiple constraints appear to
operate in motor progrMRffi{Hi�t�d�/�propriate to mention two

1 4 THE PDP PERSPECTIVE

models in this domain. These models have not developed far enough
to capture the full details of obstacle avoidance and multiple constraints
on reaching and grasping, but there have been applications to two prob
lems with some of these characteristics.

Finger movements in skilled typing. One might imagine, at first
glance, that typists carry out keystrokes successively, first programming
one stroke and then, when it is completed, programming the next.
However, this is not the case. For skilled typists, the fingers are con
tinually anticipating upcoming keystrokes. Consider the word vacuum.
In this word, the v, a, and c are all typed with the left hand, leaving the
right hand nothing to do until it is time to type the first u. However, a
high speed film of a good typist shows that the right hand moves up to
anticipate the typing of the u, even as the left hand is just beginning to
type the v. By the time the c is typed the right index finger is in posi
tion over the u and ready to strike it.

When two successive key strokes are to be typed with the fingers of
the same hand, concurrent preparation to type both can result in similar
or conflicting instructions to the fingers and/ or the hand. Consider, in
this light, the difference between the sequence ev and the sequence er.
The first sequence requires the typist to move up from home row to
type the e and to move down from the home row to type the v, while in
the second sequence, both the e and the r are above the home row.

The hands take very different positions in these two cases. In the
first case, the hand as a whole stays fairly stationary over the home
row. The middle finger moves up to type the e, and the index finger
moves down to type the v. In the second case, the hand as a whole
moves up, bringing the middle finger over the e and the index finger
over the r. Thus, we can see that several letters can simultaneously
influence the positioning of the fingers and the hands.

From the point of view of optimizing the efficiency of the typing
motion, these different patterns seem very sensible. In the first case,
the hand as a whole is maintained in a good compromise position to
allow the typist to strike both letters reasonably efficiently by extending
the fingers up or down. In the second case, the need to extend the
fingers is reduced by moving the whole hand up, putting it in a near
optimal position to strike either key.

Rumelhart and Norman (I982) have simulated these effects using
POP mechanisms. Figure 4 illustrates aspects of the model as they are
illustrated in typing the word very. In brief, Rumelhart and Norman
assumed that the decision to type a word caused activation of a unit for
that word. That unit, in turn, activated units corresponding to each of
the letters in the word. The unit for the first letter to be typed was
made to inhibit the units for the second and following letters, the unit

Copyrighted Material

1 THE APPEAL OF PDP 15

for the second to inhibit the th i rd and fol lowing letters, and so on. As
a resul t of the i nterplay of activation and inhibi tion among these units ,
the un i t for the first letter was at first the most strongly act i ve, and the
units for the other letters were partially act i vated .

Each letter uni t exerts influences on the hand and finger involved i n
typing the let ter . The v unit, for example, tends t o cause the index
fi nger to move down and to cause the whole hand to move down with
it. The e uni t, on the other hand , tends to cause the middle fi nger on
the left hand to move up and to cause the whole hand to move up also.
The r unit also causes the left index finger to move up and the left
hand to move up with it.

The extent of the influences of each let ter on the hand and finger i t
directs depends on the extent of the act ivation of the letter. Therefore ,
at first, in typing the word very, the v exerts the greatest control.

Response
System

Keypress
Schemata

Word
Schema

THUMB

RESPONSE SYSTEM .
L1(.I, + 05) LM(+ 1 ·03) LJ(+ 1, ·03) RII+ 1. + 1 3)

. target finger POSition

current finger POSition

FIGURE 4. The i nteraction of activations in typing the word very. The very unit is
activated from outside the model. It i n turn activates the units for each of the com

ponent le tters . Each letter u nit specifies the target finger positions, specified in a key
board coordinate system. L and R stand for the left and right hands. and I and M for the
index and middle fingers. The letter units receive information about the current finger
posi t ion from the response system . Each letter unit inhi bi ts the activation of all letter

un i ts that follow it in the word: inh ibitory connections are indicated by the lines with
solid dots at their terminations. (From "Simulating a Skilled Typist: A Study of Skilled

Motor Performance" by D. E. Rumelhart and D. A. Norman. 1982, Cognitive Science. 6,

p. 12. Copyright 1982 by Able��eaW}{mWflcW permission ' >

16 THE POP PERSPECTIVE

Because the e and r are simultaneously pulling the hand up, though, the
v is typed primarily by moving the index finger, and there is little
movement on the whole hand.

Once a finger is within a certain striking distance of the key to be
typed, the actual pressing movement is triggered, and the keypress
occurs. The key press itself causes a strong inhibitory signal to be sent
to the unit for the letter just typed, thereby removing this unit from the
picture and allowing the unit for the next letter in the word to become
the most strongly activated.

This mechanism provides a simple way for all of the letters to jointly
determine the successive configurations the hand will enter into in the
process of typing a word. This model has shown considerable success
predicting the time between successive keystrokes as a function of the
different keys involved. Given a little noise in the activation process, it
can also account for some of the different kinds of errors that have
been observed in transcription typing.

The typing model represents an illustration of the fact that serial
behavior-a succession of key strokes-is not necessarily the result of
an inherently serial processing mechanism. In this model, the sequen
tial structure of typing emerges from the interaction of the excitatory
and inhibitory influences among the processing units.

Reaching for an object without falling over. Similar mechanisms
can be used to model the process of reaching for an object without los
ing one's balance while standing, as Hinton (984) has shown. He con
sidered a simple version of this task using a two-dimensional "person"
with a foot, a lower leg, an upper leg, a trunk, an upper arm, and a
lower arm. Each of these limbs is joined to the next at a joint which
has a single degree of rotational freedom. The task posed to this per
son is to reach a target placed somewhere in front of it, without taking
any steps and without falling down. This is a simplified version of the
situation in which a real person has to reach out in front for an object
placed somewhere in the plane that vertically bisects the body. The
task is not as simple as it looks, since if we just swing an arm out in
front of ourselves, it may shift our center of gravity so far forward that
we will lose our balance. The problem, then, is to find a set of joint
angles that simultaneously solves the two constraints on the task. First,
the tip of the forearm must touch the object. Second, to keep from
falling down, the person must keep its center of gravity over the foot.

To do this, Hinton assigned a single processor to each joint. On each
computational cycle, each processor received information about how far
the tip of the hand was from the target and where the center of gravity
was with respect to the foot. Using these two pieces of information,
each joint adjusted its angle so as to approach the goals of maintaining

Copyrighted Material

I. THE APPEAL OF PDP 1 7

balance and bringing the tip c loser to the target . After a number of
iterations , the stick-person settled on postures that satisfied the goal of
reaching the target and the goal of maintai n ing the center of gravi ty
over the" feeL"

Though the s imulat ion was able to perform the task, eventually satis
fyi ng both goals at once, it had a number of inadequacies stemming
from the fact that each joint processor attempted to achieve a solut ion
i n i gnorance of what the other joints were attempting to do. This prob
lem was overcome by using addit ional processors responsi ble for sett ing
combinat ions of jo int angles. Thus, a processor for flexion and exten
sion of the l eg would adjust the knee , hip, and ankle joints synergisti
cal l y , whi le a processor for flex ion and extension of the arm would
adjust the shoulder and elbow together. With the addition of proces
sors of this form, the number of i terat ions requi red to reach a sol ut ion
was greatly reduced, and the form of the approach to the solution
looked very natural. The sequence of configurations attained in one
process ing run is shown in Figure 5 .

Expl ic i t attempts to program a robot t o cope with the problem of
maintain ing balance as it reaches for a desired target have revealed the
difficulty of deriv ing expl ic i t ly the right combinations of actions for
each possible start i ng state and goal state. This s imple model illustrates
that we may be wrong to seek such an explicit solut ion. We see here
that a solution to the problem can emerge from the action of a number
of simple processors each attempting to honor the constraints
i ndependently.

FIGURE S. A sequence of configurations assumed by the stick "person" performing the
reaching task described in the text, from Hinton (I 984). The small ci rcle represents the
center of gravity of th: whole stick-figure, and the cross represents the goal to be
reached. The configuration is®upfrighte{/�,eration.

18 THE PDP PERSPECTIVE

Perception

Stereoscopic VISIOn. One early model using parallel distributed pro
cessing was the model of stereoscopic depth perception proposed by
Marr and Poggio (1976). Their theory proposed to explain the percep
tion of depth in random-dot stereograms (Julesz, 1971; see Figure 6) in
terms of a simple distributed processing mechanism.

Julesz's random-dot stereograms present interesting challenges to
mechanisms of depth perception. A stereogram consists of two
random-dot patterns. In a simple stereogram such as the one shown
here, one pattern is an exact copy of the other except that the pattern
of dots in a region of one of the patterns is shifted horizontally with
respect to the rest of the pattern. Each of the two patterns
corresponding to two retinal images-consists entirely of a pattern of
random dots, so there is no information in either of the two views con
sidered alone that can indicate the presence of different surfaces, let
alone depth relations among those surfaces. Yet, when one of these
dot patterns is projected to the left eye and the other to the right eye,
an observer sees each region as a surface, with the shifted region
hovering in front of or behind the other, depending on the direction of
the shift.

FIGURE 6. Random-dot stereograms. The two patterns are identical except that the
pattern of dots in the central region of the left pattern are shifted over with respect to
those in the right. When viewed stereoscopically such that the left pattern projects to the
left eye and the right pattern to the right eye. the shifted area appears to hover above the
page. Some readers may be able to achieve this by converging to a distant point (e.g., a
far wall) and then interposing the figure into the line of sight. (From Foundations of
Cyclopean Perception, p. 21, by B. Julesz, 1971, Chicago: University of Chicago Press.
Copyright 1971 by Bell Telephone Laboratories, Inc. Reprinted by permission.)

Copyrighted Material

I THE APPEAL OF PDP 19

What k i nd of a mechanism might we propose to account for these
facts? Marr and Poggio (976) began by expl ici tly represen ting the t wo
v i ews in two arrays, as human observers might in two di fferent reti nal
images. They noted that correspondi ng black dots at different per
cei ved distances from the observer wi ll be offset from each other by
gifferent amounts i n the t wo views. The job of the model is to deter
m ine which points correspond. This task is, of co urse, made difficult
by the fact that there will be a very large number of spuri ous
correspondences of i ndividual dots. The goal of the mechanis m , then,
is to find those correspondences that represent real correspondences in
depth and suppress those that represent spurious correspondences.

To carry out this task, Marr and Poggio assigned a processing u n i t to
each possible .conj unction of a point in one image and a poi nt in the
other . Since the eyes are offset horizontal ly, the possible conjunct ions
occu r a t various offsets or d ispar i t ies a long the horizon tal di mensi on.
Thus, fo r each point in one eye, there was a set of process i n g u n i ts
with one un i t assi gned to the conjunct ion of that poi nt and the poi n t at
each horizontal offset from it i n the other eye.

Each processing u nit recei ved activat ion whenever both of the points
the unit stood for con tained dots. So far, then, units for both real and
spurious correspondences would be equal l y act ivated. To allow the
m echani s m to find the r ight correspondences, they pointed out two
general princ i ples about the visu al world: (a) Each point i n each view
generally corres ponds to one and only one point in the ot her view, and
Cb) neighbori ng points in space tend to be at nearly the same depth and
therefore at about the sam(d isparity in the two images. While there
are discont inu i t ies at the edges of thi ngs , over most of a two
dimensional view of the world there will be cont inui ty. These princi
p l es a re called the uniqueness and continuity constraints , respectively.

Marr and Poggi o incorporated these princi ples i nto the interconnec
t i ons betwee n the process i n g units. The uniqueness constraint was cap
tu red by i n h i bitory connections among the units t hat stand for altern a
t ive correspondences of the same do t . The con t inuity principle was
captured by exc itat ory connections among the u n i ts that stand for s i m i
l ar offsets of adjacent dots.

These additional connections allow the Marr and Poggio model to
"so l ve" stereograms like the one sh own in t he figure. At first , when a
pair of patterns is presented, the uni ts for a l l possible correspondences
of a dot in one eye with a dot in the other wi l l be equal ly exci ted.
However, the exci tatory connect ions cause the units for the correct
conjunctions to receive more excitation than uni ts for spur ious conjunc
t ions, and the i nh i b i tory connections allow the units for the correct
conjunct i ons to tu rn off the un i ts for t he spurious connections. Thus,

Copyrighted Material

20 THE POP PERSPECTIVE

the model tends to sett le down into a stable state i n which only the
correct correspondence of each dot remains act ive.

There are a number of reasons why Marr and Poggio (I979) modi
fied this model (see Marr , 1982 , for a discussion) , but the basic
mechanisms of mutual excitat ion between uni ts that are mutual ly con
sistent and mut ual inh ibi t ion between un i ts that are mutually incompa
t ible provide a natural mechanism for settl i ng on the right conjunctions
of poin ts and reject ing spurious ones. The model also i l lust rates how
general principles or ru les such as the uniqueness and cont inuity pri nci
ples may be embodied i n the connect i ons between processing uni ts, and
how behavior in accordance wi th these princi ples can emerge from the
interact ions determi ned by the pattern of these in terconnecti ons.

Perceptual completion of familiar patterns. Perception, of course, i s
infl uenced by fami liarity. It i s a wel l-known fact that we often misper
cei ve unfami liar objects as more fami l iar ones and that we can get by
with less t ime or with lower-quality information in perceiving fami l iar
i tems than we need for percei ving unfami l iar i tems. Not only does
familiar ity help us determine what the higher-level structures are when
the lower-level information is ambiguous; it a lso allows us to fi l l i n
missing lower-level information wi thin famil iar higher-order patterns .
The well-known phonemic restoration effect is a case in poi nt . [n this
phenomenon, perceivers hear sounds that have been cut out of words
as if they had actually been present . For example , Warren (I970)
presented legi#lature to subjects , with a cl ick in the locat ion marked by
the #. Not only did subjects correct ly ident i fy the word legislature;
they also heard the missing /s/ just as though it had been presented.
They had great d ifficulty local iz ing the click , which they tended to hear
as a disembodied sound. S imi lar phenomena have been observed in
visual perception of words since the work of Pi lIsbury (897).

Two of us have proposed a model descr ib ing the role of fami liarity in
perception based on exci tatory and inh ib i tory interact ions among units
standing for various hypotheses about the input at d ifferent levels of
abstract ion (McClelland & Rumelhart , 1981; Rumelhart & McClelland,
1982). The model has been applied i n deta i l to the role of familiarity
in the perception of letters in visually presented words, and has proved
to provide a very c lose account of the results of a large number of
experiments.

The model assumes that there are units that act as detectors for the
visual features which dist inguish letters , wi th one set of units ass igned
to detect the features in each of the di fferent letter-posi tions in the
word. For four-letter words, then , there are four such sets of detectors.
There are also four sets of detectors for the letters themselves and a set
of detectors for the words .

Copyrighted Material

I . THE APPEAL OF PDP 2 1

In the model, each unit has an activation value, corresponding
roughly to the strength of the hypothesis that what that unit stands for
is present in the perceptual input. The model honors the following
important relations which hold between these " hypotheses " or activa
tions: First, to the extent that two hypotheses are mutually consistent,
they should support each other. Thus, units that are mutually con
sistent, in the way that the letter T in the fi rst position is consistent
with the word TAKE, tend to excite each other. Second, to the extent
that two hypotheses are mutually inconsistent, they should weaken each
other. Actually , we can distinguish two kinds of inconsistency: The
first kind might be called between-level inconsistency . For example,
the hypothesis that a word begins with a T is inconsistent with the
hypothesis that the word is MO VE. The second might be called mutual
exclusion. For example, the h ypothesis that a word begins wi th T
excludes the hypothesis that it begins with R since a word can only
begin with one letter. Both kinds of inconsistencies operate i n the word
perception model to reduce the activations of units . Thus, the letter
units in each posi t ion compete with all other letter units in the same
position, and the word uni ts compete with each other. This type of
inhi bitory interaction i s often called competitive inhibition. In addition,
there are inhibi tory interactions between incompatible units on different
levels. This type of inhibitory interaction is simply called
between-level inhibition.

The set of excitatory and inhibi tory interactions between units can be
diagrammed by drawing excitatory and inhibitory links between them.
The whole picture is too complex to draw, so we illustrate only with a
fragment: Some of the interactions between some of the units in this
model are illustrated in Figure 7 .

Let us consider what happens in a system like this when a familiar
stimulus is presented under degraded conditions . For example, con
sider the d isplay shown in Figure 8. This display consists of the letters
W, 0, and R , completely visible, and enough of a fourth letter to rule
out all letters other than R and K. Before onset of the display, the
activations of the units are set at or below O. When the display is
presented, detectors for the features present in each position become
active (i . e. , their activations grow above 0) . At this point , they begin to
excite and inhibit the corresponding detectors for letters . In the fi rst
three positions, W, 0, and R are unambiguously activated , so we will
focus our attention on the fourth position where R and K are both
equally consistent with the active features. Here, the activations of the
detectors for R and K start out growing together, as the feature detec
tors below them become activated. As these detectors become active,
they and the active letter detectors for W. 0, and R i n the other posi
tions start to activate dei@Mtghfoti M«dg;al.hich have these letters in

2 2 THE PDP PERSPECTIVE

FIG URE 7. The uni t for the let ter T i n the fi rst posi t ion of a four- letter array and some
of i ts neigh bors . Note that the feat ure and let ter un i ts stand only for the fi rst posi t i o n ; in
a complete pictu re of t h e uni ts needed from processing four- letter d i splays , there would
be four fu l l sets of feature detectors and four fu l l sets of letter detectors. (From " An
In teract i ve Act i va t ion Model of Contex t Effects i n Letter Percept ion : Par t I . An Account
of Basic Fi nd ings" by J . L. McClel land and D. E . Rumelhart , 198 1 , Psychological Review,
88, p. 380. Copyright 1 98 1 by the American Psychological Associa t ion . Reprin ted by

permi ss ion .)

them and to inh ib i t detectors for words which do not have these let ters .
A number of words are partial ly consistent wi th the act ive letters, and
rece ive some net exci tation from the letter level , but only the word
WORK matches one of the acti ve letters in a l l four posi t ions. As a
resu l t , WORK becomes more act i ve than any other word and inh ibi ts
the other words , thereby successfu l ly dominat ing the pattern of acti va
t ion among the word uni ts . As i t grows in strength , i t sends feedback
to the letter level , reinforci ng the acti vations of the W, 0, R, and K in
the corresponding positions. In the fourth posit ion, th is feedback gi ves
K the upper hand over R, and eventual l y the stronger acti vation of the

Copyrighted Material

0.8

5 0.4
.�
.2:
o
« 0.0

0 . 8

c: 0.4
.Q
iii
.�
o
« 0 . 0

Word Level

I THE APPEAL OF POP 2 3

_---- work

- - - - - - - - - - - - - - - - fork
------------------ weak

Letter Level

", -
_ - - - - - - - K

./ "
,-

// / /
./

---- A
'-------------------- 0

8 1 6 24
Time

32 40

FIG U R E 8 . A poss ib le d is play which might be presen t ed to t he i n t eract ive act i va t ion
model of word recognit ion , and the resul t ing act ivat ions of selected let ter and word uni ts .
The letter un i ts are for the letters i ndicated i n t h e fou rth pos i t ion of a four- letter d isplay.

K detector a l lows i t to dominate the pattern of act i vat i on , suppress ing
the R detector completely .

This example i l lustrates how PDP models can al low knowledge about
what letters go together to form words to work together wi th natural
constra ints on the task (i .e . , t hat there shou ld only be one letter i n one
place at one t i me) , to produce perceptual complet ion in a si mple and
d i rect way.

Completion of novel patterns. However, the perceptual i ntel l igence
of human perceivers far.��JB�9J}Nxl to recognize fami l iar pat
terns and fi l l in missing-"P'6rtrons. ' We alSo show faci l i tat ion i n the

24 THE PDP PERSPECTIVE

percept ion of letters in u n fam i l i ar letter str i ngs which are word - l i ke but
not themselves actual ly fam i l iar .

One way of account ing for such performances is to i magine that the
percei ver possesses , in addit ion to detectors for fam i l iar words , sets of
detectors for regular subword units such as fami l iar let ter cl usters , or
that t hey use abstract rules, specify ing wh ich classes of let ters can go
with wh ich others in different contexts . I t turns out , however, that the
model we have al ready described needs no such additional structure to
produce perceptual fac i l i tation for word-l i ke letter str i ngs � to th i s extent
i t acts as i f i t " knows " the orthograph i c struct ure of Engl ish . We i l l us
trate this feature of the model wi th the example shown i n Figure 9 ,
where t h e nonword YEAD i s shown i n degraded form s o that the
second letter i s i ncompletely v is i ble. Gi ven the information about this
letter, considered alone, ei ther E or F would be possible in the second
posit ion . Yet our model wi l l tend to comp lete this letter as an E.

The reason for this behavior is that , when YEAD is shown , a n umber
of words are part ia l ly acti vated . There is no word consistent wi th y. E
or F. A . and D, but there are words which match YEA (YEAR , for
example) and others which match EAD (BEAD. DEAD. HEAD. and
REA D, for example) . These and- other near

'
misses are part ial ly

act i vated as a resul t of the pattern of acti vation a t the letter level .
While they compete w i th each other, none of these words gets strongly
enough acti vated to completely suppress a l l the others . Instead, these
units act as a group to reinforce part icu larly the letters E and A . There
are no close part ia l matches which incl ude the letter F i n the second
posi t ion , so this letter recei ves no feedback support . As a resu l t , E
comes to dominate, and eventual l y suppress, the F in the second
posi t ion .

The fact that the word perception model exhibits perceptual faci l i ta
t ion to pronounceable non words as wel l as words i l l ustrates once aga in
how behavior i n accordance with general pr inci ples or ru les can emerge
from the i nteractions of s imple processing elements. Of course, the
behavior of the word perception model does not implement exact ly any
of the systems of orthograph ic ru les that have been proposed by
l i nguists (Chomsky & Hal le , 1968; Venesky, 1 970) or psychologists
(Spoeh r & Sm i th , 1 975) . In this regard , i t only approximates such
rule-based descr i pt ions of perceptual processi ng. However, rule sys
tems such as Chomsky and Halle's or Venesky's appear to be only
approximately honored in human performance as wel l (Smith & Baker,
1976) . Indeed , some of the discrepancies between human performance
data and rule systems occur in exact l y the ways that we would predict
from the word perception model (Rumelhart & McClel land , 1982) .
This i l l ustrates the poss ibi l i ty that POP models may provide more
accurate accounts of the detai ls of human performance than mode ls

Copyrighted Material

0.8

c::: 0 .4
�
as

�
0(0.0

0.8

c::: 0.4
o
�
>
n 0(

I
I

I /
/

/

Word Level

I . THE APPEAL OF PDP 25

dead
_ _ _ _ _ - - - read

...". -- bead
head

Letter Lev el

..., - _ - - - - - - - E
/

/ /

C & F
L

- 0.4 '---'-_.L.---'-_-'----'_--'-----''---L._'---'-
8 16 24

Time

FIGURE 9. An exampl e of a nonword display that m ight be presented to the interact i ve
act i vat ion model of word recogn i t ion and the response of selected un i ts al the letter and
word levels . The let ter u n i ts i l l ust rated are detectors for let ters in the second input
posi t ion .

based on a set of rules representing human competence - at l east i n
some domai ns .

Retrieving Information From Memory

Content addressability. One very promi nent feature of human
memory is that i t i s CO_y�r§I!JiMmeriYl seems fair ly clear that we

26 THE PDP PERSPECTIVE

can access i n format i on in memory based on nearly any at t r ibute of the
representat ion we are trying to ret r ieve.

Of cou rse, some cues a re m uch bet ter than others. An attr ibute
wh i ch i s shared by a very large n u m be r of t h i ngs we k now abo u t i s not
a very effect i ve ret r ieval cue, s i n ce i t does not accuratel y p i ck out a par
t i cu lar memory represen tat i o n . But, several such cues, in conj u n ct i on ,
can d o the job. Th us , i f we ask a friend who goes out w i t h several
women , " Who was that woman I saw you wi t h ? " , he may not k now
wh ich one we mean - bu t i f we spec i fy someth i n g else about her-say
t h e col or of her hai r , what she was wear ing (i n so far as h e remem bers
t h i s at a l l) , whe re we saw h i m wi th he r - h e wi l l l i ke l y be able to h i t
upon the r ight one .

It i s , of cou rse , poss ib le t o i m plement some k i nd of con tent
add ressabi l i ty of mem ory on a standard computer in a variety of d if
ferent ways . One way i s to search seq uen t i a l l y , exam i n i n g each
memory in the system to fi nd the memory or the set of memories
which h as t h e part icu lar content spec i fied i n the cue . An alternat i ve ,
somewhat more effi ci en t , scheme i n vo l ves some form o f i ndex i n g
keepi ng a l i s t , for every con tent a memory m i g h t have, o f which
memories have t hat content .

Such an i ndex i n g scheme can be made to work wi t h error-free
probes , but i t wi l l break down if th ere is an e rror i n the speci fi cat ion of
the retr ieval cue . There are poss ib le ways of recove r i ng from such
errors , but t h ey lead to the k i nd of com b i n ator ia l e x pl os ions which
plague t h i s k i n d of com puter i m plemen tat i o n .

But s u ppose t h a t w e i magi ne t h a t each mem ory i s represented b y a
u n i t wh ich has m u t ua l ly excitat ory i n terac t i on s with u n i ts standi n g for
each of i ts propert ies . Then , whene ver any property of the memory
becam e act i ve , the memory would tend to be act i vated , and whenever
the memory was act i vated , a l l of i t s conten ts would tend to becom e
act i vated . Such a sch eme would automat i ca l ly produce con tent
add ressabi l i t y for us . Though i t wou ld not be i m m u n e to errors , i t
would not be devastated by an error i n the probe i f t h e rema i n i n g
propert ies s pec i fi ed the correct memory .

As descri bed t h u s far , whenever a prope rty that i s a part of a n u m ber
of d i ffe rent memories is act i vated, i t wi l l tend to act i vate al l of the
memories i t i s in . To keep these ot her act i v i t ies from swa m p i ng the
" correct" memory u n i t , we s i m pl y n eed to add i n i t ia l i n h i b i tory connec
t i ons among the memory u n i t s . An add i t i onal des i rable feat u re would
be m utua l ly i n h i bi tory i n teract i ons among m u t u a l l y i ncom pat i ble
property u n i ts . For example, a person can n ot both be s i n gle and mar
r ied at the same t i me , so the u n i ts for d i fferent mari ta l stat es wou ld be
m u t ua l l y i n h i bi t ory .

Copyrighted Material

l . T H E APPEAL OF PDP 27

McClel land (1 98 1) deve loped a s i m u lat ion model that i l l ust rates how
a system wi t h t hese propert i es would act as a content addressable
memory. The model i s obvi ously overs i m p l i fied, but i t i l l ust rates many
of the characterist ics of the more com plex mode ls that wi l l be con
sidered in l ater chapte rs .

Consider the i nforma t ion rep rese n ted i n Figure 1 0, wh ich l i sts a
n u m be r of people we m igh t meet i f we wen t to l i ve i n an unsavory
neighborhood , and some of thei r hypothet ical characterist ics . A subset

The Jets and The Sharks

N ame Gang Age Ed u Mar Occu pat i on

A rt Jets 40's J . H . S i ng. Pusher
AI Jets 30's J . H . Mar. Burg l a r
Sam Jets 20's CO L . Si n g . Bookie
Clyde Jets 40's J . H. Sing . Bookie
Mi ke Jets 30's J . H . S i n g . Book ie
J i m Jets 20's J . H . D i y . B u rg t a r
G reg Jets 20's H . S. Mar. Pushe r
John Jets 20 's J . H . Mar. B u rglar
Doug Jets 30's H . S . Sing . Boo k i e
Lance Jets 20's J . H . Mar. Burglar
George Jets 20's J . H . D i v . B u rglar
Pete Jets 20 's H . S . Si n g . Book ie
Fred Jets 20's H . S . S i n g . Pusher
Gene Jets 20's COL. S i n g . Pusher
R a l ph Jets 30 's J . H . S i n g . Pusher

Phi l Sharks 30's COL. Ma r . Pusher
I ke Sharks 30's J . B . S i n g . Bookie
N ick Sharks 30 's H . S . Si n g . Pusher
Don Sha rks 30's COL. M a r . B u rg l a r
Ned Sharks 30's COL. Mar . Bookie
Karl Sharks 40's H . S. Mar . Book i e
Ken Sha rks 20's H . S. S i n g . Burglar
Earl Sharks 40's H . S . Mar. B u rglar
Rick Sharks 30 's H . S . D i v . Burg l a r
01 Sharks 30 ' s CO L . Mar. Pusher
Neal Sharks 30's H . S. Sing . Bookie
Daye Sharks 30's H.S. Di y . Pusher

FIGURE 1 0. Characteristics of a n umber of indiv iduals belonging to two gangs, the Jets

and the Sharks . (From " Ret r ieving General and Specific Knowledge From Stored

Knowledge of Specifics" by 1. L . McCle l land , 1 98 1 , Proceedings of the Third Annual Confer-
ence of the Cognitive Science SOCiety, Berkeley, C A . Copyright 1981 by 1 . L. McClel land

Repri nted by perm ission .)

Copyrighted Material

28 THE PDP PERSPECTIVE

of the units needed to represent this information is shown in Figure 1 1 .
In this network, there is an " instance un i t " for each of the characters
described in Figure 10, and that unit is l inked by mutual ly exci tatory
connect ions to al l of the un i ts for the fel low's propert ies . Note that we
have included property units for the names of the characters , as wel l as
units for their other properties.

Now, suppose we wish to retrieve the properties of a part icular i ndi
vidual , say Lance. And suppose that we know Lance's name. Then we
can probe the network by act ivating Lance's name uni t , and we can see
what pattern of acti vation arises as a resu l t . Assuming that we know of
no one else named Lance , we can expect the Lance name un i t to be
hooked up only to the i nstance un i t for Lance. This wi l l in turn
activate the property uni ts for Lance , thereby creating the pattern of

FIGURE 1 1 . S o m e o f t h e units a n d interconnections needed to represent the indi viduals
shown in Figure 10. The units connected with double-headed arrows are mutually excita
tory. All the units within the same cloud are m utually inhibitory. (From " Retrieving
General and Specific .Knowledge From Stored Knowledge of Specifics" by J . L.
McClel land , 1 98 1 , Proceedings of the Third Annual Coriference of the Cognitive Science
Society, 8erkeley, CA. Copyright 1 98 1 by J. L. McClelland. Reprinted by permission .)

Copyrighted Material

I . THE APPEAL OF POP 29

act ivat ion corresponding to Lance . In effect , we have retrieved a
representat ion of Lance. More wi l l happen than just what we have
descr ibed so far, but for the moment let us stop here .

Of course, someti mes we may wish to retrieve a name, g iven other
i nformat ion . In this case , we might start with some of Lance 's
propert ies, effect i vely ask ing the system, say " Who do you know who i s
a Shark and i n h is 20s?" by act i vating the Shark and 20s uni ts . I n th is
case i t turns out that there is a single i ndividual , Ken , who fi ts the
descript ion . So, when we actiyate these two properties, we wi l l acti vate
the i nstance un i t for Ken , and this in turn wi l l act i vate his name un i t ,
and fil l i n h is other properties as wel l .

Graceful degradation. A few o f t h e desi rable properties o f this k ind
of model are v is ib le from consideri ng what happens as we vary the set
of features we use to probe the memory in an attempt to retrieve a par
t icular i ndi vidual ' s name. Any set of features which i s sufficient to
un iquely characterize a part icular i tem wi l l act i vate the i nstance node
for that item more strongly than any other i nstance node . A probe
which contains misleading features wi l l most strongly act i vate the node
that i t matches best . This wi l l clearly be a poorer cue than one which
contains no mis leading information - but i t wi l l st i l l be sufficient to
activate the " right answer " more strongly than any other, as long as the
in t roduction of mislead ing information does not make the probe closer
to some other i tem. In genera l , though the degree of acti vat ion of a
part icular i nstance node and of the corresponding name nodes varies i n
th i s model a s a funct ion of the exact content of the probe , errors i n the
probe wi l l not be fatal unless they make the probe poi nt to the wrong
memory. This k ind of model 's handl i ng of i ncomplete or part ial probes
also requi res no special error-recovery scheme to work - i t is a natu ral
by-product of the nature of the retrieval mechan ism that i t is capable of
graceful degradation .

These aspects of the behavior of the Jets and Sharks model deserve
more detai led considerat ion than the present space al lows . One reason
we do not go into them i s that we view this model as a stepping stone
in the development of other models, such as the models using more
distri buted representat ions, that occur in other parts of this book . We
do, however, have more to say about this s imple model , for l i ke some
of the other models we have al ready examined, this model exhibi ts
some useful properties which emerge from the interactions of the pro
cessing uni ts.

Default assignment. I t probably wi l l have occurred to the reader that
in many of the s i tuations we have been examining, there wi l l be other

Copyrighted Material

30 THE POP PERSPECTIVE

acti vations occurri ng which may infl uence the pattern of act i vation
which is ret rieved. So, i n the case where we ret r ieved the propert ies of
Lance, those propert ies, once they become act ive, can begin to act ivate
the uni ts for other i ndi viduals wi th those same propert ies. The
memory unit for Lance wi l l be in compet i t ion with these units and wi l l
tend to keep their act ivation down , but to the extent that they do
become act ive, they wi l l tend to act i vate their own propert ies and there
fore fi l l them i n . In th is way, the model can fi l l in propert ies of
i nd i viduals based on what i t knows about other, sim i lar i nstances .

To i l l ust rate how this might work we have s imulated the case i n
which we d o not know that Lance i s a Burglar as opposed to a Bookie
or a Pusher. It turns out that there are a group of i ndi viduals in the set
who are very s imi lar to Lance in many respects. When Lance's
properties become act i vated , these other un i ts become partia l ly
activated , and they start activat ing their propert ies . Since they a l l share
the same " occupat ion , " they work together to fi l l in that property for
Lance. Of course , there is no reason why th is should necessar i ly be the
right answer, but general ly speaking, the more s imi lar two thi ngs are i n
respects that we know about , t h e more l i kely they are to b e s imi lar i n
respects that we d o not , and the model implements th is heurist ic .

Spontaneous generalization. The model we have been descri b ing
has another valuable property as wel l - i t tends to retrieve what i s com
mon to those memories which match a ret rieval cue which i s too gen
eral to capture any one memory. Thus, for example , we could probe
the system by act i vat i ng the unit corresponding to membersh ip i n the
Jets. This unit wi l l part ial ly acti vate a l l the i nstances of the Jets,
thereby causing each to send act ivations to i ts propert ies . In this way
the model can ret rieve the typical val ues that the members of the Jets
have on each dimension - even though there is no one Jet that has
these typical values. In the example, 9 of 15 Jets are s ingle, 9 of 15 are
in thei r 20s, and 9 of 15 have only a Junior High School educat ion;
when we probe by acti vat ing the Jet un i t , al l three of these propert ies
domi nate . The Jets are evenly d iv ided between the three occupat ions,
so each of these uni ts becomes partial ly activated . Each has a d ifferent
name, so that each name uni t i s very weakly act ivated , nearly cancel l ing
each other out .

In the example j ust gi ven of spontaneous general izat ion , i t would not
be unreasonable to suppose that someone might have expl ic i t ly stored a
general ization about the members of a gang . The account just g iven
would be an al ternati ve to ·' expl ic i t storage" of the general i zation . I t
has two advantages, though , over such an account . Fi rst , i t does not
requi re any special genera l izat ion format ion mechanism. Second, it can
provide us with general i zat ions on unantici pated l i nes, on demand.

Copyrighted Material

I . THE APPEAL OF POP 3 1

Thus, i f we want to know, for example , what people i n their 20s with a
junior h igh school educat ion are l ike , we can probe the model by
acti vat ing these two un i ts . Si nce al l such people are Jets and Burglars ,
these two uni ts are strongly acti vated by the model i n this case; two of
them are divorced and two are married , so both of these units are par
t ia l ly acti vated . I

The sort of model we are consider ing, then , is considerably more
than a content addressable memory . In addi t ion , i t performs default
ass ignment , and i t can spontaneously retrieve a general concept of the
individuals that match any specifiable probe . These properties must be
explicit ly i mplemented as compl icated computational extensions of
other models of knowledge retr ieval , but in POP models they are
natural by-products of the retr ieval process i tself.

REPRESENTATION AND LEARNING IN PDP MODELS

I n the Jets and Sharks model , we can speak of the model ' s active
representation at a part icular t ime , and associate th is with the pattern of
act ivat ion over the un i ts in the system. We can also ask: What i s the
stored knowledge that gi ves rise to that pattern of acti vat ion ? In con
sidering th is quest ion , we see immediately an important d ifference
between POP models and other models of cogni t ive processes . In most
models , knowledge is stored as a static copy of a pattern . Retrieval
amounts to findi ng the pattern in l ong-term memory and copying i t i nto
a buffer or working memory . There is no real difference between the
stored representat ion i n long-term memory and the act ive representa
t ion in working memory . In PDP models , though , this is not the case .
In these models , the patterns themselves are not stored . Rather , what
is stored is the connection strengths between un i ts that al low these pat
terns to be re-created . In the Jets and Sharks mode l , there is an
instance un i t ass igned to each indi vidual , but that uni t does not contain
a copy of the representation of that indiv idual . Instead, i t i s s imply the
case that the connect ions between i t and the other uni ts in the system
are such that act i vat ion of the uni t wi l l cause the pat tern for the
ind ividual to be reinstated on the property un i ts .

I In th is a n d a l l other cases , there is a tendency for Ihe pattern of act i va t ion to b e i n fl u ·
enced b y part ia l ly act i vated, near neigh bors, which do not q u i t e match t h e probe. Thus,
in this case, there is a Jet AI , who is a Mar r ied Burglar. The un i t for AI gets sl ightly
activated , giving Married a s l ight edge over Divorced i n the s imulat ion .

Copyrighted Material

32 THE POP PERSPECTIVE

This difference between POP models and conventional models has
enormous i mpl ications, both for processing and for learn i ng. We have
al ready seen some of the impl icat ions for processing. The representa
tion of the knowledge i s set up in such a way that the knowledge neces
sari ly influences the course of processing. Usi ng knowledge in process
i ng is no longer a matter of finding the relevant information i n memory
and bringing it to bear� i t is part and parcel of the processing i tself.

For learn ing , the impl ications are equal ly profound. For if the
knowledge is the strengths of the connect ions, learn ing must be a
matter of find ing the right connection strengths so that the right pat
terns of activat ion wi l l be produced under the right c i rcumstances . This
is an extremely important property of this c lass of models, for i t opens
up the poss ibi l i ty that an information processing mechan ism could
learn , as a result of tuning i ts connect ions , to capture the
i nterdependencies between acti vations that i t i s exposed to i n the
course of processing.

In recent years, there has been quite a lot of i nterest i n learni ng in
cogni t ive science. Computational approaches to learn ing fal l predom
inantly into what might be cal led the " expl ic i t rule formulation " trad i
t ion , as represented by the work of Winston (1 975) , the suggest ions of
Chomsky, and the ACT* model of 1. R. Anderson (1 983) . Al l of this
work shares the assumption that the goal of learn ing is to formulate
explicit rules (proposit ions, productions, etc.) which capture powerful
general izat ions i n a succinct way . Fai r ly powerful mechanisms, usuall y
w i th considerable innate knowledge about a domain , and/or some start
ing set of primi t ive propos i t ional represen tat ions , then formulate
hypothetical general rules, e .g . , by compari ng part icular cases and for
mu lati ng explicit general izations.

The approach that we take in developing POP models is completely
d ifferent . Fi rst , we do not assume that the goal of learn ing is the for
mulation of expl ic i t rules. Rather , we assume it is the acquis i t ion of
connection strengths which al low a network of s imple un i ts to act as
though i t knew the rules . Second , we do not attri bute powerful compu
tational capabi l i ties to the learni ng mechan ism. Rather, we assume
very s imple connect ion st rength modulat ion mechan isms which adjust
the strength of connections between units based on informat ion loca l ly
avai lable at the connect ion .

These i ssues wi l l be addressed at length in later sect ions of this book .
For now, our purpose is to give a s imple , i l l ustrat i ve example of the
connect ion strength modulation process , and how i t can produce net
works which exhi bi t some in terest ing behavior.

Local vs. distributed representation. Before we turn to an explicit
considerat ion of this issue, we raise a basic quest ion about

Copyrighted Material

I TH E APPEAL OF PDP 3 3

representat ion . Once we have achieved the ins ight that the knowledge
is stored in the strengths of the in te rconnections between un i ts , a ques
tion arises. Is there any reason to ass i gn one un i t to each pattern that
we wish to l earn ? Another possi bi l i ty - one that we explore extensi vely
in this book -is the possi bi l i ty that the knowledge about any i ndi vidual
pattern is not stored i n the connect ions of a special unit reserved for
that pattern , but is d istr i buted over the connect ions among a large
number of processing units . On th is view, the Jets and Sharks model
represents a special case in which separate un i ts are reserved for each
i nstance .

Models i n which connecion information i s expl ic i t ly thought of as
distributed have been proposed by a number of invest igators. The
units i n these col lect ions may themselves correspond to conceptual
pr imit i ves, or they may have no part icular meaning as indi viduals . In
e i ther case , the focus sh i fts to patterns of act i vat ion over these un i ts
and to mechanisms whose expl ic i t purpose is to learn the right connec
t ion strengths to allow the right patterns of act i vation to become
activated under the right ci rcumstances.

In the rest of this section , we wi l l give a s imple example of a POP
model in which the knowledge is distr i buted. We wi l l fi rst explain how
the model would work, given pre-ex is t ing connections, and we wi l l then
describe how it could come to acqu i re the right connect ion strengths
through a very si mple learni ng mechanism . A number of models which
have taken this distr ibuted approach have been discussed in this book's
predecessor, H inton and 1 . A. Anderson's (1 98 1) Parallel Models of
Associative Memory. We wi ll consider a s imple version of a common
type of distributed mode l , a pattern associator.

Pattern associators are models in which a pattern of act ivation over
one set of un i ts can cause a pattern of act i vat ion over another set of
un i ts wi thout any in terven ing units to stand for ei ther pat tern as a
whole . Pattern associators WOUld, for example, be capable of
associat i ng a pattern of act ivat ion on one set of uni ts corresponding to
the appearance of an object with a pattern on another set correspondi ng
to the aroma of the object, so that, when an object i s presented visu
al ly, causing its visual pattern to become acti ve , the model produces the
pattern corresponding to i ts aroma.

How a pattern associator works. For purposes of i l l ust rat ion , we
present a very si mple pattern assoc iator in Figure 1 2 . In this model ,
there are four units i n each of two pools. The first pool , the A units ,
wi l l be the pool in which patterns corresponding to the s ight of various
objects might be represented. The second pool , the B units , wi l l be the
pool in which the pattern corresponding to the aroma wi l l be
represented. We can pr�pyh�alMaflMiHe patterns of activation on

34 THE PDP PERSPECTIVE

A Units

From V ision

�
-V

�====�===*====*==�- 1 From

V
Ollaction

'':;(c::::==============:::::==::::::::8
B Units

FIG U R E 1 2 - A si m p le pattern associator_ The exam ple assumes that patterns of act i va

t ion i n the A u n i ts can be produced by the visual system and patterns i n the B un i ts can

be prod uced by the olfactory system. The synaptic connections allow the outputs of the

A uni ts to i n fl uence the act i vat ions of the B u n i ts. The synapt ic weights l ink ing the A
un i ts to the B u n i ts were selected so as to a l low t he pal lern of act i va t ion shown on the A
uni ts to reprod uce the pallern of act ivat ion shown on the B u n i ts without the need for

any olfactory i n p u t .

the A units are produced upon viewing a rose or a gri l led steak , and
al ternati ve patterns on the B units are produced upon sniffi ng the same
objects . Figure 13 shows two pai rs of patterns, as wel l as sets of inter
connections necessary to a l low the A member of each pai r to reproduce
the B member.

The detai l s of the behavior of the i ndi vidual units vary among dif
ferent versions of pattern associators . For present purposes, we' l l
assume that t h e u n i t s can take o n posit ive or negat ive acti vation values,
wi th 0 representing a kind of neutral in termediate val ue. The strengths
of the interconnections between the uni ts can be posi t ive or negat i ve
real numbers .

The effect of an A unit on a B unit is determined by mult iplyi ng the
act ivation of the A unit t i mes the strength of i ts synaptic connection
wi th the B uni t . For example , i f the connection from a part icular A
unit to a particular B unit has a posi t ive s ign , when the A unit i s

Copyrighted Material

I . THE APPEAL OF PDP 3 5

+ 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1

- . 2 5 + .2 5 + .2 5 - .2 5 - 1 + . 2 5 - .2 5 + .2 5 - . 25 - 1
- . 2 5 + . 2 5 + . 2 5 - . 2 5 - 1 - . 25 + .2 5 - .2 5 + .2 5 + 1
+ . 2 5 - . 2 5 - . 2 5 + . 2 5 + 1 - . 2 5 + . 2 5 - . 2 5 + . 2 5 + 1
+ .2 5 - .2 5 - .2 5 + 25 + 1 + .2 5 - .2 5 + .2 5 - . 2 5 - 1

FIGURE 1 3 . Two si mple associators represen ted as matr ices. The weights in the fi rst two

matrices al low the A pat tern shown above the matrix to produce the B pa t tern shown to

the r igh t of i t . Note t hat the weights i n the fi rst matr ix are the same as those shown i n
t h e d iagram i n Figure 1 2 .

exci ted (act i vation greater than 0) , i t wi l l excite the B uni t . For th is
example , we ' l l s imply assume that the acti vat ion of each uni t is set to
the sum of the exci tatory and inhibitory effects operating on i t . This i s
one of the s implest poss ib le cases .

Suppose, now, that we have created on the A un i ts the pattern
corresponding to the fi rst visual pattern shown in Figure 1 3 , the rose.
How should we arrange the strengths of the interconnecti ons between
the A un i ts and the B uni ts to reproduce the pattern corresponding to
the aroma of a rose? We simply need to arrange for each A un i t to
tend to excite each B uni t which has a posi t ive acti vat ion in the aroma
pattern and to inh ib i t each B uni t which has a negat ive act ivat ion in the
aroma pattern. I t turns out that th is goal i s achieved by set t ing the
strength of the connect ion between a given A un i t and a gi ven B uni t
to a va lue proportional to the product of the act ivation of the two uni ts .
In Figure 1 2 , the weights on the connections were chosen to allow the
A pattern i l l ustrated there to produce the i l l ustrated B pattern accord ing
to th i s pr inciple . The actual strengths of the connect i ons were set to
± . 2 5 , rather than ± 1 , so that the A pattern wil l produce the right mag
n i tude, as wel l as the right sign , for the act ivations of the uni ts in the B
pattern . The same connections are reproduced i n matri x form i n Fig
ure l 3 A .

Pattern associators l i ke the one i n Figure 1 2 have a number of nice
properties . One is that they do not requi re a perfect copy of the i nput
to produce the correct output , though i ts strength wi l l be weaker in th is
case. For example, suppose that the associator shown i n Figure 12 were
presented with an A pattern of (1 ,- 1 ,0, 1) . This is the A pattern shown
in the figure , with the acti vat ion of one of its elements set to 0 . The B
pattern produced i n response wi l l have the act i vat ions of al l of the B
un i ts i n the right d i rect ion; however, they wi l l be somewhat weaker
than they would be, ha£qp;rightfffMfa�r4alttern been shown . Similar

36 THE POP PERSPECTIVE

effects are produced if an element of the pattern is distorted -or if the
model is damaged, ei ther by removing whole units , or random sets of
connections, etc. Thus, thei r pattern retrieval performance of the
model degrades gracefully both under degraded input and under
damage .

How a pattern associator learns. So far , we have seen how we as
model bui lders can construct the right set of weights to allow one pat
tern to cause another. The i nterest ing thing, though , is t hat we do not
need to bui ld these i nterconnection strengths in by hand. Instead, the
pattern associator can teach itself the right set of interconnecti ons
through experience processing the patterns in conjunction with each
other.

A number of d ifferent rules for adjusting connection strengths have
been proposed . One of the fi rst - and definitely the best known - i s due
to D. O. Hebb (1949). Hebb's actual proposal was not sufficiently
quanti tati ve to build into an explicit model . However, a number of dif
ferent variants can t race their ancestry back to Hebb. Perhaps the sim
plest version is :

When unit A and unit B are simul taneously excited, i ncrease
the strength of the connection between them.

A natural extension of this rule to cover the posi t ive and negati ve
acti vation values allowed in our example is :

Adjust the strength o f t h e connection between units A and B i n
proport ion t o the product o f their s imultaneous act i vat ion.

In this formulation , i f the product i s posi t ive, the change makes the
connection more exci tatory, and if the product is negati ve, the change
makes the connection more inhi bitory. For s impl icity of reference , we
wil l cal l this the Hebb rule, although it is not exactl y Hebb's original
formulation .

With this si mple learn ing rule, we could t ra in a " blank copy " of the
pattern associator shown in Figure 1 2 to produce the B pattern for rose
when the A pattern is shown , simply by present ing the A and B pat
terns together and modulat ing the connection st rengths according to the
Hebb rule . The size of the change made on every trial would, of
course, be a parameter. We general ly assume that the changes made on
each instance are rather smal l , and that connect ion strengths bui ld up
gradual l y . The values shown i n Figure l 3 A , then , would be acqui red as
a result of a number of experiences with the A and B pattern pai r .

Copyrighted Material

I . THE APPEAL OF PDP 37

It i s very i m portant to note that the information needed to use t he
Hebb ru le to determ i n e the value each connect ion should have is locally
available at the connect ion . Al l a given connect ion needs to consider i s
the acti vat ion of the units on both s ides of i t . Th us, i t would be poss i
ble to actual ly i mplement such a connect ion modulat ion scheme local ly ,
in each connect i on , without requ ir ing any programmer to reach in to
each connect ion and set i t to just the right val ue .

It turns out that the Hebb rule as stated here has some ser ious l i m i
tat i ons, and, to our knowledge, no theorists cont inue to use i t i n th is
s imple form. More sophisticated connection modulat ion �chemes have
been proposed by other workers; most i m portant among these are the
delta ru le , d iscussed extens i vely i n Chapters 8 and 1 1 ; the compet i t i ve
l earn i ng ru le , d i scussed i n Chapter 5 ; and the rules for learn ing i n sto
chast ic paral le l models , descri bed in Chapters 6 and 7. Al l of these
learning rules have the property that they adj ust the strengths of con
nections between units on the basis of informat ion that can be assu med
to be local ly avai l able to the uni t . Learning, then, in all of these cases,
amounts to a very s imp le process that can be i m plemented local ly at
each connect i on without the need for any overal l supervis ion . Thus ,
models which i ncorporate these learning rules tra i n themsel ves to have
the right in terconnections in the course of processing the members of
an ensemble of patterns.

Learning multiple patterns in the same set of interconnections. Up
to now, we have considered how we might teach our pattern associator
to associate the visual pattern for one object wi th a pattern for the
aroma of the same object . Obvious ly , different patterns of i nterconnec
t ions between the A and 8 un i ts are appropriate for causing the visual
pat tern for a different object to gi ve rise to the pattern for i ts aroma.
The same princi p les appl y , however , and if we presented our pattem
associator with the A and 8 patterns for steak , i t would l earn the r i&ht
set of i n terconnections for that case i nstead (these are shown i n Figure
1 38) . In fact , it turns out that we can actually teach the same pattern
associator a n u m be r of different associations. The matrix represent ing
the set of interconnections that would be learned i f we taught the same
pattern associator both the rose associat ion and the steak assoc iat ion is
shown in Figure 14 . The reader can verify this by adding the two
matrices for the indi vidual pat terns together. The reader can also verify
that this set of connections wi l l a l low the rose A pattern to produce the
rose 8 pattern , and the steak A pattern to produce the steak 8 pattern :
when either i nput pattern i s presented , the correct corresponding output
i s produced .

The examples used here have the property that the two d ifferent

visual patterns are comp l�te ly uncorrelated with each other . This be i ng
Copyrighted Material

3 8 THE PDP PERSPECTIVE

+ +

+ +

+ +

+ +

+

+

+

+

+

+

+

+

+

++ --

-- + +

- - + +

+ + - -

FIG U R E 1 4 . T h e weights i n t h e th i rd mat r i x a l low e i ther A pattern shown i n Figure \ 3
to recreate t h e corresponding B pat tern . Each weight i n t h i s case is equal to t h e sum of
the weight for the A pat tern and the weight for the B pat tern , as i l l ustrated.

the case , the rose pat tern produces no effect when the i nterconnect ions
for the steak have been establ i shed, and the steak pattern produces no
effect when the i nterconnections for the rose associat ion are in effect .
For th is reason , it i s poss i ble to add together the pattern of i ntercon
necti ons for the rose associat ion and the pattern for the steak associa
t ion , and st i l l be able to associate the s ight of the steak with the sme l l
o f a steak a n d t h e sight of a rose wi th t h e s m e l l of a rose. The t w o sets
of i nterconnect i ons do not interact at al l .

One o f the l i mi tations o f the Hebbian learn i ng rule i s that i t can
learn the connection strengths appropriate to an ent i re ensemble of pat
terns only when all the patterns are completely uncorrelated. Th is
rest riction does not , however, apply to pattern associators which use
more sophist icated learn i ng schemes.

A ttractive properties of pattern associator models. Pat tern associator
models have the property that u ncorrelated patterns do not i nteract with
each other, but more s i m i lar ones do. Thus, to the extent that a new
pattern of acti vation on the A units i s s imi lar to one of the old ones, it
wi l l tend to have s imi lar effects. Furthermore , if we assume that learn
ing the i n terconnect ions occurs in small i ncrements, s i milar patterns
wi l l essent ia l ly reinforce the strengths of the l i n ks they share in com
mon with other patterns. Thus, if we present the same pai r of patterns
over and over, but each t ime we add a l i tt le random noise to each ele
ment of each member of the pai r , the system wi l l automatical ly learn to
associate the central tendency of the two patterns and wi l l l earn to
ignore the noise. What wi l l be stored wi l l be an average of the s i m i lar
patterns wi th the s l ight variat ions removed . On the other hand, when
we present the system with completely uncorrelated patterns, they wi ll
not i n teract with each other in this way. Thus , the same pool of uni ts
can extract the cen t ral tendency of each of a number of pai rs of unre
lated patterns. Thi s aspect of distri buted mode ls is exploited extens i vely
i n Chapters 17 and 25 on distributed memory and amnesia .

Copyrighted Material

L THE APPEAL OF PDP 39

Extracting the structure of an ensemble of patterns. The fact that
s imi lar patterns tend to produce s imi lar effects al lows distri buted
models to exh ib i t a kind of spontaneous general i zation , extendi ng
behavior appropriate for one pattern to other s imi lar patterns. This
property i s shared by other POP models, such as the word perception
model and the Jets and Sharks model descri bed above; the main d iffer
ence here is i n the existence of s impl e , l ocal , learning mechanisms that
can al low the acquis i t ion of the connect ion strengths needed to produce
these general izations through experience wi th members of the ensem
ble of patterns . Distributed models have another in terest ing property
as wel l : If there are regulari t ies in the correspondences between pai rs
of patterns , the model wi l l natural ly extract these regularit ies . Th is
property al l ows distri buted models to acquire patterns of
interconnections that lead them to behave i n ways we ordinari ly take as
evidence for the use of l i nguist ic rules.

A detailed example of such a model is described i n Chapter 18 .
Here, w e descri be t h e model very briefly . The model is a mechanism
that learns how to construct the past tenses of words from thei r root
forms through repeated presentations of examples of root forms pai red
wi th the corresponding past-tense form. The model consists of two
pools of uni ts . In one pool , patterns of act ivat ion representing the pho
nological structu re of the root form of the verb can be represented ,
and, in the other , patterns represent ing the phonological structure of
the past tense can be represented . The goal of the model is s imply to
learn the r ight connection strengths between the root uni ts and the
past-tense units , so that whenever the root form of a verb i s presented
the model wi l l construct the corresponding past· tense form. The model
is trained by p resenting the root form of the verb as a pattern of acti va
t ion over the root un i ts , and then using a s imple, local , learn i ng rule to
adjust the connect ion strengths so that th is root form wi l l tend to pro
duce the correct pattern of act ivation over the past-tense units . The
model is tested by s imply presenting the root form as a pattern of
acti vation over the root units and examin ing the pattern of act i vation
produced over the past-tense un its .

The model i s trained in i t ia l ly wi th a smal l number of verbs chi ldren
learn early in the acquis i t ion process . At this point in learning, i t can
only produce appropriate outputs for inputs that i t has explicit ly been
shown. But as it learns more and more verbs, i t exhibits two interest·
ing behaviors. Fi rst , i t produces the standard ed past tense when tested
wi th pseudo-verbs or verbs i t has never seen. Second, i t " overregular
izes " the past tense of i rregular words i t previously completed correctly .
Often, the model wi l l blend the i rregular past tense of the word wi th
the regular ed ending, and produce errors l i ke CAMED as the past of

Copyrighted Material

40 THE PDP PERSPECTIV E

COME. These phenomena mirror those observed i n the early phases of
acquis i t ion of control over past tenses in young chi ldren.

The generat ivi ty of the chi ld 's responses - the creation of regular
past tenses of new verbs and the overregu larizat ion of the i rregular
verbs - has been taken as strong evidence that the child has i nduced the
rule which states that the regular correspondence for the past tense in
Engl ish is to add a fi nal ed (Berko, 1 958) . On the evidence of i ts per
formance, then , the model can be said to have acqui red the rule. How
ever, no special rule-induction mechanism is used, and no special
language-acquisit ion device is requi red. The model learns to behave in
accordance with the rule, not by expl ic i t ly noting that most words take
ed in the past tense in Engl ish and storing this rule away expl ici t ly , but
s imply by bui lding up a set of connect ions in a pattern associator
through a long series of s imple learning experiences . The same
mechanisms of paral lel distri buted processing and connection modifica
tion which are used i n a number of domains serve , i n this case, to pro
duce i mplic i t knowledge tantamount to a l i nguist ic rule . The model
also provides a fai r ly detailed account of a number of the specific
aspects of the error patterns chi ldren make i n learning the rule . In this
sense , i t provides a richer and more detai led description of the acqu is i
t ion process than any that fal l s out natural ly from the assumption that
the chi ld is bui ld ing up a repertoi re of expl ic i t but i naccessible rules.

There is a lot more to be said about distributed models of learni ng,
about thei r strengths and thei r weaknesses , than we have space for in
this prel i minary consideration. For now we hope mainly to have sug
gested that they provide dramatical ly different accounts of learning and
acquisi t ion than are offered by trad i t ional models of these processes .
We saw i n earl ier sections of this chapter that performance i n accor
dance with rules can emerge from the i nteractions of s imple, i ntercon
nected un i ts . Now we can see how the aquis i t ion of performance that
conforms to l inguistic rules can emerge from a s imple, local , connec
tion strength modulation process.

We have seen what the properties of PDP models are in informal
terms, and we have seen how these propert ies operate to make the
models do many of the kinds of things that they do. The busi ness of
the next chapter is to lay out these properties more formal ly , and to
introduce some formal tools for the ir descri ption and analysis . Before
we turn to this , however, we wish to descri be some of the major
sources of i nspi ration for the PDP approach .

Copyrighted Material

1 . THE APPEAL OF POP 4 1

ORIGINS O F PARALLEL DISTRIBUTED PROC ESSING

The i deas behi nd the POP approach have a h istory that st retches
back i ndefi n i te ly. In th is sect ion , we mention briefly some of the peo
ple who have thought i n t hese terms, part icularly those whose work has
had an i mpact on our own thi nking. Th is section should not been seen
as an authoritat i ve review of the h istory, but only as a descr ipt ion of
our own sources of i nspiration.

Some of the earl iest roots of the POP approach can be found i n the
work of the unique neurologists, Jackson 0 869/ 1 958) and Luria
(1 966) . Jackson was a forceful and persuas i ve crit ic of the s i mpl ist ic
local izationist doctrines of late n i neteenth century neurology, and he
argued con vincingly for distr ibuted, mul t i level conceptions of process
i ng systems . Lur ia , the Russian psychologist and neurologist , put for
ward the notion of the dynamic fUnctional system. On this view, every
behavioral or cogni t i ve process resulted from the coordination of a large
number of d i fferent components, each roughly local ized in different
regions of the brain , but al l working together in dynamic i nteract ion .
Nei ther Hugh l ings-Jackson nor Lur ia i s noted for the clarity of h is
views , but we have seen i n thei r ideas a rough characterization of the
kind of paral le l distri buted processing system we envis ion .

Two other contr ibutors to the deep background of POP were Hebb
(1 949) and Lashley (1 950) . We al ready have noted Hebb's contribu
tion of the Hebb rule of synapt ic modi ficat ion; he also i ntroduced the
concept of cell assembl ies - a concrete example of a l imited form of dis
tr ibuted process ing- and discussed the i dea of reverberat i on of act i va
tion within neural networks. Hebb's ideas were cast more in the form
of speculations about neural funct ioning than in the form of concrete
processing models , but his thinki ng captures some of the flavor of
paral lel distributed processing mechanisms. Lashley ' s contr i bution was
to i nsist upon the idea of distri buted representat ion . Lash ley may have
been too radical and too vague, and his doctr ine of equi potential i ty of
broad regions of cortex clearly overstated the case. Yet many of h is
insights into the difficulties of storing the " engram" locally i n the brain
are telling, and he seemed to capture quite precisely the essence of dis
tributed representation i n i nsisting that " there are no special cells
reserved for special memories" (Lashley, 1 950, p. 500) .

In the 1 950s , there were two major figures whose ideas have contri
buted to the deve lopment of our approach. One was Rosenblatt 0 959 ,
1 962) a n d t h e other was Selfridge (1 955) . In h i s Principles of Neuro
dynamics (I 962) , Rosenblatt articulated clearly the promise of a neur
ally i nspired approach to computation , and he developed the perceptron
convergence procedure, aeojJyW�i�I¥��mge over the Hebb rule for

42 THE POP PERSPECTIV E

changing synapt ic connect ions. RosenblaU's work was very controver
sial at the t ime, and the specific models he proposed were not up to al l
the hopes he had for them. But his vis ion of the human information
processing system as a dynamic , interact ive, self-organ iz ing system l i es
at the core of the POP approach . Selfridge's contri bution was his
insi stence on the importance of i n teract ive processing, and the develop
ment of Pandemonium, an expl ic i t ly computational example of a
dynamic, in teract ive mechan ism appl ied to computational problems in
percept ion.

In the late 60s and ear ly 70s, serial processing and the von Neumann
computer domi nated both psychology and artificial i ntel l igence , but
there were a number of researchers who proposed neural mechanisms
which captu re much of the flavor of POP models . Among these fig
ures, the most influent ial i n our work have been J. A. Anderson,
Grossberg, and Longuet-Higgins. Grossberg 's mathematical analysis of
the properties of neural networks led h im to many i ns ights we have
only come to appreciate through extensi ve experience with computer
s imulation, and he deserves credit for seeing the relevance of neural ly
i nspi red mechanisms in many areas of perception and memory wel l
before the field was ready for these kinds of ideas (Grossberg , 1 978) .
Grossberg (1 976) was also one of the fi rst to analyze some of the
properties of the compet i t ive learn ing mechanism explored i n
Chapter 5 . Anderson's work differs from Grossberg's i n i nsisting u pon
distr ibuted representation , and in showing the relevance of neural ly
inspi red models for theories of concept learn ing (Anderson , 1 973 ,
1 977) ; the work i n Chapters 17 and 25 on distr i buted memory and
amnesia owes a great deal to Anderson 's i nspi rat ion . Anderson 's work
also played a crucial role in the formulation of the cascade model
(McClel land, 1 979) , a step away from serial processing down the road
to POP. Longuet-Higgins and h is group at Edinburgh were also pursu
ing distri buted memory models during the same period, and Oavid
Wi l l shaw, a member of the Edi nburgh group, provided some very
elegant mathematical analyses of the properties of various d ist ri buted
representation schemes (Wi l lshaw, 1 98 1) . His ins ights provide one of
the sources of the idea of coarse coding described at length in Chapter
3 . Many of the contri butions of Anderson , Wi l l shaw, and others
distri buted modelers may be found in Hinton and Anderson (98 1) .
Others who have made i mportant contri butions to learni ng i n POP
models i ncl ude Amari (1 977a) , Bienenstock, Cooper, and Munro
(I 982) , Fukush i ma (I 975) , Kohonen (1 977 , 1 984) , and von der
Malsburg (I 973) .

Toward the middle of the 1 970s , the idea of paral lel processing began
to have someth i ng of a renaissance in computational ci rcles. We have
al ready mentioned the Marr and Poggio (976) model of stereoscopic

Copyrighted Material

I THE A PPEAL OF PDP 43

depth percept ion . Another model from this period , the HEA RSA Y
model of s peech understand ing, played a promi nent role in the
development of our th i n k ing . Unfortunately , HEARSAY's computa
t ional architecture was too demand i ng for the avai lable com putat ional
resources , and so the model was not a computational success . But i ts
basical l y paral le l , i n teract i ve character i nspi red the in teract i ve model of
read ing (Rume lhart , 1 97 7) , and the i nteract ive acti vation model of
word recogn i t ion (McClel land & Rumelhart , 1 98 1 ; Rumelhart &
McClel land , 1 982) .

The ideas represented i n the i nteract i ve act i vation model had other
precursors as we l l . Morton 's logogen model (Morton , 1 969) was one of
the first models to capture concretely the pri nciple of i n teract ion of d if
ferent sources of i n formati on , and Marslen-Wi l son (e .g . , Mars len
Wi lson & Welsh, 1 978) provided i m portant empi rical demonstrat i ons of
i n teract i on between d i fferent levels of language processing . Levi n ' s
(1 976) Proteus model demonst rated t h e vi rtues o f act i vat ion
compet i t i on mechanisms, and Gl ushko (1 979) hel ped us see how con
spi rac i es of partial act i vat ions cou ld account for certa in aspects of
apparent ly rule-guided behavior .

Our work also owes a great deal to a number of col leagues who have
been working on related ideas in recent years . Many of these col
leagues appear as authors or coauthors of chapters i n th is book . But
t here are others as wel l . Several of these people have been very
influent i al i n the development of the ideas in th is book . Feldman and
Ballard (1 982) laid out many of the com putat i onal pri nc ip les of the
POP approach (under the name of connectionism) , and stressed the bio
logi cal i m plausibi l i ty of most of the prevai l i ng computational models i n
art ificial i ntel l igence. Hofstadter (1 979, 1 98 5) deserves cred i t for
st ressing the existence of a subcogni t i ve - what we cal l
microstructural - level , and poi n t i ng out how important i t can be t o
del ve i nto the m icrostructure to gain i ns igh t . A sand dune, he has said ,
i s not a grai n o f sand . Others have contributed cruc ial techn ical
i nsights. Sutton and Barto (98 1) provided an i ns ightful analysis of the
connection modi fication scheme we call the delta rule and i l l ust rated the
power of the rule to account for some of the subtler propert ies of clas
sical condi t i on i ng . And Hopfield's (982) contri but ion of the idea that
network models can be seen as seeking m i n i ma in energy landscapes
played a prom i nen t role in the development of the Bol tzmann mach i ne
(Chapter 7) , and i n the crysta ll izat i on of the ideas presented i n
Chapters 7 and 1 4 o n harmony theory and schemata.

The power of paral lel d istr ibuted process i ng is becoming more and
more apparent , and many others have recent ly jo ined in the expl orat ion
of the capabi l i t ies of these mechan isms. We hope th is book represents

Copyrighted Material

44 THE PDP PERSPECTI VE

the nature of the enterprise we are al l involved in, and that i t does jus
tice to the poten t ial of the PDP approach .

ACKNOWLEDGMENTS

This research was supported by Contract N000 1 4-79-C-032 3 , NR
667-437 with the Personnel and Trai n ing Research Programs of the
Office of Naval Research , by grants from the System Deve lopment
Foundat ion , and By a NIMH Career Development Award (MH00385)
to the fi rst author.

Copyrighted Material

CHAPTER 2

A General Framework for
Parallel Distributed Processing

D. E. RUMELHART, G. E. HINTON, and 1. L. McCLELLAND

In Chapter 1 and throughout this book, we describe a large number
of models, each different in detail-each a variation on the parallel dis
tributed processing (PDP) idea. These various models, and indeed
many in the literature, clearly have many features in common, but they
are just as clearly distinct models. How can we characterize the general
model of which these specific models are instances? In this chapter we
propose a framework sufficiently general so that all of the various
models discussed in the book and many models in the literature are
special cases. We will proceed by first sketching the general framework
and then by showing properties of certain specific realizations of the
general model. I

The General Framework

It is useful to begin with an analysis of the various components of
our models and then describe the various specific assumptions we can

I We are, of course, not the first to attempt a general characterization of this general
class of models. Kohonen 0977, 1984), Amari (l977a), and Feldman and Ballard (1982)
are papers with similarly general aims.

Copyrighted Material

46 THE PDP PERSPECTIVE

make about these components. There are eight major aspects of a
parallel distributed processing model:

• A set of processing units
• A state of activation
• An output junction for each unit
• A pattern of connectivity among units
• A propagation rule for propagating patterns of acti vities through

the network of connect ivit ies
• An activation rule for combin ing the inputs i mpinging on a unit

with the current state of that unit to produce a new level of
activation for the unit.

• A learning rule whereby patterns of connectivity are modified by
experience

• An environment within which the system must operate

Figure 1 i l lustrates the basic aspects of these systems. There is a set of
processing units generally indicated by ci rcles in our diagrams; at each
point in t ime, each unit Uj has an activation value, denoted in the
diagram as aj (t); this acti vation value is passed through a function fj to
produce an output value OJ (t). This output value can be seen as pass
ing through a set of unidi rectional connections (indicated by l ines or
arrows in our diagrams) to other units in the system. There is assoc i
ated wi th each connection a real number, usually cal led the weight or
strength of the connection designated wi) which determines the amount
of effect that the fi rst unit has on the second. All of the inputs must
then be combined by some operator (usually addit ion) -and the com
bined inputs to a unit, along with i ts current acti vation value, deter
mine, via a function F, i ts new activation value. The figure shows i l lus
trative examples of the function f and F. Finally, these systems are
viewed as being plastic in the sense that the pattern of interconnections
is not fixed for all t ime; rather, the weights can undergo modificati on
as a function of experience. In this way the system can evolve . What a
unit represents can change wi th experience, and the system can come
to perform in substantial ly different ways. In the fol lowing sections we
develop an explicit notation for each of these components and describe
some of the alternate assumptions that have been made concerning
each such component .

A set of processing units. Any parallel activation model begins wi th
a set of processing units . Specifying the set of processing units and
what they represent is typically the fi rst stage of specifying a PDP
model. In some models these units may represent particular conceptual
objects such as features, letters , words, or concepts; in others they are

Copyrighted Material

Threshold OU'pu'
Function

2. A FRA M EWORK FOR PDP 47

o

·lZJ ·m 0
nor, = �"'JOJ(I)
Sigmoid ActiValion

Function

FIGURE 1. The basic components of a parallel distributed processing system.

simply abstract elements over which meaningful patterns can be
defined. When we speak of a distributed representation, we mean one
in which the units represent small, feature-like entities. In this case it is
the pattern as a whole that is the meaningful level of analysis. This
should be contrasted to a one-unit-one-concept representational system
in which single units represent entire concepts or other large meaning
ful entities.

We let N be the number of units. We can order the units arbitrarily
and designate the ith unit Ui' All of the processing of a PDP model is
carried out by these units. There is no executive or other overseer.
There are only relatively simple units, each doing it own relatively sim
ple job. A unit's job is simply to receive input from its neighbors and,
as a function of the inputs it receives, to compute an output value
which it sends to its neighbors. The system is inherently parallel in that
many units can carry out their computations at the same time.

Copyrighted Material

48 THE PDP PERSPECTIVE

Within any system we are modeling, it is useful to characterize three
types of units: input, output, and hidden. Input units receive inputs from
sources external to the system under study. These inputs may be either
sensory input or inputs from other parts of the processing system in
which the model is embedded. The output units send signals out of the
system. They may either directly affect motoric systems or simply
influence other systems external to the ones we are modeling. The hid
den units are those whose only inputs and outputs are within the sys
tem we are modeling. They are not "visible" to outside systems.

The state of activation. In addition, to the set of units, we need a
representation of the state of the system at time t. This is primarily
specified by a vector of N real numbers, a (t) , representing the pattern
of activation over the set of processing units. Each element of the vec
tor stands for the activation of one of the units at time t. The activa
tion of unit Ui at time t is designated 0i (t). It is the pattern of activa
tion over the set of units that captures what the system is representing
at any time. It is useful to see processing in the system as the evolu
tion, through time, of a pattern of activity over the set of units.

Different models make different assumptions about the activation
values a unit is allowed to take on. Activation values may be continu
ous or discrete. If they are continuous, they may be unbounded or
bounded. If they are discrete, they may take binary values or any of a
small set of values. Thus in some models, units are continuous and
may take on any real number as an activation value. In other cases,
they may take on any real value between some minimum and max
imum such as, for example, the interval [0,11. When activation values
are restricted to discrete values they most often are binary. Sometimes
they are restricted to the values 0 and I where I is usually taken to
mean that the unit is active and 0 is taken to mean that it is inactive.
In other models, activation values are restricted to the values {- I ,+ I}
(often denoted simply (-,+}). Other times nonbinary discrete values
are involved. Thus, for example, they may be restricted to the set
{- I ,O,+ I} , or to a small finite set of values such as { I ,2,3,4 ,5,6,7,8 ,9}.
As we shall see, each of these assumptions leads to a model with
slightly different characteristics. It is part of the program of research
represented in this book to determine the implications of these various
assumptions.

Output of the units. Units interact. They do so by transmitting sig
nals to their neighbors. The strength of their signals, and therefore the
degree to which they affect their neighbors, is determined by their
degree of activation. Associated with each unit, Ui, there is an output
function, Ii (0, (1», which maps the current state of activation 0i (I) to

Copyrighted Material

2. A FRAMEWORK FOR PDP 49

an output signal OJ (t) (i.e., OJ (t) = Ij (aj (t)). In vector notation, we
represent the current set of output values by a vector, 0 (t). In some of
our models the output level is exactly equal to the activation level of
the unit . In th is case I is the identity function I (x)=x. More often ,
however, I is some sort o f threshold function so that a unit has no
affect on another unit unless its activation exceeds a certain value.
Sometimes the function I is assumed to be a stochast ic function in
which the output of the unit depends in a probabilistic fashion on its
activation values.

The pattern of connectivity. Units are connected to one another. It
is this pattern of connectivity that consti tutes what the system knows
and determines how it will respond to any arbitrary input. Specifying
the processing system and the knowledge encoded therein is, in a paral
lel distributed processing model, a matter of specifying this pattern of
connectivity among the processing units.

In many cases, we assume that each unit provides an additive contri
bution to the input of the units to which it is connected . In such cases,
the total input to the unit is simply the weighted sum of the separate
inputs from each of the individual units. That is, the inputs from all of
the incoming units are simply multiplied by a weight and summed to
get the overall input to that unit. In this case, the total pattern of con
nectivity can be represented by merely specifying the weights for each
of the connections in the system. A positive weight represents an exci
tatory input and a negative weight represents an inhibitory input. As
mentioned in the previous chapter, it is often convenient to represent
such a pattern of connect i vi ty by a weight matrix W in which the entry
wij represents the strength and sense of the connect ion from uni t Uj to
unit Ui' The weight wi} is a positive number if unit Uj excites unit Uj; it
is a negative number if unit Uj inhibits uni t Uj; and i t is 0 if unit Uj has
no direct connection to unit u,. The absolute value of wi} specifies the
strength 01 the connection. Figure 2 illustrates the relationship between
the connectivity and the weight matrix.

In the general case, however, we require rather more complex pat
terns of connect ivi ty. A given unit may receive inputs of different kinds
whose effects are separately summated. For example, in the previous
paragraph we assumed that the excitatory and inhibi tory connections
simply summed algebraically with positive weights for excitation and
negative weights for inhibit ion. Sometimes, more complex
i nhibition/excitation combination rules are required. In such cases i t is
convenient to have separate connectivity matrices for each kind of con
nection . Thus, we can represent the pattern of connectivity by a set of
connectivity matrices, Wi, one for each type of connection . It is com
mon, for example, to ��py�}g9JtW'MaPJr;�?nnections in a model: an

� � c5' ::
::r-

CD Q.

� CD

N
e

tw
o

rk
 R

e
p

re
s

e
n

ta
tio

n

In
p

u
t

U
,

u
2

u
3

u
4

U
s

u
6

O
u

tp
u

t
u

,

U
s

M
a

trix
 R

e
p

re
s

e
n

ta
tio

n

U
,

U
z

u
3

u
4

U
s

U
s

u
7

u
B

0
0

0
0

0
-5

-5
0

0
0

0
0

+6
+5

0
+6

0
0

0
0

0
-3

-2
+

3

0
0

0
0

-4
0

0
+1

+4
0

0
+4

0
0

0
0

0
0

+6
-

1
0

0
0

0

0
-2

0
+

4
0

0
0

0

-6
+1

0
0

0
0

0
0

§: FIG
U

RE 2
.

T
h

e co
n

n
ectiv

ity o
f a n

etw
o

rk represen
ted

 b
y a n

etw
o

rk d
raw

in
g an

d
 in

 a m
atrix

.
T

h
e fi

gu
re sh

o
w

s an
 eigh

t-u
n

it n
etw

o
rk

 w
ith

u
n

its n
u

m
bered

 from
 1 to

 8.
U

n
its 1 to

 4 are in
pu

t u
n

its.
T

h
ey receiv

e inputs fro
m

 th
e o

u
tsid

e w
o

rld
 an

d
 feed

b
ack from

 th
e o

u
tpu

t u
n

its

u
n

its 5 th
ro

u
gh

 8.
T

h
e co

n
n

ectio
n

s am
o

n
g th

e u
n

its are in
d

icated
 by th

e o
pen

 an
d

 fi
lled

 d
isk

s.
T

he size o
f th

e d
isk in

d
icates th

e stren
gth

 o
f

co
n

n
ectio

n
.

Th
u

s, th
e large b

lack d
isk o

n
 th

e lin
e co

n
n

ectin
g u

n
it 1 to

 u
n

it 8 in
d

icates a stro
n

g in
h

ib
ito

ry co
n

n
ectio

n
 fro

m
 1 to

 8.
Sim

ilarly
, th

e

larg
e

 o
p

en
 d

isk o
n

 th
e o

u
tp

u
t lin

e fro
m

 u
n

it 8 to unit 2 in
d

ica
tes th

at u
n

it 8 strongly ex
cites u

n
it 2

.
T

h
e sam

e co
n

n
ectio

n
s are sh

o
w

n
 in

 th
e

m
atrix

 represen
tatio

n
 o

n
 th

e le
ft

.
T

h
e +

6 in
 th

e colum
n fo

r Us an
d

 th
e ro

w
 fo

r u2 in
d

icate
s th

at u
n

it
8 stro

n
g

ly e
xcites u

n
it 2

.
It sh

o
u

ld
 b

e

n
o

ted

th
at w

h
en

ev
er

th
ere

is a d
isk

o
n

 a lin
e

co
n

n
ectin

g
th

e
 o

u
tpu

t
o

f o
n

e u
n

it
to

 th
e

in
pu

t
o

f an
o

th
er

in
 the n

etwo
rk

d
iagram

th

ere is a

co
rrespo

n
d

in
g n

o
n

zero
 entry in

 th
e m

atrix
.

If th
e d

isk
is fi

lled
, th

e entry in
 th

e m
atrix

 is n
egativ

e.
If th

e d
isk is o

pen
, th

e entry is po
sitiv

e.

T
h

e larger th
e d

isk
 th

e greater th
e m

agn
itu

d
e o

f th
e entry in

 th
e m

atrix
.

It m
igh

t also
 b

e n
o

ted
 th

a
t the co

n
nectio

n
s in

 the n
etw

o
rk h

av
e b

een

laid
 o

u
t to

 co
rrespo

n
d

 to
 th

e en
tries of th

e m
atrix

.
T

h
e black d

isk in
 th

e u
pper le

ft co
rn

er o
f th

e n
etw

o
rk co

rrespo
n

d
s to

 th
e -

6 in
 th

e u
ppe

r

left
 co

rn
er o

f th
e m

atrix.
Ea

ch
 d

isk
in

 th
e n

etw
o

rk
is in

 th
e co

rre
spo

n
d

in
g po

sitio
n

 o
f its lo

catio
n

 in
 th

e m
atrix

.
T

h
e n

etw
o

rk w
o

u
ld

 n
o

t have
to

 be d
raw

n
 in this way, o

f co
u

rse, an
d

 th
e m

atrix
 w

o
u

ld
 still capture all o

f the connectivity in
form

a
tio

n
 in

 th
e n

etw
o

rk
.

In
 gen

eral, b
ecau

se

n
etw

o
rk

 d
raw

in
gs are

 d
iffi

cu
lt to

 w
o

rk w
ith

 w
e w

ill often sim
ply u

se the m
a

trix
 represen

tatio
n

 (0 sp
ecify (h

e pattern of co
n

n
ectivity

.

V>

o

;J tTl

-a

o

-a

ri! '"

II
I

-a

6 <: tTl

2. A FRAMEWORK FOR PDP 51

inhibitory connection and an excitatory connection. When the models
assume simple addition of inhibition and excitation they do not consti
tute different types of connections in our present sense. They only con
stitute distinct types when they combine through some more complex
rules.

The pattern of connectivity is very important. It is this pattern which
determines what each unit represents. As we shall see below, many of
the issues concerning whether top-down or bottom-up processing systems
are correct descriptions or whether a system is hierarchical and if so
how many levels it has, etc., are all issues of the nature of the connec
tivity matrix. One important issue that may determine both how much
information can be stored and how much serial processing the network
must perform is the fan-in and fan-out of a unit. The fan-in is the
number of elements that either excite or inhibit a given unit. The fan
out of a unit is the number of units affected directly by a unit. Note,
in some cases we need more general patterns of connectivity. Specify
ing such a pattern in the general case is complex and will be addressed
in a later section of this chapter.

The rule of propagation. We also need a rule which takes the output
vector, 0 (t), representing the output values of the units and combines
it with the connectivity matrices to produce a net input for each type of
input into the unit. We let netij be the net input of type i to unit u).
Whenever only one type of connectivity is involved we suppress the
first subscript and use net) to mean the net input into unit u). In vec
tor notation we can write net; (I) to represent the net input vector for
inputs of type i. The propagation rule is generally straightforward. For
example, if we have two types of connections, inhibitory and excitatory,
the net excitatory input is usually the weighted sum of the excitatory
inputs to the unit. This is given by the vector product nete = Weo (I).
Similarly, the net inhibitory effect can be written as net j = W jO (t).
When more complex patterns of connectivity are involved, more com
plex rules of propagation are required. We treat this in the final section
of the chapter.

Activation rule. We also need a rule whereby the net inputs of each
type impinging on a particular unit are combined with one another and
with the current state of the unit to produce a new state of activation.
We need a function, F, which takes a (t) and the vectors net) for each
different type of connection and produces a new state of activation. In
the simplest cases, when F is the identity function and when all connec
tions are of the same type, we can write a (t+ 1) = Wo (t } = net (t}.
Sometimes F is a threshold function so that the net input must exceed
some value before contE8_fhVlWa&�'X/state of activation. Often,

52 THE PDP PERSPECTIVE

the new state of activation depends on the old one as well as the
current input. In general, however, we have

a (1+ 1) = F (a (t), net (I)" net(t h. .. .) ;

the function F itself is what we call the activation rule. Usually, the
function is assumed to be deterministic. Thus, for example, if a
threshold is involved it may be that aj (t) = 1 if the total input exceeds
some threshold value and equals 0 otherwise. Other times it is
assumed that F is stochastic. Sometimes activations are assumed to
decay slowly with time so that even with no external input the activa
tion of a unit will simply decay and not go directly to zero. Whenever
aj (t) is assumed to take on continuous values it is common to assume
that F is a kind of sigmoid function. In this case, an individual unit can
saturate and reach a minimum or maximum value of activation.

Perhaps the most common class of activations functions is the quasi
linear activation function. In this case the activation function, F , is a
nondecreasing function of a single type of input. In short,

aj (1+ 1) = F (netj (t)) = F <L wij OJ) .
j

It is sometimes useful to add the constraint that F be a differentiable
function. We refer to differentiable quasi-linear activation functions as
semilinear functions (see Chapter 8).

Modifying patterns oj connectivity as a function oj experience.
Changing the processing or knowledge structure in a parallel distributed
processing model involves modifying the patterns of interconnectivity.
In principle this can involve three kinds of modifications:

1. The development of new connections.
2. The loss of existing connections.
3 . The modification of the strengths of connections that already

exist.

Very little work has been done on (1) and (2) above. To a first order
of approximation, however, (1) and (2) can be considered a special
case of (3). Whenever we change the strength of connection away
from zero to some positive or negative value, it has the same effect as
growing a new connection. Whenever we change the strength of a con
nection to zero, that has the same effect as losing an existing connec
tion. Thus, in this section we will concentrate on rules whereby
strengths of connections are modified through experience.

Copyrighted Material

2. A FRAMEWORK FOR PDP 53

Virtually all learning rules for models of this type can be considered a
variant of the Hebbian learning rule suggested by Hebb in his classic
book Organization of Behavior (949) . Hebb's basic idea is this: If a
unit, U;, receives a input from another unit, Uj; then, if both are highly
active, the weight, wij, from Uj to U; should be strengthened. This idea
has been extended and modified so that it can be more generally stated
as

a W;j = g (a; (t) ,1; (I» h(Oj (t), w;) ,

where t; (t) is a kind of leaching input to U;. Simply stated, this equa
tion says that the change in the connection from Uj to U; is given by the
product of a function, gO, of the activation of U; and its teaching input
I; and another function, hO, of the output value of Uj and the con
nection strength wij. In the simplest versions of Hebbian learning there
is no teacher and the functions g and h are simply proportional to their
first arguments. Thus we have

where TJ is the constant of proportionality representing the learning
rate. Another common variation is a rule in which h (OJ (t), wij) = OJ (I)
and g (a; (I) ,1; (I» = TJ (I; (t)-a; (I». This is often called the Widrow
Hoff rule (Sutton & Barto, 1 98 1) . However, we call it the delta rule
because the amount of learning is proportional to the difference (or
delta) between the actual activation achieved and the target activation
provided by a teacher. (The delta rule is discussed at length in
Chapters 8 and 11.) In this case we have

a Wij = TJ (tj (I)-Oj (t))OJ (t).

This is a generalization of the perceptron learning rule for which the
famous perception convergence theorem has been proved. Still another
variation has

a Wij = TJOi (t) (OJ (t)- Wi)) .
This is a rule employed by Grossberg (1976) and a simple variant of
which has been employed in Chapter 5. There are many variations on
this generalized rule, and we will describe some of them in more detail
when we discuss various specific models below.

Representation of the environment. It is crucial in the development
of any model to have a clear model of the environment in which this
model is to exist. In PDP models, we represent the environment as a
time-varying stochastic function over the space of input patterns. That

Copyrighted Material

54 THE PDP PERSPECTIVE

is, we imagine that at any point in time, there is some probabil ity that
any of the possible set of i nput patterns is impinging on the input units.
This probabil ity function may in general depend on the history of
inputs to the system as wel l as outputs of the system. In practice, most
PDP models involve a much simpler characterization of the environ
ment. Typical ly, the environment is characterized by a stable probabi l ity
distribution over the set of possible input patterns independent of past
inputs and past responses of the system. In this case, we can i magine
listing the set of possible inputs to the system and numbering them
from 1 to M. The environment is then characterized by a set of proba
bil i ties , Pi for i = 1, . . . , M. Since each input pattern can be con
sidered a vector, it is sometimes useful to characterize those patterns
with nonzero probabi l ities as constituting orthogonal or linearly indepen
dent sets of vectors. 2 Certain PDP models are restricted in the kinds of
patterns they are able to learn: some being able to learn to respond
correctly only if the i nput vectors form an orthogonal set; others if they
form a l inearly independent set of vectors; and stil l others are able to
learn to respond to essentially arbitrary patterns of inputs.

CLASSES OF PDP MODELS

There are many paradigms and classes of PDP models that have been
developed. In this sect ion we describe some general classes of assump
tions and paradigms. In the fol lowing section we describe some specific
PDP models and show their relationships to the general framework out
lined here.

Paradigms of Learning

Although most learning rules have roughly the form indicated above,
we can categorize the learning situation into two distinct sorts. These
are:

• Associative learning, in which we learn to produce a partIcular
pattern of activati on on one set of units whenever another par
ticular pattern occurs on another set of units. In general , such
a learning scheme must allow an arbitrary pattern on one set of

2 See Chapter 9 for explication of these terms.

Copyrighted Material

2. A FRAMEWORK FOR PDP 55

units to produce another arbitrary pattern on another set of
units.

• Regularity discovery, in which units learn to respond to "interest
ing" patterns in their input. In general, such a scheme should
be able to form the basis for the development of feature detec
tors and therefore the basis for knowledge representation in a
PDP system.

In certain cases these two modes of learning blend into one another,
but it is valuable to see the different goals of the two kinds of learning.
Associative learning is employed whenever we are concerned with stor
ing patterns so that they can be re-evoked in the future. These rules
are primarily concerned with storing the relationships among subpat
terns. Regularity detectors are concerned with the meaning of a single
units response. These kinds of rules are used when feature discovery is
the essential task at hand.

The associative learning case generally can be broken down into two
subcases-pattern association and auto-association. A pattern association
paradigm is one in which the goal is to build up an association between
patterns defined over one subset of the units and other patterns defined
over a second subset of units. The goal is to find a set of connections
so that whenever a particular pattern reappears on the first set of units,
the associated pattern will appear on the second set. In this case, there
is usually a teaching input to the second set of units during training indi
cating the desired pattern association. An auto-association parad igm is
one in which an input pattern is associated with itself. The goal here is
pattern completion. Whenever a portion of the input pattern is
presented , the remainder of the pattern is to be filled in or completed .

This is similar to simple pattern association, except that the input pat
tern plays both the role of the teaching input and of the pattern to be
associated . It can be seen that simple pattern association is a special
case of auto-association. Figure 3 i l lustrates the two kinds of learning
parad igms. Figure 3A shows the basic structure of the pattern associa

tion situation. There are two distinct groups of units-a set of input

units and a set of output units. Each input unit connects with each out

put unit and each output unit receives an input from each input unit.

During train ing , patterns are presented to both the input and output

units. The weights connecting the input to the output units are modi

fied during this period. During a test, patterns are presented to the

input units and the response on the output units is measured . Figure

3B shows the connectivity matrix for the pattern associator. The only

modifiable connections are from the input units to the output units.

All other connections ate fixed tal, zero .. Fl igure 3C shows the hasic
(;opyngTi au Matena

56 THE PDP PERSPECTIVE

A B
Matrix at Cannectivities OJ

Inpul

UnllS

OUlpul

Unll.

SeIDl Inpul Unils Sel 01 Oulpul Unils

c 0

Inpul &
Oulput Units

Inputs

Inpul Unlls Oulpul Unll.

Modlflable
Welghls

Connacllvlly Malrl.

lor
Pall.rn Assoclalor

All weights

.r. Modifi abl.

Connecllvlly IIIllrl.
lor

AulO Auoetslor

FIGURE 3. A: The basic structure of the pattern association situation. There are two
distinct groups of units-a set of input units and a set of output units. Each input unit
connects with each output unit and each output unit receives an input from each input
unit. During training, patterns are presented to both the input and output units. The
weights connecting the input to the output units are modified during this period. During
a test, patterns are presented to the input units and the response on the output units is
measured. (After Anderson, 1977.) B: The connectivity matrix for the pattern associ a
tor. The only modifiable connections are from the input units to the output units. All
other connections are fixed at zero. C: The basic structure of the auto-association situa
tion. All units are both input and output units. The figure shows a group of 6 units
feeding back on itself through modifiable con nections. Note that each unit feeds back on
itself as well as on each of its neighbors. (After Anderson, Silverstein , Ritz , & Jones,
1977.) D: The connectivity matrix for the auto-associator. All units connect to all other
units with modifiable weights.

structure of the auto-association situation . All units are both input and
output units . The figure shows a group of 6 units feeding back on i tself
through modifi able connections. Note that each unit feeds back on
itself as well as on each of its neighbors . Figure 3D shows the connec
t ivity matrix for the auto-associator. All units connect to all other units
with modifiable weights. In the case of auto-association, there is

Copyrighted Material

2. A FRAMEWORK FOR PDP 57

potential ly a modifiable connection from every unit to every other unit .
In the case of pattern association, however, the units are broken into
two subpatterns, one representing the input pattern and another
representing the teaching input . The only modifiable connections are
those from the input units to the output units recei ving the teach ing
input. In other cases of associat ive learning the teachi ng input may be
more or less indirect . The problem of dealing wi th indirect feedback is
difficult , but central to the development of more sophisticated models
of learning . Barto and Sutton (I 98 1) have begun a nice analysis of
such learning si tuations.

In the case of regularity detectors, a teaching input is not expl icit ly
provided; i nstead, the teaching function is determined by the unit itself.
The form of the internal teachi ng funct ion and the nature of its input
patterns determine what features the unit will learn to respond to. This
is sometimes cal led unsupervised learning. Each different kind of
unsupervised learning procedure has its own evaluati on function . The
part icular evaluation procedures are mentioned when we treat these
models . The three unsupervised learning models discussed in this book
are addressed in Chapters 5 , 6, and 7 .

Hierarchical Organizations of PDP Networks

It has become commonplace in cognit ive science to describe such
processes as top-down , bottom-up, and interactive to consist of many
stages of processing, etc. It is useful to see how these concepts can be
represented in terms of the patterns of connect ivity in the PDP frame
work. It is also useful to get some feel i ng for the processing conse
quences of these various assumptions.

Bottom-Up Processing

The fundamental characteristic of a bottom-up system is that units at
level i may not affect the activity of units at levels lower than i. To
see how this maps onto the current formulation , it i s useful to partition
the coal i t ions of units into a set of discrete categories corresponding to
the levels their inputs come from. There are assumed to be no coal i
t ions wi th inputs from more than one level . Assume that there are L;
units at level i in the system. We then order the units such that those
in level L 1 are numbered u 1, • • . , UL

I' those in level L 2 are numbered

UL1+l, • • . ,UL1+L2, etc. �ectMal'U'aBtt that the system be a pure

58 THE PDP PERSPECTIVE

bottom-up system is equi valent to the constraint that the connectivity
matrix , W, has zero entries for wi} in which Uj is the member of a level
no higher than Uj. This amounts to the requirement that the upper
right-hand region of W contains zero entries. Table 1 shows this con
straint graphical ly. The table shows an example of a three-level system
wi th four units at each level . 3 This leads to a 1 2 x 12 connecti vity matrix
and an a vector of length 12 . The matrix can be di vided up into 9
regions. The upper-left region represents interactions among Level 1
units. The entries in the left-middle region of the matrix represents
the effects of Level 1 units on Level 2 uni ts . The lower-left region
represents the effects of Level 1 units on Level 3 units. Often
bottom-up models do not al low units at level i effect uni ts at level i+ 2.
Thus, in the diagram we have left that region empty representing no
effect of Level 1 on Level 3. I t is typical in a bottom-up system to
assume as wel l that the lowest level units (Level 1) are input units and
that the highest level units (Level 3) are output units . That is , the
lowest level of the system is the only one to receive d irect inputs from
outside of this module and only the highest level uni ts affect other
units outside of this module .

TABLE I

Levell Level 2 Level 3
Input Un its Hidden Units Output Units

ul u2 u3 u4 uS u6 u7 u8 u9 ulO ull u12

ul within
Levell u2 Level I

Units u3 effects
u4

uS Levell within
Level 2 u6 affecting Level 2

Units u7 Level 2 effects
u8

u9 Level 2 within
Level 3 ulO affecting Level 3

Units ull Level 3 effects
ul2

3 In general, of course, we would expect many levels and many units at each level.

Copyrighted Material

2. A FRAMEWORK FOR PDP 59

Top-Down Processing

The generalization to a hierarchical top-down system should be clear
enough. Let us order the units into levels just as before. A top-down
model then requires that the lower-left regions of the weight matrix be
empty-that is, no lower level unit affects a higher level unit. Table 2
illustrates a simple example of a top-down processing system. Note, in
this case, we have to assume a top-down input or "message" that is
propagated down the system from higher to lower levels as well as any
data input that might be coming directly into Levell units.

Interactive Models

Interactive models are simply models in which there can be both
top-down and bottom-up connections. Again the generalization is
straightforward. In the general interactive model, any of the cells of
the weight matrix could be nonzero. The more restricted models in
which information flows both ways, but in which information only
flows between adjacent levels, assume only that the regions of the
matrix more than one region away from the main diagonal are zero.
Table 3 illustrates a simple three-level interactive model with both top
down and bottom-up input. Most of the models that actually have been
suggested count as interactive models in this sense.

TABLE 2

Levell Level 2 Level 3
Input Units Hidden Units Output Units

ul u2 u3 u4 u5 u6 u7 u8 u9 ulO u11 ul2

ul within Level 2

Level I u2 Level I affecting

Units u3 effects Levell

u4

u5 within Level 3

Level 2 u6 Level 2 affecting

Units u7 effects Level 2

u8

u9 within

Level 3 ulO Level 3
Units u 1 1 effects

ul2 G6-{JYfighied MtJf� jar

60 THE PDP PERSPECTIVE

ul
Level I u2

Units u3
u4

uS
Level 2 u6

Units u7
uS

u9
Level 3 ulO
Units ull

ul2

TABLE 3

Level I Level 2 Level 3
Input Units Hidden Units Output Units

ul u2 u3 u4 uS u6 u7 uS u9 ulO ull u12

within Level 2
Level I affecting
effects Level I

Levell within Level 3
affecting Level 2 affecting
Level 2 effects Level 2

Level 2 within
affecting Level 3
Level 3 effects

It is sometimes supposed that a "single level" system wi th no
hierarchical structure in which any unit can communicate wi th any other
unit is somehow less powerful than these mult i level hierarchical sys
tems. The present analysis shows that , on the contrary, the existence of
levels amounts to a restriction, in general , of free communication among
all units. Such nonhierarchical systems actually form a superset of the
kinds of layered systems discussed above. There is, however, some
thing Ito the view that having multi ple levels can increase the power of
certain systems . In part icular, a "one-step" system consisting of only
input and output units and no communication between them in which
there is no opportunity for feedback or for hidden units is less powerful
than systems wi th hidden units and with feedback. Since, in general ,
hierarchical systems involve many hidden units, some intralevel com
munication , and some feedback among levels , they are more powerful
than systems not involving such hidden uni ts. However, a system with
an equal number of hidden units, but one not characterizable as
hierarchical by the communication patterns is, in general , of more
potential computational power. We address the issue of hidden uni ts
and "single-step" versus "multiple-step" systems in our discussion of
speci fic models below.

Copyrighted Material

2. A FR AMEWORK FOR PDP 61

Synchronous Versus Asynchronous Update

Even given al l of the components of the PDP models we have
described so far, there is st i l l another important issue to be resol ved in
the deve lopment of specifi c models; that is the t iming of the application
of the act ivation rule. In some models, there is a kind of central t iming
pulse and after each such c lock t ick a new value is determined simul
taneously for a l l uni ts . This is a synchronous update procedure. It i s
usually viewed as a discrete, difference approx imation to an underlying
cont inuous, differential equation in which al l units are contin uously
updated. In some models , however, units are updated asynchronously
and at random. The usual assumption is that at each point in t ime each
unit has a fixed probability of evaluating and applying its activation rule
and updating its activat ion value. This later method has certa in
theoretical advantages and was developed by Hopfield (1982) and has
been employed in Chapters 6, 7, and 14. The major advantage is that
si nce the units are independently being updated, if we look at a short
enough t ime interval , only one unit is updating at a time. Among
other thi ngs , this system can help the stabil ity of the network by
keeping it out of osc i l lations that are more readi ly entered into wi th
synchronous update procedures .

SPECIFIC VERSIONS OF THE GENERAL PARALLEL

ACTIV ATION MODEL

In the fol lowing sections we wil l show how specification of the partic
ular functions involved produces various kinds of these models . There
have been many authors who have contributed to the field and whose
work might as wel l have been discussed. We discuss only a representa
t ive sample of this work.

Simple Linear Models

Perhaps the simplest model of this class is the simple linear model.
In the simple l inear model , activation values are real numbers without
restrict ion. They can be ei ther posi t ive or negative and are not
bounded. The output function , f (a/), in the linear model is just equal
to the activation level ai' Typical ly, l inear models consist of two sets of
units: a set of input uetJp�t�c!fUaPJri&ftPut units . (As discussed

62 THE PDP PERSPECTIVE

below, there is no need for hidden units s ince all computation possible
with a mult iple-step l inear system can be done with a single-step linear
system.) In general , any unit in the input layer may connect to any unit
i n the output layer . All connections in a l inear model are of the same
type. Thus, only a single connectivity matrix is required . The matrix
consists of a set of posit ive, negative, and zero values , for exci tatory
values , inhibitory values, and zero connections, respectively . The new
value of act ivation of each unit i s s imply given by the weighted sums of
the inputs. For the simple l inear model with connectivity matrix W we
have

a(t+1) = Wa(t).

In general , it can be shown that a l inear model such as thi s has a
number of l imitations . In particular, it can be shown that nothing can
be computed from two or more steps that cannot be computed by a
single step. This fol lows because the above equation implies

a (t) = W' a (0).

We can see this by proceedi ng step by step. Clearly ,

a (2) = Wa (1) = W (Wa (0» = W 2a (0) .

It should be clear that similar arguments lead to a (t) = W' a (0).
From this, it fol lows that for every l inear model with connecti vity
matrix W that can attain a particular state in t steps, there i s another
l inear model with connectivity matrix W (that can reach the same state
in one step. This means, among other things , that there can never be
any computational advantage in a linear model of multi ple-step sys
tems, nor can there ever be any advantage for allowing feedback .

The pattern association paradigm is the typical learning situation for a
l inear model . There is a set of input units and a set of output units. In
general , each input un i t may be connected to any output un i t . Since
this is a l inear network , there is no feedback in the system nor are
there hidden units between the i nputs and outputs. There are two
sources of input in the system. There are the input patterns that estab
l i sh a pattern of act ivation on the input units, and there are the teach
ing units that establish a pattern of activation on the output uni ts. Any
of several learn ing rules could be employed with a l inear network such
as this, but the most common are the simple Hebbian rule and the
delta rule. The l inear model wi th the simple Hebbian rule is called the
simple linear associator (cf. Anderson , 1970; Kohonen , 1977, 1984). In
thi s case, the increment in weight wI} is given by A wi} = TJaj t;. In
matrix notation , this means that A W = TJT aT. The system is then
tested by presenting an input pattern without a teaching input and

Copyrighted Material

2. A FRAMEWORK FOR PDP 63

seeing how close the pattern generated on the output layer matches the
original teaching input . It can be shown that if the input patterns are
orthogonal,4 there wi l l be no interference and the system wil l perfectly
produce the relevant associated patterns exactly on the output layer. If
they are not orthogonal , however, there wi l l be interference among the
input patterns. It i s possible to make a modification in the learning rule
and al low a much larger set of possible associations. In part icular, it is
possible to build up correct associations among patterns whenever the
set of input patterns are l inearly independent. To achieve this, an error
correcting rule must be employed . The delta rule is most commonly
employed. In this case, the rule becomes !:1wij = ",(tj-aj)aj' What is
learned i s essent ia l ly the difference between the desi red response and
that actually attained at uni t Uj due to the input . Al though i t may take
many presentations of the input pattern set , if the patterns are linearly
independent the system wi l l eventual l y be able to produce the desired
outputs . Kohonen 0977, 1984) has provided an important analysis of
this and related learn ing rules.

The examples descri bed above were for the case of the pattern asso
ciator. Essential l y the same results hold for the auto-associator version
of the l inear model . In this case, the input patterns and the teaching
patterns are the same, and the input layer and the output layer are also
the same. The tests of the system involve presenting a portion of the
input pattern and having the system attempt to reconstruct the missing
parts.

Linear Threshold Units

The weaknesses of purely l inear systems can be overcome through
the addi t ion of nonlineari t ies . Perhaps the s implest of the nonlinear
system consists of a network of l inear threshold units . The linear
threshold unit is a binary unit whose act i vation takes on the values
{O, I} . The act i vation value of unit Uj i s I if the weighted sum of its
inputs i s greater than some threshold 9 j and i s 0 otherwi se. The con
nectivity matri x for a network of such un its, as in the l inear system, is
a matrix consisting of posi t ive and negat ive numbers . The output func
tion, /, is the identity function so that the output of a unit is equal to
its acti vation value.

4 See Chapter 9 for a discussion of orthogonality, linear independence, etc.

Copyrighted Material

64 THE PDP PERSPECTIVE

It is useful to see some of the kinds of functions that can be com
puted with l inear threshold units that cannot be computed with simple
l inear models. The classic such function is the exclusive or (XOR) i l lus
t rated in Figure 4 . The idea is to have a system which responds (I } if it
receives a (0, l) or a (1 ,OJ and responds (O} otherwise . The figure
shows a network capable of this pattern. In this case we requi re two

Outp ut
Unit

Internal
Units

Input
Units

XOR Netwo rk

+1 + 1

Thresholds = .01

Input Output

1 1 J 0
0 0

1 0] 1
0 1

FIGURE 4. A network of linear threshold un i ts capable of responding correct ly on the
XOR problem .

Copyrighted Material

2. A FRAMEWORK FOR PDP 65

layers of units . Each unit has a zero threshold and responds just in case
i ts input is greater than zero. The weights are ± 1 . Si nce the set of
st i mul us patterns is not l inearly independent, this is a discri mination
that can never be made by a si mple l inear model and cannot be done in
a single step by any network of l inear threshold units .

Although mult i layered systems of li near threshold units are very
powerful and, in fact , are capable of computing any boolean function ,
there is no general ly known learning algori thm for this general case
(see Chapter 8) . There is , however, a wel l -understood learning algo
rithm for the special case of the perceplron. A perceptron is essential ly
a single- layer network of l inear threshold units without feedback. The
learning s i tuation here is exactly the same as that for the l i near model .
An input pattern is presented along with a teaching input . The percep
tron learning rule is precisely of the same form as the del ta rule for
error correcting in the l inear model, namely, � wij = 'Y/ (/;-a;)aj . Si nce
the teaching input and the acti vat ion values are only 0 or 1, the rule
reduces to the statements that:

1. Weights are only changed on a given input l ine when that l ine
is turned on (Le . , aj = O .

2. If the system is correct on unit i (i . e . , I; = a;) , make no change
on any of the input weights .

3 . If the unit j responds 0 when i t should be I , increase weights
on all active l ines by amount 'Y/ .

4. If the un i t j responds 1 when i t should be 0, decrease weights
on al l act ive l ines by amount 'Y/ .

There is a theorem, the perceptron convergence theorem, that guaran

tees that i f the set of patterns are learnable by a perceptron , th is learn

ing procedure wi l l find a set of weights which al low it to respond

correctly to all input patterns. Unfortunately , even though mult i layer

l inear threshold networks are potential ly much more powerful than the

l inear associator , the percept ron for which a learni ng result exists can

learn no patterns not learnable by the l inear associator. It was the l im i

tat ions on what perceptrons could possibly learn that led to Minsky and

Papert ' s (969) pessimistic evaluation of the perceptron . Unfortunately

that evaluation has incorrectly tainted more i nteresting and powerful

networks of l inear threshold and other nonl inear units . We have now

developed a version of the delta rule - the generalized delta rule - which

is capable of learn ing arbi trary mappings . It does not work for l inear

threshold units but does workh foL the class of semilinear activation , (.;opyng teu Matenal

66 THE PDP PERSPECTiVE

funct ions (i .e . , differentiable activation funct ions) . See Chapter 8 for a
ful l discussion. As we shall see in the course of this book, the l i mita
t ions of the one-step perceptron in no way apply to the more complex
networks .

Brain State in a Box

The brai n state in a box model was developed by J . A. Anderson
(I 977) . This model too is a close relati ve of the s imple l inear associa
tor . There is , however, a maximum and minimum activation value
associated with each unit . Typical ly , units take on activat ion values in
the interval [- I , l L The brain state in a box (BSB) models are organ
ized so that any unit can, in general , be connected to any other unit .
The auto-associator i l lustrated in Figure 3 i s the typical learning para
digm for BSB. Note that with this pattern of interconnections the sys
tem feeds back on i tself and thus the activation can recycle through the
system in a posi t ive feedback loop. The posi t ive feedback is especially
evident in J . A . Anderson and Mozer ' s (1 98 0 version . Their acti vation
rule is gi ven by

aj (t + I) = aj (1)+ L wij a; (I)

i f aj is less than I and greater than - I . Otherwise , if the quantity is
greater than I , aj = I and if i t i s less than - I , aj = - 1 . That is , the
activation state at t ime t+ 1 i s given by the sum of the state at t ime t
and the act ivation propagated through the connectivi ty matrix provided
that total is i n the interval [- I , l l . Otherwise i t si mply takes on the
maximum or minimum value. This formulat ion wi l l lead the system to
a state in which all of the uni ts are at either a maximum or minimum
value . It i s possible to understand why this is cal led a brain state in a
box model by consideri ng a geometric representation of the system.
Figure 5 i l lustrates the " act ivation space " of a simple BSB system con
sist ing of three units . Each point in the box corresponds to a particular
val ue of act ivation on each of the three units . In this case we have a
three-di mensional space i n which the first coordinate corresponds to the
activat ion value of the fi rst un i t , the second coordinate corresponds to
the act i vation val ue of the second uni t , and the th i rd coordinate
corresponds to the activat ion value of the th i rd unit . Thus, each point
in the space corresponds to a possi ble state of the system. The feature
that each unit i s l imi ted to the region (- I , l l means that all points must
l ie somewhere wi thin the box whose vertices are given by the points
(- 1 ,- 1 ,- 0 , (- 1 ,- 1 ,+ I) , (- 1 ,+ 1 ,- 0 , (- 1 ,+ 1 ,+ 0 , (+ 1 ,- 1 ,- 0 ,
(+ 1 ,- 1 ,+ 0 , (+ 1 ,+ 1 ,- 0 , and (+ 1 ,+ 1 ,+ 0 . Moreover, since the

Copyrighted Material

(-, + ,+)

2 . A FRAMEWORK FOR PDP 67

(- , - ,+)
I-----'"�-----..{

Act ivat ion !
of U n i t 2

(- , -,-) ----------.1

Act ivat ion of Un i t 1

(+ .+ .-)

FIGURE 5 . The state space for a three-unit version o f a BSB model . Each d imension of
the box represents the act ivation value of one unit . Each unit is bounded in act i vation
between [- I , l l . The curving arrow in the box represents the sequence of states the sys
tem moved through. It began at the black spot near the middle of the box and, as pro
cessing proceeded, moved to the (- ,+ ,+) corner of the box . BSB systems a lways end up
in one or another of the corners. The particular corner depends on the start state of the
network, the input to the system, and the pat tern of connections among the units.

system involves posit ive feedback, it is eventually forced to occupy one
of these vertices . Thus, the state of the system is constrained to lie
within the box and eventually , as processing cont inues , is pushed to
one of the vertices. Of course, the same geometric analogy carries over
to higher dimensional systems. If there are N units, the state of the
system can be characterized as a point within this N-dimensional hyper
cube and eventually the system ends up in one of the 2N corners of the
hypercube.

Copyrighted Material

68 THE PDP PERSPECTIVE

Learning in the BSB system involves auto-association. In different
applications two different learning rules have been applied. J. A .
Anderson and Mozer (1 98 1) appl ied the simplest rule. They simply
al lowed the system to settle down and then employed the simple Heb
bian learning rule . That is, � wI} = 'Y/a/ aj ' The error correction rule has
also been applied to the BSB model . In this case we use the input as
the teaching input as wel l as the source of act ivation to the system.
The learning rule thus becomes � wI} = 'Y/ (t,-a,) aj where t, is the input
to .unit i and where a, and aj are the act ivation val ues of the system
after it has stabi l ized in one of the corners of the hypercube.

Thermodynamic Models

Other more recent developments are the thermodynamic models .
Two examples of such models are presented in the book . One, har
mony theory, was developed by Paul Smolensky and is described in
detai l in Chapter 6 . The other, the Boltzmann machine, was developed
by Hinton and Sejnowski and is described in Chapter 7 . Here we
describe the basic . idea behind these models and show how they relate
to the general class of models under discussion . To begin , the thermo
dynamic models employ binary units which take on the values { O, 1) .

The units are divided into two categories: the visible units correspond
ing to our input and output units and the hidden units . In general , any
unit may connect to any other unit . However , there is a constraint that
the connections must be symmetric . That is , the wi} = wji ' In these
models, there is no distinction between the output of the unit and its
acti vation value. The act ivation values are , however , a stochastic func
tion of the inputs. That is,

where 'Y/, i s the input from outside of system into unit i , 0, i s the
threshold for the uni t , and T is a parameter, called temperature, which
determines the slope of the probabi l i ty function. Figure 6 shows how
the probabi l i t ies vary wi th various values of T. It should be noted that
as T approaches zero , the individual units become more and more l i ke
l inear threshold units . In general , if the unit exceeds threshold by a
great enough margin it wi l l always attain value 1 . If it is far enough
below threshold, i t always takes on value O. Whenever the uni t is
above threshold, the probabi l i ty that i t wi l l turn on is greater than 1 12 .

Copyrighted Material

2. A FRAMEWORK FOR PDP 69

1 . 0 r--------��__:::;:::=o-__ ==---..,

Temperature
0.8

0.6

0.4

0.2

0.0 L-....... """=:I:::::::l;.......J. :::::::L........Ic::�---L........L....L....l........l...-...L..l.-.l...- .L-L-1
-25 -20 - 1 5 - 1 0 -5 0 5 1 0 1 5 20 25

Net Input

FIGURE 6. Probabil ity of at tain ing value 1 as a function o f t h e d istance o f the i n pu t of

the u n i t from threshold . The fu nction is plotted for several val ues of T.

Whenever i t i s below threshold , the probabi l i ty that i t wi l l turn off i s
greater than 1 12 . The temperature si mply determines the range of
uncertainty as to whether it wi l l turn on or off. Th is particular
configuration of assumptions al lows a formal analogy between these
models and thermodynamics and allows the proof of theorems concern
ing i ts performance as a function of the temperature of the system .
This is not the place to discuss these theorems in detai l , suffice it to say
that this system, l i ke the BSB system , can be viewed as attain ing states
on the corners of a hypercube. There i s a global measure of the degree
to which each state of the system is consistent with its i nput . The sys
tem moves i nto those states that are maximally consistent with the
input and wi th the internal constraints represented by the weights. It
can be shown that as the temperature approaches 0, the probabi l i ty that
the system attains the maximally consistent state approaches 1 . These
results are discussed in some detai l in Chapters 6 and 7 .

There i s a learn ing scheme associated with the Boltzmann machine
which i s somewhat more complex than the others . In this case , the
learning events are divided into two phases . During one phase , a set of
patterns is randomly presented to the visi ble uni ts and the system is
al lowed to respond to each in turn. During this phase of learning, the
system is environmental�h(eaf �aHebbian rule is assumed to

70 THE PDP PERSPECTIVE

apply so that Il Wjj = .,., aj aj . Note, since acti vati ons take on values of 0
and 1 this says that the weight is i ncremented by an amount .,., when
ever unit ; and j are on, otherwise no change occurs . During the
second phase of learning, the system is al lowed to respond for an equal
period of t ime in a so-cal led free-running state in which no inputs are
presented . S ince the system is stochastic, i t wi l l cont inue to respond
even though no actual stimuli are presented . During this phase , a s im
ple anti -Hebbian rule i s employed, Il wi} = -.,.,aj Qj ' The i ntui t ion is
roughly that the performance during the environmental ly driven phase
is determined by both the pattern of interconnections and by the
environment . The performance during the free-running phase is deter
mined only by the internal set of connections. To correctly reflect the
environment, we should look at its performance due to the environ
ment plus internal structure and then subtract out its performance due
to internal structure alone. This is actually quite a powerful learning
scheme. It can be shown that i f a portion of the input units are turned
on after the system has learned, it wi l l complete the remain ing portion
of the visible uni ts with the probabi l i ty that those units had been
present in the st imulus patterns given the subpattern that had been
turned on. These issues are again addressed in Chapter 7 .

Grossberg

Stephen Grossberg has been one of the major contributors to models
of this c lass over the years. His work is complex and contains many
important details which we cannot review here . We will i nstead
describe some of the central aspects of his work and show how i t relates
to the general framework. Perhaps the clearest summary of
Grossberg's work appears in Grossberg (1 980) . Grossberg's units are
allowed to take on any real act ivation value between a minimum and a
maximum value. The output function is , in many of Grossberg's appl i
cations , a threshold function so that a given unit wi l l affect another unit
only if its act ivation level is above i ts threshold. Moreover, Grossberg
argues that the output function must be a sigmoid or S-shaped function
of the act ivation val ue of the unit. Grossberg's activation rule is rather
more complex than the others we have discussed thus far in that excita
tory and inhibitory inputs don't s imply sum, but appear separately in
the activation rule. Grossberg has presented a number of possible
act ivation rules , but they typically have the form

Copyrighted Material

2. A FRAMEWORK FOR PDP 7 1

aj (1+ 1) = aj (r) O-A) + (B-aj (r) netej (t) - (aj (t }+ C) neti) (t)

where A is the decay rate, B represents the maximal degree of excita
t ion of the un i t , and C i s much smaller in magnitude than B and
represents the maximal amount the uni t can be inhibi ted below the
resti ng value of O. Grossberg general ly assumes that the inhi bi tory
inputs come from a kind of recurrent inhibitory field in which the unit
is embedded and the excitatory inputs come from the unit i tself and
from another level of the system.

Grossberg has studied learning in these networks over a number of
years and has studied several different learning schemes. The learning
rule he has studied most , however, i s s imi lar to the one analyzed in
Chapter 5 and is given by

A wi) = "f) a; (OJ- wi) .

Grossberg has appl ied this and s imi lar learning rules in a number of
cases, but a review of these appl ications i s beyond the scope of the
present discussion.

Interactive Activation Model

The interacti ve acti vation model of McClel land and Rumelhart
(98 1) and Rumelhart and McClelland (982) had units which
represented visual features, letters and words. Units could take on any
value in the range [min, max] . The output function was a threshold
function such that the output was 0 if the activation was below
threshold and was equal to the difference of the activat ion value and
the threshold if the activation was above threshold . The interactive
act ivation model involves a connect iv i ty pattern in which units are
organized in layers , such that an element in a layer connects with exci
tatory connections with all elements in the layers above and below that
are consistent wi th that unit , and connects negati vely to al l uni ts i n the
layers above and below that are i nconsistent wi th that un i t . In addit ion ,

each unit inhibi ts al l uni ts in its own layer that are inconsistent with the
unit in quest ion . Thus, the interactive acti vation model is a ki nd of

posit ive feedback systerr.. with maximum and minimum values for each

uni t , l i ke the BSB model . The information coming i nto each unit i s

weighted (by the interconnection strengths) and summed algebraical ly

to yield a " net i nput" to the uni t . Let net) = r. Wi) a; be the net input to

unit j . This net input i s then combined wi th the previous acti vation

Copyrighted Material

72 THE PDP PERSPECfIVE

value to produce the new activation value according to the fol lowing
acti vation rule:

where e is the decay rate of the act ivation given no input. In other
words, the new act ivation value is given by the old activation value
properly decayed, plus (or minus) a factor that pushes toward the
minimum or maximum value depending on the magni tude of the net
input into the uni t . This acti vation rule is s imi lar to that employed by
Grossberg, except in this formulat ion the excitation and inhibit ion are
algebraical ly combined .

The interacti ve act ivation model was designed as a model for a pro
cessing system and our goals were to show how we could account for
specific aspects of word perception . Thus, there was no specific model
of learning proposed to explain where the particular network we
assumed came from. As we shall see, much of the work on learning
reported in this book has been aimed at giving plausible accounts of
how such a network might have been learned . (See especial ly Chapters
5 and 6 .)

Feldman and Ballard

Feldman and Bal lard (982) have proposed a framework they cal l
connectionist modeling. The units have cont inuous act i vation val ues ,
which they cal l potential which can take on any value in the range
[- 10, 10] . Their output function is a kind of threshold functIOn which
is al lowed to take on a smal l number of discrete integer values
(O� OJ � 9) . They have proposed a number of other unit types each
with a somewhat different act ivation rule. Thei r s implest unit type is
what they call the P-unit . In this case the act ivation rule is given by

aj (t + 1) = aj (t) + (3 netj (r) .

Once the activation reaches its maximum or minimum value i t i s sim
ply pinned to that value. Decay is implemented by self inhibit ion.
Feldman and Bal lard also have a cOrUunctive unit similar to our sigma-pi
uni ts described below. Feldman 0 98 I) has also considered learning.
In general , the approach to learning offers more machinery than is
avai lable wi thin our current framework . In practice, however, the
learning rules actually examined are of the same class we have al ready
discussed .

Copyrighted Material

SIGMA-PI UNITS

2 . A FRAM EWORK FOR PDP 73

Before completing our section on a general framework , i t should be
mentioned that we have sometimes found i t useful to postulate units
that are more complex than those descri bed up to this point in this
chapter . In our descript ions thus far , we have assumed a si mple addi
t ive unit i n which the net input to the unit is given by L wij a/ . This i s
certainly the most common form in most of our models . Somet imes,
however, we want mult ip l icat ive connections in which the output val ues
of two (or possibly more) units are mUlt ip l ied before entering into the
sum. Such a mult ipl icative connection a l lows one unit to gate another.
Thus, if one unit of a mult ip l icat ive pai r i s zero , the other member of
the pai r can have no effect , no matter how strong its output . On the
other hand, i f one unit of a pai r has val ue 1 , the output of the other is
passed unchanged to the receiving unit . Figure 7 i l lustrates several
such connections. In this case , the input to unit A is the weighted sum
of the products of units B and C and units D and E. The pairs, BC and
DE are cal led co,yuncts. In this case we have conjuncts of size 2 . In
general , of course , the conjuncts could be of any size. We have no
appl ications, however, which have required conjuncts larger than s ize 2 .
In general , then , we assume that the net input to a un i t i s given by the
weighted sum of the products of a set of individual inputs. That is, the
net input to a unit is given by L wijIIai \ai 2 • . . aik where i i ndexes the

conjuncts impinging on unit j and Ui \ ' Ui 2 • • • • • Uik are the k units in

the conjunct . We cal l units such as these sigma-pi units.
In addi tion to their use as gates, sigma-pi units can be used to con

vert the output level of a unit into a signal that acts l ike a weight con
necting two units. Thus, assume we have the pattern of connections
i l lustrated in the figure. Assume further that the weights on those con
nections are all 1 . In this case, we can use the output levels of uni ts B
and D to, i n effect , set the weights from C to A and E to A respec
tively. S ince, in general , it is the weights among the units that deter
mine the behavior of the network, sigma-pi units al low for a dynami
cal ly programmable network in which the act ivation value of some units
determine what another network can do.

In addit ion to i ts general usefulness in these cases, one might ask
whether we might not someti me need st i l l more complex patterns of
interconnections. Interestingly , as described in Chapter 10 , we wi l l
never be forced to develop any more complex interconnection type,
since sigma-pi units are sufficient to mimic any function monotonic of
i ts inputs .

Copyrighted Material

74 THE PDP PERSPECTIVE

Sigma Pi Units

Con) - QB . QC
Con 2 - aD ' aE

FIGURE 7. Two conjunct ive inputs to unit A from the conjunct B and C and D and E.
The input to unit A is the sum of the product of the outputs of units BC and DE.

CONCLUSION

We have provided a very general mathematical and conceptual
framework within which we develop our models . This framework pro
vides a language for expressing PDP models, and, though there i s a lot
of freedom within i t , it is at least as constrained as most computational
formalisms, such as production systems or high- level languages such as
Lisp.

We must take note of the fact, however , that the framework does
not specify a/l of the constraints we have imposed on ourselves in our
model building efforts. For example , virtually any computing device ,
serial or paral lel, can be described in the framework we have described
here .

Copyrighted Material

2. A F R A MEWORK FOR PDP 75

There is a further set of considerat ions which has gu ided our particu
lar formulations. These further considerations arise from two sources :
our bel iefs about the nature of the hardware avai lable for carrying out
mental processes in the brain and our bel iefs about the essential charac
ter of these mental processes themselves. We discuss below the addi
t ional constraints on our model bui lding which arise from these two
bel iefs .

.
Fi rst , the operat ions in our models can be characterized as .. neural ly

inspi red . " We wish to replace the " computer metaphor" as a model of
mind with the " brai n metaphor" as model of mind . This leads us to a
number of considerations which further inform and constrai n our
model bu i lding efforts . Perhaps the most crucial of these is t ime. Neu
rons are remarkably slow relati ve to components in modern computers .
Neurons operate in the t ime scale of m i l l iseconds whereas computer
components operate in the time scale of nanoseconds - a factor of 106
faster. This means that human processes that take on the order of a
second or less can involve on ly a hundred or so t ime steps . Si nce most
of the processes we have studied- perception, memory retrieval , speech
processing , sentence comprehension, and the l i ke - take about a second
or so, i t makes sense to impose what Feldman (985) cal ls the " 1 00-
step program " constraint . That i s , we seek explanations for these men
tal phenomena which do not requi re more than about a hundred ele
mentary sequent ial operat ions. Given that the processes we seek to
characterize are often quite complex and may involve consideration of
l arge numbers of s imultaneous constraints, our algori thms must involve
considerable paral le l ism. Thus , although a serial computer could be
created out of the kinds of components represented by our units, such
an i mplementat ion would surely violate the 1 00-step program constraint
for any but the s implest processes .

A second considerat ion differentiates our models from those inspi red
by the computer metaphor: that is , the constraint that all the

knowledge is in the connections. From conventional programmable com

puters we are used to thinking of knowledge as being stored in the state

of certain units in the system. In our systems we assume that only very

short term storage can occur in the states of uni ts; long term storage

takes place in the connections among units . Indeed , it is the

connect ions - or perhaps the rules for forming them through

experience -which primari ly differentiate one model from another.

This i s a profound difference between our approach and other more

conventional approaches, for it means that almost al l knowledge is

implicit in the structure of the device that carries out the task rather

than explicit i n the states of units themsel ves. Knowledge is not di rectly

accessi ble to interpretation by some separate processor, but i t is bui l t

i n to the processor i tself and d i rect ly determines the course of
Copyrighted Material

76 THE PDP PERSPECTIVE

processing. It is acquired through tuning of connections as these are
used in processing, rather than formulated and stored as declarati ve
facts.

In addition to these two neurally inspi red working assumptions, there
are a number of other constraints that derive rather di rectly from our
understanding of the nature of neural information processing. These
assumptions are discussed more fully in Chapter 4.

The second class of constraints arises from our beliefs about the
nature of human information processing considered at a more abstract ,
computational level of analysis . We see the kinds of phenomena we
have been studying as products of a kind of constraint satisfaction pro
cedure in which a very large number of constraints act s imultaneously
to produce the behavior. Thus , we see most behavior not as the pro
duct of a single, separate component of the cogni tive system, but as the
product of large set of i nteracting components, each mutually constrain
ing the others and contributing in its own way to the global ly observ
able behavior of the system. It is very difficult to use serial algori thms
to implement such a conception , but very natural to use highly paral lel
ones . These problems can often be characterized as best match or
optimization problems. As Minsky and Papert (I 969) have pointed out,
i t i s very difficult to solve best match problems serially. However , this
i s precisely the kind of problem that i s readi ly implemented using
highly parallel algorithms of the kind we consider in this book . See
Kanerva (I 984) for a discussion of the best match problem and its
solution with paral lel processing systems .

To summarize , the PDP framework consists not only of a formal
language, but a perspective on our models. Other qual i tative and quan
ti tative considerations arising from our understanding of brain process
ing and of human behavior combine with the formal system to form
what might be viewed as an aesthetic for our model building enter
prises . The remainder of our book is largely a study of this aesthetic in
practice.

ACKNOWLEDGMENTS

This research was supported by Contract N0001 4-79-C-03 23 , NR
667-437 with the Personnel and Training Research Programs of the
Office of Naval Research , by grants from the System Development
Foundation , and by a NIMH Career Development Award (MHOO385)
to the second author.

Copyrighted Material

CHAPTER 3

Distributed Representations

G. E. HINTON, 1. L. McCLELLAND, and D. E. RUMELHART

Given a network of simple computing elements and some ent i t ies to
be represented, the most straightforward scheme is to use one comput
ing element for each entity. Th is is cal led a local representation. It i s
easy to understand and easy to implement because the structure of the
physical network mirrors the structure of the knowledge i t contains.
The naturalness and s impl icity of this relationsh ip between the
knowledge and the hardware that implements i t have led many people
to simply assume that local representations are the best way to use
paral lel hardware . There are, of course, a wide variety of more compl i
cated implementations in which there is no one-to-one correspondence
between concepts and hardware uni ts, but these implementations are
only worth considering if they lead to increased efficiency or to
interest ing emergent propert ies that cannot be conveniently ach ieved
using local representations.

This chapter describes one type of representation that is less fami l iar
and harder to th ink about than local representations. Each ent i ty is
represented by a pattern of act ivi ty distri buted over many computing
elements, and each computing element is involved in represent ing
many di fferent entities. The strength of this more complicated kind of
representation does not l i e in i ts notational convenience or i ts ease of
implementation i n a convent ional computer, but rather in the efficiency
with which i t makes use of the processing abi lities of networks of sim
ple, neuron- l ike computing elements.

Copyrighted Material

78 THE PDP PERSPECTIVE

Every representational scheme has its good and bad points. Distrib
uted representations are no exception. Some desirable properties arise
very naturally from the use of patterns of activity as representations.
Other properties, like the ability to temporarily store a large set of arbi
trary associations, are much harder to achieve . As we shall see, the
best psychological evidence for distributed representations is the degree
to which their strengths and weaknesses match those of the human
mind.

The first section of this chapter stresses some of the virtues of
distributed representations. The second section considers the efficiency
of distributed representations, and shows clearly why distributed
representations can be better than local ones for certain classes of prob
lems. A final section discusses some difficult issues which are often
avoided by advocates of distributed representations, such as the
representation of constituent structure and the sequential focusing of
processing effort on different aspects of a structured object.

Disclaimers. Before examining the detailed arguments in favor of
distributed representations, it is important to be clear about their status
within an overall theory of human information processing. It would be
wrong to view distributed representations as an alternative to representa
tional schemes like semantic networks or production systems that have
been found useful in cognitive psychology and artificial intelligence. It
is more fruitful to view them as one way of implementing these more
abstract schemes in parallel networks, but with one proviso: Distrib
uted representations give rise to some powerful and unexpected emer
gent properties. These properties can therefore be taken as primitives
when working in a more abstract formalism. For example, distributed
representations are good for content-addressable memory, automatic
generalization, and the selection of the rule that best fits the current
situation . So if one assumes that more abstract models are imple
mented in the brain using distributed representations, it is not unrea
sonable to treat abilities like content-addressable memory, automatic
generalization, or the select ion of an appropriate rule as primitive
operations, even though there is no easy way to implement these opera
tions in conventional computers. Some of the emergent properties of
distributed representations are not easily captured i n higher-level for
malisms. For example, distributed representations are consistent with
the simultaneous application of a large number of partially fitting rules
to the current situation, each rule being applied to the degree that it is
relevant. We shall examine these properties of distributed representa
tions in the chapter on schemata (Chapter 14). There we will see clearly
that schemata and other higher-level constructs provide only approxi
mate characterizations of mechanisms which rely on distributed

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 79

representat ions. Thus, the contribution that an analysis of distri buted
representations can make to these nigher-level formalisms is to legit i
mize certain powerful, primitive operations which would otherwise
appear to be an appeal to magic; to enrich our repertoire of primit ive
operat ions beyond those which can conveniently be captured in many
higher-level formalisms; and to suggest that these higher-level formal
isms may only capture the coarse features of the computational capabi l i
t ies of the underlying processing mechanisms.

Another common source of confus ion is the idea that distributed
representations are somehow in conflict with the extensive evidence for
localization of function in the brain (Luria, 1973). A system that uses
distributed representations still requires many different modul('s for
representing completely different ki nds of thing at the same time. The
distributed representations occur within these localized modules. For
example, different modules would be devoted to things as different as
mental i mages and sentence structures, but two different mental images
would correspond to alternative patterns of activ i ty in the same module.
The representations advocated here are local at a global scale but global
at a local scale.

VIRTUES OF DISTRIBUTED REPRESENTATIONS

This section considers three important features of dist ributed
representations: (a) their essential ly constructive character; (b) thei r
ability to general ize automatical ly to novel s i tuations ; and (c) their
tunability to changing envi ronments. Several of these vi rtues are
shared by certain local models, such as the interact i ve activation model
of word perception, or McClelland's (1980 model of generalizat ion and
retrieval descri bed in Chapter 1.

Memory as Inference

People have a very flexible way of accessing their memories: They
can recall i tems from partial descript ions of their contents (Norman &
Bobrow, 1979). Moreover, they can do this even if some parts of the
partial description are wrong . Many people , for example, can rapidly
retrieve the i tem that sati sfies the fol lowing partial descript ion: I t is an
actor, it is intelligent, it is a polit ic ian . This kind of content-addressable
memory i s very useful and it .is very hard. to implement on a conven
tional computer becaus'i°eKf$!!£efSM�o�J each item at a particular

80 THE PDP P ERSP ECTIVE

address, and to retrieve an item they must know its address. If all the
combinat ions of descriptors that wil l be used for access are free of
errors and are known in advance, it i s possible to use a method called
hash coding that quickly yields the address of an i tem when given part
of its content. In general , however , content-addressable memory
requires a massive search for the i tem that best fi ts the partial descrip
t ion. The central computational problem in memory is how to make
th is search efficient . When the cues can contain errors, th is is very d if
ficult because the fai lure to fi t one of the cues cannot be used as a fi lter
for quickly e l iminat ing i nappropriate answers.

Distributed representations provide an efficient way of using parallel
hardware to implement best-fi t searches. The basic idea is fai rly sim
ple, though i t is quite unlike a convent ional computer memory. Dif
ferent i tems correspond to different patterns of act ivi ty over the very
same group of hardware units. A partial descript ion is presented in the
form of a part ial acti vity pattern , activating some of the hardware
units. 1 I nteract ions between the units then al low the set of acti ve units
to influence others of the units , thereby complet ing the patteft1, and
generat ing the item that best fits the descript ion. A new item is
"stored" by modifying the i nteractions between the hardware units so as
to create a new stable pattern of acti vity. The main d ifference from a
conventional computer memory is that patterns which are not acti ve do
not exist anywhere . They can be re-created because the connection
strengths between units have been changed appropriately, but each con
nection strength is involved in storing many patterns, so it i s impossible
to point to a part icular place where the memory for a particular i tem is
stored .

Many people are surprised when they understand that the connec
t ions between a set of simple processing units are capable of supporting
a large number of d ifferent patterns. I l lust rations of this aspect of dis
tri buted models are provided i n a number of papers in the literature
(e.g., Anderson , 1 977; Hinton, 1 981a) ; this property is i l lustrated in
the model of memory and amnesia described i n Chapters 17 and 25.

One way of thinking about distributed memories is in terms of a very
large set of plausible inference rules. Each act ive unit represents a
"microfeature" of an i tem, and the connection strengths stand for plau
sible " microinferences" between microfeatures. Any part icular pattern

I This is easy if the partial description is simply a set of features, but it i s much more
difficult if the partial description mentions relationships to other o bjects. If, for example,
the system is asked to retrieve John's father , it must represen t John, but if John and his
father are represented by mutually exclusive patterns of activity in the very same gro u p
o f u n its , i t is hard to see how this can b e done w ithout preventing the representa t ion of
John's father . A distributed solution to this problem is described in the text.

Copyrighted Material

3. DISTRIBUTED REPRESENT A nONS 81

of activity of the units wil l satisfy some of the microinferences and
violate others. A stable pattern of activity is one that violates the plau
sible microinferences less than any of the neighboring patterns. A new
stable pattern can be created by changing the inference rules so that the
new pattern violates them less than its neighbors. This view of
memory makes it clear that there is no sharp distinction between
genuine memory and plausible reconstruction. A genuine memory is a
pattern that is stable because the inference rules were modified when it
occurred before. A "confabulation" is a pattern that is stable because of
the way the inference rules have been modified to store several dif
ferent previous patterns. So far as the subject is concerned, this may
be indistinguishable from the real thing .

The blurring of the distinction between veridical recall and confabu
lation or plausible reconst ruction seems to be characteristic of human
memory (Bartlett, 1932� Neisser, 1981). The reconstructive nature of
human memory is surprising only because it conflicts with the standard
metaphors we use. We tend to think that a memory system should
work by storing literal copies of items and then retrieving the stored
copy, as in a filing cabinet or a typical computer database. Such sys
tems are not naturally reconstructive .

If we view memory as a process that constructs a pattern of activity
which represents the most plausible item that is consistent with the
given cues, we need some guarantee that it will converge on the
representation of the item that best fits the description, though it might
be tolerable to somet i mes get a good but not optimal fit. It is easy to
imagine this happening, but it is harder to make it actually work. One
recent approach to this problem is to use statistical mechanics to
analyze the behavior of groups of interacting stochastic units. The
analysis guarantees that the better an item fits the description, the more
likely it is to be produced as the solution. This approach is described in
Chapter 7 , and a related approach is described in Chapter 6. An alter
native approach, using units with continuous activations (Hopfield,
1984) is described in Chapter 14.

Similarity and Generalization

When a new item is stored, the modifications in the connection
strengths must not wipe out existing items. This can be achieved by
modifying a very large number of weights very slightly . If the modifi
cations are all in the direction that hel ps the pattern that is being
stored, there will be a conspiracy effect: The total help for the
intended pattern will be ��t@f1�aNJ;;§Jl1all separate modifications.

82 THE PDP PERSPECTIVE

For unrelated patterns, however, there will be very little transfer of
effect because some of the modifications will help and some will
hinder. Instead of all the small modifications conspiring together, they
will mainly cancel out. This kind of statistical reasoning underpins
most distributed memory models, but there are many variations of the
basic idea (See Hinton & Anderson, 1981, for several examples).

It is possible to prevent interference altogether by using orthogonal
patterns of activity for the various items to be stored (a rudimentary
example of such a case is given in Chapter O. However, this elim
inates one of the most interesting properties of distributed representa
tions: They automatically give rise to generalizations. If the task is
simply to remember accurately a set of unrelated items, the generaliza
tion effects are harmful and are called interference. But generalization
is normally a helpful phenomenon. It allows us to deal effectively with
situations that are similar but not identical to previously experienced
situations.

People are good at generalizing newly acquired knowledge. If you
learn a new fact about an object, your expectations about other similar
objects tend to change. If, for example, you learn that chimpanzees like
onions you will probably raise your estimate of the probability that
gorillas like onions. In a network that uses distributed representations,
this kind of generalization is automatic. The new knowledge about
chimpanzees is incorporated by modifying some of the connection
strengths so as to alter the causal effects of the distributed pattern of
activity that represents chimpanzees. 2 The modifications automatically
change the causal effects of all similar activity patterns. So if the
representation of gorillas is a similar activity pattern over the same set
of units, its causal effects will be changed in a similar way.

The very simplest distributed scheme would represent the concept of
onion and the concept of chimpanzee by alternative activity patterns
over the very same set of units. It would then be hard to represent
chimps and onions at the same time. This problem can be solved by
using separate modules for each possible role of an item within a larger
structure. Chimps, for example, are the" agent" of the liking and so a
pattern representing chimps occupies the" agent" module and the pat
tern representing onions occupies the "patient" module (see Figure I).

2 The internal structure of this pattern may also change. There is always a choice
between changing the weights on the outgoing connections and changing the pattern itself
so that different outgoing connections become relevant. Changes in the pattern i tself
alter its similarity to other patterns and thereby alter how generalization wil l occur in the
future. It is generally much harder to figu re out how to change the pat tern that represents
an item than it is to figure out how to change the outgoing connections so that a particu
lar pattern wi l l have the desired effects on another part of the network.

Copyrighted Material

J. DISTRIBUTED REPRESENTATIONS 83

Each module can have alternative patterns for all the various items, so
this scheme does not involve local representations of items. What is
localized is the role.

If you subsequently learn that gibbons and orangutans do not like
onions your estimate of the probability that gorillas like onions will fall,
though it may still remain higher than it was initially. Obviously, the
combination of facts suggests that liking onions is a pecul iar quirk of
chimpanzees. A system that uses distr ibuted representations will
automatically arrive at this conclusion, provided that the alternative pat
terns that represent the various apes are related to one another in a par
ticular way that is somewhat more specific than just being similar to
one another: There needs to be a part of each complete pattern that is
identical for all the various apes. In other words, the group of units
used for the distributed representations must be divided into two

RELATIONSHIP

AGENT PATIENT

FIGURE I. In this Simplified scheme there are two different modules, one of which
represents the agent and the other the patient. To incorporate the fact that chimpanzees
l ike onions, the pattern for chimpanzees in one module must be associated with the pat
tern for onions in the other module. Relationships other than "liking" can be imple
mented by having a third group of units whose pattern of activity represents the relation
ship. This pattern must then "gate" the interactions between the agent and patient
groups. Hinton (1981a) describes one way of doing this gating by using a fourth group of
units.

Copyrighted Material

84 THE PDP PERSPECTIVE

subgroups, and all the various apes must be represented by the same
pattern in the first subgroup, but by different patterns in the second
subgroup. The pattern of activity over the first subgroup represents the
type of the item, and the pattern over the second subgroup represents
additional microfeatures that discriminate each instance of the type
from the other i nstances. Note that any subset of the microfeatures
can be considered to define a type. One subset might be common to all
apes, and a different (but overlapping) subset might be common to all
pets. This allows an item to be an instance of many different types
simultaneously.

When the system learns a new fact about chimpanzees, it usually has
no way of knowing whether the fact is true of all apes or is just a
property of chimpanzees. The obvious strategy is therefore to modify
the strengths of the connections emanating from all the active units, so
that the new knowledge will be partly a property of apes in general and
partly a property of whatever features distinguish chimps from other
apes. If it is subsequently learned that other apes do not like onions,
correcting modifications will be made so that the information about
onions is no longer associated with the subpattern that is common to all
apes. The knowledge about onions will then be restricted to the sub
pattern that distinguishes chimps from other apes. If it had turned out
that gibbons and orangutans also liked onions, the modifications in the
weights emanating from the subpattern representing apes would have
reinforced one another, and the knowledge would have become associ
ated with the subpattern shared by all apes rather than with the patterns
that distinguish one ape from another.

A very simple version of this theory of generalization has been
implemented in a computer simulation (Hinton, 1981a). Several appli
cations that make use of this property can be found in Part IV of this
book.

There is an obvious generalization of the idea that the representation
of an item is composed of two parts, one that represents the type and
another that represents the way in which this particular instance differs
from others of the same type. Almost all types are themselves
instances of more general types, and this can be implemented by divid
ing the pattern that represents the type into two subpatterns, one for
the more general type of which this type is an instance, and the other
for the features that discriminate this particular type from others
instances of the same general type. Thus the relation between a type
and an instance can be implemented by the relationship between a set
of units and a larger set that includes ·it. Notice that the more general
the type, the smaller the set of units used to encode it. As the number
of terms in an intensional description gets smaller, the corresponding
extensional set gets larger.

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 85

In traditional semantic networks that use local representations, gen
eralization is not a direct consequence of the representation. Given
that chimpanzees l ike onions, the obvious way of incorporating the new
knowledge is by changing the strengths of connections belonging to the
chimpanzee unit. But this does not automatically change connections
that belong to the gorilla unit. So extra processes must be invoked to
implement generalization in a localist scheme. One commonly used
method is to al low activation to spread from a local unit to other units
that represent similar concepts (Collins & Loftus, 1 975; Quillian,
1 968). Then when one concept unit is activated, it will partially
activate its neighbors and so any knowledge stored in the connections
emanating from these neighbors will be partially effective. There are
many variations of this basic idea (Fahlman, 1979; Levin, 1976;
McClelland, 1981).

It is hard to make a clean dist inction between systems that use local
representations plus spreading activation and systems that use distrib
uted representations. In both cases the result of activating a concept is
that many different hardware units are active. The distinction almost
completely disappears in some models such as McClelland's (981)
generalization model, where the properties of a concept are represented
by a pattern of activation over feature units and where this pattern of
activation is determined by the interactions of a potentially very large
number of units for instances of the concept. The main difference is
that in one case there is a particular individual hardware unit that acts
as a "handle" which makes it easy to attach purely conventional proper
ties like the name of the concept and easier for the theorist who con
structed the network to know what the individual parts of the network
stand for.

If we construct our networks by hand-specifying the connections
between the units in the network, a local representation scheme has
some apparent advantages. First, it is easier to think one understands
the behavior of a network if one has put in all the "knowledge" -all the
connections-oneself. But if it is the entire, distributed pattern of
interacting influences among the units in the network that is doing the
work, this understanding can often be illusory. Second, it seems intui
tively obvious that it is harder to attach an arbitrary name to a distrib
uted pattern than it is to attach it to a single unit. What is intuitively
harder, however, may not be more efficient. We will see that one can
actually implement aribitrary associations with fewer units using distrib
uted representations. Before we turn to such considerations, however,
we examine a different advantage of distributed representations: They
make it possible to create new concepts without allocating new
hardware.

Copyrighted Material

86 THE PDP PERSPECTIVE

Creating New Concepts

Any plausible scheme for representing knowledge must be capable of
learning novel concepts that could not be anticipated at the time the
network was initially wired up. A scheme that uses local representa
tions must first make a discrete decision about when to form a new con
cept, and then it must find a spare hardware unit that has suitable con
nections for implementing the concept involved. Finding such a unit
may be difficult if we assume that, after a period of early development,
new knowledge is incorporated by changing the strengths of the existing
connections rather than by growing new ones. If each unit only has
connections to a small fraction of the others, there will probably not be
any units that are connected to just the right other ones to implement a
new concept. For example, in a collection of a million units each con
nected at random to ten thousand others, the chance of there being any
unit that is connected to a particular set of 6 others is only one in a
million.

In an attempt to rescue local representations from this problem,
several clever schemes have been proposed that use two classes of
units. The units that correspond to concepts are not directly connected
to one another. Instead, the connections are implemented by indirect
pathways through several layers of intermediate units (Fahlman, 1 980;
Feldman, 1982). This scheme works because the number of potential
pathways through the intermediate layers far exceeds the total number
of physical connections. If there are k layers of units, each of which
has a fan-out of n connections to randomly selected units in the follow
ing layer, there are nk potential pathways. There is almost certain to be
a pathway connecting any two concept-units, and so the intermediate
units along this pathway can be dedicated to connecting those two
concept-units. However, these schemes end up having to dedicate
several intermediate units to each effective connection, and once the
dedication has occurred, all but one of the actual connections emanat
ing from each intermediate unit are wasted. The use of several inter
mediate units to create a single effective connection may be appropriate
in switching networks containing elements that have units with rela
tively small fan-out, but it seems to be an inefficient way of using the
hardware of the brain.

The problems of finding a unit to stand for a new concept and wiring
it up appropriately do not arise if we use distributed representations.
All we need to do is modify the interactions between units so as to
create a new stable pattern of activity. If this is done by modifying a
large number of connections very slightly, the creation of a new pattern
need not disrupt the existing representations. The difficult problem is

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 87

to choose an appropriate pattern for the new concept. The effects of
the new representation on representations in other parts of the system
wi l l be determined by the un i ts that are active, and so it is important to
use a collect ion of act ive units that have roughly the correct effects.
Fi ne-tun ing of the effects of the new pattern can be achieved by
slightly altering the effects of the act i ve units it contains, but it would
be unwise to choose a random pattern for a new concept because major
changes would then be needed in the weights, and th is would disrupt
other knowledge . Ideal ly, the d istri buted representation that is chosen
for a new concept should be the one that requires the least modification
of weights to make the new pattern stable and to make i t have the
required effects on other representations.

Naturally , it is not necessary to create a new stable pattern all in one
step. It is possible for the pattern to emerge as a result of modifications
on many separate occasi ons. This al leviates an awkward problem that
arises wi th local representations: The system must make a discrete all
or-none decis ion about when to create a new concept. If we view con
cepts as stable patterns, they are much less discrete in character. It is
possible , for example, to differentiate one stable pattern into two
closely related but d ifferent variants by modifying some of the weights
slightly. Unless we are allowed to clone the hardware uni ts (and all
their connections) , this kind of gradual, conceptual di fferentiation is
much harder to achieve with local representat ions.

One of the central problems in the development of the theory of dis
tributed representation is the problem of speci fying the exact pro
cedures by which distr ibuted representations are to be learned. All
such procedures involve connection strength modulation, following
" learning rules" of the type outl ined in Chapter 2. Not all the problems
have been solved , but significant progress is being made on these prob
lems. (See the chapters in Part II.)

DISTRIBUTED REPRESENTATIONS THAT
WORK EFFICIENTLY

In th is section, we consider some of the techn ical details about the

implementation of distri buted representati ons . Fi rst , we point out that

certa in distri buted representat ion schemes can fai l to provide a suffi

cient basis for differentiating different concepts, and we point out what

is required to avoid this l im itation. Then , we describe a way of using

distributed representations to get the most i nformation possib le out of a

simple network of connected units. The central resu l t is a surprisi ng

one' If you want to eru:.ode features_ a�curately using as few units as . (;opyngntea Matenal

88 THE PDP PERSPECTIVE

possib le, it pays to use units that are very coarsely tuned, so that each
feature activates many different units and each uni t is activated by
many different features. A specific feature is then encoded by a pattern
of act iv i ty in many uni ts rather than by a si ngle act ive unit , so coarse
coding is a form of distr ibuted representation.

To keep the analysis s imple , we shall assume that the units have only
two values , on and off.3 We shall also ignore the dynamics of the sys
tem because the question of interest , for the t ime being, is how many
units it takes to encode features with a gi ven accuracy. We start by
considering the kind of feature that can be completely specified by giv
ing a type (e .g . , line-segment , corner, dot) and the values of some
continuous parameters that dist inguish it from other features of the
same type (e. g., posi t ion, orientation , size .) For each type of feature
there is a space of possi ble instances . Each cont inuous parameter
defines a dimension of the feature space, and each particular feature
corresponds to a point in the space. For features l i ke dots in a plane ,
the space of possible features is two-dimensional . For features l i ke
stopped, oriented edge-segments in three-d imensional space, the
feature space is si x-dimensional . We shall start by considering two
dimensional feature spaces and then generalize to higher d imensionali
ties.

Suppose that we wish to represent the pos i t ion of a single dot in a
plane, and we wish to ach ieve h igh accuracy without using too many
units. We define the accuracy of an encoding scheme to be the number
of d ifferent encodings that are generated as the dot is moved a standard
distance through the space. One encoding scheme would be to di vide
the units into an X group and a Y group, and dedicate each unit to
encoding a part icular X or Y i nterval as shown in Figure 2. A given dot
would then be encoded by act i vity in two uni ts, one from each group ,
and the accuracy would be proportional to the number of units used .
Unfortunately , there are two problems with this . Fi rst , if two dots have
to be encoded at the same t ime, the method breaks down. The two
dots wil l act ivate two uni ts in each group, and there wi l l be no way of
tel l ing , from the acti ve un i ts , whether the dots were at (x 1, y 1) and
(x 2, y 2) or at (x 1, Y 2) and (x 2, y 1). This is called the binding prob
lem. It arises because the representation does not specify what goes
with what .

3 Similar arguments apply wi th mul ti valued activity levels, but it is important not to
allow activity levels to have arbitrary precision because this makes it possible to represent
an infinite amount of information in a single activity level. Units that transmit a discrete
impulse with a probability that varies as a function of their activation seem to approxi
mate the kind of precision that is possible in neural circuitry (see Chapters 20 and 21).

Copyrighted Material

Y group

Y group

o
o

o

•

o

1 •

3. DISTRIBUTED REPRESENTATIONS 89

X group

X group

FIGURE 2. A: A simple way of using two groups of binary units to encode the position
of a point in a two-dimensional space. The active units in the X and Y groups represent
the x- and y-coordinates. B: When two points must be encoded at the same time, it is
impossible to tell which x-coordinate goes with which y-coordinate.

The second problem arises even if we al low only one point to be
represented at a time. Suppose we want certain representations to be
associated with an overt response, but not others: We want (x I, y 1)
and (x 2, y 2) to be associated with a response, but not (x I, y 2) or
(x 2, y 1). We cannot implement this associat ion using standard
weighted connections to response units from units standing for the
values on the two dimensions separately. For the unit for x 1 and the
unit for x 2 would both have to,,,activ.a.te

t
the

,
response, and the unit for

CopyngtiteeJ Ma ena

90 THE PDP PERSPECTIVE

y 1 and the unit for y 2 would both have to activate the response. There
would be no way of preventing the response from being acti vated when
the unit for x 1 and the unit for y 2 were both activated. This is another
aspect of the binding problem since, again, the representation fails to
specify what must go with what.

In a conventional computer it is easy to solve the binding problem.
We simply create two records in the computer memory. Each record
contains a pair of coordinates that go together as coordinates of one
dot, and the binding information is encoded by the fact that the two
coordinate values are sitting in the same record (which usually means
they are sitting in neighboring memory locations). In paral lel networks
it is much harder to solve the binding problem.

Conjunctive Encoding

One approach is to set aside, in advance, one unit for each possible
combination of X and Y values. This amounts to covering the plane
with a large number of small, nonoverlapping zones and dedicating a
unit to each zone. A dot is then represented by activity in a single unit
so this is a local representation. The use of one unit for each discrimin
able feature solves the binding problem by having units which stand for
the conjunction of values on each of two dimensions. In general, to
permit an arbitrary association between particular combinations of
features and some output or other pattern of activation, some conjunc
tive representation may be required.

However, this kind of l ocal encoding is very expensive. It is much
less efficient than the previous scheme because the accuracy of pin
pointing a point in the plane is only proportional to the square root of
the number of units. In general, for a k -dimensional feature space, the
local encoding yields an accuracy proportional to the kth root of the
number of units. Achieving high accuracy without running into the
binding problem is thus very expensive.

The use of one unit for each discriminable feature may be a reason
able encoding if a very large number of features are presented on each
occasion, so that a large fraction of the units are active. However, it is
a very inefficient encoding if only a very small fraction of the possible
features are presented at once. The average amount of information
conveyed by the state of a binary unit is 1 bit if the unit is active half
the time, and it is m uch less if the unit is only rarely active.4 It would

4 The amount of information conveyed by a unit that has a probability of p of being on
is -p log(l- 0 - p) logO - Ptopyrighted Material

3. DISTRIBUTED REPRESENTATIONS 91

therefore be more efficient to use an encoding in which a larger frac
tion of the units were act ive at any moment. This can be done if we
abandon the idea that each discriminable feature is represented by
act ivity in a single unit .

Coarse Coding

Suppose we divide the space into larger, overlapping zones and assign
a unit to each zone. For s implici ty , we wi l l assume that the zones are
circular, that thei r centers have a uniform random distribution
throughout the space, and that all the zones used by a given encoding
scheme have the same radius. The question of interest is how
accurately a feature is encoded as a function of the radius of the zones.
If we have a given number of units at our disposal is it better to use
large zones so that each feature point fal l s in many zones , or is it better
to use small zones so that each feature i s represented by act ivity in
fewer but more finely tuned uni ts?

The accuracy is proportional to the number of different encodings
that are generated as we move a feature point along a straight line from
one side of the space to the other. Every t ime the l ine crosses the
boundary of a zone, the encoding of the feature point changes because
the act ivity of the unit corresponding to that zone changes. So the
number of d iscriminable features along the line is just twice the
number of zones that the l ine penetrates. 5 The line penetrates every
zone whose center l ies within one radius of the l ine (see Figure 3) .
This number i s proportional to the radius of the zones, r, and it is also
proportional to their number, n. Hence the accuracy, a, is related to
the number of zones and to thei r radi us as fol lows:

aa: nr.

In general, for a k-dimensional space, the number of zones whose
centers l ie within one radius of a line through the space is proportional
to the volume of a k -dimensional hypercylinder of radius r. This
volume is equal to the length of the cylinder (which is fixed) t imes its
(k - 1) -di mensional cross-sectional area which is proportional to rk - I.

5 Problems arise if you enter and leave a zone without crossing other zone borders in
between because you revert to the same encoding as before, but this effect is negligible if
the zones are dense enough for there to be many zones containing each point in the
space.

Copyrighted Material

92 THE PDP PERSPECTIVE

FIGURE 3. The number of zone boundaries that are cut by the line is proportional to
the number of zone centers within one-zone radius of the line.

Hence, the accuracy is given by

So, for example, doubling the radius of the zones increases by a fac
tor of 32, the linear accuracy with which a six-dimensional feature like a
stopped oriented three-dimensional edge is represented. The intuitive
idea that larger zones lead to sloppier representations is entirely wrong
because distributed representations hold information much more effi
ciently than local ones. Even though each active unit is less specific in
its meaning, the combination of active units is far more specific.
Notice also that with coarse coding the accuracy is proportional to the
number of units, which is much better than being proportional to the
kth root of the number.

Units that respond to complex features in retinotopic maps in visual
cortex often have fairly large receptive fields. This is often interpreted
as the first step on the way to a translation invariant representation.
However, it may be that the function of the large fields is not to
achieve translation invariance but to pinpoint accurately where the
feature is!

Limitations on coarse coding. So far, only the advantages of coarse
coding have been mentioned, and its problematic aspects have been
ignored. There are a number of limitations that cause the coarse cod
ing strategy to break de'tYIJyrYf}Hl�dt�iew5FPtive fields" become too

3. DISTRIBUTED REPRESENTATIONS 93

large. One obvious limitation occurs when the fields become compar
able in size to the whole space. This limitation is generally of little
interest because other, more severe, problems arise before the recep
tive fields become this large.

Coarse coding is only effective when the features that must be
represented are relatively sparse. If many feature points are crowded
together, each receptive field will contain many features and the activity
pattern in the coarse-coded units will not discriminate between many
alternative combinations of feature points. (If the units are allowed to
have integer activity levels that reflect the number of feature points faI
ling within their fields, a few nearby points can be tolerated, but not
many.) Thus there is a resolution/accuracy trade-off. Coarse coding
can give high accuracy for the parameters of features provided that
features are widely spaced so that high resolution is not also required.
As a rough rule of thumb, the diameter of the receptive fields should
be of the same order as the spacing between simultaneously present
feature points.6

The fact that coarse coding only works if the features are sparse
should be unsurprising given that its advantage over a local encoding is
that it uses the information capacity of the units more efficiently by
making each unit active more often. If the features are so dense that
the units would be active for about half the time using a local encoding,
coarse coding can only make things worse.

A second major limitation on the use of coarse coding stems from
the fact that the representation of a feature must be used to affect other
representations. There is no point using coarse coding if the features
have to be recoded as activity in finely tuned units before they can
have the appropriate effects on other representations. If we assume
that the effect of a distributed representation is the sum of the effects
of the individual active units that constitute the representation, there is
a strong limitation on the circumstances under which coarse coding can
be used effectively. Nearby features will be encoded by similar sets of
active units, and so they will inevitably tend to have similar effects.
Broadly speaking, coarse coding is only useful if the required effect of a
feature is the average of the required effects of its neighbors. At a fine
enough scale this is nearly always true for spatial tasks. The scale at
which it breaks down determines an upper limit on the size of the
receptive fields.

6 It is interesting that many of the geometric visual i l lusions illustrate interactions
between features at a distance much greater than the uncertainty in t he subjects'

knowledge of the position of a feature. This is just what would be expected if coarse cod

ing is being used to represent complex features accurately.

Copyrighted Material

94 THE PDP PERSPECTIVE

Another l imi tation is that whenever coarse-coded representations
interact, there is a tendency for the coarseness to increase. To coun
teract this tendency , i t i s probably necessary to have lateral inhibition
operating within each representation. This issue requires further
research.

Extension to noncontinuous spaces. The principle underlying coarse
coding can be generalized to noncontinuous spaces by thinking of a set
of items as the equivalent of a receptive field. A local representation
uses one unit for each possible i tem. A distributed representation uses
a unit for a set of items, and it impl ic i t ly encodes a particular item as
the intersection of the sets that correspond to the act ive units.

In the domain of spatial features there is generally a very strong
regularity: Sets of features with similar parameter values need to have
s imi lar effects on other representations. Coarse coding i s efficient
because i t al lows this regularity to be expressed in the connection
strengths. In other domains, the regularities are different, but the effi
ciency arguments are the same: It is better to devote a uni t to a set of
i tems than to a single item, provided that the set is chosen in such a
way that membership i n the set impl ies something about membershi p
in other sets . This implication can then be captured a s a connection
strength. Ideal ly, a set should be chosen so that membershi p of this
set has strong implications for memberships of other sets that are also
encoded by individual units .

We i l lustrate these points with a very simple example. Consider a
microlanguage consisting of the three-letter words of English made up
of w or I , fol lowed by i or e, fol lowed by g or r. The strings wig and leg
are words , but weg, fig, and al l strings ending in r are not. Suppose we
wanted to use a distributed representation scheme as a basis for
representing the words, and we wanted to be able to use the distributed
pattern as a basis for deciding whether the string is a word or a non
word . For simpl icity we wi l l have a single " decis ion " unit . The prob
lem is to find connections from the uni ts representing the word to the
decision unit such that it fi res whenever a word is present but does not
fire when no word is present . 7

7 Note that the problem remains the same if the decision uni t is replaced by a set of

units and the task of the network is to produce a different pattern for the word and non

word decisions. For when we examine each un i t , i t either takes the same or a d ifferent

value i n the two patterns; i n the cases where the value is the same, there is no problem ,
but neither do such units d ifferentiate the two patterns. When the values are different,

the unit behaves just l ike t he s ingle decision unit discussed in the text.

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 95

Figure 4 shows three representat i on schemes: a distributed scheme
that does not work, a distributed scheme that does work, and a local
scheme. In the first scheme, each letter/ posi ti on combination is
represented by a different unit. Since there are only five letter/ position
possibi l i t i es, only five units have connecti ons to the output uni t . Each
word and nonword produces a different and unique pattern over these
five uni ts, but the connections from the five uni ts to the decision unit
cannot be set in such a way as to make the decision uni t fire whenever
one of the words is present and fai l to fire whenever one of the non
words is present .

The reason for the problem i s simply that the connections between
the letter/ posi tion uni ts and the decisi on units can only capture the
degree to which each letter indicates whether the string is a word or
not. The g tends to i ndicate that a word is present, whereas the r i ndi
cates that the i tem is not a word; but each of the other letters , taken
individually, has absolutely no predictive ability in this case.

Whether a letter string is a word or not cannot be determined con
clusivel y from the i ndividual letters it contains; it is necessary to con
sider also what combinations of letters it contains. Thus, we need a
representation that captures what combinations of letters are present in
a way that is sufficient for the purposes of the network . One could cap
ture this by using local representations and assigning one node to each
word, as in the third panel of Figure 4. However, it is important to see
that one need not go all the way to local representations to solve the

FIGURE 4. Three networks appl ied to the problem of determining wh ich of the strings
that can be made from w or I, followed by i or e, fol lowed by g or r form words.
Numbers on the connections rep resent con nect ion strengths; numbers on the units
represent the units' th resholds. A unit wil l take on an acti vation equal to I if i ts input
exceeds i t threshold; otherwise, i ts activat i on is O.

Copyrighted Material

96 THE PDP PERSPECTIVE

problem facing our network . Conjunctive distributed representations
will suffice.

The scheme illustrated in the second panel of the figure provides a
conjunctive distributed representati on. In this scheme, there are units
for pairs of letters which, in this l imited vocabulary, happen to capture
the combinations that are essential for determining whether a string of
letters is a word or not. These are, of course, the pairs wi and Ie.
These conjunctive units, together with direct input to the decision unit
from the g unit, are sufficient to construct a network which cOlTectly
classifies all strings consisting of a w or an I, followed by an i or an e,
followed by a g or r.

This example illustrates that conjunctive coding is often necessary if
distributed representations are to be used to solve problems that might
easily be posed to networks. This same point could be illustrated with
many other examples- the exclusive or problem is the classic example
(Minsky & Papert , 1 969) . Other examples of problems requiring some
sort of conjunctive encoding can be found in Hinton (1 98 1 a) and in
Chapters 7 and 8 . An application of conjunctive coding to a psychologi
cal model is found in Chapter 1 8 .

Some problems (mostly very simple ones) can be solved without any
conjunctive encoding at all , and others will require conjuncts of more
than two units at a time. In general, it is hard to specify in advance just
what " order" of conjunctions wi l l be required. Instead, it is better to
search for a learning scheme that can fi nd representations that are ade
quate. The mechanisms proposed in Chapters 7 and 8 represent two
steps toward this goal .

Implementing an Arbitrary Mapping Between Two Domains

The attentive reader will have noticed that a local representation can
always be made to work in the example we have just considered. How
ever , we have already discussed several reasons why distributed
representations are preferable. One reason is that they can make more
effi cient use of parallel hardware than local representations.

This section shows how a distributed representation in one group of
units can cause an appropriate distributed representation in another
group of units. We consider the problem of implementing an arbitrary
pairing between representati ons i n the two groups, and we take as an
example an extension of the previous one: the association between the
visual form of a word and its meaning. The reason for considering an
arbitrary mapping is that this is the case in which local representations
seem most helpful . If distributed representati ons are better in this

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 97

case, then they are certainly better in cases where there are underlying
regularities that can be captured by regularit ies in the patterns of activa
tion on the units in one group and the uni ts in another. A discussion
of the benefit distributed representations can provide in such cases can
be found in Chapter 1 8 .

If we restrict ourselves t o monomorphemic words, the mapping from
strings of graphemes onto meanings appears to be arbit rary in the sense
that knowing what some strings of graphemes mean does not help one
predict what a new string means. 8 This arbi trariness in the mapping
from graphemes to meanings is what gives plausib i l i ty to models that
have explicit word un i ts . It i s obvious that arbi trary mappings can be
implemented if there are such units . A grapheme string activates
exactly one word uni t , and this activates whatever meaning we wish to
associate with it (see Figure S A) . The semantics of simi lar grapheme
strings can then be completely independent because they are mediated
by separate word units . There is none of the automatic general ization
that is characteristic of distributed representations.

Intuit i vely , i t is not at all obvious that arbi trary mappings can be
implemented in a system where the intermediate layer of units encodes
the word as a distri buted pattern of act iv i ty instead of as acti vity in a
single local uni t . The distri buted al ternati ve appears to have a serious
drawback. The effect of a pattern of act ivi ty on other representations is
the combined result of the indi vidual effects of the acti ve units in the
pattern. So s imi lar patterns tend to have s imi lar effects. I t appears that
we are not free to make a given pattern have whatever effect we wish
on the meaning representations without thereby altering the effects that
other patterns have . This kind of interaction appears to make i t diffi
cult to implement arbi trary mappings from distributed representations
of words onto meaning representat ions. We shall now show that these
intuit ions are wrong and that distri buted representations of words can
work perfectly wel l and may even be more efficient than single word
units .

Figure SB shows a three-layered system i n which grapheme/ posit ion
uni ts feed into word-set units which, in turn , feed into semantic or
sememe units . Models of this type, and closely related variants, have
been analyzed by Wi llshaw (1 98 0 , V. Dobson (personal communica
t ion , 1 984) , and by David Zipser (personal communication, 1 98 1) ;
some further relevant analyses are discussed in Chapter 1 2. For s impl i -

8 Even for monomorphemic words there may b e particular fragments that have associ

ated meaning. For example, words starting with sn usually mean something u n pleasant

to d o with the l i ps o r nose (sneer, snarl, snigger) , and words with long vowels are more

l ikely to stand for large, slow things than words with short vowels (George Lakoff, per

sonal communicat ion) . Much of Lewis Carrol l 's poetry relies on such effects.
Copyrighted Material

98 THE PDP PERSPECTIVE

FIGURE S. A: A three-layer network . The bOllom layer contains units that represent
particular graphemes in particular positions within the word . The middle layer contains
units that recognize complete words, and the top layer contains units that represent
semantic features of the meaning of the word. This network uses local representations of

words in the middle layer. B: The top and bollom layers are the same as i n (A) , but the
middle layer uses a more distributed representation. Each unit in this layer can be

activated by the graphemic representation of any one of a whole set of words. The unit

then provides input to every semantic feature that occurs in the meaning of any of the

words that activate it . Only those word sets containing the word cat are shown i n this

example. Notice that the only semantic features which receive input from all these word
sets are the semantic features of cat .

city, we shall assume that each unit is either active or inactive and that
there is no feedback or cross-connections. These assumptions can be
relaxed without substantially affecting the argument. A word-set unit is
activated whenever the pattern of the grapheme/ position units codes a
word in a particular set . The set could be all the four-letter words start
ing with HE, for example, or all the words containing at least two T's.
All that is required is that it is possible to decide whether a word is in

Copyrighted Material

3. DISTRIBUTED REPRESENT A nONS 99

the set by applying a s imple test to the acti vated grapheme/ posi t ion
units . So, for example, the set of al l words meaning " nice" i s not
al lowed as a word set. There is an impl icit assumption that word mean
ings can be represented as sets of sememes. This is a contentious
issue. There appears to be a gulf between the componential view in
which a meaning i s a set of features and the structural ist view in which
the meaning of a word can only be defined in terms of i ts relationships
to other meanings . Later in this chapter we consider one way of
integrating these two views by al lowing articulated representations to be
built out of a number of different sets of acti ve features .

Returning to Figure 5B, the quest ion is whether it i s possible to
implement an arbi trary set of associations between grapheme/ posi t ion
vectors and sememe vectors when the word-set units are each activated
by more than one word. I t wi l l be sufficient to consider just one of the
many possible specific models . Let us assume that an act ive word-set
unit provides posit ive input to all the sememe units that occur in the
meaning of any word in the word set. Let us also assume that each
sememe uni t has a variable threshold that is dynamically adjusted to be
just sl ightly less than the number of active word-set units . Only
sememe units that are receivi ng input from every act ive word-set unit
wi l l then become active .

All the sememes of the correct word wi l l be activated because each
of these sememes wi l l occur in the meaning of one of the words in the
act ive word sets. However , additional sememes may also be act i vated
because , just by chance , they may recei ve input from every acti ve
word-set uni t . For a sememe to receive less input than its threshold ,
there must be at least one act i ve word set that does not contain any
word which has the sememe as part of its meaning. For each acti ve
word set the probabi l i ty , i , of this happening is

i = (l _ p) (w - O

where p is the proport ion of words that contain the sememe and w i s
the number of words in the word set of the word-set un i t . The reason
for the term w - 1 is that the sememe is already assumed not to be
part of the meaning of the correct word, so there are on ly w - 1
remain ing words that could have it in thei r meaning.

Assume that when a word is coded at the graphemic level i t activates
u units at the word-set level . Each sememe that is not part of the
word's mean ing has a probabi l i ty i of fai l ing to receive i nput from each
word-set unit . The probabi l i ty, f , that al l of these word-set units wi l l
provide input to i t i s therefore

Copyrighted Material

100 THE PDP PERSPECTIVE

f = (I - j) u

== [I - (I - p) (w - I)]u .
By inspection, this probabi l i ty of a " false-posit ive " sememe reduces

to zero when w is 1 . Table 1 shows the value of f for various combi
nations of values of p , u , and w . Notice that if p is very smal l , f can
remain negl igible even i f w is quite large. This means that d istributed
representations in which each word-set unit partic i pates in the represen
tat ion of many words do not lead to errors if the semantic features are
relatively sparse in the sense that each word meaning contains only a
small fract ion of the total set of sememes. So the word-set units can be
fair ly nonspecific provided the sememe units are fai rly specific (not
shared by too many different word meanings) . Some of the entries in
the table make it clear that for some values of p , there can be a negl igi
ble chance of error even though the number of word-set units is con
siderably less than the number of words (the rat io of words to word-set
units is w/ u) .

The example described above makes many simpl i fying assumptions.
For example, each word-set unit i s assumed to be connected to every
relevant sememe unit . If any of these connections were missing, we
could not afford to give the sememe units a threshold equal to the
number of acti ve word-set units . To al low for missing connections we
could lower the threshold. This would increase the false-posi t ive error
rate , but the effect may be quite smal l and can be compensated by
adding word-set uni ts to increase the specifici ty of the word-level
representations (Wil lshaw, 1 98 1) . Alternati vely, we could make each
word-set unit veto the sememes that do not occur in any of i ts words .
This scheme is robust against missing connections because the absence
of one veto can be tolerated if there are other vetos (V. Dobson , per
sonal communication, 1 984) .

There are two more s impl i fying assumptions both of which lead to an
underestimate of the effecti veness of distributed representat ions for the
arbi trary mapping task. First , the calculations assume that there is no
fine-tuning procedure for incrementing some weights and decrementing
others to improve performance in the cases where the most frequent
errors occur. Second, the calculat ions ignore cross-connections among
the sememes. If each word meaning is a fami l iar stable pattern of
sememes, there wi l l be a strong " clean-up" effect which tends to
suppress erroneous sememes as soon as the pattern of act ivation at the
sememe level is sufficiently close to the fami l iar pattern for a particular
word meaning. Interactions among the sememes also provide an expla

nation for the abi l i ty of a s ingle grapheme string (e.g . , bank) to e l i ci t
two quite different mean ings. The bottom-up effect of the activated

Copyrighted Material

u

5
5
5
5
5

w p

5 . 2
1 0 . 2
20 .2
40 2
80 . 2

0 .07 1
0.49
0.93
1 .0
1 .0

1 0 1 0 . 2 0.24
10 20 .2 0 .86
1 0 40 . 2 1 .0
10 80 . 2 1 .0
1 0 1 60 .2 1 .0

40 40 .2 0 .99
40 80 .2 1 .0
40 1 60 .2 1 .0
40 320 .2 1 .0
40 640 .2 1 .0

1 00 1 00 . 2 1 .0
1 00 200 . 2 1 .0
100 400 .2 1 .0
1 00 800 . 2 1 .0

u

5
5
5
5
5

w

5
1 0
20
40
80

1 0 1 0
1 0 20
1 0 40
1 0 80
1 0 1 60

40 40
40 80
40 1 60

40 3 20
40 640

1 0 1 00

1 0 200
1 00 400
1 00 800

3. DISTRIBUTED REPRESENT A TIONS 1 0 1

TABLE 1

p

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. I

. 1

. 1

. 1

. 1

f

0.0048
0.086

0.48
0 .92
1 .0

0.0074
0 .23
0 .85
1 .0
1 .0

0.52

0.99
1 .0
1 .0
1 .0

0.99
1 .0
1 .0
1 .0

u

5
5
5
5
5

w

5
1 0
2 0
40
80

1 0 1 0
1 0 20
1 0 40
1 0 80
1 0 1 60

40 40
40 80
40 1 60
40 3 20
40 640

1 00 1 00
1 00 200
1 00 400
1 00 800

p

.0 1

. 0 1

.0 1

.0 1

.0 1

9 .5x 10- 8
4.8x 10-6
0.000 1 6
0.0036
0 .049

.01 2.3x 10- 1 1
. 0 1 2. 5x 10-8
.0 1 I . 3x H r 5
. 0 1 0.0024
.01 0. 1 0

.0 1 2 .7x 1 0- 20

. 0 1 3 . 5x 10- 1 1

. 0 1 0 .000 1 2

.0 1 0. 1 9

. 0 1 0.94

.01 9 .0x 10- 2 1
. 0 1 4 .8x 1 0- 7
.0 1 0 . 1 6
.0 1 0.97

The probability , !, of a false-posi t ive sememe as a function of the n u m ber of act ive word
set units per word, U, the number of words in each word-set , w, and the probabi l i ty , p, of
a sememe bei n g part of a word meaning.

word-set uni ts helps both sets of sememes, but as soon as top-down fac
tors give an advantage to one meaning, the sememes in the other
meaning wi l l be suppressed by competi t ive interactions at the sememe
level (Kawamoto & Anderson , 1 984) .

A simulation. As soon as there are cross-connections among the
sememe units and tine-tuning of individual we ights to avoid frequent
errors, the relatively straightforward probabi l ist ic analysis given above
breaks down . To give the cross-connections time to clean up the out
put , i t is necessary to use an iterat ive procedure instead of the simple
"straight-through " processing in which each l ayer completely determines
the states of all the units in the subsequent layer in a single , synchro
nous step. Systems containing cross-connections, feedback , and asyn
chronous processing elements are probably more real ist ic, but they are
generally very hard to analyze . However, we are now beginning to dis
cover that there are subclasses of these more complex systems that
behave in tractable wayf00Vi4§"d�fttaJj'falhis subclass is described i n

1 02 THE PDP PERSPECTIVE

more detai l in Chapter 7. It uses processing elements that are
inherently stochastic. Surprisingly , the use of stochastic elements
makes these networks better at performing searches, better at learning,
and easier to analyze.

A simple network of this kind can be used to i l l ustrate some of the
claims about the abi lity to " clean Uph the output by using interactions
among sememe units and the abi l i ty to avoid errors by fine- tun ing the
appropriate weights. The network contains 30 grapheme units, 20
word-set units, and 30 sememe units . There are no di rect connections
between grapheme and sememe units , but each word-set unit i s con
nected to all the grapheme and sememe units. The grapheme uni ts are
divided into three sets of ten , and each three-letter word has one active
un i t i n each group of ten (units can only have act ivi ty levels of 1 or 0) .
The " meaning" of a word is chosen at random by select ing each
sememe unit to be active with a probabil i ty of 0 . 2 . The network shown
in Figure 6 has learned to associated 20 different grapheme strings wi th
thei r chosen meanings. Each word-set unit is involved in the represen
tation of many words , and each word involves many word-set units .

The detai ls of the learni ng procedure used to create this network and
the search procedure which is used to settle on a set of act ive sememes
when given the graphemic i nput are described in Chapter 7. Here we
simply summarize the main results of the simulat ion .

After a long period of learning, the network was able to produce the
correct pattern of sememes 99.9% of the t ime when given a graphemic
i nput. Removal of any one of the word-set units after the learn ing typ
ical ly caused a slight rise in the error rate for several different words
rather than the complete loss of one word. Similar effects have been
observed in other distributed models (Wood, 1 978) . In our simula
tions, some of the erroneous responses were quite interest i ng . In
1 0,000 tests with a missing word-set unit there were 1 40 cases in which
the model fai led to recover the right sememe pattern . Some of these
consisted of one or two missing or extra sememes, but 83 of the errors
were exactly the pattern of sememes of some other word . This is a
result of the cooperative interactions among the sememe units. If the
input coming from the word-set units is noisy or underspecified as it
may be when units are knocked out, the clean-up effect may settle on a
similar but incorrect meaning.

This effect is reminiscent of a phenomenon cal led deep dyslexia which
occurs with certain kinds of brain damage in adul ts . When shown a
word and asked to read i t , the subject wil l sometimes say a d ifferent
word wi th a very s imilar meaning. The incorrect word somet imes has a
very different sound and spe l l ing. For example, when shown the word
PEA CH, the subject might say APRICOT. (See Coltheart , Patterson , &
Marshal l , 1 980, for more information about acquired dyslexia.)

Copyrighted Material

J. DISTRI BUTED REPRESENTATIONS 1 03

FIG U R E 6. A compact d isp lay that sh ows a l l the connect ion st rengths of th e 20 u n i t s i n
t h e middle layer o f a t h ree-layer netwo r k . The network can m a p from a pattern of
act i vity over the 30 units i n the bottom layer (represent ing graphemes) to an associated
pal \ern of act i v i t y over t h e 30 u n i ts of the lop layer (represent i n g sememes) . Wi t h i n
each of the large rectangles that are used to depict midd le-layer u n i t s , I he 30 black and

whi te rectangles at the top dep i ct t h e we igh ts of t h e connect ions to th e top laye r , and the
30 rectangles at the bottom depict the we ights from the bot tom l ayer . White rectangles
are pos i t i ve weights , black are nega t i v e , and the a rea of a rectan gle depicts the magn i t ud e

of the weigh t . T h e s i ngle we igh t that occurs somewhere i n t he m i d d l e of a unit is i t s
th resho ld (b lack means a posi t i ve t h reshold) . T h e weights be tween the 30 u n i ts i n the
top layer a r e not shown in t h is display .

Semantic errors of th is k ind seem bizarre because it seems as i f the
subject must have accessed the lexical i tem PEA CH i n order to make
the semantical l y related error, and i f he can get to the lexical item why
can 't he say it ? (These subjects may know and be able to say the
words that they misread .) Distributed representations al low us to
dispense wi th the rigid dist inction between accessi ng a word and not
accessing i t . In a network that has learned the word PEA CH, the gra
phemic representation of PEA CH wi l l cause approx i mately the righ t
i nput to the sememe un i t s , a n d interactions a t the sememe level can
then cause exactly the pattern of sememes for APRICOT. Another
psychological ly interesti��ftf&l1fIB�WBJl the network relearns after

1 04 THE PDP PERSPECTIVE

it has been damaged . The network was damaged by adding noise to
every connection that involved a word-set uni t . This reduced the
performance from 99.3% correct to 64.3%. 9 The network was then
retrained and i t exhibited very rapid relearning, much faster than i ts
original rate of learning when its performance was 64. 3% correct . This
rapid recovery was predicted by a geometrical argument which shows
that there is something special about a set of connection strengths that
is generated by adding noise to a near-perfect set. The resulting set is
very different from other sets of connection strengths that exhibit the
same performance. (See Chapter 7 for further discussion .)

An even more surprising effect occurs i f a few of the words are omit
ted from the retraining. The error rate for these words is substantial ly
reduced as the retraining proceeds , even though the other grapheme
sememe pai rings have no intrinsic relation to them because all the pai r
ings were selected randomly. The " spontaneous " recovery of words
that the network is not shown again is a result of the use of distributed
representat ions. All the weights are involved in encoding the subset of
the words that are shown during retrain ing, and so the added noise
tends to be removed from every weight . A scheme that used a separate
uni t for each word would not behave in th is way , so one can view spon
taneous recovery of unrehearsed i tems as a qual itat ive signature of dis
tributed representati ons.

STRUCTURED REPRESENTATIONS AND PROCESSES

In this section we consider two extensions of distributed representa
tions . These extensions i l lustrate that the idea of distributed represen
tations is consistent with some of the major insights from the field of
art ificial intel l igence concerning the importance of structure in
representations and processes. Perhaps because some proponents of
distri buted · representations have not been particularly attuned to these
issues, it is often unclear how structure is to be captured in a distri
buted representational scheme. The two parts of this section give some
indication of the d irections that can be taken in extending distributed
representations to deal with these important considerations.

9 The error rate was 99.3% rather than 99 . 9% i n th is example because the network was
forced to respond faster , so the cooperat ive effects had less t i me to settle on the optimal
output .

Copyrighted Material

3. DISTRIB UTED REPR ESENTATIONS 1 05

Representing Const i tuent Structure

Any system that attempts to implement the kinds of conceptual
structures that people use has to be capable of represent ing two rather
different k inds of h ierarchy . The first is the " IS-A" hierarchy that
relates types to instances of those types . The second is the part/ whole
h ierarchy that relates i tems to the constituent i tems that they are com
posed of. The most important characterist ics of the IS-A hierarchy are
that known properties of the types must be " inheri ted " by the i nstances ,
and properties that are found to apply to al l instances of a type must
normally be attributed to the type. Earl ier in this chapter we saw how
the IS-A hierarchy can be i mplemented by making the distri buted
representat ion of an instance include, as a subpart , the distr ibuted
representati on for the type. This representat ional tr ick automatical ly
yields the most important characterist ics of the IS-A hierarchy , but the
trick can only be used for one kind of hierarchy. If we use the
part/ whole relationsh i p between patterns of act i vity to represent the
type/ instance relationship between items, it appears that we cannot also
use it to represent the part/ whole relationship between i tems. We can
not make the representat ion of the whole be the sum of the representa
t ions of its parts.

The question of how to represent the relationship between an item
and the const ituent i tems of which i t i s composed has been a major
stumbling block for theories that postulate distributed representations.
In the ri val , l ocal ist scheme , a whole is a node that i s l i nked by labeled
arcs to the nodes for its parts . But the central tenet of the distributed
scheme is that different i tems correspond to alternative pat terns of
activity in the same set of uni ts , so i t seems as i f a whole and i ts parts
cannot both be represented at the same t ime.

Hinton 0 98 1 a) descri bed one way out of th is d i lemma. It rel ies on
the fact that wholes are not s imply the sums of thei r parts . They are
composed of parts that play particular roles wi th in the whole structure .
A shape, for example, is composed of smal ler shapes that have a partic
ular size , orientation, and posit ion relative to the whole. Each const i
tuent shape has i ts own spatial role , and the whole shape is composed
of a set of shape/ role pai rs . 1O Simi larly , a proposi t ion is composed of
objects that occupy particular semantic roles in the whole proposit ional

10 Relat ionsh ips between parts are i m portant as wel l . One advantage of expl icit ly
represent ing shape/ role pa i rs is that i t a l lows d i fferent pairs to support each other. One
can view the various different locations with in an object as slots and the shapes of parts
of an object as the fi l lers of these slots. Knowledge of a whole shape can then be i m ple
mented by posit ive interactions between the various slot -fi l lers.

Copyrighted Material

1 06 THE PDP PERS PECTIVE

structure. This suggests a way of implementing the relationship between
wholes and parts: The identity of each part should fi rst be combined
with its role to produce a s ingle pattern that represents the combination
of the identity and the role , and then the distributed representation for
the whole should consist of the sum of the distri buted representations
for these identity/ role combinations (plus some addit ional " emergent"
features) . This proposal differs from the simple idea that the represen
tat ion of the whole is the sum of the representations of i ts parts
because the subpatterns used to represent identity/ role combinations
are quite different from the patterns used to represent the identities
alone. They do not , for example , contain these patterns as parts.

Natural ly , there must be an access path between the representation
of an item as a whole in its own right and the representation of that
same i tem playing a particular role with in a larger structure. It must be
possible, for example, to generate the identity/ role representation from
two separate, expl ici t , distributed patterns one of which represents the
identi ty and the other of which represents the role. It must also be
possible to go the other way and generate the expl ic i t representations of
the identity and role from the s ingle combined representation of the
identi ty / role combination (see Figure 7).

The use of patterns that represent identity/ role combinat ions al lows
the part/ whole hierarchy to be represented in the same way as the
type/ instance h ierarchy. We may view the whole as s imply a particular
instance of a number of more general types, each of which can be
defined as the type that has a particular ki nd of part playing a particular
role (e .g . , men with wooden legs) .

Sequential Symbol Processing

If const i tuent st ructure is implemented i n the way described above,
there is a serious issue about how many structures can be act ive at any
one t ime. The obvious way to al locate the hardware is to use a group
of uni ts for each possible role wi thin a structure and to make the pat
tern of activity in this group represent the identity of the const ituent
that is currently playing that role . This implies that only one structure
can be represented at a t ime, unless we are wi l l ing to postulate mult iple
copies of the ent i re arrangement. One way of doing this , using units
with programmable rather than fixed connections, i s described in
Chapter 1 6 . However, even th is technique runs into difficult ies if more
than a few modules must be " programmed " at once . However, people
do seem to suffer from strong constraints on the number of structures
of the same general type that they can process at once . The

Copyrighted Material

AG EN T

3. DISTRIBUTED REPRESENT A nONS 1 07

IDENT ITY

PATI EN T L OCATIO N

FIGURE 7 . A sketch o f the apparatus that might b e necessary for com bining separate
representations of an ident i ty and a role into a s ingle pattern. Only one identity and only
one role can be explici t ly represented at a time because the identity and role groups can
each have only one pattern of act ivi ty at a t ime. Howeve r , the various role groups allow
many identity/ role com binations to be encoded s imul taneousl y. The small triangular
symbols represent the abi l i ty of the pattern of act iv i ty in the group that expl ictly
represents a role to determine which one of the many role groups is currently i nteracting
with the ident ity group. This allows the ident i ty occupying a particular role to be " read
out " as well as allowing the reverse operation of com bining an identity and a role.

sequentiali ty that they exhibit at this h igh l evel of descri ption is ini t ia l ly
surprising given the massively parallel archi tecture of the brai n , but i t
becomes much eas ier to understand if we abandon our l ocalist predelic
t ions in favor of the distributed alternat ive which uses the paral lel ism
to give each active representat ion a very rich internal structure that
allows the right kinds of general izat ion and content-addressabi l i ty.
There may be some truth to the notion that people are sequential sym
bol processors if each " symbolic representat ion " i s identified with a

Copyrighted Material

108 THE PDP PERSPECTIVE

success ive state of a large i nteractive network. See Chapter 1 4 for
further discussion of these issues .

One central tenet of the sequential symbol processing approach
(Newell , 1 980) is the abi l i ty to focus on any part of a structure and to
expand that into a whole that is just as r ich in content as the original
whole of which it was a part . The recursive abi l i ty to expand parts of a
structure for indefini tely many levels and the inverse abil ity to package
up whole structures into a reduced form that al lows them to be used as
consti tuents of larger structures is the essence of symbol processing. It
al lows a system to build structures out of things that refer to other
whole structures without requiri ng that these other structures be
represented in all their cumbersome detai l .

In conventional computer implementations, this abi l i ty i s achieved by
using pointers. These are very convenient , but they depend on the use
of addresses. In a parallel network , we need something that is func
t ional ly equivalent to arbit rary pointers in order to implement symbol
processing. This is exactly what is provided by subpatterns that stand
for identity/ role combinations. They allow the ful l identi ty of the part
to be accessed from a representation of the whole and a representation
of the role that the system wishes to focus on , and they also al low
expl icit representations of an identity and a role to be combined into a
less cumbersome representat ion , so that several identi ty/ role combina
tions can be represented simultaneously in order to form the represen
tat ion of a larger structure.

SUMMARY

Given a paral lel network, i tems can be represented by act ivity in a
single , local unit or by a pattern of act ivity in a large set of units with
each unit encoding a microfeature of the item. Distributed representa
tions are efficient whenever there are underlying regularities which can
be captured by interactions among microfeatures. By encoding each
piece of knowledge as a large set of interactions, it is possible to
achieve useful properties l i ke content-addressable memory and
automatic general izat ion , and new i tems can be created wi thout having
to create new connections at the hardware level . In the domain of con
t inuously varyi ng spatial features i t i s relati vely easy to provide a
mathematical analysis of the advantages and drawbacks of using distri
buted representions.

Distributed representat ions seem to be unsui table for implementing
purely arbi trary mappings because there is no underlying structure and
so general ization only causes unwanted i nterference. However, even

Copyrighted Material

3. DISTRIBUTED REPRESENTATIONS 1 09

for this task , distributed representati ons can be made fai rl y efficient and
they exhibi t some psychological ly interesting effects when damaged.

There are several difficult problems that must be solved before
distributed representat ions can be used effect ively . One is to decide on
the pattern of activity that is to be used for representing an i tem. The
similarit i es between the chosen pattern and other existing patterns wi l l
determine the kinds of general izat ion and i nterference that occur. The
search for good patterns to use is equivalent to the search for the
underly ing regularites of the domain . This learning problem is
addressed i n the chapters of Part II .

Another hard problem is to clarify the relationship between distrib
uted representations and techniques used in art ificial i ntel l igence l i ke
schemas , or h ierarchical structural descriptions. Existing artificial intel
l igence programs have great difficulty i n rapidly fi nding the schema that
best fi ts the current s i tuation . Paral lel networks offer the potential of
rapidly applying a lot of knowledge to this best-fit search, but this
potential wi l l only be real ized when there is a good way of implement
ing schemas in paral le l networks . A discussion of how this might be
done can be found in Chapter 14.

ACKNOWLEDGMENTS

This chapter is based on a techn ical report by the first author, whose
work is supported by a grant from the System Development Founda
tion . We thank Jim Anderson , Dave Ackley, Dana Bal lard , Francis
Crick, Scott Fahlman , Jerry Feldman , Christopher Longuet-Higgins,
Don Norman , Terry Sejnowski , and Tim Shal l i ce for helpful
discussions.

Copyrighted Material

CHAPTER 4

PDP Models and
General Issues in Cognitive Science

D. E. RUMELHART and 1. L. MCCLELLAND

We are natural ly optimistic about paral lel distributed processing as a
valuable framework for creating cogn i tive models . This does not mean ,
however, that there are no tough problems to be solved . Indeed , we
have spent much of our effort convincing ourselves that PDP models
could form a reasonable basis for modeling cognit ive processes in gen
eral . In this chapter we shal l address some of the objections that we
and others have raised to the work and sketch our answers to these
objections. However, we should l ike to say at the outset that we do not
bel ieve that any such general considerations as those discussed here
will , in the end, bear much weight. The real proof is in the pudding.
If PDP models are a valuable way to proceed, their usefulness wi l l be
proved in the added insights they bring to the particular substant ive
areas i n which they are appl i ed . The models we describe in later
chapters are largely intended to constitute the beginnings of such a
proof.

Many of the questions and i ssues raised below are addressed by
material described in detai l in other chapters in the book. For this rea
son , much of our present discussion is in the form of pointers to the
relevant discussions . In this sense , this chapter serves not only as a
discussion of our approach but as an overview of the issues and topics
that are addressed in the chapters that fol low.

Copyrighted Material

4. GENER AL ISSUES III

SOME OBJECTIONS TO THE PDP APPROACH

PDP Models Are Too Weak

The one-layer perceptron. The most commonly heard objection to
PDP models is a variant of the claim that PDP models cannot perform
any in terest ing computations . One variant goes l ike this: "These PDP
models sound a lot l i ke perceptrons to me. Didn't Minsky and Papert
show that perceptron-Iike models couldn 't do anything i nteresting?"
Thi s comment represents a misunderstanding of what Minsky and
Papert (1969) have actual ly shown. A brief sketch of the context in
which Minsky and Papert wrote will help clar ify the situation . (See
Chapter 5 for a somewhat ful ler account of this history .)

In the late 1 950s and early 1960s there was a great deal of effort in
the development of self-organ iz ing networks and si milar PDP-like com
putational devices. The best known of these was the perceptron
developed by Frank Rosenblatt (see, for example, Rosenblat t , 1 962) .
Rosenblatt was very enthusiastic about the perceptron and hopeful that
i t could serve as the basis both of art ificial in tell igence and the model
ing of the brain. Minsky and Papert , who favored a serial symbol pro
cessing approach to art ificial i ntel l igence, undertook a very careful
mathematical analysis of the perceptron in their 1969 book entitled,
s imply , Perceptrons.

The perceptron Minsky and Papert analyzed most closely i s i l lustrated
in Figure 1. Such machines consist of what is generally called a retina,
an array of binary inputs sometimes taken to be arranged in a two
dimensional spatial layout; a set of predicates, a set of binary threshold
units with fi xed connections to a subset of units in the retina such that
each predicate computes some local function over the subset of uni ts to
which it is connected; and one or more decision uni ts, with modifiable
connections to the predicates . This machine has only one layer of
modifiable connections; for this reason we will cal l it a one-layer percep
tron.

Minsky and Papert set out to show which functions can and cannot
be computed by this class of machines . They demonstrated , in particu
lar, that such perceptrons are unable to calculate such mathematical
functions as parity (whether an odd or even number of poi nts are on in
the retina) or the topological funct ion of connectedness (whether all
points that are on are connected to al l other poin ts that are on e i ther
directly or via other points that are also on) without making use of
absurdly large numbers of predicates. The analysis i s extremely elegant
and demonstrates the importance of a mathematical approach to analyz
ing computational systercJ:bpyrighted Material

112 THE PDP PERSPECTIVE

FIGURE I. The one-layer perceptron analyzed by Minsky and Papert. (From Perceprrons
by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by
MIT Press. Reprinted by permission.)

Minsky and Papert's analysis of the li mitations of the one-layer per
ceptron, coupled with some of the early successes of the symbolic pro
cessing approach in art ificial intel l igence, was enough to suggest to a
large number of workers in the field that there was no future in
perceptron-l ike computational devices for art ificial intell igence and cog
ni t ive psychology. The problem is that although Minsky and Papert
were perfectly correct in their analysis, the results apply only to these
simple one-layer percept rons and not to the larger class of perceptron
like models . In part icular (as Minsky and Papert actually conceded) , i t
can be shown that a multi layered percept ron system, including several
layers of predicates between the retina and the decision stage, can com
pute funct ions such as parity, using reasonable numbers of units each
computing a very local predicate. (See Chapters 5 and 8 for examples
of mult i layer networks that compute pari ty) . S imi larly, i t is not diffi
cult to develop networks capable of solving the connectedness or
inside/outside problem. Hinton and Sejnowski have analyzed a version
of such a network (see Chapter 7) .

Essential ly, then , although Minsky and Papert were exactly correct in
thei r analysis of the one-layer perceptron, the theorems don't apply to
systems which are even a l i ttle more complex . In particular , i t doesn't
apply to multilayer systems nor to systems that al low feedback loops .

Minsky and Papert argued that there would not be much value to
mult i layer perceptrons . Fi rst, they argued that these systems are suffi
ciently unrestricted as to be vacuous. They pointed out, for example,
that a uni versal computer could be bui l t out of l inear threshold units .

Copyrighted Material

4. GENERAL ISSUES 113

Therefore, restrict ing consideration of machines made out of linear
threshold units is no restriction at all on what can be computed .

We don ' t , of course , believe that the class of models sketched in
Chapter 2 is a smal l or restrict ive class. (Nor, for that matter, are the
languages of symbol processing systems especial ly restrict ive .> The real
issue, we bel ieve, is that different algori thms are appropriate to dif
ferent archi tectural designs . We are investigating an arch i tecture in
which cooperative computation and paral lel ism is natural. Serial sym
bolic systems such as those favored by Minsky and Papert have a
natural domain of algor i thms that di ffers from those in PDP models .
Not everythi ng can be done i n O:1e step without feedback or layering
(both of which suggest a k ind of "serial i ty"). We have been led to con
sider models that have both of these features . The real point is that we
seek algori thms that are as parallel as possible. We bel ieve that such
algorithms are going to be closer in form to the algorithms which could
be employed by the hardware of the brai n and that the kind of paralle l
ism we employ al lows the exploitation of mult iple informat ion sources
and cooperati ve computat ion in a natural way .

A further argument advanced by Minsky and Papert agai nst
perceptron-l i ke models with hidden uni ts i s that there was no indication
how such mult i layer networks were to be trained. One of the appeal ing
features of the one-layer perceptron is the existence of a powerful
learning procedure , the perceptron convergence procedure of Rosen
blatt . In Minsky and Papert's day, there was no such powerful learning
procedure for the more complex mul t i layer systems. This is no longer
true. Chapters 5, 6, 7, and 8 all provide schemes for learning in sys
tems with hidden units . Indeed, Chapter 8 provides a di rect generaliza
t ion of the perceptron learn ing procedure which can be appl ied to arbi
trary networks with mult iple layers and feedback among layers . This
procedure can , in princip le , learn arbitrary functions i ncluding, of
course, pari ty and connectedness .

The problem of stimulus equivalence. A second problem with early
PDP models- and one that is not necessari ly completely overcome by
multi layer systems-is the problem of invariance or stimulus equivalence.
An A is an A is an A, no matter where on the ret ina it appears or how
large it is or how it is oriented; and people can , in general, recognize
patterns rather wel l despite various transformations. It has always
seemed elegant and natural to imagine that an A, no matter where it is
presented, is normalized and then processed for recogni t ion usi ng
stored knowledge of the appearance of the letter (Marr, 1 98 2; Neisser,
1967).

In conventional computer programs this seems to be a rather
straightforward matter r�yWgntn�MJt9hIDal izat ion of the input , and,

114 THE PDP PERSPECTIVE

second, analysis of the normalized i nput. But in early PDP models i t
was never clear just how normal izat ion could be made to work. Indeed,
one of the main cri t icisms of perceptrons-one that is often leveled at
more recent PDP models, too-is that they appear to provide no
mechanism of attention, no way of focusing the machine on the
analysis of a part of a larger whole and then swi tching to another part or
back to the consideration of the whole.

While it is certainly true that certa in PDP models lack explicit atten
t ional mechanisms, i t i s far from true that PDP mechanisms are in
principle i ncapable of exhibit ing attentional phenomena. Likewise,
whi le i t is true that certain PDP models do not come to grips with the
stimulus equi valence problem, i t far from true that they are incapable
of doing this in principle . To prove these points, we will describe a
method for solving the st imulus equivalence problem that was
described by Hinton (I98 1 b) . The idea is sketched in Figure 2 . Essen
tial ly, i t invol ves two sets of feature detectors. One (at the bottom of
the figure) consists of retinocentric feature detectors and the other
(above the ret inocentric units) consists of canonical feature detectors .
Higher order units that recognize canonical patterns (in th i s example,
letters) sit above the canonical feature detectors and can have mutually
excitatory connect ions to these feature detectors , just as in the interac
t ive act ivation model of word recognit ion. What Hinton described was
a method for mapping retinocentric feature patterns into canonical pat
terns. In general , for patterns in three-space , there are si x degrees of
freedom, but for present purposes we wi l l consider only figures that are
rotated around a fixed point in the plane . Here normal ization simply
amounts to a one-dimensional rotat ional transformation .

A fixed mapping from retinocentric units to canonical units would
involve connecting each retinocentric feature detector to the
corresponding canonical feature detector. Thus, to correct for a 90°
clockwise rotation in the plane , we would want each retinal unit to pro
ject to the canonical unit corresponding to i t at an offset of 90° .

How to implement variable mappings? Hinton proposed the use of a
set of mapping units which act to switch on what amount to dynamically
programmable connections from the ret inocentric units to the canonical
units. In the figure , three different mapping units are shown on the
right: one that produces no rotation at al l , one that produces a 90°
clockwise rotation, and one that produces a 90° counterclockwise rota
tion. When one of these mapping units is active, it provides one of two
inputs to a subset of the programmable connections. Thus , when the
90° clockwise mapping unit is active, i t provides one of two inputs to
the connection from each ret inocentric unit to the central unit that
corresponds to it under the 90° clockwise rotat ion. These connections
are mul t ipl icative - they pass the product of thei r two inputs on to the

Copyrighted Material

Letter Units [

Canonical

Feature

Units

Retinocentric

Feature

Units

8

4. GEN ERAL ISSUES liS

Mapping

Units

FIGURE 2. Hinton's (I981b) scheme for mapping patterns in one coordinate system
into patterns in another coordinate system. At the top are two letter-detector units, with
mutual excitatory connections to the six canonical feature un i ts (the position and orienta
tion of the l i ne segment each of these detectors represents is ind icated by the line seg
ment in the "body" of each unit). At the bottom are six retinocentric feature units, and al
the right are units corresponding to each of th ree different mappings from retinocentric
to canonical featu res. (The arrows on the units indicate which direction in the retinocen
tric frame corresponds to upright in the canonical frame , and the arrow o utside the unit

indicates the nature of the transformat ion imposed on the retinocentric pattern). Each

canonical unit receives three pairs of inputs, w ith each pair arriving at a multiplicative

connection . These inputs are illustrated for one canonical unit only.

recetvmg un i t . In this case , if a part icular ret i nocentric feat ure is on
and the 90° c lockwise mapping unit is on, then the canonical feature
corresponding to the acti ve retinal feature will rece i ve an excitatory
i nput . If just one of the two inputs to the connection is on , no activa
tion wi l l flow to the central uni t. In this way, when a mapping unit i s
act ive , it effect ive ly programs the multipl icati ve connect ions needed to
i mplement the corresponding mappi ng by act ivat ing one of the two
i n puts to each of the programmable con nect i ons.

Using this mechanism, i t is possible to map from retinal to central
coordinates if the mapping is known in advance. Object recognit ion can
now proceed as fol l ows : A mapping is chosen (perhaps on the basis of
processing the preceding st imulus> , and this is used to map a reti nal
input onto the canonCCopyMl)iUbd _tetia�ystem involving variable

116 THE PDP PERSPECTIVE

translational mappings, in addi tion to the rotational mappi ngs shown
here, it would be possible to focus the attention of the system succes
s ively on each of several d ifferent pat terns merely by changing the
mapping. Thus it would not be difficult to implement a complete sys
tem for sequent ial processing of a series of patterns using Hinton's
scheme (a number of papers have proposed mechanisms for performing
a set of operations i n sequence, including Grossberg, 1 97 8 , and
Rumelhart & Norman, 1 982; the latter paper is discussed i n Chapter 1) .

S o far, we have descri bed what amounts t o a PDP implementation of
a conventional pat tern recogni tion system. First, map the pattern into
the canonical frame of reference , then recogn ize it. Such is the pro
cedure advocated, for example , by Neisser (I967) and Marr (I 982) .
The demonstrat ion shows that PDP mechanisms are in fact capable of
normalization and of focusing attent ion success i vely on one pattern
after another.

But the demonstration may also seem to gi ve away too much. For it
seems to suggest that the PDP network is s imply a method for imple
menting standard sequential algori thms of pattern recognit ion . We
seem to be left with the questi on, what has the PDP implementation
added to our understanding of the problem?

It turns out that it has added someth ing very important . It a l lows us
to begi n to see how we could solve the problem of recognizing an i nput
pattern even in the case where we do not know in advance ei ther what
the pattern is or which mapping is correct . In a conventional sequential
algori thm, we might proceed by serial search , try ing a sequence of map
p ings and looking to see which mapping resulted in the best recognit ion
performance. With Hinton's mapping units , however, we can actually
perform this search in paral lel . To see how this paral lel search would
work, i t is first necessary to see how another set of mult i plicati ve con
necti ons can be used to choose the correct mapping for a pattern gi ven
both the retinal input and the correct central pattern of act i vation .

In this situation , this simul taneous activation of a central feature and
a reti nal feature consti tutes evidence that the mapping that connects
them is the correct mapping. We can use this fact to choose the map

ping by al lowing central and ret inal units that correspond under a par
t icular mapping to project to a common mult iplicat i ve connection on
the appropriate mapping uni t . Spurious conjunctions will of course
occur, but the correct mapping units wil l general ly receive more con
junctions of canonical and ret i nal features than any other (unless there
is an ambiguity due to a symmetry in the figure) . If the mapping units
compete so that the one receiving the most excitation is al lowed to win ,
the network can settle on the correct mapping.

We are now ready to see how it may be possible to simul taneously
settle on a mapping and a central representat ion using both sets of

Copyrighted Material

4. GENERAL ISSUES 117

mul t ipl icat i ve connect ions. We s imply need to arrange things so that
when the retinal i nput is shown, each possible mapping we wish to con
sider is partially act ive . Each ret inal feature then provides partial
activation of the canonical feature corresponding to i t under each of the
mappings. The correct mapping al lows the correct canonical pattern to
be partial ly activated, a lbeit partial ly obscured by noise generated by the
other partially activated mappings. Interact ive activation between this
central pattern and higher level detectors for the pattern then reinforces
the elements of the pattern relat ive to the noise. This process by i tself
can be sufficient for correct recogni tion . Further clean up of the central
pattern can be achieved, though , by al lowing the pattern emerging on
the central uni ts to work together wi th the input pattern to support the
correct mapping over the other part ial ly acti ve mappings via the mult i
pl icative connect ions onto the mapping units . This then results in
further suppression of the noise. As this process cont inues , it eventu
ally locks in the correct in terpretat ion of the pattern , the correct canoni
cal feature representat ion , and the correct mappi ng, all from the ret inal
input alone. Prior act i vation of the correct mapping facil itates the pro
cess of sett l ing i n , as do prior cues to the identi ty of the figure (see
Rock, 1973, and Palmer, 1980, for evidence that these cl ues do facil i
tate performance) , but are not , in general , essential unless the input is
in fact ambiguous without them.

Hinton's mapping scheme al lows us to make two poi nts. Fi rst, that
parallel dist ri buted processing is in fact compat ible with normal i zation
and focusing of altention; and second, that a PDP implementation of a
normalization mechanism can actual ly produce a computational advan
tage by al lowing what would otherwise be a painful , slow, serial search
to be carried out in a s i ngle settling of a paral lel network. In general ,
Hinton's mapping system illustrates that PDP mechan isms are not res
tricted to fixed computat ions but are qu i te clearly capable of modula
t ion and control by signals arising from other parts of an integrated pro
cessing system; and that they can , when necessary, be used to imple
ment a serial process, in which each of several patterns is considered,
one at a time.

The introduct ion of mul t i plicat ive or cont ingent connections (Feld
man & Bal lard, 1 982) is a way of great ly increasing the power of PDP
networks of fi xed numbers of un its (Marr, 1982; Poggio & Torre, 1 978;
see Chapter 10). I t means, essential ly, that each unit can perform com
putations as complex as those that could be performed by an ent i re
one-layer perceptron , including both the predicates and the decis ion
uni t . However, it must also be noted that multiplicative connect ions are
not strictly necessary to perform the requi red conjunctive computational
operations. Nonl inear, quasi-multiplicative interact ions can be imple
mented in a variety ofC�Py�fghJlJdt�tttrJ1t case , whole un i ts could

118 THE PDP PERSPECTIVE

be dedicated to each multipl icative operation (as in the predicate layer
of the percept ron) . 1

While Hinton's mapping mechanism indicates how attent ion might
be implemented in PDP systems and imports some of the power of
parallel distributed processing i nto the problem of simultaneously solv
ing the mapping problem and the recognit ion problem, it does leave
something to be desi red. This is the fact that it allows only a single
input pattern to be processed at one t ime since each pattern must be
mapped separately onto the canonical feature units. Serial attent ion i s
sometimes required, but when we must resort to i t , we lose the possi
b i l i ty of exploit ing simultaneous, mutual constraints among several pat
terns. What has been processed before can st i l l influence processing,
but the ensemble of to-be-processed patterns cannot exert s imultane
ous, mutual i nfluence on each other.

There is no doubt that sequential ity i s forced upon us in some
tasks-precisely those tasks i n which the thought processes are
extended over several seconds or minutes in time-and in such cases
PDP mechanisms should be taken to provide potential accounts of the
internal structure of a iJrocess evolving in t ime during the temporally
extended structure of the thought process (see Chapter 14). But, in
keeping with our general goals , we have sought to discover ways to
maximally exploit simultaneous mutual constraints-that is , to
maximize parallel ism.

One mechanism which appears to make some progress in this di rec
t ion is the connection i nformation distribut ion mechanism described in
Chapter 16. That mechanism uses mult ipl icative connections like those
used in Hinton's model to send connection i nformation out from a cen
tral knowledge store so that i t can be used in local processing networks,
each allocated to the contents of a different display location . The
mechanism permits mult iple copies of the same knowledge to be used
at the same time, thereby effectively al lowing tokens or local copies of
patterns to be constructed from centrally stored knowledge of types in a
parallel distributed processing system. These tokens then can interact
with each other, al lowing several patterns, all processed using the same
centrally stored information, to exert s imultaneous , mutual constraints
on each other. Since these ideas, and their relat ion to attention , are
discussed at length in Chapter 16, we wi l l not elaborate on them further
here.

I The linear threshold unit provides a quasi-multiplicative combination rule, and
Sejnowski (1981) has described in detail how close approximation of the quantitative
properties of mUltiplication of signals can be achieved by units with properties very much
like those observed in real neurons.

Copyrighted Material

4. GENERAL ISS UES 119

Recursion. There are many other specific points that have been
raised with respect to exis t ing PDP models. Perhaps the most common
one has to do with recursion . The ability to perform recurs ive funct ion
calls i s a major featu re of certain computati onal frameworks , such as
augmented trans i t ion network (ATN) parsers (Woods , 1973; Woods &
Kaplan, 1971), and i s a property of such frameworks that gives them
the capability of process ing recursively defined struct ures such as sen
tences , in which embedd i ng may produce dependencies between ele
ments of a surface string that are indefinitely far removed from each
other (Chomsky , 1957). It has often been suggested that PDP
mechanisms lack the capaci ty to perform recurs i ve computat ions and so
are s imply incapable of provid ing mechanisms for processing sentences
and other recursi vely defined st ructures.

As before, these suggestions are si mply wrong. As we have al ready
seen, one can make an arbitrary computational machine out of linear
threshold units , including, for example, a machine that can carry out all
the operati ons necessary for implement ing a Turing machine; the one
l imitat ion i s that real b iological systems cannot be Turing machines
because they have fin i te hardware. In Chapter 14, however, we point
out that with external memory aids (such as paper and pencil and a
notational system) such l imitations can be overcome as well.

We have not dwel t on PDP implementations of Turing machines and
recursive processing engines because we do nut agree wi th those who
would argue that such capabi l i t ies are of the essence uf human compu
tation. As anyone who has ever attempted to process sentences l ike
"The man the boy the gir l hit kissed moved" can attest , our abi l i ty to
process even moderate degrees of center-embedded structure is grossly
impaired relative to that of an ATN parser. And yet , the human abili ty
to use semanti c and pragmatic contextual information to faci l i tate
comprehension far exceeds that of any existing sentence processing
machine we know of.

What is needed, then, is not a mechanism for flawless and effortless
processing of center-embedded constructions. Compilers of computer
languages generally provide such fac i l i ties, and they are powerful tools,
but they have not demonstrated themselves sufficient for processing
natural language. What is needed i nstead is a parser bui l t from the
kind of mechanism which faci l i tates the simultaneous consideration of
large numbers of mutual and interdependent constraints. The challenge
is to show how those processes that others have chosen to expla in i n
terms o f recurs i ve mechanisms can be better explained by the k inds of
processes natural for PDP networks .

This challenge is one that has not yet been fully met. However,
some in i t ial steps toward a PDP model of language processing are
described i n Chapter �pyriJfh�d ��Hr)ia/whose i mplementation is

120 THE PDP PERSPECTIVE

described in that chapter il lustrates how a variety of different con
straints may be combined by PDP models to aid in the assignment of
underlying roles to the consti tuents of sentences. The chapter also pro
vides a discussion of three different ways in which the model could be
extended to process embedded clauses in a way that i s roughly con
sistent with human capabilities and limitati ons in this regard.

We do not claim to have solved these problems . Our existing models
have limitations and much remains to be done . Our explorations have
just begun. The question is not, is the job done - no computational
framework can claim much on this score. The question instead i s , can
more progress be made through further exploration of the PDP per
spective on the microstructure of cognition? The discovery of mul
tilayer learning rules, the use of multipl icative connections to imple
ment transformations of input patterns , the distribution of connection
information, and the host of other developments described throughout
this book, indicate to us that the answer to the question is "yes .h

PDP Models Are Not Cognitive

We have observed that the cooperative character of paral lel
distributed processing often allows us to account for behavior which has
previously been attributed to the application of specific rules of
grammar or rules of thought. This has sometimes led us to argue that
lawful behavior is not necessarily rule-driven behavior. Here , we must
distinguish between rules and regularities. The bouncing ball and the
orbiting planet exhibit regularities in their behavior, but neither is
applying rules. We have demonstrated the power of this approach in
our earl ier work on word perception (McClel land & Rumelhart , 1981;
Rumelhart & McClelland , 1982) and on the learn ing of English mor
phology (Chapter 18). In these cases we have been able to show how
the apparent application of rules could readily emerge from interactions
among simple processing units rather than from application of any
higher level rules.

Some have viewed our argument against explicit rules as an argu
ment against the cognitive approach to psychology. We do not agree.
We believe that we are studying the mechanisms of cognition. The
application of a rule (e .g . , the fi ring of a production) i s neither more
nor less cognitive than the activation of our units . The real character
of cognitive science is the attempt to explain mental phenomena
through an understanding of the mechanisms which underl i e those
phenomena.

Copyrighted Material

4. GENERAL ISSUES 1 21

A related claim that some people have made is that our models
appear to share much in common with behaviorist accounts of
behavior. While they do involve simple mechani sms of learning, there
is a crucial difference between our models and the radical behaviorism
of Skinner and his followers . In our models, we are expl icit ly con
cerned with the problem of internal representat ion and mental process
ing, whereas the radical behaviorist explicit ly denies the scient ific util ity
and even the validity of the consideration of these constructs . The
training of hidden units is , as is argued in Chapters 5 to 8, the con
struction of internal representations . The models described throughout
the book all concern internal mechanisms for act ivating and acquiring
the abi l i ty to activate appropriate i nternal representations. In this
sense, our models must be seen as completely anti thetical to the radical
behaviorist program and strongly committed to the study of representa
tion and process .

PDP Models Are the Wrong Level of Analysis

It is sometimes said that although PDP models are perfectly correct ,
they are at the wrong level of analysis and therefore not relevant to
psychological data . 2 For example, Broadbent (1985) has argued that
psychological evidence is i rrelevant to our argument about distributed
memory because the distribution assumption is only meaningful at what
Marr (I982) has cal led the implementational (physiological) level and
that the proper psychological l evel of description is the computational

level .
The issues of levels of analysis and of theorizing is difficult and

requires a good deal of careful thought . It is , we bel ieve, largely an
issue of scientific judgement as to what features of a lower level of
analysis are relevant to a higher one. We are quite sure that it i s not a
matter for prescri pt ion. We begin our response to this objection with a

review of Marr's analysis and his three levels of description . We then
suggest that i ndeed our models are stated at the same level (in Marr's
sense) as most t radi t ional models from cognit ive science . We then
describe other senses of levels , i ncluding one in which higher level
accounts can be said to be convenient approximations to lower level
accounts . Thi s sense comes closest to capturing our view of the

2 The following discussion is based on a paper (Rumelhart & McClelland, 1985) written
in response to a critique by Donald Broadbent (1985) on our work on distributed

memory (cf. Chapter 17 and McClelland & Rumelhart, 1985).

Copyrighted Material

122 THE PDP PERSPECTIVE

relation between our PDP models and other t radit ional information
processi ng models.

Marr's Notion of Levels

David Marr (1982) has provided an influential analysis of the issue
of levels in cognitive science. Although we are not sure that we agree
enti rely with Marr's analysis, it is thoughtful and can serve as a starting
point . Whereas Broadbent acknowledges only two levels of theory, the
computational and the implementational, Marr actual ly proposes three,
the computational, the algorithmic, and the implementational levels.
Table 1 gives a description of Marr's three levels. We believe that PDP
models are generally stated at the algorithmic level and are primarily
ai med at specifying the representation of information and the processes
or procedures involved in cognit ion . Furthermore , we agree wi th
Marr's assertions that "each of these levels of descri ption will have their
place" and that they are "logical ly and causal ly related." Thus, no par
ticular level of descri ption is independent of the others. There is an
impl icit computational theory in PDP models as wel l as an appeal to
certain implementational (physiological) considerations. We believe
this to be appropriate. It is clear that different algori thms are more
naturally implemented on different types of hardware and, therefore,
informat ion about the implementation can inform our hypotheses at the
algorithmic level .

TABLE 1

THE THREE LEVELS AT WHICH ANY MACHINE CARRYING OUT

INFORMA TION PROCESSING TASKS MUST DE UNDERSTOOD

Computational Theory

What is the goal of the
computation, why is it
appropriate, and what is
the logic of the strategy
by which it can be carried
out?

Representation and
Algorithm

How can this computa
tional theory be imple
mented? In particular,
what is the representation
for the input and output,
and what is the algorithm
for the transformation?

Hardware
Implementation

How can the representa
tion and algorithm be
realized physically?

Note. From Vision by D. Marr, 1982, San Francisco: W. H. Freeman. Copyright 1982
by W. H. Freeman. Reprinted by permission.

Copyrighted Material

4, GENERAL ISSUES 123

Computational models, according to Marr, are focused on a formal
analysis of the problem the system is solving- not the methods by
which it is solved. Thus, in l inguistics, Marr suggests that Chomsky's
(1965) view of a competence model for syntax maps most closely onto a
compulationa/level theory, whereas a psycholinguistic theory is more of
a performance theory concerned with how grammatical structure might
actually be computed. Such a theory is concerned with the algori thmic
level of description . It is the algori thmic level at which we are con
cerned with such issues as efficiency, degradation of performance under
noise or other adverse conditions, whether a particular problem is easy
or difficult, which problems are solved quickly and which take a long
time to solve, how information i s represented, etc . These are all ques
t ions to which psychologi cal inquiry is di rected and to which psychologi
cal data is relevant. Indeed , it would appear that this is the level to
which psychological data speaks most strongly. At the computational
level, i t does not matter whether the theory is stated as a program for a
Turing machine, as a set of axioms, or as a set of rewrite rules. It does
not matter how long the computation takes or how performance of the
computation is affected by " performance" factors such as memory load,
problem complexity , etc. It doesn' t matter how the information is
represented, as long as the representation i s rich enough, in princi ple,
to support computat ion of the requi red function. The question is s im
ply what junction is being computed, not how is it being computed.

Marr recommends that a good strategy i n the development of theory
is to begin wi th a careful analysis of the goal of a particular computation
and a formal analysis of the problem that the system is trying to solve .
He believes that this top-down approach wi l l suggest plausible algo
rithms more effectively than a more bottom-up approach . Thus , the
computational level is given some priori ty. However, Marr certainly
does not propose that a theory at the computational level of descript ion
is an adequate psychological theory,

As psychologists , we are committed to an elucidation of the algo
rithmic level. We have no quarrel with Marr's top-down approach as a
strategy leading to the discovery of cognitive algorithms, though we
have proceeded in a different way. We emphasize the view that the
various levels of description are interrelated. Clearly, the algorithms
must, at least roughly, compute the function specified at the computa
tional level . Equal ly clearly, the algori thms must be computable in
amounts of time commensurate with human performance, using the
kind and amount of hardware that humans may reasonably be assumed
to possess . For example, any algorithm that would requi re more
specific events to be stored separately than there are synapses in the
brain should be given a l ower plausi bility rating than those that requi re
much less storage. Similarly" in the time Qomain , those algori thms that

c-op}<rtgntea Matenal

124 THE PDP PERSPECTIVE

would requi re more than one serial step every mi l l i second or so would
seem poor candidates for implementation in the bra in (Feldman &
Bal lard , 1 982) .

In short , the claim that our models address a fundamentally different
level of description than other psychological models is based on a
fai lure to acknowledge the pri mary level of descri ption to which much
psychological theoriz ing is di rected. At this level , our models should
be considered as competitors of other models as a means of explaining
psychological data.

Other notions of levels. Yet we do bel ieve that in some sense PDP
models are at a different level than other cogni t ive models such as pro
totype theories or schema theory. The reason i s that there is more
between the computational and the implementational levels than is
dreamt of, even in Marr's scheme. Many of our col leagues have chal
lenged our approach with a rather d ifferent conception of levels bor
rowed from the notion of levels of programming languages. It might
be argued that a model such as , say , schema theory or the ACT* model
of John R. Anderson (983) is a statement in a "h igher level" l anguage
analogous, let us say, to the Pascal or LISP programming languages and
that our distributed model is a statement in a "lower level" theory that
is , let us say , analogous to the assembly code into which h igher level
programs can be compiled. Both Pascal and assembler, of course , are
considerably above the hardware level , though the latter may in some
sense be closer to the hardware and more machine dependent than the
former.

From this point of view one might ask why we are mucking around
trying to specify our algorithms at the level of assembly code when we
could state them more succinctly in a high-level language. We bel ieve
that most people who raise the levels issue wi th regard to our models
have a relationshi p something l i ke this in mind. People who adopt this
notion have no objection to our models. They only believe that
psychological models are more simply and easi ly stated in an equivalent
higher level language-so why bother?

We believe that the programming language analogy is very mislead
ing, unless it is analyzed more careful ly . The relationship between a
Pascal program and i ts assembly code counterpart is very special indeed.
It is necessary for the Pascal and assembly language to map exactly onto
one another only when the program was written in Pascal and the
assembly code was compiled from the Pascal version . Had the original
. . programming" taken place in assembler, there i s no guarantee that
such a relationship would exist . Indeed , Pascal code wi l l , in general,
compile into only a smal l fraction of the possible assembly code pro
grams that could be wri tten . Since there is every reason to suppose

Copyrighted Material

4. GENERAL ISSUES 125

that most of the programming that might be tak ing place in the brain is
taking place at a "lower level" rather than a "higher level ," i t seems
unlikely that some particular h igher level description wi l l be ident ical to
some particular lower level description . We may be able to capture the
actual code approximately in a higher level language -and it may often
be useful to do so- but this does- not mean that the h igher level
language is an adequate characterizat ion .

There i s s t i l l another notion of levels which i l lustrates our view.
This i s the notion of levels impl icit in the dist inction between
Newtonian mechanics on the one hand and quantum theory on the
other. 3 It might be argued that convent ional symbol processing models
are macroscopic accounts, analogous to Newtonian mechanics, whereas
our models offer more microscopic accounts, analogous to quantum
theory . Note, that over much of their range , these two theories make
precisely the same predictions about behavior of objects in the world.
Moreover, the Newtonian theory is often much simpler to compute
with since it involves discussions of entire objects and ignores much of
the i r i nternal structure. However, i n some situations Newtonian theory
breaks down. In these situat ions we must rely on the microstructural
account of quantum theory . Through a thorough understanding of the
relat ionshi p between the Newtonian mechanics and quantum theory we
can understand that the macroscopic level of description may be only an
approximation to the more microscopic theory . Moreover, in physics ,

we understand just when the macrotheory wil l fai l and the microtheory
must be invoked. We understand the macrotheory as a useful forma l
tool by virtue of its relat i onshi p to the microtheory . I n th is sense the
objects of the macrotheory can be viewed as emerging from interact ions
of the particles described at the microlevel .

The basic perspecti ve of this book is that many of the constructs of
macrolevel descriptions such as schemata, prototypes, rules, produc

tions, etc. can be viewed as emerging out of i nteractions of the
microstructure of distributed models . These points are most expl icitly
considered in Chapters 6 , 1 4 , 1 7 , and 1 8. We view macrotheories as
approx imations to the underlying microstructure which the distri buted
model presented in our paper attempts to capture. As approximations
they are often useful , but in some situations i t wi l l turn out that an
examination of the microstructure may bring much deeper insight .
Note for example, that i n a convent ional model of language acquis i t ion ,
one has to make very delicate decisions about the exact circumstances
under which a new rule will be added to the rule system. In our PDP
models no such decision need be made. Since the analog to a rule is

3 This analogy was suggested to us by Paul Smolensky.

Copyrighted Material

1 26 THE PDP PERSPECTIVE

not necessari ly discrete but simply something that may emerge from
interact ions among an ensemble of processing uni ts , there is no prob
lem with having the functional equivalent of a " partial " rule. The same
observation appl ies to schemata (Chapter 14) , prototypes and logogens
(Chapter 18) , and other cognit ive constructs too numerous to mention.
Thus, although we imagine that rule-based models of language
acquis i t ion -the logogen model , schema theory , prototype theory, and
other macrolevel theories- may al l be more or less valid approximate
macrostructural descriptions, we bel ieve that the actual algori thms
involved cannot be represented precisely in any of those macrotheories .

It may also be , however, that some phenomena are too complex to
be easily represented as PDP models. If these phenomena took place at
a t ime frame over which a macrostructural model was an adequate
approximation , there is no reason that the macrostructural model ought
not be appl ied . Thus, we bel ieve that the concepts of symbols and
symbol processing can be very useful . Such models may someti mes
offer the s implest accounts. It is , however, important to keep i n mind
that these models are approximations and should not be pushed too far.
We suspect that when they are , some account simi lar to our PDP
account wil l again be requi red. Indeed, a large part of our own motiva
t ion for exploring the PDP approach came from the fai lure of schema
theory to provide an adequate account of knowledge application even to
the task of understanding very simple stories.

Lest i t may seem that we have given too much away, however, it
should be noted that as we develop clearer understandings of the
microlevel models , we may wish to formulate rather different
macrolevel models . As pointed out in Chapter 3, PDP mechanisms
provide a powerfu l alternative set of macrolevel primit ives. 4

Imagine a computational system that has as a primit ive, " Relax into a

state that represents an optimal global interpretation of the current
input ." This would be, of course , an extremely powerful place to begin
building up a theory of higher level computations. Related primit ives
would be such things as " Retrieve the representation in memory best
matching the current input, blending into i t plausible reconstructions of
detai ls missing from the original memory trace," and " Construct a
dynamic configuration of knowledge structures that captures the present
situation, with variables instantiated properly." These sorts of primi
tives would be unthinkable in most conventional approaches to higher
level cognit ion , but they are the kinds of emergent properties that PDP
mechanisms give us, and it seems very l ikely that the avai labi l i ty of

4 We thank Walter Sch neider for st ressing i n h is com ments on an earl ier d raft of t h is
chapter the i m portance of the d i fferences between the computat ional primi t ives offered
by PDP and those offered by other formal isms for model ing cogn i t i ve processes.

Copyrighted Material

4. GENERAL ISSUES 1 27

such primit ives wi l l change the shape of higher level theory
considerably.

PDP mechanisms may also place some constraints on what we might
real ist ically ask for in the way of computat ional primit i ves because of
the costs of implementing certain kinds of computations in paral lel
hardware in a single relaxation search . The paral lel matching of vari
ablized product ions is one case i n point . Theories such as ACT* (J. R.
Anderson , 1 983) assume that this can be done wi thout worrying about
the implementation and, therefore , provide no principled accounts of
the kinds of crosstalk exhib i ted in human behavior when processing
multiple patterns s imultaneously . However , i t appears to be a quite
general property of PDP mechanisms that they wi l l exhibit crosstal k
when processing mult ip le patterns in parallel (Hinton & Lang, 1 985 ;
Mozer, 1 984; see Chapters 1 2 and 1 6) .

High-level languages often preserve some of the character of the
lower level mechanisms that implement them, and the resource and
time requi rements of algori thms drastically depends on the nature of
the underlying hardware . Higher level languages that preserve the
character of PDP mechanisms and exploit the algori thms that are effec
t ive descriptions of paral lel networks are not here yet , but we expect
such things to be coming along in the future. This wi l l be a welcome
development , in our view, since certain aspects of cogni t ive theory
have been too strongly influenced by the d iscrete, sequential algori thms
available for expression in most current high-level languages .

As we look closely , both at the hardware in which cognit ive algo
rithms are i mplemented and at the fine structure of the behavior that
these algori thms are designed to capture, we begin to see why i t may be
appropriate to formulate models which come closer to describing the
microstructure of cogni t ion. The fact that our microstructural models
can account for many of the facts about the representat ion of general
and specific information, for example, as discussed in Chapter 1 8 ,
makes u s ask why we should view constructs l ike logogens, prototypes ,
and schemata as anything other than convenient approxi mate descri p
tions of the underlying structure of memory and thought .

Reductionism and Emergent Properties

A sl ightly different, though related, argument is that the PDP enter
prise i s an exercise in reductionism - an exercise in which all of
psychology is reduced to neurophysiology and ult imately to physics . It
i s argued that coherent phenomena which emerge at any l evel (psychol
ogy or physics or sociolW'Jyh���� �9gri

grn language of descri ption

1 28 THE PDP PERSPECTIVE

and explanation and that we are denying the essence of what is cogn i
t ive by reducing i t to units and connections rather than adopting a more
psychological ly relevant language in our explanations.

We do not classify our enterprise as reductionist, but rather as
interact ional . We understand that new and useful concepts emerge at
different levels of organization . We are simply trying to understand the
essence of cognit ion as a property emerging from the interactions of
connected units in networks .

We certainly bel ieve in emergent phenomena in the sense of
phenomena which could never be understood or predicted by a study of
the lower level elements in isolation . These phenomena are functions
of the part icular kinds of groupings of the elementary units . In genera l ,
a new vocabulary is useful to talk about aggregate phenomena rather
than the characteristics of isolated elements. This is the case in many
fields. For example, we could not know about diamonds through the
study of isolated atoms; we can ' t understand the nature of social sys
tems through the study of isolated i ndividuals; and we can 't understand
the behavior of networks of neurons from the study of isolated neu
rons. Features such as the hardness of the diamond is understandable
through the interaction of the carbon atoms and the way they l ine up.
The whole is different than the sum of the parts . There are nonl inear
interactions among the parts . This does not , however, suggest that the
nature of the lower level elements is i rrelevant to the higher level of
organization - on the contrary , the higher level is, we bel ieve, to be
understood primari ly through the study of the interactions among lower
level units . The ways in which units interact is not predictable from the
lower level elements as isolated ent i t ies . It i s , however, predictable if
part of our study involves the interactions among these lower level
units . We can understand why diamonds are hard, not as an i solated
fact , but because we understand how the atoms of carbon can l ine up to
form a perfect lattice. This is a feature of the aggregate, not of the
i ndividual atom , but the features of the atom are necessary for under
standing the aggregate behavior. Unti l we understand that, we are left
with the unsati sfactory statement that diamonds are hard, period. A
useful fact, but not an explanation. Simi lar ly, at the social leve l , social
organizations cannot be understood without understanding the
individuals which make up the organization. Knowing about the
individuals tel ls us l i tt le about the structure of the organizat ion, but we
can't understand the structure of the higher level organizations without
knowing a good deal about individuals and how they function. This is
the sense of emergence we are comfortable with. We bel ieve that i t is
entirely consistent with the PDP view of cogni t ion .

There is a second, more practical reason for rejecting radical reduc
tionism as a research strategy . This has nothing to do with emergence;

Copyrighted Material

4. GENER A L ISS U ES 1 29

i t has to do with the fact that we can ' t know everyth ing and find out
everything at once. The approach we have been argui ng for suggests
that to understand something thoroughly at some level requi res
knowledge at that level , plus knowledge of the lower levels . Obviously ,
this is i mpract ical . In practice, even though there might be effects of
lower levels on higher levels, one cannot always know them. Thus,
attempting to formulate a description at this higher level as a fi rst order
of approximation is an important research strategy. We are forced into
it if we are to learn anything at a l l . I t is poss ible to learn a good deal
about psychology without any reference whatsoever to any lower levels.
This practical strategy is not, however, an excuse for ignoring what is

known about the lower levels in the formulation of our higher level
theories . Thus, the economist is wrong to ignore what we might know
about i ndividuals when formulating his theories. The chemist would be
wrong to ignore what is known about the structure of the carbon atom
in explaining the hardness of diamonds. We argued above that the
view that the computational level is correct derives from experience
wi th a very special kind of device in which the h igher level was designed

to gi ve the right answers-exactly . In describ ing natural intel l igence
that can' t , we suspect , be righ t-exactly . It can be a fi rst order of
approximation . As we learn more about a topic and as we look at i t in
more and more detai l we are going to be forced to consider more and
more how i t might emerge (in the above sense) from the interactions

among its const i tuents. Interaction is the key word here . Emergent
properties occur whenever we have non l i near i nteractions. In these
cases the princi ples of interaction themselves must be formulated and
the real theory at the higher level is, l i ke chemistry, a theory of in terac
t ions of elements from a theory one level lower .

Not Enough Is Known From Neuroscience t o Seriously
Constrain Cognitive Theories

Many cognit ive scientists bel ieve that there wil l eventually be an
understanding of the relationships between cognit ive phenomena and
brain function ing. Many of these same people feel , however, that the
brain is such an exceptionally powerful computat ional device that i t is
capable of performing just about any computation . They suppose that
facts now known from neuroscience place l i t t le or no restriction on
what theories are possible at a cogni t ive leve l . In the meant ime, they
suppose, a top-down analysis of possible mechanisms of cognit ion can
lead to an understanding of cognit ion that wil l stand independently of
whatever might be discqsf)pyJ-;�m# �;fHnct ioning. Moreover, they

1 30 THE PDP PERSPECTIVE

bel ieve that neuroscientists can be guided in their bottom-up search for
an understanding of how the brain functions.

We agree wi th many of these senti ments. We bel ieve that an under
standing of the relationships between cogni ti ve phenomena and brain
functions wil l slowly evolve. We also bel ieve that cognit ive theories can
provide a useful source of information for the neuroscientist . We do
not, however, believe that current knowledge from neuroscience pro
vides no guidance to those interested in the functioning of the mind.
We have not , by and large , focused on the kinds of constraints which
arise from detailed analysis of particular ci rcuitry and organs of the
brain . Rather we have found that information concerni ng brain-style
processing has i tself been very provocati ve in our model bui lding
efforts. Thus, we have, by and large, not focused on neural modeling
(i .e . , the modeling of neurons) , but rather we have focused on neurally
inspired modeling of cognit ive processes . Our models have not
depended strongly on the details of brain structure or on issues that are
very controversial in neuroscience . Rather, we have discovered that if
we take some of the most obvious characteristics of brain-style process
ing seriously we are led to postulate models which differ in a number of
important ways from those postulated wi thout regard for the hardware
on which these algori thms are to be implemented. We have found that
top-down considerations revolving about a need to postulate parallel ,
cooperative computational models (cf. Rumelhart , 1977) have meshed
nicely with a number of more bottom-up considerations of brain style
processing.

There are many brain characteristics which ought to be attended to in
the formulation of our models (see Chapters 20 and 2 1) . There are a
few which we have taken most seriously and which have most affected
our thinking. We discuss these briefly below.

Neurons are slow. One of the most important characteristics of
brain -style processing stems from the speed of its components. Neu
rons are much slower than convent ional computational components.
Whereas basic operations in our modern serial computers are measured
in the nanoseconds, neurons operate at ti mes measured in the
mi l l i seconds - perhaps l Os of mi l l iseconds. Thus, the basic hardware of
the brain is some 1 ()6 t imes slower than that of serial computers. Ima
gine slowing down our conventional AI programs by a factor of 1()6 .
More remarkable is the fact that we are able to do very sophist icated
processing in a few hundred mil l iseconds. Clearly, perceptual process
i ng, most memory retrieval , much of language processing, much intui
t ive reasoning, and many other processes occur in this t ime frame.
That means that these tasks must be done in no more than 1 00 or so
serial steps. This is what Feldman (1 985) calls the l OO-step program

Copyrighted Material

4. GENERAL ISSUES 1 3 1

constraint. Moreover , note that individual neurons probably don ' t com
pute very complicated functions. It seems unl ikely that a single neuron
computes a function much more complex than a single instruction in a
digi tal computer. Imagine, again , wri t ing an interesting program in
even 1 000 operations of this l imited complexity of a serial computer .
Evidently, the brain succeeds through massive parallelism . Thus, we
conclude , the mechanisms of mind are most l ikely best understood as
result ing from the cooperative act i vity of very many relat ively s imple
processing uni ts operati ng i n paral lel .

There is a very large number of neurons. Another self-evident, but
important , aspect of brain-style processing is the very large number of
processing units involved. Conventional estimates hold that there are
on the order of 1 0 10 to 1 0 1 1 neurons in the brain . Moreover, each neu
ron is an active processing unit . This suggests paral lel ism on a very
large scale indeed. An understanding of parallel computation involving
a few hundred reasonably complex processors provides the wrong
model . It may well be that it is the massive scale of the parallel ism of
the brain that gives it its amazing power.

Although the human brain is large , the number of neurons i s not
unl imited. It happens that our models sometimes push the l imits of
plausibi l i ty because of the large number of uni ts they require. This is a
real constraint , one that we and others have begun to take into account
in evaluating our models (see Chapter 12 for a discussion of this i ssue) .

Neurons receive inputs from a large number of other neurons.
Another important feature of brain processing is the large fan- in and
fan-out to and from each unit . Estimates vary , but single cortical neu
rons can have from 1 ,000 to 1 00,000 synapses on their dendrites and ,
l i kewise , can make from 1 ,000 to 1 00,000 synapses on the dendri tes of
other neurons . Generally , one or a small number of act ion potentials
received are not enough to generate an act ion potential (see, for exam
ple , Chapter 20) . This suggests that human computation does not
involve the kind of logic ci rcuits out of which we make our digital com
puters, but that it involves a kind of stati st ical process in which the sin
gle units do not make decisions, but in which dec is ions are the product
of the cooperative action of many somewhat independent processing
units . Rel iabil i ty derives from the stabi l i ty of the statistical behavior of
large numbers of units . Again , this degree of connectivity should be
contrasted with the number of i mmediate neighbors of processors i n
current parallel computers . Usually these numbers are measured in the
tens (or less) rather than in the thousands . Moreover, this large degree
of connecti vi ty suggests that no neuron is very many synapses away
from any other neuron . df

p for/iar2umenCs sake, we assume that every o yn9 1cetJ Matenal

1 32 THE PDP PERSPECTIVE

cortical neuron is connected to 1 ,000 other neurons and that the system
forms a lattice, all of the neurons in the brain would be wi th in , at most ,
four synapses from one another . Thus, large fan- in and fan-out leads
to shal low networks . It should finally be noted that even though the
fan- in and fan-out is large , it is not unl imited . As described in Chapter
1 2 , the l imi tations can cause problems for extending some simple ideas
of memory storage and retrieval .

Learning involves modifying connections. Another key feature of
our models which derives from our understandi ng of learn ing mechan
i sms in the brain is that the knowledge is in the connections rather than in
the units themselves . Moreover, learn ing is generally assumed to
involve modifying connection strengths. There are real computational
advantages to such a s imple learni ng procedure. Its s implicity and
homogeneity allow us to develop powerful learning procedures which
work simply and i ncrementally . (See Chapters 5, 6, 7, 8; Chapters 1 1 ,
1 7 , 1 8 , 24, and 25 consider the impl icat ions of this view.)

Neurons communicate by sending activation or inhibition through
connections. Communication among neurons involves s imple excita
tory and inhibitory messages. Only a few bits can be communicated per
second. Thus, unl ike other paral lel message passing systems such as
Hewitt's (975) ACTOR system which al lows arbitrary symbol ic mes
sages to be passed among its units , we require simple, signed numbers
of l imited precision . This means that the currency of our systems i s
not symbols, but excitation and inhi bit ion . To the degree that symbols
are required, they must emerge from this subsymbolic level of
processing (Hofstadter , 1 979) .

Connections in the brain seem to have a clear geometric and
topological structure. There are a number of facts about the pattern of
connect ions in the brain which, we bel ieve, are probably important , but
which have not yet had a large impact on our models. First , most con
nections are rather short . Some are long (these tend to be exci tatory) ,
but not most. There are rather strong geometric and topological con
straints. There is a rough mapping in that input parameters (such as
spatial location in vision or frequency in audition) are mapped onto spa
tial extent in the brain . In general it seems that nearby regions in one
part of the brain map onto nearby regions in another part of the brain .
Moreover , there is a general symmetry of connections. If there are
connections from one region of the brain to another, there are usual ly
connect ions in the reverse di rect ion. Some of these features have been
implemented in our models, though , interestingly , most often for com
putational reasons rather than for biological veris imi l itude. For

Copyrighted Material

4. GE NER A L ISSUES 1 33

example, rough symmetry was a feature of our earl ier work on word
perception (cf. McClel land & Rumelhart , 1 98 1) , and i t is a feat ure of
the work described i n Chapters 6, 7 , 1 4 , 1 5 , and 1 6 . The error propaga
tion learn ing rule of Chapter 8 requ i res a back path for an error si gnal
to be propagated back through. In general , rec iprocal ly in teract ing sys
tems are very important for the k ind of processing we see as charac
terist i c of PDP models. This is the defining featu re of interactive activa
tion models. We have also employed the view that connecti ons
between systems are exci tatory and those with in a region are i nh ib i tory.

This is employed to advantage in Chapters 5 and 1 5 .
The geometric structure of connections in the brain have not had

much impact on our work . We general ly have not concerned ourselves
wi th where the un i ts might physical ly be with respect to one another.
However, i f we imagine that there is a constraint toward the conse rva
tion of connect i on length (which there must be) , i t i s easy to see that
those units which in teract most should be the closest together. If you
add to this the view that the very high-dimensional space determined
by the number of i nterconnections must be embedded in to the two- or
three-di mensional space (perhaps two and a half dimensions) of the
cortex , we can see the i m portance of mappi ng the major di mensions
physical ly in the geometry of the brai n (see Bal lard , in press , for a dis
cussion of embedd i ng h i gh-di mensional spaces i nto two di mensions) .

Information is continuously available. Another important feature of

neural informat ion processing is that the neurons seem to provide con
tinuously a vailable output (Norman & Bobrow, 1 975) . That is , there
does not seem to be an appreciable decision phase during which a unit
provides no output. Rather i t seems that the state of a unit reflects i ts
current input . To the degree that a unit represents a hypothesis and i ts
activation level (instantaneous fir ing rate or probabi l i ty of fi ring)
represents the degree to which evidence favors that hypothes is , the
activation level of the uni t provides cont inuous information about the
current evaluation of that hypothesis . This hypothesis was incorporated
into the precursors of our own work on paral lel distri buted processing,
especial ly the cascade model (McClel land, 1 979) and the i nteract ive
model of reading (Rumelhart , 1 977) , and i t i s a feature of v irtually al l
of the PDP models in this book. 5 Interestingly , this contrasts starkly
with what used to be the standard approach, namely, stage models of
information processing (Sternberg, 1 969) , and thereby offers a very

5 Though some PDP models use discrete binary units (e.g., Hinton , 198 1 a; Hopfield,

1 982) , they generally use large n umbers of Ihese 10 represent any object , so that when a
few of the u n i ts that form part of a pattern are on, the pattern can be said to be part ial l y
active. Copyrighted Material

134 THE PDP PERSPECTIVE

different perspect ive on decision-making processes and the basic notion
of stages .

Graceful degradation with damage and information overload.
From the study of brain lesions and other forms of brai n damage, it
seems fai rly clear there is not some single neuron whose funct ion ing is
essential for the operation of any particular cogni t ive process. While
reasonably circumscribed regions of the brain may play fai rly specific
roles, particularly at lower levels of processing, i t seems fai rly clear that
wi thin regions, performance is characterized by a kind of graceful degra
dation i n which the system's performance gradually deteriorates as more
and more neural units are destroyed, but there is no s ingle crit ical point
where performance breaks down. This kind of graceful degradation is
characteristic of such global degenerative syndromes as Alzheimer's
disease (cf. Schwartz, Marin , & Saffran, 1979) . Again , this is quite dif
ferent from many serial symbol processing models i n which the disrup
t ion of a single step in a huge program can catastrophically impact the
overal l performance of the system. Imagine the operation of a com
puter in which a particular i nstruction did not work . So long as that
instruction was not used, there would be no effect on the system.
However, when that instruction was employed in some process , that
process simply would not work. In the brain it seems that the system is
highly redundant and capable of operating with a loss in performance
roughly si milar in magnitude to the magnitude of the damage (see
Chapter 1 2 for details) . This is a natural performance characteristic of
PDP models.

Distributed, not central, control. There is one final aspect of our
models which is vaguely derived from our understanding of brain func
tioning. This is the notion that there is no central executive overseeing
the general flow of processing. In conventional programming frame
works it is easy to imagine an executive system which cal ls subroutines
to carry out its necessary tasks . In some information processing models
this notion of an executive has been carried over . In these models, all
processing is essential ly top-down or executive-driven; if there is no
executive, then no processing takes place at all .

Neuropsychological investigat ion of patients wi th brain damage indi
cates that there is no part of the cortex on whose operation al l other
parts depend. Rather it seems that all parts work together, influencing
one another, and each region contributes to the overall performance of
the task and to the integration into i t of certain kinds of constraints or
sources of informat ion . To be sure, brainstem mechanisms control
vital bodily functions and the overall state of the system, and certain
parts of the cortex are cri t ical for receiving information in particular

Copyrighted Material

4. GENERAL ISSU ES 1 3 5

modali t ies. But higher level functions seem very much t o be character
ized by distributed, rather than central control .

This point has been made most clearly by the Russian neuropsychol
ogist Luria (I 966; 1 973) . Luria's investigations show that for every
integrated behavioral function (e .g . , visual perception , language
comprehension or production , problem solving, reading) , many dif
ferent parts of the cortex play a role so that damage to any part influ
ences performance but is not absolutely crucial to i t . Even the frontal
lobes , most frequently associated wi th execut ive functions , are not
absolutely necessary in Luria's view, in that some residual function is
generally observed even after mass ive frontal damage (and mild frontal
damage may result i n no detectable symptomatology at al l) . The fron
tal lobes have a characteristic role to play, fac i l i tating strategy shifts and
inhibit ing impulsive responding, but the overal l control of processing
can be as severely impaired by damage to parietal lobe structures that
appear to be responsible for maintaining organized representations that
support coordinated and goal-di rected acti vity .

Our view of the overall organization of process ing is s imi lar to
Luria 's . We have come to believe that the notion of subroutines with
one system " cal l ing" another is probably not a good way to view the
operation of the brain . Rather, we bel ieve that subsystems may modu
late the behavior of other subsystems, that they may provide constraints
to be factored i nto the relaxat ion computat ion . An elaborat ion of some
aspects of these ideas may be found in Chapter 1 4 .

Relaxation is the dominant mode oj computation. Although there
is no specific piece of neuroscience which compels the view that brain
style computat ion involves relaxat ion , all of the features we have just
discussed have led us to bel ieve that the pri mary mode of computation
in the brain is best understood as a kind of relaxation system (cf.
Chapters 6, 7, 1 4, 1 5 , and 2 1) in which the computat ion proceeds by
i terati vely seeking to satisfy a large number of weak constraints . Thus,
rather than playing the role of wires in an electric ci rcui t , we see the
connections as representing constraints on the co-occurrence of pai rs of
units . The system should be thought of more as settling into a solution
than calculating a solution. Again , this is an important perspective
change which comes out of an interaction of our understanding of how
the brain must work and what kinds of processes seem to be required
to account for desired behavior.

As can be seen, this l ist does not depend on specific discoveries from
neuroscience. Rather , i t depends on rather global considerations.
Al though none of these general properties of the brain tell us i n any
detai l how the brain functions to support cognit ive phenomena,
together they lead to aoo��fIAA9�Rhl how the brain works that

1 36 THE PDP PERSPECfIVE

serves as a set of constraints on the development of models of cogni
t ive processes. We find that these assumptions, together with those
that derive from the constraints imposed by the tasks we are trying to
account for , strongly influence the form of our models of cognit ive
processes.

PDP Models Lack Neural Real ism

On the one hand, i t is sometimes said-as indicated in the previous
section -that there is l i tt le or no constraint to be gained through look
ing at the brain . On the other hand, i t is often said that we don 't look
closely enough . There are many facts of neuroscience that are not fac
tored di rectly into our models. Sometimes we have fai led to capture
the fine structure of neural processing in our models. Other times we
have assumed mechanisms that are not known to exist in brains (see
Chapter 20) . One prominent example is the near-ubiquitous assump
tion that units can have both exci tatory and inhibitory connections
when i t seems reasonably clear that most cortical units are ei ther excita
tory or inhibi tory . If, as we argued above, i t is important to understand
the microstructure of cogni t ion , why do we ignore such detailed charac
teristics of the actual physical processes underlying that microstructure?

To be sure, to the extent that our models are di rectly relevant to
brains, they are at best coarse approximations of the detai ls of neuro
physiological processing. Indeed , many of our models are clearly
intended to fall at a level between the macrostructure of cognit ion and
the detai ls of neurophysiology. Now, we do understand that some of
our approximations may have ramifications for the cognit ive
phenomena which form our major area of interest; by missing certain
detai ls of neurophysiology , we may be missing out on certain aspects of
brain function that would make the difference between an accurate
account of cognit i ve-level phenomena and a poor approximation. Our
defense is simply that we see the process of model building as one of
success ive approximations. We try to be responsive to information from
both the behavioral and the neural sciences. We also bel ieve that the
key to scientific progress is making the right approximations and the
right s impl ifications . In this way the structure can be seen most clearly.
This poi nt is con�idered further in Chapter 21 .

We have been pleased with the structure apparent through the set of
approximations and simpl ificat ions we have chosen to make . There
are , however, a number of other facts from neuroscience that we have
not included in most of our models, but that we imagine wi l l be impor
tant when we learn how to incl ude them. The most obvious of these is

Copyrighted Material

4 G E N E R A L ISS U ES 1 3 7

the fact that we normally assume that uni ts communicate via numbers.
These are sometimes associated with mean fi ring rates. In fact , of
course, neurons produce spi kes and this spik ing i tself may have some
computational s ignificance (see Chapters 7 and 2 1 for discussions of the
possible computational s ignificance of neural spik ing) . Another exam
ple of possi bly i mportant facts of neuroscience which have not played a
role i n our models is the d iffuse pattern of communicat ion which
occurs by means of the dispersal of chemicals i nto various regions of
the brai n th rough the blood stream or otherwise . We general ly assume
that communication i s point-to-poi nt from one unit to another. How
ever. we understand that diffuse communication can occur through
chemical means and such communicat ion may play an important role i n
sett ing parameters and modulati ng the networks so that they can per
form rather di fferent tasks in d ifferent situations. We have employed
the idea of diffuse distr ibut ion of chemicals in our account of amnesia
(Chapter 25) , but, i n general , we have not otherwise i ntegrated such
assumptions i n to our models . Roughly, we imagine that we are study
ing networks in which there i s a fixed sett ing of such parameters, but
the situation may wel l be much more complex than that . (See Chapter
24 for some discussion of the role of norepinephrine and other neuro
modulators .)

Most of our models are homogeneous wi th respect to the funct ioning
of our units . Some of them may be designated as inh ibitory and others
as exci tatory , but beyond that , they are rarely different iated. We
understand that there are perhaps hundreds of kinds of neurons (see
Chapter 20) . No doubt each of these k inds play a s l ightly d ifferent role
in the information processing system. Our assumptions in this regard
are obviously only approx i mate. S imi larly, we understand that there
are many different kinds of neurotransmitters and that there are d if
ferent systems i n which d ifferent of these neurotransmitters are dom
i nant. Agai n , we have i gnored th is d ifference (except for exci tatory
and i nhi bitory connections) and presume that as more i s understood
about the i nformat ion process ing i mpl ications of such facts we wi l l be
able to determine how they fit i n to our class of models.

It is also true that we have assumed a number of mechan isms that
are not known to exist i n the brain (see Chapter 20) . In general , we
have postulated mechanisms which seemed to be requi red to achieve
certain important functional goals , such as, for example, the develop
ment of i nternal representat ions in mult i layer networks (see Chapter
8) . I t i s poss ible that these hypothesized mechanisms do exist i n the
brain but have not yet been recognized . In that sense our work could
be considered as a source of hypotheses for neuroscience . It is also
possible that we are correct about the computations that are performed ,
but that they are perfo�&JKf6MfM1 k ind of neural mechan ism

138 THE PDP PERSPECTIVE

than our formulations seem at first glance to suggest . If this is the
case , it merely suggests that the most obvious mapping of our models
onto neural structures is incorrect .

A neuroscientist might be concerned about the ambiguity inherent in
the fact that many of the mechanisms we have postulated could be
implemented in different ways. From our point of view, though, this is
not a serious problem. We think it useful to be clear about how our
mechanisms might be implemented in the brain , and we would certainly
be worried if we proposed a process that could not be implemented in
the brain . But since our primary concern is with the computations
themselves , rather than the detailed neural implementation of these
computati ons, we are wi l l ing to be instructed by neuroscienti sts on
which of the possible implementations are actually employed . This
posi t ion does have its dangers. We have already argued in this chapter
that the mechanism whereby a function is computed often has strong
implications about exactly what function is being computed . Neverthe
less, we have chosen a level of approx imation which seems to us the
most fruitfu l , given our goal of understanding the human information
processi ng system.

We close this section by noting two different ways in which PDP
models can be related to actual neurophysiological processes, apart from
the possibi l i ty that they might actually be i ntended to model what is
known about the behavior of real neural c i rcuitry (see Chapters 23 and
24 for examples of models of this class) . Fi rst , they might be intended
as ideal izations. In this approach, the emergent properties of systems
of real neurons are studied by idealiz ing the properties of the indi vidual
neurons, in much the same way that the emergent properties of real
gasses can be studied by idealiz ing the properties of the individual gas
molecules. This approach is described at the end of Chapter 2 1 . An
alternat ive is that they might be intended to provide a higher level of
descri ption , but one that could be mapped on to a real neurophysiologi
cal implementation . Our interactive act ivation model of word recogni
tion has some of th i s flavor, as do most of the models described in
Chapters 1 4 through ! 9. Specifically wi th regard to the word recogni
t ion model, we do not claim that there are individual neurons that
stand for visual feature, letter, and word units, or that they are con
nected together just as we proposed in that model . Rather, we really
suppose that the physiological substrate provides a mechanism whereby
various abstract informati onal states - such as, for example, the state in
which the perceptual system is entertain ing the hypothesis that the
second letter in a word is either an H or an A -can give rise to other
informati onal states that are contingent upon them.

Copyrighted Material

4. GENERAL ISSUES 1 39

Nativism vs . Empiricism

Historically , perceptron- I ike models have been associated wi th the
idea of " random self-organizing" networks , the learn ing of arbitrary
associations, very general , very simple learning rules, and simi lar ideas
which show the emergence of structure from the tabula rasa. We often
find, especia l ly in discussion with colleagues from l inguistics surround
i ng issues of language aquisition (see Chapters 1 8 and 1 9) , that PDP
models are judged to involve learning processes that are too general
and, all in al l , give too l i t t le weight to innate characteristics of language
or other information processing structures . This feel ing is brought out
even more by demonstrat ions that some PDP learn ing mechanisms are
capable of learning to respond to symmetry and of learn ing how to deal
with such basic perceptual problems as perceptual constancy under
translation and rotat ion (see Chapter 8) . In fact , however, PDP models
are , in and of themselves, qui te agnostic about issues of nati vism
versus empiric ism. Indeed, they seem to us to offer a very useful per
spective on the issue of innate versus acquired knowledge .

For the purposes of discussion let us consider an organism that con
sists of a very large set of very simple but highly interconnected pro
cessing units . The uni ts are assumed to be homogeneous in the ir
properties except that some are special ized to serve as " input " units
because they recei ve inputs from the environment and some are spe
cial ized to serve as " output " uni ts because they drive the effectors of
the system . The behavior of such a system is thus ent irely determined
by the pattern of inputs , the pattern of interconnections among the
units, and the nature of and connections to the effectors . Note, that
i nterconnections can have various strengths - posi t ive, negat ive , and
zero. If the strength of connection is pos i t ive , then acti vity in one unit
tends to increase the activity of the second unit . If the strength of con
nection is negative, then the acti vity i n the first unit tends to decrease
the activity of the second uni t . If the strength is zero, then activi ty of
the first unit has no effect on the activity of the second.

In such a system the radical nativism hypothesis would consist of the
view that al l of the interconnections are genetical ly determined at birth
and develop only through a biological ly dri ven process of maturat ion .
I f such were the case , the system could have any particular behavior
entirely wired in. The system could be designed in such a way as to
respond differential ly to human speech from other acoustic st imul i , to
perform any sort of computation that had proven evolut ionari ly adap
tive, to mimic any behavior it might observe , to have certa in stimulus
di mensions to which i t was pretuned to respond, etc . In short , i f al l of
the connections were genetical l y I>r.edetermined , the system could

Copyrighted Material

1 40 THE PDP PERSPECTIVE

perform any behavior that such a system of units, interconnections, and
effectors might ever be capable of. The question of what behaviors it
actually did carry out would presumably be determined by evolutionary
processes . In this sense , this s imple PDP model is clearly consistent
wi th a rabidly nat ivist world view.

The radical empiricist hypothesis , on the other hand , suggests that
there are no a priori l imits on how the network of interconnections
could be constituted . Any pattern of interconnections is possible .
What determines the actual set of connections i s the pattern of experi
ences the system gets . In this sense there is no prior l imit on the
nature of language; any language that could be processed by such a net
work could be learned by such an organ ism. The only l imi tations
would be very general ones due to the nature of the learni ng rule in the
system. Wi th a sufficiently powerfu l learning rule, the organism could
organize i tself into whatever state proved maximally adapti ve. Thus,
there would be no l imitation on the degree to which the behavior of the
system could adapt to i ts environment . It cou ld learn completely arb i
trary associations. In short , if all connect ions in the system were
modifiable by experience, the system could learn to perform any
behavior at all that such a system of units, i nterconnections, and effec
tors might ever be capable of. The question of what behaviors it actu
al ly did carry out would presumably be determined by the learning pro
cess and the patterns of inputs the system actually experienced. In this
sense, the simple PDP model is clearly consistent with a rabidly empiri
cist world view.

Obviously, i t would be a straightforward matter to find a middle
ground between the radical nativist view and the radical empiricist view
as we have laid them out . Suppose, for sake of argument , that we have
an organ ism whose in i t ial state is wholly determined genetical ly . Sup
pose further that al l of the connections were modifiable so that what
ever the start state, any pattern of interconnections could emerge
through interaction of the organism with i ts environment . 6 In such a
system as this we have , it seems to us, the benefits of both nativism
and empiricism. Like good nat ivists , we have given the organism a
starting point that has been selected by i ts evol utionary history . We
have not , however, strapped the organ ism with the rigid predetermin
ism that tradi t ional ly goes along wi th the nat ivist v iew. If there are

6 Obviously both of these views are o verstatemen ts . Clearly the genes do not deter
mine every connect ion at b i r th . Probably some sort of random processes are also
i n volved . Equal ly clearly , not every pattern of interconnect ivity is possi ble si nce the spa
t ia l layout of the neurons in the cortex , for example, surely l imit the connect iv i ty . St i l l ,
there is probably a good deal of genetic specification of neu ral connect ion, and there is a

good deal of plastici ty i n the pat tern of connect ivit ies after b i rth .

Copyrighted Material

4. G ENERAL ISSUES 1 4 1

certain patterns of behavior which , in evolut ionary t ime, have proven
to be useful (such as sucking, reaching, or whatever) we can bui ld
them in , but we leave the organism free to modify or completely
reverse any of these behavioral predisposit ions.7 At the same time, we
have the best of the empiricist view- namely, we place no a priori l im
i tations on how the organism may adapt to its environment . We do,
however, throw out the weakest aspect of the empiricist dogma
namely, the idea of the tabula rasa (or total ly random net) as a start ing
point . The organism could start at whatever in i t ial state i ts evolut ionary
h istory prepared it for.

Perhaps, at this stage , al l of this seems painful ly obvious. It seems
obvious to us too, and nevertheless, it gives us a new perspecti ve on
the nat ivism /empiricism issue. The i ssue is not what is the set of
predetermined modules as some would suggest (cf. Fodor, 1 983) . On
this view it seems quite reasonable , we submit , that to the degree that
there are modules, they are co-determined by the start state of the sys
tem (the genetic predispos i t ion) and by the envi ronment . (We take a
module to be roughly a set of units whi ch are powerfully intercon
nected among themselves and relatively weakly connected to un i ts out
side of the set ; of course , this concept admits al l gradat ions of modu
lari ty, just as our view of schemata a l lows al l degrees of schematizat ion
of knowledge .) There i s , on this view, no such th ing as " hardwi ring ."
Nei ther is there any such thing as " software ." There are only connec
t ions. All connections are in some sense hardwired (in as much as they
are physical enti t ies) and al l are software (in as much as they can be
changed.) Thus, i t may very well be that there is a part of the network
prewired to deal with this or that processing task . If that task i s not
relevant in the organism's environment , that part of the network can be
used for something else. If that part of the network is damaged ,
another part can come to play the role " normal ly" carried out by the
damaged port ion . These very propert ies have been noted characteristics
of the brain si nce Hughl ings-Jackson 's work in the late 1 9th century
(e.g. , Jackson, 1 869/ 1 958) ; Jackson pointed them out as difficulties for
the strict local izationist views then popular among students of the brai n .
Note too that our scheme al lows for the organism to be especial ly sensi
t ive to certain relationsh ips (such as the relationship between nausea
and eat ing, for which there might be stronger or more d i rect prewired

7 Here agai n . our orga n ism overs impl i fies a b i t . It appears that some parts of the ner

vous system - particular ly lower level . reOexive. or regulatory mechanisms -seem to be
prewired and subject only to control by trainable modulatory connections to higher level .

more adapt i ve mechanisms. ra ther than to be d i rectly modifiable themselves: for d iscus

sion see Te itelbaum (I 967) and Gal l i stel (1 980) .
Copyrighted Material

1 42 THE PDP PERSPECTIVE

connections) whi le at the same time al lowing quite arbitrary associa
tions to be learned .

Finally, it should be mentioned that all of the learning schemes that
have been proposed for networks of the sort we have studied are incre
mental (cf. Chapters 7, 8, 1 1 , 1 8 , 1 9 , and 25) , and therefore as an
organism moves from its primarily genetically predetermined start state
to i ts primarily environmentally determined final state, i t will pass
through a sequence of more or less i ntermediate states. There wil l be a
kind of trajectory through the space of possible networks. This trajec
tory wil l constitute the developmental sequence for the organism. To
the degree that different individuals share the same genetics (start
state) and to the degree that their environments are similar, they will
pass through similar trajectories. It should also be said that since, in
PDP systems, what i s learned is a product of both the current state of
the organism and the current pattern of inputs, the start state will have
an important effect on what is learned and the shape of the network
following any given set of experiences . However, the greater the
amount of experience, the more independent the system should be
from its start state and the more dependent i t should be on the struc
ture of its environment.

Of course, not all connections may be plastic - certainly, many sub
cortical mechanisms are considerably less plastic than cortical ones.
Also , plasticity may not continue throughout l ife (see Chapter 24) . It
would, of course, be a simple matter to suppose that certain connec
tions are not modifiable . This is an issue about which our framework
provides no answer. The major point is that there is no inconsistency
between prewired, innate knowledge, and mutabi l i ty and adaptabil ity.

We cannot resist making one more point about the
nativi sm/empiricism issue. This i s that our PDP account of innate
knowledge seems to provide a rather plausible account of how we can
come to have innate " knowledge ." To the extent that stored knowledge
is assumed to be in the form of explici t , inaccessible rules of the kind
often postulated by l inguists as the basis for linguistic competence (see
Chapter 1 8) , it is hard to see how it could " get into the head" of the
newborn . It seems to us implausible that the newborn possesses ela
borate symbol systems and the systems for interpreting them required
to put these expl ic i t , inaccessi ble rules to use in guiding behavior. On
our account , we do not need to attribute such complex machinery . If
the innate knowledge is simply the prewi red connections, it is encoded
from the start in just the right way to be of use by the processing
mechanisms.

Copyrighted Material

4. G E N E R A L ISS U ES 1 43

Why Are People Smarter Than Rats?

Some have argued that since we claim that human cogni t ion can be
explained i n terms of PDP networks and that the behavior of lower
animals such as rats can also be described in terms of such networks we
have no princi pled way of explain ing why rats are not as smart as peo
ple . Given al l of the above, the Question does seem a bit puzzl ing. We
are not claiming, in any way, that people and rats and al l other organ
isms start out with the same prewired hardware . People have much
more cortex than rats do or even than other primates do; in particular
they have very much more prefrontal and parietal cortex - more bra in
structure not dedicated to i nput /output -and presumably , this extra
cortex is strategical ly placed in the bra in to subserve just those func
tions that differentiate people from rats or even apes . A case in point
is the part of the brain known as the angular gyrus. This part of the
brain does not ex is t even in chimpanzees. It s i ts at the intersection
between the language areas of the temporal lobe and the visual areas of
the parietal lobe, and damage to th is area produces serious deficits in
language and in the mapping of words onto meanings. While i t is pos
sible that structures l i ke the angular gyrus possess some special in ternal
wiring that makes them fundamental ly different , somehow, in the kinds
of cogni t ive operat ions they perform , their cytoarchi tecture is not
markedly d ifferent from that of other parts of the brain (see Chapters
20 and 2 1) . Thus it seems to us quite plausible that some of the differ
ences between rats and people lie in the potent ial i ty for forming con
nections that can subserve the vital functions of l anguage and thought
that humans exhibit and other ani mals do not.

But there must be another aspect to the d ifference between rats and
people as wel l . This is that the human environment i ncludes other
people and the cul tural devices that they have developed to organ ize
their thinking processes. Some thoughts on how we i magine these cul
tural devices are exploi ted in higher forms of i ntell igent behavior are
presented in Chapter 14 .

Conscious Knowledge and Ex plici t Reasoning

There may be cognit ive scientists who accept some or al l of what we
have said up to this point , but st i l l feel that something is missing,
namely , an account of how we guide behavior using expl icit , conscious
knowledge, how we reason from what we know to new conclusions
based on that knowled�'O�9r1gRRW1 'NIBtQR9t a path through a problem

1 44 THE PDP PERSPECTIVE

space through a series of sequential steps. Can paral lel distributed pro
cessing have anyth i ng to say about these expl ici t , i ntrospecti vely acces
s ible, temporal ly extended acts of th ink ing? Some have suggested that
the answer is no- that PDP models may be fi ne as accounts for percep
t ion , motor control , and other low-level phenomena, but that they are
si mply unable to account for the h igher level mental processing of the
kind involved in reasoning, problem solving, and other higher level
aspects of thought .

We agree that many of the most natural appl icat ions of PDP models
are in the domains of percept ion and memory (see, for example,
Chapters 1 5 , 1 6 , and 1 7) . However, we are convinced that these
models are equal ly appl icable to higher level cogni t ive processes and
offer new insights i nto these phenomena as wel I . We must be clear,
though , about the fact that we cannot and do not expect PDP models to
handle complex, extended, sequential reasoning processes as a single
set t l ing of a paral Iel network. We th ink that PDP models descri be the
microstructure of the thought process, and the mechanisms whereby
these processes come , through pract ice, to flow more quickly and run
together into each other.

Part ly because of the temporal ly extended nature of sequential
thought processes - the fact that they in volve many sett l ings of a net
work i nstead of just one - they are natural ly more d ifficult to deal with ,
and our efforts in these areas are , as yet , somewhat tentat ive .
Nevertheless , we have begun to develop models of language processing
(Chapter 1 9) , language acquis i t ion (Chapter 1 8) , sequential thought
processes and consciousness (Chapter 1 4) , and problem solving and
think ing in general (Chapters 6, 8, and 1 4) . We view this work as
prel iminary, and we fi rmly bel ieve that other frameworks provide addi
t i onal , important levels of description that can augment our accounts,
but we are encouraged by the progress we have made in these areas and
bel ieve that the new perspecti ves that arise from these efforts are suffi
ciently provocati ve t o b e added to the pool o f possible explanat ions of
these higher level cogni t ive processes . Obviously, the extension of our
explorat ions more deeply into these domains is h igh on our ongoing
agenda . We see no princi pled reasons why these explorat ions cannot
succeed, and every i ndicat ion is that they will lead us somewhat further
toward an understanding of the microstructure of cognit ion .

MANY MODELS OR J UST ON E ?

Before concl uding this chapter, some comment should b e made
about the status of the various models we and other members of the

Copyrighted Material

4. G ENERAL ISSUES 1 45

PDP research group offer throughout the book . As the t i t le of the
book suggests , we understand our work as an exploration. We have
been i mpressed with the potential of PDP models for changi ng our per
spect i ves on the human information processing system. We have tr ied
to maintain the ki nds of general princi ples out l i ned i n this chapter , but
we have fel t free to vary the detai l s from appl ication to application .
Somet imes the variat ions are due to the fact that certai n features of the
models need to be elaborated to deal with certain phenomena but can
be suppressed for other phenomena. Other t imes , we have simply
made a different choice to explore a d ifferent part of the space of PDP
models . We do not see oursel ves capable as yet to produce the super
model which would connect all of our areas of explorat ion together .
Rather, we feel that the PDP framework which we are developing
forms a k ind of metatheory from which specific models can be generated
for speci fi c applicat ions. The success of the part icular models reflects
indi rect ly on the metatheory , but we feel that the proper approach is to
study detai led models of detai led appl ications whi le at the same t ime
keeping one eye on the bigger picture. Thus, we don 't real ly have a
single model . Rather, we have a family of related models . In the best
of all worlds each of our speci fic models may turn out to be a rough
approxi mation to some un ifying, underlying model as special i zed to the
problem area in quest ion . More l i kely, however, each represents an
explorat ion into a more or less uncharted region of the space of PDP
models . Each application has lead to useful insights- both into the
phenomena under study and into the behavior of the specific versions
of the models used to account for them.

CONCLUSION

Some of the i ssues we have considered in this chapter are quite
specific to our part icular enterprise, but in the mai n , they are more
general . They concern such questions as the scope of cogn i t ive theory ,
the relation between levels, the question of nature vs. nurture, and the
relevance of neural mechanisms to an analysis of cogn it ion .

The presen t chapter has provided an overview of our views on a
number of these central quest ions. In so doing, i t has also provided an
overview of the work that is described i n the rest of the book, along
with some of the reasons for doing i t . Indeed, in many ways the rest of
the book is our response to the i ssues we have touched on here . The
chapters in Part I I seek ways to overcome the computational l imi tat ions
of earl ier network models, and the chapters i n Part III provide some of
the formal tools that ar�cPJIf§mRi/these k inds of goals. The

1 46 THE PDP PERSPECTIVE

chapters in Part IV address themsel ves to cognit Ive constructs and
attempt to redefine the cogni t ive structures of earl ier theories in terms
of emergent propert ies of PDP networks . The chapters in Part V con
sider the neural mechanisms themselves and thei r relation to the algo
r i thmic level that i s the focus of most of the work described in Parts II
and IV.

ACKNOWLEDGMENTS

We would l i ke to thank the many people who have raised the ques
t ions and the objections that we have attempted to discuss here. These
people include John Anderson , Francis Crick, Steve Draper, Jerry
Fodor , J im Greeno, Allen Newell , Zenon Pylyshyn , Chris Riesbeck,
Kurt van Lehn, and many others in San Diego, Pittsburgh , and else
where . In addi tion , we would l i ke to thank Allan Col l ins , Kei th
Holyoak , and Walter Schneider for organiz ing seminars and symposia
around these issues, and we would l i ke to thank our many colleagues
who have helped us formulate our answers to some of these questions,
particularly Geoff Hinton , Paul Smolensky , and the other members of
the PDP Research GrOl li'

Preparation of th i s chapter was supported by ONR contracts
NOOO I 4-82-C-0374, NR 667-483 and NOOO I 4-79-C-03 2 3 , NR 667-437 ,
b y a grant from the System Development Foundation, and b y a
Research Scientist Career Development Award MH003 85 to the second
author from the National Inst i tute of Mental Heal th .

Copyrighted Material

PART II

BASIC MECHANISMS

The chapters of Part II represent explorations into specific architec
tures and learning mechanisms for PDP models. These explorations
proceed through mathematical analysis coupled with results from simu
lations. The major theme which runs through all of these explorations
is a focus on the learning problem. How can PDP networks evolve to
perform the kinds of tasks we require of them? Since one of the pri
mary features of PDP models in general is their ability to self-modify,
these studies form an important base for the application of these
models to specific psychological and biological phenomena.

In Chapter 5, Rumelhart and Zipser begin with a summary of the
history of early work on learning in parallel distributed processing sys
tems. They then study an unsupervised learning procedure called com
petitive learning. This is a procedure whereby feature detectors capable
of discriminating among the members of a set of stimulus input pat
terns evolve without a specific teacher guiding the learning. The basic
idea is to let pool s of potential feature detector units compete among
themselves to respond to each stimulus pattern. The winner within
each pool-the one whose connections make it respond most strongly
to the pattern-then adjusts its connections slightly toward the pattern
that it won. Several earlier in vest igators have considered variants of
the competitive learning idea (e.g., Grossberg, 1976; von der Malsberg,
1973). Rumelhart and Zipser show that when a competitive network is
trained through repeated presentations of members of a set of patterns,
each un it in a pool CO�}P;d"RPic?�at���P patterns with a particular

148 BASIC MECHANISMS

attribute or property are presented. If there are two units in a pool,
each comes to respond to opposite values of a binary feature which is
useful in describing the stimulus set. If there are three units in the
pool, each unit comes to respond to a value of a trinary feature, etc. It
is shown through simulations and mathematical analysis that the com
petitive learning system can serve as a basis for the development of
useful pattern descriptions.

Chapters 6 and 7 describe Smolensky's harmony theory and Hinton
and Sejnowski's Boltzmann machine, respectively. These approaches
were developed at the same time, and they have much in common.
Both harmony theory and Boltzmann machines employ binary units
whose values are determined probabilistically according to the
Boltzmann equation. Each employs simulated annealing in which the
temperature of the Boltzmann equation is moved slowly to zero as the
system relaxes into its solution state where it finally freezes. Both sys
tems apply mathematical formulations borrowed from physics to their
systems to describe and analyze their behavior.

In spite of these similarities, the two systems were developed from
very different perspectives. The similarities arose largely because both
systems tapped mathematical physics as a tool for formalizing their
ideas. Smolensky's harmony theory grew from an attempt to formalize
the notion of schema and the ideas of schema theory. Hinton and
Sejnowski's Boltzmann machine is based on the idea that stochastic
units can be used as a mechanism of search-for finding globally good
states of networks through simulated annealing. It combines insights
on simulated annealing from Kirkpatrick, Gelatt, and Vecchi (1983)
with the proof by Hopfield (982) that there is a global energy function
that can be locally minimized through a process of asynchronously
updating individual units.

Chapter 6 provides a mathematical development of harmony theory
and shows how a symbolic level of description can be seen as emerging
from interactions among the individual processing units in harmony
theory. It shows how harmony theory can be applied to a variety of
phenomena, including intuitive problem solving and aspects of percep
tion. It also provides a useful description of the mathematical relation
ships among harmony theory, Boltzmann machines, and the related
mechanisms studied by S. Geman and D. Geman (1984).

Chapter 7 focuses on the issue of learning in Boltzmann machines.
One of the most important contributions of the work on Boltzmann
machines is the development of the two phase (wake/sleep) learning
procedure. Hinton and Sejnowski show that if a Boltzmann machine
runs under the influence of environmental inputs for a while and then
runs "freely" -without inputs from the environment-there is a very
simple learning rule which will allow the Boltzmann machine to pick up

Copyrighted Material

INTRODUCTION TO PART II 149

environmental regularities and develop its own internal representations
for describing those regularities. The major part of Chapter 7 is an
analysis of this learning procedure.

Chapter 8 is the study of still another l earning procedure. In this
chapter, Rumelhart, Hinton, and Williams show that it is possible to
develop a generalization of the delta rule described in Chapter 2 so that
arbitrary multilayered networks of units can be can be trained to do
interesting tasks . Using this learning rule, the system can learn to asso
ciate arbitrary input/ output pairs and in this way can learn to compute
arbitrary input/output functi ons. The generalized delta rule is shown to
provide a method of modify ing any weight in any network, based on
local ly available information, so as to implement a gradient descent pro
cess that searches for those weights that m inim ize the error at the out
put units. Further, simulation work presented in the chapter shows
that the problems of local minima often associated with gradient des
cent and other hill- climb ing methods are suprisingly rare.

In general , the chapters in this section demonstrate that the barriers
to progress in understanding learning in networks of simple neuron-like
units have begun to crumble. There are still deep problems that remain
unsolved, but the learning mechanisms described in these chapters
make several inroads into some of the most challenging aspects of the
theory of parallel distributed processi ng .

Copyrighted Material

CHAPTER S

Feature Discovery by Competitive Learning

D. E. RUMELHART and D. ZIPSER

This chapter reports the resu l ts of our studies with an unsupervised
l earning paradigm that we call competitive learning. We have examined
competitive l earning using both computer simulat ion and formal
analysis and have found that when it is applied to paral le l networks of
neuron-like e lements, many potentia l ly useful learning tasks can be
accomplished. We were attracted to competitive learning because i t
seems to provide a way to d iscover the salient, general features which
can be used to classify a set of patterns. The bas ic components of the
competitive learning scheme are:

• Start with a set of units that are all the same except for some
randomly distributed parameter which makes each of them
respond slight ly different ly to a set of input patterns.

• Limi t the "st rength" of each unit.

• Allow the units to compete in some way for the right to
respond to a given subset of inputs.

The net result of correctly applying these three components to a learn
ing paradigm is that individual units learn to specialize on sets of

This chapter originally appeared in Cognitive Science, 1985, 9, 75-112. Copyright 1985

by Ablex Publishing. Reprinted by permission.

Copyrighted Material

152 BASIC MECHANISMS

s imilar patterns and thus become "feature detectors" or "pattern classif
iers." In add i ti on to Frank Rosenblatt , whose work will be d iscussed
below, several others have exploi ted compet i t ive learning in one form
or another over the years. These i nclude von der Malsburg (973),
Grossberg (976), Fukush ima (975) , and Kohonen (982). Our
analyses differ from many of these in that we focus on the develop
ment of feature detectors rather than pattern classificati on. We address
these i ssues further below.

One of the central i ssues in the study of the processing capaci t ies of
neuron-like elements concerns the l imi tat ions inherent i n a one-level
system and the difficulty of developing learning schemes for multi
layered systems. Competi t ive learning is a scheme in which i mportant
features can be discovered at one level that a mult i layer system can use
to classify pattern sets which cannot be classified wi th a s i ngle level
system.

Thi rty-five years of experience have shown that get t ing neuron-li ke
elements to learn some easy things is often quite straightforward, but
designing systems with powerful general learn ing propert ies is a difficult
problem, and the competi tive learning paradigm does not change this
fact. What we hope to show i s that compet i t ive learning is a powerful
strategy which, when used in a variety of s i tuations, greatly expedi tes
some difficult tasks. Si nce the competi t ive learn ing paradigm has roots
which go back to the very beginnings of the study of artificial learning
devices, i t seems reasonable to put the whole issue into h istorical per
spective. This is even more to the point , s ince one of the first s imple
learn ing devices , the perceptron, caused great furor and debate, the
reverberations of which are still wi th us.

In the beginning, th irty-five or forty years ago, it was very hard to
see how anyth ing resembling a neural network could learn at all , so any
example of learn ing was immensely interesting. Learning was elevated
to a status of great importance in those days because it was somehow
un iquely associated with the properties of ani mal bra ins. After
McCulloch and Pi t ts (943) showed how neural- l i ke networks could
compute, the main problem then fac ing workers in th is area was to
understand how such networks could learn.

The first set of ideas that really got the enterprise going were con
tai ned in Donald Hebb's Organization oj Behavior (I 949). Before Hebb's
work, it was believed that some physical change must occur in a net
work to support learning, but it was not clear what th is change could
be. Hebb proposed that a reasonable and biologically plausible change
would be to strengthen the connections between elements of the net
work only when both the presynapt ic and postsynaptic units were act ive
simultaneously. The essence of Hebb's ideas still pers ists today in
many learning paradigms. The details of the rules for changi ng weight

Copyrighted Material

5. COMPETITIVE LEARNING 153

may be d ifferent , but the essential notion that the strength of connec
tions between the units must change in response to some function of
the corre lated act ivity of the connected units still dominates learn ing
models.

Hebb's ideas remained untested speculations about the nervous sys
tem unt i l it became poss ib le to build some form of s imulated network
to test learning theories. Probably the first such attempt occurred in
1951 when Dean Edmonds and Marvin Minsky built thei r learning
machine. The flavor of th is mach ine and the milieu in which it

operated i s captured i n Minsky's own words which appeared in a
wonderful New Yorker profile of h i m by Jeremy Bernste in (1981):

In the summer of 1951 Dean Edmonds and I wen t up to
Harvard and bui l t our machine. It had three hundred tubes and
a lot of motors. It needed some automat ic electric clutches,
which we machi ned ourselves. The memory of the machine
was stored in the posi tions of its control knobs, 40 of them,
and when the machine was learning, it used the clutches to
adjust its own knobs. We used a surplus gyropilot from a B24
bomber to move the clutches. (p. 69)

This machine actual ly worked and was so fascinating to watch that
Minsky remembers:

We sort of qui t science for awh i l e to watch the machine. We
were amazed that it could have several activities going on at
once i n this little nervous system. Because of the random
wiring it had a sort of fai l safe characteristic. If one of the
neurons wasn't working, it wouldn ' t make much difference and
with nearly three hundred tubes, and the thousands of
connections we had soldered there would usual ly be someth ing
wrong somewhere. . I don 't th ink we ever debugged our
machine completely, but that didn't matter. By having this
crazy random design it was almost sure to work no matter how
you built it. (p. 69)

In fact , the functioning of this machine apparent ly stimulated Mi nsky
sufficient ly to write his PhD thesis on a prob lem related to learning
(Minsky , 1954). The whole idea must have generated rather w ide
interest; von Neumann, for example, was on Minsky's Ph D comm i t tee
and gave him encou ragement. Although Minsky was perhaps the first
on the scene with a learn ing mach ine, the real beginnings of mean ing
ful neuron- l i ke network learning can probably be traced to the work of
Frank Rosenblatt, a BE?� �g�1 of Science c lassmate of

154 BASIC MECHANISMS

Minsky's. Rosenblatt invented a class of simple neuron-l ike learning
networks which he cal l ed perceptrons. In his book, Principles of Neuro
dynamics (1962), Rosenblatt brought together all of his results on per
ceptrons. In that book he gives a particularly clear description of what
he thought he was doing:

Perceptrons are not intended to serve as detai led copies of any
actual nervous system. They're simplified networks, designed
to permit the study of l awful relationshi ps between the organi
zation of a nerve net, the organization of its envi ronment, and
the "psychological" performances of which it is capable. Per
ceptrons might actual ly correspond to parts of more extended
networks and biological systems� in this case, the results
obtained will be di rectly appl icable. More l i kely they represent
extreme simpl ifications of the central nervous system, in which
some properties are exaggerated and others suppressed. In th is
case, successive perturbations and refinements of the system
may yield a closer approximation.

The main strength of this approach is that it permits mean
i ngful questions to be asked and answered about particular
types of organizations, hypothetical memory mechanisms, and
neural models. When exact analytical answers are unobtainable,
experimental methods, either with digital simulation or
hardware models, are employed . The model i s not the terminal
result , but a start ing point for exploratory analysis of its
behavior. (p. 28)

Rosenblatt pioneered two techniques of fundamental importance to the
study of learning in neural - l i ke networks: digital computer simulation
and formal mathematical analysis, although he was not the first to
simulate neural networks that could l earn on digital computers (cf.
Farley & Clark, 1954).

Since the paradigm of competit i ve l earning uses concepts that appear
in the work of Rosenblatt, it is worthwhile reviewi ng some of his ideas
in th is area. His most influential resu lt was the "perceptron learn ing
theorem" which boldly asserts:

Gi ven an elementary IX -percept ron , a stimulus world W, and
any classification C (W) for which a sol ution exists� let all
stimul i in W occur in any sequence, provided that each
stimulus must reoccur in finite t ime� then begi nning from an
arbitrary in itial state , an error correct ion procedure wi l l a lways
yield a solution to C (W) i n fi nite time, . " (p. 596)

Copyrighted Material

5. COMPETITIVE LEARNING 155

As it turned out, the real problems arose out of the phrase "for which a

solution ex ists" -more about this later.
Less widely known i s Rosenblatt's work on what he called " spon tane

ous learn i ng." All network learning models requ i re rules which te l l how
to present the st imuli and change the values of the weights in accor
dance with the response of the model. These rules can be characterized
as forming a s pectrum, at one end of which is learning with an error
correct ing teacher, and at the other is completely spontaneous, unsu
pervised discovery . In between is a cont inuum of rules that depend on
man ipulat i ng the content of the in put stimulus stream to bring about
learni ng. These intermediate rules are often referred to as "forced
learning." Here we are concerned primari ly wi th attempts to design a
perceptron that would discover somethi ng interesti ng without a teacher
because th is i s s i m i lar to what happens in the compet i tive learning case.
In fact, Rosenblatt was able to bu i ld a perceptron that was able to spon
taneously dichotomize a random sequence of i nput patterns i n to classes
such that the members of a single c lass were s imilar to each other , and
different from the members of the other class. Rosenblatt realized that
any randomly in i t i alized perceptron would have to dichotomize an arbi
trary i nput pattern st ream i nto a "I-set," consisting of those patterns
that happened to produce a response of I , and a "O-set," consisting of
those that produced a response of O. Of course one of these sets could
be empty by chance and neither would be of much interest in general.
He reasoned that if a perceptron could reinforce these sets by an
appropriate rule based only on the perceptron's spontaneous response
and not on a teacher's error correction, i t might eventually end up with
a dichotomization in which the members of each set were more li ke
each other than l ike the members of the opposite set . What was the
appropriate rule to use to achieve the desi red dicotomization? The first
rule he tried for these perceptrons, which he called C -type, was to
i ncrement weights on l i nes active with patterns in the I-set , and decre
ment weights on lines active with patterns in the O-set. The idea was to
force a dichotomization i n to sets whose members were s imilar in the
sense that they activated overlapping subsets of l i nes. The· results were
d isastrous . Sooner or later all the input patterns were classi fied in one
set . There was no d ichotomy but there was stability . Once one of the
sets won, it remained the victor forever.

Not to be daunted, he exami ned why this undesirable result occurred
and realized that the problem lay i n the fact that since the weights
could grow without l im i t , the set that i nitially had a majority of the pat

terns would recei ve the majority of the reinforcement. This meant that

weights on l ines which could be act ivated by patterns in both sets would

grow to infinite magnitudes in favor of the majority set, which in turn

wou ld lead to the captuBbPYr1BiHBaw!81�»Sfns by the majority set and

156 BASIC MECHANISMS

ultimate total victory for the maJorIty. Even where there was i nitial
equality between the sets, inevi table fluctuations in the random presen
tation of patterns would create a majority set that would then go on to
win. Rosenblatt overcame this problem by introducing mechanisms to
l i m i t weight growth in such a way that the set that was to be posit ively
rei nforced at active l i nes would compensate the other set by giving up
some weight from all its lines. He called the modified perceptrons C.
An example of a C rule is to lower the magni tude of all weights by a
fixed fraction of their current value before specifically incrementing the
magnitude of some of the weights on the basis of the response to an
i n put pattern. This type of rul e had the desired result of maki ng an
equal dichotomy of patterns a stable rather than an unstable state. Pat
terns in each of the sets were similar to each other in the sense that
they depended on simi lar sets of input lines to produce a response. In
Rosenblatt's i n i t ial experiment, the main featu re of similarity was not
so much the shape of the patterns involved, but their location on the
retina. That is , his system was able to spontaneously learn somethi ng
about the geomet ry of its i n put line arrangement. Later, we wi l l exam
ine this i m portant property of spontaneous geometry learning i n consid
erable detail. Depending on the desired learn i ng task, i t can be ei ther a
boon or a nuisance.

Rosenblatt was extremely enthusiastic about his spontaneous learning
results. In fact , his response can be descri bed as sheer ecstasy. To see
what he thought about his achievements, consider his claim
(Rosen blatt, 1959):

It seems clear that the class C perceptron introduces a new
kind of information processi ng automaton: For the first time,
we have a machine which is capable of having original ideas .
As an analogue of the biological brain, the perceptron, more
precisely, the theory of statistical separabi lity, seems to come
closer to meeti ng the requi rements of a functional explanat ion
of the nervous system than any system previously proposed.
(p. 449)

Although Rosenblat t's results were both interesti ng and significant, the
claims impl ied in the above quote struck his contemporaries as
unfounded. What was also sign ificant was that Rosenblatt appeared to
be sayi ng that the type of spontaneous learn ing he had demonstrated
was a property of perceptrons, which could not be repl icated by ordi
nary computers. Consider the fol lowi ng quote from the same source:

As a concept, it would seem that the perceptron has
established , beyond doubt, the feasibi lity and principle of

Copyrighted Material

5. COMPETITIVE LEARNING 157

non-human systems which may embody human cognit ive func
tions at a level far beyond that which can be achieved through
present day automatons. The future of information processing
devices which operate on statist ical, rather then logical princi
ples seems to be clearly indicated. (p. 449)

It is th is notion of Rosenblatt's-that perceptrons are in some way
superior to computers-that i gnited a debate in artificial intel l igence
that had significant effects on the development of neural-like network
models for both learn ing and other cognit ive processes. Elements of
the debate are sti l l wi th us today in arguments about what the brain can
do that computers can't do. There is no doubt that this was an impor
tant issue in Rosenblatt's mind, and almost certai nly contri buted to the
acrimonious debate at that t ime. Consider the following statement by
Rosenblatt made at the important conference on Mechanization of
Thought Processes back in 1959:

Computers seem to share two main functions wi th the brain:
(a) Decision making, based on logical rule , and (b) control ,
again based on logical rules. The human brain performs these
functions, together wi th a third: in terpretation of the envi ron
ment. Why do we hold interpretation of the environment to be
so important? The answer, I think , is to be found in the laws
of thermodynamics. A system with a completely self contained
logic can never spontaneously improve i ts abi l i ty to organize ,
and to draw val id conclusions from information. (Rosenblatt,
1959, p. 423)

Clearly i n some sense, Rosenblatt was saying that there were things
that the brain and perceptrons, because of their statistical properties,
could do which computers could not do. Now this may seem strange

since Rosenblatt knew that a computer program could be wri tten that

would simu late the behavior of statistical perceptrons to any arbi trary

degree of accuracy. Indeed, he was one of the pioneers in the applica

tion of digital simulation to this type of problem. What he was actual ly
referring to is made clear when we examine the comments of other par

t ici pants at the conference, such as Minsky (I959) and McCarthy

(I 959), who were usi ng the symbol manipulating capabilities of the

computer to di rect ly s imulate the logical processes involved in decis ion

making, theorem proving, and other intellectual activities of thi s sort.

Rosenblatt bel ieved the computer used in this way would be inadequate

to mimic the brain's true inte llectual powers. This task, he thought,

could only be accompl ished if the computer or other electronic devices

were used to simulate perceptrons. We can summarize these di vergent
Copyrighted Material

158 BASIC MECHANISMS

points of view by saying that Rosenblatt was concerned not only with
what the brain did, but with how i t did i t, whereas others, such as Min
sky and McCarthy, were concerned with s imulating what the brai n did,
and didn't real ly care how it was done. The subsequent history of AI
has shown both the successes and failures of the standard AI approach.
We sti l l have the problems today, and it's st i l l not clear to what degree
computational strategies s imi lar to the ones used by the brai n must be
employed in order to simulate its performance.

In addi tion to producing fertilizer, as al l debates do, this one also
stimulated the growth of some new resu l ts on perceptrons, some of
which came from Minsky. Rosenblatt had shown that a two layer per
ceptron could carry out any of the 22N possible classifications of N
binary i nputs; that i s , a solution to the classi fication problem had always
existed in principle. This result was of no practical value however,
because 2N uni ts were required to accomplish the task in the com
pletely general case. Rosenblatt's approach to this problem was to use a
much smaller number of units in the first layer with each unit con
nected to a small subset of the N inputs at random. His hope was that
this would give the percept ron a high probabi l i ty of learning to carry
out class ificat ions of interest. Experiments and formal analysis showed
that these random devices could learn to recognize patterns to a signifi
cant degree but that they had severe l im i tat ions. Rosenblatt (I 962)
characterized his random perceptron as fol lows:

It does not generalize wel l to similar forms occurring in new
positions in the retinal field, and i ts performance in detection
experiments, where a fami l iar figure appears against an
unfamil iar background , is apt to be weak. More sophist icated
psychological capabi lit ies, which depend on the recognit ion of
topological properties of the stimulus field, or on abstract rela
tions between the components of a complex image, are lacking.
(pp. 191-192)

Minsky and Papert worked through most of the s ixt ies on a mathemati
cal analysis of the computing powers of perceptrons with the goal of
understanding these l imitations. The results of their work are available
in a book cal led Perceptrons (Minsky & Papert, 1969). The central
theme of this work is that paral le l recognizing elements, such as per
ceptrons, are beset by the same problems of scale as serial pattern
recognizers. Combinatorial explosion catches you sooner or later,
although sometimes in di fferent ways in paral le l than i n serial. Minsky
and Papert's book had a very dampening effect on the study of
neuron-l i ke networks as computational devices. Minsky has recently
come to reconsider this negative effect:

Copyrighted Material

5. COMPETITIVE LEARNING 159

I now bel ieve the book was overkill. . So after being irri tated
with Rosenblatt for overclai ming and divert ing all those people
along a fal se path, I started to real ize that for what you get out
of i t - the kind of recogni t ion it can do-it is such a simple
machine that it would be astonishi ng if nature did not make use
of i t somewhere . (Bernstein, 1981, p. 103)

Perhaps the real lesson from all this is that it real ly is worthwhile trying
to put things i n perspective .

Once the problem of scale has been understood, networks of
neuron-like elements are often very useful in practical problems of
recogni t ion and classificat ion. These networks are somewhat analogous
to computers, in that they won't do much unless programmed by a
clever person; networks, of course, are not so much programmed as
designed. The problem of finding networks of practical size to solve a
part icular problem is chal lenging because relatively small changes in
network design can have very large effects on the scale of a problem.
Consider networks of neuron-like units that determi ne the parity of
their N bi nary inputs (see Figure 1). In the simple perceptrons studied
by Minsky and Papert, units in the first layer output 1 only i f all their
inputs are 1 and output 0 otherwise. This takes 2N uni ts in the first
layer, and a s ingle linear threshold un i t with a fan-in of 2N in the
second layer, to determine pari ty. If the units in the first layer are
changed to l inear threshold elements, then only N of them are
requi red, but all must have a fan- in of N. If we allow a mult ilayer net
work to do the job, then about 3N units are needed, but none needs a
fan-in of more than 2. The number of layers is of order log2N. The
importance of all this to the competit ive learning paradigm, or any
other for that matter, is that no network can learn what it is not capable
of doing in principle. What any particular network can do is dependent
on its st ructure and the computational properties of i ts component ele
ments. Unfortunately, there is no canonical way to find the best net
work or to determine what it will learn, so the whole enterprise st i l l has
much of the flavor of an experimental science.

THE COMPETITIVE LEARNING MECHANISM

Paradigms of Learning

It is possib le to classify learning mechanisms in several ways. One
useful classification is in. terms of tb e l earn ing paradigm in which the Gopynghted Malenal

160 BASIC MECHANISMS

A B

1
-1 cp

c o

=�

FIGURE I. A: Parity network from Minsky and Papert (1969). Each.p unit has an out
put of I only if all of its inputs are I. 1: is a linear threshold unit with threshold of 0, i.e.,
like all the other linear threshold units in the figure, it fires only when the sum of its
weighted inputs is greater than the threshold. This and all the other networks signal odd
parity with a I in the rightmost unit of the network. B: Parity network made from two
layers of linear threshold units. C: Three-unit network for determining the parity of a
pair of inputs. D: Two-layer network using the subnetwork d escribed in (C). In general,
the number of P-units is of order N and the number of layers is of order log2N.

model is supposed to work. There are at least four common learning
paradigms in neural-li ke processing systems:

Copyrighted Material

5. COMPETITIVE LEARNING 161

• Auto Associator. In this paradigm a set of patterns are repeat
edly presented and the system is supposed to "store" the pat
terns. Then, later, parts of one of the original patterns or pos
sibly a pattern similar to one of the original patterns is
presented, and the task is to "retrieve" the original pattern
through a kind of pattern completion procedure. This is an
auto-association process in which a pattern is associated with
itself so that a degraded version of the original pattern can act
as a retrieval cue.

• Pattern Associator. This paradigm is really a variant on the
auto-association paradigm. A set of pairs of patterns are repeat
edly presented. The system is to learn that when one member
of the pair is presented it is supposed to produce the other. In
this paradigm one seeks a mechanism in which an essentially
arbitrary set of input patterns can be paired with an arbitrary set
of output patterns.

• Classification Paradigm. The classification paradigm also can be
considered as a variant on the previous learning paradigms,
although the goals are sufficiently different and it is sufficiently
common that it deserves separate mention. In this case, there
is a fixed set of categories into which the stimulus patterns are
to be classified. There is a training session in which the system
is presented with the stimulus patterns along with the categories
to which each stimulus belongs. The goal is to learn to
correctly classify the stimuli so that in the future when a partic
ular stimulus or a slightly distorted version of one of the
stimuli is presented, the system will classify it properly. This is
the typical paradigm in which the perceptron is designed to
operate and in which the perceptron convergence theorem is
proved.

• Regularity Detector. In this paradigm there is a population of
stimulus patterns and each stimulus pattern, Sk' is presented
with some probability Pk. The system is supposed to discover
statistically salient features of the input population. Unlike the
classification paradigm, there is no a priori set of categories into
which the patterns are to be classified; rather, the system must
develop its own featural representation of the input stimuli
which captures the most salient features of the population of
input patterns.

Competitive learning is a mechanism well-suited for regularity detec
tion, as in the environmrnJ,*�!QB'M�t�J¥clye.

162 BASIC MECHANISMS

Competitive Learning

The architecture of a competitive learning system (illustrated in Fig
ure 2) is a common one. It consists of a set of hierarchically layered
units in which each layer connects, via excitatory connections, with the
layer immediately above it. In the most general case, each unit of a
layer receives an input from each unit of the layer immediately below
and projects output to each unit in the layer immediately above it.
Moreover, within a layer, the units are broken into a set of inhibitory
clusters in which all elements within a cluster inhibit all other elements
in the cluster. Thus the elements within a cluster at one level compete
with one another to respond to the pattern appearing on the layer
below. The more strongly any particular unit responds to an incoming
stimulus, the more it shuts down the other members of its cluster.

There are many variations on the competitive learning theme. A
number of researchers have developed variants of competitive learning
mechanisms and a number of results already exist in the literature. We
have already mentioned the pioneering work of Rosenblatt. In addi
tion, von der Malsburg (973), Fukushima (1975), and Grossberg
(1976), among others, have developed models which are competitive
learning models, or which have many properties in common with com
petitive learning. We believe that the essential properties of the com
petitive learning mechanism are quite general. However, for the sake
of concreteness, in this paper we have chosen to study, in some detail,
the simplest of the systems which seem to be representative of the
essential characteristics of competitive learning. Thus, the system we
have analyzed has much in common with the previous work, but wher
ever possible we have simplified our assumptions. The system that we
have studied most is described below:

• The units in a given layer are broken into a set of nonoverlap
ping clusters. Each unit within a cluster inhibits every other
unit within a cluster. The clusters are winner-take-all, such
that the unit receiving the largest input achieves its maximum
value while all other units in the cluster are pushed to their
minimum value. I We have arbitrarily set the maximum value
to 1 and the minimum value to O.

I A s imple circu i t for achieving this result i s attained b y having each unit activate i tself
and inhibit its neighbors. Grossberg (976) employs just such a network to choose the
maximu m value of a set of units.

Copyrighted Material

Layer 3
Inhibitory Clusters

Layer 2
Inhibitory Clusters

Layer 1
Input Units

5. COMPETITIVE LEARNING 163

INPUT PATTERN

Excitatory
Connections

Excitatory
Connections

FIGURE 2. The architecture of the competitive learning mechanism. Competitive learn
ing takes place in a context of sets of h ierarchically layered units. Units are represented
in the diagram as dots. Units may be active or inactive. Active units are represented by
filled dots, inactive ones by open dots. In general, a unit in a given layer can receive
inputs from aJl of the units in the next lower layer and can project outputs 10 all of the
units in the next higher layer. Connections between layers are excitatory and connections
within layers are inhibitory. Each layer consists of a set of clusters of mutually inhibitory
units. The units within a cluster inhibit one another in such a way that only one unit per
cluster may be active. We think of the configuration of active units on any given layer as
representing the input pattern for the next higher level. There can be an arbitrary

number of such layers . A given cluster contains a fixed number of units, but different
clusters can have different numbers of units.

Copyrighted Material

164 BASIC MECHANISMS

• Every element in every cl uster recei ves i nputs from the same
lines.

• A unit learns if and only if it wins the competition with other
units i n its cluster.

• A stimulus pattern S. consists of a b inary pattern in which each

element of the patteln is either active or inactive. An active ele
ment is assigned the value I and an i nactive element is
assigned the value O.

• Each uni t has a fixed amount of weight (all weights are posi
t i ve) which is d istributed among i ts i nput l ines. The weight on
the l ine connecting unit i on the lower (or i nput) layer to uni tj
on the upper layer, is designated wi}. The fixed total amount of
weight for unit j is designated I, wi} = 1. A unit learns by

i
shifting weight from its inactive to its active input lines. If a
unit does not respond to a particular pattern, no learning takes
place in that unit. If a unit wins the competition, then each of
its input lines gi ve up some proportion g of its weight and that
weight is then distributed equal ly among the active input lines. 2
More formally, the learn ing rule we have studied is:

if unit j loses on stimulus k

if unit j wins on st imulus k

where Cik is equal to 1 if in stimulus pattern Sk, unit i i n the
lower layer is active and zero otherwise, and nk is the number
of acti ve units in pattern Sk (thus nk = I,Cik).

Figure 3 i l l ustrates a useful geometric analogy to th is system. We
can consider each stimul us pattern as a vector. If all patterns contain
the same number of acti ve l ines, then all vectors are the same length
and each can be viewed as a point on an N-dimensional hypersphere ,

2 This learning rule was proposed by von der Malsburg (1973). As Grossberg (1976)
points out, renormalization of the weights is not necessary. The same result can be
obtained by normalizing the input patterns and then assuming that the weights approach
the values on the input lines. Normalizing weights is simpler to implement than normal
izing pallerns, so we chose that option. For most of our experiments, however, it does
not mailer which of these two rules we chose since all pallerns were of the same
magnitude.

Copyrighted Material

5. COMPETITIVE LEARNING 165

8

c

FIGURE J. A geometric interpretation of compet itive learning. A: It is useful to concep
t ualize stimulus pat terns as vectors whose tips all lie on the surface of a hypersphere. We
can then directly see the similarity among stimulus patterns as d istance between the
points on the sphere. In the figure, a stimulus pattern is represented as an x. The figure
represents a population of eight st imulus patterns. There are two clusters of three pat
terns and two st imulus patterns which are rather distinct from the others. B: It is also
useful to represent the weights of units as vectors falling on the surface of the same
hypersphere. Weight vectors are represented in the figure as 0 'so The figure illustrates
the weights of two units falling on rather different parts of the sphere. The response rule
of this model is equivalen t to the rule that whenever a stimulus pattern is presented , the
unit whose weight vector is closest to that stimulus pattern on the sphere wins the com
petition. In the figure , one unit would respond to the cluster in the northern hemisphere
and the other unit would respond to the rest of the stimul us patterns. C: The learning
rule of this model is roughly equivalent to the rule that whenever a unit wins the com
petition (i.e., is closest to the stimulus pattern), that weight vector is moved toward the
presented stimulus. The figure shows a case in which there are three units in the cluster
and three natural groupings of the stimulus patterns. In this case, the weight vectors for
the three units will each migrate toward one of the st imulus groups.

where N is the number of units in the lower level, and therefore , also
the number of input lin...es received by each un i t in the upper level.

Copyrtghted Material

166 BASIC MECHANISMS

Each x i n Figure 3A represents a part icular pattern . Those patterns
that are very s imi lar are near one another on the sphere; those that are
very d ifferent wi l l be far from one another on the sphere . Now note
that s ince there are N i nput l i nes to each unit in the upper layer, i ts
weights can also be considered a vector i n N-d imensional space. Since
all ul'lits have the same total quantity of weight, we have N-dimensional
vectors of approximately fi xed length for each unit i n the cluster. 3
Thus, properly scaled, the weights themselves form a set of vectors
which (approxi mately) fal l on the surface of the same hypersphere. In
Figure 38, the o's represent the weights of two uni ts superi mposed on
the same sphere with the sti mulus patterns. Now, whenever a st imulus
pattern is presented , the uni t which responds most strongly is s imply
the one whose weight vector is nearest that for the st imulus. The
learning rule spec ifies that whenever a uni t wins a competi t ion for a
stimulus pattern, i t moves a percentage g of the way from its current
location toward the locat ion of the stimulus pattern on the hypersphere.
Now, suppose that the input patterns fel l into some number, M,
"natural" groupings . Further, suppose that an inhibi tory cluster receiv
ing inputs from these st imuli contained exactly M uni ts (as in Figure
3C). After sufficient t rain ing, and assuming that the st imulus group
i ngs are sufficiently dist inct , we expect to find one of the vectors for
the M uni ts placed roughly in the center of each of the sti mulus group
i ngs. In this case, the units have come to detect the grouping to which
the input patterns belong. In this sense, they have "discovered" the
structure of the input pattern sets .

Some Features of Competitive Learning

There are several characterist ics of a competi t ive learning mechanism
that make i t an interesting candidate for further study, for example:

• Each cluster class ifies the stimulus set i nto M groups, one for
each unit i n the cl uster. Each of the uni ts captures roughly an
equal number of st imulus patterns. It i s possible to consider a
cluster as forming an M-ary feature in which every st imulus
pattern i s class ified as having exactly one of the M possible

3 It should be noted that this geometric i nterpretation is only approximate. We have
used the constraint that 1: Wu = 1 rather than the constraint that 1: wJ = 1. Th is latter

I I
constraint would ensure that all vectors are in fact the same length. Our assumption only
assures that they will be approximately the same length.

Copyrighted Material

5. COMPETITIVE LEARNING 167

values of th is feature. Thus, a cluster contain ing 2 units acts as
a b inary feature detector. One element of the cluster responds
when a part icular feature i s present in the st imulus pattern , oth
erwise the other element responds.

• If there is structure in the stimu lus patterns , the uni ts will break
up the patterns along structurally relevan t li nes . Roughly
speaking, th is means that the system will find clusters if they
are there. (A key problem, which we address below, is specify
ing the nature of the structure that this system discovers.)

• If the st imul i are highly structured, the classi ficat ions are highly
stable. If the st im uli are less well-st ructured, the classifications
are more variable, and a gi ven stimulus pat tern will be
responded to first by one and then by another member of the
cluster. In our experiments, we started the we ight vectors in
random directions and presented the stimuli randomly. In th is
case, there is rapid movement as the system reaches a relati vely
stable configuration (such as one with a unit roughly in the
center of each cluster of stimulus patterns) . These configura
tions can be more or less stable. For example , if the stimulus
points don't actually fall into nice clusters , then the configura
t ions will be relatively unstable , and the presentation of each
sti mulus will modify the pattern of responding so that the sys
tem will undergo cont inual evolution. On the other hand , i f
the st imulus patterns fall rather nicely into clusters, then the
system will become very stable in the sense that the same units
will always respond to the same stimuli.4

• The part i cular grouping done by a particular cluster depends on
the start ing value of the wei ghts and the sequence of sti mulus
patterns actually presented. A large number of clusters , each
receiving inputs from the same input l i nes can , i n general, clas
s ify the inputs into a large number of different groupings , or
alternati vely, d i scover a variety of independent features present
in the st imulus population. This can provide a kind of coarse
coding of the stimulus patterns. 5

4 Grossberg (976) has addressed this problem in his very similar system. He has

proved that if the patterns are sufficiently sparse, and/ or when there are enough units in

the cluster, then a system such as this will find a perfectly stable classification. He also

points out that when these conditions don't hold, the classification can be unstable. Most

of our work is with cases in which there is no perfectly stable classification and the

number of patterns is much larg.er than the number of units in the inhibitory clusters.
(;opyrighted Material

168 BASIC MECHANISMS

Formal Analysis

Perhaps the simplest mathematical analysis that can be gi ven of the
competi tive learning model under d i scussion i nvol ves the determi nation
of the sets of equilibrium states of the system -that i s, states in which
the average i nflow of weight to a particular l ine is equal to the average
outflow of weight on that l ine . Let Pk be the probabili ty that st i mulus
Sk is presented on any trial . Let Vjk be the probabil ity that unit} wins
when st imulus Sk i s presented. Now we want to consider the case in
which I',A wij vjkPk = 0, that is , the case in which the average change i n k
the weights is zero. We refer to such states as equilibrium states. Thus,
usi ng the learn ing rule and averaging over stimulus patterns we can
wri te

which implies that at equ i l i br ium

and thus

There are a number of important observat ions to note about this equa
t ion. First , note that LPk Vjk is s imply the probabi lity that un i t} wins

k
averaged over al l sti mulus patterns. Note fu rther that LPkCik Vjk is the

k
probabi l i ty that i nput l i ne i is act ive and un i t} wi ns . Thus, the rat io

LPkCik vjk
k ��...--- is the conditional probabil i ty that l ine i is active gi ven unit} L.Pk vjk

k

5 There is a problem in that one can't be certain that the d ifferent clusters will d iscover
different features. A slight modification of the system in which clusters "repel" one
another can insure that d ifferent clusters find different features. We shall not pursue that
further in this paper.

Copyrighted Material

5, COMPETITIVE LEARNING 169

wins , P (l i nei = 1 1 uni tj wins) . Th us, i f a l l patterns are of the same
s ize , i .e . , nk = n for al l k, then the weight wi} becomes proport ional to
the probabil i ty that l ine i i s act i ve given uni t j wins. That is ,

wi} - ! P (I inei = 1 1 unitj wins) .

We are now i n a pos i t ion to speci fy the response , at equ i l i bri um , of
uni t j when st i mulus S, is presented . Let Ol jI be the i nput to un i t j i n
the face of st i mulus S, . Thi s is s imply the sum of weights on the acti ve
i nput l i nes. This can be wri tten

1: Pk Cik VJk

k nk

LPk vjk
k

which imp l i es that at equi l i bri um

Oljl =

where 'Ii represents the overlap between st i mulus I and st imu lus i,
',,' __ � Cki Ck'

L. Thus, at equi l i bri um a uni t responds most strongly to
k ni

patterns that overlap other patterns to which the un i t responds and
responds most weakly to patterns that are far from patterns to which i t
responds . Final ly , i t should be noted that there is another se t of
restrict ions on the value of Vjk - the probabi l i t y that uni t j responds to
st imulus Sk ' In fact , the compet i t i ve learn i ng ru le we have st udied has
the further rest rict ion that

_ 1 1 Oljk > Ol ik for all i ,cj
Vjk - 0 otherwise.

Thus , in general , there are many solut ions to the equ i l i br ium equat i ons
descri bed above. The compet i t i ve learning mechanisms can only reach
those equi l i bri um states in which the above-stated relat ionsh i ps
between the Vjk and the Ol jk also hold.

Whenever the system i s in a state i n which , on average , the weights
are not changing, we say that the system has reached an equilib,ium
state. I n such a state the val ues of Ol Jk become relati vely stable , and
therefore, the values of Vik become stable . When th is happens, the sys
tem always responds the same way to a part i cular st i mulus pattern .
However, i t is possi ble that the weights w i l l be pushed out of

Copyrighted Material

1 70 BASIC MECHANIS MS

equi l ibri um by an unfortunate sequence of st imul i . In this case , the
system can move toward a new equi l i brium state (or possibly back to a
previous one) . Some equi l ibrium states are more stable than others in
the sense that the "ik become very un l ikely to change val ues for long
periods of t ime . In part icular, this wi l l happen whenever the largest otjk
is much larger than any other ot ik for a l l s t imulus patterns Sk ' In this
case, small movements i n the weight vector of one of the un i ts i s very
unli kely to change which un i t responds to which st imulus pattern . Such
equ i l ibrium states are said to be h ighly stable. We should expect , then ,
that after i t has been learning for a period of t ime, the system wi l l
spend most of i t s t ime i n the most h igh ly stable of the equ i l ibrium
states . One good measure of the stabi l i ty of an equi l ibrium state is
given by the average amount by which the input to the winn ing uni ts is
greater than the response of all of the other un i ts averaged over all pat
terns and al l uni ts in a cluster. This measure is given by T below:

T = LPkl>jk (otjk - ot ik) ' k j ,i

The larger the value of T, the more stable the system can be expected
to be and the more t ime we can expect the system �o spend in that
state. Roughly , if we assume that the system moves i nto states which
maximize T, we can show that this amounts to maximizing the overlap
among patterns wi th in a group whi le min imizing the overlap among
patterns between groups. In the geometric analogy above, this wil l
occur when the weight vectors poin t toward maximal ly compact
st imulus regions that are as d istant as poss ib le from other such regions.

SOME EXPERI MENTAL RESULTS

Dipole Experi ments

The essential structure that a compet i t i ve learn i ng mechanism can
discover is represented in the overlap of st imulus patterns . The s im
plest st imulus population i n which st i mulus patterns can overlap with
one another is one const ructed out of dipoles-st imulus patterns con
s ist ing of exactly two act ive elements and the rest inact ive . If we have
a total of N i nput units there are N(N-J) /2 possible dipole st imul i . Of
course , if the actual s t imulus population cons ists of al l N(N-J) / 2 possi
bi l i t ies , there i s no structure to be d iscovered . There are no clusters
for our units to poin t at (unless we have one uni t for each of the poss i
ble st imUl i , i n which case we can point a weight vector at each of the

Copyrighted Material

5. COMPETITI V E L EARNING 1 7 1

possi ble in put st imul i) . If, however , we restrict the possi ble d ipole
sti mul i i n certain ways, then there can be meaningfu l groupings of the
st imulus patterns that the system can find . Consider, as an example, a
case i n which the st imulus l ines cou ld be thought of as forming a two

dimensional grid i n which the only possi ble sti mul us patterns were
those which formed adjacent pai rs in the grid . If we have an N x M
grid , there are N (M- O + M (N- 1) possible sti mu l i . Figure 4 shows
one of the 24 possible adjacent d i pole patterns defi ned on a 4 x 4 grid .
We carried out a number of experi ments emp loying st imul us sets of
this kind . In most of these experiments we employed a two-layer sys
tem wi th a si ngle inh ibitory cluster of s ize two. Figure 5 i l lustrates the
arch i tecture of one of our experi ments. The results of three runs with
th is arch itecture are i l l ust rated i n Figure 6, which shows the re lat ive
values of the weigh ts for the two units . The values are shown laid out
on a 4 x 4 grid so that weights are next to one another i f the units wi th
which they connect are next to one another . The relat i ve val ues of the
weights are ind icated by the fi l l ing of the ci rcles. If a ci rcle is fi l led ,

that indicates that Uni t 1 had the largest we ight on that l i ne . If the c i r
cle i s unfil led, that means that Unit 2 had the largest weight on that
l ine . The grids on the left indicate the in i t ia l configu rat i ons of the
weights. The grids on the right indicate the final configurations of
weights . The l i nes connecti ng the ci rcles represent the possible st imul i .
For example , t h e dipole st imulus pattern consist ing o f the upper left
input l ine and the one immediately to the right of i t i s represented by
the l i ne connect ing the upper- left circle i n the grid w i th i t s right neigh
bor. The u n i t that wins when this st imulus is presented i s i nd icated by
the width of the l i ne connecting the two c i rcles . The wide l i ne indicates

o o o o

o o • o

o o • o

o o o o

FIGURE 4. A dipole stimulus defined on a 4 x 4 mat r ix of input units. The rule for gen
erat ing such st im u l i is s imply that any t wo adjacent units may b e s i m u l t aneously active.
Nonadjacen t uni ts may not be act i ve and more t han two units may not be s i m ultaneously
acti ve. Act ive units are ind icaG9tJylf?jf!1hRJwmterial

1 72 BASIC MECHANISMS

FIGURE 5 . The architecture of a compet i tive learn ing system with 16 input units and
one cluster of size two i n t h e second layer .

that Unit 1 was the winner, the narrow l i ne indicates that Unit 2 was
the winner. It should be noted , therefore , that two unfi l led c ircles
m ust al ways be joi ned by a narrow l ine and two fi l led ci rcles m ust
always be joined by a wide l ine. The reason for this is that if a part icu
lar uni t h as more weight on both of the act ive l i nes then that uni t must
win the competition. The resul ts clearly show that the weights move
from a rather chaot ic ini t ial arrangement to an arrangement in which
essent ial ly al l of those on one s ide of the grid are fi l led and al l on the
other side are unfil led . The border separating the two hal ves of the
grid may be at any orientat ion , but most often i t is oriented vert ical ly
and hori zontal ly, as shown in the upper two examples. Only rarely i s

the or ientat ion d i agona l , as in the example i n the lower r ight-hand grid.
Thus , we have a case in which each un i t has chosen a coherent half of
the grid to wh ich they respond . I t is important to real i ze that as far as
the compet i t i ve l earn i ng mechanism i s concerned the si xteen i nput

Copyrighted Material

5. COMPETITIVE LEARNING 1 73

A

J

o 400

B

o 4 0 0

c

50 400

FIGURE 6. Relative weight values for the two mem bers of the inh ibi tory cluster . A:
The results for one run with the d ipole stimuli defined over a two-dimensional grid . The
left-hand grid shows the relative values of the weights in i t ia l ly and the right-hand grid
shows the relative values of the weights after 400 trials . A fi lled circle means that Un i t 1

had the larger weight on the corresponding input . An unfil led circle m eans that Unit 2

had the larger weight . A heavy l ine connecting two c i rcles means that Uni t 1 responded
to the stimulus pattern consisting of the acti vation of the two circles, and a l ight l ine
means that Unit 2 won the corresponding pattern. In this case the system has di vided the
grid horizontally. B: The resul ts for a second run under the same condit ions. In this
case the system has divided the gr id horizontal ly. C: The results for a t h i rd run. In this
case the left-hand grid represents the state of the system after 50 t rials. Here the grid
was divided diagonally.

Copyrighted Material

1 74 BASIC MECHANISMS

l ines are unordered . The two-di mensional grid-l ike arrangement exists
only in the statistics of the population of stimulus patterns. Thus, the
system has discovered the dimensional structure inherent i n the sti mulus
population and has devised binary feature detectors that tell which half
of the grid contains the stimulus pattern . Note, each unit responds to
roughly half of the st imul us patterns. Note also that whi le some units
break the grid vertical ly, some break the grid horizontal ly, and some
break it diagonal ly; a combination of several clusters offers a rather
more precise classification of a sti mulus pattern .

In other experiments, we tried clusters of other sizes. For example,
Figure 7 shows the results for a cluster of size four . It shows the in i t ial
configurat ion and its sequence of evolution after 1 00, 200, 400, 800 ,
and after 4000 training trials. Again , in i tial ly the regions are chaot ic .
After train ing, however, the system settles i nto a state in which st imuli
i n compact regions of the grid are responded to by the same units . It
can be seen, in this case, that the trend is toward a given unit respond
ing to a maximal ly compact group of stimul i . In this experiment, three
of the units settled on compact square regions while the remaining one
settled on two unconnected stimulus regions . It can be shown that the
state into which the system sett led does not quite maxi mize the value
T, but does represent a relatively stable equ i l i brium state.

In the examples discussed thus far, the system, to a fi rst approxima
tion , settled on a highly compact representation of the i n put patterns in
which all patterns in a region are captu red by one of the units . The
grids discussed above have al l been two-dimensional . There is no need
to restrict the analysis to a two-dimensional grid. In fact , a two-unit
cl uster wi l l , essent ia l ly , pass a plane through a space of any d i men
sionality. There is a preference for planes perpendicular to the axes of
the spaces. Figure 8 shows a typical result for the system learning a
th ree-di mensional space . In the case of three di mensions , there are
three equal ly good planes which can be passed through the space and ,
depending o n t h e start ing di rections of t h e weight vectors and o n the
sequence of st imul i , d ifferent clusters wi l l choose different ones of
these planes. Thus, a system which recei ves input from a set of such
clusters wi l l be gi ven information as to which quadrant of the space in
which the pattern appears . It i s important to emphasize that the coher
ence of the space is entirely in the choice of input sti mul i , not in the
arch itecture of the competi t ive learning mechanism . The system discov

ers the spatial structure in the input l i nes.

Formal analysis. For the d i pole examples described above, i t is pos
si ble to develop a rather precise characterization of the behavior of the
competi t ive learn ing system. Recal l our argument that the most stable
equi l ibrium state (and therefore the one the system is most l i kely to

Copyrighted Material

5. COMPETITIVE LEARNING 1 75

o 1 00

200 400

80 0 4000

FIGURE 7. The relat i ve weights of each of the four e lements of the cluster after 0, 1 00,
200, 400, 800, and 4000 st imulus presentat ions .

end up in) is the one that maximizes the funct ion

T = LPk L Vjk (CXjk - CX ik) ' k j ,i
Now, in the dipole examples, all st imulus patterns of the sti mulus
population are equal ly l ikely (i .e . , Pk = 1 / N) , al l st imulus patterns
involve two active l ines, and for every stimulus pattern in the popula
tion of patterns there are a fi xed number of other stimulus patterns in

Copyrighted Material

176 BASIC MECHANISMS

FIGURE 8. The relat i ve weights ro r a system in wh ich the sti m u l us patterns were
chosen rrom a three-d i mensional grid after 4000 presen tat ions.

the population which overlap it . 6 This i mpl ies that f/kj = R for al l j.
k

Wi th these assumptions, i t is poss ib le to show that maxi mizing T i s
equ ivalent to mini mizing the function

fli I N;
(see appendix for deri vation) , where N; i s the number of patterns on
which unit i wi ns, M is the n umber of uni ts in the cluster, and B; i s the
number of cases in which unit i responds to a part icular pattern and
does not respond to a pattern which overlaps it. This is the number of
border patterns to which unit i responds . Formal ly, we have

B; = tt vi} (I- v;k) for rjk > O.
i k

From this analysis , it is clear that the most stable states are ones in
which the size of the border i s m in i mized . Since total border region i s
mini mized when regions are spherical , we can concl ude that i n a s itua
t ion in which sti mulus pairs are drawn from adjacent poi nts in a

6 Note that th is latter condit ion does not Quite hold ror the exam ples presented above
due to edge effects. It is possib le to e l iminate edge effects by the use or a to rus . We
have carried out e x per iments on t ori as wel l , and the results are essential ly the same.

Copyrighted Material

S. COMPETITIVE LEARNING 1 77

h igh -d imensional hyperspace , our compet i t ive learn ing mechanism wi l l
form essent ial ly spherical reg ions that part i t ion the space in to one such
spherical region for each element of the cluster.

Another resu l t of our s imulat ions which can be explai ned by these
equations is the tendency for each element of the c luster to capture
roughly equal ly s ized regions. This results from the interconnectedness
of the stimulus popu lat ion . The result i s easiest in the case in which
M = 2 . In this case, the function we want to min imize is gi ven by

B I B2
NI + N2 '

Now, in the case of M= 2 , we have B 1= B2, si nce the two regions
must border on one another. Moreover, we have N 1 + N 2 = N , si nce
every pattern is ei ther responded to by Uni t 1 or Unit 2. Thus , we
want to mini mize the function

Thi s function is min imized when NI = N1 2 . Thus, there are two pres
sures which determine the performance of the system in these cases:

• There i s a pressure to reduce the number of border s t imul i to a
min imum.

• There i s a pressure to di vide the st i mu l us patterns among the
units in a way that depends on the total amount of we ight that
un i t has. If two un its have the same amount of we ight , they
wi l l capture rough ly equal numbers of equal ly l i kely sti mu lus
pat terns .

Learn ing Words and Letters

It i s common pract ice to handcraft networks to carry out part icu lar

tasks . Whenever one creates such a network that performs a task

rather successfu l ly , the quest i on ari ses as to how such a network might
have evol ved . The word percept ion model developed in McClel land

and Rumelhart (l 98 l) and Rumel hart and McClel land (I 982) is one

such case- in - point . That model offers rather detailed accounts of a
variety of word percept ion experiments , but i t was crafted to do i ts job .

Copyrighted Material

1 78 BASIC MECHANISMS

How could it have evolved natural ly? Could a competi t ive l earning
mechanism create such a network?

Let 's begi n with the fact that the word perception model required a
set of posit ion-specific letter detectors. Suppose that a competi t ive
learning mechanism is faced with a set of words- to what features
would the system learn to respond ? Would it create posi t ion-specific
letter detectors or their equivalent? We proceeded to answer this ques
tion by again viewing the lower level units as forming a two
dimensional grid . Letters and words could then be presented by
acti vati ng those units on the grid corresponding to the points of a stan
dard CRT font . Figure 9 gi ves examples of some of the sti m ul i used i n
o u r experiments. The grid we used was a 7 x 14 grid. Each letter
occurred in a 7 x 5 rectangular region on the grid . There was room for
two letters with some space i n between, as shown in the figure. We
then carried out a series of experiments in which we presented a set of
word and/ or letter stimul i to the system allowing i t to extract relevant
features.

Before proceedi ng with a description of our experiments , i t should be
mentioned that these experiments required a sl ight addi t ion to the com
pet i t ive learni ng mechanism. The problem was that, unl ike the dipole
st imul i , the letter st imul i only sparsely covered the grid and many of
the units in the lower level never became active at all . Therefore,
there was a possib i l i ty that , by chance, one of the uni ts would have
most of i ts weight on input l ines that were never active, whereas
another unit may have had most of its weight on l ines common to al l of
the stimulus patterns. Since a unit never learns unless it wins, it is

· •

·

A
·

·

· . . .
•

.

·

·

· "

• • • • • • • • • 10 • • • •

8
· . . . •

·

· • . .

·
·

.

· • . . . • . .

c · •

·
• • • • I • • • • • • • • •

·

.

FIG URE 9. Example st i m u l i for the word and let ter exper i ments .

Copyrighted Material

5. COMPETITIVE lEARNING 1 79

possib le that one of the un i ts wi l l never win , and therefore never learn .
Th is , of course, takes the compet i t ion out of compet i t i ve learning .
Thi s s i tuat ion i s analogous to the s i tuat ion i n the geometr ic analogy in
which a l l of the st imulus poin ts are relat ively close together on the
hypersphere, and one of the weight vectors , by chance, poi nts near the
cluster whi l e the other one poin ts far from the s t imul i . (See Figure
1 0) . It i s clear that the more distant vector is not closest to any
st imulus and thus can never move toward the col lect ion . We have
invest igated two modificat ions to the system which deal with the prob
lem. One, which we call the leaky learni ng model , modifies the learn
ing rule to state that both the winning and the losing un i ts move toward
the presented st imulus : the close vector s imply moves much further.
In symbols this suggests that

Cik
g, - - g, w ·

nk
IJ

Cik
gw -;;; - gw wij

i f un i t j loses on st imulus k

if unit j wins on st imu lus k

where g, is the learn ing rate for the losing un i ts , gw is the learn ing rate
for the winn ing un i t , and where g, « gw . In our experiments we made

FIGURE 1 0. A geometric interpretation of changes in st im u l us sensit i vity. The larger
the circle around the head of the weight vector the more sensi t i ve the unit. The decision
as to which unit wins is made on the basis of the distance from the circle rather than
from the head of the weight vector. In the example, the stimulus pattern i nd icated by
the y is actually closer to the head of one vector 0 , but since i t is closer to the circle sur
rounding vector p , unit p wO�jhWftJ?8W�al

1 80 BASIC MECHANISMS

g, an order of magnitude smal ler than gw . This change has the property
that it s lowly moves the losing units i n to the region where the actual
stimul i l ie , at which point they begin to capture some units and the
ordinary dynamics of compet i t ive learn i ng take over.

The second method i s s imi lar to that employed by Bienenstock,
Cooper, and Munro (1 982) , i n which a unit modulates i ts own sensi
t iv ity so that when it is not receiving enough i n puts, i t becomes
i ncreasingly sensit ive . When it is receiving too many inputs , i t
decreases i ts sensit i vity. This mechanism can be i mplemented i n the
present context by assuming that there is a threshold and that the
relevant act i vation is the degree to which the unit exceeds i ts threshold.
If, whenever a uni t fai l s to win i t decreases its threshold and whenever
it does win i t i ncreases i ts threshold, then this method wi l l also make
a l l of the units eventually respond, thereby engaging the mechanism of
compet i t ive learn i ng. This second method can be understood in terms
of the geometric analogy that the weight vectors have a c ircle surround
ing the end of the vector. The relevant measure is not the distance to
the vector i tself but the distance to the c ircle surrounding the vector.
Every t ime a unit loses , i t i ncreases the radi us of the c ircle; every t ime
i t wins, it decreases the rad i us of the ci rcle . Eventually, the c i rcle on
the losing unit wi l l be large enough to be closer to some sti mulus pat
tern than the other units.

We have used both of these mechanisms i n our experiments and
they appear to result in essential ly s imi lar behavior. The former, the
leaky learning method, does not alter the formal analysis as long as the
ratio gd gw is sufficiently small . The varying threshold method is more
difficult to analyze and may, u nder some ci rcumstances, distort the
competit ive learning process somewhat . After this diversion, we can
now return to our experi ments on the development of word/ posit ion
specific letter detectors and other feature detectors.

Position-specific letter detectors. In our fi rst experi ment , we
presented letter pai rs drawn from the set : AA, AB, BA , and BB. We
began wi th clusters of size two. The results were u nequi vocal . The sys
tem developed posit ion-specific letter detectors. In some experimental
runs, one of the units responded whenever AA or AB was presented,
and the other responded whenever BA or BB was presented. In this
case , Unit 1 represents an A detector i n pos i t ion 1 and Unit 2
represents a B detector for posit ion 1 . Moreover, as i n the word per
ception model , the letter detectors are, of course, in a mutually i nh i bi
tory pool . On other experimental runs , the pattern was reversed . One
of the uni ts responded whenever there was an A in the second posit ion
and the other unit responded whenever there was a B in the second
posit ion. Figure 1 1 shows the final configuration of weights for one of

Copyrighted Material

•

• •

• •

• • • • •

• •

• •

• •

• • • •

• •

• •

• • •

• •

• •

• • • •

S. COMPETITIVE LEARNING

.. .. . ,.
• . .

•

·
•

•

·

..
• . .

•

..
•

•

·

Unit 1

Unit 2

1 8 1

FIGURE 1 1 . The final configurat ion of weights for a system t rai ned on the s t imulus
patterns A, B, C, D.

our experimental runs. Note that although the uni ts i l l ustrated here
respond only to the letter in the first pos i t ion , there i s sti l l weight on
the active' l ines in the second posi t ion . It i s just that the weights on the
first posi t ion different iate between A and 8, whereas those on the
second posit ion respond equal ly to the two letters . In particular, as sug
gested by our formal analysis , asym ptot ical l y the weights on a gi ven
l ine are proportionj'! to the probabi l i ty that that l i ne is acti ve when the
uni t wins . That i�, wij - p (un i t; = 1 1 un i tj wins) . Since the l ower
level uni ts unique to A occur equal ly as often as those unique to 8, the
weights on those l i nes are roughly equal . The i n put l i nes common to
the two letters are on twice as often as those unique to either letter,
and hence, they have twice as much weight . Those l i nes that never
come on reach zero weight .

Word detection units. In another experi men t , we presented the
same st i m u l us patterns , but i ncreased the elements in the cluster from
two to four. In th is case , each of the four level- two uni ts came to
respond to one of the fou r i nput patterns - i n short , the system
developed word detectors. Thus, if layer two were to consist of a
number of clusters of various s izes, large cl usters wi th approx i mately
one unit per word pattern wi I I develop into word detectors, whi l e
smal ler cl usters with approximately t h e number of letters per spatia l
posit ion wi I I develop i nto posi t ion-specific letter detectors. As we shal l
see below, if the number of elements of a cluster i s substant ially l ess
than the number of letters per pos i t ion , then the cluster wi l l come to
detect posi t ion-specific l etter features .

Effects of number of elements per serial position. In another experi
men t , we varied the number of elements in a cluster and the number
of letters per serial P�gW�JMl st imulus patterns drawn

1 82 BASIC MECHANISMS

from the set : AA. AB. A C. AD. BA . BB. BC. BD. In this case , we
found that wi th clusters of size two, one unit responded to the patterns
beginning with A and the other responded to those beginning with B.
In our previous experiment, when we had the same number of letters
in each posi t ion , we found that the cl usters were indifferent as to which
serial posit ion they responded. Some responded to posit ion 1 and oth
ers to posit ion 2. In this experi ment , we found that a two-element
cluster always becomes a letter detector specific to serial posi t ion in
which two letters vary . S imilarly, in the case of cl usters of size four we
found that they always became letter detectors for the posi t ion i n which
four letters varied. Thus, in this case one responded to an A in the
second posi t ion, one responded to a B in the second posit ion , one
responded to a C in the second posit ion, and one responded to a D in
the second posit ion . Clearly, there are two natural ways to cluster the
stimulus patterns- two levels of structure. If the patterns are to be put
in two categories , then the binary feature A or B in the fi rst posit ion is
the relevant distinction. On the other hand, if the st imul i are to be
grouped into four groups , the four value feature determining the
second letter is the relevant distinct ion. The compet i t ive learning algo
rithm can discover ei ther of the levels of structure -depending on the
number of elements in a cluster .

Letter similarity effects. In another experiment , we studied the
effects of letter s imi larity to look for units that detect letter features.
We presented letter patterns consisting of a l etter in the fi rst posit ion
only. We chose the patterns so they formed two natural clusters based
on the s imi lari ty of the letters to one another. We presented the letters
A. B. S. and E. The letters were chosen so that they fel l natural ly into
two classes . In our font , the letters A and E are quite simi lar and the
letters B and S are very similar . We used a cluster of size two. Natur
ally, one of the units responded to the A or the E whi le the other unit
responded to the B or the S. The weights were largest on those
features of the stimulus pai rs which were common among each of these
s imi lar pai rs . Thus, the system developed subletter-size feature detec
tors for the features relevant to the discrimination .

Correlated teaching inputs. We carried out one other set of experi
ments with the word/ letter patterns. In this case, we used clusters of
size two and presented stimuli drawn from the set : AA. BA. SB. EB.
Note that on the left-hand side, we have the same four letters as we
had i n the previous experiment , but on the right-hand side we have
only two patterns; these two patterns are correlated wi th the letter i n
the first position. A n A in the second posit ion means that the first
posit ion contains either an A or a B, whereas a B in the second position

Copyrighted Material

S. COMPETITIVE LEARNING 1 83

means that the fi rst posit ion con tains either an S or an E. Note further
that those correla t ions between the first and second pos i t ions are i n
opposi t ion t o the " natural " s imilarity of t h e letters in the first serial
posi t ion. In this experiment, we fi rst trained the system on the four
sti mul i described above. Since the second serial posit ion had only t wo
letters in i t , the size-two cluster became a posi t ion-specific letter detec
tor for the second serial posi t ion. One uni t responded to the A and one
to the B in the second posi t ion . Notice that the un i ts are also respond
ing to the letters in the fi rst serial posi t ion as wel l . One unit is
responding to an A or a B in the fi rst posit ion whi le the other responds
to an E or an S. Figure 1 2 shows the patterns of weights developed by
the two uni ts . After train i ng, the system was then presented patterns
containing only the fi rst letter of the pai r and , as expected , the system
had learned the " unnatural " classification of the let ters in the fi rst pos i
t ion . Here the strong correlation between the fi rst and second posi t ion
led the competi t i ve learni ng mechanism to override the strong correla
t ion between the highly similar stimulus patterns in the fi rst serial posi
t ion. This suggests that even though the compet i t i ve learning system is
an " unsupervised " learni ng mechanism, one can control what i t learns
by control l ing the stat ist ical structure of the stimulus patterns bei ng
presented to i t . In this sense , we can th ink of the right-hand letter i n
this experiment as being a kind o f teaching st imulus aimed at determin
i ng the classification learned for other aspects of the st imulus . I t
should also be noted that th is teach ing mechanism is essential ly the
same as the so-cal led errorless learning procedure used by Terrace
(963) in train ing pigeons to peck a certain color key by associating that
color with a response situation where the ir pecking is determi ned by
other factors . As we shall see below, this correlational teaching
mechanism is useful in al lowi ng the competi t i ve learning mechan ism to
discover features which i t otherwise would be unable to discover .

. . .
• . .

•

·

· .

•

•
. .

· . . .
•

•

· . . .

•

.

•

• •

• • Unit 1 • • • • •

• •

• •

•

• • • •

• •

• • Unit 2 • • •

• •

• •

• • • •

FIGURE 1 2. The pattern of weights developed i n the correlated learning e x periment .

Copyrighted Material

1 84 BASIC M EC HANISMS

Horizontal and Vertical Lines

One of the c lassical ly difficult problems for a l i near threshold device
l i ke a perceptron is to distinguish between horizontal and vert ical l ines .
In general , horizontal and vertical l i nes are not l i nearly separable and
requi re a mult i layer perceptron system to dist inguish them. One of the
goals of the competi t ive learn ing device is for i t to discover features
that , at a higher level of analysis, might be useful for discriminating
patterns which might not otherwise be discr iminable with a l i near
threshold-type device. It is therefore of some interest to see what
k inds of features the competi t ive learning mechan ism discovers when
presented wi th a set of vertical and horizontal l ines . In the fol l owing
discussion , we chronicle a series of experi ments on this problem.
Several of the experiments ended i n fai l u re , but we were able to dis
cover a way i n which competi t i ve learn ing systems can be put together
to bui ld a h ierarchical feature detect ion system capable of d iscrimi nat
i ng vertical and horizontal l i nes. We proceed by sketchi ng several of
our fai lures as well as our successes because the way in which the sys
tem fai ls is elucidat ing . It should be noted at the outset that our goal is
not so much to present a model of how the h u man learns to disti nguish
between vertical and horizontal l ines (i ndeed, such a d ist inction is prob
ably prewi red in the human system) , but rather to show how competi
t ive learni ng can d iscover features which al low for the system to learn
dist inctions with multi ple layers of un i ts t hat cannot be learned by
s ingle-layered systems. Learning to dist inguish verti cal and horizontal
l ines is simply a paradigm case .

I n this set of experi ments, we represented the lower level of units as
if they were on a 6 x 6 grid. We then had a total of 1 2 sti mulus pat
terns, each consist ing of turning on six Level 1 units in a row on the
grid. Figure 1 3 i l lustrates the grid and several of the st i mulus patterns.
Ideally , one might hope that one of the uni ts would respond whenever
a vertical l ine is presented� the other would respond whenever a
horizontal l ine is presented. Unfortunately, a l i t t le thought indicates
that this is i mpossible. S ince every input un i t part ici pates in exactly
one vertical and one horizontal l i ne , there is no configurat ion of
weights which wi l l disti nguish vertical from horizonta l . This i s exactly
why no l inear threshold device can dist inguish between vertical and
horizontal l i nes in one leve l . S i nce that must fai l , we might hope that
some clusters in the compet i t i ve learning device wi l l respond to vertical
l i nes by assigning weights as i l l ustrated in Figure 1 4 . In this case, one
unit of the pai r would respond whenever the fi rst, second, or fourth
vertical l i ne was presented , and another would respond whenever the
thi rd , fi fth, or sixth vertical line was presented� si nce both units would

Copyrighted Material

5. COM PETITIVE LEARNING 1 85

·
·

A ·
·
· ·

·
·

8 ·

·
·
·

• • • • • •

c
·

o
• • • • • •

FIGURE 1 3 . Stimulus patterns for the horizontal / vertica l d iscr imination experi ments.

receive about the same i n put in the face of a horizontal l ine, we might
expect that someti mes one and someti mes the other wou ld wi n the
compet i t ion but that the primary response would be to vertical l i nes. If
other c lusters settled down si mi larly to horizontal l ines, then a uni t at
the third level look ing at the output of the various clusters could dist in
guish vertical and horizontal . Unfortunate ly , that i s not the pattern of
weights discovered by the competi t ive learn ing mechanism. Rather, a
typical pattern of we ights is i l lustrated i n Figure 1 5 . In th is arrange
ment , each cluster responds to exactly three horizontal and three vert i
cal l ines. Such a cl uster has l ost a l l information that m ight dist inguish
vertical from horizontal . We have discovered a feature of absol utely no
use i n this dist inction . In fact , such featu res systemat ical ly throw away
the informat ion relevant to horizontal vs . vertical . Some further
thought indicates why such a result occurred. Note, in particular, that
two horizontal l ines have exactly nothing in common. The grid that we
show i n the diagrams is merely for our convenience . As far as the
units are concerned there are 36 unordered input units; someti mes
some of those uni ts are acti ve . Pattern s imi larity is determi ned ent i rely
by pattern overlap. Since horizon tal l i nes don ' t i ntersect , they have no
units in common , thus they are not seen as s imi lar at al l . However ,
every horizontal l ine intersects with every vertical l ine and thus has
much more in commorCDAb"igfdltitM'clfDmJlthan wi th other hori zontal

1 86 BASIC MECHANISMS

·
·
· Unit 1 Cluster 1
·
·
·

..
·
.. Unit 2 Cluster 1
·
·
..

• • • • • •
• • • • • •

Unit 1 Cluster 2

• • • • • •

• • • • • • Unit 2 Cluster 2
• • • • • •
• • • • • •

FIGURE 14 . A poss ib le weight configuration which could dist inguish vertical rrom
horizontal .

·

• • • • •

·

• • • • •

• • • • •
• • • • •

Unit 1

Unit 2

FIGURE 1 5. A typical configuration or weights for the vertica l/horizontal discrimina
t ion.

ones . It is this simi lari ty that the competit ive learning mechanism has
discovered .

Now, suppose that we change the system somewhat . Suppose that
we " teach " the system the difference between vert ical and horizontal
(as we did in the previous experiments with letter strings) . In this
experiment we used a 1 2 x 6 grid. On the right-hand side of the grid we
presented either a vertiebtPyri3hPJ>hiijlOfI);Jjne, as we did before . On

5. COMPETITIVE LEARNING 1 87

the left- hand side of the grid we always presented the u ppermost
horizontal l ine whenever any horizontal l ine was presented on the
right-hand grid, and we always presented the vertical l ine furthest to
the left on the left-hand grid whenever we presented any vertical l ine
on the right-hand side of the grid. We then had a cluster of two units
receiving inputs from all 1 2 x 6 = 72 lower level units . (Figure 1 6
shows several of the stimulus patterns.)

As expected, the two uni ts soon l earned to discriminate between
vertical and horizontal l ines. One of the units responded whenever a
vertical l ine was presented and the other responded whenever a
horizontal l ine was presented. They were responding, however, to the
pattern on the left-hand side rather than to the vertical and horizontal
pattern on the right . This too should be expected. Recall that the
value of the wij approaches a value which is proportional to the proba
bi l i ty that input unit ; is active, given that unit j won the competit ion.
Now, in the case of the unit that responds to vertical l ines for example ,
every unit on the right-hand grid occurs equally often so that a l l of the
weights connecting to units in that grid have equal weights. The same
is true for the unit responding · to the horizontal l ine. The weights on

·
·
·

A · · • . . .

B

c

o

· • .
·

• · · • · ·

• · · • · ·

• · · • · ·

• · . · • · ·

• · . . · • ·

·

• • • • • • • • • • • •

• • • • • • • • • •
·

·
·

• • • • • • • •
·

FIGURE 16 . Stimulus patterns for the vertical/ horizontal d iscrimination experiments
with a correlated " teaching" inO){)�.tiWfrtrIJl¥M·

1 88 BASIC MECHANISMS

the right-hand grid are identical for the two cluster members. Thus,
when the " teacher" is turned off, and only the right-hand figure is
presented, the two units respond randomly and show no evidence of
having learned the horizontal I vertical distinct ion .

Suppose , however , that we have four, rather than two, uni ts in the
level -two clusters. We ran this experiment and found that of the four
un i ts , two of them divided up the vertical patterns and two of them
di vided up the horizontal patterns . Figure 1 7 i l l ustrates the weight
values for one of our runs. One of the units took three of the vertical
l i ne patterns; another unit took three other vert ical patterns. A third
uni t responded to three of the horizontal l ine patterns , and the last unit
responded to the remaining three horizontal l ines. Moreover, after we
took away the " teaching" pattern , the system continued to classify the
vertical and horizontal l ines just as i t did when the left-hand " teaching"
pattern was present .

•
•
•
•
•
•

Unit 1

Unit 3

Cluster 1

•
•
•
•
•
•

Unit 2

Unit 4
. • • • • • •

•
•
•
•

Un it 1

Unit 3
• • • • • •

Cluster 2

U n it 2
.

•
•
•
•
•
•

Unit 4

FIGURE 1 7 . The weight values for the two clusters of size four for the
vert ical/ horizontal discri mination experiment wi th a correlated " teaching " stimulus.

Copyrighted Material

5. COMPETITIVE LEARNING 1 89

In one final experi ment wi th vert i cal and horizontal l ines, we
developed a three-level system in which we used the same st imulus pat
terns as in the previous experi ment ; the only d ifference was that we
had two clusters of four units at the second level and one cluster of two
units at the t h i rd level . Figure 1 8 shows the archi tecture employed . In
th is case , the two four-element cl usters each learned to respond to sub
sets of the vertical and horizontal l ines as in the previous experi ment .
The two clusters general ly responded to different subsets , however.
Thus, when the upper horizontal l ine was presented, Unit 1 of the fi rst
cluster responded and Unit 3 of the second cluster responded. When
the bottom horizontal l ine was presented , Unit 1 of the fi rst cl uster
responded again , but Unit 4 of the second cl uster also responded .
Thus, the cluster of size two at the highest level was recei ving a k ind of
dipole st imulus . I t has four i nputs and on any trial , two of them are
act i ve . As wi t h our analysis of di pole st imul i , we know that st imul i that
overlap are always put in the same category. Note that when a vertical
l ine is presented, one of the two units in each of the middle layers of
clusters that responds to vertical l ines wi l l become act ive , and that none
of the uni ts that respond to horizontal l ines wi l l ever be acti ve; thus,
th is means that there are two uni ts i n each middle layer cluster that
respond to vertical l ines . Whenever a vert ical l i ne i s presented , one of
the uni ts in each cl uster wi l l become acti ve . None of the horizontal
units will ever be acti ve i n the face of a vertical sti mulus. Thus, one of
the units at the h ighest level learns to respond whenever a vertical l ine
is presented , and the other unit responds whenever a horizontal l i ne is

Layer 1

Layer 2

• • • • • Input Units

FIGURE 1 8 . The archi tect ure for t he three-level horizontal / vert ica l d iscri m i nation

experi ment.
Copyrighted Material

1 90 BASIC M ECHANISMS

presented. Once the system has been trained, this occurs despite the
absence of the " teachingh stimulus. Thus, what we have shown is that
the competitive learning mechanism can, under certain conditions,
develop feature detectors which allow the system to distinguish among
patterns that are not differentiable by a simple l inear unit in one level .

CONCLUSION

We have shown how a very simple competit ive mechanism can dis
cover a set of feature detectors that capture important aspects of the set
of stimulus input patterns. We have also shown how these feature
detectors can form the basis of a multilayer system that can serve to
learn categorizations of stimulus sets that are not linearly separable.
We have shown how the use of correlated stimul i can serve as a kind of
''teachingh input to the system to allow the development of feature
detectors which would not develop otherwise. Although we find the
competitive learning mechanism a very interesting and powerful learn
ing principle, we do not, of course , i magine that i t is the only learning
principle. Competitive learning is an essentially nonassociative, statisti
cal learning scheme. We certainly i magine that other kinds of learning
mechanisms wil l be involved in the building of associations among pat
terns of activation in a more complete neural network . We offer this
analysis of these competitive learning mechanisms to further our
understanding of how simple adaptive networks can discover features
important in the description of the stimulus environment in which the
system finds itself.

ACKNOWLEDGMENTS

This research was supported by grants from the System Development
Foundation and by Contract NOOO I 4-79-C-0323, NR 667-437 with the
Personnel and Training Research Programs of the Office of Naval
Research.

Copyrighted Material

S. COMPETITIVE LEARNING 1 9 1

APPENDIX

For the case of homogeneous dipole stimulus patterns, i t is possible
to derive an expression for the most stable equi l ibrium state of the sys
tem. We say that a set of d ipole st imulus patterns is homogeneous i f
(a) they are equally likely and (b) for every input pattern in the set
there are a fi xed number of other input patterns that overlap them.
These condi t ions were met i n our si mulations. Our measure of stabi l i ty
is given by

T = LPkLL Vjk (£rjk - £r ik) '
k j i

S. 1 .
mce Pk = N ' we can WrIte

Summing the fi rst portion of the equation over i and the second over j
we have

T = M
N LL Vjk£rjk - N

1 LL£r ik L Vjk '
j k i k j

Now note that when Pk = 1/ N, we have £r ik = L 'kj vijl L Vkl ' Further-
j ,

more, L V,k = 1 and L V'k = N" where N, is the number of patterns
I k

captured by unit I . Thus, we have

Now, since all stimuli are the same size, we have 'ij = 'ji ' Moreover,
since all stimuli have the same number of neighbors , we have
L'/j = L'i} = R , where R is a constant determined by the d imen-

slonal i t/of the stimulus space from which the dipole stimuli are drawn.
Thus, we have

L Vii
M R "" I

T = -N LL Vjk£rjk - N �-N.. '
j k I I

Copyrighted Material

1 92 BASIC MECHANISMS

and we have

M RM
T = N�� Vjk(ljk - N '

Since R , M. and N are constants, we have that T is maximum when
ever T ' = L L VjkCXjk is maximum. Now substituting for (ljb we can

j k
write

We can now substitute for the product Vjk vjI the term
Vjk - Vjk (1 - vjl) ' We then can write

T ' = L N
1

LL 'kl Vjk - L N
1

LL 'kl Vjk (l - vjI) '
j J k l j J k l

Summing the first term of the equation first over I, then over k, and
then over j, gi ves us

T ' = MR - L N
1

LL 'kl Vjk (l - vjI) '
j J k I

Now, recall that 'kl is given by the degree of stimulus overlap between
stimulus 1 and stimulus k. In the case of dipoles there are only three
possible values of 'k(

'kl = I �
1/ 2

no overlap
k=1
otherwise

Now, the second term of the equation for T ' is 0 if either 'kl = 0 or if
Vjk (1 - vjI) = O. S ince Vik is either 1 or 0, this will be zero whenever
j= l . Thus, for all nonzero cases in the second term we have 'kl = 0.
Thus we have

T ' = MR - .1. L _1
LL vjk (l - vjI) '

2 j
N

j k l

Finally, note that LL vjk (1 - vjI) is I and 'kl is � in each case in
k I

which different units capture neighboring patterns. We refer to this as
a case of bad neighbo,s and let Bj designate the number of bad
neighbors for unit j. Thus, we have

Copyrighted Material

S. COMPETITIVE LEARNING 1 93

1 B · T ' = MR - _r,_l .
2 . Nj 1

B
Finally, we can see that T ' wi l l be a maximum whenever T il = � �. i s

I .I
minimum. Thus, minimiz ing T il leads to the max imal ly stable sol u t ion
in this case.

Copyrighted Material

CHAPTER 6

Information Processing in Dynamical Systems:

Foundations of Harmony Theory

P. SMOLENSKY

INTRODUCTION

The Theory of Information Processing

At this early stage in the development of cognit ive science, methodo
logical issues are both open and central . There may have been t imes
when developments in neuroscience, artificial intell igence, or cognitive
psychology seduced researchers into bel ieving that their discipline was
on the verge of discovering the secret of intel l igence. But a humbling
history of hopes disappointed has produced the realization that under
standing the mind will chal lenge the power of al l these methodologies
combined.

The work reported in this chapter rests on the conviction that a
methodology that has a crucial role to play in the development of cog
nit ive science is mathematical analysis. The success of cognitive sci
ence, l ike that of many other sciences , wi l l , I believe , depend upon the
construction of a sol id body of theoretical results: results that express in
a mathematical language the conceptual insights of the field; results
that squeeze al l possible impl ications out of those insights by exploiting
powerful mathematical techniques.

This body of results, which I wi l l cal l the theory 0/ in/ormation process
ing, exists because information is a concept that lends itself to
mathematical formalization. One part of the theory of information pro
cessing is al ready wel l -developed. The classical theory of computation
provides powerful and elegant results about the notion of effective

Copyrighted Material

6. HARMONY THEORY 195

procedure, including languages for precisely expressing them and
theoretical machines for realizing them. This body of theory grew out
of mathematical logic, and in tum contributed to computer science,
physical computing systems, and the theoretical paradigm in cognitive
science often called the (von Neumann) computer metaphor.l

In his paper "Physical Symbol Systems," Allen Newell (1 980) articu
lated the role of the mathematical theory of symbolic computation in
cognitive science and furnished a manifesto for what I will call the sym
bolic paradigm. The present book offers an alternative paradigm for
cognitive science, the subsymbolic paradigm, in which the most powerful
level of description of cognitive systems is hypothesized to be lower
than the level that is naturally described by symbol manipulation.

The fundamental insights into cognition explored by the subsymbolic
paradigm do not involve effective procedures and symbol manipulation.
Instead they involve the "spread of activation," relaxation, and statistical
correlation. The mathematical language in which these concepts are
naturally expressed are probability theory and the theory of dynamical
systems. By dynamical systems theory I mean the study of sets of
numerical variables (e.g., activation levels) that evolve in time in paral
lel and interact through differential equations. The classical theory of
dynamical systems includes the study of natural physical systems (e.g.,
mathematical physics) and artificially designed systems (e.g., control
theory). Mathematical characterizations of dynamical systems that for
malize the insights of the subsymbolic paradigm would be most helpful
in developing the paradigm.

This chapter introduces harmony theory, a mathematical framework
for studying a class of dynamical systems that . perform cognitive tasks
according to the account of the subsymbolic paradigm. These dynami
cal systems can serve as models of human cognition or as designs for
artificial cognitive systems. The ultimate goal of the enterprise is to
develop a body of mathematical results for the theory of information
processing that complements the results of the classical theory of (sym
bolic) computation. These results would serve as the basis for a mani
festo for the subsymbolic paradigm comparable to Newell's manifesto
for the symbolic paradigm. The promise offered by this goal will, I
hope, be suggested by the results of this chapter, despite their very lim
ited scope.

1 Mathematical logic has recently given rise to another approach to formalizing infor
mation: situation semantics (Barwise & Perry, 1983). This is related to Shannon's

(1948/1963) measure of information through the work of Dretske (1981). The approach
of this chapter is more faithful to the probabilistic formulation of Shannon than is the

symbolic approach of situation semantics. (This results from Dretske's move of identify
ing information with conditional probabilities of I.)

Copyrighted Material

196 BASIC MECHANISMS

It should be noted that harmony theory is a "theoryh in the
mathematical sense, not the scientific sense. By a "mathematical
theory" -e.g., number theory, group theory, probability theory, the
theory of computation-I mean a body of knowledge about a part of the
ideal mathematical world� a set of definitions, axioms, theorems, and
analytic techniques that are tightly interrelated. Such mathematical
theories are distinct from scientific theories, which are of course bodies
of knowledge about a part of the "real" world. Mathematical theories
provide a language for expressing scientific theories� a given mathemat
ical theory can be used to express a large class of scientific theories.
Group theory, for example, provides a language for expressing many
competing theories of elementary particles. Similarly, harmony theory
can be used to express many alternative theories about various cogni
tive phenomena. The point is that without the concepts and techniques
of the mathematical language of group theory, the formulation of any
of the current scientific theories of elementary particles would be essen
tially impossible.

The goal of harmony theory is to provide a powerful language for
expressing cognitive theories in the subsymbolic paradigm, a language
that complements the existing languages for symbol manipulation.
Since harmony theory is conceived as a language for using the subsym
bolic paradigm to describe cognition, it embodies the fundamental
scientific claims of that paradigm. But on many important issues, such
as how knowledge is represented in detail for particular cases, harmony
theory does not itself make commitments. Rather, it provides a
language for stating alternative hypotheses and techniques for studying
their consequences.

A Top-Down Theoretical Strategy

How can mathematical analysis be used to study the processing
mechanisms underlying the performance of some cognitive task?

One strategy, often associated with David Marr (I 982), is to charac
terize the task in a way that allows mathematical derivation of mechan
isms that perform it. This top-down theoretical strategy is pursued in
harmony theory. My claim is not that the strategy leads to descriptions
that are necessarily applicable to all cognitive systems, but rather that
the strategy leads to new insights, mathematical results, computer
architectures, and computer models that fill in the relatively unexplored
conceptual world of parallel, massively distributed systems that perform
cognitive tasks. Filling in this conceptual world is a necessary subtask,
I believe, for understanding how brains and minds are capable of intel
ligence and for assessing whether computers with novel architectures
might share this capabili�opyrighted Material

6. HARMONY THEORY 197

The Centrality of Perceptual Processing

The cognitive task I wi l l study i n this chapter is an abstract ion of the
task of percept ion . This abstraction includes many cogn iti ve tasks that
are customari ly regarded as much " higher level" than perception (e.g. ,
intuiting answers to physics problems) . A few comments on the role of
perceptual processing in the subsymbolic paradigm are useful at this
point .

The vast majority of cognit ive process ing l ies between the highest
cogn itive levels of expl icit logical reasoning and the lowest levels of
sensory processing. Descriptions of processing at the extremes are rela
tively well-informed -on the high end by formal logic and on the low
end by natura l science . In the middle l ies a conceptua l abyss. How are
we to conceptualize cognitive process ing in this abyss?

The strategy of the symbolic paradigm is to conceptual ize processing
in the intermediate levels as symbol manipulation . Other kinds of pro
cessing are viewed as l imited to extremely low levels of sensory and
motor processing. Thus symbol ic theorists climb down into the abyss ,
clutching a rope of symbol ic logic anchored at the top, hoping it wi l l
stretch al l the way to the bottom of the abyss.

The subsymbol ic paradigm takes the opposite view, that intermediate
processing mechanisms are of the same kind as perceptual processing
mechanisms. Logic and symbol manipulat ion are viewed as appropriate
descripti ons only of the few cogni t ive processes that explic it ly invol ve
logical reasoning. Subsymbolic theorists c l imb up into the abyss on a
perceptual l adder anchored at the bottom, hoping i t wil l extend all the
way to the top of the abyss. 2

2 There is no contradiction between working from lower level, perceptual processes up
towards higher processes, and pursuing a top-down theoret ical strategy. It is important to
distinguish levels of processing entities from levels of theoretical entities. Higher level
processes involve computational entities that are computationally distant from the peri
pheral, sensorimotor entities that comprise the "lowest level" of processing. These pro
cessing levels taken together form the processing system as a whole; they causally interact
with each other through bottom-up and top-down processing. Higher level theories
involve descriptive entities that are descriptively distant from entities that are directly part
of an actual processing mechanism; these comprise the "lowest level" description. Each
theoretical level individually describes the processing system as a whole; the interaction of
descriptive levels is not causal, but definitional. (For example, changes in individual
neural firing rates at the ret ina cause changes in individual firing rates in v isual cortex
after a delay related to causal information propagation . The same changes in individual
retinal neuron firing rates by definition change the average firing rates of pools of retinal
neurons; these higher level descriptive entities change instantly, without any causal infor
mation propagation from the lower level description.) Thus in harmony theory, models
of higher level processes are derived from models of lower level, perceptual, processes,
while lower level descriptions oe8p�M��'lfJ&�a

rJ�i�f from higher level descriptions.

198 BASIC MECHANISMS

In this chapter, I wil l analyze an abstraction of the task of perception
that encompasses many tasks, from low, through intermediate, to high
cognit ive levels. The analysis l eads to a general kind of " perceptual"
processing mechanism that is a powerful potential component of an
information processing system. The abstract task I analyze captures a
common part of the tasks of passing from an intensity pattern to a set
of objects in three-dimensional space , from a sound pattern to a
sequence of words, from a sequence of words to a semantic description,
from a set of patient symptoms to a set of disease states, from a set of
givens in a physics problem to a set of unknowns. Each of these
processes is viewed as completing an internal representation of a static
state of an external world. By sui tably abstracting the task of interpreting
a static sensory input , we can arri ve at a theory of interpretation of static
input generally, a theory of the completion task that applies to many cog
nit ive phenomena in the gulf between perception and logical reasoning.
An application that will be described in some detail is qualitative prob
lem solving in ci rcuit analysis . 3

The central idea of the top-down theoretical strategy is that properties
of the task are powerful ly constraining on mechanisms. This idea can
be wel l exploited wi thin a perceptual approach to cognit ion , where the
constraints on the perceptual task are characterized through the con
straints operative in the external environment from which the inputs
come. This permits an analysis of how internal representation of these
constraints within the cognit ive system i tself al lows it to perform its
task. These kinds of considerations have been emphasized in the
psychological l i terature prominently by Gibson and Shepard (see
Shepard, 1984); they are fundamental to harmony theory.

Structure of the Chapter

The goal of harmony theory is to develop a mathematical theory of
information process ing in the subsymbol ic paradigm. However, the
theory grows out of ideas that can be stated with l i tt le or no mathemat
ics. The organization of this chapter reflects an attempt to ensure that
the central concepts are not obscured by mathematical opacity. The
analysis will be presented in three parts , each part increasing in the
level of formality and detail. My hope is that the sl ight redundancy

3 Many cognitive tasks involve interpreting or controlling events that unfold over an
extended period of time. To deal properly with such tasks, harmony theory must be
extended from the interpretation of static environments to the interpretation of dynamic
environments.

Copyrighted Material

6. HARMONY THEORY 1 99

introduced by this expository organization wi l l be repaid by greater
accessibi l i ty .

Section 1 is a top-down presentation of how the perceptual perspec
tive on cognit ion l eads to the basic features of harmony theory. This
presentation starts with a part icular perceptual mode l , the l etter
perception model of McClelland and Rumelhart (I 98 1), and abstracts
from it general features that can apply to model ing of higher cognitive
processes . Crucial to the development is a particular formulation of
aspects of schema theory, along the l ines of Rumelhart (I 980) .

Section 2 , the majority of the chapter , is a bottom-up presentati on of
harmony theory that starts wi th the primitives of the knowledge
representation. Theorems are i nformal ly described that provide a com
petence theory for a cogni t ive system that performs the completion
task, a machine that real izes this theory, and a learning procedure
through which the machine can absorb the necessary information from
its environment . Then an appl icat ion of the general theory is
described : a model of intu i t ive , qual i tative problem-solving in elemen
tary electric c ircui ts . This model i l l ustrates several points about the
relation between symbolic and subsymbol ic descriptions of cogni t ive
phenomena; for example , i t furnishes a sharp contrast between the
description at these two levels of the nature and acquisition of
expertise.

The final part of the chapter is an Appendix containing a concise but
self-contained formal presentation of the definit ions and theorems .

SECTION 1: SCHEMA THEORY AND
SELF -CONSISTENCY

THE LOGICAL STRUCTURE OF HARMONY THEORY

The logical structure of harmony theory is shown schematically in
Figure 1 . The box labeled Mathematical Theory represents the use of
mathemati cal analysis and computer s imulation for drawing out the
implications of the fundamental principles . These principles comprise a
mathematical characterizat ion of computat ional requ i rements of a cog
nit ive system that perforCJljip}lnyRftJlJJM8mffctask. From these principles

200 BASIC MECHANISMS

schemata

Inference

�
harmony

probabIlity

CONCEPTUAL FOUNDATIONS

descriptive characterization

of computational requirements

-- �--
mathematical characterization

Of computation raqulrements

\�
machine implementation

"

(simulation): PROCESS
,, '

MATHEMATICAL THEORY

------,') 7 •
formalization derivation

FIGURE \. The logical structure of harmony theory.

characterization

of performance

, "
,

--- �
Simulation

it is possible to mathematically analyze aspects of the resulting perform
ance as well as rigorously derive the rules for a machine implementing

the computational requirements. The rules defining this machine have
a different status from those defining most other computer models of
cognition: They are not ad hoc, or post hoc; rather they are logically
derived from a set of computational requirements. This is one sense in
which harmony theory has a top-down theoretical development.

Where do the " mathematically characterized computational require
ments" of Figure I come from? They are a formalization of a descrip

tive characterization of cognitive processing, a simple form of schema
theory. In Section 1 of this chapter, I will give a description of this
form of schema theory and show how to transform the descriptive char
acterization into a mathematical one-how to get from the conceptual
box of Figure 1 into the mathematical box. Once we are in the formal
world, mathematical analysis and computer simulation can be put to

work.
Throughout Section 1, the main points of the development will be

explicitly enumerated.

Point I. The mathematics of harmony theory is founded on familiar
concepts Q{ cognitive science: inference through activation q{ schemata.

Copyrighted Material

6. HARMONY THEORY 201

DYNAMIC CONSTRUCTION OF SCHEMATA

The basic problem can be posed a la Schank (980), Whi le eat ing at
a fancy restaurant, you get a headache. Without effort , you ask the
wai tress i f she could poss ibly get you an aspi rin . How is this plan
created? You have never had a headache in a restaurant before . Ordi
narily, when you get a headache your plan is to go to your medicine
cabinet and get yourself some aspiri n . In the current s i tuation , this
plan must be modified by the knowledge that i n good restaurants, the
management is wi lling to expend effort to please i ts customers , and that
the waitress is a l iaison to that management.

The cogni t ive demands of this situation are schematically i llustrated
in Figure 2. Ordinari ly, the restaurant context calls for a "restaurant
script" which supports the plann ing and inferenci ng requi red to reach
the usual goal of gett ing a meal . Ordinarily, the headache context calls
for a "headache script" which supports the plann ing requi red to get aspi
rin in the usual context of home. The completely novel context of a
headache i n a restaurant calls for a special-purpose scri pt integrating the
knowledge that ordinarily manifests i tself in two separate scripts.

What k ind of cogni t ive system is capable of this degree of flexi bil i ty?
Suppose that the knowledge base of the system does not consist of a set
of scripts like the restaurant script and the headache script . Suppose

restaurant

context

headache

contexl

restaurant ---"'...
& headache --v-"'"
context

Headache in a Restaurant

restaurant

script

headache

script

special

purpose

script

... Inferences, goals

... inferences, goals

... 'ask waitress

for aspirin'

FIGURE 2. In three different contexts, the knowledge base must produce three different

scripts.
Copyrighted Material

202 BASIC MECHANISMS

i nstead that the knowledge base is a set of knowledge atoms that config
ure themselves dynamically in each context to form tailor-made scripts.
This is the fundamental idea formalized in harmony theory. 4

The degree of flexibi l ity demanded of scripts is equaled by that
demanded of all conceptual structures. 5 For example, metaphor is an
extreme example of the flexibi lity demanded of word meanings; even
so-called l i teral meaning on c loser inspection actual ly relies on extreme
flexibility of knowledge application (Rumelhart , 1 979) . In this chapter
I wil l consider knowledge structures that embody our knowledge of
objects , words, and other concepts of comparable complexity; these I
wil l refer to as schemata. The defining propert ies of schemata are that
they have conceptual interpretations and that they support inference.

For lack of a better term, I wil l use knowledge atoms to refer to the
elementary constituents of which I assume schemata to be composed. 6
These atoms will shortly be given a precise description; they will be
interpreted as a particular instantiation of the idea of memory trace.

Point 2. At the time of inference, stored knowledge atoms are dynami
cally assembled into context-sensitive schemata.

This view of schemata was explicitly articulated in Feldman (1 98 1) .
I t is in part embodied i n the McClelland and Rumelhart (I 98I) letter
perception model (see Chapter 1). One of the observed phenomena
accounted for by this model is the facilitat ion of the perception of
l etters that are embedded in words. Viewing the perception of a letter
as the resul t of a perceptual i nference process , we can say that this
inference is supported by a word schema that appears in the model as a
single processing unit that encodes the knowledge of the spell i ng of that
word. This is not an instantiation of the view of schemata as dynami
cally created entit ies.

4 Schank (J 980) describes a symbolic implementation of the idea of dynamic script con
struction; harmony theory constitutes a subsymbolic formalization.

5 Hofstadter has long been making the case for the inadequacy of traditional symbolic
descriptions to cope with the power and flexibility of concepts. For his most recent argu
ment, see Hofstadter (\985). He argues for the need to admit the approximate nature of
symbolic descriptions, and to explicitly consider processes that are subcognitive. In

Hofstadter (\979, p. 324m, this same case was phrased in terms of the need for "active
symbols," of which the "schemata" described here can be viewed as instances.

6 A physicist might call these particles gnosons or sophons, but these terms seem quite
uneuphonious. An acronym for Units for Constructing Schemata Dynamically might serve,
but would perhaps be taken as an advertising gimmick. So I have stuck with "knowledge

atoms."

Copyrighted Material

6. HARMONY THEORY 203

However, the model also accounts for the observed fac i l i tat ion of
letter perception with in orthographically regular nonwords or pseudo
words l i ke MAVE. When the model processes this st imulus, several
word units become and stay quite acti ve, including MAKE, WA VE,
HA VE, and other words orthographical ly s imi lar to MA VE. In this
case, the perception of a letter in the st imulus is the result of an infer
ence process that i s supported by the collection of acti vated units. This
collection is a dynamically created pseudo word schema.

When an orthographically irregular non word is processed by the
model , letter perception i s slowest. As in the case of pseudowords,
many word units become act ive . However, none become very act i ve,
and very many are equally acti ve , and these words have very li ttle s imi
larity to each other, so they do not support i nference about the letters
effect ively. Thus the knowledge base i s incapable of creating schemata
for i rregular nonwords .

Point 3. Schemata are coherent assemblies of knowledge atoms; only
these can support inference.

Note that schemata are created simply by activating the appropriate
atoms. This brings us to what was labeled in Figure 1 the " descripti vely
characterized computational requirements" for harmony theory:

Point 4: The harmony principle. The cognitive system is an engine for
activating coherent assemblies of atoms and drawing inferences that are
consistent with the knowled,?e represented by the activated atoms.

Subassemblies of activated atums that tend to recur exactly or approxi
mately are the schemata.

This principle focuses attention on the notion of coherency or con
sistency. This concept will be formal ized under the name of harmony,
and its centrality is acknowledged by the name of the theory.

MICRO· AND MACROLEVELS

It is important to realize that harmony theory, l ike al l subsymbolic
accounts of cognition, exists on two dist inct l evels of description: a
microlevel involving knowledge atoms and a macrolevel involving sche
mata (see Chapter 1 4) . These levels of description are compl etely
analogous to other micro- and macrotheories , for example, i n physics.
The microtheory, quantum physics, is assumed to be universally valid.
Part of its job as a theory is to explain why the approximate

macrotheory classical phvsics..2 works when it does and why it breaks ,
COPYflghted Matenal

204 BASIC MECHANISMS

down when it does . Understanding of physics requi res understanding
both levels of theory and the relation between them.

In the subsymbol ic paradigm in cognit ive science , i t i s equal ly impor
tant to understand the two levels and thei r relationship . In harmony
theory, the microtheory prescribes the nature of the atoms, their
interaction, and their development through experience.

·
This descrip

t ion is assumed to be a un iversal ly val id description of cogn ition . It is
also assumed (although this has yet to be expl ic i t ly worked out) that in
performing certain cogni t ive tasks (e.g . , logical reasoning) , a h igher
level description is a val id approxi mation . Thi s macrotheory describes
schemata , their i nteraction , and thei r development through experience.

One of the features of the formal ism of harmony theory that dist in
guishes i t from most subsymbol ic accounts of cogni t ion i s that i t
exploits a formal i somorphism wi th statist ical physics. Since the main
goal of stat ist ical physics is to relate the microscopic descript ion of
matter to its macroscopic properties, harmony theory can bring the
power of statist ical physics concepts and techniques to bear on the
problem of understanding the relat ion between the micro- and macro
accounts of cognit ion.

THE NATURE OF KNOWLEDGE

In the previous sect ion , the letter-perception model was used to i l l us
trate the dynamic construction of schemata from consti tuent atoms.
However, i t is on ly pseudowords that correspond to composite sche
mata; word schemata are singl e atoms . We can also represent words as
composi te schemata by using digraph uni ts at the upper level instead of
four-letter word units . A portion of this modified letter-perception
model i s shown in Figure 3. Now the processing of a four- letter word
involves the act ivation of a set of digraph uni ts, which are the
knowledge atoms of this model. Omitted from the figure are the

Knowledge
Atoms

Representational
Features

FIGURE 3. A portion of a modified reading model.

Copyrighted Material

Knowledge
Atoms

W1A2 =*> (
M1A2 =*> (
A K �" 2 3 // (0

+
+
o 0

+
+
+

6. HARMONY THEORY 205

o 0)
o 0)
+ -)

FIGURE 4. Each knowledge atom is a vector of +. -. and 0 values of the representa
tional featu re n odes.

l ine-segment units , which are l ike those in the original letter-percept ion
model .

Thi s s imple model i l lustrates several points about the nature of
knowledge atoms in harmony theory . The digraph un i t WI A 2
represents a pattern of val ues over the l etter units : WI and A 2 on , wi th
al l other letter units for posi t ions 1 and 2 off. Th is pattern is shown in
Figure 4, using the labels +, - , and 0 to denote on, off, and irrelevant.
These indicate whether there i s an exci tatory connection, inh ib i tory
connection , or no connection between the corresponding nodes . 7

Figure 4 shows the basic structure of harmony models . There are
atoms of knowledge, represented by nodes in an upper layer, and a
lower layer of nodes that comprises a representation of the state of the
perceptual or problem domain wi th which the system deals. Each node
is a feature in the representat ion of the domain . We can now view
"atoms of knowledge" like WI and A 2 in several ways . Mathematical ly ,
each atom i s s imply a vector of +, -, and 0 values, one for each node
in the l ower, representation layer . This pattern can also be viewed as a
fragment of a percept: The 0 values mark those features omi tted in the
fragment. Thi s fragment can in turn be interpreted as a trace l eft
behind in memory by perceptual experience.

7 Omitted are the knowledge atoms that relate the letter nodes to the line segment
nodes. Both line segment and letter nodes are in the lower layer, and all knowledge
atoms are in the upper layer. Hierarchies in harmony theory are imbedded within an
architecture of only two layers of nodes, as will be discussed in Section 2.

Copyrighted Material

206 BASIC M ECHANISMS

Point 5. Knowledge atoms are fragments of representations that accu
mulate with experience.

THE COMPLETION TASK

Having specified more precisely what the atoms of knowledge are, i t
i s t ime to specify the task in which they are used .

Many cogni t ive tasks can be viewed as inference tasks . In problem
solvi ng, the role of inference is obvious; in percepti on and language
comprehension , inference is less obvious but j ust as central . In har
mony theory , a t ightly prescribed but extremely general inferential task
is studied: the completion task. In a problem-solving completion task , a
partial description of a s i tuation is given (for example, the i n i t ial state
of a system) ; the problem is to complete the description to fi l l in the
missing information (the final state, say) . In a story understanding
completion task, a part ial description of some events and actors' goals is
given; comprehension involves fi l l i ng in the missing events and goals .
In percept ion , the st imulus gives values for certain low-level features of
the environmental state , and the perceptual system must fi l l in values
for other features. In general , i n the completion task some features of
an environmental state are given as input , and the cogn i t ive system
must complete that i nput by assigning l i kely values to unspecified
features .

A simple example of a completion task (Lindsay & Norman , 1972) is
shown in Figure 5. The task is to fill in the features of the obscured
portions of the st imulus and to decide what letters are present. Th is
task can be performed by the model shown i n Figure 3 , as fol lows .
The stimulus assigns values of on and off to the unobscured letter
features. What happens is summarized in Table 1 .

Note that which atoms are activated affects how the representat ion is

FIGURE 5. A perceptual completion task.
Copyrighted Material

6. H A RMONY THEORY 207

TABLE I
A PROCEDURE FOR PERFORMING THE COMPLETION TASK

Input:

Activa t ion :

Inference:

Assign values to some features in the representation

Activate atoms that are consistent with the representation

Assign values to unknown features of representation that
are consistent with the active knowledge

fi l led i n , and how the representation is fi l led in affects which atoms are
acti vated . The act i vat ion and inference processes mutual l y constra in
each other; these processes must run i n paral lel . Note a lso that al l the
decis ions come out of a stri ving for consistency.

Point 6. A ssembly of schemata (activation of atoms) and iriference
(completing missing parts of the representation) are both achieved by
finding maximally self-consistent states Qf the system that are also con
sistent with the input.

The complet ion of the stimu lus shown in Figure 5 is shown i n
Figure 6. The consistency is high because wherever an acti ve atom i s

o
_ active;

on

inactive;
off

FIGURE 6. The state of the �Y'Hwr&cfmtl!jf9Iof the stimulus shown in Figure 5.

208 BASIC MECHANISMS

connected to a representational feature by a + (respect i vely, -) connec
t ion, that feature has value on (respecti ve ly , oJ!). In fact, we can define
a very simple measure of the degree of sel f-consistency just by consid
ering al l act i ve atoms, counting + 1 for every agreement between one
of its connect ions and the value of the corresponding feature, and
counting -1 for every disagreement. (Here + with on or - wi th off
const i tutes agreement .) Thi s is the simplest example of a harmony
jUnction - and brings us into the mathematical formulation .

THE HARMONY FUNCTION

Point 6 asserts that a central cogni t ive process i s the construction of
cognitive states that are" maximally sel f-consistent ." To make this pre
cise, we need only measure that self-consistency.

Point 7. The self-consistency 0/ a possible state 0/ the cognitive system
can be assigned a quantitative value by a harmony jUnction, H.

Figure 7 displays a harmony function that generalizes the simple exam
ple discussed in the preceding paragraph. A state of the system is
defined by a set of atoms which are active and a vector of values for all
representational features . The harmony of such a state is the sum of
terms, one for each acti ve atom, weighted by the strength of that atom.
Each weight mUl t ip l ies the self-consistency between that part icular atom
and the vector of representational feature values. That self-consistency
is the s imilari ty between the vector of features defin ing the atom (the
vector of i ts connections) and the representational feature vector. In
the simplest case discussed above, the function h that measures this
s imilari ty i s just the number of agreements between these vectors
minus the number of disagreements . For reasons to be discussed, I
have used a s l ightly more compl icated version of h i n which the
simpler form is fi rst d iv ided by the number of (nonzero) connections
to the atom, and then a fixed value I(i s subtracted .

harmonYknowledge (representational feature vector, actiVatiOns)
bese

� (strength Of) (0 /�a�
t
g:.) Similarit.1 feature vector. representational)

� atom a '1 if active' Yl of atom a ' feature vector eloms
a

FIGURE 7. A schematic repree!8p�gA�i} �a"l�PiBfunction.

A PROBABILISTIC FORMULATION
OF SCHEMA THEORY

6. H A R MONY THEORY 209

The next step in the theoretical development requi res returning to
the h igher level, symbol ic descri pt ion of inference , and to a more
detailed d iscussion of schemata.

Cons ider a typical inference process described with schemata. A
ch i ld i s reading a story about presents, party hats, and a cake wi th can
dIes. When asked questions, the chi ld says that the gi rl gett i ng the
presents i s having a bi rthday. In the terminology of schema theory,
while reading the story , the chi ld's birthday party schema becomes act ive
and al lows many inferences to be made, fil ling i n detai ls of the scene
that were not made explic it in the story.

The bi rthday party schema is presumed to be a knowledge structure
that contains variables l i ke birthday cake, guest of honor, other guests,
gifts, location, and so forth . The schema con tains i n formation on how
to assign val ues to these variables. For example, the schema may
specify : de/ault values to be assigned to variables in the absence of any
counterindicat ing information; value restrictions l imit ing the kind of
val ues that can be assigned to variables; and dependency i nformat ion,
specify ing how ass igning a particular val ue to one variable affects the
values that can be assigned to another variable .

A conven ient framework for concisely and uniformly expressing a l l
th is information i s given by probability theory. The default value for a
variable can be viewed as its most probable value: the mode of the mar
ginal probabi lity distr ibution for that variable . The val ue restrict ions on
a variable spec ify the val ues for which it has nonzero probabi l i ty: the
support of its marginal distri but ion. The dependencies between vari
ables are expressed by their stat ist ical correlations, or, more completely ,
by their joint probabil i ty distr ibutions.

So the birthday party schema can be viewed as contain ing informa
tion about the probabi l i t ies that its variables wil l have various possible
values. These are c learly stat ist ical propert ies of the part icular domain
or environment i n which the inference task is bei ng carried out. In read
ing the story , the chi ld is gi ven a part ial descript ion of a scene from the
everyday environment-the values of some of the features used to
represent that scene-and to understand the story , the child must com
plete the descr ipt ion by fil l i ng i n the values for the unknown features.
These values are assigned in such a way that the resul t ing scene has the
highest possible probabi lity. The bi rthday party schema contains the
probabi l i st ic information needed to carry out these inferences .

In a typical cogn i t ive task , many schemata become act ive at once and
i nteract heavi ly during the inference process. Each schema contains
probabi l istic informationc:f6y;�Rt8ft wi�RIGts, which are only a fract ion

210 BASIC M ECHANISMS

of the complete set of variables involved in the task. To perform a
completion, the most probable set of val ues must be assigned to the
unknown variables, using the informat ion in a l l the act i ve schemata.

This probabi l ist ic formulat ion of these aspects of schema theory can
be s imply summarized as fol lows.

Point 8. Each schema encodes the statistical relations among a few
representational features. During inference. the probabilistic information
in many active schemata are dynamically folded together to find the most
probable state of the environment.

Thus the stat ist ical knowledge encoded in all the schemata al low the
estimation of the relati ve probabili t ies of possi ble states of the environ
ment. How can this be done?

At the macrolevel of schemata and variables , coordinating the folding
together of the information of many schemata i s difficult to describe .
The i nabil i ty to devise procedures that capture the flex ibi l i ty displayed
in human use of schemata was in fact one of the primary h istorical rea
sons for turning to the microlevel descri ption (see Chapter 1) . We
therefore return to the microdescript ion to address this difficult
problem.

At the microlevel , the probabi l ist ic knowledge in the birthday party
schema is distributed over many knowledge atoms, each carrying a
smal l b i t of stat ist ical information. Because these atoms all tend to
match the representat ion of a bi rthday party scene , they can become
acti ve together; in some approximation , they tend to funct ion col lec
t ively, and in that sense they comprise a schema. Now, when many
schemata are act i ve at once , that means the knowledge atoms that
comprise them are s imul taneously active. At the microlevel, there is
no real difference between the decis ions requi red to activate the
appropriate atoms to instant iate many schemata s imul taneously and the
decisions requi red to acti vate the atoms to instant iate a single schema.
A computational system that can dynamicalIy create a schema when i t is
needed can also dynamical ly create many schemata when they are
needed . When atoms, not schemata, are the elements of computation ,
the problem o f coordinat ing many schemata becomes subsumed in the
problem of act ivat ing the appropriate atoms. And this is the problem
that the harmony funct ion , the measure of self-consistency , was created
to solve.

HARMONY THEORY

According to Points 2 , 6, and 7 , schemata are collect i ons of
knowledge atoms that become active in order to maximize harmony,

Copyrighted Material

6. HAR MONY THEORY 211

and inferences are also drawn to maxim ize harmony. This suggests that
the probability of a possible state of the environment is estimated by
comput ing its harmony: the h igher the harmony, the greater the proba
bi l i ty . In fact , from the mathematical properties of probabi l i ty and har
mony, in Section 2 we wi l l show the fol lowing:

Point 9. The relationship between the harmony junction H and
estimated probabilities is of the form

probabi l i ty a: eH/ T

where T is some constant that cannot be determined a priori.

This relationshi p between probabil i ty and harmony is mathemat ical ly
ident ical to the relationsh i p between probability and (minus) energy i n
statistical physics: t h e Gibbs or Bol tzmann law. This i s the basis o f the
isomorphism between cogn it ion and physics exploi ted by harmony
theory. In statist ical physics, H i s cal led the Hamiltonian junction; it
measures the energy of a state of a physical system. In physics, T i s
the temperature of the system . In harmony theory , T is called the com
putational temperature of the cogn i t ive system. When the temperature is
very high, completions with high harmony are assigned est imated pro
babi l it ies that are only s l ightly h igher than those assigned to low har
mony complet ions; the environment is t reated as more random in the
sense that a l l completions are est imated to have roughly equal probabi l
ity. When the temperature is very low, only the complet ions with
highest harmony are gi ven nonnegl ig ible est imated probabi l i t i es. 8

Point 10. The lower the computational temperature, the more the
estimated probabilities are weighted towards the completions of highest
harmony.

In part icular, the very best completion can be found by lowering the
temperatu re to zero . This process, cooling, is fundamental to harmony
theory. Concepts and techniques from thermal physics can be used to
understand and analyze decision-making processes in harmony theory .

A technique for performing Monte Carlo computer studies of ther
mal systems can be readi ly adapted to harmony theory.

Point 11. A massively parallel stochastic machine can be designed that
per/orms completions in accordance with Points 1-10.

8 Since harmony corresponds to minus energy, at low physical temperatures only the
state with the lowest energy (the ground stale) has nonnegligible probability.

Copyrighted Malerial

2 1 2 BASIC M ECHANISMS

For a given harmony model (e .g . , that of Figure 4) , this machine is
constructed as fol lows . Every node in the network becomes a s imple
processor , and every l ink in the network becomes a communication l ink
between two processors. The processors each have two possible values
(+ 1 and - 1 for the representat ional feature processors� 1 = active and
o = inactive for the knowledge atom processors) . The input to a com
pletion problem is provided by fix ing the values of some of the feature
processors . Each of the other processors continually updates its value
by making stochastic decisions based on the harmony associated at the
current time with its two possible values. It is most l i kely to choose the
value that corresponds to greater harmony; but wi th some
probabi l i ty-greater the higher is the computational temperature T -it
wi l l make the other choice . Each processor computes the harmony
associated with its poss ible values by a numerical calculation that uses
as input the numerical values of al l the other processors to which it is
connected. Alternately , all the atom processors update in parallel , and
then all the feature processors update in paral l el . The process repeats
many times , implementing the procedure of Table 1 . All the whi le , the
temperature T is lowered to zero, pursuant to Point 10. It can be
proved that the machine wi l l eventually " freeze" into a completion that
maximizes the harmony.

I cal l this machine harmonium because, l i ke the Selfridge and Neisser
(960) pattern recognition system pandemonium, it is a paral lel distri
buted processing system in which many atoms of knowledge are simul
taneously " shouting" out their l i tt le contributions to the inference pro
cess; but unli ke pandemonium, there is an explicit method to the mad
ness: the collective search for maximal harmony. 9

The final point concerns the account of learning in harmony theory.

POint 12. There is a procedure for accumulating knowledge atoms
through exposure to the environment so that the system will perform the
completion task optimally.

The precise meaning of " optimality " wi l l be an important topic i n the
subsequent discussion .

This completes the descriptive account of the foundations of har
mony theory. Section 2 fills in many of the steps and details omi tted

9 Harmonium is closely related to the Boltzmann machine discussed in Chapter 7. The

basic dynamics or the machines are the same, although there are differences in most

details. In the Appendix, i t is shown that in a certain sense the Boltzmann machine is a
special case or harmonium, in which knowledge atoms connected to more than two
reatures are forbidden. In another sense, harmonium is a special case of the Boltzmann
machine, in which the connections are restricted to go only between two layers.

Copyrighted Material

6. H A RMONY THEORY 2 1 3

above, and reports the results of some particular studies. The most for
mal matters are treated in the Appendix.

SECTION 2 : HARMONY THEORY

. . . the privileged unconscious phenomena, those susceptible of
becoming conscious, are those which . . . affect most profoundly our
emotional sensibility . . . Now, what are the mathematic entities to
which we attribute this character of beauty and elegance . . . ?
They are those whose elements are harmoniously disposed so that
the mind without effort can embrace their totality while realizing the
details. This harmony is at once a satisfaction of our esthetic needs
and an aid to the mind, sustaining and guiding. . . . Figure the
future elements of our combinations as something like the unhooked
atoms of Epicurus. . . . They flash in every direction through the
space . . . like the molecules of a gas in the kinematic theory of
gases. Then their mutual impacts may produce new combinations.

Henri Poincare (1 9 1 3)
Mathematical Creation \0

In Sect ion 1 , a top-down analysis led from the demands of the com
pletion task and a probabi l istic formulation of schema theory to percep

tual features, knowledge atoms, the central notion of harmony, and the
role of harmony in est imating probabi l i ties of environmental states . In
Section 2, the presentation wi l l be bottom-up, start ing from the
primit ives .

KNOWLEDGE REPRESENTATION

Representation Vector

At the center of any harmony theoretic model of a particu lar cogni
t ive process i s a set of representational features r j , r 2 , These

10 I am indebted to Yves Chauvin for recently point ing out this remarkable passage by
the great mathematician . See @�lIfi�� MSMrllB· 655-656) .

2 1 4 BASIC MECHANISMS

features const i t ute the cogn i t ive system's representation of possible
states of the envi ronment with which i t deals . In the envi ronment of
visual percept ion, these features might include pixels, edges , depths of
surface elements, and ident ifications of objects . In medical diagnosis,
features might be symptoms , outcomes of tests, diseases, prognoses ,
and treatments. In the domain of qual i tati ve ci rcu i t analysis , the
features might i ncl ude increase in current through resistor x and increase
in voltage drop acrOss resistor x .

The representational features are variables that I wi l l assume take on
binary values that can be thought of as present and absent or true and
false. Binary values conta in a tremendous amount of representat ional
power, so i t i s not a great sacrifice to accept the conceptual and techni
cal s impl ificat ion they afford . I t wi l l turn out to be conven ient to
denote present and absent respecti ve ly by + 1 and - 1 , or, equ ivalent ly,
+ and - . Other val ues could be used i f corresponding modifications
were made in the equations to fol low. The use of cont inuous numeri
cal feature variables, whi le in troducing some addi t ional technical com
plexity, would not affect the bas ic character of the theory . "

A representational state of the cogn i t ive system i s determined by a
col lect ion of val ues for al l the representational variables { r; } . This col
lection can be designated by a l i st or vector of + 's and - 's: the
representation vector r .

Where do the features used i n the representat ion vector come from ?
Are they " innate" or do they develop with experience ? These crucial
quest ions wi l l be deferred unt i l the last sect ion of this chapter. The
evaluat ion of various possible representat ions for a given envi ronment
and the study of the development of good representations through
exposure to the envi ronment is harmony theory's raison d 'etre. But a
prerequis i te for understanding the appropriateness of a representation is
understanding how the representation supports performance on the task
for which it used; that is the primary concern of this chapter. For now,
we simply assume that somehow a set of representational features has
al ready been set up: by a programmer , or experience, or evolut ion.

I I While continuous val ues make the ana�ysis more complex , they may well i mprove
the performance of the simulation models. In simulat ions with discrete val ues, the sys
tem state jumps between corners of a hypercube ; with cont inuous values, the system
state crawls smoothly around inside the hypercube. It was observed in the work reported
in Chapter 1 4 that " bad " corners corresponding to stable nonopti mal completions Oocal
harmony max ima) were typica l l y not visited by the smoothly moving cont inuous state;

these corners typica l ly are visited by the jumping discrete state and can only be escaped
from through thermal stochasticity . Thus cont inuous values may sometimes el iminate

the need for stochast ic simulation.

Copyrighted Material

6. HA RMONY T H EORY 2 1 5

Acti vat i o n Vector

The representational features serve as the blackboard on wh ich the
cogni t i ve system carries out i ts computat ions. The knowledge that
guides those computat ions is assoc iated with the second set of ent i t ies ,
the knowledge atoms . Each such atom a is characterized by a knowledge
vector ka , which is a l i st of + I , - I , and 0 val ues, one for each
representation variable rj . This l i s t encodes a p iece of knowledge that
specifies what val ue each rj should have : + I , - 1 , or unspecified (0) .

Associated wi t h knowledge atom a is i ts activation variable , a a ' Th is
variable wi l l a lso be taken to be bi nary: 1 wi l l denote act i ve ; 0 , i nact ive .
Because harmony theory is probabi l i s t ic , degrees of act i vation are
represented by varying probab i l i ty of being act i ve rather than vary ing
values for the ac t i vat ion variable. (L ike cont i nuous val ues for
representat ion variables, cont i nuous val ues for act i vat ion variables
could be i ncorporated i n to the theory with l i t t le d i fficu l ty, but a need to
do so has not yet ar isen .) The l ist of { O , I } val ues for the act i vat ions
{ a a } comprises the activation vector a .

Knowledge atoms encode subpatterns of feature val ues that occur i n
the envi ronment. The di fferent frequencies with which various such
patterns occur is encoded in the set of strengths , {u a } , of the atoms.

I n the example of qual i tat ive c i rcui t analysis , each knowledge atom
records a pattern of qual i ta t ive changes in some of the circuit features
(currents , vol tages , etc.) . These patterns are the ones tha t are con
sistent wi th the laws of physics, which are the constraints characteriz ing
the c i rcu i t environment . Knowledge of the laws of phys ics i s encoded
in the se t of knowledge atoms. For example, the atom whose
knowledge vector contains a l l zeroes except those features encoding the
pattern < current decreases. voltage decreases. resistance increases> i s one
of the atoms encoding qual i tat ive knowledge of Ohm's law. Equal ly
important is the absence of an atom l i ke one encoding the pattern
< current increases. voltage decreases. resistance increases> , wh i ch
violates Ohm's law.

There is a very usefu l graph ical representat ion for knowledge atoms;
it was i l l ustrated i n Figure 4 and i s repeated as Figure 8. The represen
tat ional features are designated by nodes drawn in a lower layer; the
acti vation variables are depicted by nodes drawn i n an upper layer. The
connections from an act ivat ion variable aa to the representat ion vari
ables { rj } show the knowledge vecto r ka . When ka contains a + or -

for rj , the connect ion between aa and rj is labeled wi th the appropriate
sign; when ka contains a 0 for rj , the connect ion between ao. and rj is
omitted .

In Figure 8 , al l atoms are assumed to have un i t strength . In general ,
d ifferent atoms wi l l hav¢�d�� the strength of each atom

2 1 6 BASIC MECHANISMS

Knowledge
Atoms

Representational
Features

k W , A2
kM A = , 2
kA K = 2 3

(-
(-
(0

+ + 0
+ + 0
0 0 + +

FIGURE 8. The graphical representation of a particular harmony model .

0)
0)
-)

would them be indicated above the atom in the drawing. (For the com
pletely general case, see Figure 1 3 .)

Hierarchies and t h e Arch itecture o f Harmony Networks

One of the characteri st ics that dist inguishes harmony models from
other paral lel network models is that the graph always contains two
layers of nodes , wi th rather different semantics. As in many networks,
the nodes in the upper layer correspond to patterns of values in the
lower layer . In the letter-perception model of McClel land and
Rumelhart , for example, the word nodes correspond to patterns over
the letter nodes , and the letter nodes in turn correspond to patterns
over the l i ne-segment nodes. The letter-perception model is typical in
i ts hierarchical structure: The nodes are strat ified into a sequence of
several layers, wi th nodes in one layer bei ng connected only to nodes in
adjacent layers . Harmony models use on ly two layers .

The formal ism could be extended to many layers , but the use of two
layers has a pri ncipled foundat ion in the semantics of these layers. The
nodes i n the representation layer support representations of the environ
ment at all levels of abstractness. In the case of written words , this layer
could support representation at the levels of l ine segments, letters , and
words, as shown schematical ly in Figure 9. The upper, knowledge ,
layer encodes the patterns among these representations. If information
is gi ven about l ine sef!l1p9}fgh;&Y?AcNUfI5l of the knowledge atoms

6. H A R MONY THEORY 2 1 7

connect that information with the l etter nodes , completing the
representation to i nclude letter recogni t ion . Other knowledge atoms
connect pattern s on the l etter nodes with word nodes , and these com
plete the representation to include word recognit ion.

The pattern of connect ivi ty of Figure 9 al lows the network to be
redrawn as shown i n Figure 1 0 . This network shows an al ternation of
representat ion and knowledge nodes, restoring the image of a series of
layers. In this sense , . . vert ical ly " h ierarchical networks of many layers
can be imbedded as " horizontal ly " hierarchical networks wi th in a two
layer harmony network.

Figure 10 graphical ly displays the fact that in a harmony archi tecture,
the nodes that encode patterns are not part of the representation; there
is a fi rm dist inct ion between representation and knowledge nodes. This
distinction i s not made in the or ig inal letter-perception model , where
the nodes that detect a pattern over the l ine-segment features are iden
t ical with the nodes that actual l y represent the presence of letters. Th is
dist inction seems art i ficial ; why is i t made?

I claim that the art ific ia l i ty actual ly resides in the original letter
perception mode l , i n which the presence of a letter can be identified
with a s ingle pattern over the primit ive graphical features Wne seg
ments) . In a less ideal ized reading task , the presence of a letter would
have to be inferable from many different combinat ions of primi t ive
graphical features . In harmony theory, the idea i s that there would be a
set of representation nodes dedicated to the representation of the pres
ence of letters i ndependent of thei r shapes, s izes, orientations, and so
forth. There would also be a set of representation nodes for graph ical

segmentl l etter

k nowledge atoms

l i n e-segment nodes letter nodes

l etter/ word

k n ow l edge atoms

word nodes

FIGURE 9. The representat ional features support representat ions a t a l l levels of

abst ractness. Copyrighted Material

2 1 8 BASIC M ECH ANISMS

word nodes

l etter/ word
atoms

l etter nodes

segment/ l etter
atoms

l in e-segmen t
nodes

FIGURE 1 0. A rearrangement of the network of Figure 9.

features, and for each letter there would be a multitude of knowledge
atoms, each relat ing a part icular configurat ion of graphi cal features with
the representat ion of that letter . Thus the knowledge or schema for
that letter would be distr ibuted over many knowledge atoms, al l of
which would be invol ved i n sett ing up the same representat i on on the
letter nodes . To provide a broader context , Figure I I schemat ically
depicts a possi ble model for language processi ng . The fu l l representa
t i on consists of graph ical features, phonological features, syntact i c
features , and semant ic features . Some of the knowledge atoms provide
connect ions among features wi th in a s ingle category, whi l e others con
nect features in d ifferent categories. The nodes in the upper layer do
not themselves comprise parts of the represen tat i on , but rather encode
relations between parts of the representat ion .

The advantages of the two-layer scheme come from s impl ic i ty and
un iformi ty . There are no connect i ons wi th in layers , only between
layers . Th is s imp l ifies �6��4fi�� jWa�JWll cons iderably and permi ts a

graphical

leatures

letter
n odes

knowledge atoms

word

nodes
p honotogical

features

6. HA R MO N Y THEOR Y 2 1 9

syntactic

features
semantic
features

FIG U R E 1 1 . A complete model for l anguage process ing would i n v o l ve representat ional

va r iables of many types , and the a toms relat ing them .

truly paral lel implementat ion . The uniformity means that we can ima
gine a system start ing out with an " innate" two-layer st ructure and
learning a pattern of connections l i ke that of Figu re 9, i . e . , learn ing a
h ierarch i cal representation scheme that was in no sense put i nto the
model in advance . The formal ism is set up to analyze the envi ronmen
tal condit ions under which certa in k inds of representations (e .g . ,
h ierarch ical ones) might emerge or be expedient .

The l ack of wi th in- layer connect ions in harmony networks is symp
tomati c of a major di fference between the goals of harmony theory and
the goals of other s imi lar approaches . The effect of a binary connect ion
between two representat ion nodes can be achieved by creat ing a pai r of
upper level nodes that connect to the two lower level nodes . [2 Thus we
can dispense wi th lower level connect ions at the cost of creat ing upper
leve l nodes . Harmony theory has been developed with a systematic com
mitment to buy simplici(y with extra upper level nodes. The hope i s that by
plac ing al l the knowledge in the patterns encoded by knowledge atoms ,
we wi l l be better able to understand the funct ion and structure of the
models . This explains why restr ict ions have been placed on the net
work that to many would seem extraord inari ly confining .

If the goal i s i nstead to get the most " intel l igent" performance out of
the fewest number of nodes and connect ions, it is obviously wiser to

1 2 A negat ive connect ion between two lower l e v e l nodes means that the va lue pa i rs

(+ ,-) and (- .+) are fa vored re la t i ve to t h e o t her two pa i rs . This effect can be achie ved

by creat ing two knowledge atoms that each encode one o f the two favored pal l erns. A

pos i t i ve con nect ion s imi lar ly can be rep laced by two atoms for the pal lerns (+ .+) and
(- .-) . Copyrighted Material

220 BASIC M ECHANISMS

al low arbi trary connect iv i ty patterns, weights, and thresholds, as in the
Boltzmann machine. There are , however, theoretical disadvantages to
having so many degrees of freedom, both in psychological modeling
and in art ificial intel l igence appl ications. Too many free parameters in
a psychological model make i t too theoretical ly unconstrained and
therefore i nsufficiently instruct ive. And as suggested in Chapter 7, net
works that take advantage of all these degrees of freedom may perform
the i r computat ions in ways that are completely i nscrutable to the theor
ist . Some may take delight in such a resul t , but there is reason to be
concerned by i t . It can be argued that getting a machine to perform
intel l igently is more important than understanding how it does so. If a
magic procedure -say for learning-did in fact lead to the level of per
formance desi red , despite our i nabi l i ty to understand the resul t ing com
putat ion, that would of course be a landmark accomplishment . But to
expect this kind of breakthrough is just the sort of nai vete referred to
in the fi rst paragraph of the chapter. We now have enough disappoint
i ng experience to expect that any part icular insight i s going to take us a
very small fraction of the way to the kind of truly intel l igent mechanisms
we seek. The only way to reasonably expect to make progress is by
chain ing together many such smal l steps . And the only way to chain
together these steps i s to understand at the end of each one where we
are , how we got there, and why we got no further, so we can make an
informed guess as to how to takf'\ the next small step. A " magic" step is
apt to be a last step; i t is fine, as long as i t takes you exactly where you
want to go .

HARMONY AND PROBABILITY

The Harmony Funct ion

The preceding sect ion described how environmental states and
knowledge are represented i n harmony theory. The use of this
knowledge in completing representations of environmental states is
governed by the harmony function , which , as discussed in Section 1 ,
measures the self-consistency of any state of a harmony mode\ . I wi l l
now discuss the properties required of a harmony function and present
the part icular funct ion I have studied.

A state of the cogni t ive system is determined by the values of the
lower and upper level nodes. Such a state is determined by a pai r
(r , a) consist ing of a representation vector r and an activation vector a .
A harmony function assWBf>fr/�atWefiUK (r , a) to each such state.

6. H A R MONY THEORY 22 1

The harmony function has as parameters t he set o f knowledge vectors
and their strengths: { (ka ,fT a) } ; I wi l l cal l this the knowledge base K .

The basic requirement on the harmony function H is that i t be addi
tive under decompositions of the system. I J This means that i f a network
can be part i t ioned into two unconnected networks . as in Figure 1 2 . the
harmony of the whole network is the sum of the harmonies of the
parts:

H (r , a) = H (r h a l) + H (r 2 , a 2) .

In th is case , the knowledge and representational feature nodes can each
be broken i nto two subsets so that the knowledge atoms in subset 1 all
have 0 connections wi th the representational features in subset 2, and
vice versa. Corresponding to th is part i t ion of nodes there is a decom
posit ion of the vectors r and a in to the pieces r h r 2 and a J , a 2 '

The harmony function I have studied (recal l Figure 7) is

(1)
a

Here, h I((r , ka) is the harmony contributed by acti vat i ng atom a ,
gi ven the current representation r . I have taken th is to be

r "k
hl« r . ka)

= Ikai - I(.

1--10---------- r -------------1 .. 1

FIGURE 1 2 . A decomposable harmony network .

1 3 In physics, one says that H must be an extensive quantity.

Copyrighted Material

222 BASIC MECHANISMS

The vector i nner product (see Chapter 9) is defined by

r ·k" = L,'j (k,,) /

and the norm 14 is defined by

I wi l l now comment on these defini t ions.
Fi rst note that this harmony function HK is a sum of terms , one for

each knowledge atom, with the term for atom a depending only on
those representation variables 'j to which i t has nonzero connect ion
(kQ) / . Thus HK satisfies the addi t ivity requirement .

The contr ibut ion to H of an inactive atom is zero. The contribution
of an acti ve atom a is the product of i ts strength and the consistency
between its knowledge vector k" and the representation vector r ; this is
measured by the funct ion hK (r , kQ) . The parameter K always l ies in
the in terval (- 1 , 1) . When I(= 0 , h K (r , ka) i s the number of
representational features whose val ues agree with the corresponding
value in the knowledge vector minus the number that disagree. This
gives the s implest harmony funct ion , the one described in Section 1 .
The trouble is that according to th is measure, i f over 50% of the
knowledge vector k" agrees with r , the harmony is raised by activating
atom a . This is a pretty weak cri terion of match ing, and sometimes it
i s important to be able to have a more str i ngent criterion than 50%. As
I(goes from - 1 through 0 towards I , the criterion goes from 0%
through 50% towards 1 00% . In fact i t is easy to see that the criterial
fraction is (1 + K)/ 2. The total harmony will be raised by activating
any atom for which the number of representat ional features on which
the atom's knowledge vector agrees with the representation vector
exceeds this fraction of the total number of poss ible agreements (lk" I) .

An important l im i t of the theory is K - I . In this l im i t , the criterion
approaches perfect matching. For any gi ven harmony model , perfect
matching is requ i red by any K greater than some defini te value less
than 1 because there is a l imi t to how close to 1 00% matchi ng one can
achieve with a fin i te number of possib le matches. Indeed it is easy to
compute that if n i s the largest number of nonzero connect ions to any
atom in a model (the maximum of lk,, !) . then the on ly way to exceed a

14 This is the so-ca l led L 1 norm, wh ich is d i fferen t from the L 2 norm defi ned i n
Chapter 9. For each p i n (0,00) t h e Lp norm of a vector v is defined b y

Copyrighted Material

6. H A R MONY T H EORY 223

cri terion of 1 - 2 1n i s with a perfect match. Any K value greater than
this wi l l place the model in what I wi l l cal l the perfect matching limit.
Note that si nce harmony theory is probabi l i st ic, even i n the perfect
match ing l imi t , atoms wi l l sometimes become active even when they do
not match the current representation perfect ly ; the closer the match,
the more l i kely they wil l be active.

By choosi ng + 1 and - 1 as the binary values for representational
features , we have ensured that the product (ka) ; r; wi l l be + 1 i f the
knowledge vector agrees with r; , - 1 i f i t d isagrees , and 0 i f i t doesn ' t
specify a val ue for feature i . The maximum value that can be atta ined
by ka ·r is Ika I , the number of nonzero connections to node ex , i rrespec
t ive of whether those connect ions are + or -

In fact , th is harmony function is in variant under the exchange of + and
- at any representation node. That is , s imultaneously fl i pping the signs
of r; and (kJ ; for al l ex leaves the value of HK (r , a) unchanged , for
every a . Thi s symmetry was del iberately inserted into the general har
mony function because I could th ink of no pr inci pled reason to break i t .
If a systemat ic bias i n the representat ion variables toward one of the
binary values is to be bu i l t in from the outset , how large should the
bias be ? I t seemed reasonable to start the theory in a symmetric way ,
unbiased toward either val ue . Of course a bias can be inserted through
the kno wledge K . To take an extreme example, i f the value of feature i
is + i n al l knowledge atoms, i .e . , (ka) , = + for al l ex , then the i th
feature r; wi l l be strongly biased toward + .

There is nothing sacred about the values + 1 and - 1 i n this theory .
The values I and 0 , for example , could be used as wel l . The preceding
harmony funct ion can eas i ly be rewri tten to g ive the same harmony
values when r i s changed from the {+ I ,- I } form to the { I ,O} form.
The underlyi ng i nvariance under s ign change would however be
transformed into a more complicated in variance.

Est i mat i n g Probabi l i t ies Wi th the Harmony Funct ion

In Section 1 , I suggested that a cogn i t ive system performing the com
plet ion task could use a harmony function for est imat ing the probabi l i
t ies of values for unknown variables. In fact , Poin t 9 asserted that the
estimated probabi l i ty of a set of values for unknown variables was an
exponential function of the corresponding harmony val ue:

probabi l i ty ex: e H/ T. (2)

It i s this relat ionsh ip that establ i shes the mappi ng with statist ical phy
sics . In this sect i on anficJlJfrif}fmkJ Wt£f,;M.t ionsh ip between harmony

224 BASIC MECHANISMS

and probabi l i ty is analyzed . In this section I wil l point out that if proba
b i l i t ies are to be estimated using H , then the exponential relationsh ip
of Equat ion 2 should be used. In the next section I adapt an argument
of Stuart Geman (personal communicat ion , 1 984) to show that , starting
from the extremely general probabi l i st ic assumption known as the prin
ciple of maximum missing in/ormation, both Equation 2 and the form of
the harmony function (Equation 1) can be jointly derived.

What we know about harmony funct ions i n general is that they are
addit ive under network decomposi t ion. If a harmony network consists
of two unconnected components, the harmony of any given state of the
whole network is the sum of the harmonies of the states of the com
ponent networks. In the case of such a network , what is requi red of
the probability assigned to the state? I claim i t should be the product of
the probabi l i t i es assigned to the states of the component networks. The
meaning of the unconnectedness is that the knowledge used in the
inference process does not relate the features in the two networks to
each other . Thus the resu l ts of inference about these two sets of
features should be independent. Since the probabi l i t ies assigned to the
states in the two networks should be i ndependent, the probabi l i ty of
their joint occurrence -the state of the network as a whole-should be
the product of their individual probabi l i t ies .

In other words , adding the harmonies of the components' states
should correspond to multiplying the probabilities of the components'
states . The exponential function of Equat ion 2 establ ishes just this
correspondence . I t i s a mathemat ical fact that the only continuous
functions f that map addit ion into mult ip l ication ,

f (x + y) = f (x) f Cy)
are the exponential funct ions,

for some posi t ive number a . Equivalent ly, these functions can be
wri tten

f (x) = exI T

for some value T (where T = 1/ l na) .

This general argument leaves undetermined the val ue of T , the com
putational temperature. However several observations about the value
of T can be made.

Fi rst , the sign of T must be posi t ive, for otherwise greater harmony
would correspond to smaller probabi l i ty .

For the second observat ion , consider a cogn i t ive system a that est i
mates i ts envi ronmental �[JI11Jl?j�cJIAj�n with a certain value for

6. HA RMONY THEORY 225

Ta and a certain harmony funct ion Ha . Then gi ven any other pos i t ive
temperature Tb , we could hypothesi ze another cogn it i ve system b using
that computational temperature and the modifi ed harmony funct ion
Hb = (Tbl Ta) Ha · Both cogn i t ive systems would have the same est i
mates of environmental probabi l i t ies si nce Hbl Tb = Hal Ta . Thus thei r
behavior on the completion task would be indist inguishable .

Thus , the magnitude of T i s on ly meaningful once a specific scale has
been set for H. This means that if H is being learned by the system,
rather than programmed in by the modeler , then any convenient choice
of T wi l l do; the choice simply determines the scale of H that the sys
tem wi l l learn .

The third observat ion refi nes the second. A convenient way of
expressing Equation 2 is to use the likelihood ratio of two states s 1 and
S 2 :

prob (s l)
= e

IH (s l)-H (S 2J JI T
prob (s 2)

. (3)

Thus, T sets the scale for those differences in harmony that correspond to
significant differences in probability. (It is understood here that " differ
ences" in harmony are measured by subtraction while " differences" i n
probabi l i ty are measured by division .) The smal ler the val ue o f T, the
smal ler the harmony differences that wi l l correspond to s ign i ficant l i kel
ihood ratios . Thus, once a scale of H has been fixed, decreasing the
value of T makes the probabi l i ty distr ibution more sharply peaked. In
fact , Equation 3 can be rewri tten

Prob (S I)
=

[
e

H(S I J- H (S 2)J
1I T

. prob (s 2)
If state s 1 has greater harmony than s 2 , the l i ke l ihood ratio at T = 1
wi l l be the number i n square brackets, a number greater than one; as T
goes to zero this number ' gets raised to h igher and higher powers so
that the l ike l ihood ratio goes to infin i ty . In other words , compared to
T, the fixed d ifference in harmony between the two states looks larger
and larger as T gets smal ler and smal ler .

In the preceding argument , the exponential functions emerged as the
only cont inuous functions mapping addit ion i nto mult i pl icat ion . Of
course we could consider discontinuous funct ions, one example being
the l imi t as T - 0 of the exponential . In this l imi t , the est imated
probabi l i ty of all states i s zero, except the ones with maximal harmony.
If there are several states with exactly the same maximal harmony, in
the zero temperature l imi t they wi l l a l l end up wi th equal , nonzero
probabi l i ty . This probabi l i ty distr ibut ion wi l l be cal led the zero tempera
ture distribution. It does .Dot corresp.and to. &n exponent ial distr ibut ion,

c;opyngntea Matenal

226 BASIC MECHANISMS

but i t can be obtained as the l im i t of exponential distri butions; in fact ,
the zero-temperature l imi t plays a major role i n the theory since the
states of maximal harmony are the best answers to completion
problems.

THE COMPETENCE, REALIZABIL ITY, AND
LEARN ABILITY THEOREMS

In this section, the mathematical results that currently form the core
of harmony theory are informal ly descri bed. A formal presentation
may be found in the Appendix .

The Competence Theorem

In harmony theory, a cogni t ive system's knowledge i s encoded in its
knowledge atoms. Each atom represents a pattern of values for a few
features describing environmental states , values that sometimes co
occur in the system 's envi ronment . The strengths of the atoms encode
the frequencies with which the d ifferent patterns occur in the envi ron
ment. The atoms are used to est imate the probab i l i t ies of events in the
environment .

Suppose then that a part icular cogni t ive system is capable of observ
ing the frequency with which each pattern in some pre-existing set {karl
occurs in i ts environment . (The larger the set {ka} , the greater i s the
potential power of this cogni t i ve system .) Given the frequencies of
these patterns, how should the system estimate the probabi l i t ies of
environmental events ? What probab i l ity distri but ion should the system
guess for the envi ronment?

There wi l l general ly be many possi ble envi ronmental distributions
that are consistent with the known pattern frequencies. How can one
be selected from all these possib i l i t ies?

Consider a s imple example . Suppose there are only two envi ronmen
tal features in the representat ion, ' I and ' 2 , and that the system's only
informat ion i s that the pattern ' I = + occurs with a frequency of 80%.
There are infinitely many probabi l i ty d istri butions for the four envi ron
mental events (' I h) E { (+ ,+) (+ ,-) (- ,+) (- ,-)} that are consistent
with the gi ven information . For example, we know nothing about the
relative l ikel ihood of the two events (+ ,+) and (+ ,-) ; all we know is
that together their probabi l i ty is . 80 .

One respect i n which the poss ible probabi l i ty d istributions differ is in
the ir degree of homoge�P<Jr;�tiJ}jtM}]t&�PcH P i n which P (+ ,+) 7

6. H A R MONY THEORY 227

and P (+ ,-) = . 1 i s l ess homogeneous than one for which both these
events have probabi l i ty . 4 .

Another way of saying th i s is that the uncertainty associated wi th the
second distr ibution i s greater than that of the fi rst . In Shannon ' s
(1 948/ 1 963) terms, i f the second , more homogeneous , distri but ion
applies , then at any given moment there i s a greater amount of missing
in/ormation about the current state of the environment than there i s i f
the more i nhomogenous distri but ion appl i es . Shannon's formula for
the miss ing i n formation of a probab i l i ty distr ibut ion P i s

-l:P (x) I nP (x) .
x

Thus the missi ng information in the inhomogeneous probabi l i t ies
(. 7 , . I) is

- [. 7 I n (' 7) + . 1 In (. 0] = . 48

whi le the missing i n format i on i n the homogeneous probabi l i t ies { . 4 , . 4}
is

- [. 4 In {. 4) + . 4l n(4)] = . 73 .

The cogni t ive system's informat ion on the frequency o f patterns con
tains some i n format ion about any l ack of homogeneity in the envi ron
mental distribut ion . One princi ple for guessing the envi ronmental dis
tribut ion is to select , of all probabi l i ty distri but ions that are consistent
with the known frequencies , the one that is most homogenous ; the one
that supposes the envi ronment to have no more inhomogeneity than is
needed to account for the known informat ion . This principle can be
formal ized as the principle 0/ maximal missing in/ormation; i t i s often
used to extrapolate from some given stat ist ical informat ion to an est i
mate for an enti re probabi l i ty d istr ibut ion (Christensen , 1 98 1 ; Levine &
Tribus , 1 979) .

For the s imple example di scussed above, the principle of maximal
missing i n format ion impl ies that the cogn i t i ve system should estimate
the environmental distr ibution to be P (+ ,+) = P (+ ,-) = . 40 ,
P (- ,+) = P (- ,-) = . 1 0 . Th is distri but ion i s inhomogeneous with
respect to the fi rst feat ure , ' J , because it must be to account for the
known fact that P (' \ = +) = . 80 . It is homogeneous in the second
feature, r 2 , because it can be without violat i ng any known information .
The justificat ion for choosing this distr ibut ion i s that there i s not
enough given information to just ify selecting any other distribut ion with
less missing i nformat ion.

In the general case, one can use the formula for m issing information
to derive the distri but i'a>p

W8hma�Mrimissing informat ion that is

228 BASIC MECHANISMS

consistent with the observed frequencies of the patterns ka . The resul t
is a probabi l i ty distribution I wi l l call 17' :

17' (r) a: e U (r)

where the function U is defined by

a

The values of the real parameters Aa (one for each atom) are con
strained by the known pattern frequencies; they wi l l shortly be seen to
be proportional to the atom strengths, U a ' the system should use for
model ing the environment . The value of Xa (r) is simply 1 when the
environmental state r i ncl udes the pattern ka defining atom a , and 0
otherwise .

Now that we have a formula for estimating the probabi l i ty of an
environmental state, we can in principle perform the completion task.
An i nput for this task i s a set of values for some of the features. The
best completion is formed by assign ing values to the unknown features
so that the result ing vector r represents the most probable environment
state, as estimated by 17' .

I t turns out that the completions performed i n this way are exactly
the same as those that would be formed by using the same procedure
with the different distribution

p (r , a) a: e H (r ,a) ,

Here, H is the harmony function defined previously , where the
strengths are

and K is any value sat isfyi ng

1 > K > } - 2/[ma
ax 1ka l] .

(This condition on K is the exact matching limit defined earl ier ,)
In passing from 1T (r) to p (r ,a) , new variables have been introduced :

the acti vations a . These serve to el iminate the funct ions Xa from the
formula for est imating probab i l i t ies, which wi l l be important short ly
when we try to design a device to actual ly perform the completion com
putat ion. The result is that in addition to fi l l ing in the unknown
features in r , al l the act ivations in a must be fi l led in as wel l . In other
words, to perform the c0DP�dI1wcfRJmilive system must find those

6. H A R MONY THEO R Y 229

val
.
ues of the unknown rj and those values of the Qa that together max

imize the harmony H (r , a) and thereby maximize the est imated proba
bi l i ty p (r , a) .

This discussion i s summarized i n the fol lowing theorem:

Theorem 1: Competence. Suppose a cogn i t ive system can observe
the frequency of the patterns Ika l in its environment . The probabi l
i t y distribut ion with the most Shannon missing information that i s
consi stent with the observations i s

7T (r) ex: e V (x)

wi th U defined as above. The maximum-l ike l i hood completions of
this distr ibut ion are the same as those of

p (r , 8) ex: e H (r ,a)

with the harmony function defined above .

This theorem describes how a cogni t ive system should perform com
plet ions, according to some mathemat i cal pri nciples for stat ist ical extra
polat ion and inference, In this sense, it is a competence theorem. The
obvious next question is: Can we design a system that wi l l real ly com
pute complet ions according to the specifications of the competence
theorem?

The " Physics Analogy "

It turns out that design ing a machine to do the required computa
t ions is a relati vely straightforward appl i cation of a computational tech
nique from statist i cal physics. It is therefore an appropriate t ime to dis
cuss the " analogy" to physics that is exploi ted in harmony theory .

Why is the relation between probabi l i ty and harmony expressed i n
the competence theorem the same as the relation between probabi l i ty
and energy in stat ist ical physics? The mapping between statistical phy
sics and inference that is being exploited is one that has been known
for a long t ime.

The second law of thermodynamics states that as physical systems
evolve in t ime , they wi l l approach condit ions that maxi mize random
ness or entropy, subject to the constraint that a few conserved quant i t ies
l ike the systems' energy must always remain unchanged . One of the
triumphs of stat ist ical mechanics was the understanding that this law is
the macroscopic manifesfJU(K{i�t�I\1ft(ftff4Ying microscopic descri ption

230 BASIC M ECHANISMS

of matter in terms of const i tuent part icles. The particles wi l l occupy
various states and the macroscopic propert ies of a system wi l l depend
on the probabi l i t ies with which the states are occupied. The random
ness or entropy of the system, in part icular, is the homogeneity of this
probabi l i ty distr i but ion. It i s measured by the formula

-LP (x) In P (x) .
x

A system evolves to maximize this entropy , and, in part icular, a system
that has come to equ i l ibr ium in contact with a large reservoi r of heat
wi l l have a probabi l i ty distri but ion that maximizes entropy subject to
the constrain t that i ts energy have a fixed average value.

Shannon real ized that the homogeneity of a probabi l i ty distri bution ,
as measured by the microscopic formula for entropy, was a measure of
the missing information of the distr ibut ion . He started the book of
i nformation theory with a page from stat ist ical mechanics.

The competence theorem shows that the exponent ial relat ion
between harmony and probabi l i ty stems from max imizing missing
information subject to the constraint that given information be
accounted for . The exponential relation between energy and probabi l i ty
stems from maximizing entropy subject to a constraint on average
energy . The physics analogy therefore stems from the fact that entropy
and missing information share exactly the same relat ion to probabi l i ty .
I t i s not surpris ing that the theory of informat ion processing should
share formal features with the theory of stat ist ical physics.

Shannon began a mapping between stat is t ical physics and the theory
of information by mapping entropy onto information content . Har
mony theory extends this mapping by mapping self-consistency (i . e . ,
harmony) onto energy. In the next subsect ion, the mapping wi l l be
further extended to map stochastic i ty of inference (i . e . , computational
temperature) onto physical temperature.

The Realizabil i ty Theorem

The mapping wi th stat ist ical physics a l lows harmony theory to exploit
a computational technique for studying thermal systems that was
developed by N. Metropol is , M. Rosenbluth , A . Rosenbluth , A.
Tel ler , and E. Teller in 1 953 . This technique uses stochast ic or " Monte
Carlo " computat ion to s imulate the probabi l i st ic dynamical system
under study. (See Binder, 1 979.)

The procedure for s imulating a physical system at temperature T i s
as fol lows: The variabICopjri�e«YM.mrilte assigned random in i t ial

6. HARMONY THEORY 23 1

values . One by one , they are updated accord ing to a stochast ic rule:
The probabi l i ty of assigning a new val ue x to the variable i s propor
t ional to eH

x
l T

, where Hx is (minus) the energy the system would have
if the val ue x were chosen . Thus the higher T, the more random are
the decisions. As the computation proceeds, the probabi l i ty that the
system is in state s at any moment becomes proportional to the desi red
value, eH(s)I T

.
Adapt ing th is technique to the computations of harmony theory

leads, through an analysis descri bed in the Appendi x , to the fol l owing
theorem. I t defines the machine harmonium that real izes the theory of
complet ions expressed in Theorem 1 .

Theorem 2: Realizability. In the graphical representation of a har
mony system (see Figure 1 3) let each node denote a processor.
Each feature node processor can have a val ue of + 1 or - 1 , and each
knowledge atom a value of 1 or 0 (i ts act ivat ion) . Let the i nput to a
complet ion problem be specified by assign ing the given feature
nodes their correct val ues; these are fixed throughout the computa
t ion . Al l other nodes repeatedly update the i r values during the com
putat ion . The features not speci fied i n the i nput are assigned ran
dom in i t ial values, and the knowledge atoms in i t ia l ly a l l have val ue
O. Let each node stochastical ly update i ts value according to the
rule:

prob(value = l) =

1 + e - /I T

where T is a global system parameter and I is the " i nput " to the
node from the other nodes attached to i t (defi ned below) . Al l the

fT a fT a .

FIG U R E 1 3 . A general harm�Opywahted Material

232 BASIC M ECHANISMS

nodes in the upper layer update in paral lel , then al l the nodes in the
lower layer update i n paral lel , and so on al ternately throughout the
computation. During the update process, T starts out at some posi
t ive value and i s gradual ly lowered. If T i s l owered to 0 sufficiently
slowly, then asymptotical ly, with probabi l i ty 1 , the system state
forms the best completion (or one of the best completions if there
are more than one that maximize harmony) .

To define the input I to each node, it is convenient to assign to the
l ink in the graph between atom a and feature i a weight Wi" whose
sign is that of the l ink and whose magnitude is the strength of the atom
divided by the number of l inks to the atom:

Using these weights , the input to a node i s essential ly the weighted sum
of the values of the nodes connected to it. The exact definit ions are

for feature nodes, and

for knowledge atoms .
The formulae for Ii and I" are both derived from the fact that the

i nput to a node is precisely the harmony the system would have if the
given node were to choose the value 1 minus the harmony result ing
from not choosi ng 1 . The factor of 2 in the input to a feature node is
i n fact the difference (+ 1) - (- 1) between its possible values. The
term K in the input to an atom comes from the K i n the harmony func
t ion; it is a threshold that must be exceeded if activating the atom is to
increase the harmony.

The stochastic decis ion rule can be understood with the aid of Figure
1 4 . If the input to the node is large and posit ive (i . e . , selecting value 1
would produce much greater system harmony) , then it wi l l almost cer
tainly choose the value 1 . If the input to the node is large and negative
(i . e . , select ing value 1 would produce much lower system harmony) ,
then it wil l almost certainly not choose the value 1 . If the input to the
node is near zero, i t wi l l choose the value 1 with a probabil i ty near . 5 .
The width o f the zone o f random decisions around zero input is larger
the greater is T.

The process of gradu�'�.fWg'fi'" flaII,;;be thought of as cooling the

/' 0

6. H A R MONY THEORY 233

.... s l o p e = 1 1 T

FIGURE 14 . The relation between the input I t o a harmon ium processor node and the

probabi l i ty the processor wi l l choose the va lue 1 .

randomness out of the initial system state . In the l imi t that T- O, the
zone of random decisions shrinks to zero and the stochastic decision
rule becomes the determinist ic l inear threshold rule of perceptrons
(Minsky & Papert , 1 969; see Chapter 2) . In this l im i t , a node wi l l
always select the val ue wi th h igher harmony . At nonzero T, there is a
fin i te probab i l i ty that the node wi l l select the value wi th lower har
mony.

Early in a given computat ion , the behavior of the processors wi l l be
highly random . As T i s l owered , gradual ly the decisions made by the
processors wi l l become more systemat ic . I n this way , parts of the net
work gr.adual l y assume val ues that become stable ; the system commits
itself to decisions as i t cools; i t passes from flu id behavior to the r ig id
adoption of an answer . The decis ion-making process resembles the
crystal l izat ion of a l i quid into a sol id .

Concepts from statist ical physics can i n fact usefu l ly be brought to
bear on the analysis of decis ion making i n harmony theory, as we shal l
see in the next section . As suffic ient understand ing of the computa
t ional effects of different cool ing procedures emerges , the hope is that
harmony theory wi l l acqui re an account of how a cogni t ive system can
regulate its own computat ional temperature.

Theorem 2 descri bes how to find the best complet ions by lowering to
zero the computational temperature of a paral le l computer
harmonium-based on the function H. Harmonium thus real izes the
second half of the competence theorem, which deals with opt imal com
pletions. But Theorem 1 also states that estimates of envi ronmental
probabi l it ies are obtained by exponent iat ing the function U . It i s also
possible to bui ld a stochast ic machi ne based on U that is useful for
simulat ing the envi ronment . I wi l l cal l th is the simulation machine.

Figure 1 5 shows the port ion of a harmonium network i nvolving the
atom a , and the corresponding port ion of the processor network for the
corresponding simulation machine . The knowledge atom wi th strength

Copyrighted Material

234 BASIC M ECH AN ISMS

Simulation M achine Graph

Harmon ium Graph +

FIG U R E 1 5 . The graph for a one-atom harmony function and the graph for the
correspond ing U funct ion. In the latter, there are only featu re nodes. Each feature node
has a s ingle i nput poin t labeled ± ,\ , where the sign is the same as that assigned to the
feature by the knowledge atom. Into th is i n put poi n t come l inks from all the other
features assigned val ues by the knowledge ato m . The label on each arc leaving a feature
is the same as the value assigned to that feature by the knowledge atom.

(j 0< and feature pattern (+ , - ,-) i s replaced by a set of connections
between pai rs of features . In accordance with Theorem I ,
Ao< = (j a (I-K) . For every atom a connected to a gi ven feature i n har
monium, in the s imulation machine there is a corresponding input
point on that featur,e , labeled wi th Aa .

The update rule for the s imulation machine is the same as for har
mon ium. However, only one node can update at a t ime, and the defi
n i t ion of the input I to a node i s different . ' s The input to a feature node
is the sum of the inputs coming through al l i nput points to the node. If
an input point on node i is labeled ± Ao< ' then the input coming to i
through that point is ± Ao< i f the values of al l the nodes connected to i
agree wi th the label on the arc connect ing i t to i , and zero otherwise.

If the s imulat ion machine i s operated at a fixed temperature of I , the
probabi l i ty that i t wi l l be found in state r asymptotical ly becomes pro
portional to e U (r)/ I . By Theorem I , th is is the cogni t ive system's esti
mate 1T (r) of the probabi l i ty that the envi ronment wi l l be in the state
represented by r . Thus running this machine at temperature 1 gi ves a
s imulation of the environment . As we are about to see , this wi l l turn
out to be important for learn ing.

The general type of search procedure used by harmonium, with a
random " thermal noise " component that is reduced during the compu
tat ion, has been used to find maxima of functions other than harmony

1 5 Analogously to harmonium, the i nput to a node is the va lue U would have if the
node adopted the va lue + I , m inus the value U i t would have i f i t adopted the value - \ .

Copyrighted Material

6. H ARMONY THEORY 235

functions. Physic ists a t IBM independently appl ied the technique,
under the name simulated annealing, to both practical computer design
problems and classical maximization problems (Kirkpatrick, Gelat t , &
Vecchi , 1 983) . Benchmarks of s imulated anneal ing against other search
procedures have produced mixed resul ts (Aragon, Johnson , &
McGeoch , 1 985) .

The contribut ion of harmony theory is not so much the search pro
cedure for finding maxima of H, but rather the funct ion H i tself.
Theorem 2 is important : It describes a stat ist ical dynamical system that
performs complet ions; it gives an implementat ion-level descri ption of a
kind of completion machine. But Theorem 1 is more central : It gi ves a
high , functional - level characterizat ion of the performance of the
system -says what the machine does-and introduces the concept of
harmony . More central to the theory also is Theorem 3 , which says
how the harmony function can be tuned with experience.

The Learnabi l i ty Theorem

Performing the complet ion task in different envi ronments cal l s for
different knowledge . In the formal i sm of Theorem 1 , a gi ven cogn i t ive
system i s assumed to be capable of observing the frequency i n i t s
environment of a predetermi ned set of feature patterns . What vari es
for a g iven cogni t ive system across environments i s the frequencies of
the patterns; th is manifests itself in the varia t ion across envi ronments
of the strengths of the knowledge atoms represent ing those patterns.

Theorem 3: Learnability. Suppose states of the environment are
se lected according to the probabi l i ty distr i but ion defin ing that
envi ronment , and each state is presented to a cogn i t i ve system .
Then there is a procedure for gradual ly modify ing the st rengths of
the knowledge atoms that wi l l converge to the val ues requ i red by
Theorem 1 .

The basic idea of the learn ing procedure i s simple . Whenever one of
the patterns the cogn i t ive system can observe is present i n a st imu lus
from the envi ronment , the parameter associated w i th that pattern i s
incremented . In harmonium, this means that whenever a knowledge
atom matches a st imulus , its strength increases by a smal l amount D.rr .
In the s imulat ion machine, th is means that the A parameter on al l the
connect ions corresponding to that atom must be incremented by
D.A = D.rr (1 - K) . In t8b�1nBNiedW/a?�Wl}1 corresponds to a memory

236 BASIC MECHANISMS

trace of a feature pattern , and the strength of the atom is the strength
of the trace: greater the more often it has been experienced.

There i s an error-correcting mechanism in the learning procedure
that decrements parameters when they become too large. Intermixed
with i ts observation of the environment, the cogn i t ive system must per
form simulation of the environment . As discussed above, this can be
done by running the simulation machine at temperature 1 without input
from the environment . During simulat ion , patterns that appear in the
feature nodes produce exactly the opposite effect as during environmen
tal observat ion, i . e . , a decrement in the corresponding parameters.

Harmonium can be used to approximate the s imulation machine. By
running harmonium at temperature 1 , without input, states are visited
wi th a probabi l i ty of eH , which approximates the probabi l i t ies of the
simulation machine, e lf. 16 When harmonium is used to approximately
s imulate the environment , every t ime an atom matches the feature vec
tor i ts strength is decremented by AO" .

This error-correcting mechanism has the fol lowing effect . The
st rength of each atom wil l stabi l i ze when it gets (on the average) incre
mented during environmental observation as often as it gets decre
mented during environmental s imulation . I f envi ronmental observation
and simulation are intermixed in equal proport ion, the strength of each
atom wi l l stabi l i ze when its pattern appears as often in simulation as in
real observation . This means the s imulation i s as veri t ica l as i t can be,
and that is why the procedure leads to the strengths requi red by the
competence theorem.

DECISION-MAKING AND FREEZING

The Com putati on al S ignificance of Phase Transit ions

Performing the completion task requi res s imul taneously satisfying
many constrai nts . In such problems, i t i s often the case that i t is easy
to find " local " solut ions that sat isfy some of the constraints but very
difficult to find a global sol ution that s imultaneously satisfies the max
imum number of constraints . In harmony theory terms , often there are
many completions of the input that are local maxima of H , in which
some knowledge atoms are activated , but very few completions that are
global maxima, in which many atoms can be s imultaneously activated .

When harmonium solves such problems, in i t ia l ly , at high

1 6 Theorem I makes th i s a pprox i mat ion precise: These two distr ibutions are not equal ,
b u t t h e max imum -probab i l i ty states are t h e same for a n y possible input .

Copyrighted Material

6. HARMONY THEORY 237

temperatures, it occupies states that are local solutions , but finally, at
low temperatures, it occupies only states that are global solutions. If
the problem is well posed, there is only one such state.

Thus the process of solving the problem corresponds to the passage
of the harmonium dynamical system from a high-temperatu re phase to
a low-temperature phase . An important question is: Is there a sharp
transition between these phases? This is a " freezing poin t " for the sys
tem, where major decisions are made that can only be undone at lower
temperatures by wai t ing a very long time. It is important to cool slowly
through phase transitions, to maximize the chance for these decis ions
to be made properly; then the system wil l relatively quickly find the
global harmony maximum without getting stuck for very long times in
local maxi ma.

In th is sect ion , I wi l l discuss an analysis that suggests that phase tran
sitions do exist in very simple harmony theory models of decision
making. In the next sect ion , a more complex model that answers sim
ple physics questions wi l l furnish another example of a harmony system
that seems to possess a phase transit ionP

The cool ing process is an essentially new feature of the account of
cogn i t ive processing offered by harmony theory. To analyze the impl i
cations of cool ing for cognit ion , i t is necessary to analyze the tempera
ture dependence of harmony models . Since the mathematical frame
work of harmony theory sign ificantly overlaps that of statistical
mechanics, general concepts and techniques of thermal physics can be
used for this analysis . However , s ince the structure of harmony models
is quite d ifferent from the structure of models of real physical systems,
specific results from physics cannot be carried over . New ideas part icu
lar to cognit ion enter the analysis; some of these wi l l be discussed i n a
later section on the macrolevel i n harmony theory.

Symmetry Breaking

At high temperatures, physical systems typical ly have a disordered
phase , l i ke a flu id , which dramatical l y sh ifts to a highly ordered phase,

1 7 It is tempting to ident ify freezing or " crystal l izat ion "' of harmon i u m wi th the
phenomenal e x per ience of sudden " 'crystal l ization "' of scattered thoughts into a coherent
form. There may even be some usefulness i n th is ident ificat ion . However , i t should be
pointed out that since cool ing should be slow at the freezing poin t , i n terms of i terat ions
of harmoni u m , the t rans i t ion from the d isordered to the ordered phase may not be sud
den . If iterat ions of harmonium are i n terpreted as real cogn i t ive processing l ime , th i s
calls into quest ion the argument that " sudden "' changes as a funct ion of temperature
correspond to "' sudden "' changedfJfrf� fJaMrNiPe .

238 BASIC MECHANISMS

l ike a crystal , at a certain freezing temperature. In the l ow-temperature
phase, a single ordered configurat ion is adopted by the system , whi le at
h igh temperatures , parts of the system shift i ndependently among
pieces of ordered configurations so that the system as a whole is a con
stantly changing, disordered blend of pieces of different ordered states.

Thus we might expect that at high temperatures , the states of har
monium models wi l l be shifting blends of pieces of reasonable comple
t ions of the current i nput; i t wi l l form locally coherent solutions. At
low temperatures (i n equi l ibr ium) , the model wi l l form completions
that are globally coherent .

Finding the best solut ion to a complet ion problem may involve fine
discriminations among states that all have high harmonies. There may
even be several completions that have exactly the same harmonies, as
i n i nterpreting ambiguous input . This is a usefu l case to consider, for
in an ordered phase , harmonium must at any t ime construct one of
these " best answers " in i ts pure form, without admix ing parts of other
best answers (assuming that such mixtures are not themselves best
answers, which is typical ly the case) . In physical terminology, the sys
tem must break the symmetry between the equal ly good answers in order
to enter the ordered phase . One technique for finding phase transi t ions
is to l ook for crit ical temperatures above which symmetry is respected,
and below which i t i s broken .

An Idealized Decision

This suggests we consider the fol l owing ideal ized decision-making
task . Suppose the envi ronment is always in one of two states , A and
B , wi th equal probabi l i ty . Consider a cogni t ive system performing the
completion task. Now for some of the system 's representational
features, these two states wi l l correspond to the same feature value.
These features do not enter i nto the decision about which state the
envi ronment is i n , so let us remove them . Now the two states
correspond to opposite values on all features. We can assume without
loss of general i ty that for each feature , + is the value for A , and - the
value for B (for if this were not so we could redefine the features ,
exploit ing the symmetry of the theory under fl ipping signs of features) .
After train ing in this envi ronment , the knowledge atoms of our system
each have either all + connect ions or all - connect ions to the features.

To look for a phase transi t ion, we see if the system can break sym
metry . We gi ve the system a completely ambiguous i nput : no input at
al l . It wi l l complete this to either the al l - + state , representi ng A , or
the al l - - state , represent ing B , each outcome being equal ly l i kely .

Copyrighted Material

6. H A R MO N Y THEORY 239

Observing the harmonium model we see tha t for high temperatu res , the
states are typical ly blends of the al l -+ and al l - - states. These blends
are not t hemsel ves good complet ions si nce the environment has no
such states. But at low temperatures , the model i s almost always in one
pure state or the other, with only short - l i ved in trusions on a feature or
two of the other state . I t is equal ly l i kely to cool i n to ei ther state and ,
gi ven enough t ime, wi l l n i p from one state to the other through a
sequence of (very i mprobable) intrusions of the second state in to the
fi rst . The t ransi t ion between the hi gh - and low- temperature phases
occurs over a qu i te narrow temperatu re range . At th is freezing tem
perature , the system dri fts eas i ly back and forth between the two pure
states .

The harmon ium s imulat ion gi ves empi rical evidence that there is a
cri t ical temperat ure below which the symmetry between the in terpreta
t ions of ambiguous inpu t i s broken . There i s also analyt ic evidence for
a phase t ransit ion i n th is case. Th is analysis rests on an important con
cept from stat is t ical mechan ics: the thermodynamic l im i t .

The Thermodynamic Li mi t

Statist ical mechan ics relates microscopic descri pt ions tha t view matter
as dynamical systems of const i tuent particles to the macrolevel descri p
tions of matter used in thermodynamics . Thermodynamics provides a
good approx imate descri pt ion of the bulk propert ies of systems contain
i ng an extremely large number of part icles. The thermodynamic limit is
a theoret ical l im i t in which the number of part icles in a statistical
mechanical system is taken to infin i ty , keeping fini te ce rta in aggregate
propert ies l i ke the system 's density and pressure. I t is i n th is l i mi t that
the microtheory provably admits the macrotheory as a val id approx i
mate descr ipt ion .

The thermodynamic l im i t wil l later be seen to relate i mportant ly to
the l imit of harmony theory in which symbol ic macro-accounts become
val id . But for present purposes, it i s relevant to the analysis of phase
trans i t ions . One of the important insights of stat ist ical mechanics is
that qualitative changes in thermal systems, l ike those characterist ic of
genuine phase t ransit ions , cannot occur i n systems with a fin i te number
of degrees of freedom (e.g . , part icles) . I t is only i n the thermodynamic
l imit that phase t rans i t ions can occur.

This means that an analysis of freezing in the idea l ized-decis ion
model must consider the l im i t i n which the number of features and
knowledge atoms go to infin i ty . In th is l im i t , certai n approximat ions
become valid that sugge�o/ltnfpHe8'M!lre,;ci' a phase t ransi t ion .

240 BASIC M ECHANISMS

Robustn ess of Coherent Interpretat ion

To concl ude this sect ion , let me point out the significance of this
simple decis ion-making system. Harmony theory started out to design
an engine capable of construct ing coherent interpretations of input and
ended up with a class of thermal models real ized by harmoni um. We
have just seen that the result ing models are capable of taking a com
pletely ambiguous input and nonetheless construct ing a completely
coherent interpretation (by cool i ng below the crit ical temperature) .
This suggests a robustness i n the dri ve to construct coherent interpreta
t ions that should prove adequate to cope with more typical cases charac
terized by less ambiguity but greater complexity . The greater complex
i ty wi l l surely hamper our attempts to analyze the models ' performance;
it remains to be seen whether greater complexity wi l l hamper the
models ' abi l i ty to construct coherent i nterpretat ions. With this in
mind, we now jump to a much more complex decision-making prob
lem : the qual i tati ve analys is of a s imple e lectric c ircui t .

AN APPLICATION : ELECTRICITY PROBLEM SOLVING

Theoretical context of the model. In this section I show how the
framework of harmony theory can be used to model the intuition that
al lows experts to answer, without any conscious appl ication of " rules,"
questions l i ke that posed in Figure 1 6 . Theoretical conceptions of how
such problems are answered plays an i ncreasingly sign ificant role in the
design of i nstruct ion . (For example , see the new journa l , Cognition and

V lolal

FIGURE 16 . If the resistance of R 2 is increased (assuming that �oral and R I remain the
same) , what happens to the curren t and voltage drops ?

Copyrighted Material

6. H A R MONY THEORY 24 1

Instruction, and Ginsburg, 1 983 .) Even such simple problems as that of
Figure 16 have important i nstructional implications (Riley, 1 984) .

The mode l I wi l l describe was studied in col laborat ion wi th Mary S .
Riley (Ri ley & Smolensky, 1 984) and Peter DeMarzo (1 984) . This
model provides answers, without any symbol ic mani pulation of rules, to
qual i tati ve questions about the part icular circui t of Figure 1 6. I t should
not be assumed that we imagine that a d ifferent harmony network l i ke
the one I wi l l describe is created for every different c ircu i t that i s
analyzed . Rather we assume that experts contain a small number of
fixed networks l i ke the one we propose, that these networks represent
the effects of much cumulated experience with many different ci rcu i ts ,
that they form the " chunks " wi th which the expert 's intuition represents
the circu it domain , and that complex problem sol ving somehow
employs these networks to di rect the problem solv ing as a whole
through i ntu i t ions about chunks of the problem. At this early stage we
cannot say much about the coordination of act ivi ty i n complex problem
solving . But we do claim that by gi ving an expl ic i t example of a non
symbol ic account of problem sol ving , our model offers insights into
expertise that complement n icely those of tradit ional production-system
models . The model also serves to render concrete many of the general
features of harmony theory that have been described above.

Representational features. The fi rst step in developing a harmony
model is to select features for represent ing the envi ronment . Here the
environment is the set of qual i tat ive changes i n the electric ci rcu i t of
Figure 16 that obey the laws of physics. What must obviously be
represented are the changes in the physical components: whether R 1
goes up , goes down , or stays the same, and s imi larly for R 2 and the
battery's vol tage Vrola/ ' We also hypothesize that experts represent
deeper features of this envi ronment , l i ke the current I , the voltage
drops VI and V2 across the two resistors , and the effect ive resistance
Rlola/ of the circui t . We claim that experts " see " these deeper features;
that perceiving the problem of Figure 16 for experts invol ves fi l l ing in
the deeper features just as for al l sighted people-experts in vis ion
perceiving a scene i nvolves fi l l ing in the features describing objects i n
three-dimensional space. Many studies of expertise in the psychological
l i terature show that experts percei ve the i r domain differently from
novices: Thei r represen tat ions are much richer; they possess addit ional
representational features that are special ly developed for capturing the
structure of the part icular envi ronment . (See, for example, Chase &
Simon , 1 973 ; Lark in , 1 983 .)

So the representational features in ou r model encode the qual itat ive
changes in the seven ci rcu i t variables: R I t R 2 , R'o(ai l V I t V 2 , Vrola/ ' and
I . Our claim is that e'8'crpY;ri�a�JfeW3

I
set of features like these;

242 BASIC MECHANISMS

there are undoubtedly many other possi bi l i t ies, wi th different sets being
appropriate for model ing different experts.

Next , the three qual i tat i ve changes UP. down. and same for these
seven variables need to be given binary encodings . The encoding I wil l
discuss here uses one binary variable t o indicate whether there i s any
change and a second to indicate whether the change is up. Thus there
are two bi nary variables, I. c and I. u , that represent the change i n the
current , I . To represent no change in I , the change variable I.c is set
to - 1 ; the value of I. u i s , in this case , i rrelevant. To represent
increase or decrease of I , I. c is given the value + 1 and I. u i s assigned
a value of + 1 or - I , respect ively . Thus the total number of represen
tational features in the model is 1 4 : two for each of the seven c i rcuit
variables.

Knowledge atoms. The next step in construct ing a harmony model
is to encode the necessary knowledge into a set of atoms, each of which
encodes a subpattern of features that co-occur in the environment. The
environment of ideal ized c i rcuits i s governed by formal laws of physics,
so a specifi cation of the knowledge requi red for mode l ing the envi ron
ment is straightforward . In most real -world envi ronments, no formal
laws exist , and it is not so simple to gi ve a priori methods for di rectly
constructing an appropriate knowledge base . However, in such
environments , the fact that harmony models encode statistical informa
tion rather than rules makes them much more natural candidates for
viable models than rule-based systems. One way that the statisti cal
prop-ert ies of the envi ronment can be captured in the strengths of
knowledge atoms i s given by the learn ing procedure . Other methods
can probably be deri ved for di rectly passing from statist i cs about the
domain (e .g . , medical stat ist ics) to an appropriate knowledge base .

The fact that the envi ronment of electric ci rcuits is explici t ly rule
governed makes a probabi l i st ic model of i n tui t ion , l i ke the model under
construct ion, a part icularly interesting theoretical contrast to the obvi
ous rUle-applying models of explicit conscious reasoning.

For our model we selected a min imal set of atoms; more realistic
models of experts would probably invol ve addit ional atoms . A minimal
specification of the necessary knowledge is based di rectly on the equa
tions constrain ing the c i rcuit : Ohm 's law, Ki rchoff's law, and the equa
t ion for the total resistance of two resistors i n series. Each of these is
an equat ion constrain ing the simul taneous change i n three of the ci rcu it
variables. For each law, we created a knowledge atom for each combi
nat ion of changes in the three variables that does not violate the law.
These are memory traces that might be left beh ind after experiencing
many problems i n this domaioA, ite:.J after observing many states of this

Copyn):Jh eu Matena7

6. H A R MONY THEOR Y 243

envi ronment . It tu rns out that this process gi ves r ise to 65 knowledge
atoms! 8 all of which we gave strength 1 .

A port ion of the model i s shown i n Figure 17 . The two atoms shown
are respecti vely i nstances of Ohm 's law for R 1 and of the formula for
the total res istance of two resis tors in series.

It can be shown that with the knowledge base I have descri bed ,
whenever a completion problem posed has a unique correct answer,
that answer wi l l correspond to the state wi th highest harmony. This
assumes that K i s set wi th in the range determined by Theorem 1 : the
perfect matchi ng l imi t . 1 9

The parameter K . According to the formula defin ing the perfect
match ing l i m i t , K must be less than 1 and greater than 1 - 2/6 = 2/3
because the knowledge atoms are never connected to more than 6
features (two binary featu res for each of t h ree variables) . In the

Knowledge
Atoms

Representat ional
Featu res

• • •

FIG URE 1 7 . A schematic diagram of the feature nodes and two knowledge atoms of the
model of circuit analysis . u, d, and s denote up, down , and same. The box labeled 1
den otes the pair o f binary feature nodes representing I, and simi lar ly for the other s ix cir
cuit variables. Each connection labeled d denotes a pair of connections labeled with the
binary encoding (+ ,-) representing down, and si m ilarly for connections labeled u and s.

1 8 Ohm 's law applies t hree t imes for this circuit ; once each for R I , R 2 , and R,o,al ' This
together with the other two laws gives five constraint equations. In each of these equa
tions, the three variables in volved can undergo 1 3 combinations of qualitative changes .

19 Proof The correct answer sat isfies all five circuit equations, the maximum possible.
Thus i t exact ly matches five atoms, and no possible answer can exactly match more than
live atoms. In the exact matching limi t , any nonexact matches can not produce higher
harmony, so the correct answer has the maxim um possible harmony. If enough informa
tion is given in the problem so that there is only one correct answer, then there is only
one state with th is maximal harmony value.

Copyrighted Material

244 BASIC MECH ANISMS

simulat ions I wi l l describe, K was actually raised during the computation
to a value of . 75 , as shown in Figure 1 8 . (The model actually performs
better if K = . 75 throughout: DeMarzo, 1 984.)

Cooling schedule. It was not difficult to find a cool i ng rate that per
mitted the model to get the correct answer to the problem shown i n
Figure 1 6 on 28 out o f 30 trials. This cool ing schedule is shown in Fig
ure 1 9 . 2oThe in i tial temperature (4.0) was chosen to be sufficiently high

1 .00----------------------,

0.75

O.SO

0.25

0.00 L....o::::...--......L.. __ 1...-_-.L. __ .L-_� __ ..L..__ _---'
o 1 00 200

Ti m e
300

FIGURE 18 . The schedule showing K as a function of time during the computat ion .

400

20 In the reported simulations, one node, selected randomly, was updated at a time.
The computation lasted for 400 " iterations " of 100 node updates each; that is, on the
average each of the 79 nodes was updated about 500 t imes. " Updating" a node means
deciding whether to change the value of that node, regardless of whether the decision
changes the value. (Note on "psychological plaUSibility" : 500 updates may seem like a lot to
solve such a simple problem. But I claim the model cannot be dismissed as implausible
on this ground. According to current very general hypotheses about neural computation
(see Chapter 20) , each node u pdate is a computation comparable to what a neuron can

perform in its " cycle t ime" of about 10 msec. Because harmonium could actually be
implemented i n paral lel hardware, i n accordance with the realizabil ity theorem, the 500
updates could be achieved in 500 cycles. With the cycle t ime of the neuron, this comes

to about 5 seconds. This is clearly the correct order of magnitude for solving such prob·
lems intu i t ively. Whi le it is also possible to sol ve such problems by tiring a few symbolic
product ions, i t is not so clear that an implementation of a production system model could
be devised that would run in 500 cycles of parallel computations comparable to neural

computations.)
Copyrighted Material

200
Ti m e

6 . HARMONY THEOR Y 245

300 .roo

FIGURE 1 9 . The sched u le showi ng T as a function of t ime dur ing the computation .

that nodes were fl ipping between thei r val ues essential ly at random; the
final temperature (0.25) was chosen to be sufficient ly smal l that the
representational features hardly ever fl i pped, so that the completion
could be said to be its " final decision ." Considerable computation time
was probably wasted at the upper and lower ends of the cool i ng
schedule .

The simulation. The graphical display used i n the s imulat ion pro
vides a useful image of the computational process . On a gray back
ground , each node was denoted by a box that was white or black
depending on the current node val ue. Throughout the computat ion,
the nodes encoding the gi ven information maintai n thei r fixed values
(colors) . In i t ial ly , al l the atoms are black (i nacti ve) and the unknown
features are assigned random colors. When the computation starts, the
temperatu re is high, and there is much fl i ckering of nodes between
black and whi te. At any moment many atoms are acti ve . As computa
t ion proceeds and the system cools, each node fl ickers less and less and
eventually sett les into a final val ue.2 1 The " answer" is read out by

2 1 I t may happen that some representat ion var iables wil l be connected only to
knowledge atoms that are i nacti ve towards the end of the computat io n ; these representa·
t ion variables will con tin ue to nicker at arbitrari ly low temperat ures, spending 50% of the
t ime in each state. In fact , th is happens for bi t s of the representation (l ike R l ' U) that
encode the " d irect ion of change" of c i rcuit variables that are in state no change, indicated
by - on the · presence of change" b i t . These bits are ignored by the act ive knowledge
atoms (those i nvolving no change for the circui t variable) and are also ignored when we
" read out " the final answer pr0I!fo'ff�llliiaV3f�iial

246 BASIC MECHANISMS

decoding the features for the unknowns. Ninety-three percent of the
t ime, the answer is correct .

The microdescription of problem solving. Since the model correctly
answers physics quest ions, i t . . acts as though " it knows the symbolic
rules govern i ng electric c i rcuits . In other words, the competence of the
harmonium model (using Chomsky's meaning of the word) could be
accurately described by symbol ic inference procedures (e .g . , produc
t ions) that operate on symbol ic representations of the circui t equations.
However the performance of the model (including its occasional errors)
is achieved without i nterpreting symbol ic rules.22 In fact , the process
underlying the model 's performance has many characteri stics that are
not natura l ly represented by symbol ic computat ion. The answer is
computed through a series of many node updates , each of which is a
microdecision based on formal numerical rules and numerical computa
t ions. These microdecisions are made many times , so that the eventual
values for the different ci rcu i t variables are i n an important sense being
computed in parallel. Approximate matching i s an important part of the
use of the knowledge: Atoms whose feature patterns approximately
match the current feature val ues are more l i kely to become act ive by
thermal noise than atoms that are poorer matches (because poorer
matches lower the harmony by a greater amount) . And al l the
knowledge that is act i ve at a given moment blends in its effects: When
a gi ven feature updates its val ue , its microdecision is based on the
weighted sum of the recommendations from all the acti ve atoms.

The macrodescription of problem solving. When watching the simu
lat ion, i t i s hard to avoid anthropomorph iz ing the process . Early on ,
when a feature node is fl i ckering furiously, it is clear that " the system
can ' t make up its mind about that variable yet ." At some point during
the computat ion, however, the node seems to have stopped
flickering-" i t 's decided that the current went down ." It is reasonable to
say that a macrodecision has been made when a node stops fl ickering,

22 The d ist i nct ion between character iz ing the competence and performance of dynami
ca l systems is a common one i n physics , a l though I know of no terminology for i t . A
product ion system express ing the ci rcu i t laws can be viewed as a grammar for generating
the high-harmony states of the dynamical system . These laws neat ly express the states into
which the system wi l l set t le . However, completely d i fferent laws govern the dynamics
th rough wh ich the system en ters equi l i br ium states. Other examples from physics of th is
dist i nction are to be found essent ia l ly everywhere. Keple r ' s laws , for example , neatly
character ize the planetary orb i ts , but completely d i fferent laws, Newton's laws of motion
and gravi tat ion, descri be the dynam ics of planetary mot ion. Balmer 's form u la neatly
characterizes the l ight em i t ted by the hyd rogen ato m , but u t ter ly d i fferent laws of quan
t u m physics describe the dyna�m�fffaterial

6. H A R MONY THEORY 247

although there seems to be no natural formal defin i t ion for the concept .
To study the propert ies of macrodecis ions, i t is appropriate to look at
how the average values of the stochast ic node variables change during
the computat ion . For each of the unknown variables , the node val ues
were averaged over 30 runs of the complet ion problem of Figure 1 6 ,
separately for each t i me dur ing the computat ion . The result ing graphs
are shown in Figure 20 . The plots hover around 0 in i t ial ly , i ndicating
that val ues + and - are equal ly l i kely at h igh temperatures-lots of
fl ickeri ng. As the system cools , the average values of the representa
t ion variables dri ft toward the values they have in the correct sol ut ion
to the problem (RlolaJ = up, I = down , VI = down, V2 = up) .

Emergent seriality. To better see the macrodecis ions, i n Figure 2 1
the graphs have been super imposed and the " i ndecis ive " band around 0
has been removed. The stri k ing resul t is that out of the stat ist ical d in
of paral le l microdecis ions emerges a sequence of macrodecis ions.

Propagation of givens. The resu l t is even more in terest ing when i t
i s observed that in symbol ic forward-chain ing reasoning about th is
problem , the dec is ions are made i n t he order R , I , V I , V2 . Thus not
on l y i c; the ('(JmnPlpncp of t he m nrle l neH t l y clec;cr i hah l e <;ym hol i ca l l y . h u t
even t he performance, w h e n descr i bed a t I h e macro l eve l , cou ld be
modeled by t he sequen t i a l fi r i n g of p rod uct i ons t ha t cha i n I h rough t h e
i n ferences. O f course, macrodecis ions emerge firs t about t hose vari
ables that are most d i rectly constrained by the given i nputs, but not
because ru les are being used that have condit i ons that only al low them
to apply when al l but one of the variables is known. Rather i t i s
because the variables given i n the inpu t are fIXed and do not fluctuate:
They provide the information that is the most consistent over t ime , and
therefore the knowledge consistent with the i nput is most consistently
act i vated , a l lowing those variables involved i n this knowledge to be
more consistent ly completed than other variables . As the temperature
is lowered, those variables " near " the input (wi th respect to the connec
tions provided by the knowledge) stop fluctuat ing fi rs t , and their rela
t ive constancy of value over time makes them function somewhat l i ke
the original input to support the next wave of completion . In th is
sense, the stabi l i ty of variables " spreads out " through the network,
start ing at the inputs and propagat ing with the help of cool ing . Un l i ke
the s imple feedforward " spread of act ivat ion " through a standard act i va
t ion network, this process is a spread of feedback-mediated coherency
through a decis ion-making network. Like the growth of droplets or
crystals , this amounts to the expansion of pockets of order into a sea of
disorder .

Copyrighted Material

248 BASIC M ECHANISMS

0 N 0 � 0
> ..

>- >-L O· L
0+- 8 0 8 en '" 0+- .., en
I I
CD Q) CD L Q)
J 8 E L 8 E

0+- .. . - J .. . -I-- I--0 0+-
CD 0

La... CD La...
CD 0 0 � CD � m m 0
L 0
CD L
> CD

« 0 > 0 q .. 0 on q « q on 0 on q .,; ci .,; .. ci ci ci I I I

9 n l DA 9J n l D 9j 9 n l DA 9J n lD 9j

0 ..- 0 0 � � .. >
>- >-L L 0 0 0 0 0+- 0 0+- 0 en ., en .,

I I
CD CD Q) L Q) 8 E L 8 E J- J -0+- I-- 0+- I--0 0 CD CD La... La...
CD 0 0 � CD � m m 0 0 L L CD CD > > « 0 « 0 q on 0 on q q "I 0 on q .,; ci .,; 0 .,; .,; .. I I I

s n l DA SJ nlOS.:/ s n l o A SJn�os.:/

Copyrighted Material

Q)
:::J
o

>
Q)
L.
:J

-o Q) I.&..

6. H A R MONY THEORY 249

1 .0 r-------------TII"""-r-----r-........
R

0.5

0.0

-0.5

- 1 .0 L_L-_L_1-_L_L-_L_.I:::::::::::j
o 1 00 200

Ti m e
300 400

FIGURE 2 1 . Emergent serial i ty : The decis ions about the di rect ion of change o f the cir
cui t var iables " freeze i n " i n the order R = R/o/al ' I = I/o/QI ' VI ' VI (R and I are very
c lose) .

Phase transition. I n the previous sect ion , a h igh ly ideal ized
decis ion-making model was seen to have a freezing temperature at
which the system behavior changed from disordered (undecided) to
ordered (decided) . Does the same th ing occur i n the more compl icated
c ircuit model ? As a signal for such a phase transi t ion , physics says to
look for a sharp peak in the quant i ty

< H2> - < H> 2
C = T2

This is global property of the system wh ich is proport ional to the rate at
which entropy-disorder-decreases as the temperature decreases; in
physics , i t is cal led the specific heat. If there i s rapid increase i n the
order of the system at some temperature , the specific heat wi l l have a
peak there.

Figure 22 shows that i ndeed there is a rather pronounced peak . Does
this macrostat ist ic of the system correspond to anyth ing significant in
the macrodecis ion process ? In Figure 23 , the speci fic heat curve is
superimposed on Figure 2 1 . The peak i n the specific heat coincides
remarkably wi th the fi rst two major decis ions about the total res istance
and current .

Copyrighted Material

250 BASIC MECHAN ISMS

20

1 5

u
1 0

5

o L-__ � ____ � ____ � __ �L-__ � ____ � ____ � __ �
o 1 00 200

Ti m e
300 400

FIGURE 22 . The specific heat of the ci rcui t analysis model t h rough the cou rse of t he
com putat ion.

/
/ /

/ / _ /

o 1 00

/
I

- I
I

/
/

/ / R

200
Ti m e

300 400

FIG U R E 23 . The re i s a peak in the speci fic heat at t h e t i me when t h e R and I decisions

are being made.
Copyrighted Material

6. H A R MONY T H EORY 25 1

MACRODESCRIPTION : PRODUCTIONS, SCH EMATA,
AND EXPERTISE

Product ions and Ex pert ise

While there are s imi lari t ies in the production-system account of prob
lem solving and the macrodescript ion of the harmony account , there
are important d ifferences. These differences are most apparent in the
accounts of how experts' knowledge is acquired and represented .

A symbolic account 0/ expertise acquisition. A standard descri ption
with in the symbol ic paradigm of the acquis i t ion of expertise is based on
the idea of knowledge compilation (Anderson , 1 982) . Appl ied to circu i t
analysis , the account goes roughly l i ke th is . Novices have procedures
for i nspect i ng equations and using them to assign val ues to unknowns.
At this stage of performance , novices consciously scan equations when
solv ing ci rcu i t problems. As ci rcuit problems are solved, knowledge is
proceduralized: special i zed c i rcu i t -analysis productions are stored in the
knowledge base . An example of might be " IF gi ven : R I and R 2 both
go up , THEN conclude: RlOlal goes up" which can be abbreviated
R I U R 2u - Rlolal U Another migh t be Rlolal U �olal s _ Id At this stage
of performance, a series of logical steps is consciously experienced , but
no equations are consciously searched . As the c i rcui t productions are
used together to sol ve problems , they are composed together (Lewis ,
1 978) . The two product ions just ment ioned, for example , are com
posed into a single product ion , R i ll R 2" Vlola/ - RIOlal 1l Id As the pro
ductions are composed, the condit ions and actions get larger, more is
inferred in each production fi ring, and so fewer productions need to
fi re to sol ve a given problem. Eventual ly , the compi lat ion process has
produced productions l i ke R 1 " R 211 �ola/ - R,o,al u Id Vld V2u . Now we
have an expert who can solve the problem in Figure 1 6 all at once, by
fir ing this si ngle production . The reason is that the knowledge base
contains , prestored, a rule that says " whenever you are gi ven this prob
lem, give this answer ,"

A subsymbolic account. By contras t , the harmony theory account of
the acquis i t ion of expertise goes l ike th is . (This account has not yet
been tested wi th simulat ions ' > Beginn ing physics students are novices i n
ci rcui t analysis bu t experts (more or less) at symbol man ipulat ion .
Through experience with language and mathemat ics , they have bui l t
up - by means of the l earn ing process referred to i n the learnab i l i ty
theorem -a set of features and knowledge atoms for the perception and
manipulat ion of symbols . Tbese can be used to inspect the c ircuit

COPYrighted Material

252 BASIC M ECHANISMS

equations and draw inferences from them to solve c ircuit problems.
With experience, features dedicated to the perception of c ircuits evolve ,
and knowledge atoms relati ng these features develop. The final net
work for c ircuit perception contains wi thin it someth ing l ike the model
described in the previous section (as wel l as other portions for analyz
i ng other types of s imple ci rcui ts) . This final network can solve the
entire problem of Figure 1 6 in a single cool i ng. Thus experts percei ve
the solut ion in a single conscious step. (Although sufficiently careful
perceptual experiments that probe the i nternal structure of the con
struction of the percept should reveal the kind of sequential fi l l ing-in
that was displayed by the model .) Earl ier networks , however, are not
sufficiently wel l - tuned by experience; they can only solve pieces of the
problem i n a single cool ing. Several coolings are necessary to solve the
problem , and the answer is deri ved by a series of consciously experi
enced steps . (This gives the symbol -manipulating network a chance to
partic ipate, offering justifications of the intu i ted conclusions by ci t ing
ci rcuit laws .) The number of circuit constraints that can be satisfied in
paral lel during a single cool ing grows as the network is learned . Produc
tions are higher level descriptions of what input/ output pairs
completions-can be reliably peiformed by the network in a single cooling.
Thus, in terms of thei r product ions, novices are described by produc
t ions with simple condi tions and actions , and experts are described by
complex condit ions and actions.

Dynamic creation of productions. The point is , however, that in the
harmony theory account , productions are just descriptive entities; they are
not stored, precompiled, and fed through a formal inference engine; rather
they are dynamically created at the t ime they are needed by the appropri
ate collect ive action of the small knowledge atoms. Old patterns that
have been stored through experience can be recombined in completely
novel ways , giving the appearance that protluctions had been precom
pi led even though the part icular condi t ion/ action pai r had never before
been performed. When a fami l iar input is changed sl ightly , the net
work can sett le down in a sl ightly different way, flexing the usual pro
duction to meet the new situat ion . Knowledge is not stored in large
frozen chunks; the productions are truly context sensit ive . And since
the productions are created on-l ine by combin ing many smal l pieces of
stored knowledge, the set of avai lable productions has a size that is an
exponential function of the number of knowledge atoms . The
exponential explosion of compi l ed product ions is virtual , not precom
piled and stored .

Contrasts with logical inference. It should be noted that the har
monium model can an�Matafiidons just as it can answer

6. H A R MONY THEO R Y 253

wel l -posed ones. If insuffici en t informat ion is provided, there wi l l be
more than one state of highest harmony , and the model wi l l choose one
of them. It does not stop dead due to " i nsuffic ient informat ion " for
any formal inference rule to fire . If incons istent information is given,
no avai lable state wil l have a harmony as high as that of the answer to a
wel l -posed problem; nonetheless , those answers that violate as few cir
cu it laws as possible wi l l have the h ighest harmony and one of these
wil l therefore be selected . It is not the case that " any conclusion fol
lows from a contrad ict ion ." The mechanism that al lows harmon ium to
solve wel l -posed problems allows it to find the best possible answers to
i l l -posed problems, wi th no mod ification whatever .

Schemata

Productions are h igher level descri ptions of the completion process
that ignore the internal structures that bring about the i nput/ output
mapping. Schemata are h igher level descri ptions of chunks of the
knowledge base that ignore the internal structure with in the chunk . To
suggest how the relat i on between knowledge atoms and schemata can
be formal ized , i t is usefu l to begin wi th the ideal ized two-choice dec i
sion model discussed in the preceding section ent i t led Dec is ion - Making
and Freezing.

Two-choice model. In this model , each knowledge atom had either
all + or all - connect ions . To form a higher level descript ion of the
knowledge , let ' s l ump all the + atoms together i nto the + schema , and
denote it with the symbol S+ . The activation level of this schema ,
A (S+) , wi l l be defined to be the average of the act ivations of i ts con
sti tuent atoms. Now let us consider all the feature nodes together as a
slot or variable, s , for this schema. There are two states of the slot that
occur in completions: al l + and all - . We can define these to be the
possible fillers or values of the slot and symbol ize them by 1+ and 1- .
The informat ion i n the schema S+ is that the slot s should be fi l led
with 1+ ; the proposi t ion s = 1+ . The " degree of truth" of this proposi
t ion , ds = 1+) , can be defined to be the average value of al l the
feature nodes comprising the slot : If they are all + , this i s 1 or true; i f
all - this is - l or lalse. A t intermediate points in the computation
when there may be a mixture of signs on the feature nodes, the degree
of truth is somewhere between 1 and - 1 .

Repeat ing the construction for the schema S_ , we end up with a
higher level descript ionotp;h»hMtJiAWJte11§pel depicted in Figure 24 .

254 BASIC MECH ANISMS

Mlcrodescrl ption

s +
, - - - - - - """ ,. , - - - - - - - ...

-' , - - - _ _ - - - - , I \

\
, - - - -- - - - - - - - ,, - - - - - - - - - - -

"

s

M ac rodescri pt ion

FIG URE 24. Micro- and macrodescriptions of the ideal ized decis ion model .

The interest ing fact is that the harmony of any state of the original
model can now be re-expressed using the higher level variables :

In this s imple homogeneous case , the aggregate higher level variables
contain sufficient information to exactly compute the harmony
function . Copyrighted Material

6. HARMONY THEORY 255

The analysis of decision making in th i s model considered the l im i t as
the number of features and atoms goes to infini ty-for only in this
"thermodynamic l im i t " can we see real phase transi t ions. In this l im i t ,
the set of poss ible val ues for the averages tha t define the aggregate
variables comes closer and c loser to a cont inuum. The central l imit
theorem constrains these averages to deviate less and less from their
means; stat i st i cal fluctuations become less and less significant ; the
model ' s behavior becomes more and more determin ist ic .

Thus, just as the stat ist ical behavior of matter disappears i nto the
determin ist ic laws of thermodynamics as systems become macroscopic
in size , so the statistical behavior of individual features and atoms i n
harmony models becomes more and more closely approximated by the
higher level descri pt ion i n terms of schemata as the number of const i t
uents aggregated i n to the schemata increases . However there are two
important d ifferences between harmony theory and stat ist ical physics
relevant here. Fi rst , the number of const i tuents aggregated i nto sche
mata i s nowhere near the number- I 023 -of particles aggregated into
bulk matter. Schemata provide a useful but significantly l imi ted
descript ion of real cogni t ive processing. And second, the process of
aggregation in harmony theory i s much more complex than in physics .
Th is point can be brought out by passing from the grossly oversimpl i
fied two-choice decision model just considered to a more real ist ic cogn i
tive domain .

Schemata for rooms. In a real ist i cal l y compl icated and large net
work, the schema approx imation would go someth ing l i ke th is . The
knowledge atoms encode clusters of values for features that occur i n
the envi ronment . Commonly recurring clusters would show up in
many atoms that d iffer s l ight ly from each other. (In a d ifferent
language, the many exemplars of a schema would correspond to
knowledge atoms that d iffer s l ight ly but share many common features .)
These atoms can be aggregated i n to a schema , and their average act iva
t ion at any moment defi nes the activation of the schema. Now among
the atoms in the cluster corresponding to a schema for a living-room, for
example, might be a subcluster corresponding to the schema for
sofa/ coffee-table. These atoms comprise a subschema and the average of
thei r act ivations would be the activat ion variable for this subschema.

The many atoms comprising the schema for kitchen share a set of
connecti ons to representat ional features relat ing to cooking devices . It
is convenient to group together these connections into a cooking-device
slot, Smoking ' Different atoms for different i nstances of kitchen encode
various patterns of values over these representational features ,
corresponding to instances of stove, conventional oven , microwave oven ,
and so forth . Each of t��� tJriMw§/a possible filler, fk ' for the

256 BASIC M ECHANISMS

slot. The degree of truth of a proposi t ion l i ke Scooking = Ii is the
number of matches minus the number of mismatches between the pat
tern defining Ii and the current values over the representation nodes in
the s lot Scooking , a l l di vided by the total number of features in the slot .
Now the harmony obtai ned by acti vat ing the schema is determined by
the degrees of truth of proposi t ions specifying the possi ble fi l lers for
the slots of the schema. Just l ike in the s imple two-decision model , the
harmony funct ion , original ly expressed in terms of the microscopic
variables , can be re-expressed in terms of the macroscopic variables,
the act ivations of schemata , and slot fi l lers . However, s ince the
knowledge atoms being aggregated no longer have exactly the same
l inks to features, the new expression for H in terms of aggregate vari
ables is on ly approximately val id . The macrodescript i on involves fewer
variables , but the structure of these variables is more complex. The
objects are becoming richer, more l i ke the structures of symbolic com
putat ion.

This is the basic idea of the analyt ic program of harmony theory for
relat ing the micro- and macro-accounts of cognit ion. Macroscopic vari
ables for schemata , thei r act i vat ions, thei r slots , and proposi t ional con
tent are defined. The harmony function is approximately rewri tten in
terms of these aggregate variables, and then used to study the macro
scopic theory that is determined by that new function of the new vari
ables . This theory can be s imulated , defining macroscopic models.
The nature of the approximat ion relat ing the macroscopic to the
microscopic models is clearly art iculated , and the si tuations and senses
in which this approximation is val id are therefore specified.

The k ind of variable aggregation involved in the schema approxima
t ion is i n an important respect qui te un l ike any done in physics. The
physical systems t rad i t ional ly studied by physicists have homogeneous
structure , so aggregat ion is done i n homogeneous ways . In cogn it ion ,
the dist inct roles played by different schemata mean aggregates must be
special ly defined . The theory of the schema l imi t corresponds at a very
general level to the theory of the thermodynamic l imi t , but is rather
sharply dist inguished by a much greater complexity.

The Schema Approx imat ion

In this subsecti on I would l ike to briefly discuss the schema approxi
mation in a very general informat ion-process ing context.

In harmony theory , the cogn i t ive system fi l l s in missing information
with reference to an internal model of the environment represented as

Copyrighted Material

6. HARMONY THEOR Y 257

a probabi l i ty distri but ion . Such a distri but ion of cou rse contains poten
tial ly a phenomenal amount of informat ion: the joi nt statistics of all
combinat ions of al l features used to represent the envi ronment . How
can we hope to encode such a distri but ion effect ive ly? Schemata pro
vide an answer . They comprise a way of breaking up the envi ronment
i nto modules-schemata- that can indi vidual ly by represented as a
min iprobabi l i ty dist ri bution . These min id istr i but ions must then be
folded together duri ng processing to form an est imate of the whole dis
tri buti on . To analyze a room scene, we don't need information about
the joint probabi l i ty of al l possible features� rather, our schema for
" chai r" takes care of the joint probabi l i ty of the features of chai rs � the
schema for " sofa/ coffee-table " contains i nformat ion about the joi nt
probabi l i ty of sofa and coffee-table features , and so on . Each schema
ignores the features of the others, by and large .

This modularization of the encoding can reduce tremendously the
amount of informat ion the cogni t ive system needs to encode. If there
are f bi nary features , the whole probabi l i ty d istr i bution requi res 21
numbers to specify . If we can break the features i nto s groups
corresponding to schemata, each involving f / s features, then only
s pis numbers are needed . This can be an enormous reduct ion ; even
wi th such smal l numbers as f == 1 00 and s = 1 0 , for example , the
reduction factor is 1 Ox 2-9� 1 0- 28 .

The reduction in i nformation afforded by schemata amounts to an
assumption that the probabi l i ty distribut ion represent i ng the en vi ron
ment has a special , modular structure-at least , that it can be useful ly
so approximated. A very crude approximat ion would be to di vide the
features i n to disjoint groups, to separately store in scllemata the proba
bi l it ies of possi ble combinations of features wi th in each group, and then
to simply multiply together these probabi l i t ies to estimate the joint prob
abi l i ty of al l features. This assumes the features in the groups are com
pletely statistically independent, that the values of features of a chair
i nteract with other features of the cha i r but not with features of the
sofa. To some extent this assumption i s val id, but there clearly are
l imits to its val idity .

A less crude approx imation is to allow schemata to share features so
that the shared features can be constrai ned s imultaneously by the joi nt
probabil i t i es with the different sets of variables contained in the dif
ferent schemata to which it relates. Now we are i n the s i tuation
modeled by harmony theory. A representational feature node can be
attached to many knowledge atoms and thereby part ic i pate in many
schemata. The distr ibut ion eHI T manages to combine into a s ingle
probabi l ity distribut ion al l the separate but interact ing distr ibut ions
corresponding to the separate schemata. Although the s i tuation i s not

Copyrighted Material

258 BASIC M ECHANISMS

as s imple as the case of nonoverlapping schemata and completely
independent subdistributions, the informational savi ngs is sti l l there.
The trick is to isolate groups of environmental features which each
comprise a small fraction of the whole feature set , to use these groups
to define more abstract features , and record the probabi l i ty distributions
using these features . The groups must be selected to capture the most
important in terrelationshi ps in the environment. This is the problem of
constructing new features. The last section offers a few comments on
this most important issue.

LEARNING NEW REPRESENTATIONS

The Learning Procedure and Abstract Featu res

Throughout this chapter I have considered cogni t ive systems that
represent states of thei r environment using features that were esta
bl ished prior to our investigat ion , e i ther through programming by the
modeler , or evolut ion , or learning. In this sect ion I would l i ke to make
a few comments about this last possi bi l i ty , the establ ishment of features
through learn ing .

Throughout this chapter I have emphasized that the features i n har
mony models represent the envi ronment at all levels of abstractness.
In the preceding account of how expertise in circuit analysis is acquired,
i t was stated that through experience , experts evolve abstract features
for representing the domain . So the basic notion is that the cognit ive
system comes into existence with a set of exogenous features whose
values are determined completely by the state of the external environ
ment , whenever the environment is being observed . Other endogenous
features evolve, through a process now to be descri bed, through experi
ence , from an in it ia l state of meaninglessness to a final state of abstract
meaning. Endogenous features always get their values through internal
completion , and never directly from the external environmentP

As a specific example, consider the network of Figure 9, which is
repeated as Figure 25 . In this network , features of several levels of

23 In Chapter 7, Hinton and Sejnowski use the terms visible and hidden units. The

former correspond to the exogenous feature nodes , while the latter encompass both the
endogenous feature nodes amuhe krwvt'ledl!l': .a1oOls . . I GOpyngnreu Marena

segmenll leller

k now l edge atoms

l ine-segment nodes leller nodes

6. HARMONY THEORY 259

lel ler/ word

k n owledge atoms

word n odes

FIGURE 25 . A network represent ing words at several levels of abstractness.

abstractness are used to represent words . Here is a hypothetical account
of how such a network could be learned.24

The features represent ing the l i ne segments are taken to be the exo
genous features given a priori . Th is network comes into existence with
these l ine-segment nodes , together wi th extra endogenous feature
nodes which, through experience, wi l l become the letter and word
nodes .

As before , the cogni t ive system is assumed to come into existence
wi th a set of knowledge atoms whose st rengths wi l l be adjusted to
match the envi ronment . Some of these atoms have connections only to
exogenous features, some onl y to endogenous features, and some to
both types of features.

The environment (in this case , a set of words) is observed . Each
t ime a word is presented , the appropriate values for the l ine-segment
nodes are set . The current atom strengths are used to complete the
input, through the cool i ng procedure discussed above . The endogenous
features are thus assigned values for the particular input . In i t ia l ly ,

24 The issue of selecting patterns o n exogenous features for use i n defining endogenous
features - i nclud ing the word domain - i s discussed in Smolensky (983) . To map the
terminology of that paper on to t hat of this chapter , replace schemas by knowledge atoms
and beliefs by feature I/Q/ues. That paper oITers an a l ternat ive use of t he harmony concept
in learn ing . Rather than speCify ing a learn ing process , it specifies an opt imal i ty condit ion
on the atom strengths: They should max i m i ze the tota l harmony associa ted with inter
preting a l l environmenta l st i mu l i . Th is cond i t ion is related, but not equ iva len t , to
informat ion- theoretic cond i t ions on the s trengt hs .

Copyrighted Material

260 BASIC M ECHANIS MS

when the atoms' strengths have received l i t t le environmental tuning,
the values assigned to the endogenous featu res will be highly random.
Nonetheless, after the i nput has been completed , l earning occurs: The
strengths of atoms that match the feature nodes are a l l increased by
�(7' •

Intermixed with this i ncrementing of strengths during envi ronmental
observat ion is a process of decrementing strengths during environmen
tal simulat ion. Thus the l earn ing process is exactly l ike the one
referred to in the learnabi l i ty theorem, except that now, during obser
vation, not all the features are set by the envi ronment; the
endogenous features must be fil led in by complet ion .

In i t ia l ly , the val ues o f the endogenous features are random. But as
learning occurs, correlations between recurring patterns in the exo
genous features and the random endogenous features wi l l be ampl ified
by the strengthen i ng of atoms that encode those correlations. An
endogenous feature by chance tends to be + when patterns of l ine seg
ments defin ing the letter A are present and so leads to strengthening of
atoms relating it to those patterns; it gradual ly comes to represent A .

In this way, self-organization of the endogenous features can potential ly
lead them to acquire meaning.

The learnabi l i ty theorem states that when no endogenous features are
present , th is learning process wi l l produce strengths that optimally
encode the envi ronmental regularit ies, in the sense that the comple
t ions they give rise to are precisely the maximum-l ikelihood comple
t ions of the estimated envi ronmental probabi l i ty distri bution with maxi
mal missing information that i s consistent with observable stat istics. At
present there i s no comparable theorem that guarantees that in the
presence of endogenous features this learning procedure wi l l produce
strengths with a corresponding optimal ity characterization .25

Among the most important future developmen ts of the theory is the
study of self-organization of endogenous features. These developments
include a possi ble extension of the learnabi l i ty theorem to include
endogenous features as wel l as computer s imulations of the learning
procedure in specific envi ronments.

2S [n Chapter 7 , Hinton and Sejnowski use a d i fferent but related opt i mality condi t ion .

They use a fun ct ion G which measures the i n formation-theoretic d i fference between the
t r ue e n v i ronmental probabi l i ty dist ribut ion and the est i mated dist r ibut ion eH For the

case of no endogenous features, the fol lowing is t rue (see Theorem 4 of the Append i x) .
The strengths that correspond to the maximal -missing-i nformat ion distribution consisten t
with observable stat ist ics are the same as the strengths that minimize G. That the
est imated distr ibut ion is of the form eH m ust be assumed a priori i n using the m ini mal -G
cri ter ion; it is entailed by t h e IllJlx i mal -m�sinJl-information criter ion. r.;opyngnreu Marenal

6. H A R MONY THEO R Y 26 1

Learning in the Symbolic and Su bsymbolic Paradigms

Nowhere is the contrast between the symbol ic and subsymbol i c
approaches to cogni t ion more dramatic than in learning. Learning a
new concept in the symbol ic approach entai ls creating something l i ke a
new schema. Because schemata are such large and complex knowledge
structures , developing automatic procedures for generat ing them in ori
ginal and flex ible ways is extremely d i fficult .

In the subsymbol ic account , by contrast , a new schema comes into
bei ng gradual ly , as the strengths of atoms slowly shifts in response to
envi ronmental observat ion, and new groups of coherent atoms slowly
gain important infl uence i n the processing. During learn ing, there need
never be any decision that " now is the t ime to create and store a new
schema." Or rather , i f such a decision i s made , i t i s by the modeler
observing the evolving cognit ive system and not by the system itself.

S imi larly there is never a t ime when the cogn i t i ve system decides
"now is the t ime to assign this meaning to th is endogenous feature."
Rather , the strengths of al l the atoms that connect to the gi ven
endogenous feature slowly shift , and with it the " meaning" of the
feature. Eventual ly, the atoms that emerge with dominant strength
may create a network l i ke that of Figu re 25 , and the modeler observing
the system may say " this feature means the letter A and this feature the
word ABLE." Then again , some completely d ifferent representat ion may
emerge.

The reason that learn ing procedures can be deri ved for subsymbol ic
systems, and thei r propert ies mathematically analyzed, is that in these
systems knowledge representations are extremely impoverished . It is
for this same reason that they are so hard for us to program. It is
therefore in the domain of learni ng, more than any other, that the
potent ial seems greatest for the subsymbol ic paradigm to offer new
insights into cognit ion . Harmony theory has been motivated by the
goal of establishing a subsymbol i c computational environment where
the mechanisms for using knowledge are s imul taneously sufficiently
powerful and analytical ly tractable to faci l i tate- rather than hinder-the
study of learn ing.

CONCLUSIONS

In this chapter I have described the foundations of harmony theory , a
formal subsymbol ic framework for performing an important class of
general ized perceptual CtfP�ten§F completion of part ial

262 BASIC M ECHAN ISMS

descript ions of static states of an envi ronment . In harmony theory,
knowledge is encoded as constraints among a set of wel l - tuned percep
tual features. These constraints are numerical and are imbedded in an
extremely powerful paral lel constraint sat isfact ion machine : an informal
inference engi ne. The constraints and features evolve gradual ly
through experience. The numerical processing mechanisms implement
i ng both performance and learn ing are deri ved top-down from
mathematical principles . When the computation is descri bed on an
aggregate or macrolevel , qual i tati vely new features emerge (such as
serial ity) . The competence of models in this framework can sometimes
be neatly expressed by symbol ic rules, but thei r performance is never
ach ieved by expl ic i t ly storing these rules and passing them through a
symbol ic interpreter.

In harmony theory, the concept of self-consistency plays the leading
role . The theory extends the relat ionsh i p that Shannon exploi ted
between information and physical entropy: Computational self
consistency is related to physical energy , and computational randomness
to physical temperature. The central i ty of the consistency or harmony
function mi rrors that of the energy or Hami ltonian function in stat isti
cal physics. I nsights from statist ical physics , adapted to the cognit ive
systems of harmony theory , can be exploited to relate the micro- and
macrolevel accounts of the computat ion . Theoret ica l concepts ,
theorems , and computational techniques are being pursued, towards the
ult imate goal of a subsymbol ic formulation of the theory of information
process ing.

ACKNOWLEDGMENTS

The framework presented in this chapter grew out of an attempt to for
malize approaches to understanding cognit ion that I have learned from
Dave Rumelhart , Doug Hofstadter, and Geoff Hinton . I thank them
for sharing their ins ights with me over several years . Thanks too to
Steve Greenspan , Jay McClel land, Mary Ri ley, Gerhard Dirl ich , Francis
Crick, and especial ly Stu Geman for very i nstruct ive conversations.
Peter DeMarzo has made important contribut ions to the theory and I
have benefi ted greatly from working wi th him. I would l i ke to thank
the members of the UCSD Cogni t ive Science Lab and particularly the
Paral lel Distributed Processing research group for al l their help and
support . Special thanks go to Judith Stewart , Dan Rabin , Don
Gentner, Mike Mozer, Rut ie Kimch i , Don Norman , and Sondra Buf
fett. Thanks to Ei leen Conway and Mark Wallen for excel lent graphics
and computer support .C��tifiia�upported by the System

6. HARMONY THEOR Y 263

Development Foundation , the Alfred P . Sloan Foundat ion, Nat ional
Institute of Mental Heal th Grant PHS MH 1 4268 to the Center for
Human Information Processing, and Personnel and Train ing Research
Programs of the Office of Naval Research Contract N000 1 4-79-C-0323 ,
NR 667-437 .

Copyrighted Material

264 BASIC M ECHANISMS

APPEN DIX :
FORMAL PRESENTATION O F THE THEOREMS

Formal relat ionsh ips between paral lel (or neural) computation and
statistical mechanics have been exploi ted by several researchers . Three
research groups in part icular have been in rather close contact since
their in i t ial ly i ndependent development of closely related ideas. These
groups use names for the ir research which reflect the independent per
specti ves that they mainta in : the Boltzmann machine (Ackley, Hinton , &
Sejnowski , 1 985 ; Fahlman , Hinton , & Sejnowsk i , 1 983 ; Hinton &
Sejnowski , 1 983a , 1 983b; Chapter 7) , the Gibbs sampler (Gem an &
Geman, 1 984) , and harmony theory (Smolensky, 1 983 , 1 984; Smolen
sky & Riley, 1 984) . In this appendix , al l results are presented from the
perspect ive of harmony theory , but ideas from the other groups have
been incorporated and are so referenced. 26

Because the ideas have been informal ly moti vated and pursued at
some length i n the text, this appendix is deliberately formal and con
cise . The proofs are presented in the final section . In making the for
mal presentation properly self-contained , a certain degree of redun
dancy with the text is necessari ly i ncurred; this is an inevitable conse
quence of presenting the theory at three levels of formal ity within a
single, l inearly ordered document .

Preli minary Defini tions

Overview of the definitions. The basic theoretical framework i s
schematical ly represented in Figure 26 . There is an external envi ron
ment wi th structure that al lows prediction of which events are more
l i kely than others . This environment is passed through t ransducers to
become represented internal ly in the exogenous features of a representa
t ional space . (Depending on the appl icat ion , the transducers might
include considerable perceptual and cogni t ive processing, so that the
exogenous features might in fact be quite high level ; they are just
unanalyzed at the level of the part icular model .) The features in the

26 Hofstadter (1 983) uses the idea of computational temperature in a heu ristic rather
than formal way to modulate the paral le l symbolic processing in an A I system for doing
anagrams. His insights into relat ionships between statist ica l mechanics and cognit ion
were inspirat ional for the development of harmony theory (see Hofstadter, 1 98 5 , pp.
654-665) . Copyrighted Material

Transducer

6 . H A R MONY THEORY 265

M ental Spac e : M
k n owledge

A

FIGURE 26. A schematic representation of the theoret ical framework .

representation are taken to be binary. The predict ion problem is to
take some features of an envi ronmental state as input and make best
guesses about the unknown features. This amounts to extrapolat ing
from some observed statist ics of the environment to an ent i re probabi l
i ty distr ibution over all possi ble feature combinations. This extrapola
tion proceeds by construct ing the distribut ion that adds minimal infor
mation (in Shannon's sense) to what i s observed.

Notation. B = (- 1 , + I) , the default binary values. R = the real
numbers. xn

= Xx Xx . . . x X (n t imes) , where x is the cartesian
product . If X , y E Xn , then x ·y = r.�_ lxmYm and I x i = L�= l lxm l .
2x is the set of al l subsets of X . I X I is the number of elements of X .
Bn is called a binary hypercube. The i th coordinate junction of B n
(; = 1 , . . . , n) gives for any poin t (i . e . , vector) in B n its i th B -valued
coordinate (i . e . , component) .

De/. A distal environment Edistol = (E , P) is a set E of environmental
events and a probabi l i ty distribution P on E .

De/. A representational space R i s a cartesian product Rex x Ren of
two binary hypercubes. Each of the N (Nex ; Nen) binary-valued coordi
nate functions ri of R (Rex ; Ren) i s cal led an (exogenous; endogenous)
feature .

De/. A transduction map T from an environment Edistol to a represen
tational space R = Rex x Ren is a map T : E --+ Rex . T i nduces a proba
bi l i ty distribution p on Rex : p = p o T - I . This distribut ion is the
(proximal) environment.

Copyrighted Material

266 BASIC MECH A N IS MS

De! Let R be a representat ional space . Associated wi th this space
is the input space I = {- I , 0, + I I Na .

De! A point r in R i s called a completion of a point t i n I i f every
nonzero feature of , agrees wi th the corresponding feature of r . This
relationsh i p wi l l be designated r ::> t . A completion junction c is a map
from I to 2R (the subsets of R) for which r E dd implies r ::> t o The
features of L with val ue 0 are the " unknowns " that must be fi lled in by
the completion funct ion .

De! Let p be a probabi l i ty distribution on a space X = Rex x A .
The maximum-likelihood completion junction determined by p ,
cp : I - 2R , i s defined by

dd = { r E R I for some a E A , and al l (a' ,r') E R x A
such that r' ::> , : p (r , a) � p (r' , a') I

(A wi l l be either empty or the set of possi ble knowledge atom act iva
t ion vectors .)

De! A basic event (X has the form

a : [r · = b l] & [r · = b 2] & . . . & [r . = b,,] ' 1 ' 2 ' {J ,..
where { ri l ' ri 2 • riBI is a collect ion of exogenous features and
(b I > b 2 • • • • • b �) E B� . a can be characterized by the function
Xor : R - (0, 1) defined by

Xa (r) = Ii: 'h I r; (r)+ bJ
1' = 1 I'

which is I if the features al l have the correct values, and 0 otherwise.
A convenient specification of a i s as the knowledge vector

ka = (0, O • . . . • 0, bi l , O • . . . • 0, b' 2 ' O • . . . • 0, b;{J ' O • . . . • 0)

E {- I , O ,+ I I N

i n which the il' th element is bl' and the remain ing elements are all
zero.

De! A set 0 of observables is a col lect ion of basic events.

De! Let p be an envi ronment and 0 be a set of observables. The
observable statistics of p i s the set of probabi l i t ies of all the events in 0 :
{p (a)}a E o ·

Copyrighted Material

6. HARMONY THEORY 267

De! The entropy (or the missing i!iformation ; Shannon , 1 948/ 1 963)
of a probabi l i ty d istr ibut ion p on a fin i te space X i s

S (P) = - 1: p (x) In p (x) .
r E X

De! The maximum entropy estimate 1Tp .O of envi ronment p with
observables 0 i s the probabil i ty distribut ion with maximal entropy that
possesses the same observable statist ics as p .

Thi s concludes the prel iminary defin i t ions. The distal environment
and transducers wi l l play no further role in the development . They
were introduced to acknowledge the important conceptual role they
play: the root of all the other defini t ions. A truly sat isfactory theory
would probably include analys is of the structure of distal envi ronments
and the transformations on that structure induced by adequate
transduction maps . Endogenous features wi l l also play no further role :
Henceforth, Ren i s taken to be empty. It i s an open question how to
incorporate the endogenous variables into the fol lowing results . They
were introduced to acknowledge the important conceptual role they
must play i n the future development of the theory .

Cognit ive Systems and the Harmony Function H

De! A cognitive system is a quintuple (R , p , 0 , 1T , c) where:

R i s a representational space ,
p is an environment ,
o i s a se t of statist ical observables,
1T i s the maximum-entropy estimate 1T p ,0 of envi ronment p

with observables 0 ,
c is the maximum- l i ke l i hood completion function determined

by 1T .

De! Let X be a finite space and V : X - R . The Gibbs distribution
determined by V i s

Pv (x) = Z- I e V (x)

where Z i s the normal i zation constant :

Copyrighted Material

268 BASIC M ECHANISMS

Theorem 1: Competence. A : The distribution 1T of the cognitive
system (R , p , 0 , 1T , c) is the Gibbs distribution Pu determined by
the function

U (r > = L Aa Xa (r >
a E O

for suitable parameters A == {Aa la E 0 (S. Geman, personal com
munication , 1 984) . B: The completion function c is the maximum
l ikel ihood completion function cPH of the Gibbs distribution PH ,
where H : M -R , M "" R x A , A = (O, I l I O I , is defined by

H (r , a) = L a-a aa h (r , ka) a E O
and

for suitable parameters a- = (a-ala E 0 and for K sufficiently close
to 1 :

1 > K > 1 - 2I [max 1ka l) . a E O

Theorem 2 wi l l describe how the variables a = {aa la E 0 can be used
to actual l y compute the completion function. Theorem 3 wi l l describe
how the parameters a- can be learned through experience in the
environment . Together, these theorems motivate the fol lowing
interpretation.

Terminology. The triple (ka , a-a ' aa) defines the knowledge atom or
memory trace a . The vector ka i s cal led the knowledge vector of atom a .
The knowledge vector is an unchanging aspect of the atom. The real
number a-a is cal led the strength of atom a . This strength changes with
experience in the environment . The { O, I } variable aa is cal led the
activation of atom a . The activation of an atom changes during each
computation of the completion function . The set K = { (ka , a-a) l a E 0
is the long-term memory state or knowledge base of the cogni t ive system .
The vector a of knowledge atom act ivations {aa la E 0 is the working
memory state. The val ue h (r , ka) is a measure of the consistency
between the representation vector r and the knowledge vector of atom
a ; it is the potential contribution (per unit strength) of atom a to H .
The value H (r , a) i s a measure of the overal l consistency between the
entire vector a of knowledge atom act ivations and the representation r ,
relat ive to the knowled��tJied Nmt8Htri K , H internalizes within

6. HARMONY THEORY 269

the cognit ive system some of the statist ical regularit ies of the environ
ment. Viewing the completion of an input , as an inference process ,
we can say that H al lows the system to distinguish which patterns of
features r are more self-consistent than others , as far as the envi ronmen
tal regularit ies are concerned . This is why H is cal l ed the harmony
function.

De! The cognit ive system determined by a harmony function H can
be represented by a graph which wil l shortly be interpreted as a network
of stochastic paral le l processors (see Figure 27) . For each coordinate of
the cogni t i ve system's mental space M, that is , for each feature ri and
each atom Q , there is a node . These nodes carry binary val ues; the
node for feature r, carr ies the value of r i E {+ 1 , - 1 1 , while the node
for atom Q carries the act ivation value a", E { I , OJ . If the value of k",
for a feature ri i s + 1 or - 1 , there is a l ink with the corresponding ± 1
label join ing the nodes for a", and r, . Final ly , each node Q is labeled by
i ts strength, (J" "' . The graphs of harmony networks are two-color; i f
feature nodes are assigned one color and atom nodes another, al l l inks
go between nodes of different colors. Th is wi l l turn out to permit a
high degree of paral le l ism in the processing network .

Retrieving Information From H: Performance

De! Let {Pr j ;'" = 0 be a sequence of probabi l i ty distri butions on a
binary cube X = B n . The paths of the (one-variable heat bath) stochas
tic process x determined by {Pr j is defined by the fol lowing procedure.
At t ime t = 0, x occupies some state x (0) = x E X , described by

FIG U R E 27 . A harmony nel'loJlyn'��lMatemHd with a harmony funct ion .

270 BASIC M ECHANISMS

some arbitrary initial distribution, pr(x (O) = x) . Given the init ial state
x , the new state at Time 1 , x (1) , is constructed as fol lows . One of the
n coordinates of M is selected (with uniform dist ri bution) for updating.
All the other n- l coordinates of x (1) wi l l be the same as those of
x (0) = x . The updated coordinate can reta in its previous value, lead
ing to x (1) = x , or i t can fl ip to the other binary value, leading to a
new state that wi l l be denoted x' . The select ion of the value of the
updated coordinate for x (1) is stochasti cal ly chosen according to the
l i kel ihood rat io :

pr (x (1) = x') =
Po (x')

pr(x (1) = x) Po (x)

(where Po is the probabi l i ty distribut ion for t = 0 i n the given
sequence (p, } ;",_ 0) . Thi s process- randomly select a coordinate to
update and stochastically select a binary value for that coordinate- is
i terated i ndefinitely, producing states x (t) for all t imes
t = 1 , 2 , At each t ime t , the l i kel ihood ratio of values for the
stochastic choice is determined by the distribution p, .

De/. Let P be a probabi l i ty distribution . Define the one-parameter
family of distributions Pr by

Pr = Ni l p v r

where the normal ization constants are

Nr = I. P (x) v r .
x E x

T is cal led the temperature parameter. An annealing schedule T i s a
sequence of pos i t ive values (T, } ,':o that converge to zero. The anneal
ing process determined by P and T is the heat bath stochastic process
determined by the sequence of distributions , Pr . If P is the Gibbs dis-I
tr ibution determined by V , then

where

Pr (x) = Zi l e V(x)/ r

Zr = I. e V (x)/ T .
x E X

This is the same (except for the sign of the exponent) as the relation
sh i p that holds in classical stat ist ical mechanics between the probabi l i ty
P (x) of a microscopic state x , i ts energy V (x) , and the temperature T.
This is the basis for the name� " temperature " and " anneal i ng schedule ."
In the anneal ing processCfefJ(fli'iJ18tM�ut ion PH of Theorem 1 on

6. H AR MONY THEORY 2 7 1

the space M , the graph o f the harmony network has the fol lowing sig
nificance. The updat ing of a coordinate can be conceptual ized as being
performed by a processor at the corresponding node i n the graph. To
make its stochastic choice wi th the proper probabi l i t ies, a node updat ing
at t ime t must compute the ratio

PT, (x')
= e IH (x') - H (x) I! T,

PT, (x)

The exponent is the d ifference i n harmony between the two choices of
value for the updating node, di vided by the current computational tem
perature. By examin ing the defin i t ions of the harmony function and its
graph, this difference is easi ly seen to depend only on the values of
nodes connected to the updat ing node. Suppose at times t and t+ 1 two
nodes i n a harmony network are updated . If these nodes are not con
nected , then the computat ion of the second node is not affected by the
outcome of the fi rst : They are statist ically independent . These compu
tations can be performed in parallel without changing the statist ics of
the outcomes (assuming the computational temperature to be the same
at t and t+ l) . Because the graph of harmony networks is two-color,
this means there i s another stochastic process that can be used without
violat ing the val idity of the upcoming Theorem 2.27 A ll the nodes of one
color can update in parallel. To pass from x (t) to x (t+ l) , al l the nodes
of one color update in paral lel ; then to pass from x (t+ 1) to x (t+ 2) , a l l
the nodes of the other color update i n paralle l . In twice the t ime i t
takes a processor to perform an update, plus twice the t ime requi red to
pass new values along the l inks, a cycle i s completed in which an
entirely new state (potential ly different in all N + 1 0 1 coordinates) is
computed.

Theorem 2: Realizability. A : The heat bath stochastic process
determined by Pu converges, for any in i t ial distribut ion , to the dis
tribution 1T" of the cogni t ive system (R , p , 0 , 1T" , c) (Metropol is et
aI . , 1 953] . B: The annealing process determined by PH converges,
for any i ni t ial distribution , to the completion function of the cogni
t ive system, for any annealing schedule that approaches zero suffi
ciently slowly (Geman & Geman , 1 984) .

Part A of this theorem means the following. Suppose an input t is
given. Those features specified in t to have values + 1 or - 1 are

27 This is an important respect i n which harmony networks differ from the arbitrary
networks allowed in the Boltz£iOfD}fri§/bted Material

272 BASIC MECHAN ISMS

assigned the i r val ues, which are thereafter fi xed . The remammg
features are assigned random in i t ial values ; these wi l l change through
the stochastic process . Now we begin the stochastic process determined
by Pu . (The state space X is now R , and the same distribut ion Pu is
used for al l t imes .) The nonfixed variables n ip back and forth between
thei r bi nary values. As t ime progresses , the probabi l i ty of finding the
system in any state r � L approaches the maximum-entropy est imate
71" (r) (condit ioned on L , so that only completions of L have nonzero
probabi l i ty) . The meani ng of Part B of Theorem 1 is this : As in Part
A, we fi x the features specified in the input L and start the other
features off wi th random values. The activation variables are assigned
in i t ia l values, say , of O. We start the anneal ing process determined by
PH . (The state space X is now M = R x A .) The unfixed features and
all the act ivations fl ip between their val ues. The temperature drops
according to the anneal ing schedule . As t ime progresses , the probabi l
i ty of finding the system in a state other than a maximum-l i kel ihood
completion of L goes to zero. (I f there are mult iple maximum
l i ke l ihood completions, these completions become equal ly l i kely as time
progresses .)

Storing Information in H: Learning

De! (After Hinton & Sejnowski , 1 983a .) Let (R , p , 0 . 71" , c) be a
cogni t ive system. The trace learning procedure is defined i teratively as
fol lows. Init ia l ly , let X", = 0 for al l a E O . Present the system wi th a
sample of states, r , drawn from the envi ronmental distribution, P
(environmental observation) . Now store an increment for each X", equal
to the mean of x'" (r) in this sample. Next , use the current X to define
U as in Theorem 1 and use the stochastic process determined by Pu to
generate a sample of values of r from the distribution Pu , fol lowing
Theorem 2 (environmental simulation) . Now store a decrement for each
X", equal to the mean of X'" (r) in this sample . Final ly , change each X",
by the stored increment minus the decrement . Repeat this observe
envi ronment/ simulate-envi ronment/ modify-A. cycle. Throughout the
learn ing, defi ne

X ",
eT ",

= -
1
--

. - K

For smal l �X , a good approx imate way to implement this procedure is
to alternately observeCQMd1g8tmilMiteritie envi ronment in equal

6. H A R MONY THEOR Y 273

proportions , and to increment (respecti ve ly , decrement) Aa by AA each
time the feature pattern defining a appears during observation (respec
t ively, s imulation) . I t i s in this sense that (T a i s the strength of the
memory trace for the feature pattern ka defining a . Note that in learn
ing, equi l i brium is establ ished when the frequency of occurrence of
each pat tern ka during simulation equals that during observati on (i . e . ,
Aa has no net change) .

Theorem 3: Learnability. Suppose al l knowledge atoms are
independent . Then if sufficient sampl i ng is done in the t race learn
ing procedure to produce accurate estimates of the observable stat is
t ics , A and (T wi l l converge to the values requi red by Theorem 1 .

Independence of the knowledge atoms means that the functions
L�a}a E O are l inear ly independent . This means no two atoms can have
exactly the same knowledge vector. I t also means no knowledge atom
can be simply the " or " of some other atoms : for example , the atom
with knowledge vector +0 is the " or " of the atoms ++ and +- , and so
is not independent of them . (Indeed , X+o = x++ + x+- .) The sampl ing
condit ion of this theorem indicates the tradeoff between learn ing speed
and performance accuracy . By adding higher order statistics to 0
(longer patterns) , we can make 1T a more accurate representation of p
and thereby increase performance accuracy , but then learning wi l l
require greater sampl ing of the environment .

Second-Order Observables a n d the Boltzmann Machine

Consider the special case i n which the observables 0 each invol ve no
more than two features. The largest independent set of such observ
abies is the set of all observables ei ther of the form

or the form

with i <j , i . e . ,

Copyrighted Material

274 BASIC MECHANISMS

To see that the other fi rst- or second-order observations are not
i ndependent of these , consider a particular pai r of features 'i and 'j ,
and let

and

X Ob 2 = X ('j -b 2) '

Then notice:

X+- = X+o - X++

X-o = 1 - X+o

X-- = I - X++ - X+- - X-+

= I - X++ - fx+o - x++ l - fxo+ - x++ 1 .
Thus, the X -functions for al l fi rst- and second-order observations can
be l inearly generated from the set

o = (X ij) ; <j U {X ; } ;

which wi l l now be taken to be the set of observables. I wi l l abbreviate
Aa as A ;I)' and Aa as A i ' Next, consider the U function for this set , 0 : Ij I

U = L AaXa = LAijXij+ LA ;X i
a E O i <j i

= LA ijX iXj + LA iX ; , i <j i
Here I have used

which fol lows from

Now using the formula for X given above ,

I I i f '; = +
V ,' = Ih (r. + I) = O 'f I\. I I '; = _ .

Copyrighted Material

6. H A R MONY THEOR Y 27 5

If we regard the variables of the system to be the X ; i nstead of the r; ,
this formula for U can be identified wi th minus the formula for energy,
E , i n the Boltzmann machine formal ism (see Chapter 7) . The mapping
ta�es the harmony feature r; to the Bol tzmann node X I ' the harmony
parameter A i} to the Boltzmann weight W;j ' and minus the parameter A ;
to the threshold 9 ; . Harmony theory 's est imated probabi l i ty for states
of the environment , e U , i s then mapped onto the Boltzmann machine 's
est imate , e- E . For the isomorphism to be complete, the value of A
that arises from learn ing i n harmony theory must map onto the weights
and thresholds given by the Bol tzmann machine learning procedure.
This is established by the fol lowing theorem, which also i ncorporates
the preceding resul ts .

Theorem 4 . Consider a cogni t ive system wi th the above set of first
and second-order observables, O . Then the weights { wi) } i <j and
thresholds {9 ; L learned by the Boltzmann machine are related to the
parameters A- generated by the trace learn ing procedure by the rela
t ions wi} = A i} and 9; = -A ; . It fol lows that the Bol tzmann
machine energy funct ion, E , is equal to - U , and the Boltzmann
machine's estimated probabi l i t ies for environmental states are the
same as those of the cogn it ive system.

This resul t shows that the Bol tzmann criterion of minimizing the
information-theoretic distance, G , between the environmental and
estimated distributions, subject to the constraint that the estimated dis
tribution be a Gibbs distribution determined by a quadratic function ,
-E , is a consequence of the harmony theory criterion of minimizing
the information of the estimated distribution subject to environmental
constraints, in the special case that these constraints are no higher than
second order.

Proofs of the Theorems

Theorem 1. Part A : The desi red maximum-entropy distribution 71' is
the one that max imizes S (71') subject to the constraints

r, 71' (r) = 1
r E R

and

< X", > ". = p",

where < > ". denotes the expected value with respect to the distribu
t ion 7t , and {p } E 0 are the .observable �tatistics of the environment . '" '" copyngflted Matenal

276 BASIC MECH ANISMS

We introduce the Lagrange mult ip l iers A and Aa (see, for example,
Thomas , 1 968) and solve for the values of ", (r) obeying

o = a �
) I L ", (r') In ", (r')

", r r' E R

L Au [L Xa (r')", (r') - Pa] - x [L ", (r') - 1] 1 '
'" E 0 r' E R r' E R

This leads di rectly to A. Part B: Since Xa can be expressed as the pro
duct of Ika l terms each l inear i n the feature variables , the function U i s
a polynomial in the features of degree Ika l. By introducing new vari
ables aa ' U wil l now be replaced by a quadratic function H. The trick
is to write

as

1 1 i f r ·kal lka l = 1
Xa (r) = 0 otherwise

where K is chosen close enough to 1 that r 'ka/ lka l can only exceed K
by equal ing 1 . Thi s is assured by the condi t ion on K of the theorem.
Now U can be written

U (r) == L (Ta max [aa h (r , ka ») = max H (a , r)
a E 0 at> E 1 0, 1) a E A

where the strengths (T a are s imply the Lagrange mult ipl iers , rescaled:

Computing the maximum-l ikel ihood completion funct ion Cfr requires
maximizing ", (r) ex e U (r) over those r E R that are completions of the
input £ . This is equivalent to max imizing U (r) , since the exponential
function is monotonical ly increasing. But ,

max U (r) = max max H (r , a) .
r :> , r :> , a E A

Thus the maximum-l ike l ihood completion function cfr = cPu deter
mined by "' , the Gibbs distribution determined by U , is the same as
the maximum-l i kel ihood completion function cPH determined by PH ,
the Gibbs distribution d�f.IjJ_9YA«te�te that PH i s a distribution

6. H ARMONY THEORY 277

on the enlarged space M == R x A . For Theorem 3 , the condi tions
determining the Lagrange mult ip l iers (strengths) wi l l be examined.

Theorem 2. Part A: This classic result has, since Metropol is et al .
(1 953) , provided the foundation for the computer simulation of ther
mal systems. We wil l prove that the stochastic process determined by
any probabi l i ty d ist ri but ion p always converges to p . The stochastic
process x is a Marko v process with a stationary transition probability
matrix. (The probabi l i ty of making a transit ion from one state to
another is t ime- independent. This is not true of a process in which
variables are updated in a fixed sequence rather than by randomly
selecting a variab le according to some fixed probab i l i ty distri but ion .
For the sequential updat ing process , Theorem 2A st i l l holds, but the
proof is less di rect [see , for example, Smolensky , 1 98 1)) . Since only
one variable can change per t ime step, I X I steps are requ i red to com
pletely change from one state to another. However in I X I t ime steps,
any state has a nonzero probabi l i ty of changing to any other state . In
the language of stochast ic processes , this means that the process is
irreducible. I t is an important result from the theory of stochastic
processes that in a fin i te state space any i rreducible Markov process
approaches, in the above sense, a unique l imit ing distribut ion as t-oo
(Lamperti , 1 977) . It remains only to show that this l imiting distribu
t ion is p . The argument now i s that p i s a stationary distribution of the
process. This means that if at any t ime t the distribution of states of
the process is p , then at the next t ime H I (and hence at al l later
times) the distr ibut ion wi l l remain p . Once p i s known to be stat ion
ary, i t follows that p i s the unique l imit ing distribution, since we could
always start the process with distribut ion p , and i t would have to con
verge to the l imit ing distr ibut ion, al l the while remain ing i n the stat ion
ary distribution p . To show that p i s a stationary distribut ion for the
process, we assume that at t ime t the distribution of states is p . The
distribut ion at time t+ 1 is then

pr (x (t+ 1) == x) = L pr (x (I) = x') pr (x (t+ 1) = x I x (I) = x ')
x' E Xx

= L p (x') WII:' II: '
x' E Xx

The sum here runs over XII: ' the set of states that differ from x i n at
most one coordinate ; for the remaining states, the one t ime-step transi
t ion probabi l i ty Wx' x = pr(x (H I) = x lx (t) = x') is zero . Next we
use the important detailed balance condition,

p (x') Wx' x = P (x) W](](·
Copyrighted Material

278 BASIC MECHANISMS

which states that in an ensemble of systems with states distributed
according to p , the number of transit ions from x' to x is equal to the
number from x to x' . Detai led balance holds because , for the non
trivial case in which x' and x differ in the single coordinate v , the tran
s i t ion matrix W determined by the distr ibution p is

w . = p p (x)
x I v p (x) + p (x ')

where Pv is the probabi l i ty of select ing for update the coordi nate v .
Now we have

pr(x (t+ l) = x) = L p (x') WX' I = L p (x) WI I·
x' E X. x' E X.

= p (x) L Wx x' = p (x) .
y ' E X.

The last equal ity fol lows from

L Wx x' = 1
x' E X.

which simply states that the probabi l i ty of a transition from x to some
state x· is 1 . The conclusion is that the probabi l i ty distribut ion at t ime
t+ 1 remains p , which is therefore a stationary distri bution.

Part B: Part A assures us that with infin ite pat ience we can arbi trari ly
wel l approximate the distribution Pr at any fin ite temperature T. It
seems intu i t ively clear that with st i l l further patience we could sequen
tial ly approx imate in one long stochastic process a series of distr ibutions
Pr wi th temperatures T, monotonical ly decreasing to zero . This pro-I
cess would presumably converge to the zero-temperature distri bution
that corresponds to the maximum-l ikel ihood completion function . A
proof that this is true, provided

T, > C/ ln t

for suitable C , can be found in S . Geman and D . Geman (1 984) .

Theorem 3. We now pick up the analysis from the end of the proof
of Theorem 1 .

Lemma. (S . Geman , personal communicat ion , 1 984 ,) The values of
the Lagrange mult ipl iers A. = ! A-a l a E 0 defining the function U of
Theorem 2 are those that minimize the convex funct ion :

Copyrighted Material

6. H A R MONY THEORY 279

I r A.a [)Ca (r) - P a 1 /
F (A) = I n Zv (A) = I n L e

a E 0

r E R
Proof of Lemma: Note that

pu (r) = pv (r) = ZV (}..)- l e V (r)

where

V(r) = L A" lx,, (r) - p,,] = U (r) - L A-" p" .
" E O " E O

From this i t fol lows that the gradient of F i s

of
(lA- a =

< x'" > Pu - p",

The const raint that A enforces is precisely that this vanish for al l a ;
then Pu = 1f' . Thus the correct A is a cri t ical point of F . To see that
in fact the correct A is a minimum of F, we show that F has a
pos i t ive-defin i te matrix of second-partial deri vat i ves and is therefore
convex . It is straightforward to verify that the quadrat ic form

a 2 F L q q,,' " ,,,,' E O
"

OA-" (lA-,,'

i s the variance

< (Q - < Q >p)2 > Pu

of the random variable Q defined by Q (r) = L q" x'" (r) . Th is
" E O

variance is clearly nonnegative definite . That Q cannot vanish i s
assured by the assumption that the Xa are l inearly independent . Since a
Gibbs dist r ibut ion Pu is nowhere zero, th is means that the variance of
Q is posit ive, so the Lemma is proved .

Proof of Theorem 3 : Si nce F is convex , we can find i ts min imum, A- ,

by gradient descent from any start ing point . The process of learn ing
the correct A , then, can proceed in time accord ing to the gradient des
cent equat ion

dA" o f � ex: - aA"
= - « X,, > pu - p",) = < X"' > P - < X,, > pu

where it is understood that the funct ion U changes as A. changes . The
two phases of the t race learn ing procedure generate the two terms in
this equat ion. In the e�tttalA6IImJjalltt ion phase, the i ncrement

280 BASIC M ECHANISMS

< Xa> p i s estimated� in the envi ronmental s imulat ion phase , the decre
ment < Xa > pu is estimated (fol lowing Theorem 2) . By hypothesis,
these estimates are accurate. (That is , th is theorem treats the ideal case
of perfect samples, with sample means equal to the true population
means .) Thus A wi l l converge to the correct val ue. The proport ional
relat ion between CT and A was derived in the proof of Theorem 1 .

Theorem 4. The proof of Theorem 3 shows that the trace learning
procedure does gradient descent in the function F . The Bol tzmann
learning procedure does gradient descent in the function G :

Pu (r) G (A) = -L P (r) In --
r P (r)

where, as always , the function U impl ic i t ly depends on A . Theorem 4
wi l l be proved by showing that i n fact F and G differ by a constant
i ndependent of A , and therefore they define the same gradient descent
trajectories . From the above definit ion of V, we have

V (r) = U (r) - L Aa < Xa > = U (r) - < U>
a E O

where , here and henceforth , < > denotes expectation values with
respect to the envi ronmental distribution p . This impl ies

i .e . ,

Zv = Zu e-< u> .
By the defin i t ion of F ,

F = I n Zv = In Zu - < U> = < I n Zu - U > .

To evaluate the last quant i ty in angle brackets , note that

pu (r) = ZiJ l e U (r)
implies

In pu (r) = - ln Zu + U (r)
so that the preceding equation for F becomes

F = < In Zu - U > = - < I npu > = - L P (r) InPu (r) .
Copyrighted Material

6. HARMONY THEOR Y 2 8 1

Now,

G = - LP (r) In pu (r) + !:p (r) Inp (r) ,

so we have

G ().) = F ().) - S (P) .
Thus, as claimed , G i s just F minus a constant that i s independent of
). : the entropy of the envi ronment .

Copyrighted Material

CHAPTER 7

Learning and Relearning in Boltzmann Machines

G. E. HINTON and T. 1. SEJNOWSKI

Many of the chapters in this volume make use of the ability of a paral
lel network to perform cooperative searches for good solutions to prob
lems. The basic idea is simple: The weights on the connections
between processing units encode knowledge about how things normally
fit together i n some domain and the initial states or external i nputs to a
subset of the uni ts encode some fragments of a structure within the
domain. These fragments const i tute a problem: What is the whole
structure from which they probably came? The network computes a
"good solution" to the problem by repeatedly updat ing the states of
units that represent possible other parts of the st ructure unt i l the net
work eventually settles into a stable state of activity that represents the
solution.

One field in which this style of computation seems particularly
appropriate is vision (Ballard, Hinton, & Sejnowsk i , 1983). A visual
system must be able to solve large constraint-satisfaction problems
rapidly in order to interpret a two-dimensional i ntensity image in terms
of the depths and orien tat ions of the three-dimensional surfaces in the
world that gave rise to that image . In general, the informat ion in the
image is not sufficient to specify the three-dimensional surfaces unless
the interpretive process makes use of addit ional plaus ible constraints
about the k inds of st ructures that typically appear. Ne ighbor ing pieces
of an i mage, for example, usually depict fragments of surface that have
si milar depths, similar surface orientations, and the same reflectance.
The most plausible interpretation of an image is the one that satisfies

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 283

constraints of thi s kind as well as possible , and the human visual sys
tem stores enough plausible constraints and is good enough at apply ing
them that i t can arrive at the correct interpretation of most normal
images.

The computat ion may be performed by an iterative search which
starts wi th a poor interpretation and progressively improves it by reduc
ing a cost function that measures the extent to which the current
interpretation violates the plausible constraints. Suppose, for example,
that each unit stands for a smal l three-dimensional surface fragment,
and the state of the unit i ndicates the current bet about whether that
surface fragment i s part of the best three-dimensional interpretat ion.
Plausible constraints about the nature of surfaces can then be encoded
by the pairwise i nteractions between processing elements. For
example, two units that stand for neighboring surface fragments of
simi lar depth and surface orientation can be mutually excitatory to
encode the constrai nts that each of these hypotheses tends to support
the other (because objects tend to have continuous surfaces) .

RELAXATION SEARCHES

The general idea of us ing parallel networks to perform relaxation
searches that simultaneously satisfy mU l t i ple constraints is appealing. It
might even provide a successor to telephone exchanges, holograms, or
communi ties of agents as a metaphor for the style of computation in
cerebral cortex. But some tough techn ical questions have to be
answered before this style of computation can be accepted as e i ther
efficient or plausible:

• Wi1\ the network settle down or will it osci1\ate or wander aim
lessly?

• What does the network compute by set t l ing down? We need
some characterizati on of the computation that the network per
forms other than the network itself . Ideally we would l i ke to
be able to say what ought to be computed (Marr , 1982) and
then to show that a network can be made to compute i t .

• How long does the network take to sett le on a solution? If
thousands of iterations are requi red the method becomes
implausible as a model of how the cortex solves constraint
satisfaction problems .

Copyrighted Material

284 BASIC MECHAN ISMS

• How much information does each unit need to convey to i ts
neighbors? In many relaxation schemes the units communicate
accurate real values to one another on each iteration. Again
this is implausible if the units are intended to be l ike cortical
neurons which communicate using al l -or-none spikes. To send
a real-value, accurate to with in 5%, using firing rates requires
about 100 ms which is about the t ime allowed for the whole
iterative process to settle down .

• How are the weights that encode the knowledge acquired? For
models of low-level vision it is possible for a programmer to
decide 6n the weights, and evolution might do the same for the
earl iest stages of biological visual systems . But if the same kind
of constraint-satisfaction searches are to be used for higher
level functions l ike sh.ape recognit ion or content-addressable
memory , there must be some learning procedure that automati
cal ly encodes properties of the domain into the weights .

This chapter is mainly concerned with the last of these questions, but
the learning procedure we present is an unexpected consequence of our
attempt to answer the other questions, so we shall start with them.

Relaxation, Optimization, and Weak Constraints

One way of ensuring that a relaxation search is computing something
sensible (and wil l eventually settle down) is to show that it is solving an
optimization problem by progressively reducing the value of a cost
function . Each possible state of activity of the network has an associ
ated cost, and the rule used for updating activity levels is chosen so
that this cost keeps fall ing. The cost function must be chosen so that
low-cost states represent good solutions to problems i n the domain.

Many optimization problems can be cast in a framework known as
l inear programming. There are some variables which take on real
values and there are l inear equal ity and inequality constraints between
variables. Each combination of values for the variables has an associ
ated cost which is the sum over al l the variables of the current value
times a cost-coefficient. The aim is to find a combination of values
that satisfies al l the constraints and minimizes the cost function . If the
variables are further constrained to take on only the values 1 or 0 the
problem is cal led zero-one programming. Hinton (1977) has shown
that certain zero-one programming problems can be implemented as
relaxation searches in parallel networks. This al lows networks to find

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 285

good solutions to problems in which there are d iscrete hypotheses that
are true or false . Even though the al lowable solut ions all assign values
of 1 or 0 to the hypotheses, the relaxat ion process works by passing
through i ntermediate states in which hypothesis units have real-valued
activity levels lying between 1 and O. Each constraint is enforced by a
feedback loop that measures the amount by which the current values
violate the constraint and tries to alter the val ues of the variables to
reduce this violation .

Linear programming and i ts variants make a sharp distinction
between constraints (which must be sati sfied) and costs . A solution
which achieves a very low cost by violati ng one or two of the con
straints is simply not al lowed. In many domains, the distinct ion
between constraints and costs is not so clear-cut . In vision, for
example, i t is usually helpful to use the constraint that neighboring
pieces of surface are at similar depths because surfaces are mostly con
tinuous and are rarely parallel to the l ine of sight . But this is not an
absolute constraint . It doesn't apply at the edge of an object. So a
visual system needs to be able to generate interpretations that violate
this constraint if i t can satisfy many other constraints by doing so.
Constraints l ike these have been called "weak" constraints (Blake, 1983)
and i t i s possible t o formulate opt imization problems in which all the
constraints are weak and there is no distinction between constraints and
costs. The optimal solution i s then the one which minimizes the total
constraint violation where different constraints are given differen t
strengths depending on how reliable they are. Another way of saying
this i s that a l l the constraints have associated plausibi l i t ies , and the
most plausible solut ion is the one which fits these plausible constraints
as wel l as possible.

Some relaxation schemes dispense with separate feedback loops for
the constraints and implement weak constraints directly in the excita
tory and inhibi tory interactions between units . We would l i ke these
networks to settle into states in which a few un i ts are ful ly acti ve and
the rest are inactive. Such states constitute clean "digi tal" interpreta
tions. To prevent the network from hedging its bets by settl ing i nto a
state where many uni ts are sl ightly active, i t is usually necessary to use
a strongly nonlinear decision rule, and this also speeds convergence.
However, the strong nonl inearities that are needed to force the network
to make a decision also cause i t to converge on different states on d if
ferent occasions: Even wi th the same external inputs, the final state
depends on the in i t ial state of the net. This has led many people (Hop
field, 1982; Rosenfeld, Hummel , & Zucker, 1976) to assume that the
particular problem to be solved should be encoded by the i nit ial state of
the network rather than by sustained external inpu t to some of i ts
units.

Copyrighted Material

286 BASIC MECHANISMS

Hummel and Zucker (I983) and Hopfield (I982) have shown that
some relaxat ion schemes have an associated "potential " or cost function
and that the states to which the network converges are local min ima of
this function . This means that the networks are performing opt i miza
t ion of a well-defined function. Unfortunately, there is no guarantee
that the network wi l l find the best mini mum. One possibility is to
redefine the problem as finding the local min imum which is closest to
the i ni t ial state. This is usefu l if the minima are used to represent
"i tems" in a memory, and the i ni t ia l states are queries to memory
which may contai n missing or erroneous information. The network
simply finds the minimum that best fits the query. This idea was used
by Hopfield (1982) who i ntroduced an interest ing kind of network in
which the un i ts were always i n one of two states. 1 Hopfield showed that
if the uni ts are symmetrical ly connected (Le., the weight from unit i to
un i t j exactly equals the weight from unit j to unit ;) and if they are
updated one at a t ime, each update reduces (or at worst does not
i ncrease) the value of a cost function which he called "energy" because
of the arialogy with physical systems. Consequent ly, repeated i terations
are guaranteed to find an energy minimum. The global energy of the
system is defined as

E = - L wijs;Sj + L9;s;
;<j ;

(1)

where wij is the strength of connection (synaptic weight) from the jth
to the ith unit, SI i s the state of the i th un i t (0 or 1), and 9 I is a
threshold .

The updat ing rule is t o switch each unit into whichever o f i t s two
states yields the lower total energy given the current states of the other
units . Because the connect ions are symmetrical, the difference between
the energy of the whole system with the kth hypothesis false and its
energy with the k th hypothesis t rue can be determined l ocal ly by the
k th un i t , and i s just

AEk = LWklSI - 9k. ;
(2)

Therefore, the rule for mini mizing the energy contributed by a unit is
to adopt the true state if i ts total i nput from the other units exceeds its
threshold. This is the fami liar rule for binary threshold units .

t Hoplield used the states 1 and - 1 because his model was derived from physical sys
tems called spin glasses in which spins are either "up" or "down." Provided the units
have thresholds, models that use 1 and -1 can be translated into models that use 1 and 0
and have different thresholds.

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHI N ES 287

Using Probabilistic Decisions to Escape From Local Minima

At about the same t ime that Hopfield showed how paral lel networks
of this kind could be used to access memories that were stored as local
minima, Kirkpatrick , working at IBM, introduced an interesting new
search technique for solving hard optimization problems on conven
tional computers.

One standard technique i s to use gradient descent: The values of the
variables in the problem are modified in whatever di recti on reduces the
cost function (energy) . For hard problems, gradient descent gets stuck
at local min ima that are not global ly opt imal. Th is is an inevi table
consequence of only allowing downhill moves. If jumps to higher
energy states occasionally occur , it is possible to break out of local
minima, but it is not obvious how the system will then behave and it i s
far from clear when uphill steps should be al lowed.

Kirkpatrick, Gelatt, and Vecchi (I 983) used another physical analogy
to guide the use of occasional uphill steps . To find a very low energy
state of a metal. the best st rategy is to melt it and then to slowly reduce
its temperature . This process is cal led anneali ng, and so they named
thei r search method "simulated anneal i ng." Chapter 6 contains a dis
cussion of why annealing works. We gi ve a s imple intui tive account
here.

One way of seeing why thermal noise is helpful is to consider the
energy landscape shown in Figure 1 . Let us suppose that a bal l -bearing
starts at a randomly chosen point on the landscape. If i t always goes
downhill (and has no i nertia), it wi l l have an even chance of ending up
at A or B because both minima have the same width and so the in i t ial

A

B

FIGURE I. A simple energy landscape containing two local minima separated by an

energy barrier. Shaking can be used to allow the state of the network (represented here
by a ball-bearing) to escape fr�glitf1rJaMaterial

288 BASIC MECHANISMS

random point is equal ly l ike ly to l ie in either minimum. If we shake
the whole system, we are more l i kely to shake the ball-bearing from A
to B than vice versa because the energy barrier is lower from the A
side. If the shaking is gent le, a transi t ion from A to B will be many
times as probable as a t ransi t ion from B to A, but both transit ions wi l l
be very rare . So although gentle shaking will ultimately lead to a very
high probabili ty of being in B rather than A, i t wi l l take a very long
t ime before this happens. On the other hand, if the shaking is violent ,
the ball-bearing wi l l cross the barrier frequently and so the ult imate
probabi l i ty rat io will be approached rapidly , but th is ratio will not be
very good: With violent shaking it is almost as easy to cross the barrier
in the wrong direction (from B to A) as in the right direction . A good
compromise is to start by shaking hard and gradually shake more and
more gently . This ensures that at some stage the noise level passes
through the best possible compromise between the absolute probabi l i ty
of a transit ion and the ratio of the probabi l i ties of good and bad transi
t ions. I t also means that at the end, the bal l-bearing stays right at the
bottom of the chosen minimum.

This view of why anneal ing helps i s not the whole story . Figure 1 is
misleading because al l the states have been laid out in one dimension .
Complex systems have high-dimensional state spaces , and so the barrier
between two low-lying states i s typical ly massively degenerate: The
number of ways of getting from one low-lying state to another is an
exponential function of the height of the barrier one is will ing to cross .
This means that a rise in the level of thermal noise opens up an enor
mous variety of paths for escaping from a local minimum and even
though each path by i tself is unl i kely , it is highly probable that the sys
tem wi l l cross the barrier. We conjecture that simulated anneal ing wi l l
only work well in domains where the energy barriers are highly
degenerate.

Applying Simulated Annealing to Hopfield Nets

There is a simple modificat ion of Hopfield's updat ing rule that al lows
paral lel networks to implement simulated anneal ing. If the energy gap
between the 1 and 0 states of the k th uni t is AEk then , regardless of
the previous state set, Sk = 1 with probabi l i ty

(3)

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 289

where T i s a parameter which acts l i ke the temperature of a physical
system. This local decis ion rule ensures that in thermal equi l i bri um the
relat ive probabi l i ty of two global states is determined solely by thei r
energy d ifference, and fol lows a Boltzmann distr i bution:

Pa = e-(E",-E/3)/T
P�

(4)

where Pa i s the probabi l i ty of being in the ath global state , and Ea i s
the energy of that state.

At low temperatures there is a strong bias in favor of states with low
energy, but ·the t ime requi red to reach equil ibr ium may be long. At
higher temperatures the bias is not so favorable, but equ i l ibr ium is
reached faster. The fastest way to reach equ i l i bri um at a gi ven tem
perature i s general ly to use s imulated anneal ing: Start with a h igher
temperature and gradually reduce i t .

The idea of implement ing constra ints as interactions between sto
chast ic processing elements was proposed by Moussouris (974) who
discussed the identity between Bol tzmann distr i butions and Markov
random fields. The idea of using simulated anneal ing to find low
energy states i n paral lel networks has been investigated independently
by several d ifferent groups. S. Geman and D. Geman (1 984) esta
blished l imits on the al lowable speed of the anneal i ng schedule and
showed that s imulated anneal ing can be very effecti ve for removing
noise from i mages. Hinton and Sejnowski 0983b) showed how the use
of binary stochast ic elements could solve some problems that plague
other relaxation techniques, in particular the problem of learning the
weights . Smolensky (983) has been investigat ing a s imi lar scheme
which he calls " harmony theory." Thi s scheme is d iscussed i n detail i n
Chapter 6 . Smolensky's harmony i s equi valent to our energy (wi th a
sign reversal) .

Pattern Completion

One way of using a paral le l network is to t reat it as a pattern comple
t ion device. A subset of the units are "clamped" i nto their on or off
states and the weights in the network then complete the pattern by
determining the states of the remain ing uni ts . There are strong l imi ta
tions on the sets of binary vectors that can be learned i f the network
has one un i t for each component of the vector. These l imits can be
transcended by using extra units whose states do not correspond to
components i n the vectors to be learned . The weights of connections
to these extra units can e8p�/9drNPJIiJWBl complex interactions that

290 BASIC MECHANISMS

cannot be expressed as pairwise correlations between the components
of the vectors . We call these extra units hidden units (by analogy with
hidden Markov processes) and we call the units that are used to specify
the patterns to be learned the visible units. The visible un i ts are the
interface between the network and the environment that specifies vec
tors for it to learn or asks it to complete a partial vector. The hidden
units are where the network can bui ld i ts own internal representations.

Someti mes, we would l i ke to be able to complete a pattern from any
sufficiently large part of it without knowing in advance which part will
be gi ven and which part must be completed . Other times we know in
advance which parts wi l l be given as i nput and which parts wi l l have to
be completed as output . So there are two different completion para
digms. In the first, any of the visible units might be part of the
required output . In the second , there is a dist inguished subset of the
visible units, cal led the input uni ts, which are always clamped by the
environment, so the network never needs to determine the states of
these units.

EASY AND HARD LEARNING

Consider a network which is al lowed to run freely , using the proba
bi l istic decision rule in Equation 3, without having any of i ts units
clamped by the envi ronment. When the network reaches thermal
equilibrium, the probabi l i ty of finding it in any particular global state
depends only on the energy of that state (Equation 4) . We can there
fore control the probabi l i ties of global states by control l ing their ener
gies. If each weight only contributed to the energy of a single global
state, thi s would be straightforward, but changing a weight wi l l actually
change the energies of many different states so it is not immediately
obvious how a weight-change wi l l affect the probability of a part icular
global state. Fortunately, if we run the network unt i l it reaches thermal
equil i brium, Equations 3 and 4 allow us to derive the way in which the
probability of each global state changes as a weight is changed:

(5)

where st is the binary state of the i th unit in the a th global state and
P;; is the probabi l i ty, at thermal equi l i br ium, of global state a of the
network when none of the vi s ible units are clamped (the lack of clamp
ing is denoted by the superscript -) . Equation 5 shows that the effect

Copyrighted Material

7. LEARNING IN BOLTZMANN MACH I N ES 291

of a weight on the log probabi l i ty of a global state can be computed
from purely local informat ion because i t only involves the behavior of
the two units that the weight connects (the second term is just the
probabi l i ty of finding the ith and jth units on together) . This makes it
easy to manipulate the probabi l i t ies of global states provided the desi red
probabi l i t ies are known (see Hinton & Sejnowski , 1 983a, for detai ls) .

Unfortunately, i t is normally unreasonable to expect the environment
or a teacher to specify the requi red probabi l i t ies of ent i re global states
of the network. The task that the network must perform is defined in
terms of the states of the vis ible uni ts , and so the environment or
teacher only has d irect access to the states of these uni ts . The difficul t
learning problem is to decide how to use the hidden units to help
achieve the requi red behavior of the vis ible uni ts . A learn ing rule
which assumes that the network i s i nstructed from outside on how to
use all of i ts units i s of l imi ted interest because i t evades the main
problem which i s to discover appropriate representations for a given
task among the hidden uni ts .

In statistical terms, there are many kinds of statist ical structure impl i
ci t in a large ensemble of envi ronmental vectors. The separate proba
bi l i ty of each visible uni t being act ive is the first-order structure and
can be captured by the thresholds of the visible uni ts. The v2/2 pai r
wise correlations between the v visible units consti tute the second
order structure and this can be captured by the weights between pai rs of
uni ts.2 All structure higher than second-order cannot be captured by
pai rwise weights between the visible units. A simple example may help to
clarify this crucial poin t .

Suppose that the ensemble consists of the vectors: (I 1 0) , (I 0 0,
(0 1 0, and (00 0) , each with a probabi l i ty of 0 . 25. There is clearly
some structure here because four of the eight possible 3 -b i t vectors
never occur. However, the structure i s enti rely th i rd-order . The fi rst
order probabi l i t ies are all 0. 5 , and the second-order correlations are al l
0, so if we consider only these stat ist ics, this ensemble is indistinguish
able from the ensemble in which all eight vectors occur equiprobably.

The Widrow-Hoff rule or perceptron convergence procedure (Rosen
blatt , 1 962) is a l earning ru le which is designed to capture second-order
structure and it therefore fai ls miserably on the example just gi ven. If
the fi rst two bits are treated as an input and the last bi t is t reated as the
required output , the ensemble corresponds to the function "exclusi ve
or" which is one of the examples used by Minsky and Papert (I969) to
show the strong l imi tations of one-layer perceptrons. The Widrow-Hoff

2 Factor analysis confines itself to capturing as m uch of the second-order structure as
possible in a few underlying "factors." It ignores al l higher order structure which is where
much of the interesting infor�lftedIVWBt�ost simple ensembles of vectors.

292 BASIC MECHANISMS

rule can do easy learning, but it cannot do the kind of hard learning
that involves decid ing how to use extra units whose behavior is not
di rectly specified by the task.

It is tempting to think that networks with pai rwise connections can
never capture higher than second-order stat istics. There is one sense in
which this is true and another in which it is false. By introducing extra
units which are not part of the definit ion of the original ensemble , it is
possible to express the thi rd-order structure of the original ensemble in
the second-order structure of the larger set of uni ts. In the example
given above , we can add a fourth component to get the ensemble
{ (1 1 0l) , (1 0 1 0) , (01 1 0) , (OOOO) }. It is now possible to use the thresh
olds and weights between all four uni ts to express the thi rd-order struc
ture in the fi rst three components. A more famil iar way of saying this
i s that we introduce an extra "feature detector" which in this example
detects the case when the fi rst two units are both on. We can then
make each of the fi rst two units excite the th i rd unit , and use strong
inhibi t ion from the feature detector to overrule this excitation when
both of the fi rst two uni ts are on. The difficult problem in introducing
the extra unit was deciding when it should be on and when i t should be
off -deciding what feature it should detect .3

One way of thinking about the higher order structure of an ensemble
of environmental vectors is that it implici tly specifies good sets of
underlying features that can be used to model the structure of the
environment. In common-sense terms, the weights in the network
should be chosen so that the h idden units represent significant underly
ing features that bear strong, regular relationshi ps to each other and to
the states of the visible units . The hard learn ing problem is to figure
out what these features are , i .e . , to find a set of weights which turn the
hidden units into useful feature detectors that expl ic it ly represent
properties of the envi ronment which are only impl ic i tly present as
higher order statist ics in the ensemble of environmental vectors.

Maximum Likelihood Models

Another view of learning is that the weights in the network consti
tute a generati ve model of the environment-we would li ke to find a
set of weights so that when the network is running freely , the patterns
of acti vity that occur over the visi ble units are the same as they would
be if the environment was clamping them. The number of units in the

3 In this example there are six different ways of using the extra unit to solve the task.

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 293

network and thei r interconnect iv i ty define a space of possi ble models of
the envi ronment , and any part icular set of weights defines a part icular
model withi n this space. The learning problem is to fi nd a combination
of weights that gi ves a good model gi ven the limitations imposed by the
archi tecture of the network and the way i t runs.

More formal ly, we would l i ke a way of finding the combination of
weights that is most l i ke ly to have produced the observed ensemble of
environmental vectors. This i s cal led a maximum likelihood model and
there is a large l iterature wi thin stat ist ics on maximum l i kel ihood est i
mation . The learning procedure we describe actually has a close rela
t ionship to a method cal led Expectation and Maximizat ion (EM)
(Dempster, Lai rd , & Rubin , 1976). EM is used by stat ist icians for
est imati ng missing parameters . It represents probabil ity distri but ions by
using parameters l i ke our weights that are exponential ly related to
probabi l i t ies, rather than usi ng probabi l i t ies themselves. The EM algo
rithm is closely related to an earl ier algorithm invented by Baum that
manipulates probabi l i t ies d irectly. Baum's algorithm has been used suc
cessful ly for speech recogni t ion (Bahl, Jelinek, & Mercer , 1983). It
est imates the parameters of a hidden Markov chai n-a transit ion net
work which has a fixed structure but variable probabi l i t ies on the arcs
and variable probabi l i t ies of emitt ing a part icular output symbol as i t
arrives at each i nternal node. Gi ven an ensemble of strings of symbols
and a fixed-topology transi t ion network , the algori thm fi nds the combi
nation of transi t ion probabi l i t ies and output probabilities that is most
l ikely to have produced these strings (actually it only finds a local max
imum) .

Maximum l ikel ihood methods work by adjust ing the parameters to
increase the probabi l i ty that the generative model will produce the
observed data . Baum's algori thm and EM are able to estimate new
values for the probabil i t ies (or weights) that are guaranteed to be better
than the previous values. Our algori thm simply estimates the gradient
of the log l i ke l ihood with respect to a weight, and so the magnitude of
the weight change must be decided using addit ional criteria. Our algo
ri thm, however, has the advantage that it is easy to i mplement in a
paral lel network of neuron-l i ke units .

The idea of a stochastic generative model is attractive because i t pro
vides a clean quant i tat ive way of comparing al ternat ive representational
schemes . The problem of saying which of two representational schemes
is best appears to be intractable. Many sensible rules of thumb are
available, but these are general ly pulled out of th in air and just ified by
commonsense and practical experience . They lack a fi rm mathematical
foundat ion . If we confine ourselves to a space of al lowable stochastic
models, we can then get a simple Bayesian measure of the qual i ty of a
representational schem�o�t�8W"atifriaJ1e observed ensemble of

294 BASIC MECHANISMS

envi ronmental vectors gi ven the representational scheme? In our net
works, representations are patterns of acti vity in the units, and the
representational scheme therefore corresponds to the set of weights that
determines when those patterns are active .

THE BOLTZMANN MACHINE LEARNING ALGORITHM

If we make certa in assumptions it is possible to derive a measure of
how effectively the weights in the network are being used for modeling
the structure of the environment, and i t is also possible to show how
the weights should be changed to progressi vely improve this measure.
We assume that the environment clamps a particular vector over the
visible units and it keeps it there long enough for the network to reach
thermal equil ibrium with this vector as a boundary condi t ion (i . e. , to
" interpret" i t) . We also assume (unrealist ically) that the there is no
structure in the sequential order of the environmentally clamped vec
tors. This means that the complete structure of the ensemble of
environmental vectors can be specified by giving the probabili ty,
P +(Va) , of each of the 2v vectors over the v vis ible units . Notice that
the P + (Va) do not depend on the weights in the network because the
environment clamps the visible uni ts.

A particular set of weights can be said to consti tute a perfect model
of the structure of the environment if it leads to exactly the same
probability distribution of visible vectors when the network is running
freely with no units being clamped by the environment. Because of the sto
chastic behavior of the units , the network will wander through a variety
of states even with no environmental input and it will therefore gen
erate a probability distribution, P - (Va), over all 2v visible vectors.
This distribution can be compared with the environmental distribution,
P + (Va) ' In general, i t wi l l not be possi ble to exactly match the 2v
environmental probabi l i t ies using the weights among the v visible and
h hidden units because there are at most (v+ h-l)(v+ h) / 2
symmetrical weights and (v+ h) thresholds. However, i t may be possi
ble to do very well if the environment contains regulari t ies that can be
expressed in the weights. An information theoretic measure (Kullback,
1 959) of the distance between the environmental and free-running
probabi l i ty distri butions is gi ven by:

G= � P +(V) ln P +(Va)
� a P -(V) a a

(6)

where P +(Va) is the p�6�tOpMeJ��/state of the visible units in

7. LEAR NING IN BOLTZMANN MACHINES 295

phase+ when their states are determined by the environment, and
p-(Va) is the corresponding probability in phase- when the network is
running freely with no env i ronmental i nput .

G is never negati ve and is only zero if the distributions are identical.
G is actually the distance in bits /rom the free running distribution to
the environmental distribut ion.4 It is someti mes called the asymmetric
divergence or information gain . The measure is not symmetric with
respect to the two distri butions. This seems odd but is actually very
reasonable. When trying to approximate a probabi l i ty distri bution , i t i s
more important to get t he probabil ities correct for events that happen
frequently than for rare events . So the match between the actual and
predicted probabilities of an event should be weighted by the actual
probabi l i ty as in Equation 6.

It is possible to i mprove the network's model of the structure of i ts
env i ronment by changing the weights so as to reduce G. 5 To perform
gradient descent in G, we need to know how G will change when a
weight is changed. But changing a single weight changes the energies
of one quarter of all the global states of the network, and it changes the
probabil ities of al l the states in ways that depend on all the other
weights in the network. Consider, for example, the very simple net
work shown in Figure 2. If we want the two un i ts at the ends of the
chain to be either both on or both off, how should we change the
weight W),4? It clearly depends on the signs of remote weights like w1,2
because we need to have an even number of inhibitory weights i n the
chain .6 So the partial deri vative of G with respect to one weight
depends on al l the other weights and minimizing G appears to be a

input
unit

output
unit

FIGURE 2. A very simple network with one input unit, one output unit, and two hidden
units. The task is to make the output unit adopt the same state as the input unit. The
difficulty is that the correct value for weight w3,4 depends on remote information like the

value of weight wl,2'

4 If we use base 2 logarithms.

5 Peter Brown (personal communication) has pointed out that minimizing G is

equivalent to maximizing the log of the likelihood of generating the environmental

probability distribution when the network is running freely at equilibrium.

6 The thresholds must also ted�J1rJrffiMff�t'tflral

296 BASIC MECHANISMS

difficult computational problem that requi res nonlocal information.
Fortunately, all the infOimation that is required about the other

weights in order to change wi} appropriately shows up in the behavior
of the ith and jth units at thermal equ i l i br ium. In addi t ion to perform
ing a search for low energy states of the network , the process of reach
ing thermal equi l i brium ensures that the joint activi ty of any two units
contains al l the informati on required for changing the weight between
them in order to give the network a better model of its environment.
The joi nt act iv i ty impl ic it ly encodes information about all the other
weights in the network . The Appendix shows that

aG 1 [+ _] � = - -T Pi} - Pi) uWIJ
(7)

where Pij is the probabi l ity , averaged over al l envi ronmental inputs and
measured at equ i l ibri um, that the ith and jth units are both on when
the network is being dri ven by the envi ronment , and pi; is the
corresponding probability when the network is free running. One
surprising feature of Equation 7 is that it does not matter whether the
weight is between two visible uni ts, two hidden uni ts, or one of each .
The same rule appl ies for the gradient of G

Unlearning

Crick and Mitchison (I983) have suggested that a form of reverse
learning might occur during REM sleep i n mammals. Their proposal
was based on the assumption that paras i t ic modes develop in large net
works that hinder the distributed storage and retrieval of information.
The mechanism that Crick and Mitchison propose i s based on

More or less random st imulation of the forebrain by the brain
stem that wi l l tend to st imulate the inappropriate modes of
brain act ivity . . . and especial ly those which are too prone to be
set off by random noise rather than by highly st ructured
specific signals. (p. 1 1 2)

During this state of random excitation and free running they postulate
that changes occur at synapses to decrease the probabi l i ty of the
spurious states .

A s imulation of reverse learning was performed by Hopfield, Fein
stein , and Palmer (I983) who independently had been studying ways to
improve the associati ve storage capaci ty of simple networks of binary
processors (Hopfield, 1982) . In thei r algori thm an input is presented to
the network as an in i t iac88W1jp,�&t tWcHeHm system evolves by fal l ing

7. LEARNING IN BOLTZMANN MACHINES 297

into a nearby local energy min i mum. However, not all local energy
minima represent stored information. In creat ing the desired min ima ,
they accidentally create other spurious min ima, and to el iminate these
they use "unlearning": The learn ing procedure is appl ied with reverse
sign to the states found after start ing from random init ial conditions.
Following this procedure, the performance of the system in accessi ng
stored states was found to be improved.

There is an i nteresting relationshi p between the reverse learn ing pro
posed by Crick and Mitchison and Hopfield et at . and the form of the
learni ng algori thm which we derived by consideri ng how to min imize
an information theory measure of the discrepancy between the environ
mental structure and the network's internal model (Hinton &
Sejnowski, 1983b) . The two phases of our learning algori thm resemble
the learning and unlearning procedures: Posit ive Hebbian learning
occurs in phase+ during which information in the environment is cap
tured by the weights; during phase- the system randomly samples states
according to their Boltzmann distr ibut ion and Hebbian learning occurs
wi th a negati ve coefficient.

However, these two phases need not be implemented in the manner
suggested by Crick and Mitchison. For example, during phase- the
average co-occurrences could be computed without making any changes
to the weights. These averages could then be used as a baseline for
making changes during phase+; that is, the co-occurrences during
phase+ could be computed and the baseli ne subtracted before each per
manent weight change. Thus, an alternative but equivalent proposal for
the function of dream sleep is to recal i brate the baseline for
plasticity-the break-even point which determines whether a synaptic
weight is i ncremented or decremented. This would be safer than mak
ing permanent weight decrements to synaptic weights during sleep and
solves the problem of deciding how much" unlearning" to do.

Our learni ng algori thm refines Crick and Mitchison's in terpretation
of why two phases are needed. Consider a hidden unit deep within the
network: How should i ts connections with other units be changed to
best capture regularity present i n the environment? If i t does not
receive di rect input from the envi ronment, the hidden uni t has no way
to determine whether the information it receives from neighbori ng
units i s ultimately caused by structure in the environment or is ent i rely
a result of the other weights. This can lead to a "folie a deux" where
two parts of the network each construct a model of the other and
ignore the external environment. The contr ibut ion of in ternal and
external sources can be separated by compari ng the co-occurrences i n
phase+ with similar information that is collected i n the absence of
environmental input. phase- thus acts as a control condi t ion. Because
of the special properties��Hhf�te,w,possible to subtract off thi s

298 BASIC MECHANISMS

purely internal contri bution and use the difference to update the
weights . Thus, the role of the two phases is to make the system maxi
mally responsive to regularities present i n the environment and to
prevent the system from using i ts capaci ty to model internally
generated regulari ties.

Ways in Which the Learning Algorithm Can Fail

The abi l i ty to discover the partial derivative of G by observing Pit
and pi; does not completely determine the learning algorithm. It is st i l l
necessary to decide how much to change each weight , how long to col
lect co-occurrence statistics before changing the weight, how many
weights to change at a time, and what temperature schedule to use dur
i ng the anneal ing searches. For very simple networks in very simple
environments, i t is possib le to discover reasonable values for these
parameters by trial and error. For more complex and interesting cases ,
serious difficulties arise because it is very easy to violate the assump
tions on which the mathematical results are based (Derthick, 1984) .

The fi rst d ifficu l ty is that there is noth ing to prevent the learning
algori thm from generating very large weights which create such high
energy barriers that the network cannot reach equil ibrium i n the al lot
ted time. Once this happens, the statistics that are collected wi l l not be
the equi l ibr ium statistics required for Equation 7 to hold and so all bets
are off. We have observed this happening for a number of different
networks. They start off learning quite wel l and then the weights
become too large and the network "goes sour" -its performance
deteriorates dramat ically,

One way to ensure that the network gets close to equi l ibr ium is to
keep the weights smal l . Pearl mutter (personal communication) has
shown that the learn ing works much better i f, in addit ion to the we ight
changes caused by the learni ng, every weight cont inual ly decays towards
a value of zero, with the speed of the decay being proportional to the
absolute magnitude of the weight. This keeps the weights small and
eventually leads to a relat ively stable situation in which the decay rate
of a weight is balanced by the partial derivative of G with respect to the
weight . This has the satisfactory property that the absolute magni tude
of a weight shows how important i t is for model ing the environmental
structure .

The use of weight-decay has several other consequences which are
not so des i rab le . Because the weights stay smal l , the network cannot
construct very deep mini ma in the energy landscape and so it cannot
make the probabi l ity ratios for s imilar global states be very different .

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 299

This means that i t i s bound to give a sign ificant number of errors in
modeling environments where very similar vectors have very d ifferent
probabil i ties . Better performance can be achieved by annealing the net
work to a l ower final temperature (which is equi valent to making all the
weights larger) , but this wil l make the learning worse for two separate
reasons. First , wi th less errors there i s less to drive the learn ing
because i t rel ies on the difference between the phase+ and phase
statistics . Second , i t wi l l be harder to reach thermal equi l ibrium at this
lower temperatu re and so the co-occurrence statist ics wil l be unreliable .
One way of gett ing good statistics to drive the learning and a lso gett ing
very few overt errors is to measure the co-occurrence statistics at a
temperature h igher than the final one.

Another way of ensuring that the network approaches equ i l ibr ium is
to el iminate deep, narrow min ima that are often not found by the
anneal ing process . Derthick (1984) has shown that this can be done
using a longer gentler anneal ing schedule in phase-. This means that
the network is more likely to occupy the hard-to-find minima in phase
than in phase+ , and so these minima wi l l get filled in because the learn
ing rule raises the energies of states that are occupied more in phase
than in phase+ .

AN EXAMPLE OF HARD LEARNING

A simple example which can only be sol ved by capturing the higher
order statistical structure in the ensemble of input vectors is the
"shifter" problem. The vis ible units are divided into three groups.
Group VI is a one-di mensional array of 8 units, each of which is
clamped on or off at random with a probabili ty of 0. 3 of being on.
Group V2 also contains 8 units and their states are determined by shift
ing and copying the states of the uni ts i n group VI' The only shifts
al lowed are one to the left, one to the right, or no shift. Wrap-around
is used so that when there is a right shift, the state of the right-most
uni t in VI determi nes the state of the left-most unit in V2• The three
possi ble shifts are chosen at random with equal probabi liti es. Group V3
contains three un i ts to represent the three poss ible shi fts, so at any one
time one of them is clamped on and the others are clamped off.

The problem i s to learn the structure that relates the states of the
three groups. One facet of this problem is to "recognize" the shift
i . e., to complete a part ial i nput vector in which the states of VI and V2
are clamped but the units in V3 are left free. It is fai rly easy to see why
this problem cannot possibly be solved by just adding together a lot of
pai rwise in teract ions between units in Vb V2, and V3• If you know

Copyrighted Material

300 BASIC MECHANISMS

that a particular unit i n VI is on, i t tells you nothing whatsoever about
what the shift is. It is on ly by finding combinations of active units in VI
and V2 that i t is possible to predict the shift, so the information
required is of at least third-order . This means that extra hidden units
are required to perform the task .

The obvious way to recognize the shift i s to have extra units which
detect informati ve features such as an acti ve unit i n VI and an active
unit one place to the right in V2 and then support the unit V3 that
represen ts a right shift . The empirical question is whether the learning
algorithm is capable of turn ing some hidden units into feature detectors
of this kind, and whether it wi l l generate a set of detectors that work
well together rather than duplicat ing the same detector. The set of
weights that m inimizes G defines the optimal set of detectors but it is
not at a l l obvious what these detectors are, nor is it obvious that the
learning algori thm is capable of finding a good set .

Figure 3 shows the result of runn ing a version of the Boltzmann
machine learning procedure. Of the 24 hidden uni ts , 5 seem to be
doing very l i tt le but the remainder are sensible l ooking detectors and
most of them have become spatial ly local ized . One type of detector
which occurs several times consists of two large negative weights, one
above the other, flanked by smaller exci tatory weights on each side .
This is a more discriminating detector of no-shift than s imply having
two posi t ive weights, one above the other. It interesting to note that
the various i nstances of this feature type al l have different locations in
VI and V2, even though the hidden units are not connected to each
other. The pressure for the feature detectors to be different from each
other comes from the gradient of G , rather than from the kind of
lateral inhibi t ion among the feature detectors that is used in " competi
t ive learning" paradigms (Fukushima, 1 980� Rumelhart & Zipser,
1 985) .

The Training Proced ure

The training procedure alternated between two phases. In phase+ , all
the units in V" V2, and V3 were clamped into states representing a pai r
of 8-bit vectors and thei r relat ive shift . The hidden un i ts were then
al lowed to change thei r states unt i l the system approached thermal
equi l ibri um at a temperature of 1 0 . The annealing schedule is
described below. After annealing, the network was assumed to be close
to therma l equ i l i br ium and it was then run for a further 1 0 i terations
during which t ime the frequency with which each pai r of connected
units were both on was measured . This was repeated 20 times wi th

Copyrighted Material

7. LEARNING IN BOLTZMANN M ACHIN ES 301

FIGURE 3 . The weights o f the 2 4 h idden u n i t s i n t h e s h i fter network . Each la rge region

corresponds to a u n i t . Within t h is region the black rectangles represent negati ve weights
and the white rectangles represent positive ones. The size of a rectangle represents t he
magnitude of the weigh t . The two rows of we ights at the bottom of each un i t are i ts con
nect ions to the two groups of input uni ts , VI and V2 . These weights the refore represent
the " recept ive field" of the h idden u n i t . The three wei ghts in the midd le of the top row

of each unit a re its connect ions to the three output un i ts that represen t sh ift- left , no
sh ift, and shift-r ight . The sol itary we igh t at t h e top left of each unit is i ts t h reshold .
Each hidden uni t is d i rect ly con nected to a l l 1 6 input un i ts and a l l 3 ou tput units . In t h i s
example, th e hidden u n i ts are n o t connected t o each other . The top-left un i t h a s we igh ts
that are easy to understand : Its optimal st imu lus is act iv i ty in the fourth u n i t of VI and
the fi fth uni t of V2 , and it votes for sh ift-r igh t . It has negat ive wei ghts to make it less
l i kely to come on when there is an al ternati ve explanat i o n for why i ts two favor ite input

uni ts are act ive .

different clamped vectors and the co-occurrence stati st ics were averaged
over all 20 runs to yield an est i mate , for each connection , of Pi) i n
Equation 7 . In phase- , none o f the un i ts were clam ped and the net
work was annealed in the same way. The network was then run for a
further 1 0 iterations and the co-occurrence stat istics were co l lected for
al l connected pai rs of uni ts . This was repeated 20 t i mes and the co
occurrence statist ics wer€QP�ct<MEitrl'f1ican est imate of Pi; ·

302 BASIC MECHANISMS

The entire set of 40 annealings that were used to esti mate Pit and Pi}
was cal led a sweep . After each sweep, every weight was incremented
by 5 (Pit - Pin . In addit ion, every weight had its absolute magnitude
decreased by 0.0005 t imes i ts absolute magni tude. This weight decay
prevented the weights from becoming too large and it also helped to
resuscitate hidden units which had predominantly negati ve or predom
inantly posit ive weights. Such units spend all their t ime in the same
state and therefore convey no information. The phase+ and phase
statistics are identical for these units , and so the weight decay gradually
erodes thei r weights until they come back to l i fe (units with all zero
weights come on half the t ime) .

The Annealing Schedule

The annealing schedule spent the fol lowing number of i terations at
the following temperatures : 2 at 40, 2 at 35 , 2 at 30, 2 at 2 5 , 2 at 20, 2
at 1 5 , 2 at 1 2 , 2 at 1 0. One i teration is defined as the number of ran
dom probes requi red so that each unit is probed one t ime on average.
When it is probed, a unit uses i ts energy gap to decide which of i ts two
states to adopt using the stochastic decision rule in Equation 3. Si nce
each uni t gets to see the most recent states of all the other units, an
i terat ion cannot be regarded as a single parallel step. An truly paral lel
asynchronous system must tolerate t ime delays. Units must decide on
their new states without being aware of very recent changes in the
states of other units . It can be shown (Sejnowski , Hinton , Kienker, &
Schumacher , 1 985) that first-order t ime delays act l i ke added tempera
ture and can therefore be tolerated by networks of this k ind .

The Performance of the Shifter Network

The sh ifter network is encouraging because i t is a clear example of
the kind of learn ing of h igher order structure that was beyond the capa
bi l i ty of perceptrons , but i t also i l lustrates several weaknesses in the
current approach.

• The learn ing was very slow. It requi red 9000 learn ing sweeps,
each of which i nvol ved reachi ng equi l i brium 20 t imes in phase+
with vectors clamped on VI > V2 , and V3 , and 20 times in
phase- with no uni ts clamped . Even for low-level perceptual
learn ing, this seems excessi vely s low.

Copyrighted Material

1. lEARNING IN BOLTZMANN MACHINES 303

• The weights are fai rly clearly not optimal because of the 5 h id
den units that appear to do nothing usefu l . Also, the
performance is far from perfect . When the states of the units
in V I and V 2 are clamped and the network is annealed gently to
half the fi nal temperature used during learning, the units in V3
quite frequently adopt the wrong states . If the number of on
units in VI is 1 , 2 ,3 ,4 , 5 ,6 , 7 , the percentage of correctly recog
n ized shifts is 50%, 7 1 %, 8 1 %, 86%, 89%, 82%, and 66%
respectively. The wide variat ion in the number of acti ve units
i n V I natural ly makes the task harder to learn than i f a constant
proportion of the units were acti ve. Also, some of the input
patterns are ambiguous . When al l the units in VI and V2 are
off, the network can do no better than chance.

ACHIEVING RELIABLE COMPUTATION WITH

UNRELIABLE HARDWARE

Conventional computers only work if all their indi vidual components
work perfectly , so as systems become larger they become more and
more unrel iable. Current computer technology uses extremely reliable
components and error-correcting memories to achieve overal l rel iabi l i ty.
The brain appears to have much less rel i able components, and so i t
must use much more error-correction. It is conceivable that the brain
uses the kinds of representations that would be appropriate given rel i
able hardware and then superimposes redundancy to compensate for i ts
unrel iable hardware .

The rel iabi l i ty issue is typically treated as a tedious residual problem
to be dealt wi th after the main decisions about the form of the compu
tation have been made. A more direct approach is to treat rel iabi l i ty as
a serious design constraint from the outset and to choose a basic style
of computation that does not require rel i able components. Ideally , we
want a system in which none of the i ndividual components are critical
to the abi l i ty of the whole system to meet its requi rements. In other
words, we want some high-level description of the behavior of the sys
tem to remain valid even when the low-level descriptions of the
behavior of some of the i ndi vidual components change. This is only
possi ble if the high-level description i s related to the low level descrip
tions in a particular way: Every robust high-level property must be
implemented by the combined effect of many local components, and no
single component must be crucial for the real izat ion of the high-level
property. This makes distri buted representations (see Chapter 3) a
natural choice when des�llftMJwmt�tant system.

304 BASIC MECHANISMS

Distributed representations tend to behave robustly because they
have an internal coherence which leads to an automatic " clean-up"
effect . This effect can be seen in the patterns of act ivi ty that occur
wi thin a group of units and also in the interact ions between groups . If
a group of units, A, has a number of disti nct and wel l -defined energy
minima then these minima wi l l remain even if a few units are removed
or a l i tt le noise is added to many of the connections within A. The
damage may distort the minima sl ightly and it may also change thei r
relative probabi l i t ies, but mi nor damage wi l l not alter the gross topogra
phy of the energy landscape, so it wi l l not affect higher level descri p
tions that depend only on this gross topography.

Even if the patterns of activity in A are sl ightly changed , this wi l l
often have no effect o n the patterns caused i n other groups o f units . If
the weights between groups of units have been fixed so that a part icular
pattern in A regularly causes a part icular pattern in B, a smal l variation
in the input coming from A wi l l typical ly make no difference to the pat
tern that gets selected in B, because this pattern has its own internal
coherence , and if the input from A is sufficiently accurate to select
approxi mately the right pattern , the interactions among the elements in
B wi l l ensure that the detai ls are right .

Damage resistance can be achieved by using a s imple kind of
representation in which there are many identical copies of each type of
unit and each macroscopic i tem is encoded by act ivi ty in all the units of
one type . In the undamaged system all these copies behave identically
and a lot of capacity is therefore wasted . If we use distributed
representations in which each uni t may be used for representing many
d ifferent i tems we can achieve comparable resistance to damage without
wast ing capacity . Because all the un i ts behave d ifferently from each
other, the undamaged system can implement many fine dist inctions in
the fine detail of the energy landscape . At the macroscopic level , these
fine dist inct ions wi l l appear as somewhat unrel iable probabi l ist ic ten
dencies and will be very sensit ive to minor damage .

The fine detai ls in the current energy landscape may contain the
seeds of future changes in the gross topography. If learni ng novel dis
t i nctions invol ves the progressi ve strengthening of regulari t ies that are
in i t ia l ly tentat ive and unreliable , then it fol lows that learn ing may wel l
suffer considerably when physical damage washes out these minor
regularit ies . However , the simulations described below do not bear on
this interesting issue .

AN EXAMPLE OF THE EFFECTS OF DAMAGE

To show the effects of damage on a network , i t is necessary to
choose a task for the network to_ .perform. S ince we are mainly

Copyngfllea Matenal

7. L EARNING IN BOLTZMANN MACHINES 305

concerned with properti es that are fai rly domain-independent , the
detai ls of the task are not especial ly relevant here . For reasons
described in Chapter 3 , we were interested in networks that can learn
an arbitrary mapping between i tems in two different domains, and we
use that network to investigate the effects of damage . As we shall see,
the fact that the task in volves purely arbi t rary associations makes it
easier to interpret some of the interest i ng transfer effects that occur
when a network relearns after sustain ing major damage.

The Network

The network consisted of three groups or layers of uni ts . The gra
pheme group was used to represent the letters i n a three-letter word . I t
contained 30 uni ts and was subdivided in to three groups of 10 units
each. Each subgroup was dedicated to one of the three letter pos i t ions
wi th in a word, and i t represented one of the 10 possi ble letters i n that
posi t ion by having a single act i ve unit for that letter. The th ree- letter
grapheme strings were not Engl ish words . They were chosen randomly,
subject to the constrai nt that each of the 10 poss ib le graphemes i n each
posi tion had to be used at l east once . The sememe group was used to
encode the semantic features of the " word .,, 7 It contained 30 un i ts , one
for each possible semant i c feature. The semantic features to be associ
ated wi th a word were chosen randomly, with each featu re having a
probabi l i ty of 0 . 2 of being chosen for each word . There were connec
t ions between al l pai rs of uni ts in the sememe group to al low the net
work to learn fami l iar combinations of semantic features . There were
no di rect connect ions between the grapheme and sememe groups.
Instead, there �as an i n termediate layer of 20 u n i ts , each of which was
connected to al l the units in both the grapheme and the sememe
groups. Figure 4 is ;10 art ist ' s i mpression of the network. It uses
English letters and words to convey the functions of the u n i ts in the
various layers . Most of the connections are missing.

The Training Procedure

The network was trained to associate each of 20 patterns of act i vity
in the grapheme uni ts with an arbi t rari ly related pattern in the sememe

7 The representation of meaning is clearly more complicated than j ust a set of features,
so the use of the word " semanti.c " here �hould not be taken too l i teral l y .

c.;opyrignted Material

306 BASIC M ECHAN ISMS

FIGURE 4. Part of the network used for associating t h ree-letter words with sets of
semantic features. English words are used i n this figure to help convey the funct ional
roles of the units . In the actual s imulat ion, the letter-str ings and semantic features were
chosen randomly.

units. As before, the training procedure alternated between two phases .
In phase+ all the grapheme and sememe units were clamped in states
that represented the physical form and the meaning of a single word,
and the intermediate units were allowed to change their states until the
system approached thermal equi l ibrium at a temperature of 1 0. The
annealing schedule was : 2 at 30, 2 at 26, 2 at 22 , 2 at 20, 2 at 1 8 , 2 at
16 , 2 at 1 5 , 2 at 1 4 , 2 at 1 3 , 4 at 1 2 , 4 at 1 1 , 8 at 10 . After annealing,
the network was assumed to be close to thermal equi l ibrium and i t was
then run for a further 5 i terations during which t ime the frequency with
which each pai r of connected uni ts were both on was measured . This
was repeated twice for each of the 20 possible grapheme/ sememe asso
ciat ions and the co-occurrence statistics were averaged over all 40
anneal ings to yield an esti mate, for each connection , of pi! . In phase- ,
only the grapheme units were clamped and the network settled to
equi l ibr ium (using the same schedule as before) and thus decided for
i tself what sememe units should be act ive. The network was then run
for a further 5 i terations and the co-occurrence statist ics were col lected
for all connected pai rs of un i ts . This was repeated twice for each of the
20 grapheme strings and the co-occurrence statist ics were averaged to
yield an estimate of pi; . Each learning sweep thus involved a total of
80 anneal ings .

After each sweep, every weight was either incremented or decre
mented by 1 , with the sign of the change being determined by the sign
of Pit - Pi} ' 8 In addit ion , some of the weights had thei r absolute

8 See Hi nton, Sejnowski , and Ackley (1 984) for a discussion of the advantages of
discrete weight increments over the more obvious steepest descent technique in which
the weight i ncreme n t is propof!j�e71 tMaterial

7, LEARNING IN BOLTZM ANN MACHINES 307

magnitude decreased by 1 . For each weight , the probabi l i ty of this hap
pening was 0.0005 t imes the absolute magni tude of the weight .

We found that the network performed better if there was a
prel iminary learn ing stage which just involved the sememe units . In
this stage , the intermediate un i ts were not yet connected . During
phase+ the required patterns were clamped on the sememe units and Pit
was measured (anneal ing was not requ i red because al l the uni ts
involved were clamped) . Duri ng phase- no units were clamped and the
network was al lowed to reach equi l i br ium 20 t imes using the annea l ing
schedule given above . After an neal ing , pi; was estimated from the co
occurrences as before, except that only 20 phase- anneal ings were used
instead of 40. There were 300 sweeps of this l earn ing stage and they
resul ted in weights between pai rs of sememe uni ts that were sufficient
to give the sememe group an energy landscape with 20 strong minima
corresponding to the 20 possible " word meanings ." This hel ped subse
quent learning considerably, because i t reduced the tendency for the
intermediate units to be recruited for the job of modeling the structure
among the sememe units. They were therefore free to model the struc
ture between the grapheme units and the sememe units.9 The results
described here were obtained using the prel iminary learning stage and
so they correspond to learni ng to associate grapheme strings wi th
" meanings " that are al ready fami l iar .

The Performance of the Network

Using the same annealing schedule as was used during learning, the
network can be tested by clamping a grapheme string and looking at the
resulting activit ies of the sememe units. After 5000 learni ng sweeps, it
gets the semantic features exactly correct 99.3% of the t ime. A
performance level of 99.9% can be achieved by using a " careful "
anneal ing schedule that spends twice as long at each temperature and
goes down to half the final temperature.

The Effect of Local Damage

The learning procedure generates weights which cause each of the
units in the intermediate l ayer to be used for many different words.

9 There was no need to have a similar stage for learning the structure among the gra
pheme units because in the main stage of learning the grapheme units are always clamped
and so there is no tendency fr(;ttp�StJtMlltf!HitIfOdel the structure among them .

308 BAS IC MECHANISMS

This k ind of distr ibuted representation should be more tolerant of local
damage than the more obvious method of using one i ntermediate unit
per word . We were part icularly i nterested in the pattern of errors pro
duced by local damage . If the connect ions between sememe units are
left in tact , they should be able to " clean up " patterns of act i vity that are
close to fami l iar ones. So the network should st i l l produce perfect out
put even if the input to the sememe uni ts is sl ightly disrupted. If the
disrupt ion is more severe, the clean-up effect may actual ly produce a
different fami l iar meaning that happens to share the few semantic
features that were correctly activated by the intermediate layer.

To test these predict ions we removed each of the intermediate units
i n turn , leaving the other 19 intact . We tested the network 25 t imes on
each of the 20 words with each of the 20 uni ts removed. In all 1 0 ,000
tests, using the careful annealing schedule, it made 1 40 errors (98 . 6%
correct) . Many errors consisted of the correct set of semantic features
with one or two extra or missing features, but 83 of the errors consisted
of the precise meaning of some other grapheme string . An analysis of
these 83 errors showed that the hamming distance between the correct
meanings and the erroneous ones had a mean of 9.34 and a standard
deviat ion of 1 . 27 which is s ign ificantly lower (p < .00 than the com
plete set of hamming distances which had a mean of 1 0.30 and a stan
dard deviat ion of 2 .4 1 . We also looked at the hamming distances
between the grapheme strings that the network was g iven as input and
the grapheme strings that corresponded to the erroneous familiar mean
ings . The mean was 3 .95 and the standard deviation was 0.62 which is
significantly lower (p < . 00 than the complete set which had mean
5 . 53 and standard deviation 0 .87 . (A hamming distance of 4 means
that the strings have one letter in common .)

In summary, when a s ingle unit i s removed from the intermediate
layer , the network sti l l performs wel l . The majority of i ts errors consist
of producing exactly the meaning of some other grapheme string, and
the erroneous meanings tend to be s imi lar to the correct one and to be
associated with a grapheme string that has one letter in common with
the string used as i nput .

The Speed of Relearning

The original learn ing was very slow. Each item had to be presented
5000 t i mes to el iminate almost all the errors. One reason for the slow
ness is the shape of the G-surface in weight-space . It tends to have
long diagonal ravines which can be characterized in the following way:
In the di rection of steepest descent , the surface slopes steeply down for

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 309

a short d istance and then steeply up again (l ike the cross-sect ion of a
ravine) . \ O In most other di rections the surface slopes gently upwards . In
a relatively narrow cone of di rect ions, the surface slopes gently down
with very low curvature. This narrow cone corresponds to the Ooor of
the ravine and to get a low value of G (which is the defini tion of good
performance) the learning must fol low the floor of the ravine wi thout
going up the sides . This is particularly hard in a high-dimensional
space . Unless the gradient of the surface is measured very accurately, a
step in the di rect ion of the estimated gradient wi l l have a component
along the floor of the ravi ne and a component up one of the many
sides of the ravine. Because the sides are much steeper than the Ooor,
the result of the step wi l l be to raise the value of G which makes
performance worse. Once out of the bottom of the ravine, almost all
the measurable gradient wi l l be down towards the floor of the ravine
instead of along the ravine . As a resu l t , the path fol lowed in weight
space tends to consist of an i rregular sloshing across the ravine wi th
only a smal l amount of forward progress . We are investigat ing ways of
ameliorat ing this difficul ty , but i t is a wel l -known problem of gradient
descent techniques i n h igh-dimensional spaces , and i t may be
unavoidable .

The ravine problem l eads to a very in terest ing prediction about
relearning when random noise is added to the weights. The original
learning takes the weights a considerable distance along a ravine which
is slow and difficult because most di rections in weight space are up the
sides of the ravine . When a lot of random noise is added, there wi l l
typical ly be a smal l component along the ravine and a large component
up the sides. Performance wi l l therefore get much worse (because
height in th is space means poor performance) , but relearning wi l l be
fast because the network can get back most of its performance by sim
ply descending to the floor of the ravine (which is easy) wi thout mak
i ng progress along the ravi ne (which is hard) .

The same phenomenon can be understood by considering the energy
landscape rather than the weight-space (recal l that one point in weight
space consti tutes a whole energy landscape) . Good performance
requi res a rather precise balance between the relative depths of the 20
energy min ima and it also requi res that all the 20 minima have consid
erably lower energy than other parts of the energy landscape. The bal
ance between the min ima in energy-space is the cross-section of the
ravine in weight-space (see Figure 5) and the depth of all the minima
compared with the rest of the energy landscape corresponds to the
di rect ion along the ravine . Random noise upsets the precise balance

1 0 The surface is never very steep. Its gradient parallel to any weight axis m ust always
l ie between 1 and - 1 because tlfpl>ff�W'M8fe;r§/Probab i l i t ies.

3 1 0 BASIC MECHANISMS

yv B

V\J

A B

increase weights that help B ...

FIGURE 5. One cross-sect ion of a ravine in weight-space . Each point in weight space
corresponds to a whole energy landscape. To ind icate this , we show how a very s imple
landscape changes as the weights are changed . Movemen t to the right along the K -aK is
corresponds to increasing the weights between pairs of units that are both on in state B
and not both on in state A. This increases the depth of A. If the task requi res that A
and B have about the same depth , an imbalance between them wil l lower the
performance and thus raise G.

between the various minima wi thout significantly affecting the gross
topography of the energy landscape. Relearning can then restore most
of the performance by restoring the balance between the existing
minima.

The simulation behaved as predicted. The mean absolute value of
the weights connecting the intermediate units to the other two groups
was 2 1 . 5 . These weights were first perturbed by adding uniform ran
dom noise in the range - 2 to + 2. This had surprisingly l ittle effect ,
reducing the performance using the normal annealing schedule from
99.3% to 98 .0%. This shows that the network is robust against slight
noise in the weights. To cause significant deterioration , uniform ran
dom noise between - 22 and + 22 was added . On average, this perturbs
each weight by about half its magni tude which was enough to reduce
normal performance to 64 . 3% correct. Figure 6 shows the course of the
relearning and compares it with the speed of the original learning when
performance was at this leve l . It also shows that other kinds of damage
produce very similar relearning curves .

Copyrighted Material

7. LEARNING IN BOLTZM ANN MACHINES 3 1 1

U 1 oor---------------____ _________________________________ __
CD
...
...
o (,)
-c
CD (,)
...
CD
a..

100=------�5�------�t�O------�15�------2�O�----�2�5�----�30
Learn ing sweeps

FIGURE 6. The recovery of performance after various types of damage. Each data
point represents 500 tests (25 with each word) . The heavy l ine is a sect ion of the original
learning curve after a considerable number of learning sweeps. It shows that in the origi
nal learning, performance increases by less than 10% i n 30 learning sweeps. Al l the other
l ines show recovery after damaging a net that had very good performance (99.3%
correct) . The l ines with open circles show the rapid recovery after 20% or 50% of the
weights to the hidden units have been set to zero (but allowed to relearn) . The dashed
l ine shows recovery after 5 of the 20 h idden units have been permanently ablated. The
remain ing l ine is the case v.'hen uniform random noise between - 22 and + 22 is added to
all the connections to the hidden units. In al l cases, a successful t rial was defined as one
in which the network produced exactly the correct semantic features when given the gra
phemic input.

Spontaneous Recovery of Unrehearsed Items

When it learns the associations, the network uses distributed
representations among the i ntermediate units. This means that many
of the weights are involved in encoding several different associations,
and each association is encoded in many weights. If a weight is
changed, i t will affect several different energy minima and all of them
will requi re the same ���e\¥;wcWe�t to restore them to thei r

3 1 2 BASIC MECHANISMS

previous depths. So, in relearn ing any one of the associat ions, there
should be a posi t ive transfer effect which tends to restore the others.
This effect is actually rather weak and is easi ly masked so i t can only be
seen clearly if we retrain the network on most of the original associa
tions and watch what happens to the remaining few. As predicted ,
these showed a marked improvement even though they were only ran
domly related to the associations on which the network was retrained.

We took exact ly the same perturbed network as before (uniform ran
dom noise between + 22 and - 22 added to the connections to and from
the i ntermediate un i ts) and retrai ned i t on 1 8 of the associations for 30
learning sweeps. The two associations that were not ret rained were
selected to be ones where the network made frequent minor errors
even when the careful anneal i ng schedule was used . As a result of the
retraini ng, the performance on these two i tems rose from 30/ 1 00
correct to 90/ 1 00 correct with the careful schedule, but the few errors
that remained tended to be completely wrong answers rather than
minor perturbations of the correct answer . We repeated the experiment
selecting two associat ions for which the error rate was high and the
errors were typical ly large . Retrain ing on the other 1 8 associations
caused an improvement from 1 7 / 1 00 correct to 98/ 1 00 correct .
Despi te these impressive improvements, the effect disappeared when
we retrained on only 1 5 of the associat ions. The remain ing 5 actually
got sl ightly worse. I t is clear that the fraction of the associations which
needs to be retrained to cause improvement i n the remainder depends
on how distributed the representations are , but more analysis is
requi red to characterize this relationship properly .

The spontaneous recovery of unrehearsed i tems seems paradoxical
because the set of 20 associations was randomly generated and so there
is no way of general izing from the 1 8 associations on which the net
work is retrained to the remain ing two. During the original learning,
however, the weights capture regulari t ies in the whole set of associa
tions. In this example, the regulari t ies are spurious but the network
doesn 't know that-i t just fi nds whatever regulari t ies i t can and
expresses the associat ions in terms of them. Now, consider two dif
ferent regularit ies that are equally strong among 1 8 of the associations.
If one regularity also holds for the remaining two associations and the
other doesn ' t , the fi rst regularity is more l i kely to be captured by the
weights. During retraining, the learn ing procedure restores the weights
to the values needed to express the regulari t ies i t originally chose to
capture and it therefore tends to restore the remaining associations.

I t would be interesting to see i f any of the neuro-psychological data
on the effects of brain damage could be i nterpreted in terms of the
kinds of qual i tative effects exhibited by the s imulation when it is

Copyrighted Material

7. LEARNING IN BOLTZM A N N MACH I N ES 3 1 3

damaged and relearns. However, we have not made any serious
attempt to fit the simulat ion to particular data .

CONCLUSION

We have presented three ideas:

• Networks of symmetrical ly connected, binary uni ts can escape
from local min ima duri ng a relaxat ion search by using a sto
chastic decis ion rule.

• The process of reach ing thermal equ i l i brium in a network of
stochasti c un i ts propagates exactly the information needed to do

. credit assignment . This makes possible a local learning rule
which can modify the weights so as to create new and useful
feature detectors . The learn ing rule only needs to observe how
often two un i ts are both act i ve (at thermal equi l i br ium) in two
d ifferent phases. It can then change the weight between the
units to make the spontaneous behavior of the network i n one
phase m i mic the behavior that i s forced on i t i n the other
phase .

• The learning rule tends to construct distr i buted representations
which are resistant to minor damage and exh i bi t rapid relearn
i ng after major damage . The relearn ing process can bring back
associati ons that are not practiced dur ing the relearn ing and are
only randomly related to the associat ions that are practiced .

These three ideas can be assessed separately. In part icular , res istance
tq damage, rapid relearn ing, and spontaneous recovery of unrehearsed
i tems can be exhi bited by other k inds of para l lel network that use
distributed representations. The use of stochastic uni ts , anneal i ng
search, and the two-phase learn ing algori thm are not crucial for these
properties, though they are a convenient testbed in which to investigate
them. Hogg and Huberman (1 984) have demonstrated sel f- repa ir
effects in nonstochastic , layered networks s imi lar to those used by
Fukushima (980) .

We have left many loose ends, some of which are discussed else
where . Sejnowski and Hinton (in press) give a deta i led example of a
search problem where anneal ing helps, and they also d iscuss the rela
t ionsh ip between between these networks and the mammal ian cortex .
Ackley , Hinton , and S�tJdCJia�eNJ'(e a different example of

3 1 4 BASIC MECHANISMS

learning in which the network constructs efficient internal codes for
communicating information across narrow bandwidth channels. At
present, the learning algorithm is too slow to be tested properly on
large networks and future progress hinges on being able to speed it up.

ACKNOWLEDGMENTS

This research was supported by grants from the System Development
Foundation . We thank David Ackley, Peter Brown, Francis Crick,
Mark Derthick, Scott Fahlman, Stuart Geman, John Hopfield, Paul
Kienker , Jay McClelland, Barak Pearlmutter, David Rumelhart , Tim
Shallice, and Paul Smolensky for helpful discussions.

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 3 1 5

APPENDIX:

DERIV ATION OF THE LEARNING ALGORITHM

When a network is free-running at equ i l ibrium the probabil ity distrib
ution over the visible units is given by

P - (Va) == LP- (Va A Hp)
p

(8)

where Va is a vector of the states of the visible units , HI3 is a vector of
states of the hidden units , and Eal3 is the energy of the system in state
Va A Hp

Hence,

Ea/3 - L wij sri3 st13 ,
i <j

n -EafJ I T 1 u e _ aQ al3 - EafJ l T - - so "' s · e n w- . T I } U IJ

Differentiating (8) then yields

This derivative is used to compute the gradient of the G -measure

where P + (Va) is the clamped probabi l i ty distribution over the visible
units and is independent of Wij ' So

8 G = _
L

P: (Va) ap - (va)
a Wl} a P (Va) a Wij

Copyrighted Material

3 1 6 BASIC MECHANISMS

Now,

and

P + (Va A Hf,i) = P+ (Hf,i 1 Va) P + (Va) ,

P - (Va A Hp) = P - (Hp I Va)P - (Va) ,

(9)

Equation 9 holds because the probabi l i ty of a hidden state given some
visible state must be the same in equ i l ibri um whether the visible units
were clamped in that state or arri ved there by free-running. Hence ,

Also,

where

and

_ P + (Va)
+ P (Va A Hp)

P- (Va)
= P (Va A Hp) .

a

Pij= !. P + (VaA Hp) srP slP
ap

Pij= !. P - (V>, A HjJ)S/ILS/IL .
>'IL

The Bol tzmann machine learning algori thm can also be formulated as
an input-output mode l . The visible units are divided i nto an input set f
and an output set 0 , and an environment specifies a set of conditional
probabi l i ties of the form P + (Op I fa) ' During phase+ the environment

Copyrighted Material

7. LEARNING IN BOLTZMANN MACHINES 3 1 7

clamps both the input and output un i ts , and the Pit s are est imated .
During phase- the i nput units are clamped and the output un i ts and
hidden units free-run , and the PijS are est imated . The appropriate G
measure in this case is

G = l:P + (Ja A O/3) ln P + (O/3 l /a)
.

a/3 p - (O/3 l /a)

Similar mathematics apply in this formulat ion and a G/a wij is the same
as before.

Copyrighted Material

CHAPTER S

Learning Internal Representations
by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. 1. WILLIAMS

THE PROBLEM

We now have a rather good understanding of simple two-layer associ
ative networks in which a set of i nput patterns arriving at an input layer
are mapped directly to a set of output patterns at an output layer. Such
networks have no hidden uni ts. They involve only input and output

units. In these cases there is no internal representation. The coding pro
vided by the external world must suffice. These networks have proved
useful i n a wide variety of appl ications (cf. Chapters 2 , 17, and 18).
Perhaps the essent ial character of such networks is that they map simi
lar i nput patterns to si mi lar output patterns. This is what al lows these
networks to make reasonable general izations and perform reasonably on
patterns that have never before been presented. The s imilarity of pat
terns in a PDP system is determi ned by their overlap . The overlap in
such networks is determi ned outside the learning system itself-by
whatever produces the patterns.

The constraint that similar input patterns lead to similar outputs can
lead to an inabi lity of the system to learn certain mappings from input
to output . Whenever the representation provided by the outside world
is such that the s imilarity structure of the input and output patterns are
very different , a net\\C),*Jy�ijfltetttMatt8i8h1 representations (Le. , a

8. LEARN ING I NTERNAL REPRESENTATIONS 319

network without hidden un i ts) wi l l be unable to perform the necessary
mappings. A classic example of this case is the exclusive-or (XOR)
problem illustrated in Table 1. Here we see that those patterns which
overlap l east are supposed to generate identical output val ues . This
problem and many others l i ke it cannot be performed by networks
without hidden units with which to create their own internal representa
tions of the input patterns. It is interest ing to note that had the input
patterns contained a thi rd input tak ing the value 1 whenever the fi rst
two have value 1 as shown in Table 2 , a two-layer system would be able
to solve the problem.

Minsky and Papert (I969) have provided a very careful analysis of
conditions under which such systems are capable of carrying out the
required mappings . They show that in a large number of interest ing
cases , networks of this ki nd are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out , if there is a
layer of simple perceptron-like h idden un i ts , as shown in Figure 1 , with
which the original input pattern can be augmented, there is always a
recoding (i . e., an internal representat ion) of the input patterns i n the
hidden units in which the s imi larity of the patterns among the h idden
units can support any required mapping from the input to the output
units. Thus, if we have the right connections from the input units to a
large enough set of h idden units, we can always find a representat ion
that wi l l perform any mapping from input to output through these hid
den units . In the case of the XOR problem, the addit ion of a feature
that detects the conjunction of the i nput units changes the similarity

Input Patterns

00

01
1 0
11

Input Patterns

TABLE 1

Output Pat terns

TABLE 2

o
1
I
o

Output Patterns

000 0

010 1
100 1
111 0

Copyligflted Mate/iai

320 BASIC MECHANISMS

Output Patterns

Input Patterns

Internal

Representation

Units

FIGURE I. A multilayer network. In this case the information coming to the input
units is reroded into an internal representation and the outputs are generated by the inter·
nal representation rather than by the original pattern. Input patterns can always be
encoded, if there are enough hidden units, in a form so that the appropr iate output pat·
tern can be generated from any input pattern.

structure of the patterns sufficiently to al low the solution to be learned .
As i l lustrated in Figure 2 , this can be done wi th a single hidden uni t.
The numbers on the arrows represent the strengths of the connections
among the units . The numbers wri tten i n the ci rcles represent the
thresholds of the units . The value of + 1. 5 for the th reshold of the hid
den unit insures that it wi l l be turned on only when both input units
are on. The value 0 . 5 for the output unit insures that i t will tu rn on
only when it receives a net posi tive input greater than 0 . 5 . The weight
of - 2 from the h idden uni t to the output unit insures that the output
unit wi l l not come on when both input units are on. Note that from the
po int of view of the outpu t unit, the hidden unit is treated as simply
another input unit . It is as jf the jOP'ut . p'atterns consisted of three
rather than two uni ts .

Copynghted Matenal

8. LEARNING INTERNAL REPRESENTATIONS 321

Hidden Unit

Input Units

FIGURE 2. A simple XOR network with one hidden unit. See text for explanation.

The exi stence of networks such as t h i s i l lustrates the potential power
of hidden units and i n ternal rep resen tations. The problem, as noted by
Minsky and Papert , is that whereas there is a very simple guaranteed
learning rule for all problems that can be solved without hidden units,
namely , the percept ron convergence procedure (or the variation due
origi nally to Widrow and Hoff, 1960, wh ich we call the delta rule; see
Chapter 1 1), there is no equally powerful rule for learning in ne tworks
with hidden units. There have bee n three basic responses to this lack.
One response is represented by competit i ve learning (Chapter 5) in
which si mple unsupervised learn ing ru les are employed so that useful
hidden units develop. Although these approaches are prom i si ng , there
is no external force to insure that hidden units appropriate for the
requ ired mappi ng are developed. The second response is to si mply
assume an internal representation that, on some a priori grounds, seems
reasonable. Thi s is the tack taken in the chapter on verb learning
(Chapter 18) and in the i nteracti ve activat ion model of word perception
(McClelland & Rumelhart, 1981; Rumelhart & McClel land , 1982) .
The third approach is to attempt to develop a learning procedure capable
of learning an i nternal representation adequate for performing the task
at hand. One such development is presented in the discuss ion of
Boltzmann machines in Chapter 7. As we have seen, this procedure
invol ves the use of stochastic units , requ i res the network to reach
equi l ibri um in two d ifferent phases, and is l i m ited to symmetric net
works. Another recent approach, also employing stochastic units, has
been developed by Bart�18ed MlDaria/of his col leagues (cf. Barto

322 BASIC MECH ANISMS

& Anandan , 1985). In this chapter we present another alternat ive that
works with determinist ic units, that involves only l ocal computations,
and that is a clear general ization of the delta rule . We cal l this the gen
eralized delta rule. From other considerations, Parker (1985) has
independently deri ved a s imi lar general ization , which he cal ls learning
logic. Le Cun (1985) has also studied a roughly s imi lar learning
scheme. In the remainder of this chapter we fi rst derive the general
ized delta rule , then we i l lustrate its use by providing some results of
our s imulations , and finally we indicate some further general izations of
the basic idea.

THE GENERALIZED DELTA RULE

The learn ing procedure we propose involves the presentation of a set
of pai rs of input and output patterns. The system fi rst uses the input
vector to produce its own output vector and then compares this with
the desired output, or target vector. If there is no difference, no learning
takes place. Otherwise the weights are changed to reduce the differ
ence. In this case , with no h idden units, this generates the standard
delta rule as described in Chapters 2 and 11 . The rule for changing
weights following presentation of input/ output pai r p i s given by

(1)
where tpj is the target input for jth component of the output pattern for
pattern p, Opj is the jth element of the actual output pattern produced
by the presentation of input pattern p, ip; is the value of the ith ele
ment of the input pattern , 8pi = tpi - 0pi' and flp wi} is the change to be
made to the weight from the ith to the jth uni t fol lowing presentation
of pattern p .

The delta rule and gradient descent. There are many ways of deriv
ing this rule. For present purposes, it is useful to see that for l inear
units it minimizes the squares of the differences between the actual and
the desi red output values summed over the output units and al l pairs of
input/ output vectors . One way to show this is to show that the deriva
t ive of the error measure with respect to each weight is proportional to
the weight change dictated by the delta rule, with negative constant of
proportionali ty. This corresponds to performing steepest descent on a
surface in weight space whose height at any point in weight space is
equal to the error measure . (Note that some of the fol lowing sections

Copyrighted Material

8. L EARNING INTERNAL REPRESENTATIONS 323

are written in ital ics . These sections consti tute i n formal deri vations of
the claims made i n the surrounding text and can be omitted by the
reader who finds such derivations tedious')

To be more specific, then, let

1
Ep = 2'1;: «(pj - Opj)2

I

be our measure of the error on input/output pattern p and let E = LEp be our

overall measure of the error. We wish to show that the delta rule implements a gra
dient descent in E when the units are linear. We will proceed by simply showing
that

which is proportional to Lip Wj; as prescribed by the delta rule. When there are no
hidden units it is straightforward to compute the relevant derivative. For this purpose
we use the chain rule to write the derivative as the product of two parts: the deriva
tive of the error with respect to the output of the unit times the derivative of the out
put with respect to the weight.

aEp aEp aOpj
aWj; = aOpj aWj; •

(])

The first part tells how the error changes with the output of the j th unit and the
second part tells how much changing Wj; changes that output. Now, the derivatives
are easy to compute. First, from Equation 2

aEp
-

!l
- = - (tpj - op) = - apj'

uOpj
(4)

Not surprisingly, the contribution of unit Uj to the error is simply proportional to a pj .
Moreover, since we have linear units,

Opj = LWjlip;.
i

from which we conclude that

aOpj .
-!l - = 'pi' u Wj;

Thus, substituting back into Equation 3, we see that

aEp .
- -!l- = apj/PI UWji

Copyrighted Material

(6)

324 BASIC MECHANISMS

as desired. Now, combining this with the observation that

aE
=

1: aEp
aWj; p aWj;

should lead us to conclude that the net change in Wj; after one complete cycle of pat
tern presentations is proportional to this derivative and hence that the delta rule
implements a gradient descent in E. In fact, this is strictly true only if the values of
the weights are not changed during this cycle. By changing the weights after each
pattern is presented we depart to some extent from a true gradient descent in E.
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi
ciently small, this departure will be negligible and the delta rule will implement a very
close approximation to gradient descent in sum-squared error. In particular, with
small enough learning rate, the delta rule will find a set of weights minimizing this
error function.

The delta rule for semilinear activation functions in feedforward
networks. We have shown how the standard delta rule essentially
implements gradient descent in sum-squared error for l inear activation
functions. In this case , without h idden units , the error surface is shaped
like a bowl with only one minimum, so gradient descent is guaranteed
to find the best set of weights . With hidden units, however, it is not so
obvious how to compute the deri vatives , and the error surface is not
concave upwards , so there is the danger of gett ing stuck in local
min ima. The main theoretical contri bution of this chapter is to show
that there is an efficient way of computing the deri vat ives. The main
empi rical contr ibut ion is to show that the apparently fatal problem of
local min ima is i rrelevant in a wide variety of learning tasks.

At the end of the chapter we show how the general ized delta rule can
be appl ied to arbitrary networks , but , to begin With , we confine our
selves to layered feedforward networks . In these networks , the input
un i ts are the bottom layer and the output units are the top layer. There
can be many layers of h idden units i n between , but every unit must
send its output to h igher layers than its own and must receive i ts input
from lower layers than i ts own. Given an i nput vector, the output vec
tor is computed by a forward pass which computes the activity levels of
each layer in turn using the already computed acti vity levels in the ear
l ier layers.

Since we are primari ly interested in extending th is result to the case
wi th h idden units and since, for reasons outl i ned in Chapter 2 , hidden
units with l inear acti vat ion functions provide no advantage , we begin by
general iz ing our analysis to the set of non l inear act i vation functions
which we cal l semilinear (see Chapter 2). A semi l i near acti vation func
t ion is one in wh ich the output of a unit is a nondecreasi ng and dif
ferentiable function of t�d>MfJl8tjal

8. LEARNING INTERNAL R EP R ES ENTATIONS 325

where 0; = i; if u n it i is an i nput unit. Th us, a semi l i near act i vat i on
function i s one i n which

(8)
and f is differen tiable and nondecreasi ng. The gene ral i zed del ta rule
works if the network consists of units having semilinear activation func
tions. Notice that li near threshold units do not sati sfy the requirement
because their derivat i ve is infi nite at the threshold and zero elsewhere.

To get the correct generalization of the delta rule. we must set

aEp ap wji ex: - -!\-,
V wji

where E is the same sum-squared error function defined earlier. As in the standard
delta rule it is again useful to see thiS derivative as resulting from the product of two
parts: one part reflecting the change in error as a function of the change in the net
input to the unit and one part representing the effect of changing a particular weight
on the net input. Thus we can write

aEp aEp anetpj

aWji
=

ane/pj aWji .

By Equation 7 we see that the second factor is

Now let us define

aEp 0 · = - --
PJ anel .. PJ

(9)

(JO)

(By comparing this to Equation 4. note that this is consistent with the definition of
o pj used in the original delta rule jor linear units since Opj = netpj when unit Uj is
linear.) Equation 9 thus has the equivalent form

aEp
--!\- = OpjOp;.

VWji

This says that to implement gradient descent in E we should make our weight
changes according to

6.p Wji = TjOpjOph (IJ)
Copyrighted Material

3 26 BASIC MECHANISMS

just as in the standard delta rule. The trick is to figure out what 8pj should be for
each unit U) in the network. The interesting result, which we now derive, is that
there is a simple recursive computation 0/ these 8 's which can be implemented by
propagating error signals backward through the network.

aE
To compute 8 p) = - �, we apply the chain rule to write this partial deriva-onetp)

tive as the product 0/ two factors, one factor reflecting the change in error as a /unc
tion 0/ the output 0/ the unit and one reflecting the change in the output as a /unc
tion 0/ changes in the input. Thus, we have

aEp aEp aop) 8p) = --- = ------,

anetpj aOpj anetpj

Let us compute the second factor. By Equation 8 we see that

aOpj _ I
-�-- - I ; (netpj), onetpj

(1)

which is simply the derivative 0/ the squashing /unction Ij for the j th unit,
evaluated at the net input netp) to that unit. To compute the first factor, we con
sider two cases. First, assume that unit Uj is an output unit 0/ the network. In this
case, it /ollows /rom the definition 0/ Ep that

aEp
-�- = - (tpj - Opj),
OOp)

which is the same result as we obtained with the standard delta rule. Substituting
for the two factors in Equation 11, we get

(J3)

for any output unit U). /fUj is not an output unit we use the chain rule to write

12 flEp anetplc = 12 aEp -a-Lwk;op;= 12 aEp Wkj=-L8p1cWkj' k anetpk aOpj k anetpk aOpj ; k anetpk k

In this case, substituting /or the two factors in Equation 12 yields

8 pj = I 'j (netpj) 128 pic Wkj (J4)
k

whenever u) is not an output unit. Equations J3 and 14 give a recursive procedure
for computing the 8 's for all units in the network, which are then used to compute
the weight changes in the network according to Equation 11. This procedure consti
tutes the generalized delta rule for a /eed/orward network 0/ semilinear units.

These results can be summarized in three equations. First, the gen
eralized delta rule has exactly the same form as the standard delta rule
of Equation 1 . The weight on each line should be changed by an
amount proportional to ctbp� MfJitftialrror signal, 8 , available to

8. LEARNING INTERNAL REPRESENTATIONS 327

the unit receiving input along that l ine and the output of the unit send
ing activation along that l ine. In symbols ,

The other two equations specify the error signal. Essential ly, the deter
mination of the error signal is a recursive process which starts wi th the
output units. If a unit i s an output uni t , i ts error signal is very simi lar
to the standard delta rule. It is given by

Spj = (tpj - Opj)/ j (netpj)
where / j (netpj) is the derivati ve of the semi l inear act ivati on function
which maps the total input to the uni t to an output value. Finally, the
error signal for hidden un i ts for which there is no specified target is
determined recursively i n terms of the error signals of the uni ts to
which i t di rectl y connects and the weights of those connect ions. That is ,

S pj = / j (netpj) I,s pk Wkj
k

whenever the unit is not an output uni t .
The applicat ion of the general i zed delta rule , thus, involves two

phases: During the first phase the i nput is presented and propagated
forward through the network to compute the output value Opj for each
unit. This output is then compared wi th the targets, resulting in an
error signal Spj for each output unit . The second phase involves a
backward pass through the network (analogous to the initial forward
pass) during which the error signal is passed to each uni t in the net
work and the appropriate weight changes are made. This second, back
ward pass al lows the recursive computation of 8 as indicated above.
The first step is to compute S for each of the output uni ts. This is s im
ply the difference between the actual and desi red output values t imes
the derivati ve of the squashing function. We can then compute weight
changes for all connections that feed into the final layer. After this is
done, then compute 8 's for all units in the penul timate layer. This
propagates the errors back one layer, and the same process can be
repeated for every layer. The backward pass has the same computa
tional complexity as the forward pass , and so it is not unduly expensive.

We have now generated a gradient descent method for findi ng
weights in any feedforward network wi th semi l inear uni ts. Before
reporting our resu l ts wi th these networks , it i s useful to note some
further observations. I t i s interesting that not all weights need be vari
able. Any number of weights i n the network can be fixed . In this
case, error is st i ll propag��.YIfghrJW'M�"GOxed weights are simply not

328 BASIC M ECH ANISMS

modified . It should also be noted that there is no reason why some
output units might not recei ve inputs from other output un i ts i n earl ier
layers. In th is case, those uni ts recei ve two differen t ki nds of error:
that from the di rect comparison with the target and that passed through
t he other output u n i ts whose acti vation it affects. In th is case , the
correct procedure is to si mply add the weight changes dictated by the
direct comparison to that propagated back from the other output uni ts.

SIMULATION RESULTS

We now have a learn ing procedure which could, in principle, evolve
a set of weights to produce an arbit rary mapping from input to output.
However, the procedure we have produced is a gradient descent pro
cedure and, as such, is bound by all of the problems of any hill climb
ing procedu re-namely, t h e problem of local maxima or (i n our case)
min i ma. Moreover, there is a quest ion of how long i t might take a sys
tem to learn. Even if we could guarantee t hat i t would eventual ly find
a solution , there is the question of whether our procedure could learn
in a reasonable period of t i me. It is i n terest ing to ask what hidden
units the system actually develops in the solution of part icular prob
lems. This is the question of what kinds of in ternal representat ions the
system actually creates. We do not yet have defin i tive answers to t hese
quest ions. However, we have carried out many simulat i ons which lead
us to be opt i mist ic about the local mi nima and t i me questi ons and to be
surprised by the kinds of represen tations our learning mechan ism dis
covers. Before proceeding with our results, we must describe our simu
lat ion system in more detail. In part icular, we must specify an activa
t ion function and show how the system can compute the deri vative of
th is function.

A useful activation function. In our above deri vations the derivative
of the act i vation funct ion of unit u), r j (net), always played a role.
This implies that we n eed an act i vation funct ion for wh ich a deri vative
exists. It is in terest i n g to note that the linear threshold funct ion, on
whi ch the percept ron is based, is d iscontinuous and hence will not suf
fice for the generalized delta rule. Simi larly, since a linear system
achieves no advantage from hidden un i ts, a linear activat ion function
will not suffice e i ther. Thus, we need a contin uous, nonlinear activa
t ion function. In most of our experi ments we have used the logistic
act i vation function i n w��Jyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 329

(1 5)

where () j is a b ias similar i n funct ion to a threshold . 1 I n order to apply
our l earning ru le, we need to k now the derivative of th is funct ion with
respect to i ts total i nput, netpj, where netpj = L, wJ; op; + () J. It is easy to
show that this derivative is given by

aOpj
-!l-- = Opj 0- op) .
unetpj

Thus, for the logist ic act i vation function, the error signal, Bpj, for an
output unit is given by

Bpj = (tP) - Opj)op} (1 - op}),

and the error for an arbitrary hidden Uj is given by

Spj = op}O - op})L,SpkWk}'
k

It should be n oted that the derivative, Opj (1 - op), reaches its max
imum for Opj = 0.5 and, since 0::::; Opj::::; 1, approaches i ts m i n i mum as
Opj approaches zero or one. Since the amount of change in a given
weight is proportional to this deri vat i ve, weights will be changed most
for those units that are near the i r midrange and, in some sense, not yel
committed to being e i ther on or off. Th is feature, we bel ieve, contri
butes to the stability of the learning of the system.

One other feature of this activation function should be noted. The
system can not actual ly reach its extreme values of 1 or 0 without infin
itely large weights. Therefore, in a pract ical learni ng situation i n which
the desired outputs are b inary (O, 1), the system can never actually
ach ieve these val ues. The refore, we typ ica l ly use the val ues of 0 .1 and
0.9 as the targets, e ven though we wi l l talk as if values of (0, I} are
sought.

The learning rate. Our l earn i ng procedu re requires only that the
change in weight be proportional to aEp/aw. True gradient descent
requires that infinitesimal steps be taken. The constant of proport ional
ity is the learning rate in o u r procedure . The large r th is constant, the
larger the changes in the weights. For practical purposes we choose a

I Note that the values of the bias, OJ, can be learned just like any other weights. We

simply i magin e that OJ is the w.s:.ight frpm a unit that i!l always on.
c;opynghted Matenal

330 BASIC MECHANISMS

learning rate that is as large as possi ble wi thout leading to osci l lation .
This offers the most rapid learning. One way to increase the learning
rate without leading to osc i l lation is to modify the general ized delta rule
to include a momentum term. This can be accomplished by the follow
ing rule:

(16)

where the subscript n i ndexes the presentation number, 'T/ i s the learn
i ng rate, and a i s a constant which determi nes the effect of past weight
changes on the current di rection of movement in weight space . This
provides a kind of momentum in weight space that effecti vely fi l ters
out high-frequency variations of the error-surface i n the weight space.
This is useful i n spaces containing long ravines that are characterized by
sharp curvature across the ravine and a gently sloping floor. The sharp
curvature tends to cause divergent osci l l ations across the ravine. To
prevent these i t is necessary to take very small steps, but this causes
very slow progress along the ravine. The momentum fi l ters out the
high curvature and thus al lows the effect ive weight steps to be bigger.
In most of our simulations a was about 0.9. Our experience has been
that we get the same solutions by sett i ng a = 0 and reducing the size of
'T/, but the system learns much faster overall wi th larger values of a
and TJ.

Symmetry breaking. Our learning procedure has one more problem
that can be readi ly overcome and this is the problem of symmetry
breaking. If al l weights start out with equal values and if the solution
requi res that unequal weights be developed, the system can never learn .
Th is is because error is propagated back through the weights in propor
tion to the values of the weights. This means that all hidden uni ts con
nected directly to the output inputs wi l l get identical error signals , and,
since the weight changes depend on the error signals , the weights from
those units to the output units must always be the same. The system is
start ing out at a k ind of local maximum. which keeps the weights equal ,
but i t is a maximum of the error function , so once i t escapes i t wil l
never return. We counteract this problem by start ing the system with
smal l random weights. Under these condit ions symmetry problems of
this kind do not arise.

The XOR Problem

It is useful to begin wi th the exclusive-or problem since i t is the clas
sic problem requi ring h idden units and since many other difficul t

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 331

problems involve an XOR as a subproblem. We have run the XOR
problem many times and with a couple of exceptions discussed below,
the system has always solved the problem. Figure 3 shows one of the
solutions to the problem. This solution was reached after 558 sweeps
through the four stimulus patterns with a learn ing rate of." = 0.5. In
this case, both the hidden unit and the output unit have positive biases
so they are on unless turned off. The hidden unit turns on if neither
input unit is on. When it is on, it turns off the output unit. The con
nections from input to output units arranged themselves so that they
turn off the output unit whenever both inputs are on. In this case, the
network has sett led to a solution which is a sort of mirror image of the
one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of
times. Sometimes we have used a single hidden unit and di rect con
nections to the output unit as il l ustrated here, and other times we have
allowed two hidden uni ts and set the connections from the input units
to the outputs to be zero, as shown in Figure 4. In only two cases has
the system encountered a local minimum and thus been unable to solve
the problem. Both cases involved the two hidden units version of the

Output Unit

-4.2 I 1
I

\-42
\

\ I -9.41

I
I �

I __ X
\ Hidden Unit

\
\ --

-6.4

Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows

and the biases are written in eO circle�
1t
fcf��&���ve bias means that the unit is on

unless lltrned off. pyn!}

3 32 BASIC MECHANISMS

FIGURE 4. A s imple architecture for solving XOR with two hidden units and no direct
connections from input to output.

problem and both ended up i n the same local mInimum. Figure 5
shows the weights for the local minimum. In this case, the system
correctly responds to two of the pat terns-namely, the patterns 00 and
10. In the cases of the other two patterns 11 and 0 1 , the output unit
gets a net input of zero. This leads to an output value of 0.5 for both
of these patterns. This state was reached after 6,587 presentations of
each pattern wi th 'T/=O.25. 2 Although many problems require more
presentations for l earning to occur, further trials on this problem
merely increase the magni tude of the weights but do not lead to any
improvement in performance. We do not know the frequency of such
local min ima, but our experience wi th this and other problems is that
they are quite rare. We have found only one other s i tuation in which a
l ocal min imum has occurred i n many hundreds of problems of various
sorts. We wi l l discuss this case below.

The XOR problem has proved a useful test case for a number of
other studies. Using the architecture illustrated in Figure 4, a student
in our laboratory, Yves Chauvin, has studied the effect of varying the

2 If we set 11 � 0.5 or abov'Cb'*�,s.t,I;m.AS�1!Wt minimum. In general, however,
the best way to avoid local minlrnf(.f� 'tWb'6�y'lb ... t.l�'li'�ry small values of 11.

8. LEARNING INTERNAL REPRESENTATIONS 333

FIGURE 5. A network at a local minimum for the exclusive-or problem. The dotted
lines indicate negative weights. Note that whenever the right most input unit is on it
turns on both hidden units. The weights con necting the hidden units to the output are
arranged so that when both hidden units are on, the output unit gets a net input of zero.
This leads to an output value of 0.5. In the other cases the network provides the correct
answer.

number of hidden units and varying the learning rate on t ime to solve
the problem. Using as a learning criterion an error of 0 .01 per pattern ,
Yves found that the average number of presentations to solve the prob
lem with '1/ = 0.25 varied from about 245 for the case with two hidden
units to about 120 presentations for 32 hidden units . The results can
be summarized by P = 280 - 3310g2H, where P is the required
number of presentations and H i s the number of hidden units
employed. Thus, the t ime to solve XOR is reduced l inearly with the
logari thm of the number of hidden units. This result holds for values of
H up to about 40 i n the case of XOR. The general result that the time
to solut ion is reduced by increasing the number of hidden uni ts has
been observed in virtually a l l of our s imulations. Yves also studied the
time to solut ion as a function of learn ing rate for the case of eight h id·
den un i ts . He found an average of about 450 presentations wi th
'1/ = 0.1 to about 68 presentations with '1/ = 0.75. He also found that

Copyrighted Material

3 34 BASIC MECHANISMS

learning rates larger than this led to unstable behavior. However,
within this range larger learning rates speeded the learning substantially.
In most of our problems we have employed learning rates of '11 = 0.25
or smaller and have had no difficulty.

Parity

One of the problems given a good deal of discussion by Minsky and
Papert (t 969) is the parity problem, in which the output required is 1 if
the input pattern contains an odd number of Is and 0 otherwise . This
is a very difficult problem because the most similar patterns (those
which differ by a single bit) require different answers . The XOR prob
lem is a parity problem with input patterns of size two. We have tried a
number of parity problems with patterns ranging from size two to eight .
Generally we have employed layered networks in which di rect connec
t ions from the input to the output units are not al lowed, but must be
mediated through a set of hidden units. In thi s archi tecture, it requires
at least N hidden units to solve parity with patterns of length N. Fig
ure 6 i llustrates the basic paradigm for the solutions discovered by the
system. The solid lines in the figure indicate weights of + 1 and the
dotted l ines indicate weights of -1 . The numbers in the circles
represent the biases of the uni ts. Basically, the hidden units arranged

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn
ing system. See text for explanation.

Copyrighted Material

8. LEARNING INTER NAL R EPRESENTATIONS 3 3 5

themselves s o that they count the number o f inputs. In the d iagram,
the one at the far left comes on if one or more input un its are on , the
next comes on if two or more are on , etc . All of the h idden units
come on if all of the input l ines are on. The fi rst m h idden units come
on whenever m bits are on in the input pattern . The hidden units then
connect with alternately positi ve and negative weights . In this way the
net i nput from the h idden units is zero for even numbers and + 1 for
odd numbers. Table 3 shows the actual �ol ution attained for one of our
simulations with fou r input l ines and four h idden units . This solution
was reached after 2 ,825 presentations of each of the si xteen patterns
with "fI = 0 . 5 . Note that the solution is roughly a mirror image of that
shown in Figure 6 in that the number of h idden units turned on is
equal to the number of zero i nput values rather than the number of
ones. Beyond that the princi ple is that shown above. It should be noted
that the i nternal representation created by the learni ng rule is to
arrange that the number of h idden units that come on is equal to the
number of zeros in the i nput and that the particular hidden units that
come on depend only on the number, not on which i nput un its are on .
This is exactly the sort of recoding required by parity . I t is not the k ind
of representation readi ly d iscovered by unsupervised learning schemes
such as competitive learning.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1 985) have posed a problem i n
which a set o f orthogonal input patterns are mapped to a set o f orthogo
nal output patterns through a small set of hidden units. In such cases
the internal representations of the patterns on the h idden units must be
rather efficient. Suppose that we attempt to map N input patterns onto
N output patterns. Suppose further that log2N h idden units are pro
vided. In th is case, we expect that the system wi l l learn to use the

Number of On
Input Units

TABLE 3

Hidden Unit
Patterns

o 1111

1 1011

2 1010

3 0010

4 Copynghted lIfINerial

Output
Value

o
1
o
1
o

336 BASIC MECHANISMS

N Output Units

log N Hidden Units 2

N Input Units

FIGURE 7. A network for solving the encoder problem. In this problem there are N
orthogonal input patterns each paired with one of N orthogonal output patterns. There
are only log2N hidden units. Thus, if the hidden units take on binary values, the hidden
units must form a binary number to encode each of the input patterns. This is exactly

what the system learns to do.

hidden units to form a binary code with a distinct binary pattern for
each of the N input patterns. Figure 7 i llustrates the basic archi tecture
for the encoder problem. Essential ly , the problem � tt. learn an encod
ing of an N bit pattern into a l og2N bit pattern and then learn to
decode this representat ion into the output pattern . We have presented
the system with a number of these problems. Here we present a prob
lem with eight input patterns, eight output patterns, and three hidden
units. In this case the required mapping is the identity mapping illus
trated in Table 4 . The problem is simply to turn on the same bit in the

Input Patterns

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

TABLE 4

Output Patterns

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

Copyi igflted Matel iaJ

8. LEARNING INTERNAL REPRESENTATIONS 337

output as in the input . Table 5 shows the mapping generated by our
learning system on this example . I t i s of some interest that the system
employed i ts abil ity to use intermediate values in solving this problem.
I t could , of course, have found a solut ion in which the hidden units
took on only the values of zero and one . Often i t does just that , but in
this instance, and many others , there are solutions that use the inter
mediate values , and the learning system finds them even though i t has
a bias toward extreme values . It is possible to set up problems that
require the system to make use of intermediate values in order to solve
a problem. We now turn to such a case.

Table 6 shows a very simple problem in which we have to convert
from a distributed representation over two units into a local representation
over four uni ts . The similarity structure of the distributed input pat
terns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of
constraints which made i t especially difficu l t . The two input units were
only allowed to connect to a single hidden unit which , in turn, was
allowed to connect to four more h idden uni ts. Only these four hidden
uni ts were allowed to connect to the four output uni ts. To solve
this problem, then , the system must first convert the distributed

TABLE 5

Input Hidden Unit Output

Patterns Patterns Patterns

10000000 .5 0 0 10000000
01000000 0 1 0 0 1 000000

00100000 1 1 0 00100000

00010000 1 1 1 00010000

00001 000 0 1 1 00001000

00000100 .5 0 1 00000100

00000010 1 0 .5 00000010

00000001 0 0 .5 00000001

TABLE 6

Input Patterns Output Patterns

00

01

10

11

1000
0100

0010

0001

Copynghled Malerial

338 BASIC MECHANISMS

representation of the input patterns into various intermediate values of
the s ingleton hidden unit in which different activation values
correspond to the different input patterns. These cont inuous val ues
must then be converted back through the next layer of hidden uni ts
first to another distributed representation and then , final ly, to a local
representation. This problem was presented to the system and i t
reached a solution after 5,226 presentations with", = 0.05.3 Table 7
shows the sequence of representations the system actual ly developed in
order to transform the patterns and solve the problem. Note each of
the four input patterns was mapped onto a particular activation value of
the singleton hidden unit . These values were then mapped onto distr i
buted patterns at the next layer of h idden uni ts which were finally
mapped into the required local representation at the output level . In
pri nci ple, this trick of mapping patterns in to activation values and then
converting those act i vation values back into patterns could be done for
any number of patterns, but i t becomes increasingly difficult for the
system to make the necessary distinctions as ever smal ler differences
among acti vation values must be dist inguished. Figure 8 shows the
network the system developed to do this job. The connection weights
from the hidden un i ts to the output units have been suppressed for
clarity. (The sign of the connection, however, is i ndicated by the form
of the connection -e.g. , dashed l ines mean inh ibi tory connections) .
The four different acti vation values were generated by having relatively
large weights of opposite sign . One input l ine turns the hidden unit full
on, one turns it fu l l off. The two d iffer by a relati vely smal l amount so
that when both turn on , the unit attains a value intermediate between 0
and 0.5. When nei ther turns on , the near zero bias causes the unit to
attain a value sl ightly over 0.5. The connections to the second layer of
hidden uni ts is l i kewise i nteresti ng . When the hidden unit is ful l on,

TABLE 7

Input Singleton Remaining Output
Patterns Hidden Unit Hidden U nits Patterns

1 0 0 1 1 1 0 0010
1 1 .2 1 1 0 0 0001
00 .6 .5 0 0 . 3 1000
0 1 1 0 0 0 1 0 1 00

3 Relati vely small learning rates make un its employing intermediate values easier to
obta in.

Copyrighted Material

8. LEAR N I NG INTERNAL R EPRESENTATIONS 339

Output
Un its

H idden
U n i ts

I n p u t
U n i ts

FIG U R E 8 . The network i l lustrat ing t he use o f intermediate values i n sol ving a problem .
See text for explanation .

the right-most of these hidden uni ts is turned on and all others turned
off. When the h idden uni t i s turned off, the other three of these hid
den uni ts are on and the left-most un i t off. The other connections
from the si ngleton hidden unit to the other hidden units are graded so
that a distinct pattern i s turned on for i ts other two values. Here we
have an example of the flexib i l i ty of the learning system .

Our experience i s that there is a propensity for the hidden uni ts to
take on extreme values , but, whenever the learn ing problem cal ls for i t ,
they can learn to take on graded values. It is l i kely that the propensity
to take on extreme values fol lows from the fact that the logistic is a sig
moid so that increas ing magnitudes of its inputs push i t toward zero or
one. This means that in a problem in which in termediate values are
required, the i ncoming weights must remain of moderate size . It i s
interesti ng that the derivation of the general ized delta ru le does not
depend on all of the units having identical acti vat i on functions. Thus,
i t would be possible for some units , those requi red to encode informa
tion in a graded fashion , to be l i near whi le others might be logisti c .
The l inear unit would have a much wider dynamic range and could
encode more different values. This would be a useful role for a l inear
uni t in a network with h�8p9r_d Material

340 BASIC M ECHANISMS

Symmetry

Another interesting problem we studied i s that of class ifying input
strings as to whether or not they are symmetric about the ir center. We
used patterns of various lengths with various numbers of hidden units.
To our surprise, we discovered that the problem can always be solved
with only two hidden units . To understand the derived representat ion,
consider one of the solutions generated by our system for strings of
length s ix . This solut ion was arri ved at after 1 ,208 presentat ions of each
s ix-bit pattern with 'T1 = 0. 1 . The final network is shown in Figure 9 .
For simplici ty we have shown the s ix input un i ts i n the center of the
diagram with one hidden unit above and one below. The output unit ,
which signals whether or not the string is symmetric about i ts center, is
shown at the far right . The key point to see about this solut ion is that
for a given hidden unit , weights that are symmetric about the middle
are equal in magnitude and opposi te i n sign . That means that if a sym
metric pattern is on , both hidden un i ts will rece ive a net i nput of zero
from the input units , and, since the h idden units have a negative bias,
both wil l be off. In this case , the output unit, having a posi t ive bias,

."

./

.....
..... 9 .44

./
./

.....

+ 8 .3 t /. 3 . 1 7
./

./
./

./

.,. .,.
.,.

.,.. .,. .,.. ·9A4

.,. .,;

.....

.,. .,.. .,.

.....
'Q output Y Unit .,; .,; .,;

FIGURE 9. Network for solv ing the symmetry problem. The s i x open ci rcles represent
the i nput units . There are two hidden units, one shown above and one below the input
units. The output unit i s shown to the far right. See text for explanation.

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 34 1

wil l be on . The next most important th ing to note about the sol ution is
that the weights on each side of the midpoint of the str ing are in the
ratio of 1 : 2:4 . This i nsures that each of the eight patterns that can
occur on each side of the midpoint sends a unique activat ion sum to
the hidden uni t . This assures that there is no pattern on the left that
wi l l exactly balance a non-mi rror- image pattern on the right . Final ly ,
the two hidden uni ts have ident ical patterns of weights from the in put
units except for sign. This insures that for every nonsymmetric pat
tern , at least one of the two hidden units wi l l come on and turn on the
output uni t . To summarize, the network is arranged so that both hid
den units wi l l receive exact ly zero activation from the input units when
the pattern is symmetric , and at least one of them wi l l receive pos i t ive
input for every nonsymmetric pattern .

Th is problem was interesting to us because the learning system
developed a much more elegant solution to the problem than we had
previously considered . This problem was not the only one in which this
happened . The pari ty solution discovered by the learning procedure
was also one that we had not discovered prior to testing the problem
with our learning procedure . Indeed, we frequently discover these
more elegant solut ions by gi vi ng the system more hidden uni ts than i t
needs and observing that i t does not make use of some of those pro
vided. Some analysis of the actual solutions discovered often leads us
to the discovery of a better solution involving fewer hidden units .

Addition

Another interesting problem on which we have tested our learn ing
algorithm is the s imple binary addit ion problem. This problem is
interesting because there i s a very elegant sol ut ion to it , because i t is
the one problem we have found where we can rel iably find local
minima and because the way of avoiding these local mi nima gi ves us
some insight into the condit ions under which local min ima may be
found and avoided . Figure 10 i l lust rates the basic problem and a
min imal sol ut ion to i t . There are four i nput units , three output units ,
and two hidden un i ts . The output patterns can be viewed as the binary
representation of the sum of two two-bit b inary n umbers represented
by the input patterns. The second and fourth input units in the
diagram correspond to the low-order bits of the two binary numbers
and the first and th ird units correspond to the two h igher order bits .
The hidden un i ts correspond to the carry bits in the summation . Th us
the hidden un i t on the far right comes on when both of the lower order
bits in the input patter�yrig/Dtedf �t8li8J the one on the left comes

342 BASIC M ECHANISMS

Output Units

Input U n its

Hidden
Units

FIGURE 1 0 . M i n imal network for add ing two two- bit binary numbers. There are fou r
i n put un its, t hree output uni ts , and two h idden u n i ts . T h e output patterns can b e v iewed
as the b i nary representat ion of the sum of two two-bit b inary numbers represented by the
i n put patterns . The second and fourth i n put un i ts in t h e d i agram correspond to t h e low
order bits of the two b i nary n um bers, and t he fi rst and t h i rd uni ts correspond t o the t wo
h i gher order bits . The h idden un i ts correspond to the carry bits in the summat ion . The
hidden unit o n the far right comes on when both of t he lower order b i t s in the i n put pat
tern are t urned on, and the one on the left comes on when both h i gher order bits are
turned on or when one of the higher order b i t s and the ot her hidden uni t is turned o n .
The weights on a l l l i n es a r e assumed t o be + I except where noted . Negat ive connec
t ions are indicated by dashed l i nes. As usua l , the biases are i n d icated by the n um bers in
t h e circles .

on when both higher order bits are turned on or when one of the
higher order bi ts and the other hidden unit i s turned on . In the
diagram , the we igh ts on all l ines are assumed to be + 1 except where
noted . Inhi bitory connect ions are ind icated by dashed l i nes. As usual ,
the b iases are i ndicated by the numbers in the ci rcles. To understand
how th is network works , i t is useful to note that the lowest order out
put bi t is determ i ned by an e xcl usi ve-or among the two low-order i n put
bits . One way to solve this XOR problem i s to have a hidden unit
come on when both l ow-order i n p ut bits are on and then have i t inh ibi t
the output unit . Otherwi se e i ther of the low-order i nput un i ts can t u rn
on the low-order outpu t bi t . The middle bit is somewhat more

Copyrighted Material

8. L EA R N I NG I NTER N A L R EPRES ENTATIONS 343

difficul t . Note that the middl e bit should come on whenever an odd
number of the set containing the two higher order i n put bits and the
lower order carry bit is t urned on . Observation wil l con firm that the
network shown performs that task. The left-most hidden unit receives
inputs from the t wo h i gher order bits and from the carry bit . I ts bias is
such that i t wi l l come on whenever two or more of its i n puts are turned
on . The middle output u n i t recei ves posi tive i nputs from the same
three u nits and a n egative input of - 2 from the second hidden unit .
This insures that whenever j ust one of the three are turned on , the
second h idden un i t wi l l remain off and the output bit wil l come on .
Whenever exactly t wo of the three are o n , the hidden u nit wi l l turn on
and counteract t h e two units excit i ng the output bit , so it wil l s tay off.
Final l y , when all three are t urned o n , the output bit wi l l receive - 2
from its carry bit and + 3 from i ts other three i n puts . The net is posi
t ive , so the middle u nit wil l be on . Finally , the third output bit should
turn on whenever the second hidden unit i s on - that is, whenever
there is a carry from the second bit. Here then we have a min i mal net
work to carry out the job at hand. Moreover, it should be noted that
the concept beh ind t h i s network i s general izable to an arbi trary n umber
of i n put and output bi ts. In general , for adding two m bit binary
numbers we wil l require 2m i nput u n i ts , m h idden u n i ts , and m+ I out
put units .

Unfortunately, this is the one proble m we have found that reliably
leads the system i nto local min i ma . At the start in our l earn ing trials
on th is problem we al low any input u nit to connect to any output unit
and to any hidden u nit . We al low any hidden u n i t to con nect to any
output unit, and we a l low one of the hidden u n i ts to con nect to the
other hidden unit, but, since we can have no loops, the connect ion in
the opposite di rection is d i sal lowed. Somet i mes the system wil l discover
essentia l ly the same network shown in the figure . 4 Often , however, the
system ends u p i n a l ocal min im u m . The problem arises when the XOR
problem on the low-order bits i s not sol ved i n the way shown i n the
diagram. One way i t can fail is when the " higher " of the two hidden
units is " selected " to sol ve the XOR problem . Th is is a problem
because then the other hidden unit cann ot " see " the carry bit and there
fore cannot final ly sol ve the problem. Th is problem seems to stem
from the fact that the learni ng of the second output b i t is al ways depen
dent on l earning the fi rst (because i nformation about the carry is neces
sary to learn the second bit) and therefore lags beh i nd the learn i ng of
the first bit and has no infl uence on the selection of a hidden un i t to

4 The network is the same except for the h ighest order b i t . The highest order bit i s
always o n whenever three or more o f t h e i n p u t u n i t s a r e on . This is always learned fi rst

and always learned with d i rect 9lJ).9� JW9R»Wipnits .

344 BAS IC M EC H A NISMS

sol ve the fi rst XOR problem . Th us , about half of the t i me (i n this
problem) the wrong unit i s chosen and the problem cannot be sol ved .
In th is case , the syste m finds a solu t ion for a l l of the sums except the
1 1 + 1 1 - 1 1 0 (3+ 3 = 6) case i n which i t misses the carry i nto the
middle bit and gets 1 1 + 1 1 - 1 00 i nstead . Th i s problem d iffers from
others we have sol ved i n as much as the h idden un i ts are not " equi
potent ial " here . In most of our other problems the hidden un i ts have
been equi potent ia l , and th is problem has not arisen .

I t should be noted, however, that there i s a relat i vely s imple way out
of the problem - namely , add some extra h idden u n i ts . In th is case we
can afford to make a mistake on one or more select ions and the system
can st i l l solve the problems. For the problem of adding two-bi t
numbers we have found t hat the system always sol ves the problem wi th
one extra h idden uni t . With l arger n umbers i t may requi re two or three
more. For purposes of i l lustrat ion , we show the resul ts of one of our
runs wit h three rather than the min imum two hidden units . Figure 1 1
shows the state reached by the network after 3 ,020 presentat ions of
each i nput pattern and wi th a learning rate of "Y/ = 0 . 5 . For con ven i
ence , we show the network in four parts . I n Figure 1 1 A we show the
connections to and among the h idden un i ts . Th is figure shows the
internal representation generated for th i s problem. The " lowest " hid
den unit turns off whenever either of the l ow-order bits are on . In
other words i t detects the case in which no low-order bit is turn on .
The " hi ghest " h i dden uni t is arranged so that it comes on whenever the
sum i s l ess than two. The condit ions under which the middle hidden
unit comes on are more complex . Table 8 shows the patterns of h idden
units which occur to each of the si xteen i nput patterns. Figure l I B
shows the connect i ons to the lowest order output u n i t . Not ing that the
relevant h idden unit comes on when neither low-order i n put unit i s on,
i t i s c lear how the system computes XOR. When both low-order inputs
are off, the output unit i s turned off by the h idden un i t . When both
low-order i n put uni ts are on , the output i s turned off directly by the
two i n put un i ts . If just one is on, the posi t i ve bias on the output unit
keeps i t on . Figure l l C gives the connect ions to the middle output
u n i t , and i n Figure 1 1 D we show those connect ions to the left-most ,
highest order output un i t . It i s somewhat d ifficult to see how these
connecti ons always lead to the correct output answer, but , as can be
verifi ed from the figures, the network is balanced so that th is works .

It should be poi nted out that most of the problems described thus far
have i n vol ved hidden u n i ts with qui te s i m ple in terpretat ions. It i s
much more often the case, espec ial ly when the number of hidden units
exceeds the min i mum number requi red for the task , that the hidden
uni ts are not readi ly i nterpreted . Thi s fol lows from the fact that there
is very l i t t le tendency for loealist representat ions to develop. Typically

Copyrighted Material

Output Un its

0 0 0

I nput Un i ts

A

Output U n its

8. LEA R N I NG I NTER N A L REPRESENTATIONS 345

Hidden
U n its

Hid den
Units

o

Output Un its

O O �
/ ,

I \ ' · ' 0
I \ \ Hidden

·5 / \ .• \
/ ' , U n its

0 / \ \ I \ \
/ \ 0 I \ '-J

I \ I \ / \

0 6 0 6

o

I nput Units

8

Output Uni ts

·· 0 0
/1\\,
1 1 1\ \
" 1 \ \
I I \ \ \
I 1 . ,1 \ \

. , Hidden
U n its

- - .:..' £":\ - -0

I I� \ I + 1 1 _ � - 2
I \ , - - _ _ I I \ \ - - ' 3

Input U n its

c

I , \ ' I I \ ' + 2 / " 2 ' 2 \ \+ 2

6 6 6 6
I nput Un its

D

FIG URE 1 1 . Network fou nd for I he summat i on problem . A : The connecl ions from the

input units to the three hidden units and the connections among the h idden u n i ts . B:
The connect ions from the i nput and h idden units to the lowest order output unit . C: The

connect ions from the input and hidden uni ts to the middle output uni t . D: The connec

tions from the input and hidden u n i ts to t he h i.&.hes t order output un i t .
Copyrighted Material

346 BASIC MECHANISMS

TABLE 8

Input H idden Uni t Output
Pat terns Patterns Patterns

00 + 00 I I I 000

00 + 0 1 1 1 0 001

00 + 10 0 1 1 0 1 0

00 + 11 010 011

0 1 + 00 1 10 001

01 + 0 1 010 010

01 + 1 0 0 1 0 01 1

01 + 1 1 000 100

1 0 + 00 01 1 0 1 0

1 0 + 0 1 0 1 0 0 1 1

1 0 + 1 0 00 1 100

1 0 + I I 000 1 01

1 1 + 00 0 1 0 0 1 1

1 1 + 0 1 000 100

1 1 + 10 000 1 01

11 + I I 000 1 1 0

the internal representat ions are distributed and it is the pattern of
act i vi ty over the h idden units, not the mean ing of any particular hidden
unit that is important .

The Negat ion Problem

Consider a situation in which the i nput to a system consists of pat
terns of n+ 1 binary values and an output of n values. Suppose further
that the general ru le is that n of the input un i ts should be mapped
di rectly to the output patterns. One of the i nput bits, however, is spe
cial . It is a negat ion b i t . When that bit is off, the rest of the pattern is
su pposed to map straight th rough , but when it is on , the complement
of the pattern is to be mapped to the output. Table 9 shows the
appropriate mappi ng. In this case the left element of the input pattern
is the negation bit, but the system has no way of knowing this and
must learn which bit i s the negat ion bit . In th is case , weights were
al lowed from any input un i t to any h idden or output unit and from any
hidden unit to any output un i t . The system learned to set al l of the
weights to zero except those shown in Figure 1 2 . The basic structure
of the problem and of the sol ution is evident i n the figure . Clearly the
problem was reduced to a set of three XORs between the negat ion bit

Copyrighted Material

8. L E A R N I NG INTER N A L REPRES ENTATIONS 347

TABLE 9

Input PaUerns Out put Pal lerns

0000

000 1

00 1 0

00 1 1

0 1 00

0 1 0 1

0 1 1 0

0 1 1 1

1 000

1 00 1

1 0 1 0

1 0 1 1
1 1 00

1 1 0 1

1 1 1 0

1 1 1 1

000
00 1

0 1 0

0 1 \

1 00

1 0 1

1 1 0

I I I
I I I
l lO
1 0 1

1 00

0 1 1

0 1 0

00 \

000

and each input . In the case of the two r ight-most input units, the XOR
problems were solved by re::rui t ing a h idden unit to detect the case in
which neither the negation uni t nor the corresponding input unit was on.
In the third case, the hidden unit detects the case i n which both the
negation unit and relevant input were on. In this case the problem was
solved in less than 5 ,000 passes through the st imulus set with TJ = 0.25 .

Ce) Cal
' 1 0 ·4 X,0 · 4 ",¥, 1 0 " / 1 \ /,,, I '

, / / .4 1 \ ", .4 1 \ '(;. "\ I , / 1 \ I � /
- 8 I Q I + 2

", I V 1 .8
+ :! r / _ - -t - -

- ... _ - 1'" ..,
- I / -�.- - 0·' (j.'

FIGURE 1 2 . The solution discovered for the negat ion prob lem . The left -most uni t is
the negat ion uni t . The problem has been reduced and so l ved as t h ree excl usi ve-ors
between the negation unit and each of the other th ree units .

Copyrighted Material

348 BASIC MECHANISMS

The T -C Problem

Most of the problems discussed so far (except the symmetry prob
lem) are rather abstract mathematical problems . We now turn to a
more geometric problem - that of discriminating between a T and a
C- independent of translation and rotation . Figure 13 shows the
st imulus patterns used in these experi ments . Note, these patterns are
each made of five squares and differ from one another by a single
square. Moreover , as Minsky and Papert (969) point out, when con
sidering the set of patterns over all possible translations and rotations
(of 90° , 1 80° , and 270°) , the patterns do not differ in the set of dis
tances among their pairs of squares. To see a d ifference between the
sets of patterns one must look, at least , at configurations of t ri plets of
squares. Thus Minsky and Papert cal l this a problem of order three. 5
In order to fac i l i tate the learn ing, a rather d ifferent archi tecture was
employed for this problem. Figure 14 shows the basic structure of the
network we employed. Input patterns were now conceptualized as two
dimensional patterns super imposed on a rectangular grid . Rather than
al lowing each input unit to connect to each h idden unit , the hidden
units themselves were organized into a two-dimensional grid with each
unit rece iving input from a square 3 x 3 region of the input space. In
this sense , the overlapping square regions const i tute the predefined
receptive field of the hidden units . Each of the hidden units, over the
entire field , feeds into a single output uni t which is to take on the value

FIGURE 13 . The st imulus set for the T-C problem . The set consists of a block T and a
block C in each of four orientations. One of the eight pat terns is presented on each trial .

5 Terry Sejnowski pointed out to us that the T-C problem was d ifficul t for models of

th is sort to learn and therefore worthy of study.

Copyrighted Material

8. LEARNING INTERNAL REPRESENTATIONS 349

o
o
o

o
o

Output
Unit

Hidden
Un its

Input
Units

FIGURE 14 . The network for so l ving the T-C problem. See text for e x planat ion.

1 if the input i s a T (at any location or orientat ion) and 0 if the input is
a C. Further, in order that the learning that occurred be independent
of where on the field the pattern appeared , we constrain ed all of the
units to learn exactly the same pattern of weights. [n this way each uni t
was constrained to compute exactly the same function over i ts receptive
field -the recept i ve fields were constrained to all have the same shape .
This guarantees translat ion independence and avoids any possible " edge
effects " in the l earn ing. The learning can readily be extended to arbi
trari ly large fields of input units . This constraint was accompl i shed by
simply adding together the weight changes dictated by the delta rule for
each uni t and then chamzing all weil!hts

t
e�actly the same amount . In

copynghted�a enal

350 BASIC M ECHANISMS

this way, the whole fie ld of hidden units consists s imply of replications
of a single feature detector centered on d i fferent regions of the input
space , and the learning that occurs in one part of the field is automati
cally general ized to the rest of the field. 6

We have run this problem in this way a number of times. As a
resul t , we have found a number of sol ut ions. Perhaps the simplest way
to understand the system is by looking at the form of the recepti ve
field for the h idden units . Figure 1 5 shows several of the receptive
fields we have seen. 7 Figure 1 5 A shows the most local representation
developed . This on-center-off-surround detector turns out to be an
excellent T detector. Since, as i l lust rated, a T can extend into the on
center and achieve a net input of + 1 , this detector wi l l be turned on for
a T at any orientat ion. On the other hand, any C extending into the
center must cover at least two inhi bitory cel ls . Wi th this detector the
bias can be set so that only one of the whole field of inhibi tory units
wi l l come on whenever a T is presented and none of the h idden units
wi l l be turned on by any C. This is a kind of protrusion detector which
d ifferentiates between a T and C by detecti ng the protrusion of the T.

The recept ive field shown in Figure 1 5B is again a kind of T detector.
Every T act ivates one of the hidden units by an amount + 2 and none
of the hidden un i ts receives more than + 1 from any of the C 's. As
shown in the figure, T's at 90° and 270° send a total of + 2 to the hid
den uni ts on which the crossbar l ines up. The T's at the other two
orientations receive + 2 from the way it detects the vertical protrusions
of those two characters . Figure 1 5C shows a more distr ibuted represen
tation. As i l lustrated in the figure, each T acti vates fi ve different hid
den units whereas each C excites only three hidden units . In this case
the system again is d ifferentiating between the characters on the basis
of the protruding end of the T which is not shared by the C.

Final ly , the receptive field shown in Figure 1 5 0 is even more
interesting. In this case every h idden unit has a posit ive bias so that it
is on unless turned off. The strength of the inhibi tory weights are such
that if a character overlaps the recepti ve field of a hidden unit , that unit
turns off. The system works because a C is more compact than a T and
therefore the T turns off more units that the C. The T turns off 2 1
hidden units , and the C turns off only 20. This i s a truly distributed

6 A simi lar procedure has been employed by Fukushima (980) in his neocognitron and
by Kienker, Sejnowski , Hinton , and Schumacher (985) .

7 The ratios of the weights are about right . The actual values can be larger or smaller
than the values gi ven in the figure.

Copyrighted Material

A

c

8. LEARNING INTER NAL REPRESENTATIONS 3 5 1

m[:: ��r:
i - 1 - 1 - 1

- 1
� 1 + 2 : - 1

0 - 2 -2
- 2 - 2
- 2 - 2

B

I :: pf - 1 1 - 1

.. · .. , · ,Jf�
��:: : :
U

· ·· ·

- 2
- 2
- 2

FIG U RE 1 5 . Recept i ve fields found i n d ifferent runs o f t h e T-C proble m . A : An on
center-off-surround recept ive field for detect ing T 's. B: A vert ica l bar detector which
responds to T's more strongly than C 's. C: A d i agona l bar detector . A T act i vates fi ve
such detectors whereas a C act i vates only th ree such detectors . D: A compact ness detec
tor . This i n h i bi tory recept i ve field t urns off whenever an input covers any region of i t s
recept i ve field . Si nce the C i s more compact t han the T i t t u rns off 20 such detectors
whereas the T t u rns off 21 of them.

representation . In each case, the solut ion was reached i n from about
5 ,000 to 1 0 ,000 presentations of the set of eight pat terns. 8

It is interest ing that the inh ibitory type of recept ive field shown i n
Figure 1 50 was t h e most common and that there i s a predominance of
inhibitory connect ions i n this and i ndeed all of our simulations. Th is
can be understood by considering the traject ory through wh ich the
learning typically moves. At fi rst , when the system is presented with a

8 Si nce translat ion independence was bu i l t into t he learn ing proced ure, it makes no
d ifference where t he i nput occu rs: the same t h i n g w i l l be learned wherever the pat tern is

presented . Thus, there are on�t5�pr@HiOO MWtIDfaP be presented to t h e system .

352 BASIC M ECHANISMS

difficult problem , the init ia l random connections are as l ikely to mislead
as to gi ve the correct answer. In this case, it is best for the output
units to take on a value of 0. 5 than to take on a more extreme value.
This fol lows from the form of the error function gi ven in Equation 2.
The output unit can achieve a constant output of 0.5 by turning off
those uni ts feeding into i t . Thus, the fi rst th ing that happens i n vi rtu
ally every difficult problem is that the hidden units are turned off. One
way to achieve this is to have the input units inhib i t the hidden units.
As the system begins to sort things out and to learn the appropriate
function some of the connections wil l typical l y go posi t ive , but the
majority of the connections wi l l remain negat i ve . Th is bias for solu
t ions involving inhibitory inputs can often lead to nonintui t ive results
in which hidden units are often on unless turned off by the i nput.

More Simulation Results

We have offered a sample of our results i n this sect ion. In addi t ion
to having studied our learning system on the problems discussed here ,
we have employed back propagation for l earning to mult iply binary
digits, to play t ic-tac-toe , to dist inguish between vert ical and horizontal
l ines, to perform sequences of actions , to recognize characters , to asso
ciate random vectors , and a host of other applicat ions. In all of these
appl ications we have found that the genera l ized delta rule was capable
of generating the kinds of internal representations required for the
problems in quest ion . We have found local minima to be very rare and
that the system learns in a reasonable period of t ime. Sti l l more studies
of this type wi l l be requi red to understand precisely the condit ions
under which the system wi l l be plagued by local min ima. Suffice it to
say that the problem has not been serious to date . We now turn to a
pointer to some future developments.

SOME FURTHER GENERALIZATIONS

We have intensi vely studied the learn ing characteristics of the gen
eral ized delta rule on feed forward networks and semi l i near activations
functions. In terest ingly these are not the most general cases to which
the learning procedure is applicable. As yet we have on ly studied a few
examples of the more fu l ly genera l ized system, but it is relatively easy
to apply the same learn ing rule to sigma-pi units and to recurrent net
works . We wi l l s imply s�qg� here .

8. L E A R NING INTERNAL R EP R ESENTATIONS 353

The General ized Delta R u l e and S igma-Pi Uni ts

It wi l l b e recal led from Chapter 2 t h a t i n the case of sigma-pi u n i ts
we have

(I 7)

where i varies over the set of conj u ncts feed i ng i n t o u n i t j and k varies
over the elements of the conj uncts . For s i mpl ic i ty of exposit ion , we
restrict oursel ves to the case in which no conjuncts i n vo l ve more than
two elements. In this case we can notate the weight from the conj u nc
t ion of u n i ts i and j to unit k by wkij ' The wei ght on the di rect con
nection from unit i to unit j would, th u s , be wji; , and s ince the rel at ion
i s mult i pl icat i ve , Wkij = Wkj; ' We can now rewri te Equat ion 17 as

OJ = Ij (L Wjh; 0h 0;) .
; .h

We now set

Taking the deri vative and si m pl i fyi ng , we get a rule for sigma-pi un i ts
strictly analogous to the ru le for sem i l i near act i vat ion fu nctions:

!l.p wkij = 8 k o; oj .

We can see the correc t form of the error si gnal , 8 , for this case by
inspect ing Figure 1 6 . Consider the appropriate value of 8; for un i t U;
in the figure. As before, the correct val ue of 8 ; is given by the sum of
the 8 's for al l of the un i ts i nto wh ich U; feeds , wei ghted by the amount
of effect due to the acti vat ion of U; t i mes the deri vat i ve of the acti va
tion funct i on. In the case of sem i l inear functions, the measure of a
unit's effect on another un i t is gi ven simply by the weight W connect
i ng the fi rst u n i t to the second . In this case, the u, 's effect on Uk
depends not only on Wk;j , but also o n the value of Uj . Thus, we have

8; = I 'j (net;) L8 k Wk;j OJ
j ,k

if u; is not an output unit and, as before ,

8 ; = .1 '; (net;) (t;- o;)
i f i t is an output uni t .

Copyrighted Material

354 BASIC MECHANISMS

& . & .
J t

FIGU RE 1 6 . The genera l i zed delta rule for s igma -pi units . The products of act i vat ion
values of i nd iv idua l units act i vate output units . See text for explanation of how the 8

values are com puted in th is case .

Recurrent Nets

We have thus far restricted ourselves to /eed/orward nets. This may
seem l i ke a substant ial restrict ion, but as Mi nsky and Papert point out,
there is , for every recurrent network, a feed forward network wi th ident
ical behavior (over a fin i te period of ti me) . We wi l l now indicate how
this construction can proceed and thereby show the correct form of the
l earning rule for the recurrent network. Consider the si mple recurrent
network shown in Figure 1 7 A. The same network in a feedforward
archi tecture is shown in Figure 1 7B. The behavior of a recurrent net
work can be ach ieved in a feedforward network at the cost of dupl icat
ing the hardware many t imes over for the feedforward version of the
network . 9 We have distinct units and distinct weights for each point in
t ime. For nami ng convenience , we subscri pt each uni t with i ts unit
number in the corresponding recurrent network and the t ime it
represents. As long as we constrain the weights at each level of the
feedforward network to be the same, we have a feedforward network
which performs identica l l y with the recurrent network of Figure 1 7 A.

9 Note that in th is d iscuss ion, and i ndeed in our ent i re development here, we have
assumed a discrete time system with synchronous upda te and with each connection
i n volving a un i t delay.

Copyrighted Material

A

B

·
·
·

8, LEAR NING INTER NAL REPRESENTATIONS 3 5 5

·
·
·

Ti me

t + 1

o

FIGURE 1 7 , A comparison of a recu rrent network and a feedforward network wi th
identical behavior, A : A completely connected recurrent network with two un i t s , B: A
feedforward network which behaves the same as the recurrent network , In t h is case, we
have a separate un i t for each t ime step and we requ i re that the weights connect ing each
layer of un i ts to the next be the same for a l l layers, Moreover, they m ust be the same as
the analogous weights in the recurrent case,

The appropriate method for maintain ing the constrai nt that all weights
be equal i s simply to keep track of the changes dictated for each weight
at each l evel and then change each of the weights according to the sum
of these indi vidual ly prescribed changes. Now, the general rule for
determin ing the change prescribed for a weight i n the system for a par
ticular t ime is s imply CWf,lPighted � of an appropriate error

356 BASIC MECHANISMS

measure 8 and the input along the relevant l ine both for the appropriate
times. Thus, the problem of specifying the correct learning rule for
recurrent networks i s s imply one of determin ing the appropriate value
of 8 for each t ime. In a feedforward network we determine 8 by mult i
plying the deri vat ive of the acti vation funct ion by the sum of the 8 's
for those un i ts it feeds into weighted by the connection strengths. The
same process works for the recurrent network - except in this case, the
value of 8 associated with a particular unit changes in t ime as a unit
passes error back, sometimes to i tself. After each i teration, as error is
being passed back through the network, the change in weight for that
i teration must be added to the weight changes specified by the preced
ing iterations and the sum stored. This process of passing error
through the network should continue for a number of i terations equal
to the number of i terations through which the act ivation was originally
passed . At th is point, the appropriate changes to all of the weights can
be made.

In general , the procedure for a recurrent network is that an input
(general ly a sequence) i s presented to the system while i t runs for some
number of iterations. At certain specified ti mes during the operation of
the system, the output of certain units are compared to the target for
that unit at that t ime and error signals are generated. Each such error
signal is then passed back through the network for a number of i tera
t ions equal to the number of i terations used in the forward pass .
Weight changes are computed at each i teration and a sum of all the
weight changes dictated for a part icular weight is saved . Finally, after
all such error signals have been propagated through the system , the
weights are changed . The major problem wi th this procedure is the
memory requi red. Not only does the system have to hold i ts summed
weight changes whi le the error is being propagated, but each unit must
somehow record the sequence of act i vat ion values through which it was
dri ven during the original processing. This fol lows from the fact that
during each i teration whi le the error is passed back through the system,
the current 8 is relevant to a point earl ier in t ime and the requ i red
weight changes depend on the act ivation levels of the units at that time.
It is not enti rely clear how such a mechan ism could be implemented in
the brain . Nevertheless , i t is tantal iz ing to rea l ize that such a procedure
is potential ly very powerfu l , since the problem it is attempting to solve
amounts to that of finding a sequential program (l i ke that for a digi tal
computer) that produces specified input-sequence/ output-sequence
pairs. Furthermore , the interaction of the teacher wi th the system can
be quite flexible , so that , for example, should the system get stuck in a
local min imum, the teacher cou ld in t roduce " h ints" in the form of
desi red output values for intermediate stages of processing. Our exper i
ence with recurrent net�Hmi�tePMII we have carried out some

8. LEARNING I NTERNAL REPRESENTATIONS 3 5 7

experiments . W e turn fi rst t o a very s imple problem in which the sys
tem is induced to invent a shift register to solve the problem.

Learning to be a shift register. Perhaps the simplest class of
recurrent problems we have studied i s one in which the input and out
put units are one and the same and there are no hidden units. We sim
ply present a pattern and let the system process i t for a period of t ime .
The state of the system is then compared to some target state . If i t
hasn ' t reached the target state a t the designated t i me, error is i njected
into the system and it modifies its weights. Then it is shown a new
input pattern and restarted. In these cases , there is no constrai nt on
the connections in the system . Any unit can connect to any other uni t .
The simplest such problem we have studied is what we ca l l the shift
register problem. In th is problem, the units are conceptualized as a cir
cular shift register. An arbi trary bit pattern is fi rst establ ished on the
units. They are then allowed to process for two t ime-steps. The target
state , after those two time-steps, is the original pattern shifted two
spaces to the l eft . The interesting question here concerns the state of
the uni ts between the presentation of the start state and the t ime at
which the target state is presented. One solution to the problem is for
the system to become a shift register and shift the pattern exactly one
unit to the left during each t ime period . If the system did this then it
would surely be shifted two places to the left after two t ime units. We
have t ried this problem with groups of three or five uni ts and , if we
constrain the biases on al l of the units to be negat ive (so the uni ts are
off unless turned on) , the system always learns to be a shift register of
this sort . IO Thus, even though in principle any unit can connect to any
other unit, the system actual ly learns to set al l weights to zero except
the ones connecting a uni t to i ts l eft neighbor. Si nce the target states
were determined on the assumption of a c i rcular register, the left-most
unit developed a strong connection to the right-most uni t . The system
learns this relatively quickly. With T/ = 0 .25 it learns perfectly in fewer
than 200 sweeps through the set of possible patterns with ei ther three
or five-unit systems.

The tasks we have described so far are exceptional ly simple, but they
do i l lustrate how the algori thm works with unrestricted networks. We
have attempted a few more difficult problems with recurrent networks.

10 If the constraint that biases be negat ive is not imposed , other solutions are possible.
These so l ut io ns can i nvolve the units passing through the complements of the shifted
pattern or even through more complicated in termediate states. These trajectories are

interesting in that they match a s i m ple shift register on a l l even numbers of shifts, but do
not match following an odd num ber of shifts.

Copyrighted Material

358 BASIC M ECH ANISMS

One of the more interesting involves learni ng to complete sequences of
patterns. Our final example comes from this domain .

Learning to complete sequences. Table 10 shows a set of 25
sequences which were chosen so that the first two i tems of a sequence
uniquely determine the remain ing four . We used this set of sequences
to test out the learning abi l i t ies of a recurrent network . The network
consisted of five i nput units (A, B, C, D, E) , 30 hidden units, and
three output units (I , 2 , 3) . At Time 1 , the input unit corresponding
to the first i tem of the sequence is turned on and the other input units
are turned off. At Time 2 , the input uni t for the second item in the
sequence is turned on and the others are al l turned off. Then al l the
i nput units are turned off and kept off for the remain ing four steps of
the forward i terat ion . The network must learn to make the output units
adopt states that represent the rest of the sequence. Unli ke simple
feedforward networks (or thei r i terati ve equivalents) , the errors are not
only assessed at the final layer or t ime. The output units must adopt
the appropriate states during the forward i terat ion, and so during the
back-propagation phase, errors are injected at each t ime-step by com
paring the remembered actual states of the output units with their
des ired states .

The learning procedure for recurrent nets places no constraints on
the al lowable connectivity structure. 1 1 For the sequence completion
problem, we used one-way connections from the input units to the hid
den units and from the hidden units to the output units . Every hidden
unit had a one-way connection to every other h idden unit and to i tself,

TABLE 1 0

2 5 SEQUENCES TO B E LEARNED

AA 1 2 1 2 AB1 223 AC 1 23 1 A D l 2 2 1 AEI 2 1 3

BA23 1 2 BB2323 BC233 1 B023 2 1 BE23 1 3

CA3 1 1 2 CB3 1 23 CC3 1 3 1 C03 1 2 1 CE3 1 1 3

OA2 1 1 2 OB2 1 23 OC2 1 3 1 002 1 2 1 OE2 l l 3

EA 1 3 I 2 EB 1 3 23 EC 1 3 3 1 ED l 3 2 1 EEI3 1 3

1 1 The constra int i n feed forward networks is that i t must b e possible t o arrange the

units into l ayers such that uni ts do not infl uence units in the same or lower layers. In
recurrent networks this amounts to the constra int that during the forward iterat ion,
future states must not affect past ones.

Copyrighted Material

8. LEARNING INTERNAL R EPRESENTATIONS 359

and every output un i t was also connected to every other output unit
and to i tself. All the connections started with smal l random weights
uniformly distributed between - 0.3 and + 0. 3 . All the hidden and out
put units started with an acti vi ty level of 0.2 at the beginning of each
sequence.

We used a version of the learning procedure in wh ich the gradient of
the error with respect to each weight i s computed for a whole set of
examples before the weights are changed . This means that each con
nection must accumulate the sum of the gradients for all the examples
and for a l l the t ime steps i nvolved i n each example. During train i ng,
we used a part icular set of 20 examples , and after these were learned
almost perfectly we tested the network on the remain ing examples to
see if it had picked up on the obvious regularity that relates the fi rst
two i tems of a sequence to the subsequent four . The results are shown
in Table 1 1 . For four out of the fi ve test sequences , the output un i ts
all have the correct val ues at al l t imes (assu ming we treat val ues above
0.5 as 1 and values below 0.5 as 0) . The network has clearly captured
the rule that the fi rst item of a sequence determines the th ird and
fourth , and the second determines the fi fth and si xth . We repeated the
simulation with a d ifferent set of random in i t ial weights, and i t got a l l
five test sequences correct .

The learning requi red 260 sweeps through a l l 20 t rai ning sequences .
The errors in the output un i ts were computed as fol lows : For a uni t
that should be on, there was no error if i t s act i vity level was above 0 . 8 ,
otherwise the deri vati ve o f the error was t h e amount below 0 .8 . S imi
larly, for output uni ts that should be off, the deri vat ive of the error was
the amount above 0. 2 . After each sweep, each weight was decremented
by .02 t imes the total gradient accumulated on that sweep plus 0 .9
t imes the previous weight change.

We have shown that the learning procedure can be used to create a
network with interest ing sequential behav ior , but the part icular problem
we used can be sol ved by s imply usi ng the hidden un i ts to create " delay
l ines " wh ich hold information for a fi xed length of t ime before a l lowing
i t to influence the output . A harder problem that cannot be sol ved
with delay l ines of fi xed duration is shown in Table 1 2 . The output i s
the same as before , but the two input i tems can arri ve at var iable t imes
so that the i tem arriving at t ime 2, for example, could be either the
first or the second i tem and could therefore determine the states of the
output units at ei ther the fifth and s ixth or the seventh and eighth
ti mes. The new task is equi valent to requ i r ing a buffer that recei ves
two input " words " at variable t imes and outputs their " phonemic real i
zat ions " one after the other . This problem was solved successful ly by a
network si mi lar to the one above except that i t had 60 hidden uni ts and
half of their possi ble iItM1iynnmetf>Ma� omitted at random. The

360 BASIC M ECHANISMS

TABLE 1 1

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQU ENCES

Input Sequence A D

Desi red Outputs 2 2

Actual States of:
Output Uni t 1 0 .2 0. 1 2 0.90 0.22 0. 1 1 0.83
Output Unit 2 0.2 0. 1 6 0 . 1 3 0 .82 0 .88 0.03
Output Unit 3 0. 2 0.07 0.08 0.03 0 .01 0 .22

Input Sequence B E

Desired Outputs 2 3 3

Actual States of:
Output Unit 1 0 .2 0. 1 2 0.20 0.25 0.48 0.26
Output Unit 2 0 .2 0. 1 6 0.80 0.05 0.04 0.09
Output U nit 3 0 .2 0 .07 0 .02 0.79 0 .48 0.53

Input Sequence C A

Desired Outputs 3 2

Actual States of:
Output Unit 1 0 .2 0. 1 2 0. 1 9 0.80 0.87 0. 1 1
Output Unit 2 0 .2 0. 1 6 0. 1 9 0 .00 0. 1 3 0 .70
Output Unit 3 0 .2 0.07 0.80 0. 1 3 0.01 0 .25

Input Sequence D B

Desi red Outputs 2 2 3

Act ual States of:

Output Uni t 1 0 .2 0. 1 2 0. 1 6 0.79 0.07 0. 1 1
Output Uni t 2 0.2 0. 1 6 0.80 0. 1 5 0.87 0.05
Output Unit 3 0.2 0.07 0.20 0.01 0 . 1 3 0.96

Input Sequence E C
Desired Outputs 3 3

Actual States of:

Output Un i t 1 0.2 0 . 1 2 0 .80 0.09 0.27 0.78
Output Unit 2 0.2 0. 1 6 0.20 0. 1 3 0.01 0 .02
Output Unit 3 0.2 0.07 0.07 0 .94 0.76 0 . 1 3

learn ing was much slower, requir ing thousands of sweeps through all
1 36 training examples . There were also a few more errors on the 1 4
test examples , but the general i zation was st i l l good with most of the
test sequences being coll!RJp)9tgRfd'lieM»terial

8. LEA R N I NG INTERNAL R E P R ES ENTATIONS 3 6 1

TABLE 1 2

SIX VARIATIONS OF THE S EQUENCE EA \ 3 1 2 PRODUCED BY

PRES ENTING THE FI RST TWO ITEMS AT V A R I ABLE TI M ES

EA-- 1 3 1 2
- EA- 1 3 1 2

E - A - 1 J 1 2

- E - A I 3 1 2

E - - A I 3 l 2

- - EA \ 3 1 2

Note: With these temporal variat ions, t h e 2 5 sequences shown i n
Table 10 can be used to generate 1 50 different seque nces .

CONCLUSION

In the i r pess imist ic d iscussion of percept rons, Minsky and Papert
(1 969) finally d iscuss mult i layer mach ines near the end of their book .
They state:

The perceptron has shown i tself worthy of study despi te (and
even because of!) i ts severe l im i tat ions. It has many features
that attract attention: its l inearity; i ts i ntr iguing learning
theorem; i ts clear paradigmatic si mplicity as a k ind of paral lel
computat ion . There is no reason to suppose that any of these
vi rtues carry over to the many-layered version , Nevertheless,
we consider i t to be an important research problem to elucidate
(or reject) our intu i t i ve judgement that the extension is ster i le .
Perhaps some powerfu l convergence theorem wi l l be
discovered, or some profound reason for the fai lu re to produce
an interesting " learn i ng theorem " for the mult i layered machine
wi l l be found. (pp. 2 3 1 -232)

Although our learning resu lts do not guarantee that we can find a sol u
t ion for a l l solvable problems, our analyses and resul ts have shown that
as a practical matter, the error propagation scheme leads to solut ions i n
vi rtually every case, In short, we bel ieve that we have answered Min
sky and Papert 's chal lenge and have found a learn ing result sufficient ly
powerful to demonstrate that thei r pessi mism about learning in mul
t i layer machines was misplaced.

One way to view the procedure we have been descri bing is as a paral
lel computer that , having been shown the appropriate input/ output
exemplars specifying some function , programs i tself to compute that
function in general . Paral lel computers are notoriously difficult to pro
gram. Here we have a mechan ism whereby we do not actual ly have to
know how to write the program in order to get the system to do i t .
Parker (1 985) has emph�fflJIigHt-eB�rerial

362 BASIC M ECHAN ISMS

On many occasions we have been surprised to learn of new methods
of comput ing interest ing funct ions by observi ng the behavior of our
learn ing algori t h m . Th is also raised the question of genera l izat ion. In
most of the cases presented above, we have presented the system wi th
the ent i re set of exemplars. It i s in terest ing to ask what would happen
if we presented only a subset of the exemplars at trai n i ng t i me and then
watched the system general ize to remai n i ng exemplars . In small prob
lems such as those presented here, t he system sometimes fi nds solu
t ions to the problems which do not properly general ize. However, pre
l i minary results on l arger problems are very encouraging i n this regard.
This research is st i l l i n progress and cannot be reported here . This is
currently a very act i ve interest of ours .

Fi nal ly , we should say that th is work is not yet i n a fi nished form.
We have only begun our study of recurren t networks and s igma-pi
uni ts . We have not yet appl ied o u r l earn ing procedure to many very
com plex problems . However, the results to date are encouragi ng and
we are cont i n u i ng our work .

Copyrighted Material

PART III

FORMAL ANALYSES

Part III is focused on the formal tools employed in the study of PDP
models and their application in the analysis of several specific aspects of
PDP mechanisms.

In Chapter 9, Jordan provides a very accessible introduction to linear
algebra and its applications to the analysis of PDP models. This chapter
is designed to be a tutorial for those who are not familiar with the
basics of linear algebra. Most of the book can be read and understood
without knowledge of linear algebra, but an understanding of this
important tool will greatly enhance a reader's understanding of the
mathematical discussions that can be found in several chapters of the
book.

In Chapter 10, Williams provides a useful analysis of activation func
tions. Throughout the book we employ several different activation
functions. There is a question as to whether we will need to look for
more complex activation functions to carry out some of the more com
plex computations. Williams shows that we will never have to consider
activation functions more complex than the sigma pi function.

In Chapter 11, Stone provides a useful analysis of the delta rule,
which plays an important role throughout the book. Stone shows how a

change of basis can be employed to reveal the internal workings of the
delta rule. He shows that when there is no deterministic relationship
between inputs and targets, the delta rule leads to a system whose out
puts match the central tendencies of the target patterns. Finally, he
shows how the delta rule is related to linear regression.

Copyrighted Material

364 FORMAL ANALYSES

In Chapter 12, McClelland analyzes the capacity limitations of two
kinds of networks. He studies the effects of limitations of fan-in and
fan-out on the capacities of standard pattern-association networks, and
he explores the costs in units and connections of using programmable
networks of the kind outlined in Chapter 16.

Finally, in Chapter 13, Zipser and Rabin describe a computer simula
tion system, called P3, for building computer simulations of PDP
models. P3 provides both a language for describing networks and an
interface for interacting with these networks and observing their
behavior. Chapter 13 gives as an example a description of how the
competitive learning algorithm can be built in P3.

In general, the chapters in this section are useful for two reasons.
First, they describe several useful basic results-results that lie behind
many of the simulation models described in other sections of the book.
Second, and perhaps more importantly, they indicate some of the for
mal tools that are available for analyzing parallel networks, and show
through example how these tools can be used to produce useful results.

Copyrighted Material

CHAPTER 9

An Introduction to Linear Algebra in

Parallel Distributed Processing

M. I. JORDAN

Many of the properties of the models described in this book are cap
tured by the mathematics of l inear algebra. This chapter serves as a
introduction to l inear algebra and is a good starting place for the reader
who wishes to delve further into the models presented in other parts of
the book. I wil l focus on the aspects of li near algebra most essential for
the analysis of parallel distributed processing models, particularly the
notions of a vector space, the inner product, and l ineari ty. I will also
discuss some simple PDP models, and show how their workings
correspond to operations on vectors.

VECTORS

A vector is a useful way to describe a pattern of numbers. Co.-.sider
for example the pattern of numbers that describe the age, height,·�nd
weight of an average person . Suppose that Joe is 37 years old , 72
inches tal l , and weighs 175 pounds. This information can be summar
ized in a vector or ordered l ist of numbers. For each person , there is a
corresponding vector, as in Figure IA. Each vector has three com
ponents: age, height , and weight . There is no reason to l imit oursel ves

Copynghted Material

366 FORMAL ANALYSES

A

Carol [�� I
1 21

8

FIGURE 1.

37
72

Joe 1 75
8

1946

Mary [�?I
Brad [�� I

155

to only three components, however. If, for example, we also wanted to
keep track of Joe's shoe size and year of birth, then we would simply
make a vector with five components, as in Figure lB.

One important reason for the great util ity of linear algebra lies in the
simplicity of its notation. We will use bold, lower-case letters such as v
to stand for vectors. With this notation, an arbitrarily long list of infor
mation can be designated by a single symbol.

When a vector has no more than three components, it can be
represented graphically by a point or an arrow in three-dimensional
space. An example with three components is given in Figure 2 for the
vector corresponding to Mary. Each axis in the figure corresponds to
one of the three components of the vector.

It will prove helpful to try and visualize vectors as points or arrows in
two- and three-dimensional space in proceeding through this chapter in
order to develop geometric intuition for the operations on vectors.
Notice, however, that there is no fundamental distinction between such
vectors and vectors with more than three components. All of the
operations upon vectors described in later sections apply equally well to
vectors with any finite number of components.

In a parallel distributed processing model, many quantities are best
represented by vectors. The pattern of numbers representing the
activations of many processing units is one example. Other examples
are the s�t of weights on the input lines to a particular processing unit,
or the set of inputs to a system.

Copyrighted Material

Weight
80

9. INTRODUCTION TO LINEAR ALGEBRA 367

1/
I I

Height
/30

/

- - - - - - - - - - - - _II
Age

FIGURE 2.

BASIC OPERATIONS

Multiplication by Scalars

In l i near algebra, a single real number is referred to as a scalar. A
vector can be multipl ied by a scalar by multiplying every component of
the vector by the scalar.

Examples: [-3] [-15]
5 4 = 20 1 5

Geometrically, scalar mult ipl icat ion corresponds to lengthening or
shortening the vector, while leaving i t po inting in the same or opposite
di rection . As can be seen in Figure 3, mult iplying a vector by 2 leaves
it pointing in the same di rection but twice as long. In general , multi
plying a vector by a posit ive scalar produces a new vector that is longer
or shorter by an amount corresponding to the magnitude of the scalar.
Multipl ication by a negati ve scalar produces a vector pointing in the
opposite di rection. I t , too, is longer or shorter depending on the mag
nitude of the scalar. Two vectors that are scalar multiples of one
another are said to be co'lJ8ffjf;ghted Material

368 FORMAL ANALYSES

4

3

2

o �--�--�--�--�--��-2 3 4 5

FIGURE 3.

Addition of Vectors

Two or more vectors can be added by adding their components. The
vectors must have the same number of components to be added; other
wise the operation is undefined.

Examples:

Vector addition is associative (the vectors can be grouped in any
manner) and commutative (the order of addition is unimportant) just
l ike addi tion in ordinary algebra. This is true because if we consider
one component at a time, vector addition is just addition in ordinary
algebra.

How can vector addition be represented graphically? Consider Figure

4, where lhe vectors vI - [� 1 and. 2 - [: 1 are being added. It can be

seen that the sum v 1 + V 2 is a vector [� 1 which l ies between v 1 and v 2'

Forming the paral lelogram with sides v 1 and v 2, we see that the sum of

Copyrighted Material

3

2

2

FIGURE 4.

9. INTRODUCTION TO LINEAR ALGEBRA 369

4 5

the two vectors is the diagonal of this parallelogram. In two and three
dimensions this is easy to visual ize , but not when the vectors have
more than three components. Nevertheless, it wil l be useful to imagine
vector addit ion as forming the diagonal of a parallelogram. One impli
cation of this view, which we will find useful , i s that the sum of two
vectors is a vector that l ies in the same plane as the vectors being
added.

Example: Calculating averages. We can demonstrate the use of the
two operations thus far defined in calculat ing the average vector. Sup
pose we want to find the average age , height, and weight of the four
individuals in Figure lA. Clearly this involves summing the com
ponents separately and then dividing each sum by 4. Using vectors ,
this corresponds to adding the four vectors and then multiplying the
resulting sum by the scalar 1/4. Using u to denote the average vector,

u = ! II ��l + I !�l + I �� l + I :�ll = I �::� l · 175 61 121 155 128

Using vector notat ion, if we denote the four vectors by v I, V 2, V 3, and
v 4, then we can write the averaging operation as

1 u= '4 (V I + V 2 + V3 + V4)'
Copyrighted Material

370 FORMAL ANALYSES

The vector u, then, is a vector whose components are the averages of
the components of the four individual vectors . Notice that the same
result is obtained if each vector is fi rst multiplied by 1/4, and the
resulting vectors are added. This shows that multiplication by scalars
and vector addition obey a distributive law, as in ordinary algebra.

LINEAR COMBINATIONS AND LINEAR
INDEPENDENCE

Linear Combinations of Vectors

The average vector calculated in the last section is an example of a
linear combination of vectors. In this section , we pursue this idea
further.

Consider the vectors v , = [�], V 2 = [�], and u = [1 �]. Can u be

written as the sum of scalar multiples of v, and v 2? That is, can scalars
c, and C2 be found such that u can be written in the form

U = CIVI+C2V2?

If so, then u is said to be a linear combination of the vectors v I and v 2.
The reader can verify that c, = 3 and C2 = 2 witt work, and thus u is a
linear combination of v, and v 2.

This can also be seen directly in Figure 5 , where these vectors are
plotted. Remembering that multipl ication by a scalar shortens or

10

5

o �----�------�------�--5 10 15

FIGURE 5.
Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 371

lengthens a vector and that vector addit ion corresponds to forming the
diagonal of a parallelogram, i t seems clear that we can find scalars to
adjust v 1 and v 2 to form a paral lelogram that yields u. This is indicated
in the figure . It also seems clear that , using posit ive scalars , any vector
in the shaded area of the figure can be generated this way. By using
both negati ve and posit ive scalars , any vector in the plane can be wri t
ten as a l inear combination of v 1 and v 2. This is true because mult ipl i
cation by a negative scalar reverses the direction of a vector as well as
shortening or lengthening i t . The vectors v 1 and v 2 are said to span the
plane, because any vector in the plane can be generated from these two
vectors.

In general , given a set v I> v 2 • • • • • V II of vectors, a vector v is said to
be a l inear combinat ion of the Vi if scalars el>e2 • . . . • ell can be found
such that

(1)
The set of all l inear combinations of the v, is called the set spanned by
the v ,.

Exampk. The � vecto� [�I, [! I Md [� I s� an ru thre�

dimensional space since any vector v - [!I can be written as a l inear

combination v - a [i I +b [! 1+ c m The vecto� are ref erroo to

as the standard basis for three-dimensional space (more on the idea of a
basis in the next section) .

Linear Independence

To say that a set of vectors span a space is to say that all vectors in
the space can be generated from the original set by l inear combination .
We have shown examples in which two vectors span two-dimensional
space and three vectors span three-dimensional space. We might be led
to expect that , in general , n vectors suffice to span n -dimensional
space. In fact , we have been using the term "dimension" without defin
ing what it means; it would seem that a good definition of n
dimensional space i s theeBhph�t81jr�PJWBfd by n vectors.

372 FORMAL ANALYSES

To make this definition work, we would require that the same size
space be generated by any set of n vectors. However, this is not the
case, as can be easily shown. Consider any pair of collinear vectors, for
example. Such vectors lie along a single line, thus any linear combina
tion of the vectors will lie along the same line. The space spanned by
these two vectors is therefore only a one-dimensional set. The col-

linear vectors [� I and [; I are a good example. Any linear combina

tion of these vectors will have equal components, thus they do not span
the plane.

Another example is a set of three vectors that lie on a plane in
three-dimensional space. Any parallelograms that we form will be in
the same plane, thus all linear combinations will remain in the plane
and we can't span all of three-dimensional space.

The general rule arising from these examples is that of a set of n
vectors, if at least one can be written as a linear combination of the
others, then the vectors span something less than a full n-dimensional
space. We call such a set of vectors linearly dependent. If, on the other
hand, none of the vectors can be written as a linear combmation of the
others, then the set is called linearly independent. We now revise the
definition of dimensionality as follows: n -dimensional space is the set
of vectors spanned by a set of n linearly independent vectors. The n
vectors are referred to as a basis for the space.

Examples:

1. [�I and [; I are linearly dependent. They span only a one

dimensional space.

2. I: I and 1 � I are linearly independent. Thus they span the

plane, a two-dimensional space.

3. 1 � I, 1 � I, and 1- � I are linearly dependent since 7 times the

first vector minus 4 times the second vector is equal to the third
vector.

4. [i J.[� I , an+ � I are linearly dependent. Clearly they =not

span all of three-dimensional space, because no vector with a
nonzero third component can be generated from this set.

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 373

Notice the relationship between examples (2) and (3). The vectors in
example (2) are linearly independent, therefore they span the plane.
Thus any other vector with two components is a linear combination of
these two vectors. In example (3), then, we know that the set will be
linearly dependent before being told what the third vector is. This sug
gests the following rule: There can be no more than n linearly indepen
dent vectors in n -dimensional space.

A l inearly independent set of vectors has the important property that
a vector can be written as a linear combination of the set in only one
way. In other words, the coefficients c; in Equation 1 are unique if the
vectors v; are linearly independent. This fact can be easily seen, for
example, in the case of the standard basis, for there is only one vector
in the basis which has a nonzero entry for any given component.

For linearly dependent vectors, however, the situation is different. If
a vector can be written as a linear combination of a linearly dependent
set of vectors, then there are an infinite number of sets of coefficients
that will work. Let us attempt to demonstrate this fact with the aid of
geometric intuition. Suppose that we wish to write vector v as a linear
combination of three vectors v I, V 2, and v 3 in the plane. Let us choose
any arbitrary coefficient C I for the vector v I. As shown in Figure 6,
there must be a vector w such that v = C IV I + w. Thus, if we can write
w as a linear combination of V2 and v3, i.e., w = c2v2 + C3V3, then we
have succeeded in writing v as a linear combination of v b v 2, and v 3'
But clearly we can do this, because w is a vector in the plane, and v 2
and v 3 together span the plane.

v

FIGURE 6.
Copyrighted Material

374 FORMAL ANALYSES

VECTOR SPACES

Let us pause to reflect for a moment upon what a vector is. I have
implied that a vector is a l i st of numbers, and I have also used the term
to refer to a point or an arrow in space. Are both of these objects vec
tors , or is one just a heuristic representation for the other? Are there
other objects that should be cal led vectors? Just what is a vector?

As is often the case in mathematics , these kinds of questions are
solved by being avoided . Consider the fol lowing definition of an
abstract vector space, and try to decide what a vector is .

A vector space is a set V of elements, called vectors , with the follow
ing properties:

• To every pair , u and v, of vectors in V. there corresponds a
vector u + v also in V, called the sum of u and v , in such a way
that addition is commutative and associative.

• For any scalar c and any vector v in V, there is a vector cv in
V, called the product of c and v, in such a way that multiplica
t ion by scalars is associative and distributive with respect to
vector addit ion . l

The answer to the question is that a vector is an undefined object in
l inear algebra, much l ike a l ine in geometry. The definition of a vector
space simply l ists the properties that vectors must have, without speci
fying what a vector must be. Thus, any set of objects that obey these
properties can be cal led a vector space. Lists of numbers are vectors
when addition is defined as adding components separately and scalar
multipl ication is defined as multiplying all the components by the
scalar, because these operations fill all the requirements of a vector
space. Arrows or points in space are also vectors when addition is
defined geometrically as taking the diagonal of a parallelogram and
scalar multipl ication is defined as lengthening or shortening the arrow,
because again , these operations fi ll the requi rements of a vector space .
A seemingly unrelated example of a vector space is the set of polyno
mials of order n, with addition and scalar multipl ication defined in the
obvious way.

This sort of abstraction is common in mathematics. It is useful
because any theorem that is true about a general vector space must be

1 I have left out certain technicalities usually included as axioms for a vector space.

These include the axiom that there must be a zero vector, and for every vector, there is

an additive inverse.

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 375

true about any instantiation of a vector space . We can therefore discuss
general properties of vector spaces without being committed to choos
ing a particular representation such as a list of numbers. Much of the
discussion about l inear combinations and l inear independence was of
this nature.

When we do choose numbers to represent vectors, we use the fol
lowing scheme. First we choose a basis for the space . Since every vec
tor in the space can be written as a l inear combination of the basis vec
tors , each vector has a set of coefficients c J, c 2 • • • • • cn which are the
coefficients in the linear combination . These coefficients are the
numbers used as the components of the vector. As was shown in the
previous section, the coefficients of a gi ven vector are unique because
basis vectors are l inearly independent.

There is a certain arbitrariness in assigning the numbers , since there
are infinitely many sets of basis vectors , and each vector in th� space
has a different description depending on which basis is used . That is ,
the coefficients, which are referred to as coordinates, are different for
different choices of basis . The implications of this fact are discussed
further in a later section where I also discuss how to relate the coordi
nates of a vector in one basis to the coordinates of the vector in
another basis . Chapter 22 contains a lengthy discussion of several
issues relating to the choice of basis .

INNER PRODUCTS

As of yet , we have no way to speak of the length of a vector or of
the similarity between two vectors . This will be rectified with the
notion of an inner product.

The inner product of two vectors is the sum of the products of the
vector components . The notation for the inner product of vectors
v and w is v . w. As with vector addit ion , the inner product is defined
only if the vectors have the same number of components.

Example:

v . w = (3 . 1) + (- 1 . 2) + (2 . 1) = 3.
Copyrighted Material

376 FORMAL ANALYSES

The inner product is a kind of mUltiplication between vectors,
although somewhat of a strange sort of multipl icat ion , since i t produces
a single number from a pai r of vectors . What does this single number
"measure" ?

Length

As a special case , consider taking the inner product of a vector wi th

i tself. An example is the vector v = [! [in Figure 7. The inner pro

duct of v with i tself i s

v . v = 32 + 42 = 25.
Consider the right triangle in Figure 7 with sides corresponding to the
components of v. and hypotenuse v itself. The Pythagorean theorem
tells us that the square of the length of v i s equal to the sum of the
squares of the sides . Since this is exactly what is calculated by the
inner product v . v, i t appears that a reasonable definition of the length
of a vector is the square root of the inner product of the vector with
i tself. Thus we define the length of a vector v, denoted by IIvll , as

IIvll = (v' v)'h.
Although the definition was motivated by an example in two dimen
sions , it can be appl ied to any vector. Notice that many of the

FIGURE 7.

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 377

properties we intuit ively associate wi th length are included in this defin
ition. For example, if a vector has larger components than another
vector, i t wil l be longer, because the squared components wi ll contri
bute to a larger inner product . Multiplying a vector by a scalar pro
duces a new vector whose length is the absolute value of the scalar
times the length of the old vector:

lIevll = !clllvll·

This is a property that can be easily proved . Somewhat harder to prove
is the so-called triangle inequality, which states that the length of the
sum of two vectors is less than or equal to the sum of the lengths of
the two vectors:

Geometrically, the triangle inequal ity corresponds to the statement that
one side of a triangle is no longer than the sum of the lengths of the
other two sides .

Thus, in the special case where the operands are the same vector, the
inner product is closely related to the idea of length. What if the
operands are different vectors?

Angle

The angle between two vectors v and w is defined in terms of the
inner product by the following definit ion:

v 'w
cos

(J = IIvll IIwil
(2)

where (J is the angle between v and w. Note that all of the quantit ies on
the right hand side of the equat ion are easi ly calculated for n
dimensional vectors . At the end of this section, I will show geometri
cally why this formula is correct in two-dimensional space, using the
ordinary geometrical definit ion of angle.

Example. Find the angle (J between the vectors v I = [� 1 and

v 2 = [� I. First , we calculate the necessary inner product and lengths:

378 FORMAL ANALYSES

and then substi tute these values in Equation 2:
1

cos (J = 1 . .Ji = 0.707.

Thus,

(J = COS- I (0.707) = 45°.
This result could also have been found using basic trigonometry, but
clearly the inner product method is superior in general (consider find
ing the angle between vectors with forty components!) .

The inner product is often said to measure the" match" or" similarity"
between two vectors . In a vague sense , this seems to be the case from
the definit ion of the inner product as the sum of products . Equation 2 ,
however, shows this in a clearer way: Wri t ing out the equation in
terms of the components of the vectors gives

I:. Vi Wi
i-I cos (J "" --..;.....�---

(I:. v/)'h(t w/)'h
i-I i-I

This is the formula for the correlation between two sets of numbers
with zero means.

We can use our geometrical intui tions about angles and our under
standing of correlation to turn Equation 2 around and gain a better
understanding of the inner product . This understanding is important
for the analysis of PDP models , because as will be seen, PDP models
often compute inner products. Let us imagine moving two vectors
around in space l ike the hands on a clock . If we hold the lengths of the
vectors constant , then Equat ion 2 says that the inner product is propor

tional to the cosine of the angle : v . w = I lv 1 I IIw II cos (J. For example , if
the angle between the vectors is zero , where the cosine is at a max
imum, the inner product must therefore be at a maximum . As the two
vectors move farther apart , the cosine decreases , thus the inner product
decreases. It reaches zero when the angle is 90° , and its most negative
value when the angle between the vectors is 1 80°, that is, when the
vectors po int in opposite di rect ions. Thus, the closer the two vectors
are , the larger the inner product . The more the vectors point in oppo
site di rections , the more negative the inner product .

We must be careful , however, in claiming that two vectors are closer
together than two others because they have a larger inner product. We

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 379

must remember to divide the inner product by the lengths of the vec
tors involved to make such comparative statements.

An important special case occurs when the inner product is zero. In
this case, the two vectors are said to be orthogonal. Plugging zero into
the right side of Equation 2 gives

cos () == o.

which implies that the angle between the vectors is 90°. Thus, orthog
onal vectors are vectors which lie at right angles to one another.

We will often speak of a set of orthogonal vectors . This means that
every vector in the set is orthogonal to every other vector in the set.
That is, every vector lies at a right angle to every other vector. A good
example in three-dimensional space is the standard basis referred to
earlier. Although we will skip the proof, it is probably clear that any
orthogonal set is l inearly independent. Indeed, orthogonali ty is
stronger than linear independence: whereas every orthogonal set is
linearly independent, there are very many linearly independent sets of
vectors that are not orthogonal. An example in two-dimensional space

is the pair [: 1 and [� I· When we choose a basis for a space, we typi·

cally choose an orthogonal basis. In fact , in much of classical physics
and mathematics, there is not the slightest hint that a basis should be
anything but orthogonal .

Projections

A further application of the inner product , closely related to the ideas
of length and angle , is the notion of a projection of one vector onto
another. An example is given in Figure 8. The distance x is the pro
jection of v on w, In two dimensions, we readily know how to calculate
the projection. It is

x .. IIvll cos () (3)

where () is the angle between v and w, This formula generalizes , and
for any vectors v and w, the projection of v on w is given by Equation
3. It is a scalar which can be thought of as indicating how much v is
pointing in the direction of w .

Copyrighted Material

380 FORMAL ANALYSES

"

FIGURE 8.

There is a close relationship between the inner product and the pro
jection. Using Equation 2, we can rewrite the formula for the projec
tion:

x = \Iv II cos 9
v 'w

= IIv\l \lvll IIwll

Thus, the projection is the inner product divided by the length of w. In
particular, if w has length one, then IIwll = I, and the projection of v
on wand the inner product of v and ware the same thing. This way of
thinking about the inner product is consistent with our earlier com
ments. That is , if we hold the lengths of v and w constant , then we
know that the inner product gets larger as v moves toward w. From the
picture, we see that the projection gets larger as well. When the two
vectors are orthogonal , the projection as wel l as the inner product are
zero.

Inner Products in Two Dimensions

Equation 2 can be shown to be correct in two-dimensional space with
the help of some simple geometry. Let v and w be two vectors in the
plane, and 9 be the angle between them, as shown in Figure 9. Denote
the x and y coordinates of v �nd w by V..J � Vy and wx, wy, respectively.

COPYrighted Material

FIGURE 9.

9. INTRODUcnON TO LINEAR ALGEBRA 381

v

w

Let I denote the projection of v on w. We have I = Ilv II cosO from
geometry. We can break I into two pieces Ix and Iy as shown in the fig
ure . I, can be computed from the diagram by noticing that triangles
OAD and COB, in Figure 1 0, are similar triangles. Thus, the rat io of
corresponding sides is constant:

giving

Iy Wy
�= Ilwll'

FIGURE 10. Copyrighted Material

382 FORMAL ANALYSES

A __ _

Ol�----- wx -----"' D

FIGURE 11.

In Figure 1 1 , we see how to compute lx, by observing that triangles
EOO and CAB are similar, Thus,

giving

We can now write I = Ix + Iy, which yields

Thus,

vow
cos 9 = IIvJJJJwll'

Algebraic Properties of the Inner Product

In this section, we collect together some useful algebraic theorems
concerning inner products, Most of these theorems can be easily
proved using the definition of the inner product and properties of real

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 383

numbers . In what follows , c and Cj wil l be any scalars , and the v and w
will be n -dimensional vectors .

v·w= w·v

C (v . w) = (e v) . w = v . (e w)

w . (v I + v 2) = w . V I + w . V 2

(4)

(5)
(6)

The first theorem says simply that order is unimportant ; the inner pro
duct is commutative. The second and thi rd theorems show that the
inner product is a linear function , as we wil l discuss at length in a later
section . We can combine these two equations to get
w . (eIVI + C2V2) = c) (w . VI) + C2 (w . V2). It is also well worth our
while to use mathematical induction to general ize this formula , giving
us

(7)
This important result tells us how to calculate the inner product of w
and a l inear combination of vectors.

Another useful theorem is

Iv . wi � IIvllllwll (8)
This is known as the Cauchy-Schwartz inequali ty. It gives an upper
bound on the inner product.

ONE UNIT IN A PARALLEL DISTRIBUTED

PROCESSING SYSTEM

In this section , we show how some of the concepts we have intro
duced can be used in analyzing a very simple PDP model . Consider the
processing unit in Figure 12 which receives inputs from the n units
below. Associated with each of the n + 1 units there is a scalar activa
tion value. We shall use the scalar u to denote the activation of the out
put unit and the vector v to denote the activations of the n input uni ts.
That is , the ith component of v is the activation of the ith input unit.
Since there are n input units, v is an n -dimensional vector.

Associated with each l ink between the input units and the output
unit , there is a scalar wemwr;�& �g�� can think of the set of n

384 FORMAL ANALYSES

FIGURE 12.

FIGURE 13.

weights as an n -dimensional vector w. This is the weight vector
corresponding to the output unit. Later we will discuss a model with
many output units, each of which wil l have its own weight vector.

Another way to draw the same model is shown in Figure 13. Here
we have drawn the n input units at the top wi th the output unit on the
right. The components of the weight vector are stored at the junctions
where the vertical input l ines meet the horizontal output line. Which
diagram is to be preferred (Figure 12 or Figure 13) is mostly a matter
of taste , although we will see that the diagram in Figure 13 generalizes
better to the case of many output units.

Now to the operation of the model : Let us assume that the activa
tion of each input unit is multi pl ied by the weight on its l ink, and that
these products are added up to give the act ivation of the output unit .
Using the definit ion of the inner product , we translate that statement
into mathematics as fol lows:

u =W · v.
The activation of the output unit i s the inner product of its weight vec
tor with the vector of input activations.

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 385

The geometric properties of the inner product give us the following
picture to help in understanding what the model is computing. We
imagine that the set of possible inputs to the model is a vector space.
It is an n -dimensional space, where n is the number of input lines.
The weight vector also has n components, thus we can plot the weight
vector in the input space. The advantage of doing this is that we can
now state how the system will respond to the various inputs. As we
have seen, the inner product gives an indication of how close two vec
tors are . Thus, in this simple PDP model, the output activation gives
an indication or measurement of how close the input vector is to the
stored weight vector. The inputs lying close to the weight vector will
yield a large positive response, those lying near 900 will yield a zero
response, and those pointing in the opposite direction will yield a large
negative response. If we present a succession of input vectors of con
stant length, the output unit will respond most strongly to that input
vector which is closest to its weight vector, and will drop off in
response as the input vectors move away from the weight vector.

One way to describe the functioning of the processing unit is to say
that it splits the input space into two parts, the part where the response
is negative and the part where the response is positive. We can easily
imagine augmenting the unit in the followi ng way: if the inner product
is positive, output a 1; if the inner product is negative, output a O.
This unit , referred to as a linear threshold unit, explicitly computes
which part of the space the input lies in.

In some models, the weight vector is assumed to be normalized, that
is, Ilwll = 1. As we have seen, in this case, the activation of the output
unit is simply the projection of the input vector on the weight vector.

MATRICES AND LINEAR SYSTEMS

The first section introduced the concepts of a vector space and the
inner product . We have seen that vectors may be added together and
multiplied by scalars. Vectors also have a length, and there is an angle
between any pair of vectors. Thus, we have good ways of describing
the structure of a set of vectors .

The usefulness of vectors can be broadened considerably by introduc
ing the concept of a matrix . From an abstract point of view, matrices
are a kind of "operator" �tftlitl{>ing from one vector space

386 FORMAL ANA LYSES

to another vector space. They are at the base of most of the models in
this book which take vectors as inputs and yield vectors as outputs.

First , we wil l define matrices and show that they have an algebra of
their own which i s analogous to that of vectors . In particular, matrices
can be added together and multiplied by scalars.

MATRICES

A matrix is s imply an array of real numbers. If the array has m rows
and n columns, then we will refer to the matrix as an m x n matrix.
Capi tal letters will be used to denote matrices.

Examples: [3 4 sj
M= 1 0 1 1 3 0 0

1 N = 0 7 0
001

[10 - lj
P = -1 27

M i s a 2 x 3 matrix, N is a 3 x 3 matrix , and P i s a 2 x 2 matrix .

Some special matrices. There are several classes of matrices that are
useful to identify. A square matrix is a matrix wi th the same number
of rows and columns. The matrices Nand P are examples of square
matrices. A diagonal matrix is a square matrix that is zero everywhere
except on its main diagonal . An example is matrix N . A symmetric
matrix is a square matrix whose i ,Jth element is equal to its j, ith ele
ment. Any diagonal matrix is symmetric. Matrix P is an example of a
symmetric matrix that is not diagonal. Finally, the diagonal matri x that
has all ones on i ts main diagonal is referred to as the identity matrix ,
and is denoted I .

Multiplication by Scalars

A matrix can be multiplied by a scalar by multiplying every element
in the matrix by that scalar.

Example: [3 4 s j [9 12 lSj
3M = 3 1 0 1 = 3 0 3

Copyrighted Material

9. INTRODUcnON TO LINEAR ALGEBRA 387

Addition of Matrices

Matrices are added together by adding corresponding elements. Only
matrices that have the same number of rows and columns can be added
together.

Example: [345] [-1 0 2] M + N = 1 0 1 + 4 1 -1 = [2 4 7] 510

Notice that there is a close relationship between these definit ions and
the corresponding definit ions for vectors. In fact , for fixed integers
m and n, the set of all m x n matrices is another example of a vector
space. However, we will not exploit this fact, rather, we will think
about matrices in another way , in terms of functions from one vector
space to another. This is the subject of the next section.

Multiplication of a Vector by a Matrix

We now link up vectors and matrices by showing how a vector can be
multiplied by a matrix to produce a new vector. Consider the matrix

W -[� � :] and the vector v = [� I . We wish to define a vector u

which is the product of W and v . and denoted

u = W v -[� � ;] m
To define this operation, first imagine breaking the matrix into i ts rows.
Each row of the matr ix is a list of three numbers. We can think of the
row as a three-dimensional vector and speak of the row vectors of the
matrix. There are two such row vectors. Now consider forming the
inner products of each of these row vectors with the vector v . This will
yield two numbers. These two numbers can be thought of as a two
dimensional vector u, which is defined to be the product W v .

Copyrighted Material

388 FORMAL ANALYSES

Example:

[345] 11] [3'1+4.0+5'2] [13]
u = Wv = 1 0 1 � = 1 . 1 + o· 0 + 1· 2 = 3

The components of u are the inner products of v with the row vectors
ofW.
For a general m x n matrix Wand an n -dimensional vector v , 2 the

product Wv is an m -dimensional vector u , whose elements are the
inner products of v with the row vectors of W. As suggested by Figure
14, the ith component of u is the inner product of v with the ith row
vector of W . Thus, the multiplication of a vector by a matrix can be
thought of as simply a shorthand way to write down a series of inner
products of a vector with a set of other vectors. The vector u tabulates
the results. This way of thinking about the multiplication operation is a
good way to conceptualize what is happening in a PDP model with
many output units, as we will see in the next section.
There is another way of writing the multiplication operation that

gives a different perspective on what is occurring. If we imagine break
ing the matrix up into its columns, then we can equally well speak of
the column vectors of the matrix . It can then be easily shown that the
multiplication operation Wv produces a vector u that is a linear combi
nation of the column vectors of W. Furthermore, the coefficients of
the linear combination are the components of v. For example, letting
Wlo w2, w3 be the column vectors ofW, we have

u W V

i,h 0 i,h 0 () component row

FIGURE 14.

2 The dimensionality of v must be equal to the number of columns of W so that the

inner products can be defined.

Copyrighted Material

9. [NTRODUCf[ON TO LINEAR ALGEBRA 389

where the Vi are the components of v. This way of viewing the multi
plication operation is suggested in Figure 1 5 for a matrix with n
columns.

If we let the term column space refer to the space spanned by the
column vectors of a matrix, then we have the following interesting
result: The vector u is in the column space of W .
Finally, it is important to understand what is happening on an

abstract level. Notice that for each vector v, the operation Wv pro
duces another vector u . The operation can thus be thought of as a
mapping or function from one set of vectors to another set of vectors.
That is, if we consider an n -dimensional vector space V (the domain)
and an m -dimensional vector space U (the range), then the operation
of multiplication by a fixed matrix W is a function from V to U, as
shown in Figure 1 6. It is a function whose domain and range are both
vector spaces.

Algebraic Properties of Matrix Mapping

Several properties of matrix-vector multiplication follow directly from
the properties of the inner product. In all cases, the number of

w v u

I I v[I
w[wn v[w[+ . . . + vnwn

I I vn I
FIGURE 15.

v U

FIGURE 16. Copyrighted Material

390 FORMAL ANALYSES

components of the vector must be the same as the number of columns
of the matrix.

W (av) = aWv
W (u + v) = Wu + Wv

(9)
(0)

These equations are the counterparts to Equations 5 and 6. As in that
section, they can be combined and generalized to general linear combi
nations:

(1 1)

In the next theorem, the matrices M and N must have the same
number of rows and columns.

Mv + Nv = (M + N)v

ONE LAYER OF A PARALLEL DISTRIBUTED
PROCESSING SYSTEM

(12)

I now generalize the simple model presented earlier to show how
matrices can be used in analyzing PDP models . Consider Figure 17,
which is the generalization of Figure 1 2 to the case of many output
units. Suppose that there are m output units, each one connected to all
of the n input units. Denote the activation of the output units by
U b U 2, . . . • Urn· Each output unit has its own weight vector Wi'
separate from the other output units. As before, the activation rule

Outputs:

Inputs:

FIGURE 17.
Copyrighted Material

u
�
W
�
v

9. INTRODUCTION TO LINEAR ALGEBRA 391

says that the activation of an output unit is given by the inner product
of its weight vector with the input vector, thus,

Ui = Wi ' v .

If we form a matrix W whose row vectors are the Wi' then we can use
the rule for matrix-vector multiplication to write all of the computations
at once. Let u be the vector whose components are the Ui' Then

u=Wv.

This is a very succinct expression of the computation performed by the
network. It says that for each input vector v . the network produces an
output vector u whose components are the activations of the output
units.
Another way to draw the network is shown in Figure 1 8. which is the

generalization of Figure 13 to the case of many output units. At each
junction in the diagram there is a weight connecting an input unit with
an output unit. 3 The weight vectors associated with each output unit
appear on the horizontal lines. When drawn this way, it is clear why a
matrix appears in the equation linking the output vector to the input
vector: The array of junctions in the diagram is exactly the weight
matrixW.
Now let us attempt to understand geometrically what is being com

puted by the model. Each output unit is computing the inner product

FIGURE 18.

V
1

w
ml

W
12

W
21

W
m2

Inputs

J Note that the weight in the ith row and jth column connects the Jth input unit to the

ith output unit. Copyrighted Material

392 FORMAL ANAL YSFS

of its weight vector and the input vector (which is common to all out
put units) . Thus, each unit can be thought of as computing how close
its weight vector is to the input vector . A larger activation is attained
the closer the two vectors are. If all of the weight vectors have the
same length, then that output uni t with the largest activation will be the
unit whose weight vector is closest to the input vector.
In the model with only one output unit, we imagined plotting the

weight vector in the input vector space. This enabled us to see directly
which input vectors led to a large response and which input vectors led
to a small response. In the model with several output units, we can
generalize by plotting each weight vector in the input space. Now we
can see for each unit which inputs it responds to. If the weight vectors
are spread around in the space, then every input will lead to some
response. Also, the different units will respond to different inputs . If
the weight vectors are assumed to have unit length , then the activation
of the i th output unit is just the projection of v on the i th weight vec
tor. For a given input, we can draw the projections of the input on the
weight vectors. This gives us a graphic representation of the output of
the network. It should be emphasized, however, that this representa
tion is useful mostly as a conceptual tool. The graphic approach cannot
be used in most systems, which can have hundreds or thousands of
input lines.
Another perspective on the operation of the model can be obtained

by focusing on the columns of the weight matrix rather than on its
rows. Whereas the rows of the matrix are the weights on the lines com
ing in to the processing units, the columns correspond to the weights
on the lines going out from the processing units. Each unit on the
lower row in Figure 1 7 is associated with such a vector: The com
ponents of the vector are the weights l inking that unit with the output
units above. These vectors are referred to as the outgoing weight vec
tors, as contrasted with the incoming weight vectors which are the rows of
the weight matrix . 4 In the previous section, it was seen that when a
matrix multiplies a vector , the resulting vector is a linear combination
of the columns of the matrix . This view applies to the PDP model as
follows: The output vector u is a linear combination of the outgoing
weight vectors from the input units. The coefficients in the l inear com
bination are the activations of the input units. Thus, in this perspec
tive, each input unit multipl ies its outgoing weight vector by its activa
tion , and the resulting vectors are added to yield the output vector of
the system.
In general, as will be discussed further in a later section, a unit can

4 This is not standard termi9P!�Y, .a� I d)lJ{�ntin�e to use the term weight vector to
refer to the incoming weight �M¥!7f} te a ena

9. INTRODUCTION TO LIN EAR ALGEBRA 393

appear in a multilayer system and thus have both an incoming weight
vector and an outgoing weight vector, as shown in Figure 1 9. In this
case, both views of matrix-vector multiplication can be useful : The unit
can be thought of as matching its incoming weight vector to the current
input using the inner product, and sending the result of this match
multiplied by the outgoing weight vector to the next level .

LINEARITY

A distinction is often made between a linear system and a nonlinear
system. In general , linear systems are relatively easy to analyze and
understand, whereas nonlinear systems can be difficult. In this section,
I will characterize linear systems. Nonlinear systems are defined simply
as everything else. In a later section, I will give some specific examples
of nonlinear systems.
Suppose that there is a function f which represents a system in that

for each input x to the system, the output y is given by

y = j (x) .
The x and y might be scalars or they might be vectors, depending on
the particular system. The function j is said to be linear if for any
inputs X l and x 2 , and any real number c , the following two equations
hold:

f (ex) = c f (x) .
f (X l + X 2) = f (X I) + f (X2) '

FIGURE 19.
Copyrighted Material

(1 3)

(1 4)

394 FORMAL ANAL YSES

The first of these two equations implies that if we multiply the input by
some constant, then the output is multiplied by the same constant.
The second equation is more important. Consider presenting the inputs
X l and x 2 separately to the system and measuring the outputs. In a
linear system, knowing how the system responds separately to the
inputs is all we need to predict the output of the system when the sum
Xl + x 2 is presented. We simply add the outputs found separately to
obtain the response to the sum. In a nonlinear system, on the other
hand, we might find that the response to the sum is much larger or
smaller than would be expected based on the inputs taken separately .
The response to the sum might be zero even when strong responses are
obtained separately.
If we restrict ourselves to scalar functions of a scalar variable, then

the only linear functions are those in which the output is proportional
to the input, i.e. , for some real number c :

y = ex.

However, many systems are scalar or vector functions of a vector input.
For example, for a fixed vector w , the function

u = W ' v

is a scalar function of a vector input v This function is a linear func
tion because

w . (c v) = c (w . v)

and

w . (v I + v 2) = w . V I + W • V 2'

The PDP model with one output unit is an example of such a linear
system.

A system in which the output is obtained from the input by matrix
multiplication is also a linear system , according to Equations 9 and 10.
lt turns out that these are the only linear vector functions. That is, if a
function f which maps from one vector space to another vector space
is linear, then it can be represented by matrix multiplication. 5
The PDP model discussed in the previous section is an example of a

linear system because it is represented by matrix multiplication. In
such a system, because of linearity, we know what the output will be
when the sum of two vectors is presented if we know the outputs when

S Let vi be the ith standard basis vector and let Wi = f (V i) ' Then if W is a matrix
whose columns are t he wi , f Gp'P¥fiJJllletlalllff.terial

9. INTRODUCTION TO LINEAR ALGEBRA 395

the vectors are presented separately . We also know what the output
will be to scalar multiples of a vector. These properties imply that if we
know the output to all of the vectors in some set {v I } ' then we can cal
culate the output to any linear combination of the v j . That is, if
v = C tV I + C2V 2 + . . . + CnV n ' then the output when v is presented to
the system is

Wv = W (C IV I + c 2v 2 + . . . + cnv n) =

(IS)
The terms in the parentheses on the right are known vectors : They are
the outputs to the vectors V i . Thus, we simply multiply these vectors
by the Cj to calculate the output when v is presented . If the v j are a
basis for some vector space, then every vector in the space is a linear
combination of the v I . Therefore, knowing the outputs of the system
to the basis vectors allows us to calculate immediately the output to any
other vector in the vector space without reference to the system matrix
W . The preceding statement should be studied carefully, because it
expresses an extremely important defining property of linear systems.
Another way to say the same thing is as follows: Imagine that we are
studying some physical system by measuring its responses to various
inputs. The system might be electronic or physiological , for example.
If it is a linear system, then we should first measure the responses to a
set of inputs that constitute a basis for the input space. We then have
no need to make any further measurements. The responses of the sys
tem to any other input vector can be immediately calculated based on
the measurements that we have already made.

MATRIX MULTIPLICATION AND MULTILAYER
SYSTEMS

The systems considered until now have been one-layer systems. That
is, the input arrives at a set of input units , is passed through a set of
weighted connections described by a matrix , and appears on a set of
output units. Let us now arrange two such systems in cascade, so that
the output of the first system becomes the input to the next system, as
shown in Figure 20. The composite system is a two-layer system and is
described by two matrix-vector multiplications. An input vector v is
first multiplied by the matrix N to produce a vector z on the set of
intermediate units:

z = Nv , Copyrighted Material

396 FORMAL ANALYSES

u

t
M
t
z

t
N
t
v

FIGURE 20.

and then z is multiplied by M to produce a vector u on the uppermost
set of units:

u = Mz .

Substituting N v for z yields the response for the composite system:

u = M (Nv) . (1 6)

This equation relates the input vectors v to the output vectors u .
We wil l now define an operation on matrices, called matrix multiplica

tion , which wil l simplify the analysis of cascaded systems, allowing us to
replace the two matrices M and N in Equation 1 6 by a single matrix P .
Matrices M and N can be multiplied to produce a matrix P = M N as
follows: The i , j th element of P is the inner product of the i th row of
M with the j th column of N . Note that the order of multipl ication is
important -the product MN is general ly not equal to the product N M .
This i s t o b e expected from the asymmetric treatment of M and N in
the definit ion.

Example: 1 3

4

5] 1 0 1
o 1 , 2

1 1 2] 1 (3 + 8 - 5) (6 + 0 + 5)] 1 6 1 1]
2 0 = 0 + 0 - 1) (2 + 0 + 1) = 0 3

- 1 1 (0 + 2 - 2) (0 + 0 + 2) 0 2

Another way to think about matrix multi pl ication fol lows from the
definition of matri x-vector multiplication . Each column vector of P is
the product of the matrix M � th the corresponding column vector of
N . For example, the fi&£>�q,MitWiebmputed by multiplying the

9. INTRODUCTION TO LINEAR ALGEBRA 397

first column of N by the matrix M . This is shown in Figure 2 1 , where
we have explicitly shown the column vectors of N and P .

The product of two matrices i s defined only if the number of
columns of the fi rst matrix is equal to the number of rows of the
second matrix . Otherwise, the inner products cannot be formed. A
handy rule is the following: Multiplying an r x s matrix and an s x t
matrix yields an r x t matrix .

Let us return to Figure 20 and Equation 1 6, which descri bes the sys
tem. I make the claim that the matrices M and N in the equation can
be replaced by the matrix P , if P is the matrix product of M and N . In
other words ,

u = M (Nv) = (MN) v .. Pv .

What this equation says i s that the two-layer system in Figure 20 i s
equivalent to a one-layer system with weight matrix P . For every input
vector v , the two systems wil l produce the same output vector u . Thus,
for l inear systems at least , the distinct ion between two-layer systems
and one-layer systems is more apparent than real . 6

We can attempt to justify our claim and , in so doing, get a better
understanding of matrix multipl ication if we examine the system in Fig
ure 20 more closely . Let us assume that a matrix P exists which can
replace the cascaded pai r M , N , and consider what the element in the
first row and the first column of P should be. This element gives the
strength of the connection between the fi rst component of the input
vector v and the first component of the output vector u . In the cas
caded system, there are s paths through which this connection can
occur, as shown in Figure 22 . We must multiply the weights along
each path and add the values for the paths to get the strength of the
connection in the equivalent one-layer system. This is calculated as

P l I = m I l n I l + m I 2 n 2 I + . . . + m Is ns) '

M N p

FIGURE 2 1 .

6 The two systems are identical i n the sense that they compute the same funct ion. Of

course, they may have d ifferent internal dynamics and therefore take different amounts

of t ime to compute their outpl$;)pyrighted Material

398 FORMAL ANALYSES

o

o

FIGURE 22.

This equation can be easily generalized to give the strength of the con
nection between the j th element of v and the i th element of u :

This formula calculates the inner product between the i th row of M
and the j th column of N , which shows that P is equal to the product
MN .

This result can be extended to systems with more than two layers by
induction. For example , in a three-layer system, the first two layers
can be replaced with a matrix (as we have just seen) , and then that
matrix can be multiplied by the matrix of the remaining layer to get a
single matrix for the whole system. In general , the cascaded matrices
of any n -layer l inear system can be replaced by a single matrix which is
the product of the n matrices.

As a final comment , the definition of matrix multiplication may
seem somewhat odd, especially since it would seem more straightfor
ward to define it by analogy with matrix addit ion as the element-wise
product. In fact , it would be perfectly acceptable to define mult ipl ica
tion as the element-wise product , and then to use another name for the
operation we have discussed in this section. However, element-wise
multiplication has never found much of an application in l inear algebra.
Therefore , the term mult ipl ication has been reserved for the operation
described in this section, which proves to be a useful definition, as the
application to multilayer systems demonstrates .

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 399

Algebraic Properties of Matrix Mult ipl ication

The following properties are identical to the corresponding propert ies
of matrix-vector mult i plication . This is to be expected gi ven the rela
tionship between matrix multipl icat ion and matrix-vector multipl ication
(cf. Figure 21) .

M (cN) = cMN

M (N + P) = MN + MP

{ N + P) M = NM + PM

EIGENVECTORS AND EIGENVALUES

(1 7)
(1 8)
(1 9)

The next two sections develop some of the mathematics important
for the study of learning in PDP networks. Fi rst , I wi ll discuss eigenvec
tors and eigenvalues and show how they relate to matrices . Second, I
will discuss outer products. Outer products provide one way of con
structing matrices from vectors . In a later section, I wi l l bring these
concepts together in a discussion of learning.

Recall the abstract point of view of matrices and vectors that was dis
cussed earl ier: The equation u = Wv describes a junction or mapping
from one space, cal led the domain, to another space, called the range.
In such vector equations , both the domain and the range are vector
spaces, and the equation associates a vector u in the range wi th each
vector v in the domain.

In general , a function from one vector space to another can associate
an arbitrary vector in the range wi th each vector in the domain . How
ever , knowing that u = Wv is a l inear function highly constrains the
form the mapping between the domain and range can have . For exam
ple, if v 1 and v 2 are close together in the domain , then the vectors
u 1 - Wv 1 and u 2 = Wv 2 must be close together in the range . This is
known as a continuity property of l inear functions. Another important
constraint on the form of the mapping is the following, which has
already been discussed. If v 3 i s a l inear combinat ion of V I and V 2 , and
the vectors U 1 = WV I and U 2 = WV 2 are known , then U 3 = WV 3 is com
pletely determined -it is the same l inear combination of U 1 and U 2 '
Furthermore, i f we have a set of basis vectors for the domain, and it is
known which vector in the range each basis vector maps to, then the

Copyrighted Material

400 FORMAL ANALYSES

mappings of all other vectors in the domain are determined (cf. Equa
tion 1 5) .

In this section, let us special ize to the case of square matrices, that
is , matrices with the same number of rows as columns. In this case,
the domain and the range wil l have the same number of dimensions
(because the vectors v and u must have the same number of com
ponents) , and the vectors in the domain and the range can be plotted in
the same space. This is done in Figure 23 , where we have shown two
vectors before and after multiplication by a matrix .

In general , vectors in this space wi l l change direction as well as
length when multipl ied by a matrix . However, as demonstrated by one
of the vectors in Figure 2 3 , there wi l l be some vectors that wi l l change
only in length, not di rection. In other words, for these vectors, multi
pl ication by the matrix is no different than mult ipl ication by a simple
scalar. Such vectors are known as eigenvectors. Each eigenvector v of a
matrix obeys the equation

Wv = AV (20)
where A is a scalar. A is called an eigenvalue, and indicates how much v
is shortened or lengthened after mult ipl ication by W .

Example:

FIGURE 23.
Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 401

A matrix can have more than one eigenvector, which , geometrically,
means that i t is possible to have e igenvectors in more than one di rec
tion . For example, the leftmost matrix above also has the eigenvector I :] with eigenvalue 3 , and the diagonal matrix on the right also has the

eigenvector I �] with eigenvalue 4.

There is another, more trivial , sense in which a matrix can have mul
tiple eigenvectors : Each vector that is coll inear with an eigenvector is
itself an eigenvector. If v is an eigenvector with eigenvalue A , and if
y = c v , then i t is easy to show that y is also an eigenvector wi th eigen
value A . For the ensuing discussion, the coll inear eigenvectors wil l just
confuse things , so I wi l l adopt the convention of reserving the term
eigenvector only for vectors of length 1 . Thi s is equivalent to choosing
a representat ive eigenvector for each di rection in which there are eigen
vectors.

Let us now return to the diagonal matrix I � �] . We have seen that

this matrix has two eigenvectors, I �] and I �] . with eigenvalues 3 and

4. The fact that the eigenvalues are the same as the diagonal elements
of the matrix is no coincidence : This i s true for all diagonal matrices .
as can be seen by multiplying any diagonal matrix by one of its
eigenvectors - a vector in the standard basis . It i s also true that this
matrix has only two eigenvectors. This can be seen by considering any

vector of the form I :1 , where a and b are both nonzero. Then we

have

I � �I I �I - I �]
Such a vector is not an eigenvector , because the components are mult i
plied by different scalars . The fact that the matrix has distinct eigen
values is the determining factor here . If the d iagonal elements had
been identical , then any two-dimensional vector would indeed have
been an eigenvector. This can also be seen in the case of the n x n
identity matrix I . for which every n -dimensional vector is an eigenvec
tor wi th eigenvalue 1 .

In general . an n x n matrix can have up to, but no more than , n dis
tinct eigenvalues . Furthermore, distinct eigenvalues correspond to dis
tinct di rections . To b��ghm_erilil a matrix has n distinct

402 FORMAL ANALYSES

eigenvalues, then the n associated eigenvectors are linearly independent.
Although the condi tions under which a matrix has a full set of distinct
eigenvalues are beyond the scope of this chapter, it is quite possible to
have matrices with fewer than n eigenvalues, as in the case of the iden
tity matrix .

I wi l l not discuss how to find eigenvectors and eigenvalues for a par
ticular matrix , but refer the reader to the books on linear algebra listed
at the end of the chapter. There are several methods, all of which can
be computationally expensive for large matrices. In a later section I
wi ll discuss how to construct a certain class of matrices given a set of
desi red eigenvectors .

The goal now is to show how eigenvectors can be used . To do so, let
us begin by assuming that we are dealing with the most favorable case :
an n x n matrix W with n distinct eigenvalues } q , A 2 • . . . • An .
Denote the associated l inearly independent eigenvectors by
v \ I V 2 • • • • • V II . Recall that if we have a set of basis vectors for the
domain of a matrix , and if we know the vectors in the range associated
with each basis vector, then the mapping of all other vectors in the
domain are determined. The eigenvectors of W form such a basis .
This is because there are n eigenvectors, and they are linearly indepen
dent. Furthermore, we know the vectors in the range associated with
each eigenvector V i ; they are simply the scalar multiples given by
Wv = AV .

To show how to take advantage of these observations , pick an arbi
trary vector v in the domain of W . It can be written as a l inear combi
nation of the eigenvectors, because the eigenvectors form a basis:

We can now write:

u = Wv

Using l inearity,

If we next substi tute for each of the quantities Wv i , using Equation 20:

U = C IA lv l + C2A 2v 2 + . . . + cn A nV n . (21)

Copyrighted Material

9. INTRODUCTION TO LINEAR ALGEBRA 403

Notice that there are no matrices in this last equation. Each term ci A ; is
a scalar; thus we are left with a simple l inear combination of vectors
after having started with a matrix multipl icat ion.

This equation should give some idea of the power and uti l i ty of the
eigenvectors and eigenvalues of a matrix . If we know the eigenvectors
and eigenvalues , then, in essence, we can throw away the matrix . We
simply wri te a vector as a l inear combination of eigenvectors, then mul
tiply each term by the appropriate eigenvalue to produce Equation 2 1 ,
which can be recombined to produce the result . Eigenvectors tum
matrix multipl ication into simple multiplication by scalars .

It i s also revealing to consider the magnitudes of the eigenvalues for
a particular matrix . In Equation 2 1 , all of the vectors v ; are of unit
length , thus the length of the vector u depends directly on the product
of the magnitudes of the C; and the eigenvalues A i . Consider the vec
tors that tend to point in the di rections of the eigenvectors with large
eigenvalues. These are the vectors wi th large C; for those eigenvectors .
Equation 2 1 says that after multiplication by the matrix they will be
longer than vectors of the same init ial length that point in other direc
tions. In particular, of all unit length vectors , the vector that will be
the longest after mult ipl ication by the mat rix is the eigenvector with the
largest eigenvalue. In other words , knowledge of the eigenvectors and
eigenvalues of a system tells which input vectors the system will give a
large response to. This fact can be useful in the analysis of l inear
models .

TRANSPOSES AND THE OUTER PRODUCT

The transpose of an n x m matrix W is an m x n matri x denoted
W T . The i , j th element of W T is the j , i th element of W .

Example:

1 3

4 5 1 T

_ [3 1 1 1 0 2 - 4 0

5
2

Another way to describe the transpose is as fol lows: The row vectors of
WT are the column vectors of W , and the column vectors of W T are
the row vectors of W .

Copyrighted Material

404 FORMAL ANALYSES

Algebraic Properties of the Transpose

(W T) T = w

(CW) T = cW T

(M + N) T = M T + N T

(MN) T = N TM T

If a matrix i s its own transpose , that i s i f W T = W . then the matrix is
symmetric.

Outer Products

Before discussing outer products, let me attempt to ward off what
could be a confusing aspect of the notat ion we are using. Consider, for
example, the entity below. Is it a matrix with one column or is it a
vector?

The answer is that i t could be either- there is no way of distinguishing
one from the other based on the notation. There is nothing wrong with
this fai lure to distinguish between vectors and n x 1 matrices for the
following reason. In equations involving vectors and matrices , the
same results will be obtained whether entities such as the one above are
treated as vectors or as matrices . This is true because the algebra for
vectors and matrices is exactly the same, as a review of the relevant
earlier sections wil l show. Thus, as long as we are simply interested in
calculating values and manipulating equations, there is no need to dis
tinguish between vectors and n x 1 matrices. Rather , by treating them
as the same thing, we have a uniform set of procedures for dealing with
all equations involving vectors and matrices.

Nevertheless, on the conceptual level , it is important to distinguish
between vectors and matrices. The way we are using the terms, a vec
tor is an element in a vector space, whereas a matrix can be used to
define a l inear mapping from one vector space to another . These are
very different concepts.

With this caveat in mind, we wil l conti{lue to take advantage of the
uniformity of notation, bt.�fii'lWdMft{nOObn between a vector and an

9. INTRODUcnON TO LrNEAR ALGEBRA 405

n x 1 matrix . For example, for every n -dimensional vector v , we can
form the transpose v T , which is simply a matri x with one row. We can
then form the product v T u , where u is any n -dimensional vector, as in
the following example.

Example:

u � �I 21 1 �I � [61
Notice that the result has only a sing:e component , and that this com
ponent is calculated by taking the inner product of the vectors v and u .
In many applications, there i s no need to distinguish between vectors
with one component and scalars , thus the notation v T u is often used
for the inner product.

Let us next consider the product u v T. This is a legal product
because the number of columns in u and the number of rows in v T are
the same, namely one. Following the rule for matrix multiplicat ion , we
find that there are n 2 inner products to calculate and that each inner
product involves vectors of length one.

Example:

U V T _ I � 1 3 1 2] [3 1 2] = 12 4 8
o 0 0

The i , j th element of the resulting matrix is equal to the product Uj v} .
For those who may have forgotten the noncornrnutat ivity of matrix

multiplication, this serves as a good reminder: Whereas the product
v TU has a single component, a simple change in the order of multipl i
cation yields an n x n matrix .

Products o f the form u v T are referred t o as outer products, and wil l
be discussed further in the next section. Note that the rows of the
resulting matrix are simply scalar multiples of the vector v . In other
words, if we let W be the matrix uv T , and let W j be the i th row of W ,
then we have

Wj = UjV

406 FORMAL ANALYSES

OUTER PRODUCTS, EIGENVECTORS, AND LEARNING

In this section , I discuss two example PDP systems that bring
together several of the concepts discussed previously , including eigen
vectors and outer products. These systems are described in 1. A .
Anderson , S i lverstei n, Ritz, and Jones (I 977) and Kohonen (t 977) .

We have seen that simple l inear PDP systems can be modeled with
the equation u = Wv , where W is a weight matrix . The rows of W are
the weight vectors associated with each of the units in the upper level
of the system. Unti l now, we have taken the matrix W to be a given,
and have discussed how it maps input vectors to output vectors. Let us
now consider a simple scheme, referred to as a Hebbian learning rule,
whereby we can choose a matri x that associates a particular output vec
tor u with a part icular input vector v . A system that can autonomously
implement such a scheme is capable of a rudimentary form of associa
t ive learning.

The scheme will only work with input vectors of unit length, so let
us begin by making that assumption. Thus, we have v . v = 1 . Let us
consider the simplest case , in which the output vector u has only one
component, which we will denote by u. This is the system discussed in
Figure 1 3 . We wish a weight vector w such that when v is present as
the input , the output is u: u = w . v . Note that u and v are the given
here, and w is the unknown. To make a choice for w, we can use the
following logic . We wish to convert the vector v into a scalar u. If we
were to choose v i tself as the weight vector, then we would have
v . v = 1 . Since we wish the scalar u, not 1 , we choose v multipl ied by
u, which gives the desired result. This can be seen using simple algebra
as follows:

w . v = (uv) . v

= u (v ' v)

= u.

Geometrically, the problem of finding w corresponds to finding a
vector whose projection on v is u. As shown in Figure 24, any vector
along the dotted l ine wi l l work , because each such vector projects to the
same place on v . Our solution involved making the simple choice of
the vector that points in the same direction as v .

It is not difficult to generalize to the case of an output vector u with
more than one component . To do so, let us consider the PDP system
of Figure 1 8 . Each output unit has a weight vector, and these weight
vectors form the rows of the weight matrix W . As discussed earlier,
each unit calculates the ��n its weight vector and the

\

FIGURE 24.

9. INTRODUCTION TO LINEAR ALGEBRA 407

\
\

\
\ V

\
\

\
\

\
\

\

input vector v , and these inner products are the components of the out
put vector u . To implement a learning scheme, we need to be able to
choose weight vectors that produce the desi red components of u .
Clearly, for each component, we can use the scheme al ready described
for the single unit model above . In other words, the i th weight vector
should be given by

W, = UjV . (22)

The i th unit wi l l then produce the i th component of u when presented
wi th v . Thus, the system as a whole will produce the vector u when
presented with v . We now would l ike a way to write a matrix W whose
rows are gi ven by Equation 22 . This is done by noting that Equation 22
is � set of equations calculating the outer product of u and v . Thus, W
can be wri tten as fol lows :

W = uv T .

We can check the correctness of this choice for W as fol lows :

Wv = (uv T) v

= u (v Tv)

= u

using the fact that v is of length one in making the last step.
The fact that W is an outer Ploduct h� i mportant implications for

the implementation of �8BKllf1U!gfltMgtfW'DP networks . As discussed

408 FORMAL ANALYSES

in the previous sect ion , the i , j t,h element of W is equal to the product
u, vi ' which is the product of the activation of the j th input unit and
the i th output unit . Both of these quantit ies are avai lable in a physi
cally circumscribed area on the l ink joining these two units. Thus, the
weight on that l ink can be changed by autonomous local processes. The
Hebb rule is often referred to as a local learning rule for this reason.

To summarize , we have established a procedure for finding a matrix
W which will associate any particular pai r of input and output vectors .
Clearly for every pair of vectors , we can find a different weight matrix
to perform the association . What is less obvious is that the same
matrix can be used for several pairs of associations. Let us assume that
we are given n n -dimensional output vectors U b U 2 , . . . , U n which
we want to associate with n n -dimensional input vectors
v I , V 2 ' . . . , V n . In other words, for each i , we wish to have

Let us further assume that the vectors v, form a mutually orthogonal
set and that each vector v, is of unit length. That is , we assume

T
1 1 if i = .i

v j Y j = 0 otherwise.

We now form a set of matrices W, using the learning scheme
developed above:

Finally, we form a composite weight matrix W which is the sum of
the W, :

W = W 1 + . . . + W, + . . . + Wn •

We already know that , for example, W \ above will associate V I and
U I . It is also true that W will perform al l such associations. Thus, for
arbitrary i :

Wv, = (W \ + . . . + W , + . . . + Wn h,

= (U \V \T + . . . + u ·v .T + . . . + U v T) y . I I n n I

= (u \v th, +

= U \ (v tv ,) +

+ (u ,ylh, +

+ u , (ylv ,) +

= 0 + . . . + u i (y lv i) + . . . + 0
Copyrighted Material

+ (u ny!h,

+ U n (v!v ,)

9. INTRODUCTION TO LINEAR ALGEBRA 409

The property of orthogonality was crucial here , because it forced the
disappearance of all terms involving vectors other than Uj in the next to
last step. The reader may find it useful to justify the steps in this
derivation.

When the set of input vectors i s not orthogonal , the Hebb rule wil l
not correctly associate output vectors with input vectors. However, a
modification of the Hebb rule, known as the delta rule, or the Widrow
Hoff rule, can make such associations. The requi rement for the delta
rule to work is that the input vectors be linearly independent. The
delta rule is discussed further in Chapter 1 1 , and at length in Kohonen
(977) .

Earlier it was discussed how, at least for square matrices , knowledge
of the eigenvectors of a matrix permits an important simplification to
be made. The matrix multipl ication of a vector can be replaced by
scalar multipl ication (cf. Equation 2 1) . I wil l now show that the Heb
bian learning scheme fits nicely wi th the notion of eigenvectors . Sup
pose that we wish to associate vectors with scalar copies of themselves.
This is what is done, for example, in an auto-associator l ike those dis
cussed in J . A. Anderson et al . (977) ; see Chapters 2 and 1 7 . In other
words , we want the vectors U ; to be of the form A ; v i where v i are the
input vectors . Let us further assume that the n scalars Ai are distinct .
Using the outer product learning rule, we have

where

If we now present the vector v I to the matrix W thus formed, we have

WVi = (W I + . . . + WI + . . . + Wn h i

= (A IV IV { + . . . + A jv jvl + . . . + A n v n v ! h ,

= 0 + . . . + A i v , (V lv j) + . . . + 0

This equation shows that v I is an eigenvector of W with eigenvalue A i '
Let me summarize. When we calculate a weight matrix W using the

Hebbian learning rule and associate input vectors to scalar multiples of
themselves, then those input vectors are the eigenvectors of W . It is
important to note that the matrix W need not even be calculated -as
was stated in the section on eigenvectors, once we have the eigenvec
tors and eigenvalues of a matrix , we can throw away the matrix . All
input-output computatiditPK4§'I"dcMft�rW using Equation 21 . This

410 FORMAL ANALYSES

approach is in contrast to a scheme in which we first calculate a matrix
W from the input vectors, and then calculate the eigenvectors from the
matrix W . Here, the eigenvectors are avai lable in the statement of the
problem.

Why should one want to associate vectors with scalar copies of them
selves? Essenti al ly, the answer is that a system which learns in this
way wi l l exhibit the desirable property of completion. That is , when par
tial versions of previously learned vectors are presented to the system,
it wi l l be able to produce the whole vector. Readers desiring more
details on how this is done should consult Anderson et at . (1 977) .

MATRIX INVERSES

Throughout this chapter, I have discussed the l inear vector equation
u = Wv . First , I discussed the si tuation in which v was a known vector
and W a known matrix . This corresponds to knowing the input to a
system and its matrix , and wanting to know the output of the system.
Next , I discussed the situation in which v and u were known vectors,
and a matrix W was desi red to associate the two vectors . This is the
learning problem discussed in the previous section. Finally, in this sec
t ion , I discuss the case in which both u and W are known, but v is
unknown . There are many situations in which this problem arises,
including the change of basis discussed in the next section .

As we will see , the solution to this problem involves the concept of a
matrix in verse. Let us fi rst assume that we are dealing with square
matrices . The inverse of a matrix W , if it exists , is another matrix
denoted W- l that obeys the following equations:

W - l W = I

WW- l = I

where I is the identity matrix .

Example:

[1 'h l
W = - 1 1

{ 2 3
W- l -- 2

Copyrighted Materi 1 3
1 3
2
3

9. INTRODUcrlON TO LINEAR ALGEBRA 4 1 1

2 1

WW- I = [_ � '� I 3 3 - [! �] 2 2
3 3

2 1
W- IW =

3 3 [1 � 1 _ [1 0]
2 2 - 1 1 - 0 1
3 3

A good discussion of how to calculate a matrix inverse can be found
in Strang (1 976) .

Let us now show that the matrix inverse is the tool we need to solve
the equation u = W v . where v is the unknown. We mult iply both
sides of the equation by W- I , which yields

W · l u = W-l WV

= Iv

= v .

Thus the solution of the equation simply involves multiplying u by the
matrix W- I .

Example. We wish to find the vector v that sati sfies the equation

To do so, we use the matri x W- l given above:

We can now check the result as fol lows :

I l 1h] l l] _ [3 [- 1 1 4 - 3 '

It is important to realize that W- l , despite the new notation, is sim
ply a matrix l ike any other . Furthermore, the equation v = W- 1u is
nothing more than a l inear mapping of the kind we have studied
throughout this chapter'cJ,P;t;800IfWra9brlajs mapping is the range of

4 1 2 FORMAL ANALYSES

W , and the range of the mapping is the domain of W . This inverse
relationship is shown in Figure 25 . The fact that W- I represents a
function from one vector space to another has an important conse
quence . For every u in the domain of W- I , there can be only one v in
the range such that v = W- I u . This is true because of the definition of
a function. Now let us look at the consequence of this fact from the
point of view of the mapping represented by W . If W maps any two
distinct points v I and v 2 in its domain to the same point u in its range,
that is , if W is not one-to-one, then there can be no W- I to represent
the inverse mapping.

We now wish to characterize matrices that can map distinct points in
the domain to a single point in the range, for these are the matrices
that do not have inverses . To do so, first recall that one way to view
the equation u = W v is that u is a l inear combination of the column
vectors of W . The coefficients of the l inear combination are the com
ponents of v . Thus, there is more than one v which maps to the same
point u exactly in the case in which there is more than one way to write
u as a l inear combination of the column vectors of W . These are com
pletely equivalent statements. As discussed earlier, we know that a
vector u can be written as a unique l inear combination of a set of vec
tors only in the case where the vectors are l inearly independent . Other
wise, if the vectors are l inearly dependent, then there are an infinite
number of ways to write u as a l inear combination. Therefore, we have
the result that a matrix has an inverse only if its column vectors are
l inearly independent.

For square matrices with l inearly dependent column vectors and for
non-square matrices , it is possible to define an inverse called the gen
eralized inverse, which performs part of the inverse mapping. In the
case in which an infinite number of points map to the same point, there
wil l be an infinite number of generalized inverses for a particular
matrix , each of which will map from the point in the range to one of
the points in the domain .

w-1
FIGURE 25. Copyrighted Material

9. INTRODUCTION TO LINEAR A LG EBRA 4 1 3

In summary, the matri x inverse W - [can be used t o solve the equa
tion u = W v , where v is the unknown , by mult iplying u by W- I . The
inverse exists only when the column vectors of W are l inearly i ndepen
dent. Let me mention in passing that the maximum number of l inearly
independent column vectors of a matrix is called the rank of the
matrix? An n x n matri x is defined to have full rank if the rank is equal
to n . Thus, the condit ion that a matri x have an i nverse is equivalent to
the condition that i t have ful l rank.

CHANGE OF BASIS

As was discussed earl ier, a basis for a vector space is a set of l inearly
independent vectors that span the space. Although we most naturally
tend to th ink in terms of the standard basis, for a variety of reasons i t
is often convenient to change the basis . For example, some relat ion
ships between vectors or operations on vectors are easier to describe
when a good choice of basis has been made. To make a change of
basis, we need to be able to describe the vectors and matrices we are
using in terms of the new basis . In this section , I use the results of the
previous section to discuss the problems that arise under a change of
basis. I also discuss some of the implications of a change of basis for
linear PDP models.

The numbers that are used to represent a vector, it should be
remembered, are relative to a particular choice of basis . When we
change the basis, these numbers, which we refer to as coordinates,
change. Our first task, then , is to find a way to relate the coordinates
in a new basis to the coordinates in the old basis . Let me begin with an
example. In Figure 26, there is a vector Y , which in the standard basis

has the coordinates [� I . We now change basis by choosing two new

basis vectors , Y 1 � [_ : 1 and Y 2 = [� I . As shown in Figure 27 , v can

be written as a l inear combination of Y I and Y 2. It turns out , as we
shall see below, that the coefficients 1 and 2 are the correct coefficients
of Y l and Y 2 in the l inear combination. Let the symbol Y · represent v

in the new basis . Thus, v · - [; I .
7 An important theorem in linear algebra establ ishes that, for any matri x , the max

imum number of linearly independent column vectors is equal to the maximum number
of linearly independent row vee8��H1eWMA?��? be taken as either .

4 1 4 FORMAL A NALYSES

v

FIGURE 26.

We now want to show how to find the coordinates of a vector v ir .
new basis Y h Y 2 , . . . , Y n • These coordinates are s imply the coef
cients Cj in the equation

(2

Let us form a matrix Y whose columns are the new basis vectors :
and let v · be the vector whose components are the Cj . Then Equati
23 i s equivalent to the following equation:

v = Yv · (2

where v · i s the unknown. The solution to the problem is now clear: .
use the inverse matrix y - I to calculate the unknown vector as in t
previous section:

v · = y - 1 v .

Example. Letting Y I = [_ ! I and Y 2 = [I� I , we have Y = [_ ! I,

2 1 - - -
3 3

and y - I = 2 2
3 3

Copyrighted Material

FIGURE 27.

Thus,

v · = y- I v =

2
3
2
3

1

9. INTRODUCTION TO LINEAR ALGEBRA 4 1 5

/
Y2 /

I
I

I·
I .

. . v

� [� [= [� I · 3

Notice that we have also solved the inverse problem along the way .
That i s , suppose that we know the coordinates v · in the new basis , and
we wish to find the coordinates v in the old bas is . This transformation
is that shown in Equation 24: We simply multiply the vector of new
coordinates by y .

We have shown how to represent vectors when the basis i s changed .
Now, let us accomplish the same thing for matrices . Let there be a
square matr ix W that t ransforms vectors in accordance with the equa
tion u = Wv . Suppose we now change basis and write v and u in the
new basis as v · and u · . We want to know if there is a matrix that does
the same thing in the new basis as W did in the original basis . In other
words , we want to know if there is a matri x W· such that u · = W · v · .
This is shown in the diagram in Figure 28 , where i t should be remem
bered that v and v · (and u and u ·) are real ly the same vector, just
descri bed in terms of different basis vectors .

To see how to find W · , consider a somewhat roundabout way of
solving u · = W · v · . We can convert v · back to the original basis , then
map from v to u using the matrix W , and finally convert u to u · .

Copyrighted Material

4 1 6 FORMAL ANALYSES

w *
v· .. U ·

y-t y

v • U
w

FIGURE 28.

Luckily, we al ready know how to make each of these
transformations- they are gi ven by the equations:

v = yV ·

u = WV

u · = y - I U .

Putting these three equations together, we have

u · = y - I u

= y - I Wv

= y - I Wyv· .

Thus, W · must be equal to y- I WY. Matrices related by an equation of
the form W · = y-IWY are called similar.

One aspect of this discussion needs further elaboration. We have
been treating matrices as linear operators on a vector space . However,
as the results of this section make clear, a matrix i s tied to a particular
basis . That is , the numbers in the matrix are just as arbitrary as the
numbers used for representing vectors . When the basis changes , the
numbers change according to the equation W · = y - I WY . The under
lying mapping, which remains the same when the matrix W is used in
the original basis and the matrix W · is used in the new basis, is called a
linear traniformation. The same l inear transformation is represented by
different matrices in different bases .

It is interesting to recast the results on eigenvectors in terms of a
change of basis . For sOfflSP.w�mJVMJrerN§ consider changing basis to

9. INTRODUCTION TO LINEAR ALGEBRA 4 1 7

the eigenvectors of W . Let u s find the matrix W · i n the new basis .
For each eigenvector Y i , by defi nit ion

(25)
If Y i s a matrix whose columns are the Y I ' then we can write Equation
25 for all of the eigenvectors at once as fol lows (cf. Figure 2 1) :

WY = Y A

where A is a diagonal matrix whose entries on the main diagonal are
the eigenvalues A i ' You should try to convince yourself of the correct
ness of this equation, part icularly the placement of A . Now premultiply
both sides by y - I to give

y - I WY = A .

Thus, the matri x W · i s equal to A . I n other words, when we use the
eigenvectors of W as the new basis , the matrix corresponding to W in
the new basis is a diagonal matrix whose entries are the eigenvalues.
This is really nothing more than a restatement of the earl ier results on
eigenvectors , but seen in a different perspective.

It is worthwhi le to consider the impl ications of a change of basis for
PDP models. How does the behavior of the model depend on the basis
that is chosen ? This question is discussed in depth in Chapter 22. For
now, let us s imply note that the linear structure of a set of vectors
remains the same over a change of basis . That is , if a vector can be
written as a l inear combination of a set of vectors in one basis, then i t
can be written as the same l inear combination of those vectors in al l
bases . For example, let w = av I + bv 2. Let Y be the matrix of a
change of basis . Then we have

w' = y- 1 w

= y- I (a v l + bV2)
= ay- l v1 + by- 1 v2
= av j + bvi.

The coefficients in the l inear combination are the same in the old and
in the new basis . The equations show that this result holds because
change of basis is a linear operat ion .

The behavior of a l inear PDP model depends entirely on the l inear
structure of the input vectors . That is, if w = av I + bv 2 , then the
response of the system to w is determined by its response to v I and v 2
and the coefficients a a�/lyriiJjb@cfWlelMafd change of basis preserves

4 1 8 FORMAL ANALYSES

the l inear structure of the vectors shows that i t is this l inear structure
that is relevant to the behavior of the model , and not the particular
basis chosen to describe the vectors.

NONLINEAR SYSTEMS

The use of nonlinearity occurs throughout this book and throughout
the l iterature on parallel distributed processing systems (Anderson et
aI . , 1 977; Grossberg, 1 978 ; Hopfield, 1 982 ; Kohonen, 1 977) . In this
section, I wi l l indicate some of the reasons why nonl inearities are
deemed necessary. 8 Although these reasons are based on the desire for
behaviors outside the domain of l inear models, it should be stated that
l inear systems have a great deal of power in themselves , and that many
of the nonlinearities represent comparatively small changes to underly
ing models which are l inear. Other models are more fundamentally
nonlinear. Further discussions of nonlinear mathematics can be found
in Chapters 1 0 and 22 .

One simple nonlinearity has already arisen in the discussion of a PDP
system with one output unit. Such a system computes the inner pro
duct of its weight vector and the input vector. This is a l inear system,
given the l inearity of the inner product . The geometrical properties of
the inner product led us to picture the operation of this system as com
puting the closeness of input vectors to the weight vector in space .

Suppose we draw a line perpendicular to the weight vector at some
point , as in Figure 29 . Since all vectors on this l ine project to the same
point on the weight vector, their inner products with the weight vector
are equal . Furthermore, al l vectors to the left of this line have a
smaller inner product , and all vectors to the right have a larger inner
product . Let us choose a fixed number as a threshold for the unit by
requiring that if the inner product is greater than the threshold, the unit
outputs a i , otherwise i t outputs a O. Such a unit breaks the space into
two parts by producing a different response to vectors in the two parts.

This use of a threshold is natural in using the unit to classify patterns
as belonging to one group or another. The essential point is that the
threshold permits the unit to make a decision . Other units in a larger

8 Since nonlinear systems in general are systems that are defined as " not linear," it is
important to understand clearly what " lineat" means. A review of the section on linearity
may be necessary before proc�ding.

Gopyrighted Material

\

FIGURE 29.

9. INTRODUCTION TO LINEAR ALGEBRA 4 1 9

\
,
,

\
\

\ W
\

\

\
,

\ \

system that take their input from this unit could choose completely dif
ferent behaviors based on the decision. Notice also that the unit is a
categorizer: Al l input vectors that are on the same side of the space
lead to the same response.

To introduce a threshold into the mathematical description of the
processing unit , it is necessary to distinguish between the acti vation of
the unit and i ts output . A funct ion relating the two quantities is shown
in Figure 30. It produces a one or a zero based on the magni tude of
the activation. It is also possible to have a probabi l istic threshold. In
this case, the farther the activat ion is above the threshold, the more

OUTPUT

o
ACTIVATION

FIGURE 30. Copyrighted Material

420 FORMAL ANALYSES

l ikely the unit is to have an output of one, and the farther the activa
tion is below the threshold, the more l ikely the unit is to have an out
put of zero. Units such as these are discussed in Chapters 6 and 7 .

The threshold unit is a good example of many of the nonlinearities
that are to be found in PDP models . An underlying l inear model is
modified with a nonlinear function relating the output of a unit to its
activation. Another related example of such a nonl ineari ty is termed
subthreshold summation . It is often observed in biological systems that
two stimuli presented separately to the system provoke no response,
although when presented simultaneously , a response is obtained . Fur
thermore, once the system is responding, further stimuli are responded
to in a linear fashi on . Such a system can be modeled by endowing a
l inear PDP unit with the nonlinear output function in Figure 3 1 . Note
that only i f the sum of the activations produced by vectors exceeds T
will a response be produced . Also, there is a linear range in which the
system responds l inearly. It is often the case in nonl inear systems that
there is such a l inear range, and the system can be treated as l inear pro
vided that the inputs are restricted to this l inear range.

One reason why subthreshold summation is desi rable is that it
suppresses noise. The system wi ll not respond to small random inputs
that are assumed to be noise.

All physical systems have a l imi ted dynamic range. That is, the
response of the system cannot exceed a certain maximum response.
This fact can be modeled with the output function in Figure 3 2 , which
shows a linear range followed by a cutoff. The system will behave
linearly until the output reaches M , at which point no further increase
can occur. In Figure 3 3 , a nonlinear functi on is shown which also has a

OUTPUT

T
ACTIVATION

FIGURE 3 1.
Copyrighted Material

FIGURE 32.

FIGURE 33 .

M

OUTPUT

9. INTRODUCTION TO LINEAR ALGEBRA 42 1

ACTIVATION

M - - - - - - - -�--..

OUTPUT

ACTIVATION

maximum output M. This curve, called a sigmoid, is a sort of hybrid
between Figure 31 and Figure 3 2 . It combines noise suppression with a
l imited dynamic range . Chapter 8 shows how such units are necessary
for certain kinds of interesting behavior to arise in layered networks.

To summarize, I have described some of the ways in which l inear
systems are modified to produce nonlinear systems that exhibit certain
desired behaviors. All of these systems have an important l inear com
ponent and are sometimes referred to as semilinear. Furthermore,
several of the systems have a l inear range in which the nonlinearities
can be ignored. The next chapter discusses more fundamentally non-

l inear systems. Copyrighted Material

422 FORMAL ANALYSES

FURTHER READING

Halmos, P. R. (1 974) . Finite-dimensional vector spaces. New York:
Springer-Verlag. For the more mathematically minded. An excellent
account of l inear algebra from an abstract point of view.

Kohonen , T. (1 977) . Associative memory: A system theoretic approach.
Berl in : Springer-Verlag. This book has a short tutorial on l inear alge
bra . The discussi on of associat ive memory depends heavily on the
mathematics of l inear algebra.

Strang, G. (1 976) . Linear algebra and its applications. New York:
Academic Press . A general textbook treat ing most of the essentials of
l inear algebra. It i s especially good in its treatment of computational
topics. A good place to find out about calculating matrix inverses and
eigenvalues .

Copyrighted Material

CHAPTER 10

The Logic of Activation Functions

R. J. WILLIAMS

The notion of logical computation, in some form or other, seems to
provide a convenient language for describing the operation of many of
the networks we seek to understand. Digital computers are built out of
such constituents as AND and OR gates. Feature-detecting neurons in
biological sensory systems are often idealized as signaling the presence
or absence of their preferred features by becoming highly active or
inactive, respectively. It seems a relatively simple extension of this
concept to allow the activity of units in the network to range over some
interval rather than over just two values; in this case the activity of a
unit is regarded as signaling its degree of confidence that its preferred
feature is present, rather than just the presence or absence of this
feature. There are several ways one might attempt to formalize this
degree-of-confidence notion. For example, if the activation values
range over the closed unit interval [0,11. one might treat such an
activation value as a conditional probability; alternatively, it might be
viewed as a measure of truth in some unit-interval-valued logic, such as
fuzzy logic (Zadeh, 1965).

There is at least one alternative to the notion of activation as degree
of confidence which sometimes provides a convenient language for dis
cussing the role of, for example, neural feature detectors in sensory
systems. In this view, the activation of a unit encodes (within finite
limits) the amount of its preferred feature present. This rival view
seems advantageous particularly when the computation performed is
described in the langual!e of linear systems fr linear signal processing;

"1.;opyngnrea Marena

424 FORMAL ANALYSES

examples of this are the concepts of spatial filtering and spatial Fourier
analysis in the visual system and the concept of correlational processing
in matrix models of associative memory (Kohonen, 1977). Chapter 9
describes the relevant mathematics for this approach, that of linear
algebra.

This chapter explores some ideas motivated by the first of these two
views of a PDP unit's computation (i.e., as some generalization of the
notion of a Boolean function), but the approach is implicitly based on a
very liberal interpretation of what this means. Essentially, the only
structure assumed for the set of confidence values is that it be a totally
ordered set with a Boolean interpretation of its endpoints. While a fully
developed mathematical theory along these lines would deal with those
properties that are invariant under any transformations preserving this
structure, the ideas presented here do not go this far.

The specific program to be embarked upon here is probably best
described as an exploratory interweaving of several threads, all related
to these notions of logical computation and their potential applicability
to the study of activation functions. First, the point of view is taken
that any function whatsoever is a candidate for being an activation
function. From this perspective, the traditional linear and thresholded
linear activation functions may be viewed as very isolc.:ed examples
from a much larger range of possibilities. Next, several ways to shrink
this vast space of possibilities are suggested. One way proposed here is
the imposition of a constraint based on the requirement that the notion
of excitatory or inhibitory input be meaningful. Another way is the
introduction of an equivalence relation on activation functions based on
invariance under transformations preserving the logical and ordinal
structure. Finally, an investigation is carried out to determine just
where certain familiar types of activation functions, built out of the
more traditional ingredients such as additive, subtractive, and multipli
cative interactions among input values and weights, fit into this
scheme. As a by-product of this development, some elementary results
concerning implementation of Boolean functions via real-valued func
tions are also obtained.

This last aspect is closely related to what is historically one of the
oldest formal approaches to the theory of neural computation, in which
neurons are treated as Boolean devices. This approach was pioneered
by McCulloch and Pitts (1943); an introductory overview of this whole
subject can be found in the text by Glorioso and Colon Osorio (I 980).
An important influence on much of the work done in this area has
been the percept ron research of Rosenblatt (I 962; Minsky & Papert,
1969).

In what follows, several simplifying assumptions will be made. The
first is that the range of values over which each input to a unit may

Copyrighted Material

10. ACTIVATION FUNCTIONS 425

vary is the same as the range of values over which the output of the
unit (its activation) may vary. Another is that time may be ignored as a
variable. The activation function of a unit will be taken to be a func
tion that computes the output of the unit (at a fixed but unspecified
time) as a function of its inputs (at a presumably sl ightly earlier but
unspecified time). Thus, given a unit with n inputs whose activation
values range over the set A, the activation function a for this unit is
just a function from A n (the set of ordered n -tuples of elements of A)
to A, denoted a :An-A.

In order to avoid cluttering the presentation, detailed proofs of the
results have been omitted; in their place are short sketches indicating
the key steps. A more rigorous and abstract formulation of the basic
concepts introduced here, along with detailed proofs of the results, may
be found in Williams (1983).

EXAMPLES OF ACTIVATION RULES

The following are some examples of activation functions from which
models have been constructed.

Example 1. A = (0,11 (the two-point set), a=fog, where g is
l inear into JR and f: JR-A is a thresholding function. (The operator 0

between two functions here denotes composition in a right-to-left
manner.) A unit using this activation function is called a threshold logic
unit or a linear threshold unit and is the basis of the simple perceptron
(Rosenblatt, 1962; Minsky & Papert, 1969).

Example 2. A = JR, a l inear (Kohonen, 1977).

Example 3. A = I (the closed unit interval [0,1)), a=fog, where
g is linear into JR and f is nondecreasiI-., into I. This is a commonly
used variant of Example 1. Let liS call this a quasi-linear activation func
tion. The function f is sometinu:!s called a squashing function for obvi
ous reasons.

Example 4. A = I, a = fog. where f is nondecreasing into I and g
is a multilinear function into JR of the form

g(X\, . . . ,xn) = X\X2+XJX4+ ... +Xn-lxn

(where n is assumed to be even). Such an activation function is sug
gested by Hinton (1981 b) . Note that this is similar to Example 3

Copyrighted Material

426 FORMAL ANALYSES

except that the coefficients have now become explicit inputs. This type
of activation function will be called a gating activation jUnction because
the odd-numbered inputs gate the even-numbered ones (and vice
versa).

Example 5. A = I, a = fog , where f is nondecreasinr into I and g
is an arbitrary multilinear function into R. That is, g is of the form

g(x\, . . . ,xn) = L Wj TIx; ,
SjEP ;ESj

where P is the power set (Le., set of subsets) of {1. . . . ,n}. Such an
activation function is called a sigma-pi activation jUnction, with the coef
ficients Wj being called weights. (We might also call this a quasi
multilinear activation jUnction to emphasize its relationship to Example
3.) Note that Examples 3 and 4 are just special cases of this activation
function.

THE MAIN CONCEPTS

Henceforth in this chapter the set of activation values will be
assumed to be the closed unit interval [0,1], denoted I. An activation
jUnction is then simply a function a :In-I. It will be convenient to
identify 0 E I with the Boolean value false and 1 E I with the Boolean
value true.

Now we introduce a key concept of this chapter by considering the
extension of the familiar notion of a monotonic function to the multi
dimensional case in two different ways. In order to get a feeling for the
precise definitions to be given below, first consider what it means for
an input to a unit to have an excitatory influence on the output 'If that
unit. Such an input must have the property that an increase in its value
must result in an increase in the output of the unit, as long as all other
inputs are held constant. Furthermore, this should be true regardless
of the values of the other inputs. A similar property should ho!d for an
inhibitory input, where the output of the unit must decrease as the
value of the input is increased in this case. This is the basic idea
behind the notion of uniform monotonicity, as defined below. The
weaker notion of monotonicity-in-context corresponds to the situation in
which an input may be sometimes excitatory and sometimes inhibitory,
depending on the values taken on by the other inputs.

Now we make these concepts rigorous. Let a :In-I. Pick one of
the coordinates, say the k th, and fix all coordinates but this one, which
is allowed to vary. This&rlWlfJhPeffIJfiJisl1apf a single variable which is

10. ACTIVATION FUNCTIONS 427

parameterized by the remaining coordinates. Such a function is called a
section of the original function a along the k th coordinate. Note that
there is one such sect ion along the kth coordinate for each possible
combination of values for the remaining n-l coordinates. Now make
the following definitions: I

1. a is monotonic-in-context along the k th coordinate if all its sec
tions along the kth coordinate are monotonic.

2. a is uniformly monotonic in the k th coordinate if all sect ions
along the k th coordinate are monotonic and have the same
sense (i.e., all are nondecreasing or all are nonincreasing).

3. a is monotonic-in-context if it is monotonic- in -context along all
its coordinates.

4. a is uniformly monotonic if it is uniformly monotonic along all
its coordinates.

One special case of a uniformly monotonic function is a uniformly
nondecreasing function , which has the property that all its sections along
all coordinates are nondecreasing. This special case will be used later.

Note that if a is uniformly monotonic then it is monotonic-in
context, but the converse need not be true, unle!:s a is a function of a
single variable, in which case both definitions collapse onto the usual
notion of monotonicity. The key distinction between uniformly mono
tonic and monotonic-in-context is that the sense of monotonicity of the
sections of a along the k th coordinate must be fixed for each k in
order for a to be uniformly monotonic .

It is important to emphasize the significance of these monotbnicity
concepts for activation functions. An activation function is uniformly
monotonic if and only if each input may be classified as solely excita
tory or solely inhibitory, independently of the values actually taken on
by any other inputs. Thus the usual sense of excitatory or inhibitory
input to a unit is meaningful exactly when the unit's activation function
is uniformly monotonic . If a unit's activation function is monotonic

in-context , then it may not be possible to categorize its inputs as solely
excitatory or solely inhibitory, but the following may be a useful con
ceptual ization of such a unit's operation: Certain inputs to the unit are

I The reader should be warned that the names introduced here for these concepts are
not standard; these terms were chosen because it was felt that they helped to clarify the
important distinctions being made in the current context.

Copyrighted Material

428 FORMAL ANALYSES

useu to set the context for the computation of its output as a function
of the remaining inputs, and each input in this latter group has purely
excitatory or purely inhibitory effect on the unit's output in this partic
ular context. Whether this turns out to be a useful way to view the
monotonic-in-context activation function and its possible role in activa
tion models will not be explored here. The main reason for introducing
the concept is simply that it appears to be the strongest variant on
monotonicity satisfied by any activation function capable of computing
an arbitrary Boolean function (such as the multilinear and sigma-pi
activation functions, as will be seen later) .

In order to capture the notion of an activation function being simply
an extension of a Boolean function, define an activation function
a :1"-1 to be Boolean-like if a (XI, ... , xn) = 0 or 1 whenever all the
Xi are 0 or 1. In other words, an activation function is Boolean-like if
and only if it can be viewed as a Boolean function when restricted to
the vertices of 1 n . It is also useful to say that such an activation func
tion realizes the Boolean function obtained by restricting to vertices.

In order to capture the notion of two activation functions agreeing
for Boolean input values, define two activation functions a ha2: 1"-1
to be vertex-equivalent if a I (x), ... , xn) = a 2(X) • . • . • xn) whenever all
the Xi are 0 or 1. In other words , two activation functions are vertex
equivalent if and only if they agree on the vertices of 1 n It is clear that
vertex-equivalence is indeed an equivalence relation.

The reason for introducing this notion is the suggestion that there
may be a certain interchangeability between different activation func
tions that are vertex-equivalent, in that the logic of a unit's computa
tion might be considered to reside solely in what it does when all input
lines are set to their extreme values (corresponding to true or false). If
two vertex-equivalent activation functions are additionally monotonic
in-context and continuous, then an even stronger case can be made for
their interchangeability in certain models, but these ideas will not be
pursued here.

ILLUSTRATION OF THESE CONCEPTS

A number of examples of activation functions a : I 2_ I will now be
presented to clarify the definitions given in the previous section. The
figure corresponding to each example consists of three different graphi
cal representations for that particular function: (a) a three-dimensional
plot of a (X},X2) versus (X},X2); (b) a contour plot showing at which
points (X(,X2) certain values of C.r(X(,X2) are attained ; and (c) various

Copyrighted Material

10. ACTIVATION FUNCTIONS 429

sections of a along xI superimposed on a single two-dimensional plot.
The activation function being displayed in each figure is defined in the
caption of that figure.

Figures I, 2, and 3 show three different activation functions that
realize the Boolean AND function at the vertices, while Figures 4, 5,
and 6 show three different activation functions realizing the Boolean
OR function at the vertices. These functions are all Boolean-like and
uniformly monotonic.

Figure 7 shows a realization of the Boolean XOR (exclusive or) func
tion. The activation function depicted is Boolean-like and monotonic
in-context, but not uniformly monotonic. In fact, no realization of
XOR can be uniformly monotonic. Figure 8 shows an activation func
tion that is uniformly monotonic but not Boolean-like. Its restriction to
vertices thus does not have a straightforward Boolean interpretation;
this activation function might be viewed as a unit-interval confidence
measure based on the number of active inputs. Finally, Figure 9 shows
a rather pathological example of an activation function. It is Boolean
like and vertex-equivalent to the constant function I, but intuition sug
gests that any unit in a PDP network which performs such a computa
tion "will behave very differently from one which puts out the constant
value 1. This essential difference in behavior is formalized here in
terms of the observation that such an activation function fails to be
monotonic-in-context while the constant function 1 is uniformly mono
tonic.

SOME RESULTS

Before stating the main results, it will be helpful to define two func
tions, the first of which maps vertices of I n to Boolean expressions in
formal variables X), . . . • Xn, and the second of which maps such
Boolean expressions to real algebraic expressions in formal variables
Xl • • • • • Xn. In our notation for Boolean expressions we will use" +"
to denote disjunction and juxtaposition to denote conjunction but it will
always be clear from the context whether Boolean or real operations are
intended.

The mapping from vertices to Boolean expressions is defined by
assigning to a vertex (v I • . . . • vn) the conjunction in which each Xi
appears once, with the negation operator applied to Xi if and only if
Vi = O. For example, !pplyinlLthis function to the vertex (0,1,1,0) ofl4
yields the expression XIX2X�4.

Copyrighted Material

430 FORMAL ANALYSES

A

- --

a

a = 0
o o�---------I----;- X 1 w::::;;.... ____:._...1-__ X 1

B c

FIGURE 1. a (xJ,X2) = x\x2- A: Three-dimensional plot. The cube is bounded by the
planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along xl
Note that each section along xl is a linear function with nonnegative slope; by symmetry
the same is true of each section along x2- Thus this function is uniformly nondecreasing_

Copyrighted Material

A

ex

�
X2

X,

a = --

1
= 7�

a = .5

a 25

I
I

a 0 o 0 ---------01--... X 1

8

10. ACTIVATION FUNCTIONS 431

ex

�--------------�---X, Xz = 0

c

FIGURE 2. a (XJ,X2) - min(xt.x2) ' A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
xl' Note that the three-dimensional plot of this function consists of two planar surfaces.
Evidently, each section along xl is a nondecreasing function; by symmetry the same is
true of each section along x2' Thus this function is uniformly nondecreasing.

Copyrighted Material

432 FORMAL ANALYSES

A

IX = 0

", ...

"""',' """','
.,

B c

FIGURE 3. a (x\,X2) = max(O,xI+x2-l). A: Three-dimensional plot. The cube is
bounded by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sec
tions along xI' Note that the three-dimensional plot of this function consists of two
planar surfaces. Clearly, each section along xI is a nondecreasing function; by symmetry
the same is true of each section along x2' Thus this function is uniformly nondecreasing .

Copyrighted Material

10. ACTIVATION FUNCTIONS 433

A

a

�
X2

X,

a =l

�------------'-�

X 1

8 c

FIGURE 4. a (X!,X2) = xl+x2-xlx2' A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sections along
xl' Note that each section along xl is a linear function with nonnegative slope; by sym
metry the same is true of each section along x2' Thus this function is uniformly non
decreasing.

Copyrighted Material

434 FORMAL ANALYSES

A

a
�

X2

X,

Cl

Cl = .5

Cl = 25

n o
o

Cl =

= .75

B

1

�

c

FIGURE 5. a (xJ,x2) = max(xJ,x2)' A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
xI' Note that the three-dimensional plot of this function consists of two planar surfaces .

Note also that each section along xI is a nondecreas ing function; by symmetry the same
is true of each section along x2' Thus this function is uniformly nondecreasing.

Copyrighted Material

A

�

x,

Xl

8

10. ACTIVATION FUNCTIONS 435

· :":::··;·:�:��?:!����{i!:\:.{:\: ·!�·:·:·.::::�.",. '.'-.. :: . •• • • • • , .. t' .: .. \,;.:.� .\ 1 •. 1\ "1.'-"', . .•• ' . .

' : ;':. : ;'::.};,)-- -- --
: : ':: : ;;, -- -- --

.<) . .)i;"

L-__________________ � __ x,

c

FIGURE 6. a (XhX2) = min(l,xl+x2)' A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along
x I' Note that the three-dimensional plot of this function consists of two planar surfaces.
Evidently, each section along xI is a nondecreasing function; by symmetry the same is
true of each section along x2' Thus this function is uniformly nondecreasing.

Copyrighted Material

436 FORMAL ANALYSES

A

a- a = 0

--,,-,
a= 25�

I
a = .5 I

B

L-----------------��

Xt

c

FIGURE 7. a (xIoX2) - xl+x2-2xlx2' A: Three-dimensional plot. The cube is bounded
by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sections along
XI ' Note the saddle shape of the three-dimensional plot of this function. Also note that
the sections along XI are linear functions with slopes ranging from 1 to -I; by symmetry
the same is true of the sections along Xl' Thus this function is monotonic-in-context but
not uniformly monotonic.

Copyrighted Material

A

k::

x'

XI

o Ot = 0
o

Ot =
----

B

I
.751

I
I
I

10. ACTIVATION FUNCTIONS 437

X, �-----------------L�X,

c

FIGURE 8. ex (x1,X2) = Ih(xl+x2)' A: Three-dimensional plot. The cube is bounded by
the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along x I'
Note that the three-dimensional plot of this func�on consists of a single planar surface.
Each section along xI is a linear function with 'slo\>e 'h, as is each section along x2, by
symmetry. Thus this function is uniformly nondecreasing.

Copyrighted Material

438 FORMAL ANALYSES

A

(l

--��� :�5 \,. "i C! = .5
C! .25 I

(l = 0 I

8 c

FIGURE 9. cdx),x2) = (2x'I- t)2(2x'2- t)2. A: Three-dimensional plot. The cube is
bounded by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sec
tions along xI' Note that the sections along XI are parabolas of varying widths. Evi
dently, this function is not monotonic-in-context since, for example, when x2- 0, a first
decreases and then increases as X I increases.

Copyrighted Material

10. ACTIVATION FUNCTIONS 439

The mapping from Boolean expressions to real algebraic expressions
is defined by replacing:

1. True by 1.
2. False by O.
3. The disjunction operator by addition.
4. The conjunction operator by multiplication.
S. The negation operator by subtraction from 1.
6. Xi by Xi, for each i.

For example, applying this function to the Boolean expression
X,X2+ X, yields the real expression XI (I-x 2) + (I-XI). It should be
emphasized that this is a function defined only on formal expressions;
two expressions that are equivalent under Boolean algebra will not, in
general, be mapped to the same real algebraic expression or even
equivalent real algebraic expressions. In other words, it is not a map
ping from Boolean functions to real functions.

A standard result from Boolean algebra is that any Boolean function
may be expressed in a certain canonical form, called the disjunctive nor
mal form. A simple prescription for this form is as follows: Form a dis
junction of terms, each of which is the result of applying the vertices
to-Boolean-expressions function described above to those vertices ofln
for which the function takes on the value true. For example, the dis
junctive normal form for the Boolean function /3(XbX2) = X,+X2 is
X,X2+ X,X2+ X,X2·

A closely related result for multilinear functions is the following:

Lemma. For any function assigning arbitrary real numbers to the
vertices of P there is a unique multilinear function agreeing with
the given function on these vertices.

This function is formed in a manner generalizing the prescription
given above for the disjunctive normal form: For each vertex of In,
form the corresponding Boolean conjunct; then apply the other function
described above to turn each of these conjuncts into a real expression;
finally, form the sum of these individual expressions with each one
weighted by the value cf the given function at the corresponding ver
tex. It will be convenient to dub the result the vertex normal form for
the given function. For example, the vertex normal form for a multi
linear function a of two variables is

a (X "X2) = a (O,O)(l-x:)(I-x2)+a(O,O(I-x,)x2

+a (l,O)x,(1-x2)+a (l,l)x,x2.
Copyrighted Material

440 FORMAL ANALYSES

This lemma has the following immediate consequence:

Theorem 1. Given any Boolean function, there is a unique multi
linear activation function realizing it.

In contrast, not every Boolean function can be realized by a quasi
linear activation function. Those Boolean functions that can be so real
ized are called linearly separable. It is easily shown that any linearly
separable Boolean function is necessarily uniformly monotonic, but the
converse is not true. A simple example of a function that is not
linearly separable is the XOR function t31(X\.X2) = X1X2+X1X2. The
easiest way to see that it is not linearly separable is to observe that it is
not uniformly monotonic. An example of a function that is uniformly
monotonic but not linearly separable is

t32(X\.X2,X3,x4) = X1X2+ X3X4·

Our next result, also a consequence of the lemma, shows that the
very general class of all activation functions may be represented up to
vertex-equivalence by the narrower class of multilinear activation
functions.

Theorem 2. Every activation function is vertex-equivalent to a
unique multilinear activation function.

The next result suggests that monotonicity-in-context is enjoyed by a
fairly wide variety of activation functions.

Theorem 3. Every sigma-pi activation function is monotonic-in
context.

This is an easy consequence of three facts: (a) that a multilinear
function is linear in each variable when the other variables are held
constant; (b) that a linear function is monotonic; and (c) that the com
position of monotonic functions is monotonic.

The following result characterizes uniform monotonicity for multi
linear activation functions.

Theorem 4. A multilinear activation function is uniformly mono
tonic if and only if its restriction to vertices is uniformly monotonic.

The key step in the proof of this result is the observation that a
multilinear function may be built up inductively through linear interpo
lation, starting with the values at the vertices. This follows from the
fact that a multilinear function is linear in each variable when the other
variables are held constant. The remainder of the proof consists of ver
ifying that each step of this inductive construction preserves uniform

Copyrighted Material

10. ACfIVATION FUNCfIONS 441

monotonicity. This result may be extended to the sigma-pi case as
well, under certain mild restrictions, using the fact that a strictly
increasing function has a monotonic inverse.

Corollary. Let a = fog be a sigma-pi activation function, where g is
multilinear and f is a squashing function. If f is strictly increasing,
then a is uniformly monotonic if and only if its restriction to ver
tices is uniformly monotonic.

The results presented up to this point would seem to suggest that the
class of multilinear activation functions provides us with sufficient
power that we need not consider the more general class of sigma-pi
activation functions. However, from the standpoint of uniform mono
tonicity, there may be some drawbacks in restricting ourselves to multi
linear activation functions. One such potential drawback is that a uni
formly nondecreasing multilinear activation function may have some
negative weights. For example, the Boolean function
{3 (X 1 ,X 2) = Xl + X 2 corresponds, by Theorem 1, to the multilinear
activation function a (Xl,x2) = X\+X2-x\X2, which requires a negative
weight even though it is uniformly nondecreasing. But what if a more
general sigma-pi activation function were to be used? Is there a
sigma-pi realization of this same Boolean function for which all weights
are nonnegative? Of course there is in this case: The sigma-pi activa
tion function a (Xl,x2) = min (x l + x2, n is one such realization; many
others could be devised. (These two realizations of the OR function
are displayed in Figures 4 and 6.) It seems reasonable to suspect that
the following is true:

Cor/iecture. Every uniformly nondecreasing activation function is
vertex-equivalent to a sigma-pi activation function with nonnegative
weights.

Note that any sigma-pi activation function with nonnegative weights
is certainly uniformly nondecreasing. The conjecture is that the con
verse is true (up to vertex equivalence). Under the assumption that
the uniformly nondecreasing activation function is Boolean-like (as in
the preceding example), the conjecture is indeed valid, as the following
theorem shows. In fact, the conclusion may be made even stronger in
this case.

Theorem 5. Every uniformly nondecreasing Boolean-like activation
function is vertex-equivalent to a sigma-pi activation function whose
weights are all 0 or 1.

The essential step in the proof of this result is showing that any uni
formly nondecreasing �t.�a/may be expressed as a

442 FORMAL ANALYSES

disjunction of conjunctions containing no negated factors. Once such
an expression is available, the desired sigma-pi activation function is
obtained by converting this Boolean expression to a real expression and
then composing this with the function j (z) = min (z ,1).

This theorem may be generalized to cover arbitrary senses of uni
form monotonicity by running any inputs for which the activation func
tion is nonincreasing through the "inverter" j(x) = I-x . Thus the
general class of all uniformly monotonic Boolean-like activation func
tions may be represented up to vertex-equivalence by a narrower class
of sigma-pi activation functions of a certain form.

It is instructive to contrast the sigma-pi activation functions which
result from applying Theorems I and 5 to a particular uniformly mono
tonic activation function. Consider the Boolean function of six vari
ables IHXJ,X2,x3,X4,XS,X6) - X1X2+ X�4+ XsX6' Theorem I real
izes this using the vertex normal form, which, after simplification,
becomes

Q l(Xl,x2,x3 ,X4,xS,x6) = xlx2+xJX4+XsX6

- xlx�JX4 - xlx� sX6 - xJX4XsX6

+xlx�JX4XsX6'

In contrast, Theorem 5 implies a realization of this same function by
the gating activation function

Q2(Xl,x2,x3,x4,x5,x6) = min(xlx2+XJX4+XsX6, n.

CONCLUSION

As suggested in the introduction, the ideas and results presented
here represent an exploratory set of concepts intended to help in under
standing PDP networks. There is a clear need for a general language
and set of concepts for describing and understanding PDP computation,
both at the local, individual unit level, as explored here, and at the
level of whole networks. (In fact, the greatest need is for a means of
describing and understanding the relationship between computation at
these two levels.) Whether the ideas contained in this chapter can
extend naturally to become a useful framework for understanding the
behavior of whole networks is difficult to foresee. One way that this
gap between local and global computation might be bridged is by deal
ing with questions of learning in such networks. The goal of learning is
generally to cause the ne���$te�Xfa,erra5ticular global behavior, but

10. ACflVA nON FUNCfIONS 443

the learning should be implemented locally. An example of how the
requirement that the network be capable of learning might interact with
the ideas explored here can be found by considering the recently
discovered back-propagation learning algorithm, described in Chapter 8.
To be able to apply such a learning algorithm requires imposing the
constraint on activation functions that they be differentiable, a property
not satisfied by all the examples considered here. As our understand
ing of learning in PDP networks progresses, we may find still further
restrictions useful or even necessary.

ACKNOWLEDGMENTS

This research was supported by a grant to David Zipser from the Sys
tem Development Foundation. I am also grateful to James McClelland
and David Zipser for their many helpful comments and suggestions.

Copyrighted Material

CHAPTER } }

An Analysis of the Delta Rule
and the Learning of Statistical Associations

G. o. STONE

The development of parallel distributed processing models involves
two complementary enterprises: first, the development of complete
models with desired operating characteristics� and second, the in-depth
analysis of component mechanisms and basic principles. The primary
objective in modeling is the development and testing of complete sys
tems. In general these models are complex and their behavior cannot
be fully deduced directly from their mathematical description. In such
cas�s, simulation plays an important role in understanding the proper
ties of a model. Although simulations are useful in determining the
properties of a specific model, they do not, on their own, indicate how
a model should be modified when a desired behavior is not achieved.
An understanding of basic principles and a collection of potential
mechanisms with known properties provide the best guides to the
development of complex models.

This chapter provides an analysis of one of the most popular
components-namely, the error correction learning rule developed by
Widrow and Hoff (1960). This learning rule which has been analyzed
and employed by a number of authors (Amari, 1977a, 1977b;
Kohonen, 1974, 1977 ; Sutton & Barto, 1981), has been called the
Widrow-Hoff rule by Sutton and Barto (1981) and is generally referred
to as the delta rule in this book. This rule is introduced in Chapter 2,
discussed extensively and generalized in Chapter 8, and employed in
models discussed in a number of chapters-most notably Chapters 17
and 18. In the present chapter I show how concepts from linear algebra

Copyrighted Material

II. THE DELTA RULE 445

and vector spaces can provide insight into the operation of this learning
mechanism. I then show how this mechanism can be used for learning
statistical relationships between patterns, and finally show how the delta
rule relates to multiple linear regression. Concepts from linear algebra
are used extensively; for explanation of these concepts, especially as
applied to PDP models, the reader is referred to Chapter 9.

The Delta Rule in Vector Notation

The delta rule is typically applied to the case in which pairs of pat
terns, consisting of an input pattern and a target output pattern, are to
be associated so that when an input pattern is presented to an input
layer of units, the appropriate output pattern will appear on the output
layer of units. It is possible to represent the patterns as vectors in which
each element of the vector corresponds to the activation value of a
corresponding unit. Similarly, we can represent the connections from
input units to the output units by the cells of a weight matrix. For
linear units, the output vector can be computed by multiplying the
input vector by the weight matrix. In the present chapter our analysis
is restricted to linear units . (See Chapter 8 for a discussion of the delta
rule for nonlinear units .)

Now we imagine a learning situation in which the set of input/ output
pairs are presented (possibly repeatedly) to the system. If the set of
input vectors are orthogonal (i.e ., at right angles to each other), a sim
ple pattern associator can be constructed using a product learning rule
in which the change in weight wj; following the presentation of pattern
p is given by the product of the ith input element and the jth target
element, that is,

where tpj represents the value of the desired or target output for the
jth element of pattern p and ip; is the activation value of the ith ele
ment of the input for that pattern. I In vector notation, we can write the
change for the entire weight matrix as

Ap - tpiJ

I Note this is essentially the Hebbian learning rule. In the Hebbian rule it is assumed
that the product of the activation levels of the input and output units determine the
weight change. If we assume that the activation of the output unit is entirely determined
by the target input the product rule described here is identically the Hebbian rule.

Copyrighted Material

446 FORMAL ANALYSES

where, as usual, bold letters indicate vectors, uppercase indicates
matrices and the superscript T indicates the transpose of a vector or
matrix. This learning rule was described in some detail in Chapter 9
and that discussion will not be repeated here. It was shown there that
if the input vectors are normalized in length so that ip . ip = 1 and are
orthogonal, the product rule will, after the presentation of all of the
input/ output patterns, lead to the following weight matrix:

If the input vectors are orthogonal, there will be no interference from
storing one vector on others already stored so that the presentation of
input ip will lead to the desired output tp' that is,

Wip = tp

for all patterns p from 1 to P. Unfortunately, we cannot always insure
that the input vectors are orthogonal. Generally, the storage of one
input/ output pair can interfere with the storage of another and cause
crosstalk. For this case a more sophisticated learning rule is required.

Fortunately, as we saw in Chapter 8, the delta rule is a rule that will
work when the input patterns are not orthogonal. This rule will pro
duce perfect associations so long as the input patterns are merely
linearly independent (see Chapter 9) and will find a weight matrix which
will produce a "least squares" solution for the weight matrix when an
exact solution is not possible (i.e., the input patterns are not linearly
independent). In matrix notation the rule can be written as

W (n) = W (n - 1) + 1)8 (n)j T (n) (1)

where W (n) is the state of the connection matrix after n presentations,
i (n) is the input presented on the nth presentation, 1) is a scalar con
stant which determines the rate of learning, and 8 (n) is the difference
between the desired and actual output on trial n , such that

IS (n) = t (n) - W (n - l)i (n) (2)

where t (n) is the desired output (or t arget) for presentation n and
W (n - l)i (n) = 0 (n) is the output actually produced on that presenta
tion. W (0) is assumed to be the matrix with all zero entries. In other
words, the weight matrix is updated by adding the outer product of the
response error and the input. (See Chapter 9 for discussion of outer
product.) Proofs concerning the convergence of this recursion to the
optimum weight matrix (in the sense outlined above) are provided by
Kohonen 0974, 1977, 1984) . . ht d _Jf t . I Copyng a IVla ana

11. THE DELTA RULE 447

The Delta Rule in Pattern-Based Coordinates

To this point we have discussed the delta rule for what Smolensky
(Chapter 22) has called the neural or unit level of representation.
Before proceeding, it is useful to consider the form that the rule takes
in the conceptual level of representation in which there is one vector
component for each concept. In general, the input and output patterns
correspond to an arbitrary set of vectors. Interestingly, it is possible to
show that the delta rule applies only to the "structure" of the input and
output vectors and not to other details of the representation. In a
linear system, it is only the pattern of correlations among the patterns
that matter, not the contents of the specific patterns themselves.

We can demonstrate this by deriving the same learning rule following
a change oj basis from the unit basis to the pattern basis. Since a detailed
discussion of the process whereby bases can be changed is given in
Chapter 9 and, in more detail, in Chapter 22, I will merely sketch tl1e
concept here. Each pattern over a set of units corresponds to a vector.
If there are N units, then the vector is of dimension N. In the unit
basis, each element of the vector corresponds to the activation value of
one of the units. Geometrically, we can think of each unit as specify
ing a value on a dimension and the entire vector as corresponding to
the coordinates of a point in N-dimensional space. Thus, the dimen
sions of the space correspond directly to the units (this is why it is
called the unit basis). Now, a change of basis amounts essentially to a
change in coordinate system. This can be accomplished through rota
tion, as well as other linear transformations. Converting to the pattern
basis merely involves transforming the coordinate system so that the
patterns line up with the axes. Figure 1 illustrates a simple case of this
process. In Figure lA we give the geometric representation of the pat
terns. Pattern 1, PI, involves two units, each with activation value + 1.
Pattern 2, P2, has activation values < + 1 ,- 1 >. The patterns described
in the unit basis are

Figure 1 B shows the same two vectors, but now expressed with respect
to a new coordinate system, the pattern coordinate system. In this case
the axes correspond to the patterns not the units. The vectors
corresponding to patterns 1 and 2 now become

p* 1 = [?] and p* 2" [A]·
Copyrighted Material

448 FORMAL ANALYSES

A Unit 2

-1--------�-------

-1

B -1

Pattern 1
<+1,+1>

Unit 1

Pattern 2
< +1,-1 >

+1

< 0,+1 >

-1
+1

FIGURE 1. An example of conversion from unit-based coordinates into pattern-based

coordinates.

In general, conversion to a new basis requires a matrix P which
specifies the relationship between the new and old coordinate systems.
For each vector, Pi' we write the new vector p* i as P* i = Pp i' If all of
the vectors and matrices of the original system are converted into the
new basis, we simply have a new way to describe the same system. For
present purposes we have !wo tran"formation matrices, one that Cbpyngnred MaTerial

II. THE DELTA RULE 449

transforms the input patterns into a coordinate space based on the input
patterns, which we denote P /, and one that transforms the target pat
terns into a coordinate space based on the target patterns, P r. In this
case, we have i*; = P/i; for the input vectors and t*, = Prt, for the
target vectors. Moreover, since the output vectors must be in the same
space as the target vectors we have 0*; = Pro,. We must also
transform the weight matrix W to the new basis. Since the weight
matrix maps the input space onto the output space, both transforma
tions must be involved in transforming the weight matrix. We can see
what this transformation must be by considering the job that the weight
matrix must do. Suppose that in the old bases Wi = 0 for some input i
and output o. In the new bases we should be able to write W*i* = 0*

Thus, W*P/i = Pro and PT"IW*P/i = 0 = Wi. From this we can
readily see that P T" I W*p / = Wand finally, we can write the appropriate
transformation matrix for W as

W* = PrWP[I.

We can multiply both sides of Equation 1 by P r on the right and P [I
on the left. This leads to

PrWp[l (n) = PrWp[l(n- 1) + PT1}8(n)ir(n)p/1

which, by substitution, can be written as

W* (n) = W* (n - 1) + 1/8* (n) [P [I i * (n) r P /1,

where

8 * (n) = t* (n) - W* (n - 1) i* (n). (3)

Finally, by rearranging we have

(4)

where the matrix C, given by C = (p/I)Tp[l, is a matrix which holds

the correlational information among the original input patterns. To see
this, recall that we are changing the input patterns into their pattern

basis and the target patterns into their pattern basis. Therefore, the

vector i *j consists of a 1 in the jth cell and zeros eve�ywhere else.

Thus, since i· = P/l i* j' we see that P /1 must be a matrix whose j th

column is th� j th original input vector. Therefore , C is a matrix with

the inner product of the input vectors i I and i j occupying the ith row

and j th column. This inner product is the vector correlation between

the two patterns. Copyrighted Material

450 FORMAL ANALYSES

We have finally constructed a new description which, as we shall see,
allows many insights into the operation of the delta rule which are nor
mally obscured by the internal structure of the patterns themselves.
Instead, we have isolated the critical interpattern structure in the
matrix C.

One advantage of this new description is that the output the system
actually produces-even when it does not match any target exactly-can
easily be interpreted as the weighted average of the various target pat
terns. The value in each cell of the output vector is the coefficient
determining the amount of that target in the output. In this case the
sum squared error for input/output pattern p, given by

Ep = L (t*j - O"jP'

measures the error directly in terms of the degree to which each target
pattern is present in the output, rather than the degree to which each
unit is present. It should be noted, of course, that this new pattern
based error function is related to the old unit-based error by the same
change of basis matrices discussed above.

It might be observed further that under this description, the perfect
associator-which results when the input and output patterns are
linearly independent -will be the identity matrix, I, in which the main
diagonal has a 1 in each entry and all other entries are O. It should be
noted, however, that the preceding analysis of this new description has
assumed the input and target output patterns were linearly independent.
If they are not, no such pattern basis exists. However, there is an
analogous, but somewhat more complex, development for the case in
which these vectors cannot form a legitimate basis.

I will now demonstrate some of the useful insights which can be
gained through this analysis by comparing the unit and pattern basis
descriptions for a sample learning problem. The upper portion of Fig
ure 2 gives the representations of the four input/ output patterns to be
learned in the unit basis. These patterns are all linearly independent and
were generated under the constraint that each pattern has unit length
and that the input patterns have the correlation structure given in the
matrix shown in the figure.

Figure 3 shows the states of Wand W* after one, four, and eight
sweeps through the four input/ output patterns. While inspection of the
unit-based representations gives no direct information about the degree
of learning and crosstalk between targets, this information is explicit in
the pattern-based representation. For example, one can discern that
the error for the pairs with highly correlated inputs (pairs 1 and 2) is
greater at each stage than that for the pairs with slightly correlated input

Copyrighted Material

.36

.20

49
.44

Xl -.0 1

.28

.09

.55

.25

. 48

-.48

.56

X3 .18
-.28

.0 4

-.22

1

.... Yl

3

.... Y3

II. THE DELTA RULE 451

.57

-. 1 0 .05

-.66 . 1 2

. 30 .23
-.08 X2 .08

-.45 . 47

.50 -.36

.50

-. 1 1

-.10 -.08

.40 .03

.27 .36

.27 X4
.0 1

-.56 -.7 1

.6 1 -.5 4

.2 4

1 .00 .75 0 0

2

-.07

-.39
.74

.... Y2 -.2 1

46

- . 1 9

4

.47

.17

-.2 1

.... Y4 . 0 1

-.66

-.5 1

c== .75 1.00 0 0
o 0 1 .00 .25

o 0 .25 1 .00

FIGURE 2. Key-target pairs and the key correlation structure.

patterns (pairs 3 and 4). Moreover, there is no intrusion of targets
associated with orthogonal inputs. In addition, the intrusion of targets
from correlated pairs is least for the pair most recently learned, pairs 2
and 4. (The patterns were presented in order 1-2-3-4 on each sweep.)
Finally, it is clear from inspection of the pattern-based weight matrix
that after eight sweeps the patterns have been almost perfectly learned.

The pattern-based formulation also allows a more detailed analysis of
the general effect of a learning trial on the error. We can define the
.. potential error" to pattern j, a J * as

Copyrighted Material

452 FORMAL ANALYSES

Learning with g = 1.20

AFTER 1 Learning Cycle

Pallem Based: mse=O.09 Unit Based: mse-0.049

0.39 -0.18 0_00 0.00 -O.U -0.13 0_02 0_10 -0.01 -0.42 -0.35 0.12

0.90 1.20 0.00 0.00 -O.ID 0.1J8 -0.59 0.00 O.U -0.29 -U8 -0.40

0.00 0.00 1.11 -0.06 057 0.28 O.OS 0.35 0.10 0.52 O.ID 0.33

0.00 0.00 0.30 1.20 -0.04 0.13 -0.23 0.07 O.OS -0.14 0.10 -0.23

0.30 -0.33 0.17 -0.59 -O.IM 0.94 - 0.13 0.23

O.OS 0.50 -0.17 0.20 0.06 0.20 0.81 -0.42

AFTER 4 Learning Cycles

Pall em Based: mse=O.OO Unir Based: mse = 0.00

0.98 -0.01 0.00 0.00 - US ·0.18 0.07 0.01 -O.IM ·0.34 -0.31 0.13

0.03 1.01 0.00 0.00 -0.117 0.02 -0.57 -O.OS 0.10 -0.28 -0.20 -0.41

0.00 0.00 1.00 0.00 0.59 0.13 -0.30 0.1 1 0.16 O.SO -0.29 0.13

0.00 0.00 0.00 1.00 -O.OS 0.16 -0.10 0.14 0.02 -US 0.17 -0.16

0.36 -0.42 -0.47 -0.81 0.08 0.86 -0.53 -0.12

0.06 0.66 0.16 0.53 0.02 0.09 1.01 -0.19

AFTER 8 Learning Cycles

Pallem Based: mseaO.OO Unir Based: moe=O.OO

1.00 0.00 0.00 0.00 -0.1.5 -0.18 0.117 0.01 -O.IM -0.34 - 0.31 0.13

0.00 1.00 0.00 0.00 ·0.117 0.02 -0.57 -O.OS 0.10 - 0 .28 -0.20 -0. 41

0.00 0.00 1.00 0.00 0 . .59 0.13 -0.32 0.10 0.16 O.SO -0.30 0.12

0.00 0.00 0.00 1.00 -0.05 0.16 -0.10 0. 14 0.02 -D.1S 0.18 -0.15

0.35 -0.43 -0.49 -0.82 0.08 O.SS -0 . .54 -0.13

0.06 0.66 0.17 0 . .54 0.02 0.10 1.01 - 0. 18

FIGURE 3. Comparison of unit-based and pattern-based weight matrices after one, four,
and eight learning cycles.

(5)

Substituting for W* (n) from Equation 1, gives

where k is the index of the pattern presented on trial n - 1. Simplify
ing further, we have the recursive form:

8 . '" (n) = B . '" (n - 1) - '(18 k '" (n - 1)i * lei * j •
J J Copyrighted Material

(6)

II. THE DELTA RULE 453

Since the vectors i* j and i* [consist of a 1 and the rest zeros, the
entire expression i* [e i* j reduces to Ckj' the entry in the k th row and
jth column of matrix e. Thus, Equation 6 becomes simply

(7)

In other words, the decrease in error to the jth input/output pair due
to a new learning trial is a constant times the error pattern on the new
learning trial. The constant is given by the learning rate, Tt, times the
correlation of the currently tested input and input from the learning
trial. Thus, the degree to which learning affects performance on each
test input is proportional to its correlation with the pattern just used in
learning. Note that if Tt is small enough, the error to the presented pat
tern always decreases. In this case Equation 7 can be rewritten

8k -en) = 8k - (n - D(1 - 'rjCkk)'
Recalling that Ckk is given by i[ik, the length of the kth input vector,
we can see that the error will always decrease provided 11 - Tt i[ik I < 1.

To summarize, this exercise has demonstrated that a mechanism can
often be made more conceptually tractable by a judicious transforma
tion. In this case, expressing the possible input and output representa
tions in the appropriate pattern bases clarified the importance, indeed
the sufficiency, of the input "structure" (i.e., the pattern of inner pro
ducts among the input vectors) in determining the role of the input
representations in learning. Furthermore, converting the weight matrix
into a form from which the errors at any stage of learning can be read
directly allowed us to "see" the learning more obviously. The result
has been a clearer understanding of the operation of the delta rule for
learning.

STATISTICAL LEARNING

In this section we extend our analysis of the delta rule from the case
in which there is a fixed target output pattern for each input pattern to
the case in which sets of input patterns are associated with sets of out
put patterns. We can think of the sets as representing categories of
input and outputs. Thus, rather than associate particular input patterns
with particular output patterns, we analyze the case in which categories
bf input patterns are associated with categories of output patterns. This,
for example, might be the case if the system is learning that dogs bark.
The representation for dog might differ on each learning trial with
respect to size, shagginSi§p�htW8iNtatb;;afepresentation for the bark

454 FORMAL ANALYSES

might vary with regard to pitch, timbre, etc. In this case, the system is
simultaneously learning the categories of dog and bark at the same time
it is learning the association between the two concepts.

In addition, when we have category associations, statistical relation
ships between the input and output patterns within a category can be
picked up. For example, the system could learn that small dogs tend to
have high-pitched barks whereas large dogs may tend to have low
pitched barks.

In order to analyze the case of statistical learning, we now treat the
input/ output pairs of patterns as random variables. In other words,
each time pattern ij is selected as input, its entries can take different
values. Similarly, the target output for pair j, Ij will have variable
entries. The probability distributions of these random variables may
take any form whatsoever, but they are assumed not to change over
time. Moreover, we can consider the entire set of input/ output pairs to
form a single probability distribution. We then assume that on each
trial an input/ output pair is randomly sampled from this overall proba
bility distribution.

We proceed with our analysis of statistical learning by computing the
expected or average change in the weight matrix following a presenta
tion. From Equations 1 and 2 we get the following form of the delta
rule:

W (n) = W (n - 1) + .,., [t (n) - W (n - 1) i (n)] i T (n).

Simplifying and taking the expected value of each side we have

Note, we may take

E[W (n - 1)i{n)i T (n)] = E[W (n - 1)]E[i{n)i T (n)]

since each trial is assumed to be statistically independent of all preced
ing trials, upon which W (n - 1) depends. Letting R J = E [Ii T] be the
pattern of statistical correlations among the input patterns and
R JO = E hi T] be the statistical correlations between the input and tar
get patterns, we can rewrite Equation 7 as

E[W (n)] = E[W(n- 1)](1 - .,.,RJ) + .,.,RJO.

If we solve the recursion by replacing W (n - I) with an expression in
terms of W (n - 2) etc. down to W (0) and assuming that W (0) = 0, the
matrix of all 0 entries, we can write the expected value of the weight
matrix after n trials as

Copyrighted Material

11. THE DELTA RULE 455

E(W(n)] = 7)RJOt (I - 7)R,)i.
(9)

i-O
Fortunately, in the limit, this matrix reduces to a simpler form. To see
this, we must introduce the concept of the pseudo-inverse of a matrix.
This is a matrix which, unlike the inverse, is certain to exist for all
matrices, but which has a number of properties in common with an
true inverse. (See Chapter 9 for a discussion of matrix inverses and the
conditions under which they exist.) In particular, it is the true inverse,
if the true inverse exists. The pseudo-inverse of a matrix B, designated
B+, is given by

B+ = 7)BTr, (I - 7)BBT)l
i-I

provided 7) is sufficiently small. (See Rao & Mitra, 1971, and
Kohonen, 1977, 1984, for a full discussion of the pseudo-inverse.)

In order to convert Equation 9 into a form that includes the expres
sion for the pseudo-inverse, we observe that since the square matrix
R, = EUiT] has independent rows and columns, we can select a
matrix P such that ppT = R, and P also has linearly independent rows
and columns. Since the generalized inverse of P, P+, is also the true
inverse of P, it satisfies (P T)-Ip T = I. Thus, taking the limit as
n-oo of Equation 9 and substituting P, we can write

00
limE(W(n)] = E(Woo] = RJO (pT)-1 (7)pT:E (I - 7)ppT F1. (10)
n-oo i=\

Now, by substituting in for the pseudo-inverse of P and simplifying we
get

Since the rows and columns ofR, are linearly independent, R,I = Rt.
So we finally get

(12)

Now we wish to show that, after training, the system will respond
appropriately. Without further restrictions, we can demonstrate a
minimal appropriateness of the response, namely, we can show that
E [W J] = E [t]. In other words, we can show that the mean output
of the system, after learning, is the mean target. Since the test trials
and learning trials are statistically independent we can write

E[Wooi] = E[Woo lEU].
Copyrighted Material

456 FORMAL ANALYSES

Now, substituting in from Equation 9 we have

Although it is not generally true that (BC)+ = C+B+, this relation does
hold for B = i and C = iT, where i is a column vector. Thus, we have

Finally, since i has only one column, its columns are linearly indepen
dent and i+i = 1. We have therefore obtained the desired result.

Thus far we have only shown that the mean response to inputs is
equivalent to the mean of the target patterns. This result says nothing
about the appropriateness of the response to a particular pattern.
Ideally we would want the expected response to a particular pattern to
yield the expected value of our target given the input. We can show
that the input will produce this result as long as i and t are distributed
normally with zero means. Although this seems to be a strong assump
tion, it is not a difficult situation to obtain. First, we can easily arrange
that the input patterns have zero means by simply having a bias feeding
into each unit equal to minus the mean of the value for that cell of the
pattern. This is not especially difficult, but we will not dwell on the
process here. (See Chapter 8 for a discussion of biases and the learning
of biases.) Suffice it to say that it is not very difficult to convert a set of
input vectors into a set of patterns with zero mean.

The requirement of normal distributions is often not as restrictive as
it appears. When input patterns being associated are themselves the
output cf a linear system, each entry in the pattern will be a linear com
bination of the original input's entries. If the patterns have large
dimensionality (i.e., there are many components to the vectors), one
obtains an approximation to an infinite series of random variables. A
powerful central-limit theorem due to Lyapunov (Eisen, 1969, Ch. 13)
shows that such a series will converge to a normal distribution so long
as several weak assumptions hold (most importantly, the means and
variances of each random variable must exist and none of the random
variables may be excessively dominant).

Under these conditions, it can be shown that the expected value of
the target t given the input i, takes the form E(tji] = R/OR/-1j
(Meditch, 1969, chap. 3). Since E[Woa) = RIOR/-l, we have shown
that

(13)

so that after a sufficient number of learning trials, the law of large
numbers and the conve8lYPing��et9�rJW-afule learning process imply

11. THE DELTA RULE 457

that, given a particular input, the system will produce an output equal
to the average of the targets paired with that input. In this sense, sys
tematic covariation of input/ output pairs will be learned.

The Delta Rule and Multiple Linear Regression

Some readers may have already noticed the similarity of the learning
task we have been analyzing to the problem encountered in multiple
linear regression. In a linear regression problem the objective is to
predict, to the degree possible, one variable, say y, from a set of vari
ables x. In these problems we typically wish to find a set of coeffi
cients, b, such that

(where Xo is taken to be 1) and the sum-squared error

is minimized. This is precisely the problem that the delta rule seeks to
solve. In this case, each element of the target vector for input/ output
pair (p tp) is analogous to a to-be-predicted observation Yj; our predic
tion variables x j are analogous to our input vectors ip; our regression
coefficients b correspond to a row of the weight matrix W; and the
intercept of the regression line, bo, corresponds to the bias often
assumed for our units (cf. Chapter 8). In our typical case the target
vectors have many components, so we are simultaneously solving a
multiple regression problem for each of the components of the target
vectors. Now, the standard result from linear regression, for zero-mean
random variables, is that our estimate for the vector b, b is given by

where X is the matrix whose columns represent the values of the pred
ictors and whose rows represent the individual observations. (Again,
we take the first column to be all Is.) Now, note from Equation 12
that the delta rule converges to

E[Wco) - (E[iTi])+E[iTt].
Copyrighted Material

458 FORMAL ANALYSES

This equation is the strict analog of that from linear regression theory. 2
If we assume that each output unit has a bias corresponding to the
intercept bo of the regression line, we can see that the delta rule is, in
effect, an iterative method of computing the best, in the sense of least
squares, linear regression coefficients for our problems.

SUMMARY

To summarize, this chapter has shown that close examination of the
delta rule reveals a number of interesting and useful properties. When
fixed patterns are being learned, the rule's operation can be elucidated
by converting from a unit-based description to a pattern-based descrip
tion. In particular, the analysis showed that the correlations between
the input patterns, and not the specific patterns used, determined their
effect on the learning process. Thus, any alteration of the specific
input patterns that does not alter the correlations will have no effect on
learning by a linear delta rule. It was also shown that expressing the
inputs and outputs in terms of the patterns being learned facilitated
analysis of the learning process by allowing one to read directly from
the output produced the degree to which each target was present in the
output generated by a given input pattern.

When the patterns being learned are variable, it was noted that the
final weight matrix could be expressed simply in terms of the inter
correlations among the input patterns, RI, and the correlations between
the input and output patterns, RIO' It was also shown that when
several reasonable requirements for the distribution of the input/ output
random variables are met, the delta rule will learn the pattern of covari
ation between the inputs and targets. Finally, we showed that the delta
rule carries out the equivalent of a multiple linear regression from the
input patterns to the targets. Those familiar with linear regression
should conclude from this both the power of the rule and its
weaknesses. In particular, wherever a linear regression is insufficient to
provide a good account of the relationship between input and target pat
terns, the system will perform poorly. The solution to this problem is
to have nonlinear units and intermediate layers of hidden units.
Chapter 8 is a detailed discussion of the generalized delta rule and its
application to these situations.

2 Actually, there is a sl ight difference in convention between our deve lopment and that
typical of linear regression. In our case, the stimulus vectors are the column vectors,

whereas in linear regression the predictor variables are the rows of the matrix X. Thus
this equation differs by a transposition from Equation 12. This has no consequences for
the points made here .

Copyrighted Material

11. THE DELTA RULE 459

The preceding discussion does not, by any means, provide a com
plete analysis of the delta rule. Rather, it illustrates two important
ideas. First, that a basic principle (in this case, the use of pattern
based, rather than unit-based representations) can provide valuable
insights into the operation of a useful mechanism; and second, that the
analysis of component mechanisms which were designed for one use
can often reveal new applications.

Copyrighted Material

CHAPTER 12

Resource Requlrements of
Standard and Programmable Nets

1. L. McCLELLAND

In several places in this book we have examined the capabilities of
various models of parallel distributed processing. We have considered
models that are guaranteed to do one thing or another-to learn, say,
up to some criterion of optimality or to settle into global states with
probabi l i t ies proportional to the goodness of the states. In later
chapters , we describe various models of psychological or neurophysio
logical processes and consider how well they account for the data. The
models, then , are held up against various criteria of computational,
psychological, and sometimes physiological adequacy.

In this chapter I raise another question about PDP models . I con
sider the resources they require, in terms of units and connections, to
carry out a particular amount of work . This issue is touched on in vari
ous other places in the book, particularly Chapter 3. There we showed
that a distributed model can often perform even an arbitrary mapping
with less hardware than a local model would require to do the same
task.

In this chapter I continue this line of thinking and extend i t in vari
ous ways, drawing on the work of several other researchers, particularly
Willshaw (1971, 1981). The analysis is far from exhaustive , but it
focuses on several fairly central questions about the resource require
ments of PDP networks. In the first part of the chapter, I consider the
resource requirements of a simple pattern associator. I review the
analysis offered by Willshaw (1981) and extend it in one or two small
ways , and I consider how it might be possi ble to overcome some

Copyrighted Material

12. RESOURCE REQUIREMENTS 461

limitations that arise in networks consisting of units with limited con
nectivity. In the second part of the chapter, I consider the resource
requirements of a distributed version of the dynamically programmable
networks described in Chapter 16.

THE STANDARD PATTERN ASSOCIATOR

In this section, we will consider pattern associator models similar to
the models studied by J. A. Anderson (e.g., Anderson, 1983) and
Kohonen (1977, 1984), and to the past-tense learning model described
in Chapter 1 8. A small pattern associator is illustrated in Figure 1. A
pattern associator consists of two sets of units, called input and output
units, and a connection from each input unit to each output unit. The
associator takes as input a pattern of activation on its input units and
produces in response a pattern on the output units based on the con
nections between the input and output units.

Different pattern associators make slightly different assumptions
about the processing characteristics of the units. We will follow
Willshaw's (198 1) analysis of a particular, simple case; he used binary
units and binary connections between units. Thus, units could take on
activation values of 0 or I. Similarly, the connections between the
units could take on only binary values of 0 and I.

In Willshaw nets, processing is an extremely simple matter. A pat
tern of activation is imposed on the input units, turning each one either
on or off. Each active input unit then sends a quantum of activation to
each of the output units it has a switched-on connection to. Output
units go on if the number of quanta they receive exceeds a threshold;
otherwise they stay off.

The learning rule Wil lshaw studied is equally simple. Training
amounts to presenting each input pattern paired with the corresponding
output pattern, and turning on the connection from each active input
unit to each active output unit. This is, of course, a simple variant of
Hebbian learning. Given this learning rule, it follows that when the
input pattern of a known association is presented to the network, each
of the activated input units will send one quantum of activation to all of
the correct output units. This means that the number of quanta of
activation each correct output unit will receive will be equal to the
number of active input units.

In examining the learning capacity of this network, Wil lshaw made
several further assumptions. First, he assumed that all of the associa
tions (or pairs of patterns) to be learned have the same number of
active input units and the�yxgmew'Mat8Hiftive output units. Second,

462 FORMAL ANALYSES

FIGURE 1. A pattern associator consisting of a set of input units (across the bottom)
and output units (a)ong the right side), with a connection from each input unit to each
output unit.

he assumed that the threshold of each output unit is set equal to the
number of active input units. Given this assumption, only those out
put units with switched-on connections from all of the active input
units will reach threshold .

Now we can begin to examine the capacity of these networks. In
particular, we can ask questions l ike the following. How many input
units (n/) and output units (no) would be needed to allow retrieval of
the correct mate of each of r different input patterns?

The answer to such a question depends on the criterion of correct
retrieval used. For present purposes, we can adopt the following cri
terion: All of the correct output units should be turned on , and, on the
average, no more than one output unit should be turned on spuriously.

Copyrighted Material

12. RESOURCE REQUIREMENTS 463

Since the assumptions of the model guarantee that all the correct out
put units will be turned on when the correct input is shown, the
analysis focuses on the number of units needed to store r patterns
without exceeding the acceptable number of spurious activations.

The answer to our question also depends on the number of units
active in the input and output patterns in each pattern pair and on the
similarity relations among the patterns. A very useful case that
Willshaw considered is the case in which each of the r associations
involves a random selection of mi input uni ts and mo output units.
From the assumpt ion of randomness, i t is easy to compute the proba
bility that any given junction will be turned on after learning all r asso
ciations. From this it is easy to compute the average number of spuri
ous activat ions. We will now go through these computations.

Fi rst we consider the probability Pon that any given junction will end
up being turned on, for a particular choice of the parameters n" no, m"
mo, and r. Imagine that the r patterns are stored , one after the other,
in the ni no connections between the ni input units and the no output
units. As each pattern is stored, it turns on m,mo of the nino connec
tions, so each junction in the network is turned on with probability
mi mol ni no. The probability that a junction is not turned on by a single
association is just 1 minus this quanti ty. Since each of the r associa
tions is a new random sample of m, of the ni input units and mo of the
no output units, the probability that a junct ion has not been turned
on-or 1 minus the probabil ity that it has been turned on-after r pat
terns have been stored is

I mimo I' I- p = 1- --on nino

Rearranging to solve for Pan we obtain

I mimo I' P = 1- 1- --on nino

Now that we know Pon ' it is easy to calculate the number of spurious
activations of output uni ts. First, any output unit that should not be
activated will be turned on if and only if all of its junct ions from the m,
active input units happen to be on. Given the assumption of random
ness, this will occur with probability Pon

mj, since each junction is on
with probability Pon ' Since there are no - mo output units that are can
didates for spurious activation, the average number of spuriously
activated units is

(no - mo)Pon
mi.

Copyrighted Material

464 FORMAL ANALYSES

We want to keep this number less than 1. Adopting a slightly more
stringent criterion to simplify the calculations, we can set

or
I

I nlo I mj
� Pon

Rearranging, we get

For small positive x, logO-x) = -x. If we restrict ourselves to cases
where mj mol nj no < .1- that is, reasonably sparse patterns in the sense
that m < nl.JTO- the approximation will hold for the right-hand side of
the equation, so that taking logs we get

We can solve this for r, the number of patterns, to obtain

(1)

Now, -log 1- [n� I �, I ranges upward from .69 for very sparse patterns

where mj = 10g2no' Using .69 as a lower bound, we are safe if we say:

or

Copyrighted Material

12. RESOURCE REQUIREMENTS 465

This result tells us that the number of storage elements (that i s , con
nections , nj na) that we need is proportional to the number of associa
tions we wish to store t i mes the number of connections (mj ma)
activated in storing each association. This seems about right, intui
tively. In fact, this i s an upper bound rather greater than the true
number of storage elements requi red for less sparse patterns, as can be
seen by plugging values of mj greater than log2na into Equation 1.

It is interesting to compare Wilishaw nets to various kinds of local
representation. One very simple local representation would associate a
single, active input unit with one or more acti ve output uni ts. Obvi
ously, such a network would have a capacity of only nj patterns. We
can use the connections of a Willshaw net more effectively with a dis
tributed input if the input and output patterns are reasonably sparse.
For instance , in a square net with the same number n of input and out
put units and the same number m of acti ve elements in each, if
n = 1000 and m = 10, we find that we can store about 7,000 associa
tions instead of the 1,000 we could store using local representation over
the input units.

Another scheme to compare to the Willshaw scheme would be one
that encodes each pattern to be learned with a single hidden unit
between the input and output layers. Obviously a net that behaved per
fectly in performing r associations between mj active input elements
and ma active output units could be handcrafted using r hidden units,
each having m, input connections and ma output connections. Such a
network can be economical once it is wired up exactly right: It only
needs r (m;+mo) connections. However, there are two points to note.
First, it is not obvious how to provide enough hardware in advance to
handle an arbitrary r patterns of m, active input units and mo active
output units. The number of such patterns possible is approximately

(n, mil m, !)(no mol mo 1) , and if we had to provide a unit in a,dvance for
each of these our hardware cost would get out of hand very fast.
Second, the economy of the scheme is not due to the use of local
representation, but to the use of hidden units. In many cases even
more economical representation can be achieved with coarse-coded hid
den units (see Chapter 3 and Kanerva, 1984).

Randomly Connected Nets

Returning to the standard Wilishaw net, there are several minor diffi
culties with Willshaw 's scheme. First, i t assumes that each input unit
sends one and only one connection to each output unit. In a neural
network, we might aSSCDP¥r_diMHI�rMllit sends out a randomly

466 FORMAL ANALYSES

distributed array of connections to the set of output units without any
guarantee that each output unit actually receives a connection. Second,
the analysis depends on a rather strict and sharp threshold for output
unit activation. In a random net rather than a fully connected net, we
could not actually guarantee that a given output unit would in fact
receive mj inputs� and in realistic nets, we would expect there to be
some inherent variability in the activations of the units. Thus, we
would not be able to guarantee that all correct units would exceed the
sharp threshold, nor that all incorrect units would fal l below it.

However, it turns out that we can reformulate the problem just
slightly and get a handle on networks that have these properties.
Assume that we have a square network of n input and n output units
and that we wish to store associations between m active input units and
m active output units. Suppose each input unit has f output connec
tions which fal l where they may among the n output units so that the
output units have an average of f inputs each. Note again that the
connections are randomly distributed without restriction so that there is
no guarantee that input unit i projects to output unit j.

To study the performance of this net, imagine storing some number
, of patterns using the Willshaw learning scheme. During testing, we
will examine the number of active inputs each output unit that should
be turned on will receive and the number of active inputs each unit
that should not be turned on will receive, and we will then calculate the
signal-detection measure of sensitivity d' (Green & Swets, 1966) as an
index of the ability of inputs reaching each output unit to distinguish
between units that should be on and units that should not be on. Since
d' is independent of the threshold, this measure allows us to bypass the
question of the threshold itself.

Let us first consider what happens in our random network as we train
it with pai rs of patterns using Willshaw's scheme. Pick an arbitrary
connection in our net between an arbitrary input unit and an arbitrary
output unit. Now, consider learning an arbitrary pattern. The probabi l
ity that a particular input unit will be on is m/ n . Similarly, the proba
bility that a particular output unit will be on is m/ n. The probability
that the units joined by the particular connection we are considering
will be one of the ones turned on in learning a particular pattern, then,
is m2/ n2 just as before. The rest of the earlier analysis still applies, and
we get

This is exactly the same value that we had before in the original
Willshaw model, and it is independent of f, the number of connections

Copyrighted Material

12. RESOURCE REQUIREMENTS 467

each unit makes. This factor wil l become important soon , but i t does
not affect the probability that a particular connection wil l be on after
learning r patterns.

Now consider what happens during the testing of a particular learned
association. We activate the correct m input units and examine the
mean number of quanta of activation that each output unit that should
be on wi l l receive. The m active input units each have f outputs, so
there are mf total " active" connections. A particular one of these con
nections reaches a particular output unit with probability lin , since
each connection is assumed to fall at random among the n output uni ts.
Thus, the average number of active connections each output unit
receives wil l simply be mf In. For output units that should be on, each
of these connections will have been turned on during learning, so
mfln is the average number of quanta that unit will receive. Assum
ing that n is reasonably large, the distribution of this quantity is
approximately Poisson, so its variance is also given by mfl n .

Units that should not be on also recei ve a n arbitrary connection from
an act ive input unit with probability lin , but each such connection is
only on with probability Pon' Thus, the average number of quanta such
units receive is (mf In)Pon' This quantity is also approximately Pois
son , so i ts variance is also equal to its mean.

Our measure of sensitivi ty, d', is the difference between these means
divided by the square root of the average of the variances. That is,

d' = mf I n (I - Pon)

J(mfln)(l + Pon)/2

Simplifying, this becomes

, ..Jm1Tii 1 - Pon
d = mfln

JO + Pon)/ 2

We can get bounds on the true value of d' by noting that the denomi
nator above cannot be greater than 1 or l ess than .Jiii . The largest
value of the denominator sets a lower bound on d', so we find that

d' � .Jmf/n (t - Pon)'

Substituting for 1 - Pon, we obtain

d' � .J mf / n [1 - :: r. (3)

Copyrighted Material

468 FORMAL ANALYSES

Taking logs of both sides, invoking the logO - X) = -x approxima
tion, and solving for" we obtain

, �.5 ;:[log(m//n)- 2 10g(d'») .

One of the first things to note from this expression is its similarity to
the expression we had for the case of Willshaw's fully connected net.
In particular, if we let / = n, so that each unit sends an average of one
connection to reach another unit, we get

, � .5 ;: [log(m) - 210g(d')] .
(4)

The expression in brackets on the right expresses the fact that the capa
city of the net goes down as the sensitivity we want to achieve goes up
and captures the fact that there is a slight benefit as we increase m,
independent of its effect on the ratio of total connections to connec
tions activated per association. This is due to the fact that the distribu
tions of activations of correct and spurious units pull apart as m gets
larger. These are relatively small factors for moderate values of m and
d'. More important, as before, is the ratio of the number of connec
tions (n2) relative to the average number of connections each pattern
takes up (m2).

Effects of Limited Fan-Out

A new result emerges when we consider other possible values for /:
Equation 3 indicates that d' is directly proportional to the square root of
/. Thus, we can achieve any degree of fidelity we require by increasing
/ though returns diminish as / gets bigger and bigger. Alternatively,
the performance of our network will degrade gracefully as fan-out is
reduced.

We can also see that increases in n are no longer uniformly benefi
cial. The term log (m/ / n) decreases a n increases; we can no longer
increase the capacity indefinitely simply by increasing n.

Figure 2 indicates a discovery of Mitchison (personal communica
tion, 1984) concerning the capacity, of a network as a function of n
for several values of m and /, with d' = 5. Capacity depends roughly
on n2/m2 and is relatively insensitive to / as long as .Jm/!n » d'.
However, as n increases we reach a point where .Jm/!n approaches d';

Copyrighted Material

12. RESOURCE REQUIREMENTS 469

B.O

5.0
� '0 4.0
C
a. 3.0 C

(.)
C» 2.0
0 -l

1.0

0.0

-1.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

log number of Units

FIGURE 2. Effects of limited fan-out in a randomly connected associative net as a func
tion of the log of n, the number of input and output units; for different values of m, the
number of active units in each input and output pauern, indicated below each pair of
curves. The upper member of each pair of curves is for fan-out of 10,000; the lower
member is for fan-out of 1,000. In all cases, the y-axis reflects the Jog of the maximum
number of paUerns that can be stored while maintaining a d' of 5. Calculations are based
on Equation 2 (Equation J gives misleading results for .Jm//n near d').

here capacity levels off and further increases in n result in no further
increase in sensitivity. The maximal capacity achievable by increasing
n is invariant, regardless of the value of m , and depends only on d I and
J. Thus, if we were to pick a fixed value of d', we would find that the
maximum number of patterns we could store would be strictly limited
by J.

Biological limits on storage capacity oj neural nets. With these ana
lyses in mind, we can now consider what limits biological hardware
might place on the storage capacity of a neural net. Of course , we must
be clear on the fact that we are considering a very restricted class of
distributed models and there is no guarantee that our resul ts will gen
eralize. Nevertheless, it is reasonably interesting to consider what it
would take to store a large body of information, say, a million different
pairs of patterns, with each pattern consisting of a 1,000 active input
units and 1,000 active output units.

To be on the safe side, let's adopt a d I of 5. With this value, if the
units have an unbiased threshold, the network will miss less than 1 % of

Copyrighted Material

470 FORMAL ANALYSES

the units that should be on and false alarm to less than 1 % of the units
that should be off. 1

How big would a net have to be to meet these specifications?
Assuming a fully connected net , and consult ing Equation 4, we find
that we need to set n equal to a value near about 106 to get r large
enough.

This number of units is not a serious problem since estimates of the
number of units in the brain generally range upward from 1010 (see
Chapter 20). However, individual units are not general ly assumed to
have enough connections for this scheme to work as stated. If there
are 1,000 to 10,000 connections per unit , as suggested in Chapter 20,
we are off by two to three orders of magnitude in the number of con
nections per unit .

Given this limitation on fan-out, we had better consult Figure 2.
The figure indicates that the maximum capacity of a net with a fan-out
of 1,000 and a d' of 5 is only about 150 patterns. With / - 10,000 we
get up to a capacity of about 15,000 patterns, but we are still well short
of the mark. It seems, then, that the fan-out of neurons drastically
l imits the capacity of a distributed network.

A simple method for overcoming the fan-out limitation. But all is
not completely lost. It turns out that i t is a relatively simple matter to
overcome the fan-out l imitation. The trick is simply to use multiple
layers of units. Let each input unit activate a set of what we might call
dispersion units, and let each output unit receive i nput from a set of col
lection uni ts. Let the / outgoing connections of each of the dispersion
units be randomly distributed among the "dendri tes" of the collection
uni ts. A miniature version of this scheme is i l lustrated in Figure 3.
Note that it is assumed that each dispersion unit is driven by a sin gle
input unit , and each collection unit projects to a Single output unit.
Collection units are assumed to be perfectly l inear so that the net input
to each output unit is just the sum of the net inputs to the collector
uni ts that project to it. Assuming each input unit and each dispersion
unit has a fan-out of /, the effective fan-out of the input and disper
sion layers together becomes /2. Simi larly, the set of collection units
feeding into each output unit col lect an average of /2 connections. To
construct an associator of 1 mil l ion input units by 1 mill ion output
units assuming each unit has a fanout of 1,000, we will need 1 bill ion
dispersion units and 1 bi l l ion collection units. The number of connec
tions between the dispersion units and the collection units would be on
the order of 1012, or 1 tr i l lion connections.

I It should be pointed out that any intrinsic noise in the units would reduce the actual
observed sensitivity.

Copyrighted Material

12. RESOURCE REQUIREMENTS 471

FIGURE 3. A diagram of a multilayer network consisting of an input layer, a dispersion

layer, a collection layer, and an output layer. The network serves to square the effective
fan-out of each input unit, relative to the simple two-layer case.

The network would require about 20% of human cortex, based on
the estimate that there are lOs neurons under each square millimeter of
the brain and that there are about lOS square millimeters of cortical sur
face. This might be a little tight, but if the fan-out were 1 0,000, the
network would fit handily. In that case, it would only require about 2
percent of the 1 010 units.

There are, of course, a lot of reasons to doubt that these figures
represent anything more than a first-order estimate of the capacity of
real associative networks . There are several oversimplifications, includ
ing for example the assumption that the dispersion units are each
driven by a single connection. We must also note that we have
assumed a two-layer net along with an extremely simple learning rule.
The intermediate layers postulated here merely serve to provide a way
of overcoming the fan-out limits of individual units. However, as was
pointed out in Chapters 7 and 8, a multilayer net can often learn to
construct its own coding schemes that are much more efficient than the
random coding schemes used here. Even simple two-layer nets can
profit if there are somedcf���}bed M1

t�?ra
fetwork and if they use a

472 FORMAL ANALYSES

sensible learning rule, as shown in Chapter 18. Thus random nets like
the ones that have been analyzed in this section probably represent a
lower limit on efficiency that we can use as a benchmark against which
to measure "smarter" PDP mechanisms.

Effects of Degradation and the Benefits of Redundancy

One virtue of distributed models is their ability to handle degrada
tion, either of the input pattern or of the network itself. The d'
analysis allows us to tell a very simple story about the effects of degra
dation. In this section I will just consider the effects of degradation by
removal, either of a random fraction of the pattern or of a random frac
tion of the connections in the network; effects of added noise will be
considered later on. In the case of removal, we can think of it either in
terms of presenting an incomplete pattern or actually destroying some
of the input units so that parts of the pattern are simply no longer
represented. Consider the case of a network that has already been
trained with some number of patterns so that Pan can be treated as a
constant. Then we can write the equation relating d' to m, f, and n as

d' � k.Jmf!n.

Now, suppose that during testing we turn on only some proportion PI
of the m units representing a pattern. The m in the above equation
becomes mpI, so we see that the sensitivity of the network as indexed
by d' falls off as the square root of the fraction of the probe that is
presented. Similarly. suppose some of the connections leading out of
each unit are destroyed. leaving a random intact proportion Pi of the
mf active connections. Again. the sensitivity of the network wi l l be
proportional to the square root of the number of remaining connec
tions. Thus, performance degrades gracefully under both kinds of
damage.

Another frequently noted virtue of distributed memories is the
redundancy they tend naturally to provide. The ability of simple distri
buted memories to cope with degraded input patterns is really just a
matter of their redundancy, as Willshaw (1981) pointed out. For. if a
network is fully loaded, in the sense that it can hold no more associa
tions and stil l meet some predetermined standard of accuracy with com
plete patterns, it will not be able to meet that same criterion with degra
dation. The only way to guard against this problem is to load the net
work lightly enough so that the criterion can stil l be met after subject
ing the network or the inputs to the specified degree of degradation.

Copyrighted Material

12. RESOURCE REQUIREMENTS 473

PROGRAMMABLE PATTERN ASSOCIATORS

In this section , I extend the sort of analysis we have performed on
simple associator models to the resource requirements of connection
information distribution (CID) networks of the type discussed in
Chapter 16.

The mechanism shown in Figure 4 is a distributed CID mechanism.
The purpose of this network is to allow connection information stored
in a central associative network to be used to set connections in several
local or programmable networks in the course of processing so that more

Central
Input
Units

Central Output Units�

'- Local Input Units

CA Units

o

FIGURE 4. A connection information distribution (CID) network consisting of two
local, programmable networks; a central, standard network; and a set of connection
activation (CA) units. Each local input unit projects to the corresponding central input
unit, and each CA unit projects to the corresponding connection in both local networks.

Central output units turn on CA units relevan t to processing the patterns they program
the local modules to process. �MlWe'ri8# are a few examples of each type.

474 FORMAL ANALYSES

than one input pattern can be processed at one time. The mechanism
works as follows: One or more patterns to be processed are presented
as inputs, with each pattern going to the input units in a different pro
grammable network. The input pattern to each local net is also
transmitted to the input units of the central associative network. When
more than one pattern is presented at a time, the input to the central
network is just the pattern that results from superimposing all of the
input patterns. This pattern, via the connections in the central associa
tive network, causes a pattern of activation over the central output
units. The central output pattern, of course, is a composite representa
tion of al l of the input patterns. It is not itself the desired output of
the system, but is the pattern that serves as the basis for programming
(or turning on connections) in the local, programmable networks. The
local networks are programmed via a set of units cal led the connection
activation (CA) units. The CA uni ts act essentially as switches that
turn on connections in the programmable networks. In the version of
the model we will start with, each CA unit projects to the one specific
connection it corresponds to in each programmable network, so there
are as many CA units as there are connections in a single programma
ble net. In the figure, the CA units are laid out so that the location of
each one corresponds to the location of the connection it commands in
each of the programmable networks .

To program the local networks, then, central output units activate the
CA units corresponding to the connections needed to process the pat
terns represented on the central output units . The CA units turn on
the corresponding connections. This does not mean that the CA units
actual ly cause activation to pass to the local output units. Rather, they
simply enable connections in the programmable nets. Each active local
input unit sends a quantum of activation to a given local output unit if
the connection between them is turned on.

The question we will be concerned with first is the number of CA
units required to make the mechanism work properly. In a later sec
tion, we wilI consider the effect of processing multiple items simultane
ously on the resource requirements of the central network.

Connection Activation Unit Requirements

Consider a CID mechanism containing programmable networks of n;
by no units in which we wish to be able to associate each of s different
output patterns with each of s different input patterns arising at the
same time in different local networks. Input and output patterns con
sist of rn; by rno active units, respectively. Fol lowing the assumptions

Copyrighted Material

12. RESOURCE REQUIREMENTS 475

for Willshaw nets, we assume binary units and connections, and we
assume that output units are turned on only if they receive m quanta of
activation.

Now, let us consider how many CA units are needed to implement
this mechanism. For now we bypass the bottom-up activation of CA
units and assume instead that we know in advance which connections
need to be turned on. If each local network must be as complex as a
standard network capable of processing r different patterns, we are in
serious trouble. In the previous analysis of Willshaw networks, we
found that the number of connections we needed to process r associa
tions of m by m active units was

It looks as though the number of connections required in each local
network grows linearly with the number of known patterns times the
content of each. If we had one CA unit for each programmable con
nection, a programmable version of our square I-million-pattern associ
ator would require 1012 CA units, a figure which is one or two orders of
magnitude larger than conventional estimates of the number of units in
the brain. Just putting the matter in terms of the cost we must bear to
use programmable connections, it appears that we need n 2 CA units
just to specify the connections needed for a standard net that could do
the same work with just the connections between n input and n output
units. 2

However, things are not nearly as bad as this argument suggests.
The computation I just gave misses the very important fact that it is
generally not necessary to pinpoint only those connections that are
relevant to a particular association. We can do very well if we allow
each CA unit to activate a whole cohort of connections, as long as (a)
we activate all the connections that we need to process any particular
pattern of interest, and (b) we do not activate so many that we give rise
to an inordinate number of spurious activations of output units.

The idea of using one CA unit for a whole cohort of programmable
connections is a kind of coarse coding. In this case, we will see that we
can reap a considerable benefit from coarse coding, compared to using
one CA unit per connection. A simple illustration of the idea is shown
in Figure 5. The figure illustrates CA units projecting to a single one

2 Many readers will observe that the CA un its are not str ictly necessary. However, the
specificity of their connections to connect ions in local networks is an issue whether CA
units are used as intermediaries or not. Thus, even if the CA un its were eliminated, it
would not change the relevance of the following resu l ts . In a later section , the CA units
and central output units will be collapsed into one set of units; in that case, this analysis
will apply directly to the numI>edJfYllf}hlWl¥'lf.Mt�pe required.

476 FORMAL ANALYSES

o o o o

o

o

FIGURE 5. A programmable network with 8 input units and 8 output units and 64 pro
grammable connections. Each of the 16 connection activation units is assumed to project
to a random set of 4 programmable connections. These connections are only drawn in
for two of the CA units. The sets of connections are chosen without replacement so that
each connection is programmed by one and only one CA unit. Whenever a CA unit is
on it turns on all of the connections it projects to.

of two programmable networks. Note that a given CA unit must
activate the same connections in each programmable net when there is
more than one.

One Pattern at a Time

To see how much this scheme can buy us, I will start by considering
the case in which we want to program some local nets to process a sin
gle pattern. We ask, how small a number n CQ of CA units can we ge�

Copyrighted Material

12. RESOURCE REQUIREMENTS 477

by with, assuming that each one activates a distinct, randomly selected
set of ni nol nco connections?

First of all, the number of CA units that must be activated may have
to be as large as mi mo, in case each of the different connections
required to process the pattern is a member of a distinct cohort.
Second, for comparability to our analysis of the standard network, we
want the total fraction of connections turned on to allow no more than
an average of 1 output unit to be spuriously activated. As before, this
constraint is represented by

[1 I �i Pon �;; •

As long as mi � log2n;, .5 will be less than the right-hand side of the
expression, so we will be safe if we keep Pon less than or equal to .5.
Since we may have to activate mimo CA units to activate all the right
connections and since we do not want to activate more than half of the
connections in all, we conclude that

From this result we discover that the number of CA units required
does not depend at all on the number of connections in each program
mable network. Nor in fact does it depend on the number of different
known patterns. The number of known patterns does of course influ
ence the complexity of the central network, but it does not affect the
number of CA units. The number of CA units depends on mimo, the
number of connections that need to be turned on per pattern. Obvi
ously, this places a premium on the sparseness of the patterns. Regard
less of this , we are much better off than before.

Several Patterns at a Time

So far we have considered the case in which only one item is
presented for processing at a time. However, the whole point of the
connection information distribution scheme is that it permits simultane
ous processing of several different patterns. There is, however, a cost
associated with simultaneous processing, since for each pattern we need
to turn on all the connections needed to process it. In this situation,
we will need to increase the total number of CA units to increase the
specificity of the set of connections each association requires if we are
to keep the total fractiWSP9f;g1W�a�hat have been turned on

478 FORMAL ANALYSES

below .5. Formally, assume that we know which s patterns we want to
process. Each one will need to turn on its own set -of mimo CA units
out of the total number nca of CA units. The proportion of connec
tions turned on will then be

I m, mo]S p, =1- 1- --on nca

This formula is, of course, the same as the one we saw before for the
number of connections activated in the standard net with s, the
number of different patterns to be processed simultaneously, replacing
r, the number of patterns stored in the memory, and with nca, the
number of connection activation units, replacing nino, the total number
of connections. Using Pon = .5 and taking the log of both sides we get

-.69 = slog 1 1 _ m�:o].
Invoking the 10g (1- x) = -x approximation, we obtain

nca � 1.45sm 2.

This formula underestimates nca slightly for s < 3. With this caveat,
the number of CA units required is roughly proportional to the number
of patterns to be processed at one time, times the number of connec
tions needed to process each pattern.

Overlapping the Programmable Networks

In Chapter 16, the CID scheme we have been considering thus far
was generalized to the case where the programmable networks over
lapped with each other. This allowed strings of letters starting in any of
a large number of input locations to correctly activate units for the
corresponding word at the appropriate location at the next higher level.
Here I will consider a more general overlapping scheme using distri
buted representations in the overlapping local networks. A set of three
overlapping local networks is illustrated in Figure 6. In this scheme,
both the input and the output units can play different roles depending
on the alignment of the input pattern with the input units. In conse
quence, some of the connections also play more than one role. These
connections are assumed to be programmable by a number of different
CA units, one for each of the connection's different roles. Obviously,
this will tend to increase the probability that a connection wil l be turned

Copyrighted Material

12. RESOURCE REQUIREMENTS 479

[J .J J Y .J Y .J .J
� y y y y y .J Y ()
LY y y y y .J .J Y
lY � pr P' y � � �
y 15 � � � � .J � LY y ,;J .J
Y 15 ;Y L.Y J ,;J y ,Y .J J J .J
Y � Y lY y y y ;J y y y y
5 Y Y Y Y Y J Y Y J J Y

Y ;J ;J ;J � y y y J Y Y Y {)

Y J J Y Y J Y Y Y Y Y J
,Y rY)' ,Y lY lY L.Y � ,;J ,;J � ,;J {)
y L.Y Y ;J LY [Y Y Y J Y LY Y

Y Y LY y lY lY y lY ()
-0 Y Y LY y lY lY y l5

y Y l5 J � ;J l5 �
y 15 Y y y ;J y y

0 0000000 00 0
FIGURE 6. Three overlapping programmable networks of 8 x 8 units each. The net

works overlap every four units, so the input and output units can participate in two dif

ferent, partially overlapping networks.

on, and therefore will require a further revision of our estimate of the
number of CA units required.

Unfortunately, an exact mathematical analysis is a bit tricky due to
the fact that different junctions have different numbers of opportunities
to be turned on. In addition, input patterns in adjacent locations will
tend to cross-activate each other's output units. If the patterns to be
processed are wel l separated, this will not be a problem. Restricting our
attention to the well-separated case, we can get an upper bound on the
cost in CA units of allowing overlapping modules by considering the
case where all of the connections are assumed to play the maximum
number of roles. This number is equivalent to the step size or grain,
g, of the overlap, relat�6pW-;��WifaRfn-IDe pattern as a whole. For

480 FORMAL ANALYSES

example, for four-letter words, if the increments in starting places of
successive overlapping networks were one letter wide, g would be 4.
Assuming that the connections turned on for each slice of a pattern are
independent of those turned on by each other slice, it is easy to show
that the formula for Pan becomes

Pan � 1 - 1 _ _ , _0 ,
[m· m I Sg nco

and the number of CA units required to keep Po" less than .5 is approx
imated by

The cost goes up with the number of patterns to be processed simul
taneously times the grain of the overlap .

Summary of CA Unit Requirements

In summary , the number of CA units required to program a pro
grammable network depends on different variables than the number of
connections required in a standard associator. We can unify the two
analyses by noting that both depend on the number of patterns the net
must be ready to process at any given time. For the standard associa
tor, the number is r, the number of known patterns; for the program
mable net, the number is sg , the number of patterns the net is pro
grammed for times the grain of overlap allowed i n the starting locations
of input patterns.

This analysis greatly increases the plausibility of the CID scheme.
For we find that the " initial investment " in CA units needed to pro
gram a set of networks to process a single association is related to the
content of the association or the number of connections required to
allow each of the active input elements to send a quantum of acti vation
to each of the active output elements. Incorporating a provision for
overlapping networks, we find that the in vestment required for process
ing one association is related to the content of the association times the
grain of the overlap. This cost is far more reasonable than it looked
like it might be at first, and, most importantly, it does not depend on
the number of patterns known.

An additional important result is that the cost of programming a set
of networks grows with the number of patterns we wish to program for
at one time. This cost seems commensurate with the l inear speedup we
would get by being abtc

o
b�d

h
��CJM�lJ��,1 patterns simultaneously.

1 2. RESOURCE REQUIREMENTS 48 1

The somewhat intangible benefit to be derived from mutual constraint
among the patterns would come over and above the simple l inear
throughput effect. However, this benefit, as we shall see in the next
section, is balanced by the extra cost associated with the possibility that
there might be spurious patterns in the intersection of input elements
of the presented patterns.

The Cost of Simultaneous Access

So far, we have proceeded as though we already knew what patterns
to prepare each local module for. However, the CID mechanism was
intended to allow several inputs to access the central network simul
taneously and thereby program the local networks in the course of pro
cessing. This simultaneous access costs something; in this section we
consider how much . The discussion here is relevant to the general i ssue
of the C:lsts of simultaneous access to a PDP network, as well as to the
specific question of the capacity requirements of CID.

For simpl ici ty I will begin by considering local representations at the
central output level. That is, I wil l assume that each central output unit
represents a different pattern and that it is switched on only when all of
the central input units corresponding to its pattern are active.

Now, recall that a central input unit is switched on if the correspond
ing unit is active in any of the programmable nets . Thus, what the cen
tral output units actually see is the pattern of activation that results
from the superimposition of the input patterns presented for simultane
ous processing . The effect of this is that there is some possibil ity that
ghosts of patterns not actual ly presented wil l show up in the result.
This is just the kind of si tuation that is described in Chapter 16 when
similar words such as SAND and LANE are presented to each of two
programmable networks for simul taneous processing. When the acti va
tion patterns of the two words are superimposed, the central word units
for LAND and SANE get turned on just as strongly as the central word
units for SAND and LANE. Thus, the programmable networks end up
being programmed to process any one of these four words , rather than
just any one of the two actually presented.

Is there anything that can be done to control the number of different
patterns that show up when several patterns are superimposed? In fact,
there/is. If we increase the number of input units in each programma
ble network or if we reduce the number of input units active in each
pattern, we will reduce the possibility of spurious patterns showing up
in the superposition.

Copyrighted Material

482 FORMAL ANALYSES

To get a quantitative grip on this matter, assume that the i nput pat
terns are random selections of m out of the n input units as we have
been assuming throughout . The probabi l i ty that a spurious pattern is
present in the superposition of s patterns can now be easily calculated .
First , we calculate the probabi l i ty that a randomly selected unit wil l be
on; this is just

The probabil ity that a particular spurious pattern is ful ly represented in
the set of units activated by the s patterns is just this number to the
power m , and the average number of such patterns out of r known pat
terns is just this probabi l i ty times r - s . Thus, the average number of
spurious patterns present in the superposition is

Assuming r » s , we can simplify by replacing r - s with r. If we
take acceptable performance to be an average of one or fewer spurious
patterns present and therefore of spurious CP units active, we get

Rearranging and taking logs ,

log [1 - (!) ! 1 = s log (1 - mi n) .

Several things are apparent from this equation . First , the number of
patterns that can be processed at one time increases wi th the number of
input units. The effect is approximately l inear as long as m/ n � . 1 .
Second , though i t i s not quite as straightforward, s tends to increase
with a decrease in m . For example, suppose n = 5 ,000 and
r = 1 0,000. In this case , when m drops from 1 ,000 to 500, s increases
from 2 1 to about 37 ; if m drops to 1 00, s goes up to about 1 20. Third,
for a fixed m and n , especially for large m , we can make very large
changes in r with only minimal impact on s . Thus, if we have, say,
n = 10,000 and m = 1 ,000 with r = 1 06 , we get s = 43; if we reduce r
to lOS , we only get an increase of 2 i n s , to 45 .

I f we allow overlapping local networks , and we assume that the pat
terns are random with independent subparts , we need only replace s in
the preceeding equation with sg . While this is a fai rly steep cost , i t is
sti l l the case that reasonably moderate values of n (about 2. 5 x lOS)
would be sufficient to process 1 0 out of 1 06 known patterns of size
1 ,000 simultaneously with a grain of 1 00.

Copyrighted Material

1 2 . RESOURCE REQUIREMENTS 483

Simultaneous Access to Distributed Representations

The results just described, i t must be remembered, depend on the
use of local representations at the central output level . What happens if
we consider s imultaneously accessing distributed representations
instead ? Obviously this question remains relevant to general questions
about s imultaneous access, as wel l as to the situat ion that would arise
using distributed central output units in CID. Furthermore, we should
note that the central output units in Figure 4 simply mediate a mapping
from one distributed representation - on the central input units - to
another-on the CA units . The present analysis describes what would
happen if we s imply collapsed these two sets of units into one, activat
ing the connect ions di rectly from the central output units.

We consider a case exactly like the one we were just considering,
except that now the output representat ion is not a single unit per pat
tern , but mo act ive units on out of no central output units . We con
sider two somewhat separate questions . First , i f we superimpose
several input patterns, what effect does this have on

d '
at the central

output level , relat ive to the case where only a single pattern is shown ?
Second, what is the probabi l i ty that ghosts of whole patterns not
presented will show up in the output of the central network ?

To begin our analysis of the fi rst question , recal l from Equation 2 the
expression for d ' in random nets with full fan-out (n = j) :

d ' = .rm; 1 - Pon

I .J (1 + Pon)/ 2 .

We first ask, what is the effect on d' of turning on spurious input units
with probabi l ity p , i n addit ion to the m units representing a particular
pattern to be processed? The number M; of input units that wi l l then
be on is

M; == mj + (nj - mj)p .

Consider first , output units that should not be on . These will receive
M; active i nputs, and each of these connections wi l l be on with proba
bil ity Pon . The output units that should be on will receive mj i nputs on
the input l ines whose connecti ons were turned on in learning the
presented pattern plus (nj - mj)p inputs to connections that wi l l have
been turned on in learning other patterns wi th probabi l i ty Pon ' The
numerator for our revised expression wi l l then simply reduce to its old
value, with the (n; - mj)p term cancel ing out. However, there will be
an increase in variance, and hence a decrease in

d '. The denominator
is as before the square r.oot of the average of the variances of the two

Copyrighted Material

484 FORMAL ANALYSES

means, which are , also as before , equal to the means. The expression
for d ' therefore becomes

d' = m
(1 - Pan)

J (m; + m ; pon + 2 (n; - m;)p 1/ 2

We get a simpler expression i f we approximate by replacing Pan in the
denominator wi th its maximum value of 1 ; this gives us a sl ight overes
timate of the variance and therefore a sl ight underestimate of d ':

d ' �
(1 - Pan)

? m .j m; + (n; - m;)p .

The variance goes up with the mean number of spuriously activated
units, and d' goes down with the effect of this on the square root of the
variance .

To determine the effect of presenting several patterns on d ', we note
that from the point of view of the units that belong to one of the pat
terns, all the units activated by the other patterns are spurious. The
number of such units is

1 - (1 - m;/ ny - I

Inserting this for p in the previous equation gives

d ' = m
(1 - Pan)

.Jm; + (n; - m;) [I - (1- m;/ny- I]

Using this equation we can examine the effects o f increasing s o n the
value of d '. Not too surprisingly , d ' does go down as s goes up, but
the effect is relat ively benign . For example, with n = 106 , r = 106 ,
m = 1 ,000, and s = 1 , d ' is about 1 1 .6 . It drops to half that value at
s = 4, and drops much more gradual ly thereafter. With n = 2 x 1 06

units and the same values of r and m , we can get an acceptable value
of d' (� 6) with s as high as 1 6.

The final issue we will consider is the possibi l i ty that new spurious
output patterns have been introduced in the superposition of the s out
put patterns simultaneously activated in processing the s mput patterns.
For simplicity, we will just consider the probabi l i ty of a " ghost ," given
that all and only the correct ma units are active for each of the s pat
terns. The analysis is entirely the same as the one we gave before for
the probabi l i ty of ghosts showing up in the input patterns. We get an
average of one ghost when

1 � r [1 - (1 - m/ n)S 1m •

Copyrighted Material

1 2 . RESOURCE REQUIREMENTS 485

As before , the number of simultaneous patterns we can tolerate
increases with n and decreases with m and is relatively insensi tive to
the value of r .

In general , i t appears that the probabi l ity of ghosts occurring can be
kept small with sufficiently large dedication of resources, but these
trade off approximately l inearly with s . With fixed n , we must simply
make the patterns sparser or tolerate some loss of sensitivity.

Discussion

This analysis of the resource requirements of networks l ike the eIn
model has discovered a number of basic results. In essence, the picture
is really a very simple one. The resource requi rements of eIn depend
on the number of programmable networks one wants to program for at
once. The number of connections needed in each local network
depends on the number of patterns to be programmed for and i s
independent of r . the number of known patterns. In the central net
work, the number of units required to keep spurious activations under
control grows wi th s , as does the number of units required to keep
ghosts from emerging in the input and output patterns. It is worth
noting, also, that the probabi l i ty of ghosts incr eas es as we increase m.

The fact that the resource requi rements of the local networks are
independent of the number of patterns known is obviously important .
Relative to the central network , it means that the local networks are
very cheap . The number of distinct inputs that are needed to program
them is quite reasonable, and, as I wi l l explain , we can even get by with
far fewer units in the local networks than we need at the central level .

On the other hand, the results concern ing the costs of simul taneous
access to the central network are much less encouraging for the eIn
scheme. Using local or distributed representat ions in the central
module, the unit requirements grow with the product of s and r - a
very expensi ve proposit ion since the number of central connections wi l l
then grow as sr2 .

However, there are several important further observations. One is
that , a t fixed numbers of units and patterns known , the degradation of
sensitivity as a function of s is rather gradual . And, given a l ightly
loaded network, one can take s up to reasonable values wi thout catas
trophe . Simultaneous access by mult iple patterns is very much l ike
degradation: a network can handle it without a noticeable decrement of
function if it is l ightly loaded . A second observation concerns the l im
its of coarse coding. Fot[�l1teYw!5le9jaF of m essential ly amounts

486 FORMAL ANALYSES

to a question of how coarse the code is: Large m corresponds to very
coarse coding, and small m corresponds to very fine coding. As we saw
in Chapter 3 , the abil ity to represent several patterns at a time goes
down as the coding gets coarser. For simultaneous processing we need
sparse patterns, with each unit serving as a rather sharply tuned con
junctive detector.

The final observation is that large costs are associated wi th simul
taneous access to the central network. This fact has lead me to the
view that it is probably most reasonable to imagine that we must prob
ably restrict simultaneous access, except perhaps in the case of smal l ,
compact and well-differentiated subpatterns l ike letters. I incorporated
this idea of restricted access in the programmable blackboard model of
reading by assuming that we program successive parts of the program
mable blackboard sequentially, using only the contents of the spotlight
of attention to access the central network; but that the local networks
so programmed continue to process and hold patterns of activation and
to allow those patterns to interact with one and other after the spotl ight
of attention has moved on. In this way we get the best of both worlds:
sequential access to central knowledge, combined with interactive paral
lel processing of several stimuli in the programmable nets. Another
point is that it may be a good idea to dissociate the inputs to the local
networks and the inputs to the central networks . Throughout this
chapter and Chapter 16 , I have assumed that the units in each local net
work would be isomorphic to units in the central network . However ,
there is no reason for them to be. The central network needs much
higher " resolution " (n proportional to r) than the local networks (n
proportional to s) . Thus, the units in the programmable modules need
only provide a few primitive clues to which of the s patterns are to be
represented in their outputs , while the units i n the central network
would require a much higher-resolution representation.

CONCLUSION

This chapter has indicated how Willshaw's fruitful analysis of simple
pattern associator models can be extended in several di rections. These
extensions have lead to several interesting observations , particularly
into the effects of l imited connect ivi ty (Mitchison, personal communi
cation , 1 984) and into the capacity requirements of programmable net
works. A large number of issues remain to be explored. I hope that
this discussion and elaboration of Willshaw's analysis will aid in this
continuing exploration .

Copyrighted Material

1 2 . RESOURCE REQUIREMENTS 487

ACKNOWLEDGMENTS

This work was supported by Contract N-000 1 4-82-C-0374 , NR 667-
483 with the Personnel and Train ing Research Programs of the Office
of Naval Research , by a grant from the System Development Founda
tion to the Inst i tute for Cogni t ive Science at UCSD, and by an NIMH
Research Scientist Career Development Award (MH-00385) . This
chapter was developed i n response to a number of questions raised by
Geoff Hinton and Scott Fahlman about the resource requi rements of
programmable nets . I thank Dave Rumelhart for several useful discus
sions and for encouraging me to pursue the i ssues descri bed here in .
The material descri bed i n the section enti tled " Randomly Connected
Nets " was developed in col laborat ion wi th Dave , and the application of
the d ' analysis to the problem of s imultaneous access to a distr ibuted
memory network was Dave's suggest ion.

Copyrighted Material

CHAPTER 13

P3: A Parallel Network Simulating System

D. ZIPSER and D. RABIN

Research on parallel distributed processing is to a large extent depen
dent upon the use of computer simulation, and a good deal of the
researcher's time is spent writing programs for this purpose. Virtually
all the PDP systems described in this book require special-purpose com
puter programs to emulate the networks under study, In writing pro
grams of this type, it is usually found that the basic algorithms of the
PDP network are easy to program but that these rather simple "core"
programs are of little value unless they are embedded in a system that
lets the researcher observe and interact with their functions. These
user interface programs are generally tedious and very time consuming
to write. What is more, when they are directed toward one particular
system they can be quite inflexible, making it difficult to easily modify
the PDP network being studied. Also, because of the time involved,
particularly for interactive graphics programs, the researcher often
makes do with very limited facilities for analyzing the performance of
the network. In this chapter we will describe a general-purpose parallel
system simulator called P3. It was developed with PDP research explic
itly in mind and its major goal is to facilitate simulation by providing
both the tools for network description and a powerful user interface
that can be used with any network described using the tools. There are
many problems to be faced and tradeoffs to be made in designing such
a system but in the process of doing this we feel that not only has a
useful system been developed, but also that we have learned a great
deal about the whole problem of PDP simulations.

Copyrighted Material

13. P3 SYSTEM 489

In P3 networks, each computing element, called a unit, contains a
computer program that reads inputs from connections and sets outputs
on other connections, possibly also modifying some local state parame
ters. The major components of P3 are:

• The plan language, which describes the collection of units in a
model and specifies the connections between them. This
description is called a "plan."

• The method language, an extension to LISP, which implements
the internal computational behaviors of the units in a model.

• The constructor, which transforms the plan and associated
methods into a computer program and, when run, simulates the
network.

• The simulation environment, which provides an interactive
display-oriented facility for observing and testing P3 models.

Input to units described in a P3 plan can come only from other units
in the plan. That is, there is no "outside world" in a P3 plan language
description of a network. This means that at the level of description of
the P3 plan language, the P3 network is closed. Access to the outside
world must occur inside a unit through its method. Methods may
access the world outside the P3 system through any available computer
peripheral. The only thing that methods are not allowed to do is to
reconfigure with the P3 system itself or communicate with other
methods through "underground connections" not mentioned in the P3
plan.

In any simulation, the relationship between real and modeled time is
of key importance. A real unit, such as a neuron, would read inputs
continuously and update its outputs asynchronously, but this cannot be
simulated exactly on a digital computer. Many simulations use a simple
synchronous approximation to real time. However, sometimes this pro
duces unwanted artifacts and a closer approximation of asynchrony is
required. Often, in fact, what the investigator really wants to do is to
experiment with the effect of different kinds of time simulation on the
network under study. Since there is no way for the system designer to
know in advance all the possible ways that the investigator will want to
handle time, some strategy has to be used that allows great flexibility.
The approach taken by P3 is that this flexibility can come through the
methods that can use conditional updating. The P3 system itself is
completely synchronous and updates all units on each cycle. Since
updating a unit involves invoking its method, the question of whether
or not the outputs of �� I"5R!mDe on any P3 cycle can be

490 FORMAL ANALYSES

decided by the method. For example, to model asynchronous updating,
each unit can have an additional input that controls whether or not it is
updated on a cycle. Then the decision as to which units are to be
updated can be given to a control unit that is connected by a separate
line to the update inputs of all the other units. The method program
inside this control unit decides which units in the network will be
updated on each cycle. Note that this approach is very flexible since
small changes in the method program of the control unit can imple
ment a large range of possible update time schemes.

A typical P3 plan might contain a large number of simple neuron-like
units forming the core of the network together with a few special pur
pose units to generate input to the core network and control its func
tion. The master control unit, used above to implement asynchronous
updating, is an example of this kind of special-purpose unit. They can
also be used to sequence simulated experiments and to interpret output
of other units. How all this can be done will become clearer as we
describe the use of P3 in detail. They key point here is that the P3
"style" is to include within the P3 plan all aspects of the simulation
including input to and control of the core network. This approach sim
plifies the problem of constantly having to interfere special-purpose
routines to a general-purpose modeling environment.

It often happens that n�tworks are modular, that is, made up of dis
tinct subnetworks. P3 facilitates the use of modularity by allowing sub
networks to be treated as single processing units. This feature is of par
ticular use when several P3 units are used to simulate a single object
such as a "realistic" neuron. The modular feature also facilitates "top
down" and "structured" definition of the plan even when the underly
ing networks are not particularly modular.

The P3 plan language has an additional feature that is not directly
concerned with describing the functional aspects of a parallel network.
Every unit in a P3 plan has a location in a three-dimensional Euclidean
reference frame call P3 space. This means that every P3 plan not only
describes a network, but it also describes a geometrical structure. Since
the functioning of a P3 network does not depend on its geometrical
structure, it might seem odd to go to all the trouble of describing the
geometry. There are two main reasons for locating P3 units in space.
The first reason is to facilitate visualizing a P3 network while observing
its function during the simulation of a model. The units can be placed
so that they appear at the same relative positions on the computer
display during simulation as they have in the investigator's conceptual
image of the model. The second reason to give each unit a position in
space is to make it possible to specify connections between units implic
itly on the basis of their spatial locations rather than explicitly. This
latter feature is of particular importance when modeling systems in

Copyrighted Material

13. P3 SYSTEM 491

which the connectivity is described in terms of geometrical relations.
This is often the case when dealing with realistic neuronal modeling,
especially of primary sensory processing s tructu res.

The P3 Plan Language

The job of the P3 p lan language is to describe the units and connec
tions that constitute the network being simulated. To do thi s, the
language uses a small but rich set of s ta temen ts that make it possible to
succinctly describe large groups of complex, connected units. The
three fundamental constituents of the plan language are the UNIT
TYPE, UNI T, and CONNECT s ta temen ts . The UNIT TYPE s ta teme nt
name s and describes a kind of unit. The U NIT statement instantiates
and names actual units. This statement can in stantiate either a single
unit or a whole array of units of the same type. The CO N NEC T st ate

ment makes connections. Since the statement can be used inside of
loops , a single connect statement can make an arbitrarily large number
of connection s using the available array features.

A unit in P3 can have any number of input s and outputs together
with any number o f parameters. Before the start of a si mula tion ,

values must be given to all parameters and to a ll output s. Each value is
always a single computer word in length. The interpretation of thi s
word depends on how the methods use it. A s the simulation proceed s,
these initial values are continuously updated. Taken together, the
values of the parameter s and the outputs constitute the state of the sy s
tem at any time during simulation. The major difference between
parameter values and output values is that outputs are a vai lable to
other units in a network through connections, while the value of
parameters can only be read by the unit to which they belong. P3 unit s
can have two classes of parameter s: unit parameters and terminal parame
ters. The unit parameters apply to the whole unit, for example, the
threshold in a linear threshold unit. The terminal parameters are associ
ated with individual inputs or outputs and correspond, for example, to
weights.

An im por tant function of the P3 plan language is to de scribe the con
nections between units. Since units can have multiple inputs and out
puts there has to be some way to name them so tha t the CO N NECT
statements will know which connections to make. These names are
also used within the method programs to read inputs and set outputs.
The basic form of the CONNECT stateme nt is

(CONNEC T < un it-name > OU TPU T < output-name>
TO < unit-re�hlflM1Ie1Jainput-name >)

492 FORMAL ANALYSES

For units with only a few inputs or outputs each input or output can be
given a separate name. When a unit has a large number of inputs or
outputs it is more convenient to group them together in input or output
arrays. The individual items in these arrays are referenced by giving
the array name and a set of subscript values. These arrays can be used
in iterative statements in plans and methods.

An output value can serve as input to any n umber of units, i.e., the
fan-out is arbitrarily large. Each individual input can receive only one
value. This is easy to enforce as long as it is known that just one con
nection is to be made to each input. This works well in many cases but
it often happens that it is very hard or impossible for the programmer
to know exactly how many connections will be made. This is the case,
for example, when connection decisions are being made implicitly by
some computational procedure such as "connection by location" or ran
dom connection. To overcome this, P3 secretly treats each individual
input as an array and automatically adjusts its size to fit the num ber of
inputs. This process is transparent to the programmer which means
that multiple connections can be made freely to a single input. There is
a special iteration statement in the method lang uage to access these
multiple inputs. Each individual input that actually gets generated is
called a TERMI N AL and there are procedures for associating parame
ters with terminals and initializing their values.

The method programs that im plement the internal functionings of
units are written in the form of ordinary computer programs in an
appropriate language. In the current implementation, which runs on
the Symbolics 3600, the language is LISP. In order to allow the
methods to use the values of inputs and parameters in their computa
tions, a set of special access statements is incorporated into this system
and is available to LIS P programs. These statements make it possible
for methods to read and set inputs, out puts, and parameters more or
less as if they are ordinary variables.

In order to illustrate how P3 works, we will describe a model of a
simple competitive learning network of the type described in Chapter S.
The basic network contains two types of units: a pattern generator to
supply stimuli and a cluster of com petitive learners connected to it,
which s pontaneously discover some features of the patterns. Since
learning is spontaneous and does not require a teacher, the functioning
of the network is simple and straightforward. Thr. pattern generators
sequentially produce output patterns that serve as input stimuli to the
cluster units. Each pattern is an activation vector specifying which of
the in puts are active and which are not. Each cluster unit prod uces an
output indicating its res ponse to the current stimulus which is transmit
ted to all other members of the cluster to create a "winner take all" net
work. The cluster unit which wins is the only one that learns and it

Copyrighted Material

13. P3 SYSTEM 493

uses the weight redis tri bution procedure described in the competitive
learning chapter, that is,

aWl} = C I
0 if uni t j loses on stimulus k

g...!!... - gWi} if unit j wins on stimulus k
nk

where Clk is e qual to 1 if in stimulus pattern Sk, element; in the lower
layer is active and zero otherwise , and nk is the number of acti ve ele
ments in patte rn Sk (thus nk = l:Clk)'

i
The first step in creating a P3 plan is to supply the UNI T TYPE

s tatements. The U NIT TYPE statement for the pattern generator is
given below:

(unit type dipole
parameters flag i 1 j 1 i2 j2
outputs (d array i j)
method < update routine code in lisp>)

In this, and all our other examples, words in italics are part o f the P3
plan language while the nonitalicized words are supplied by the user.
The U NIT TYPE statement gi ves the type a name that will be used
throughout the plan. The name for the pattern generator type is
"dipole." There are five parameters that are used internally for pattern
generation . The technicalities of the use of these parameters is
irrelevant here. The U NIT TYPE statement describes the output of the
unit. This ou t put is a two-dimensional array of lines called "d." Th is
array of outputs is the retina on which stimulus patterns are generated
which serves as an input to the competitive learning cluster units. The
"i" and "j" that follow the word array are dummy variables that tell P3
how many dimensions the array has. The actual size of the array is
var iable and is initialized when we instantiate units of the type dipole.
Note that the unit type dipole had no inputs since it is itsel f the source
of pat terns.

The second basic unit type is the competitive learning unit, which in
our plan we call "competitor." The unit type statement for it is given
below:

(unit type competitor
parameters p g flag
inputs (C array i j terminal parameters W)

(i-A)
outputs (o-A)
method < Iis��ffted Material

494 FORMAL ANALYSES

Note that the input array"C" of this unit corresponds exactly in form
to the output array "d" of the dipole unit described previously. This
correspondence will make it possible to make one-to-one connections
between the output of dipole type units and the input of competitor
type units. Also notice that a terminal parameter "W" has been associ
ated with the input array"C." The competitor unit needs an additional
input called "i-A" which will receive information from the outputs of all
the other members of the cluster.

We have described the two unit types we will need. We can now go
ahead and instantiate units of these types. The statement that creates a
pattern generator unit of type dipole is shown below:

(unit stimulus of type dipole
at (@ 000)
outputs (d array (i 0 5) (j 0 5»»

The unit statement names the unit it is creating. This is the name of a
real unit that is actually going to exist in our model and it is the name
that will be referred to when this unit is connected to other units. For
P3 to build such a unit, it has to be told the type. There can be any
number of units of the same type and they can all have different
names. Since every real unit in P3 has a location in P3 space, we must
specify it in the unit statement that instantiates the unit. The at clause
is used for this. The at is followed by a location specifier that simply
evaluates to the x-, y-, and z-coordinates of the unit in P3 space. For
simplicity we locate the pattern generator at the origin of P3 space
which will initially be located at the center of the display window when
we simulate the model. Since we are building a real unit, we have to
give a size to its array of output lines. This is done in the outputs clause
of the UNIT statement. Each subscript specifier consists of a subscript
name and initial value, which in the current implementation must be 0,
and final value, which in this example is 5 for both the "i" and the "j"
subscripts. This statement will generate a 6 x 6 array of output lines on
connector" d."

Now that we have a source of patterns, we need to create a cluster of
units that will receive these patterns. The statement that instantiates
these units is given below:

(unit cluster array (k 0 - cluster-size 1) of type competitor
at (@ (... k (+ cluster-size 4»)(+ cluster-size 10) 0)
initialize (g = 0.05)
inputs (C array (i 0 (- stimulus-size 1)(j 0 (- stimulus-size 1))

In this case, we are not instantiating a single unit but an array of units.
In the competitive learning model, the learning cluster always consists

Copyrighted Material

13. P3 SYSTEM 495

of two or more units, so we want a way to vary the number of units in
a cluster. In the first line of the unit statement we give the name clus
ter to the array and then we indicate the size of the array with a sub
script specifier. The name of this subscript is "k"; its initial value is O.
Its final value is one less than the global constant "cluster-size." The

value of cluster-size, which will occur at various points in the plan, is
set by a statement at the beginning of the P3 plan that determines the
value of global constants. This feature means that we can change the
parameters such as cluster-size globally throughout the plan by only fid
dling with a single value. The upper bound of the stimulus input line
array has also been set with the use of a global constant "stimulus-size"
rather than with an integer as was done previously. Also notice that
the variable "k" is used in an at clause to place each unit of the array at
a different place in P3 space.

Our next task is to connect the units together in the appropr iate
fashion. We have two classes of connections: those that go from the
stimulus generator to the learning cluster and those that interconnect
the units within the learning cluster. Each of these classes of connec
tions has many individual connections within it, but these individual
connections can be specified algorithmically in such a way that only a
few CONNECT statements are needed to generate the entire network.
What is more, the algorithmic specification of these connections makes

it possible to change the size of the cluster or the size of the stimulus
array without altering the CONNECT statements at all. The code
required to connect the stimulus to the learning cluster is given below:

{for (k 0 (+ 1 k})
exit when (> k cluster-size) do
{for (i 0 (+ 1 j)}

exit when (> i stimulus-size) do
{for (j 0 (+ 1 j»

exit when (> j stimulus-size) do
(connect unit stimulus output d i j

to unit (cluster k) input C i j
terminal initialize (W - (si:random-in-range

0.0 (! I 2.0 (expt (+ stimulus-size 1) 2»»»»

There are three nested loops. The first ranges over each member of
the cluster, and the next two range over each dimension of the
stimulus array. Inside these three nested loops is a single CO N NEC T
statement. The CO N NEC T statement has the job of initializing the

value of any terminal parameters. In our model we have a very impor
tant terminal parameter, "W," the weight between a stimulus line and a
cluster unit, which we �byR�il1Matl!n;lt random value which sums

496 FORMAL ANALYSES

to one for the whole input array. This is accomplished by setting the
initial value of "W " with a LISP function that evaluates to the required
quantity. In general, in a P3 plan wherever a number is required, a
function (in our case a LISP function) that evaluates to a number can
replace the number itself. The sum of the random numbers generated
by our simple LISP function is not exactly one, but only averages one.
This is satisfactory for the competitive learning algorithm because it is
self-normalizing and will force the sum to one in the course of learning.

The connections that link the members of a cluster are a bit more
complex. Each member of the cluster must receive input from all
other members except itself. The code for doing this in a completely
general way for clusters of any size is given below:

{for (k 0 (+ 1 k»
exit when (> k cluster-size) do
{for G 0 (+ 1 j»

exit when (= j k) do
(connect unit cluster k output o-A

to unit cI uster j input i-A»
{for G (+ k 1) (+ 1 j»

exit when (> j cluster-size) do
(connect unit cluster k output o-A

to unit cluster j input i-A»)

The idea here is that we first connect each unit to those units whose
subscripts are lower than it and then to each unit whose subscript is
higher than it. This requires two separate loops, each with its own
CONNEC T statement, both nested within an outer loop that ranges
over all units in the cluster. Note that this is a case of making multiple
connections to a single input line. We don't have to know how many
connections there are because within the method there is code that will
examine all connections on this line to decide if the unit has won. This
feature is very useful and can be applied whenever a method needs to
know the value of an input but not its originating unit.

We have now specified all the features of a plan that describes the
basic competitive learning network. Of course, this plan can only be
used to construct a running model if we have available the appropriate
method programs. Since these are ordinary computer programs written
in LISP, we won't analyze them in detail. The code for the methods
used here is given in the appendix of this chapter, which shows a com
plete plan for a simulation of competitive learning. It is worthwhile,
however, to see how the method language accesses the inputs and out
puts of the units about which we have been saying so much in the
development of the plan.

Copyrighted Material

13. P3 SYSTEM 497

The only difference between the arguments to a P3 method and the
arguments to a normal LISP function is that the P3 arguments are
accessed by special access functions. For example, to get the value of a
parameter, the following form is used:

(read-un it-parameter flag)

This form returns the current value of flag. To read an input from an
array of input lines the following form can be used:

(read-input (C i j»

In this case the value of "i" and "j" must be bound at the point in the
program where an expression using them occurs. There are
corresponding forms for reading terminal parameters, setting outputs,
and setting parameter values.

The P3 Simulation System

The P3 simulation system is the environment in which models in P3
are simulated. It is highly interactive and makes extensive use of the
window system and the "mouse" pointer of the Symbolics 3600. The
first step in simulating a model is to compile the methods and construct
the plan. The constructor is a program similar in purpose to a compiler.
However, the input is a P3 description of a network, rather than a com
puter language description of a program. The output of the constructor
is a data structure containing all the relevant information about the net
work that can be used by the P3 simulation system to run a simulation
of the model. As with any form of computer programming, a model
must be debugged before it can be simulated. There are really two
levels of debugging for network models. First, the user wants to know
that the network that has been created is connected up in the way
intended. Once this has been established, the actual functioning of the
network can be debugged. P3 provides tools for both of these phases
of the debugging process.

To check the correctness of connections, P3 provides a display that
shows each unit in the model at its location in P3 space. The user
interacts with this display with a mouse pointing device. Clicking on a
particular unit provides a menu that enables the user to trace out any of
the connections emanating from that unit. This facil ity for tracing out
connections, one at a time, has proved much more useful than simply
presenting a user with the wiring diagram of the model. Once the user
is convinced that the constructed model corresponds to the envisioned
network, the job of anal:ebMRt'¥PRJ�99n9Ji the model can begin.

498 FORMAL ANALYSES

Analyzing the running of a complex simulation is a demanding task.
It is in this analysis that we have found that all the features of the P3
system come together and begin to justify their existence. Because
every object in the model has a location in P3 space that corresponds to
the user's mental image of the network, the simulation system can
display values representing the state of the system at locations on the
screen that have meaning to the user. This means that during the
course of a simulation, meaningful patterns of P3 variables can be
displayed. This approach is widely used in analyzing the function of
parallel systems. What P3 has done is to standardize it and relieve the
user of the need to implement the details of this display strategy for
each new model.

In the current implementation of P3, each object in the model is
represented at its designated location by a small rectangular icon. By
the use of a mouse pointer driven menu system, the user can assign the
icon representing a unit the variable whose value is to be displayed.
Thus, for example, the icons representing the input terminals of a clus
ter unit in our example can be assigned either the value of the input to
that terminal or the value of the weight on that terminal. These assign
ments can be made or changed at any time during a simulation run.
They can be set to be updated continually as a simulation proceeds, or
they can be examined in detail when the simulation is temporarily
interrupted. The current P3 implementation displays the relevant state
values at two possible levels of precision. The approximate value of the
state value is indicated by the degree of darkening of the icon. There
are five levels of intensity. Their range is under user control and can
be changed at any time. This enables the user to adjust the range so
that the difference between the lightest and the darkest icons will
optimize the information content of the display. There is also a high
precision display that permits the exact value of any P3 variable to be
examined.

Figure 1 shows how the screen of the Symbolics 3600 looks after 588
P3 cycles of simulation of a competitive learning model with a 6 x 6
stimulus array and a dipole stimulus. There are six windows displayed
and each shows a different aspect of the simulation. Window A shows
the three units in the model at their respective positions in P3 space.
The upper narrow rectangle is the pattern generator. It is not displaying
any value. The lower two rectangles represent the two cluster units.
They are displaying the approximate value of their outputs by the size
of the contained black rectangle. Clearly the unit on the left has a
lower output value than the one on the right. Window B shows the
output of the pattern generator unit, which was called "stimulus" in the
plan. The lines form a square array because that is the way they were
specified in the plan. The two dark rectangles show the current dipole

Copyrighted Material

13. P3 SYSTEM 499

Ell!

A
o

o I

l:l,O.Ot,jO.l

iut , •.. t It 0., .. it STIM1JLUS
lti, Om j" Uli((nUSTEi 1 • Iii. (C I 21. �rail" I. m.,(tr II'

DDDDGD
000100
CD ClOD
OD�OOC
Don nOD
000000

:':, �.e tv I.Q

B

iJllt\ .. ill .t (' .f nIt (CLU5TU Ij

ODO:J:JD
DOOOGO
OO�O.O
oU .. 8
0 0
oonDO

I,. UtoB.B3

c
1titt1 •• ill It C ,t nit (CLUSTIl I)

088000
0 0
1 1
.. 0000
000000
000000

D

E

F
-'"--. ...r--. .r-'

FIGURE I. Display of Symbolics 3600 during P3 session. The mouse arrow is pointing
to the "simulate" command in the upper left. Clicking a mouse button will start simula
tion.

pattern. Windows C and 0 show the approximate values of the weights
on the input line arrays of each of the two cluster units. The fact that
competition has pretty well separated the weights along a horizontal line
is clearly visible from these two windows. Windows E and F are "strip
chart" records that produce a graphical record of any P3 variable. The
strip charts have been set up to record the value of a pair of
corresponding weights, one from each unit in the cluster. Time
increases to the right so the initial state is at the extreme left side of
the strip charts. It is interesting to note that one of the weights became
dominant for a while but at later times seems to have lost its
dominance. Copyrighted Material

500 FORMAL ANALYSES

In addition to the special functions of P3, the user also has available
all the powerful program development tools of the Symbolics 3600.
For example, suppose that the user believes that an observed bug is
due to an error in the code of a method. It is possible to interrupt the
simulation, go directly to the editor buffer that contains the method
code, alter it, recompile the alteration, and then return to the simula
tion at exactly the point at which it was interrupted. This facility has
proved invaluable in debugging.

As we work with the P3 simulation system, we constantly find new
features that are useful in the analytical process. We view the imple
mentation of each of these new analytical techniques as analogous to
adding a new instrument to a laboratory. Thus, we call the features of
P3 that enable the user to analyze a functioning model "instruments."
Each of these instruments can be called up at any time. Every instru
ment has a window that displays the results of the instrument's
analysis. For example, one instrument is the "strip chart recorder"
used in Figure 1. The strip chart recorder has a probe that can be con
nected to any particular state variable of any unit. Since multiple
instances of any instrument can be created, any number of strip charts
can be running at the same time. In addition to instruments that
display the values of variables, we also envision a class of instruments
that record these variables. Clearly, it is very important for a serious
modeler to be able to record the results of a simulation. The instru
ment concept will enable the modeler to record just those variables
required. This is a very important feature since simply recording the
entire state of the model as it develops in time would produce an
overwhelming flow of data.

Performance

So far we have said nothing about the speed at which simulations
run. This is a problem of tremendous importance for PDP models . Big
models inherently run slowly on serial computers. Generally, parallel
programming systems like P3 stress ease of model definition and simu
lation. How much penalty must we pay in model performance? There
is always some performance penalty for a general-purpose system. For
any given piece of computer hardware, it is generally possible to write a
specially tailored program that will run some particular model faster
than any general system will run it. However, this special tailoring
itself takes considerable time and makes it much harder to change the
details of the model structure . Thus, we envision that programs like P3
will be useful in the early stages of model development when the size

Copynghted Material

13. P3 SYSTEM 501

of the models are modest and there is frequent need for changes in
structure. When the structure and parameters of a model have been
decided upon and it is necessary to scale the model up and have it run
extremely rapidly. it may in some cases be advantageous to write a spe
cial program to implement the model.

The general-purpose systems, however, have several things going for
them with respect to model performance. First of all, since the data
structure has the same form for models, it is possible to put a lot of
effort into optimizing running speed for the particular hardware on
which the system is implemented. This optimization only has to be
done once rather than for each model. A second way in which general
purpose systems can improve performance is through the use of
special-purpose hardware. The models generated by the P3 system are
inherently parallel models and map well to some parallel computer
architectures. The one way to get blinding speed from parallel models
is to implement real parallelism in parallel computers. In some cases,
array processors can also be highly beneficial. Since all the P3 models
are of the same sort. a constructor can be made that will provide the
appropriate data structures to run any P3 model on these kinds of
hardware. This will make the hardware transparently available to the
user of systems like P3. This, we believe, is a significant plus, since it
is notoriously difficult to program any particular application for array
processors or truly parallel hardware.

In conclusion, the P3 system illustrates some of the general issues
that arise in any attempt to simulate PDP models, and provides a
number of useful tools that can greatly facilitate model development.
General-purpose systems like P3 have promise for speeding and facili
tating the programming of parallel models and the ultimate ability to
run these models very fast using specialized hardware.

Copyrighted Material

502 FORMAL ANALYSES

APPENDIX A

'"

'"

'"

'" P3 Plan for Competitive Learning

'" (NOTE the use of the "plan constant" and "include" statements.)

'"

'"
••
'"

'" Unit types
••
'"

;;; Dipole pattern generator
(unit type dipole

parameters flag il j1 j 1 i2 j2
outputs (d array i j)
include dipole-generator) ... (see code file on p. 506)

;;; Learning unit
(unit type competitor

parameters p Q flag
inputs (C array i j terminal parameters W)

(i-A)
outputs (o-A)
include comp-learn) ... (code on p. 504)

•• '"

'" Unit instances
•• '"

(plan constant stimulus-size = 6) (plan constant cluster-size = 2)

;;; Dipole pattern generator········

(unit stimulus of type dipole
at (@ 000)
outputs(d array {i Ostimulus-size} (j Ostimulus-size) lines at (@ i j 0»)

Copyrighted Material

13. P3 SYSTEM 503

;;; Learning units
(unit cluster array (k 0 (- cluster-size 1) of type competitor

at (@ (. I (+ cluster-size 4» (+ cluster-size 10) 0)
initialize (q = 0.05)
inputs (C array (i 0 (- stimulus-size 1) GO stimulus-size»)

.
Connections

..

;;;u Stimulus to both clusters
(for (k 0 (+ 1 k»

exit when (= k cluster-size) do
(for (j 0 (+ 1 j»

exit when (= i stimulus-size) do
(for G 0 (+ 1 j)

exit when (= j stimulus-size) do
(connect unit stimulus output d i j

to unit cluster k input C i j
terminal initialize
(W = (si:random-in-range

0.0 (! / 2.0 (expt (+ stimulus-size 1) 2»»»»

;;; Interconnect the clusters to implement competition
(for (k 0 (+ 1 k»

exit when (= k cluster-size 1) do
(for G 0 (+ 1 j»

exit when (= j k) do
(connect unit cluster k output o-A

to unit cluster j input i-A»
for G (+ k 1) (+ 1 j»

exit when (= j cluster-size 1) do
(connect unit cluster k output o-A

to unit cluster j input i-A»)

Copyrighted Material

504 FORMAL ANALYSES

APPENDIX B

'"

,,,

'"

'" Competitive Learning: Methods

'"
•• ",

to, Method for unit in cluster of competitive learners
•• to,

method
(let «imax (input-dimension-n C 1)

Gmax (input-dimension-n C 2»
(win t)

(N 0»

;; Is this a learning iteration? ••••••••

(cond

;; No
;; Accumulate the weighted sum of the pattern inputs into
;; unit parameter p, and set the competition output p-A to
;; that value
«> (read-unit-parameter flag) 0)

(loop initially (set-unit-parameter p 0)
for i from 0 below imax do

(loop for j from 0 below jmax do
(set-unit-parameter p

(+ (read-unit-parameter p)
(. read-terminal-parameter (C i j) W)
(read-input (C i j»»»

finally (set-output o-A (read-unit-parameter p»)

;; Flip the iteration-parity flag
(set-unit-parameter flag 0»

Copyrighted Material

13. P3 SYSTEM 505

;; Yes ••••••••

;; Figure out whether this unit wins on this cycle. Winning
;; requires that this unit's parameter p be greater than those
;; for the other units of this type. Those values are available
;; on the terminals of input i-A.
;; NOTE: On iteration 0, everything is 0, so no unit thinks it
;; wins, and hence all avoid learning.
(t

;; Find out whether we won

;; Win was initialized to t in the let at the top level of this method.
(for-terminals k of input i-A

(if « .. (read-unit-parameter p)
(read-input (i-A terminal k»)

(setq win nil))
(when win

;; Accumulate sum of all inputs into N
;; This will become a normalizing constant.

(loop for i from 0 below imax do
(loop for j from 0 below jmax do

(setq N (+ N (read-input (C i j»»»

; ; .. •• Compute new weights

;; But only if the total input was greater than O.
(if (> NO)

(loop with q-factor = (read-unit-parameter g)
for i from 0 below imax do
(loop for j from 0 below jmax do

;; Compute one new weight
(let· (old-weight

(read-terminal-parameter
(C i j) W»

(new-weight
(+ old-weight

(. g-factor
(- (II (read-input (C i j» (float N»

Cop��"�}J1

506 FORMAL ANALYSES

;; Update the terminal parameter to the new weight
(set -termi nal-parameter

(C i j) W
new-weight»»))

;; Flip the iteration-parity flag

(set-unit-parameter flag 1»»

••
, "

", Dipole pattern generator method
••

method

;; Do we need a new pattern on this iteration?
(cond

;; Yes. Erase old dipole and make new one
« < (read-unit-parameter flag) l)

Oet « imax (- (output-dimension-n d 1) 2»
(jmax (- (output-dimension-n d 1) 2»)

(set-output (d (read-unit-parameter i 1) (read-unit-parameter i 1) 0)
(set-output (d (read-unit-parameter i2) (read-unit-parameter i2» 0)
(set-unit-parameter i 1 (+ (random imax) 1»
(set-unit-parameter jl (+ (random jmax 1)
(cond « > (random 2) 0.5

(cond « > (random 2 0.5)
(set-unit-parameter i2 (+ (read-unit-parameter il) 1))
(t
(set-unit-parameter i2 (- (read-unit-parameter i 1 1))

(set-unit-parameter i2 (read-unit-parameter j 1»)
(t
(cond «> (random 2) 0.5)

(set-unit-parameter i2 (+ (read-unit-parameter j 1) 1))
(t
(set-un it-parameter i2 (- (read-un it-parameter j 1) 1»»

(set-un it-parameter i2 (read-unit-parameter i 1»»
(set-output (d (read-unit-parameter il) (read-unit-parameter j 1) 1)
(set-output (d (read-unit-parameter i2) (read-unit-parameter j2» 1)
(set-unit-parameter flag 1»)
(t
(set-unit-parameter flag 0»)

Copyrighted Material

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. 1. (1985). A learning algorithm
for Boltzmann machines. Cognitive Science, 9, 147-169.

Amari, S. A. (I977a) . A mathematical approach to neural systems. In J.

Metzler (Ed.) , Systems neuroscience (pp. 67-117) . New York: Academic
Press.

Amari, S. A. (I 977 b) . Neural theory of association and concept formation.
Biological Cybernetics, 26,175-185.

Anderson, J. A. (I 970). Two models for memory organization using interact
ing traces. Mathematical Biosciences, 8, 137-160.

Anderson, 1. A. (1973). A theory for the recognition of items from short
memorized lists. Psychological Review , 80, 417-438.

Anderson, 1. A. (1977). Neural models with cognitive implications. In D.

LaBerge & S. 1. Samuels (Eds.) , Basic processes in reading perception and
comprehension (pp. 27-90). Hillsdale, NJ: Erlbaum.

Anderson, 1. A. (I 983). Cognitive and psychological computation with neural
models. IEEE Transactions on Systems. Man. and Cybernetics, 13, 799-815.

Anderson, 1. A., & Mozer, M. C. (1981). Categorization and selective neu

rons. In G. E. Hinton & 1. A. Anderson (Eds.) , Parallel models of associa

tive memory (pp. 213-236). Hillsdale, NJ: Erlbaum.
Anderson, 1. A., Silverstein, 1. W., Ri tz , S. A., & Jones, R. S. (977). Dis

tinctive features, categorical perception, and probability learning: Some
applications of a neural model. Psychological Review, 84, 413-451.

Anderson, 1. R. (982). Acquisition of cognitive skill. Psychological Review,
89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Har
vard University Press.

Copyrighted Material

508 REFERENCES

Aragon, C. R., Johnson, D. S., & McGeoch, L. A. (1985). Optimization by
simulated annealing: An experimental evaluation. Unpublished manuscript.

Bahl, L. R., Jelinek, F., & Mercer, R. L. (1983). A maximum likelihood
approach to continuous speech recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5, 179-190.

Ballard, D. H. (in press). Cortical connections and parallel processing: Struc
ture and function. Behavioral and Brain Sciences.

Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual com
putation. Nature, 306, 21-26.

Bartlett, F. C. (1932). Remembering. Cambridge, England: Cambridge Univer
sity Press.

Barto, A. G. (1985). Learning by statistical cooperation 0/ self-interested neuron
like computing elements (COINS Tech. Rep. 85-11). Amherst: University of
Massachusetts, Department of Computer and Information Science.

Barto, A. G., & Anandan, P. (1985). Pattern recognizing stochastic learning
automata. IEEE Transactions on Systems, Man, and Cybernetics, 15, 360-375.

Barto, A. G., & Sutton, R. S. (1981). Landmark learning: An illustration of
associative search. Biological Cybernetics, 42, 1-8.

Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT
Press/ Bradford.

Berko, J. (1958). The child's learning of English morphology. Word, 14,
150-177.

Bernstein, J. (1981, December 14). Profiles: AI, Marvin Minsky. The New
Yorker, pp. 50-126.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the
development of neuron activity: Orientation specificity and binocular
interaction in visual cortex. Journal 0/ Neuroscience, 2, 32-48.

Binder, K. (1979). Monte Carlo methods in statistical physiCS. Berlin: Springer
Verlag.

Blake, A. (1983). The least disturbance principle and weak constraints. Pat
tern Recognition Letters, I, 393-399.

Blakemore, C. (1977). Mechanics 0/ the mind. Cambridge, England: Cam
bridge University Press.

Broadbent, D. (1985). A question of levels: Comment on McClelland and
Rumelhart. Journal o/ Experimental Psychology: General, 114, 189-192.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychol
ogy, 4, 55-81.

Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.
Chomsky, N. (1965). Aspects 0/ the theory 0/ syntax. Cambridge, MA: MIT

Press.
Chomsky, N., & Halle, M. (1968). The sound pattern 0/ English. New York:

Harper & Row.
Christensen, R. (1981). Entropy minimax sourcebook (Vols. 1-4). Lincoln,

MA: Entropy Limited.
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of

semantic processing. Psychological Review, 82, 407-425.
Coltheart, M., Patterson, K., & Marshall, J. C. (1980). Deep dyslexia. London:

Routledge & Kegan.

Copyrighted Material

REFERENCES 509

Crick, F., & Mitchison , G. (1983). The function of dream sleep. Nature, 304,
111-114.

DeMarzo, P. M. (1984) . Gibbs potentials, Boltzmann machines, and harmony
theory. Unpublished manuscript.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1976). Maximum likelihood
from incomplete data via the EM algorithm. Proceedings of the Royal Statist
ical Society, 1-38.

Derthick, M. (984). Variations on the Boltzmann machine learning algorithm
(Tech. Rep. No. CMU-CS-84-120). Pittsburgh: Carnegie-Mellon Univer
sity, Department of Computer Science.

Dretske, F. (1981). Knowledge and the flow of iriformation. Cambridge, MA:
MIT Press/ Bradford.

Eisen, M. (1969). Introduction to mathematical probability theory. Englewood
Cliffs, NJ: Prentice Hall.

Fahlman, S. E. (1979). NE TL: A system for representing and using real-world
knowledge. Cambridge, MA: MIT Press.

Fahlman, S. E. (1980). The Hashnet interconnection scheme (Tech. Rep. CMU
CS-80-125) . Pittsburgh: Carnegie-Mellon University, Department of Com
puter Science.

Fahlman, S. E., Hinton, G. E., & Sejnowski , T. J. (1983). Massively parallel

architectures for AI: NETL, Thistle, and Boltzmann mach ines. Proceedings
of the National Conference on Artijiciallntelligence AAAI-83.

Farley, B. G., & Clark, W. A. (1954). Simulation of self-organizing systems by
digital computer. IRE Transactions of Information Theory, 4, 76-84.

Feldman, J. A. (1981). A connectionist model of visual memory. In G. E.
Hinton & 1. A. Anderson (Eds.) , Parallel models of associative memory (pp.
49-81). Hillsdale, NJ: Erlbaum.

Feldman, 1. A. (982). Dynamic connections in neural networks. Biological
Cybernetics, 46, 27-39.

Feldman, J. A. (1985). Connectionist models and their applications: Introduc
tion . Cognitive Science, 9. 1-2.

Feldman. 1. A.. & Ballard. D. H. (1982). Connectionist models and their
properties. Cognitive Science. 6, 205-254.

Fodor, 1. A. (1983). Modularity of mind: An essay on faCUlty psychology. Cam
bridge, MA: MIT Press.

Fukushima. K. (1975). Cognitron : A self·organizing multilayered neural net
work. Biological Cybernetics, 20, 121-136.

Fukushima. K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Bio

logical Cybernetics, 36, 193·202.
Gallistel. C. R. (980). The organization of action: A new synthesis. Hillsdale,

NJ: Erlbaum.
Geman, S .• & Geman, D. (1984). Stochastic relaxation. Gibbs distributions,

and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 6, 721-741.

Ginsburg. H. P. (1983). The development of mathematical thinking. New York:
Academic Press.

Copyrighted Material

510 REFERENCES

Glorioso, R. M., & Colon Osorio, F. C. (980). Engineering intelligent systems.
Bedford, MA: Digital Press.

Glushko, R. J. (1979). The organization and activation of orthographic
knowledge in reading words aloud. Journal of Experimental Psychology:
Human Perception and Performance, 5, 674-691.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics .

New York: Wiley.
Grossberg, S. (1976). Adaptive pattern classification and universa! recoding:

Part I. Parallel development and coding of neural feature detectors. Biologi
cal Cybernetics, 23, 121-134.

Grossberg, S. (1978). A theory of visual coding, memory, and development.
In E. L. J. Leeuwenberg & H. F. l M. Buffart (Eds.), Formal theories of
visual perception. New York: Wiley.

Grossberg, S. (1980). How does the brain build a cognitive code? Psychologi
cal Review, 87, 1-51.

Halmos, P. R. (1974). Finite-dimensional vector spaces. New York: Springer
Verlag.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hewitt, C. (1975). Stereotypes as an ACTOR approach towards solving the

problem of procedural attachment in FRAME theories. In Proceedings of
Theoretical Issues in Natural Language Processing: An interdisciplinary
workshop. Cambridge, MA: Bolt, Beranek, & Newman.

Hinton, G. E. (1977). Relaxation and its role in vision. Unpublished doctoral
dissertation, University of Edinburgh.

Hinton, G. E. (1981a). Implementing semantic networks in parallel hardware.
In G. E. Hinton & l A. Anderson (Eds,), Parallel models of associative
memory (pp. 161-188). Hillsdale, NJ: Erlbaum.

Hinton, G. E. (I981b). A parallel computation that assigns canonical object
based frames of reference. Proceedings of the 7th International Joint Confer
ence on ArtifiCial Intelligence.

Hinton, G. E. (I 984). Parallel computations for controlling an arm. Journal of
Motor Behavior, 16, 171-194.

Hinton, G. E., & Anderson, J. A. (Eds.). 098I). Parallel models of associative
memory. Hillsdale, NJ: Erlbaum.

Hinton, G. E., & Lang, K. (1985). Shape recognition and illusory conjunc
tions. Proceedings of the Ninth International Joint Conference on ArtifiCial
Intelligence.

Hinton, G. E., & Sejnowski, T. J. (1983a). Analyzing cooperative computa
tion. Proceedings of the Fifth Annual Conference of the Cognitive Science
Society.

Hinton, G. E., & Sejnowski, T. J. (1983b). Optimal perceptual inference.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 448-453.

Hinton, G. E., Sejnowski, T. l, & Ackley, D. H. (1984). Boltzmann machines:
Constraint satisfaction networks that learn (Tech. Rep. No. CMU-CS-84-119).
Pittsburgh, PA: Carnegie-Mellon University, Department of Computer
Science.

Copyrighted Material

REFERENCES 511

Hofstadter, D. R. (979). GOdel. Escher. Bach: A n eternal golden braid. New
York: Basic Books.

Hofstadter, D. R. (1983). The architecture of Jumbo. Proceedings oJ the Inter·

national Machine Learning Workshop.
Hofstadter, D. R. (t 985). Metamagical themas. New York: Bas ic Books.
Hogg, T, & Huberman, B. A. 0984}. Understanding biological computation.

Proceedings oj the National Academy oj Sciences. USA, 81, 6871-6874.
Hopfield, J. J. (982). Neural networks and physical systems with emergent

collect ive computational abilities. Proceedings oj the National Academy oj Sci

ences. USA, 79,2554-2558.
Hopfield, J. J. (1984). Neurons with graded response have collective computa

tional properties like those of two-state neurons. Proceedings oj the National
Academy oJSciences. USA, 81, 3088·3092.

Hopfield,1. 1., Feinstein, D. I., & Pa lmer , R. G. (1983). "Unlearning" has a
stabilizing effect in collective memories. Nature, 304, 158-159.

Hummel, R. A., & Zucker, S. W. (1983). On the foundat ions of relaxation
labeling processes. IEEE Transactions on Pattern Analysis and Machine Intel

ligence, 5, 267-287.
Isenberg, D., Walker, E. C. T, Ryder , J. M., & Schweikert, J. 0980,

November). A top-down effect on the identification of function words. Paper
presented at the Acoustical Society of America, Los Angeles.

Jackson, J. H. (958). On localization. In Selected writings (Vol. 2). New
York: Basic Books. (Original work published 1869)

Julesz, B. (971). Foundations of cyclopean perception. Chicago: University of
Ch icago Press.

Kanerva, P. (984). Selj-propagating search: A unified theory of memory (Rep.
No. CSLI-84-7). Stanford , CA: Stanford University, Center for the Study
of Language and Information.

Kawamoto, A. H., & Anderson , 1. A. (984). Lex ica l access using a neural
network. Proceedings of the Sixth Annual Conference of the Cognitive Science
SOCiety, 204-213.

Kienker , P. K .• Sejnowski, T J., Hinton, G. E., & Schumacher, L. E. (985).
Separating figure from ground with a parallel network. Unpublished.

Kirkpatrick, S., Gelatt , C. D. Jr., & Vecchi o M. P. (1983), Optimizat ion by
simulated annealing. Science, 220, 671·680.

Kohonen, T (1974). An adaptive associat ive memory principle. IEEE Tran

sactions, C-23, 444·445.
Kohonen, T. (977). Associative memory: A system theoretical approach. New

York: Springer.
Kohonen, T (982). Clus tering, taxonomy. and topological maps of patterns .

]n M. Lang (Ed,), Proceedings of the Sixth International Coriference on Pattern
Recognition (pp. 114-125). Silver Spring, MD:]EEE Computer Society
Press.

Kohonen, T. (I 984). Self-organization and associative memory. Berlin:

Spr inger-Verlag .

Kullback, S. (959). lriformation theory and statistics. New York : Wiley.
Lampert i , J. (I 977). Lecture notes in applied mathematical sciences: Stochastic

processes. Berlin: SprinQ9f1�yr;�ted Material

512 REFERENCES

Larkin, 1. H. (I 983). The role of problem representation in physics. In D.
Gentner & A. L. Stevens (Eds.), Mental models (pp. 75-98). Hillsdale, NJ:
Erlbaum.

Lashley, K. S. (1950). [n search of the engram. In Society of Experimental
Biology Symposium No. 4: Psychological mechanisms in animal behavior (pp.
478-505). London: Cambridge University Press.

Le Cun, Y. (I985, June). Une procedure d'apprentissage pour reseau a seuil
assymetrique (A learning procedure for assymetric threshold network].
Proceedings of Cognitiva 85, 599-604. Paris.

Levin, J. A. (I 976). Proteus: An activation framework for cognitive process models
(Tech. Rep. No. ISIIWP-2). Marina del Rey, CA: University of Southern
California, Information Sciences Institute.

Levine , R. D., & Tribus, M. (1979). The maximum entropy formalism. Cam
bridge, MA: MIT Press.

Lewis. C. H. (I 978). Production system models of practice effects. Unpublished
doctoral dissertation, University of Michigan.

Lindsay, P. H., & Norman, D. A. (1972). Human information processing: An
introduction to psychology. New York: Academic Press.

Luria, A. R. (966) . Higher cortical functions in man. New York: Basic Books.
Luria, A. R. (1973). The working brain. London: Penguin.
Marr, D. (1982). Vision. San Francisco: Freeman.
Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity.

Science, 194, 283-287.
Marr, D., & Poggio, T. (979). A computational theory of human stereo

vision. Proceedings of the Royal Society of London. Series B, 204, 301-328.
Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexi

cal access during word recognition in continuous speech. Cognitive Psychol
ogy, 10, 29-63.

McCarthy, 1. (959) . Comments. In Mechanisation of thought processes:
Proceedings of a symposium held at the National Physical Laboratory. November
1958. Vol. 1 (p. 464). London: Her Majesty's Stationery Office.

McClelland, J. L. (1979). On the time-relations of mental processes: An
examination of systems of processes in cascade. Psychological Review, 86,
287-330.

McClelland, J. L. (1981). Retrieving general and specific information from
stored knowledge of specifics. Proceedings of the Third Annual Meeting of the
Cognitive Science Society, 170-172.

McClelland, 1. L., & Rumelhart, D. E. (1 981) . An interactive activation model
of context effects in letter perception: Part 1. An account of basic findings.
Psychological Review, 88, 375-407.

McClelland, 1. L., & Rumelhart, D. E. (1985). Distributed memory and the
representation of general and specific information. Journal of Experimental
Psychology: General, 114, 159-188.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Meditch, 1. S. (I 969). Stochastic optimal linear estimation and control. New
York: McGraw-Hili.

Copyrighted Material

REFERENCES 513

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations for fast computing
machines. Journal 0/ Chemical Physics, 6, 1087.

Minsky, M. (1954). Neural nets and the brain-model problem. Unpublished doc
toral dissertation, Princeton University.

Minsky, M. (I 959). Some methods of artificial intelligence and heuristic pro·
gramming. In Mechanisation 0/ thought processes: Proceedings 0/ a symposium
held at the National Physical Laboratory, November 1958. Vol. 1

(pp. 3-28). London: Her Majesty's Stationery Office.
Minsky, M. (1975). A framework for representing knowledge. In P. H. Wins

ton (Ed.), The psychology 0/ computer vision (pp. 211-277). New York:
McGraw-HilI.

Minsky, M., & Papert, S. (I 969). Perceptrons. Cambridge, MA: MIT Press.
Morton, J. (1969). Interaction of information in word recognition. Psychologi

cal Review, 76, 165-178.
Moussouris, 1. (I 974). Gibbs and Markov random systems with constraints.

Journal o/ Statistical Physics, 10, 11-33.
Mozer, M. C. (1984). The perception 0/ multiple objects: A parallel, distributed

processing approach. Unpublished manuscript, University of California, San
Diego, Institute for Cognitive Science.

Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
Neisser, U. (1980. John Dean's memory: A case study. Cognition, 9, 1-22.
Newell, A. (1980). Physical symbol systems. Cognitive SCience, 4, 135-183.
Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-

limited processes. Cognitive Psychology, 7,44-64.
Norman, D. A., & Bobrow, D. G. (976). On the role of active memory

processes in perception and cognition. In C. N. Cofer (Ed,), The structure 0/
human memory (pp. 114-132). Freeman: San Francisco.

Norman, D. A., & Bobrow, D. G. (1979). Descriptions: An intermediate stage
in memory retrieval. Cognitive Psychology, 11, 107-123.

Palmer, S. E. (1980). What makes triangles point: Local and global effects in
configurations of ambiguous triangles. Cognitive Psychology, 9, 353-383.

Parker, D. B. (985). Learning-logic (TR·47). Cambridge, MA: Massachusetts
Institute of Technology, Center for Computational Research in Economics
and Management Science .

Pillsbury, W. B. (897). A study in apperception. American Journal 0/ Psychol
ogy, 8, 315-393.

Poggio, T., & Torre, V. (1978). A new approach to synaptic interactions. In
R. Heim & G. Palm (Eds.), Approaches to complex systems. Berlin:
Springer-Verlag.

Poincare, H. (1913). Foundations 0/ science (G. B. Halstead, Trans.). New
York: Science Press.

Quillian, M. R. (968). Semantic memory. In M. Minsky (Ed.), Semantic
in/ormation processing (pp. 227-270). Cambridge, MA: MIT Press.

Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of a matrix and appli
cations. Sixth Berkeley Symposium on Mathematical Statistics and Probability,
1, 601-620.

Copyrighted Material

514 REFERENCES

Riley, M. S. (1984). Structural understanding in performance and learning.
Unpublished doctoral dissertation, University of Pittsburgh.

Riley, M. S., & Smolensky , P. (I984). A parallel model of (sequential) prob
lem solving . Proceedings of the Sixth Annual Conference of the Cognitive Sci
ence Society.

Rock, 1. (I973). Orientation and form. New York: Academic Press .
Rosenblatt, F. (I 959). Two theorems of statistical separability in the percep

tron. In Mechanisation of thought processes: Proceedings of a symposium held
at the National Physical Laboratory, November 1958. Vol. 1 (pp . 421-456).
London: HM Stationery Office.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.
Rosenfeld, A., Hummel, R. A., & Zucker, S. W. (1976). Scene labeling by

relaxation operations. IEEE Transactions on Systems, Man, and Cybernetics,
6, 420-433.

Rumelhart, D. E. (I 975). Notes on a schema for stories. [n D. G. Bobrow &
A. Collins (Eds.) , Representation and understanding (pp. 211-236). New
York: Academic Press.

Rumelhart, D. E. (977). Toward an interactive model of reading. In S.
Dornic (Ed.), Attention & Performance V/. Hillsdale, NJ: Erlbaum.

Rumelhart, D. E. (I979). Some problems with the notion of literal meanings.
In A. Ortony (Ed.), Metaphor and thought. Cambridge , England: Cambridge
University Press.

Rumelhart , D. E. (1980). Schemata: The building blocks of cognition. In R.
Spiro, B. Bruce, & W. Brewer (Eds .) , Theoretical issues in reading comprehen
sion (pp. 33-58). Hillsdale , NJ: Erlbaum.

Rumelhart, D. E., & McClelland, J. L. (1982) . An interactive activation model
of context effects in letter perception: Part 2. The contextual enhancement
effect and some tests and extens ions of the model. Psychological Review,
89,60-94.

Rumelhart, D. E., & McClelland , J. L. (1985). Levels indeed! A response to
Broadbent. Journal of Experimental Psychology; General, 114, 193-197.

Rumelhart, D. E., & Norman , D. A. (1982). Simulating a skilled typist : A

study of skilled cognitive-motor performance. Cognitive Science, 6, 1-36.
Rumelhart , D. E., & Zipser, D. (I 985). Feature discovery by competitive

learning. Cognitive Science, 9, 75-112.
Schank, R. C. (1973). Identification of conceptualizations underlying natural

language. In R. C. Schank & K. M. Colby (Eds.) , Computer models of
thought and language (pp. 187-247). San Francisco: Freeman .

Schank, R. C. (1976), The role of memory in language processing, In C. N,
Cofer (Ed.), The structure of human memory (pp, 162-189). Freeman: San
Francisco.

Schank, R. C. (1980). Language and memory. Cognitive Science , 4, 243-284.
Schwartz, M. F., Marin , O. S. M., & Saffran, E. M. (1979). Dissociations of

language function in dementia: A case study. Brain and Language, 7,
277-306.

Sejnowski, T. 1. 0980. Skeleton filters in the brain. In G. E. Hinton & J. A.

Anderson (Eds.) , Parallel models of associative memory (pp. 49-82). Hills
dale, NJ: Erlbaum.

Copyrighted Material

REFERENCES 515

Sejnowski, T. 1., & Hinton, G. E. (in press) . Separating figure from ground
with a Boltzmann machine. In M. A. Arbib & A. R. Hanson (Eds.), Vision,
brain, and cooperative computation. Cambridge, MA: MIT Press/Bradford.

Sejnowski, T. 1., Hinton, G. E., Kienker , P., & Schumacher, L. E. (985) .
Figure-ground separation by simulated annealing. Unpublished manuscript.

Selfridge, O. G. (955). Pattern recognition in modern computers. Proceedings
of the Western Joint Computer Conference.

Selfridge, O. G., & Neisser, U. (1960). Pattern recognition by machine. Scien
tific American, 203, 60-68.

Shannon, C. E. (963). The mathematical theory of communication. In C. E.
Shannon & W. Weaver (Eds.) , The mathematical theory of communication
(pp. 29-125). Urbana: University of Illinois Press. (Reprinted from Bell
System Technical Journal, 1948, July and October)

Shepard, R. N. (984). Ecological constraints on internal representation:
Resonant kinematics of perceiving, imagining, thinking, and dreaming.
Psychological Review, 91, 417-447.

Smith, P. T., & Baker , R. G. (976). The innuence of English spelling pat
terns on pronounciation. Journal of Verbal Learning and Verbal Behavior,
15,267-286.

Smoiensky, P. (981) . Lattice renormalization oftb4 theory. Unpublished doc
toral dissertation, Indiana University.

Smolensky, P. (983). Schema selection and stochastic inference in modular
environments. Proceedings of the National Conference on Artificial Intelligence
AAAI-83, 109-113.

Smolen sky, P. (984). The mathematical role of self-consistency in parallel
computation. Proceedings of the Sixth Annual Conference of the Cognitive Sci
ence Society.

Smoiensky, P., & Riley, M. S. (1984). Harmony theory: Problem solving, parallel
cognitive models, and thermal physics (Tech. Rep. No. 8404). La Jolla:
University of California, San Diego, Institute for Cognitive Science.

Spoehr, K., & Smith, E. (1975). The role of orthographic and phonotactic
rules in perceiving letter patterns. Journal of Experimental Psychology:
Human Perception and Performance, I, 21-34.

Sternberg, S. (1969). Memory scanning: Mental processes revealed by
reaction-time experiments. American SCientist, 57, 421-457.

Strang, G. (1976). Linear algebra and its applications. New York: Academic
Press.

Sutton, R. S., & Barto, A. G. (1981) . Toward a modern theory of adaptive
networks: Expectation and prediction. Psychological Review, 88, 135-170.

Teitelbaum, P. (I 967) . The biology of drive. In G. Quarton, T. Melnechuk, &
F. O. Schmitt (Eds.) , The neurosciences: A study program. New York:
Rockefeller Press.

Terrace, H. S. (1963) . Discrimination learning with and without errors. Jour
nal of the Experimental Analysis of Behavior, 6, 1-27.

Thomas, G. B. Jr. (I 968). Calculus and analytic geometry (4th ed.). Reading,
MA: Addison-Wesley.

Venesky, R. L. (970). The structure of English orthography. The Hague:
Mouton. Copyrighted Material

516 REFERENCES

von der Malsberg, C. (973). Self-organizing of orientation sensitive cells in
the striate cortex. Kybernetik, 14, 85-100.

Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Sci
ence, 167, 393-395.

Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits. Institute of
Radio Engineers, Western Electronic Show and Convention, Convention Record,
Part 4, 96-104.

Williams, R. J. (1983). Unit activation rules for cognitive network models (Tech.
Rep. No. ICS 8303). La Jolla: University of California, San Diego, Institute
for Cognitive Science.

Willshaw, D. J. 0970. Models of distributed associative memory. Unpublished
doctoral dissertation, University of Edinburgh.

Willshaw, D. 1. 0980. Holography, associative memory, and inductive gen
eralization. In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of
associative memory (pp. 83-104). Hillsdale, NJ: Erlbaum.

Winston, P. H. (1975). Learning structural descriptions from examples. In

P. H. Winston (Ed.), The psychology of computer vision (pp . 157-209). New
York: McGraw-HilI.

Wood, C. C. (1978). Variations on a theme by Lashley: Lesion experiments
on the neural model of Anderson, Silverstein, Ritz, & Jones. Psychological
Review. 85, 582-591.

Woods, W. (1973). An experimental parsing system for transition network
grammars. In R. Rustin (Ed.), Natural language processing. New York:
Algorithmics Press.

Woods, W., & Kaplan. R. (971). The lunar sciences natural language in/orma
tion system (Rep. No. 2265) . Cambridge, MA: Bolt, Beranek, and Newman.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control. 8, 338-353.

Copyrighted Material

Index

Page numbers in roman type refer to Volume 1; page numbers in
italic type refer to Volume 2.

Abeles, M., 36 7, 369, 385, 553 unit, 425
Abelson, R. P . , 18, 1 9, 574 logic of
Abrams, T. W., 552, 561 conclusions on, 442-443
Abramson, A. S., 94, 560 descript ion of, 363
Abstraction models of memory, examples of, 428 -429

1 99-206 main concepts of, 426-428
comparison of experimental and as major aspect of PDP model s,

simulation results, 203-205 51-52
other findings on, 205-206 results of, 429, 439-442
summary of training and test rules , examples of, 425-426

stimuli, 202-203 three-dimensional plots, 429,
Whittlesea's experiments on, 201 - 430-438 (Figs.)

202 views of, 423-425
Ackley, D. H., 264, 306 , 3 1 3 , 3 1 7 , Activation rule. See Activation

3 35,507 , 5 1 0, 393, 562 functions
ACP model, 32, 1 24 , 1 27 Activation vector of harmony

Activation functions theoretical model , 2 1 5 -2 1 6
examples of Active representation in PDP

gating activation function, 426 models. See PDP models , act ive
semilinear, 52, 324-328 representation in
quasi-linear, 425 Addition problem, simple binary,

quasi-multilinear, 426 34 1 -346. See also Del ta rule ,
squashing function, 425 generalized

threshold logic or lineaJOG�ed �t, T. D . , 368, 558

518 INDEX

Algebra, linear. See Linear algebra
Algebraic properties of inner

products, 3 8 2-38 3 . See also
Vectors

Allman, J.. 34 7, 3 74. 375. 553, 554
Alternative activity patterns, 8 2 - 8 3
AM. See Monocular occlusion
Amari, S. A., 42, 4 5 , 444, 5 07 , 489.

4 95, 553
Ambiguity

lexical. 302-304
structural, 304-305
and shading of feature patterns,

305-306
Ambiguous characters, 8, 1 55-157.

See also Reading, programmable
blackboard model of

Amnesia. See also Memory, a
distributed model of

anterograde, 504, 505-506. 512-513
bitemporal, basic aspects of, 505-

506
conclusions on, 52 7
description of, 503-505
neurochemistr y of synaptic change.

hypothetical account of, 50 7- 509
paradox of, resolution to, 506-50 7
quantitative model, formulation of,

509
relation to other accounts of, 510-

5/l
residual learning in, 518- 524
simulations, 5 1 1 -518

anterograde amnesia, 512-513
lost memories, recovery of, 515-

516
retrograde amnesia, 513-515
retrograde and anterograde

amnesia, correlation of, 51 3
studies on, 516-518
su mmar y of, 518

spared learning in. 207-208, 518,
524-526

Anandan, P., 3 22, 508 , 550, 554
AND function, 429. See also

Boolean function

Anderson. C. W., 539, 554
Anderson, J. A., 33 , 42, 56,6 2,66 ,

68 ,8 0, 8 2 , 1 0 1 ,406, 409, 4 1 0 ,
418 , 507 ,5 1 0, 5 1 1 , 8, 1 73, 183,
200,226,2 7 7, 3 1 1, 380, 389,
394,399,431,551, 553, 554,
561,564

Anderson, J. R., 32, 1 24, 1 27, 25 1 ,
46 1 ,5 07 , 173,106,209, 524,
549, 554, 558

Anlezark, G. M., 4 77, 554
Annealing, simulated. See Simulated

annealing
Aragon, C. R., 235 , 508
Arbib, M. A., 362, 577
Arbitrary mapping, implementing.

96- 1 04
grapheme strings. 97·99, 1 02
sememe units, 97-98, 99 , 10 1 ·1 02
three-layer network, 97-98 . See

also Boltzmann machines
Arguments, missing, filling in, 301 -

302. See also Case role
assignment, model of

Ary . M., 4 77, 564
Asanuma, H., 35 7, 554
Asynchronous update vs.

synchronous update, 6 1
ATN. See Augmented transition

network parsers
Attention

networks for focusing, 114 ·1 18
shifting focus of, 147·1 51

Augmented transition network
parsers (A TN), 11 9

Auto·associative paradigm. See also
Memory, a distributed model of

definition of, 5 5 , 161
modification of, 211-212

Back'propagation simulator ,
description of, 3 2 8 ·330

Bagley, W. C., 58, 98, 1 06 , 5 54
Bahl, L. R., 293 , 5 08
Baker, J. F., 34 7, 554
Baker, R. G., 24, 515

Anden, N. E., 350. 553
Andersen, P., 336, 553

Ballard, D. H . , 12 , 43, 45 , 72, 11 7,
124, 133 ,2 8 2 , 508, 509, 128,

Copyrighted Material

3 73, 381 , 554, 559
Banerjee, S. P., 4 77, 56 1
Barber, R. P., 3 51 , 562
Bard, P., 352, 579
Barlow, H. B. , 3 73, 554
Barnes, C. A., 448, 568
Barrow, H. G. , 63, 554
Bartlett, F. c., 8 1 , 508 , 1 7, 1 9,554
Barto, A. G., 43, 53, 57 , 3 2 1-322,

444, 508, 5 1 5 , 383, 539,550,
554, 576

Barwise, J., 195 , 508
Basket cells, 363-364
Bates, E., 21 7, 2 73, 2 74, 554 , 56 7
Baumgartner, G. , 3 76 , 578
l3-coefticient constants, (App.) , 46 7-

468. See also l3 -coefficient model
l3-coefticient model, 460-466. See

also Place recognition and goal
location, biologically plausible
models of

concept, network using, 461-462
constants (App.), 46 7-468
description of, 460-46 1
issue in , 463
performance of, 464
programming, 463
simulation of, 469-4 70
testing, 463-464

BD. See Binocular deprivation
Bear, M. F., 4 77, 554
Becker, J. T., 435, 554
Benoit , R., 364 , 569
Bentivoglio, M., 3 50, 567
Berko, J., 40, 508 , 2 1 9, 220, 265,

555
Berman, N., 4 75, 4 78, 558
Bern stein , J. , 153, 159, 508
Best, P., 435, 571
Bever , T. G. , 2 74, 555, 559
Bienenstock, E. L . , 42, 1 80 , 508 ,

480, 487, 489, 4 95, 555
Binder, K., 230, 508
Binding problem, 8 8-90

of neurons, 3 7 7-3 78
Binocular depri vation (BD) , 4 74, 4 75

INDEX 519

Bitemporal amnesia. See Amnesia,
bitemporal

Bixby, J. L., 345, 5 7 7
Blake, A., 285, 508
Blakemore, c., 1 1 , 508 , 4 75, 489,

490, 491 , 4 9 7, 500,555, 571 ,5 7 7
Blanchard, H . E., 1 61 ,568
Blank, M. A., 79, 1 J/, 559
Blasdel, G. G. , 48 7, 490, 555
Blends ')f memory traces, 208. See

also Memory, a distributed model
of

Bloom, F. E., 364, 385, 569
Bloom, M. J., 385, 560
Blumstein, S., 62, 576
Bobillier , P., 350, 555
Bobrow, D. G., 9, 79, 133, 513, 18,

1 9, 536, 555, 570
Boltzmann machines

damage, example of effects of,
304-3 13

description of, 43, 148- 149
hard learning, example of, 299-303

annealing schedule, 302
shifter network performance,

302-303
training procedure, 300

learning algor ithm, 294-303, 209
conclusions on, 313-3 14
derivation of (App.), 3 15-317
failure of algorithm, 298-299
hardware, unreliable, achieving

reliable computation with, 303-
304

learning, easy and hard, 290-294
relaxation searches, use of to

perform, 283-290
research with, 264
second-order observables and,

273-275
unlearning, 296-298

Bond, Z. S., 6 1 , 555
Bonds, A. B . , 4 76, 4 78, 560
Boolean function, 428, 429, 439-442

activation function as ex tension of,
428

Bipolar cel ls , 363 AND function, 429

Bishop, P.O., 480, 574 Copyrighted Mat�tive normal form, 439

520 INDEX

Boolean function (continued)
li nearly separable functions , 440
mapping from expressions, 439
neurons t reated as devices, 424-425
XOR function , 429

Bottom-up approach to analysis of
information processing systems ,

{3 uni ts , s imulat ions of (App.), 469-
4 70. See also {3-coefficient model

Bun t , A. H., 35 7, 566
Bybee, 1. L., 221 , 247. 249, 250,

251.254, 255,256,556

123 CA. See Connect ion act ivation un i t
Bottom-up presentation of harmony Caan, W., 368, 5 71

theory, 199, 213- 26 1. See also Caja l , S. Ramon y, 336 , 350, 358,
Harmony theory 359,36 1 , 363,36 7, 556

Bottom-up processing system , 5 1 Camin i t i , R., 3 7 7-378, 560
matrix representation of, 57-58 Canon ical feature detectors, 1 14

Boycott , B. B. , 336, 558 Caplan, C. J. , 478, 5 70

Brachman, R . 1., 313, 555 Carew, T. J., 552, 561
Brain. See Cerebral cortex , anatomy Carlson, M., 275, 573

and physiology of; Cerebral Carman , 1. B., 350, 556
cortex, questions about Carnes , K. M. , 477, 554
computation in Carpenter, P. A. , 153, 16 1 , 549,564,

Brain damage. See also Amnesia; 57 7
Damage, effects of on a network Carrol l , Lewis, 97

gracefu l degradat ion and , 29, 134 Cascade model, 42
neuropsychological investigation of Case role assignment, model of

patients wi t h , 134-135 arch i tecture of, 27 7-289
s imulated effects of, 304-313 case role represen tation, 286-288

Bra in state in a box model (BSB), semantic microfeatures, 278-283
66-68 sentence processing and learn ing,

Branch. M., 435, 5 71 detai ls of, 288-289
Brayton, R. K., 381. 382, 575 sentence-structure un i ts, 283-286
Bresnan , J .• 2 74, 559, 564 descr ipt ions of, 3-4
Brightman, M. W., 336, 5 72 discussion of, 313-325
Broadbent, D. E., 1 2 1 , 508 , 9 7, 532 , context-sensit ive coding,

555 iteration. and center embedding,
Brock, L. G., 36 7, 555 323-325
Brodmann, K., 345, 346, 555 fixed-length, 320-322
Brodmann's areas of the neocortex, l im i tat ion myths, 322-323

345-346. See also Cerebral mean ing , representat ion of. 315-
cortex, anatomy and physiology 316
of model. basic features of, 314-315

Brooks. C. McC. . 336 , 553 parsers, conventional interfacing
Brooks. L. R . • 171.556 with,31 7-318
Brown, P .• 295 recursion, 318-320
Brown , R .• 219, 241, 556 goals of, 2 76-2 7 7
Bruce, C . J., 368. 556. 558 studies on , 2 7 7

Brugge. J. F .• 356 , 563 mul t iple constraints on, 2 72-275
BSB model . See Brain state in a box studies on. 2 73. 2 75, 2 77

model simulation experiments of, 289-292
Buisseret, P .• 4 76. 4 78. 556 basic resu l ts of. 292-293

Copyrighted Material

INDEX 521

387-389 feature patterns, shading of, 305-
306

lexical ambiguity resolution, 302-
304

missing arguments, filling in,
301-302

neurona l plasticity i n , 385-387
neuronal processing in, 378-382

nonlinear computations, 381
single-shot algorithms, 380-381
timing problem, 378-380

novel words, generalization to,
307-310

represent ing information in , 373-
377

other creative errors, 306-307 binding problem , 377
roles, distributed representation surround effects, 374-377

of, 312-313 temporal binding, 383-385
semantic and word-order cues, Chace, P., 513, 576

use of in, 293-300 Chandelier cells, 362-363
straightforward extensions, 310- Changeux , J. -P., 387, 556

312 Chapman, R. A., 485, 556
structural ambiguity of, 304-305 Charniak, E., 324, 556
verb-frame selection, 300-301 Chase, W. G., 241, 508

Central module, 130-131 Chauvin, Y., 213, 332-334,
Cerebral cortex , anatomy and Chomsky , N., 24, 119, 123,246,508

physiology of Christen, W. G., 478, 570
cortex inputs, 346-356 Christensen , R., 227, 508

irregularities within, 353-356 cm. See Connection information
topographic representation of, distribution mechanism

352-353 Clark , W. A., 154, 509
cortical areas of, 345 Class C' percept ron (Rosenbla tt) ,
cortical outputs, 356-357 155-156
feature detection of, 367-371 Classification paradigm, 161
firing, rates of, 366-367 Coarse coding, 91-96. See also
general organization of, 340-345 Conjunctive encoding;

main layers, 341-345 Distributed represen tations
general points on, 333-335 limitations on, 92-94
group neuron behavior in, 365-366 principle underlying, 94·96
neocortical neurons, nature of Cognit ion and paralle l distributed

cell types in, 358·360 processing. See PDP approach,
excitatory vs . inhibitory neurons , introduction to

362 Cogn ition , microstructure of, 12-13

experimental methods, 357·358 Cogn itive science. See PDP approach
neurons without many spines, and cognitive science

361 Cognitive theories, constra ints on,
neurons with spines , 360-361 129-130
special cell types, 362 Cohen, M. A., 389, 556

neuron behavior in, 364-365 Cohen, M. M., 81, 86, 568
neuron, classical, 335·337 Cohen , N. J., 510, 519,520, 521-

peptides, 339 522, 524, 525, 527, 556, 576

synapses, types of, 338-339 COHORT model (Marslen -Wilson) ,
Cerebral cortex, questions about 77, 97-106

computation in basic assumptions of, 98-99
computational models, rc4JoriyWghted Manmmna for, 99·100, 101

522 INDEX

COHORT model (continued) cerebral cortex in, 387-389
resolution of, 101-106 Computational temperature (n, 211

Cole, K. S . , 364, 556 Computational viewpoint on PDP
Cole, R. A., 58, 61, 98, 99, 100, models, 397-398

107,111, 556, 557 Conel, J. LeRoy, 358, 557

Collins, A. M., 85, 508 Confabulation , as a stable pattern, 8 1
Colonnier , M., 348, 361, 557, 571 Conjuncti ve encoding, 90-91, 96.
Colon Osorio , F. c., 424, 5 10 See also Coarse coding;
Coltheart, M., 1 02, 508 Distributed representations
Competence theorem, 226-229 CONNECT statements for P3
Competitive inh ibition, 21. See also system, 495-496. See also P3

Phoneme identification , factors system
influencing Connection activation system, 130-

effect of at phoneme level, 89-90 134
Competi t ive learning Connect ion act ivation unit (CA) .

arch itecture of competitive learning See also Connection information
system, 1 62- 1 66 distribut ion mechan ism

basic components of, 1 5 1 - 1 52 definition of, 132-134
characterist ics of, 1 66 - 1 67 multiple pattern processing, 477-
conclusions on , 1 90 478
definition of, 1 47 requi rements of, 474-476
dipole experiments, results of, single pattern processing, 476-477

1 70- 1 77 summary of requirements , 480-48 1
correlated teaching i nputs, 182- Connection information distribution

183 (CID) mechan ism , 473-486,
letter s imi larity effects, 182 129-134, 137, 139-140
number of elements, effect of per benefits of, 164-166

serial position , 1 8 1 - 1 82 central knowledge store in, 130-134
position-specific letter detectors, computer simulation of word

1 80- 1 8 1 recogni t ion using, 134-136
word detection un i ts , 18 1 extensions of, 167-168
word perception model, 177-180 resource requirements of, 473 -486,

formal analysis of, 168-170 166-167
geometric interpretation of, 164- Connectionist models, 72

1 66 Connolly , M., 353, 355, 566
h istory of, 152- 1 59 Connors, B. W., 364, 369, 557
horizontal and vertical lines, Constructor, as major component of

experiments with, 184-190 P3 system, 489. See also P3
mechanism of, 1 59 system
neural - l ike processing systems, Content-addressable memory, 79-80

1 60- 16 1 Continuity and uniqueness
in P3 simulation system constraints in depth percept ion ,

methods (App. B), 504-506 1 9-20
plans for (App. A), 502-503 Cool ing schedule , 244-245. See also

Completion task. example of. 206- Electrici ty problem-solving;
208 Simulated annealing

Computational level. 1 2 1 Coombs. 1. S .• 367. 555
Computational models. rol e of Cooper. F. S . • 92. 94.495.566.576

Copyrighted Material

Cooper, L. N., 42, 180, 508, 480,
487, 489, 499, 555, 557, 573

Corkin, S., 519, 524, 556
Cortical areas of the neocortex,

Brodmann's cortical parcellation
scheme, 345

input systems, 346
irregularities within, 353·356
thalamus, as gateway to cerebral

cortex, 349·352
topographic representation, 352·

353
output systems, 356·357

Cortical plasticity, processes that
modulate, 476·478

Cotton, S. , 99, 105, 557
Cottrell, G., 165, 277, 3lJ, 314, 557
Coulter, 1. D., 357, 570
Cowan,1. 0., 381, 389,578
Cowan, W. M., 350, 351, 556, 572
Cowey, A., 363, 576
Crain, S., 274, 557
Crane, A. M . , 350, 572
Crick, F. H. c., 296, 297, 509, 351,

384, 387, 557
Critical or sensitive period of

plasticity, 473·484
cortical plasticity, processes that

modulate, 476·477
effect of environment on, 478
hypothesis for, 483·484
ocular dominance statistics, 474·

476
other examples of, 477·478

Crosstalk, 139·142. See also

Reading, programmable
blackboard model of

Crow, T. 1., 476, 477, 554, 557
Crowder, R. G., 64, 94, 209, 557
Cynader, M., 475, 476, 478, 492,

498, 557, 558

INDEX 523

in Boltzmann machines , 304·313
Daniel, P. M., 354, 558
Daniels , 1. D., 477, 554
Darien·Smith, J., 480, 574
Davis, E., 432, 558
Daw, N. W., 497, 500, 558, 577
Deacedo, B. S. , 519, 524, 556
Decay process in increments to

weights, 181. See also Memory, a
distributed model of

Decision·making and freezing in
harmony theory

coherent interpretation, robustness
of, 240

idealized task, 238·239
phase transitions, computational

significance of, 236·237
symmetry breaking, 237·238
thermodynamic limit, 239

Deep dyslexia, 102
Degradation, effects of and benefits

of redundancy, 472. See also

Standard pattern associators
Deliberate conscious control (DCC> ,

543-545. See also PDP approach,
reflections on

Delta rule, 43, 53, 62, 63, 363, 417·
418

Delta rule, analysis of. See also

Delta rule, generalized
and multiple linear regression,

457·458
in pattern-based coordinates, 447·

453
statistical learning and, 453·457
summary of, 458·459
in vector notation, 445·447

Delta rule, generalized, 149
application of, 327·328
conclusions on, 361·362
general cases, 352·361

recurrent nets, 354·361
and gradient descent, 322·324

Dahlstrom, A., 350, 553 problem of, 318·323

Damage , effects of on a network, 29, XOR problem, 319·321
134, 472. See also Amnesia; for semilinear activation functions
Boltzmann machines; Brain in feedforward networks , 324·328
damage; Graceful degraaib'y?-igh

ted Ma
��

i
�}sma,pi units, 353

524 INDEX

Delta rule, general ized (continued)

s imulation results, 328-330, 352
encoding problem, 335·339
negation problem, 346-347
parity, 334-335
s imple binary addit ion problem,

341-346
symmetry , 340-341
T-C problem, 348-352
XOR problem , 330-334

use of to determine size and
di rection of changes in
connect ions, 179-181
generalized, 209

DeMarzo , P. M. , 241, 242, 509
Dempster, A . P . , 293, 509
Dendrites , studies on , 381-382. See

also Cerebral cortex, questions
about com putation in

Denes , P ., 87, 558
de Riboupierre, F., 385, 553
de Ribou pierre, Y. , 385, 553
Derthick, M . , 298, 299, 509, 313
Desimone, R . , 368, 374, 556, 558
Di pole experiments for compet i t ive

learning mechanisms, 170-174
formal analysis of, 174-177
homogeneous st imulus patterns ,

191·193
Distal landmarks for biological ly

plausible models of place

arbitrary pai ring , i m plementing,
96-104

binding problem, 88-90
coarse cod ing , 91-96
con junct ive encoding, 90-91

Distr ibuted view-field model for goal
location , 449-460. See also Place
recognit ion and goal location ,
biological ly plausible models of

descri pt ion of, 451-453
network used i n , 450-451
P3 s imulation of, 453-454

Symbol ics 3600 L ISP machine,
use of for , 454-456

problems of, 451
properties of, 453
testing of, 453

Dobson, V., 97, 100
Dostrovsky, J., 435, 571
Dowling, J. E. , 336, 558, 578
Drager, U. c., 490, 558
Dretske, F., 195, 509
Duckrow, R. B., 477, 561
Duda, R . 0., 380, 558
D ukes, K., 61, 110, 570
D urham, D. , 500, 558
Dynamic functional system , 41
Dynamical systems, perspecti ve of

PDP models as, 397-398

recognit ion and goal locat ion , 445 Eccles, 1. C . , 336, 367, 370, 553,
Distributed representations. See also 555, 558

Memory , a distr ibuted model of; Edelman , G. M. , 387, 558
Schemata, concept of Edmonds , D . , 153,

features of Ehrlich , S . , 163, 573
generalization effects , 82·85 Eichenbaum , H., 385, 519, 524, 556,
memory, 79·81 565
new concepts, 86·87 Eigenvalues . See Eigenvectors and

status of, 78·79 eigenvalues
structure in representations and Eigenvectors and eigenvalues, 399·

processes, 104·108 403. See also Matrices and l i near
const i tuent structure, systems

representing, 105·106 Eimas, P . D . , 94, 473, 558, 560
sequential symbol processing, Eisen , M. , 456, 509

106·108 Elbaum, c., 499, 573
summary on , 108·109 Electricity problem·solving, 240·250
techn ical detai ls of, 87·104 Electroencephalography (EEG), 335

Copyrighted Material

Elio, R., 172, 558
Elman, J. L., 58, 63, 69, 71,80,81,

119,558,559, 568
EM. See Expectation and

maximization method
Empiricism vs. nativism, 1 39- 1 42
Emson, P. C., 364, 559
Encoding problem , 335-339. See also

Delta rule, generalized
Equilibrium states of the competitive

learning system, 168-170
Erman, L. D., 63, 122,559, 573
Error correction rule. See Delta rule
Error propagation, learning internal

representations by. See Delta
rule, generalized

Ervin, S., 219, 220, 254, 559
Espinosa, I. E. , 385, 560
Evanczuk, S., 385, 560
Exclusive or (XOR) problem, 64-65 ,

96 , 319-32 1 , 330-334 . See also

Delta rule, generalized
Executive-driven processing, 1 34
Expectation and maximization (EM)

method,293
Explicit inaccessible rule, 217. See

also Verbs , learning past tenses of
Explicit rule formulation, tradition,

32

IN DEX 525

on amount of, 159- 161. See also

Reading, programmable
blackboard model of

Feedforward networks, delta rule for
semi linear activation functions in,
324-328 . See also Delta rule,
generalized

Feinstein, D. l, 296, 511
Feirtag, M. , 334, 342, 570
Feldman , l A., 12 , 43, 45 , 72 , 75,

86, II7, 124, 130, 181,509,9,
128, 559

Feldman, M. L., 363, 377, 559
Feldman and Ballard units, 72

conjunctive un its, 72
relation to sigma-pi units, 72

Felleman, D. 1., 352, 354, 385, 569,
5 70

Fennell, R. D . , 63, 122, 5 73
Feustel, T. c., 19 7, 198, 559, 574
Fillmore, C. J., 273, 559
Finlay, B. L., 367, 574
Firing, rates of in neocortical

n eurons, 366-367. See also

Neocortical neurons, nature of
First formant onset frequency

(FlOF), 84, 85. See also

Phoneme i dentification, factors
influencing

Fixation s. See also Reading,
programmable blackboard model

Fahlman, S . E., 85, 86, 264, 509 of

Fairlm , A., 161, 559 sequences of, 161-]64

Famiglietti, E. V., 336, 559 single and multiple,]51-155
Fan-in. See Fan-out Fodor, 1. A., 1 4 1 , 509 , 2 74, 559
Fan-out Foley, J. D., 46 7, 559

definition of, 5 1 Ford, M., 274, 559
limited, effects of, 468-472 Foss , D. l, 79, Ill, 559
method for overcoming limitation, Fowler, C. A ., 60, 71, 77, 95, 118,

470-472 559
neural nets, biological limits on Fox, R. A., 79, 559, 560

storage capacity of, 469-470 Frames, use of as knowledge
Fanty, M., 320, 321, 322, 559 structure , 9. See also Schemata,
Farley, B. G., 1 54 , 509 concept of
Feature discovery by competitive Franci s, W., 74, 240, 565

learning. See Competitive Frazier, L., 275, 560, 573

learning Freeman , R. D., 4 75 , 476.478,481,
Feedback, effects of displaPtPgnghted Matilda! 560. 567, 571

526 INDEX

Freezing and decision-making in
harmony theory. See Decision
making and freezing in harmony
theory

Freund, T. F., 363, 5 76
Friedlander, M. J. , 351 , 560
Fry, D. B., 94, 560
Fuchs, A. F., 35 7, 566
Fujimura , 0., 62, 4 73, 560, 569
Fujisaki, H., 7 7, 94, 560
Fukushima, K. , 42, 152, 162, 300,

313,350, 509
Future di rections for PDP, 54 7-552
Fuxe, K., 350, 364, 553, 560
Fuzzy map theory, 432-433. See also

Place recognition and goal
location, biologically plausible
models-of

Gallistel , C. R., 141, 509
Gamma factor in bitemporal

amnesia, 50 7
Ganong, W. F. , 60, 78 , 560
Garey, L. J. , 348, 4 9 7, 500, 555,

560, 5 77
Garnes, S . , 61, 555
Garrett , M. F., 2 74, 559
Garrud, P., 434, 466, 569
Gary-Bobo, E., 4 76 , 4 78, 556
Gati, I. , 499, 560
Gating activation function, 426. See

also Activation functions
Gee, J., 60, 63, 107, 115, 561
Gelatt, C. D., Jr., 48, 235, 287, 511
Geman, D., 148,264,271,278,289,

509
Geman, S . , 148,264,268,271,278,

289, 509
Generalizat ion, 30, 85. See also

Memory, a distributed model of

Glaser, E. M., 366, 577
Glass, L., 494, 5 71
Glorioso, R. M., 424, 510
Gluck, M. A., 383, 552, 561
Glushko, R. J., 43 , 5 1 0, 171, 561
Goal location. See Place recognition

and goal location, biologically
plausible models of

Goldman-Rakic, P. S ., 350, 5 72
Goodness-of-fit funct ion, 14- 1 6, 31 ,

32-33, 35-36. See also Schemata ,
concept of

Graceful degradation, 29, 134. See

also Damage, effects of on a
network

Gradient descent
and delta rule, 322-324
use of to solve hard optimizing

problems on conventional
computers, 287-288

Grapheme strings, 97-99, 102. See

also Arbitrary mapping,
implementing

Gray, E. G., 339, 361, 561
Green, D . M., 466, 510, 225, 561
Green, K., 96 , 569
Greenberg, Z., 254
Greenway, A. P . , 4 77, 554
Grinvald, A., 385, 561
Grosjean, F., 60, 63, 99, 100, 1 05,

10 7, 114, 11 5, 55 7, 56 1
Gross, C. G., 368, 556 , 558
Grossberg, S., 42, 53, 70, 116, 146,

152, 162, 164, 167,418,510,90,
389, 494, 535, 556 , 561

Grossberg's models, 70-71
Guillery, R. W., 351, 561
Gutnick, M. J., 364, 369, 55 7

Georgopoulos, A. P ., 377-378, 560 Haggard , M., 85, 5 76
Gernsbacher, M. A., 79,559 Hale, B. L., 159, 563

Gerstein, G. L. , 385, 560 Halle, M., 24, 508, 168, 56 1
Gibbs sampler, research with, 264 Halmos, P. R., 422, 510

Gibson, E. J., 198 Hamiltonian function (fl), 211

Gilbert, C. D., 356, 358, 366 , 385, Hamori, J., 351, 5 7 7

480, 560, 561, 5 7 7, 5 78 Hard learning, example of, 299-303.
Ginsburg, H. P., 241, 509 See also Boltzmann machines

Copyrighted Material

INDEX 527

Harik. S. J .• 477. 561 Hebbian learning rule. 36, 37. 38.
Harmon ium mach ine . 212 53. 69- 70 . 297
Harmony function (ff). See also Heggelund . P .• 497. 56 4

Harmony theory Heidmann . T .• 38 7. 556
basic requirements of, 2 20-223 Hein. A . • 475 . 4 78, 558
cogn it ive systems and . 267-268 Heise, G., 63. 569
mathemat ic formulation of. 208. Hendrickson. A. E .• 344. 35 7. 566 .

211 571
retrieving i nformation from , 269- Henneberg. R . • 341 , 561

272 Hewitt , C .• 1 32 , 5 1 0
terminology, 268-269 Hidden uni ts , augmenting memory

Harmony theory. 2 1 3 -220 wi th . 209-214 . See also Memory,
conclusions on. 261-262 a distr ibuted model of
decis ion-making and freezing, 236- Hidden uni ts. defini t ion of, 48

240 H ierarchy, kinds of, 105 - 1 06
defin ition of. 148 Hinton, G. E .• 1 7. 20 . 33 . 42 . 80 , 82 .

electricity, problem-solv ing of, 83,84,96, 107, 114, 115. 127,
240-250 133, 264. 272. 282. 283, 289.

goal of. 198-199 297, 302.306.313.317,335,
learn ing new represen tat ions , 258- 350. 507. 508. 510. 511 . 5 15 . 8.

26 1 2 3,24, 63,68, 128. 129. 151.
macrodescr ipt ion . 25 1 - 258 1 73,1 75, 209, 210 . 277.2 78.
mathematical results, descript ion 312. 31 3, 314. 318, 322, 373,

of, 226 -236 377. 381 , 389, 393, 394,533,
competence theorem, 226-229 539. 548. 554, 562, 575, 577
learnability theorem. 235-236 Hi nton ' s scheme for mapping
ph ysics analogy, 229- 230 patterns, 1 14-11 5 , 117 , 118. See

real izabi l i ty theorem, 230-235 also Attention , networks for
perceptual process i ng central i ty, focusing

197-198 H i ntzman , D. , 1 71 . 1 72,100, 561

and probability , 220-226 Hiorns, R . W. , 344. 573
research w it h . 264 Hirst. G .• 311. 575
schema t heory and self-consistency Hoff, M. E .• 321. 444,516

of. 199-213 Hofstadter, D. R .• 43. 132 . 202, 2 13,

theorems on , formal presen tat ion 264. 5 1 1,20, 561
of, 264-281 Hogg, T., 3 1 3, 5 1 1.389, 561

top-down strategy pursued i n , 196 Hokfe lt , T., 350, 364, 560, 577

Harris, K. S., 92, 5 76 Homogeneous dipo le st imu lus

Hart , P. E., 380, 558 patterns (App .) , 191-193

Hash coding, 80 Hopfield, J. J., 43. 61, 81. 133. 148,

Hawken. M. J., 490. 555 285,286.296. 297.418,511. 13,

Hawkins. R . D . • 551. 561 14,389.394, 562

HEARSA Y model of s peec h Hopfield nets, applying s imulated
un derstanding, 43, 1 1 9. 1 22-123, annealing to, 288-289. See also

124 Simu lated anneal ing

B LACKBOARD. 123 Hopkins. W. F. , 477, 562

Hebb. D.O .• 36. 41,53, 152-153, Horizontal and vertical l ines.

5 10 Copyrighted Mat�Friments with. 184-190

528 INDEX

Horizontally hierarchical networks,
2 1 7

Houde, J . , 353, 355, 566
Houser, C. R . , 351 , 562
Hubel, D. H., 340, 353, 356 , 367,

373, 474, 475, 483, 497, 500,
562, 563, 566, 578

Huberman , B. A., 313, 511, 389, 562
Hughl ings-Jackson, J . , 41, 141-142
Human information processing. See

also PDP approach , reflections on
essential properties of, 537
new understanding of, 545-546

Human memory. See Memory, a
distributed model of; Memory,
retrieving information from

Hummel , R. A., 285, 286, 511, 514
Hunt, S. P., 364, 559
Huppert, F. A., 516, 5 1 7, 563
6-hydroxydopamine (6-0HDA),

477-496

Identity/ role combinations, 1 06 . See

also Case role assignment , model
of; Distributed representations

Imbert, M., 4 76 , 4 78, 556
Imig, T. J. , 356, 563
Implementational (physiological)

level of distributed memory, 121
Inner products . See also Vectors

algebraic properties of, 382-383
in two-dimensional space, 380-382

Input units , definition of, 48
Interactive activat ion model of word

perception , 43, 71 - 72 , 177-180,
216-2 1 7,125-129, 137-1 38

Interact ive model of reading
(Rumelhart) , 43, 122

Interactive models, represen tation of
in matrix form, 57, 59-61. See
also Interactive acti vation model
of word perception

layered systems , 60
one-step system, 60
single-level , 60

associators� Reading,
programmable blackboard model
of� Standard pattern associators

Interference of memories, 208-209.
See also Memory, a distributed
model of

Internal representations. See Delta
rule. generalized� Representation ,
learning of

IS-A hierarchy, 105
Isenberg, D .• 7. 511
Isomorphism hypothesis. See also

PDP models, neural and
conceptual interpretation of

of conceptual and neural levels.
395-396

failure of in nonlinear models,
422-424

levels and localized damage, 413-
416

levels, learning of connections and,
416-418

in l inear systems, 411 -413
Iverson, L. L . , 340, 563

Jackson , J. H . , 41, 141,511
Jacoby, L. L. , 1 71 , 1 72, 1 92, 1 93,

556,563
Jakimik, J., 61 , 98, 99, 1 00, 1 07,

1 1 1 , 557
Jelinek, F., 293, 508
Jenkins, 1. J., 473 , 569
Jenkins , W. M. , 385, 563
Johnson , D. S., 235, 508
Johnson, E., 324, 563
Johnston, D ., 477, 5 62
Johnston, J. C., 159 , 160, 563, 574
Jones, E. G., 351 , 352, 35 7, 363,

5 63,564
Jones, R. S., 56 , 406, 409, 410, 418,

507,173, 226 , 311 , 551 , 554
Jouvet , M. , 350, 555
Julesz, B., 18, 511
Just , M. A., 153, 161,549, 564,577

three-level , 59 Kaas, J. H., 345,352,354,385,386,
Interference of patterns, 139- 1 42. 387, 569, 570, 578

See also Programmable pattern Kahneman, D., 536, 564
Copyrighted Material

Kaiserman·Abramof, I. R., 336 , 361,
365,571

Kalaska, J. F., 378, 560
Kandel, E. R., 333, 364, 507, 552,

561 , 564, 576
Kanerva, P., 76, 465, 51 1
Kant, E., 17, 19,564
Kaplan, R. M., 1 19, 516,274,559,

564
Kasamatsu, T., 4 76, 477, 492, 497,

564
Kawamoto, A. H., 101, 511,277,

311,564
Kawashima , T., 77, 94, 560
Keele, S. W. , 171, 183, 200, 203,

572
Kelly,1. P. , 480, 560
Kewley·Port, D. , 85, 564
Kienker, P. K., 302 , 350, 511,515
Kinematics of the dynamical system,

398·399, 400·403. See also PDP
models, neural and conceptual
interpretation of

Kirkpatrick, S., 148 , 235 , 287, 511
Kisvardy, Z. F .• 363 , 576
Klatt, D. H., 59, 60,62. 564
Kliegl, R., 273. 567
Knapp, A., 173, 200, 564
Knowledge atoms

definition of. 202
and electricity problem·solving, 242

Koch, C., 365, 381, 383, 564. 565
Kohonen. T .. 42. 45. 62. 63. 152,

406.409, 418 , 422. 424, 425,
444, 446,455,461, 5Il. 222,
226, 380, 565

Konishi, M., 473, 565
Kratz, K. E., 490, 565
Krnjevfc, K .• 339. 565
Kubie. J. L., 435. 441. 445, 447.

565.570
Kucera. H., 74. 240, 565
Kuczaj, S. A., 219, 220. 221. 253,

257. 258, 565
Kuffler, S. W .• 367. 565
Kuipers, B., 433, 565

INDEX 529

Kuperstein, M .• 385, 565
Kupperman, B.; 478, 572
Kurtzman. H. S., 275, 565
Kuypers. H. G. 1. M., 352, 571

Laird, N. M . , 293, 509
Lakoff, G., 97
LaManna , 1. c., 477, 561
Lamperti, 1., 277, 511
Lane, H. L., 91 , 565
Lang, K., 127, 5 1 0
Lang, M., 511
Language acquisition device (LA D),

217. See also Verbs , learning past
tenses of

Larkin , 1. H., 24'1 , 512
Larsson, K., 350, 553
Lashley , K. S., 41,512
Law of mass action, 509·510. See

also Amnesia
Layered systems in interactive

models , 60
Lazarus, J. H. , 94, 572
Le. See Locus coeruleus
Leaky learning model. 1 79
Learnabi l i ty theorem, 235·236, 260
Learning. See also Boltzmann

machines; Delta rule , general i zed;
Memory, a distributed model of;
Neural plasticity and learning

in Boltzmann machines
easy and hard, 290-299
hard, example of, 299-303
learning algorithm, derivation of,

3 1 5 - 318
establishing features through, 2 58·

260
in symbolic and subsymbolic

paradigms, 261·262
Learning machine (Minsky and

Edmonds), 153-154
Learning paradigms, 54-57
Learning rule, general form of, 52·53
Leavitt, R. Y., 351, 563
Le Cun, Y .• 322, 512
Lehiste, 1.,61. 565
Lenneberg, E. H .• 473, 565 Kullback, S., 294, 511

Kuno, M .• 336, 565 Copyrighted MMMfa/U. R .• 63, 559

530 INDEX

Letter-perception model. See
Interactive activat ion model of
word perception

LeVay, S .• 350. 353. 355,361.3 74.
497.500.563. 565. 566

Levels of analysis. 121·129. See also
Isomorphism hypothesis

Marr's levels. 122-124
other notions of levels. 124-127
reduct ionism and emergent

properties. 127-129
Levin. 1. A.. 43. 85, 512. 90. 566
Levin's proteus model. 43
Levine. R. D., 227, 512
Lew is. B . , 341, 566
Lewis , C. H. , 251. 512
LGN cel ls. 480
Liberman. A. M .• 61. 62. 73. 92, 94,

95. 473. 560. 566. 569, 5 73. 5 76
Lichten. W .• 63. 569
Licklider , 1. C. R., 106, 566
Lieberman. F .• 489. 557
Limited fan-out. See Fan -out.

limited; Standard pattern
associators

Limited increment hypothesis. 520.
See also Amnesia

Lin , C. S . • 351. 560
Lindsay. P. H .• 8. 206. 512
Linear algebra

matrices and l i near systems
basis for vector space, change of.

413
descript ion of, 385-386
eigenvectors and eigenvalues ,

399·403
l ineari ty. 393
matrices. 386-390
matrix inverses , 410-413
matrix multipl ication and

mul tilayer systems. 395-399
one-layer PDP system. 390-393
PDP systems, 2 examples. 406-

410

vectors
basic operations of. 367-370
concepts , use of in analysis of

simple PDP model, 383-385
description of, 365·366
i nner products, 375
l i near combinations and

independence , 370-373
vector spaces, 374-375

Linear models, s imple, 61-63. See
also Linear algebra

auto-associator version of, 63
pattern associator, 63
s imple linear associator , 62
weaknesses of, 63

Linear th reshold un i ts, 63-66, 425,
224. See also Activation
functions

perceptron, 65
XOR function , 64-65

LISP programming language, 124
use of in P3 system, 492, 496-497

Llinas, R., 364, 370, 558, 566
Local representat ions, 77, 85, 96
Locus coeruleus (LC), 4 76-4 77, 493
Loeb, G. E., 383, 566

Loftus , E. F., 85, 508, 208, 566
Logical computation. notion of. See

Activation functions
Logogen model, 43, 192-1 93
Loomis. L. H .• 402, 566
Lorente de No, R., 344. 358, 566

Lovins. 1. B., 62, 560
Luce, R. D., 75. 93. 195, 566
Luce choice rule. appl ication of, 90·

91, 195
Lund, J. S., 35 7, 358, 361, 366, 3 74,

566,5 73
Lund, R. D., 336, 35 7, 566
Luria, A. R., 41,79, US, 512
Luria's dynamic functional system,

41
Lynch , J. c., 366, 56 7

transposes and the outer product, Ma , S. - K . , 388, 56 7
403-405 Macchi, G., 350, 56 7

nonlinear systems, 418·420 Macrodescri ption of harmony

Copyrighted Mat9lrgran ism. 246-258

INDEX 531

problem sol ving for, 246-247 one-layer PDP system. 390-3Q�
productions and expertise , 251-253 transposes and outer prod uct, 403-
schemata. 253 405

approximation , 256-258 Matr ix inverses. 41 0-413. See also
for rooms, 255-256 Matrices and linear systems
two-choice model , 253-255 Matr ix mapping, algebraic properties

MacWhinney, 8.. 273, 274, 554.56 7 of, 389-390. See also Matrices
Macy, A., 481, 567 and l inear systems
Magistretti. P. 1., 364, 569 Maunsell.1. H . R., 345,352,353,

Mann , V. A., 95, 118. 56 7 356. 500. 568, 5 77
Mapping from expressions. 439. See Maximum-l i kel ihood model , 292-294

also Boolean function McCarthy, J., 1 57-1 58, 51 2
Marcus. M. P., 317, 324, 567 McClelland, 1. L.. 20, 22, 24, 27, 28.
Marin , O. S. M., 1 34,51 4 42,43,71 , 79, 85, 120, 1 21 , 133,
Marin-Padilla, M., 363, 567 1 77, 199,202,216,321,51 2.
Mark, R. F., 490, 555 514,8,58.59, 63, 69. 71. 75, 77.
Marr, D., 18, 19.20.42, 113, 116, 80,90, 119, 123, 126, 127. 130.

1 17.121-122,123,196,283,51 2, 131,135,138,140, 141 , 1 42,
63, 119.378,567 170,172,195, 21 7, 370,380,

Marr's levels of analysis. 1 22-124. 381,383, 394.532.558,559,
See also Levels of analysis 568, 5 74

Marrocco, R. T., 480, 567 McClurkin , 1. W . • 480, 567

Marshall, 1. c., 102,508 McConkie, G. W., 1 61, 163, 568,

Marshal l. W. H .• 352, 579 573

Marslen-Wilson, W. D., 43. 512. 63. McCulloch , W. S., 1 52,424.51 2
77, 79,80, 9 7, 98, 99, 275, 56 7 McDermott, D., 432.568

Martin , K. A. c., 363, 56 7, 576 McGeoch, L. A .• 235, 508
Massaro, D. W .• 77, 81, 86. 94, 567. McGil l . J. , 145, 575

568,5 71 McGuinness, E. , 374, 375. 553

Massey, T., 378. 560 McNaughton , B. L . , 448, 568

Matrices and linear systems. See also MD. See Monocular deprivation
Linear algebra Medin, D. L., 1 71, 181,200.205.

basis for vector space , change of, 536, 568

41 3-418 Medi tch , J. S., 456,512
descriptions of, 385-386 Memory , a distributed model of. See
eigenvectors and eigenvalues, 399- also Distributed representations ;

403 Memory, retrieving information
examples of PDP systems, 406-410 from

l ineari ty, 393-395 conclusions on, 214-215

matrices, 386 detailed assumptions of, 1 76-182

addi t ion of. 387-389 experimental results of simulations
matrix mapping. algebraic repetition and fami l iarity effects,

properties of, 389-390 192-199

scalars , multiplication by, 386 representation of general and
matrix i nverses. 41 0-41 3 specific information , 199-206

multiplication and multilayer extensions of model

systems, 395-398 amnesia , spared learning i n , 207-

algebraic properties of, �yrighted MatedllP

532 INDEX

Memory, a distr ibuted model of Mi l ler , W., 254
ex tensions of model (continued) Milner , B., 504, 506 , 510, 514 , 569

interference and fan effects, 208- Minciacchi , D . , 350, 56 7

209 M insky , M . , 65 , 76, 96, 1 1 1 - 1 l 3,
memory blends, 208 153, 1 54, 157- 1 58 , 160, 233, 29 1 ,
regular i t ies of behavior, 3 1 9,3 2 1 , 334 , 348 , 354 , 36 1 ,

emergence of, 207 424, 5 13 , 18, 19, 535 , 569

semant ic memory , emergence of Mi tchel l , D . E. , 475, 558

from episodic traces , 206 Mitchinson , G., 296 , 297, 468, 486 ,
general properties of, 1 73-1 75 509

modular structure, 1 74- 1 75 M i tra , S. K. , 455, 513
paltern of act i vat ion, 1 75 Miyuwaki , K . , 473, 569

h idden uni ts , augment ing model Models , s imi lar i t ies and differences
with , 209-214 between , 4-5

model 's behavior, key aspects of, Modifications of patterns of
182- 1 92 in terconnectivity i n PDP models,

relation to basic concept i n , 176 5 2-53. See also Learni ng
theories of, 2-3, 1 70- 1 71 Modular structure of memory , 79,

Memory, retr ieving information 174- 1 75. See also Memory , a
from. See also Distr ibu ted distr ibuted mode l of
representations, fealures of; Molinari, M . , 35, 56 7

Memory, a distr ibuted model o f Monocular deprivat ion (MD) , 474,
content addressabi lity, 25-29 4 75
de fau l t assignment , 29-30 00 shift under, 48 7
graceful degradation , 29 rearing, 489
spontaneous general izat ion , 30-31 Monocular occlusion (AM) , 4 74

Mercer, R. L . , 293, 508 Monotonicity concepts for act i vat ion
Merzen ich , M. M . , 385, 386, 38 7, functions, 427-428. See also

563, 569 Act i vat ion functions
Mesulam, M. M . , 350, 569 Monotonicity- in -context , 426-428
Metropol i s , N . , 230, 277, 5 1 3 Montero, V . M. , 35 1, 569

Meyer , D. R. , 352, 579 Moran , 1 . , 374 , 558

Michael , C. R. , 36 7, 368, 56 9 Morrel l , F. , 3 79, 569

Micro- and macrolevels of harmony Morris, R. G. M . , 434 , 466, 569

theory, 203-204, 2 1 0 Morrison , J. H . , 364, 569

Microdescription , problem-solving Morton , J . , 43, 513, 9 7, 106, 1 92,
of, 246 . See also Electricity 570
problem-solving Moser , M. G . , 313, 5 70

Microfeature , 80-8 1 Motor cont rol
Microfeatures, semantic. See example of mult i ple constraints in ,

Semantic microfeatures 4-6
Microstructure of cogn i t ion , 1 2- 1 3 P D P models for, examples of, 1 3-
Miezin , l, 374, 375, 553 1 8
Miller, D . T. , 536, 564 finger movements in ski lled
Miller, G. A., 63, 106, 323, 566, 569 typing , 14-16
Miller, J. L., 62, 96, 569 reaching for objects, 1 6- 1 8
Miller, J. P. , 381 , 382, 569, 5 75 Mountcastle, V. B. , 356, 366, 3 73,
Miller, P., 515, 5 76 385, 56 7, 5 70

Copyrighted Material

Moussouris , J . , 289, 5 1 3
Mower , G . D. , 4 78, 5 70
Mozer , M . C , 68 , 1 27 , 507, 5 1 3 ,

1 25, 139, 1 40, 1 42, 5 70
Mul ler, R. U. , 435, 44 1 , 445 , 44 7,

565 , 5 70
Mult iple l i near regression and the

delta ru le , 457·458 . See also
Delta rule, analysis of

Mul t iple s imul ta neous constra ints ,
4·9, 58, 124, 2 72·2 75

mu tua l cons t ra i n ts, 7
operat ion of in syn tax and

semantics , 6-7
dupl icat ion of connection

informat ion , need for to ex plo i t ,

124
role assignment , use of i n , 2 72-2 75
s imu l taneous m utual constra in ts i n

word recogni t ion , 7-9
speech percept ion , role of i n , 124

Munro, P. W., 42, 1 80 , 508, 480,
48 7, 489, 495, 496, 555, 5 70

Murray, E. A. , 35 7, 5 70
Mutt , V . , 364 , 560

I N DEX 533

groups of neurons behavior i n
cerebral cortex , 365- 366

neurons wi thout many spines, 36 1
neurons wi t h spines, 360-361
si ngle·neuron behavior in cerebral

cortex , 364- 365
special cel l types , 362-364

Network damage . See Damage ,

effects of on a network; Gracefu l
degradat ion

Neural and conceptual interpreta t ion
of PDP models. See PDP models ,
neural and conceptual
i n terpretation of

Neura l - l ike processing systems ,
common learn ing paradigms i n ,
1 60· 1 6 1

Neural mode l ing , 1 30
Neural nets, b iological l im i ts on

storage capacity of, 469-470. See
also Fan-ou t , l im i ted

Neural or un i t level of
representation. See Pat tern-based
coordi nates , delta rule in

Neural p las t i ci ty i n cerebra l cortex ,
385·38 7. See also Cerebral

Nadel , L. , 435 , 445, 5 1 0, 52 7, 5 71 , cortex , questions about
5 76 computat ion i n

Nakatan i , L . , 6 1 , llO, 5 70 Neural p last ici ty and learn ing
Nathan, P. W. , 514, 515 , 5 74 cri t ical period , effect of
Nat iv ism vs. empir ic ism , 1 3 9· 1 42 environment on , 4 78

Nauta, W. J . H. , 334, 342, 5 70 cri t ica l period of, 4 73·4 78
NE. See Norepinephrine ocular domi nance , measur ing
Necker cu be , l l , 13, 16, 28. See also changes i n , 4 74·4 76

Schemata , concept of plasticity· modulat ing processes ,
Neely, R. B . , 63, 122, 5 73 4 76·4 78
Negation problem, 346-348. See also discussion of, 4 71 · 4 73, 4 94·499

Delta rule, genera l ized ex isting mod ificat ion rules, state
Neisser, U., 8 1, 1 1 3 . 1 1 6 , 2 1 2 , 5 1 3 , dependence and , 494·496

5 1 5 global modulators as dynamic

Nelson, R . J . , 352, 354, 385, 4 77, variables , 496·49 7

56 9, 5 70 predictions for , 497·499

Nelson , S . B . , 4 77, 554 experimental data on , comparison
Neocortical neurons, nature of with , 489·494

cel l types in , 358·360 ocularity state and i ts effect on ,
experimental methods, 35 7·358 4 78·489

feature detection , 36 7-3 71 model neuron , 4 79· 480

fi ri ng, rates of, 366-36 7 C ,,.,,., � d M � oc.ularity plane , 480-484
opyn�, ,Ie a,enaT

534 INDEX

Neural p last icity and learning
(continued)
state dependencies of plastici ty ,

484-489
PDP models , learn ing rate as factor

in. 4 72
s ingle-un i t learn ing . focus on, 471
summary of, 501
terminology . 473
visual cortex , ideas described with

respect to ocular dominance in ,
499-501

Neural process ing in cerebral cortex .
3 78-381. See also Cerebral
cortex , quest ions about
computation in

Neural real ism, lack of in PDP
models, 1 36- 1 38

Neurons . See also Cerebral cortex ,
anatomy and physiology of;
Neocortical neurons. nature of

behavior in the cerebral cortex

isomorph ism. fai l u re of i n , 411-414
quasi- l i near systems wi th, 418-422
use of. 4 1 8-42 1

l im i ted dynamic range and, 420-
42 1

subthreshold summation , 420
Nonpyramidal cel ls. 358-360. See

also Neocortical neu rons, nature
of

Norepinephrine (NE) , 476-4 77, 478,
480, 493

as potent ial modulator of neural
plast ic i ty, 4 76-477. 491-494 , 497

Normal rearing (NR) . 4 74
Norman, D. A . . 8 , 9 , 1 4 , 1 5 , 79,

1 1 6 . 1 33 , 206, 5 1 2 , 5 1 3 , 5 1 4 , 18,
19 , 53 7, 539, 540. 543, 545, 555,
5 70, 5 74

Norris , D. , 63, 100 , 5 7/
NR. See Normal rearing
Nusbaum , H. C. 110. 5 7/

groups of neurons, 365-366 Ochs , M. T. , 385, 5 63
single neuron , 364-365 Ocular dominance (OD)

classical descri ption of, 335-33 7 class , 484
connect ions between , in bra in , h istograms, 4 75, 4 79. 489, 490

1 32 - 1 3 3 shift , under M D. 48 7
commun ication among, 1 3 2 statist ics , 4 74-4 76
continuous out put of, 1 33- 1 34 Ocular dominance index . 481 -483,
gracefu l degradation of. 1 34 484, 490
neocortical , 358-365 vs. responsivity plot , 491
number of, 1 3 1 Ocularity plane, power o f as tool in
speed of , 1 30- 1 3 1 theoretical analyses of ocular
systems, 1 3 1 - 1 3 2 dominance plast ic i ty, 483-484
treated as devices, 424-425 (see Ocu lari ty state and i ts effect on

also Boolean funct ion) plasticity , 4 78-480. See also
without many spines , 361 Neural plasticity and learning

wit h spines , 360-361 ideal neuron . 4 79-480
Newel l , A . , 1 08 , 1 95 , 5 1 3 ocularity p lane, 480-484
Newsome, W. T. , 34 7, 356 , 554, 568 plastici ty , state dependence of,
Newtonian mechanics, 1 25 484-489
Nicholson , C. , 364, 566 OD. See Ocular dominance
Ninteman , F. W. , 493, 5 72 Oden, G. C. , 7 7, 2 75, 568, 5 71
Nonl inear systems. See also PDP ODH . See Ocular dominance,

models, neural and conceptual histogram
interpretation of 001. See Ocular dominance index

distributed, natural competit ion in , 6-0HDA. See 6-hydroxydopam ine
414-428 . d Oh�awa

/
l . , 481 , 491, 560 , 567 Copynghte Matena

Oja , E., 489, 55 7
O'Keefe , J . , 434, 435 , 445, 448, 466 ,

568, 569, 5 71
O' Kusky , 1 . , 348, 5 71
Olson, C. R. , 4 75, 5 71
Olson, L . , 350, 553
Olton , D. S . , 435, 522, 554, 5 71
One-layer PDP systems , use of

matrices in analyz ing, 390-393 .
See also Matrices and l inear
systems

One-layer perceptron , 1 1 1 - 1 1 3
l im itat ions of, 1 1 2- 1 1 3

One-step system i n i nteractive
models, 60

Optimization problems, use of l inear
programming for , 284-286

Organization of Behavior, 53, 1 52
Ortony, A . , 1 9, 32, 5 74
Output un i ts

defin i tion of, 48
as major aspect of PDP models , 46,

48 -49

INDEX 53 5

system) , 453-454
competit ive learning methods (App.

B), 504-506
descript ion of, 364, 488-489
major components of, 489-490
performance of, 500-501
plan for competi t ive learn ing, (App.

A) , 502-503
plan language of, 490, 49 1 -497
simpl i fied diagrams of, 454-455,

464
s imu lat ion system, 497-500
typical plan for , 490

Parity networks, 1 59 , 1 60
Parity problem , 334-335 See also

Delta rule, genera l i zed
Parker , D. B . , 322 , 3 6 1 , 5 1 3
PARSIFAL (Marcus) , 31 7
Parsing in PDP models, 31 7-323
Part / whole h ierarchy , 105
Past-tense acquis i t ion , th ree stages

of, 21 9-22 1 . See also Verbs ,
learning past tenses of

Patte, P . , 38 7, 556
Pattern of act i vat ion , i n distri buted

P3 system . See Paral lel process model of memory , 1 75
programmer memory traces as change in

PABLO. See Reading, program mable weights, 1 76
blackboard model of mental state as, 1 76

Palay, S . L . , 338, 5 71 prior, ret rieval as reinstatement of,
Palmer, R. G. , 296, 5 1 1 , 5 1 3 1 76
Palmer, S . E. , 1 1 7 , 5 1 3 and response strength , 1 94-1 95
Pandemonium, 42 Pattern association paradigm ,
Pandya, D. N . , 352, 5 71 , 5 73 defin it ion of, 55
Papert, S . , 6 5 , 76 , 96, 1 1 1 - 1 1 3 , 1 5 8 , Pattern associators. See also

1 60 , 2 3 3 , 29 1 , 3 1 9 , 3 2 1 , 334 , Programmable pattern associators;
348, 354 , 3 6 1 , 424, 5 1 3 , 535, 569 Standard pattern associators ;

Paradigms of learn ing Verbs , learn i ng past tenses of
associat ive, 54-55 basic properties of , 33-37 , 226-228

regu lar i ty discovery, 5 5 defini t ion of, 1 6 1
Paradiso, M . A . , 4 7 7, 554 learn ing regular and except ional
Parallel distr ibuted processing . See patterns in , 226

PDP. models , attract ive propert ies of, 3 8
Parallel Models of Associative Memory, restr ict ions of, 228-233

3 3 , 533 Pattern-based coordinates, delta rule
Parallel network s imu lat ing system. in, 447-453

See Parallel process programmer in conceptual i n terpretat ion of PDP

Parallel process programmf(td/J/righted MatfWlmlels, 406-41 1

536 INDEX

Pattern complet ion device , use of
Boltzmann machine as, 289-290.
See also Bol tzmann machines

Pattern of connect ivity as major
aspect of PDP models , 46 , 49-5 1

Patterson , K. , 1 02 , 508
PDP approach and cogn i t ive science

conclusions on , 1 45- 1 46
natural applicat ions of, 1 44
object i ons to

analys is , wrong leve l of, 1 2 1 -1 27
cogni t i ve approach, lack of, 1 20-

1 2 1

problems of, 543-545
new d i rect ions i n , 545-546
strengths of, 535-539

descript ion , levels of, 538-539
human information processing,

essent ia l propert ies of, 53 7
schema, 536-53 7
useful resu l t of, 53 7-538

weaknesses of, 539-543
evaluati ve structure , need for,

541 -542
mul t iple systems, required for,

542-543
cognit ive theories, constra ints of, type-token problem , 539-540

1 29- 1 36 var i ables , 540-541
conscious knowledge and expl ic i t PDP models , act i ve representation

reason ing, 1 43 - 1 45 i n , 3 1 -40, 1 75- 1 76

human vs. rat inte l l igence, 1 43 local vs . d istr i buted , 32
lack of neural rea l ism i n , 1 36- 1 3 8 pattern associator models att racti ve
Marr's levels , 122-124 properti es of, 3 8
nat ivism vs. empi ricism , 139- 142 pattern associ ators , 33-37
other notions of levels, 1 24- 1 27 structure of ensemble of pat terns ,
reductionism and emergent ext ract ing, 39-40

properties, 1 27 - 1 29 PDP models and the bra in . See also

weaknesses of, 1 1 1 - 1 20 Cerebral cortex , anatomy and
status of various models , 1 44- 1 45 physiology of; Cerebral cortex ,

PDP approach , in t roduction to quest ions about computation in
active representation i n , 3 1 -40 relat ionsh ip between , 328-330
as al ternati ve to serial models, 1 2 - models of neural mechanisms,

13 330-331

appeal of, 3 -4 , 1 0- 1 2 neurophysiology relevant to, 32 7-
examples of 328

memory retr ieval , 25-3 1 PDP models , future di rections for ,
motor con t rol , 1 3- 1 7 54 7-552

percept ion, 1 8-24 PDP models, general framework for
h istory of, 4 1 -44 bottom-up processing, 57-59
local vs . distr i buted representat ion , conclusions o n , 74-76

32-33 h ierarchical organizat ions, 57
pattern associator models interact ive models , 59-60

attract i ve propert ies of, 38 learn ing paradigms, 54-57
ensemble of patterns , extracting major aspects of, 46-54

structure from, 39-40 act ivat ion rule, 5 1 -5 2
learn ing mul t iple pat terns, 37 -38 learn ing ru le , 52 -54
learn ing rules of, 36-37 propagat ion ru le , 5 1
work ings of, 33-36 sigma-pi un i ts , 73-74

PDP approach , reflect ions on synch ronous vs . asynchronous
computer metaphor and , 533-535 update, 6 1

learn ing and consciousneeapyrighfed MtiRJlispwn processi ng, S9

versions, specific
brain state in a box model (BSB) ,

66·68
Feldman and Ballard 's un its , 7 2
Grossberg's un i ts , 70·7 1
interact i ve act ivation mode l , 7 1
l i near t h reshold un i ts , 63·66
s imple l inear models , 61·63
thermodynamic models , 68·70

PDP models , learning rate as factor
in, 4 72·4 73. See also Neural
plast ici ty and learning

PDP models , neural and conceptual
in terpretat ion of

conclusions on , 429·431

consideration of, 390·391
distributed nonl inear models ,

natura l compet i t ion i n , 424·429

as dynamical systems, 39 7·398
i n terpretat ions, 391 ·396
isomorphism hypothes is , fai l ure of

in nonl inear models , 422·424
kinemat ics , 400·403
k inemat ics and dynamics, 398·399
learn ing connect ions and

isomorphism of levels, 4 1 6·418
l i near systems, isomorph ism of

levels in , 41 1·413

local ized damage and, 4 13·416
nonlinearity , quasi· l inear systems

wi th , 418·422
pattern coordinates , 406·41 1
vector space , structure of, 403·406

Pearlmutter , B . , 298
Pearson , 1. c., 385, 5 75

Peck , C. K. , 4 75, 5 71

Peptides in the cerebral cortex, 340

Perez, R. , 494, 5 71
Perception , examples of for PDP

models
famil iar patterns and, 20·23
novel patterns, completion of, 23·

25
stereoscopic vision, 1 8-20

Perceptrons (Rosenblat t) , 1 54· 1 5 8
convergence procedure, 4 1 ·42 , 6 5 ,

225-226

INDEX 537

learning ru le , 53 , 1 54· 1 57
paral lel reorganiz ing elements,

158·159
Perceptua l process ing, centrality of,

1 97·198. See also Harmony
theory

Perkel , D. H . , 381 , 5 71

Perke l , D. J., 38 1 , 5 71
Perre t t, D. I . , 368, 5 71
Perry , 1 . , 1 95 , 508
Peterhans, E., 3 76, 5 78

Peters , A . , 336 , 338, 361 , 363, 365,
559, 5 71 , 5 72

Petersen , S. E. , 34 7, 554

Pet i tjean , F . , 350, 555
Pett igrew, J. D . , 4 76 , 4 77, 48 7, 490,

492, 555, 564

Phase t ransi t ions, computat ional
significance of, 236·237

Phi l l i s , J . W. , 339, 565
Phoneme iden t ificat ion , factors

i nfluencing
categorical percept ion , 84, 88· 95
detectors , retun ing of by con tex t ,

95· 9 7
lexical effects on , 7 7· 78

factors infl uencing, 78-80
s imulations, summary of, 9 7
trading relat ions, 84·88
use of phonotactic rules i n , 8 1 ·81

Phonemic restorat ion effect , 20
Piaget , J. , 1 7, 1 9, 5 72
Piercy , M . , 5 1 6 , 5 1 7, 563
Pi l lsbury, W. B . , 20, 5 1 3
Pin ker, S . , 21 7, 5 72
Pinto-Hamuy, T. , 352, 5 79

Pison i , D. B . , 60 , 77, 92, 94, 1 00,

5 72 , 5 74
Pi t ts , W, 1 5 2 , 424, 5 1 2
Place-fi eld model . See also Place

recogni t ion and goal location ,
biologically plausible models of

descript ion of, 436-441

goal location , 449

properties of, 439·440

scope of, 448
shape and size, 445-446

class e', 1 57· 1 58 Copyrighted Material

538 IN DEX

Place recognit ion and goal locat ion ,
biological ly plausible models of

� -coefficient constants (App.) ,
46 7-468

� -coefficient model , 460-466

� units (App.) , 469-4 70
conclusions on , 466
distal landmarks , 445
distributed view-field mode l , 449-

460
goal location, 449
location parameters, 441 -443
model , descript ion of, 436-441

properties of, 439-440
place-field location , 446-448

place-field mode l , scope of, 448
place-field shape and size, 445-446
place recogni t ion , 434-436
s imulated experiments, 443-445

Plan language, as major component
of P3 system, 489 , 490, 49 1 -497

creating P3 plan for, 493-497
features of, 490
functions of, 491-493

Plasticity, neural . See Neu ral
plasticity

Podgorny, P . , 501 , 5 75
Poggio, T . , 1 8, 1 9 , 20 , 4 2, 117,5 1 2 ,

513, 129, 365, 381 , 383, 564,

565, 5 72
Poincare, H . , 2 13, 5 13
Pollack , 1 . B. , 277, 2 78, 31 1 , 314,

5 78

reading. See Reading,
programmable blackboard model
of

Programmable pattern associators .
See also Connection information
d istr ibut ion mechanism; Reading,
programmable blackboard model
of

CA units , requirements of, 474-476
CID networks, requi rements of,

473-474
conclusions on, 486
discussion of, 485-486
distr ibuted representations ,

s imul taneous access to, 483-485
mult i ple pattern processing, 477-

478
overlapping, 478-480
s imul taneous access , cost of, 481-

482
single pattern processi ng, 476-477
summary of CA requi rements ,

480-48 1
Proskauer, C. c. , 336, 361 , 363, 5 71 ,

5 72
Prototypes

coexistence of and repeated
exemplars, 189- 1 92

learning from exemplars, 182-184
multiple, nonorthogonal , 184- 188

Pyramidal cel ls , 358-360. See also
Neocortical neurons , nature of

Porrino, L. J . , 350, 5 72 Quasi - l inear act ivation function , 52 ,
Poschel , B. P. H. , 493, 5 72 425. See also Activation
Posner, M . I ., 1 71 , 183, 200, 203 , functions

5 72 Quasi- l inear systems with
Powell , T. P. S . , 344 , 348, 350, 351 , nonl ineari ty, 418-422. See also

352, 556, 560, 563, 564, 5 72, 5 73 Nonli near systems; PDP models,
Pri nce, D . A., 364, 369, 55 7 neural and conceptual
Principles of Neurodynamics, 4 1 -42 , in terpretation of

1 54 Quasi- local interpretations, 394-395 .

Probabi l i ty theory, 209-2 1 0 See also P D P models, neural and
Processing units, set of for PDP conceptual i nterpretation of

model , 46-48 Quasi-mult i l inear act ivation function ,
vs. one-uni t -one-concepl 426. See also Activation

representational system, 47 fu nctions
Programmable blackboard re8�hted �, M. R . , 85, 5 1 3

INDEX 539

Rader, R. K., 4 9 7, 5 7 7 conspi racies of, / 5 7-/59
Rail , W., 336, 381 , 382, 569, 5 72, Real izabi l i ty theorem, 230-235

5 75 Receptor, cartoon of, 508-509 . See
Ralston, H . 1 . , 336, 5 72 also Amnesia
Ramachandran , V. S., 4 78, 5 72 Recurrent networks, 3 54-360. See
Ranck, J . B. , Jr . , 435, 441 , 445, 44 7, also Delta rule, general ized

565, 5 70 performance of, 359-360
Random-dot stereograms, 18 sequence complet ion , learning of,
Rao , C. R. , 45 5 , 5 1 3 358-359
Rauschecker, J . P. , 4 76 , 4 78 , 5 76 shift register problem and, 357-358
Rawlins, J . N. P. , 434 , 466, 569 Recursion , 1 1 9- 1 20, 318-320
Rayner, K . , 1 53 , 161 , 1 63, 1 64, 2 75 , Reddy, D . R . , 63, 1 0 7, 122, 5 73

560, 5 72, 5 73 Reductionism, PDP models as
Reading, programmable blackboard exercise i n , 1 27- 1 29

model of (PA BLO) Redundancy , benefits of, 472 . See
ambiguous characters, 155- 1 5 7 also Standard pattern associators
amount of feedback , effect of Reese , T. S . , 336 , 5 72

display length on , 1 5 9-161 Regularity detector paradigm, 1 6 1
cm computer s imulation , results Reich , P. A. , 323, 5 73

of, 136- 141 Rei l ly , D. L., 4 99, 5 73
conclusions on, 168-169 Reitboek, H. 1. P., 385, 5 73
connection information Relaxation searches , use of parallel

distribution , networks to perform , 283-290

benefits of, 1 64- 166 learning, difficult and easy, 290-292
computer s imulation of word maximum l ikel ihood models , 292-

recognit ion using, 134-136 294

cost of, 166- 1 6 7 optimization problems and, 284·

ex tensions of, 1 6 7- /68 286
mechanism, detai ls of. /29-136 pattern completion , 289·290

(see also Programmable pattern . probabil ist ic decisions, use of to
associators) escape from local minima, 287-

description of, 2, 1 25 288
fixations, sequences of, / 6 1 - 1 64 s imulated anneal ing, appl icat ion of
fixations, s ingle and mult ip le, 153- to Hopfield nets , 288· 289

155 Relaxation system, 1 3 5 - 1 36
i n teract i ve activation model , Relearn ing, speed of in Boltzmann

bottom-up activations of word mach ines, 308-3 1 0
uni ts in cm version of, /3 7-138 Repetit ion and fami l iarity effects,

interference and crossta lk , 139- 1 41 / 92- / 99
PABLO simulat ion model a l ternat ive i nterpretat ion of, 1 93-

coarse coding , 1 46- 1 4 7 / 94
detai ls of, /5/-153 pattern action and response
feedback, 1 4 7 strength , 1 94- 1 95

focus of attention , shift ing, / 4 7- t ime-accuracy curves , effects of

/5/ experi mental variables on , / 95-

. overlappirig slots i n , 1 43-14 7 / 99

role-speci fic letter un its , 145- 1 46 t rad i t ional i n terpretat ion of, 1 92-

words of d ifferent l engthsCopyrighfed MattJi:lal

540 INDEX

Repp, B. H. , 95, 1 18, 56 7, 5 73
Representat ion , dis tributed. See

Distributed represen tation
Represen tation of environment as

major aspect of PDP models, 5 3 -
5 4

Representation vector of harmony
theory , 2 1 3- 2 1 4

Represen tat ional features of
harmony theoret ical model , 2 1 3 -
2 1 4

Representat ion , learning of. See
Boltzmann mach ines;
Compet i t ive learning; Delta rule,
general ized

Representat ion , learn ing of new in
harmony theory

procedure and abstract features ,
258- 260

i n symbolic and subsymbol ic
paradigms , 26 1

Reproduction tria ls , 520. See also
Amnesia

Residual learn ing skil ls in amnesia,
518-524.

Ret inocent ric feature detectors , 1 1 4
Retrograde amnesia , 505-506, 513-

515
Reverse learn i ng, occurrence of,

See also Reading, programmable
blackboard model of

Rolls, E. T. , 368, 5 71
Rosch , E. , 1 71 , 5 73
Rose , J. E., 345, 5 73
Rosen, I . , 35 7, 554
Rosenblatt , F. , 4 1 , I l l ,] 52 , 1 53 -

1 54 , 1 5 5 - 1 5 7 , 1 58 , 29 1 , 424, 5 1 4,
226, 289, 535, 5 73

Rosenbluth , A. W. , 230, 277, 5 1 3
Rosen bluth , M . N . , 230, 2 7 7 , 5 1 3
Rosenfeld, A . , 2 8 5 , 5 1 4
Rosen thal , M . , 4 7 7, 561
Ross , B. H . , 206, 554
RS. See Reverse suture
Rubi n , D. S . , 293, 509
Rudnicky, A . , 58, 55 7
Rule of propagation as major aspect

of PDP models , 46, 5 1
Rumelhart , D . E. , 6 , 9, 1 4 , 1 5 , 20 ,

2 2 , 24, 4 3 , 7 1 , 1 1 6 , 1 20 , 1 2 1 ,
1 30 , 1 33 , 1 7 7 , 1 99, 202 , 2 1 6 ,
300, 3 2 1 , 5 1 2 , 5 1 4 , 7, 18, 1 9 , 31 ,
59, 71 , 75, 77, 90, 1 70, 1 95, 21 7,
316, 380, 394, 532 , 539, 540,
545, 568, 5 73, 5 74

R ussel l , W. R . , 514, 515, 5 74
Ryder, 1 . M . , 7 , 5 1 1

296-298 Sachs, M . B. , 383, 5 74
Reverse suture (RS) , 4 74, 48 7-488, Saffran , E. M . , 1 34, 5 1 4

489 Said, S . , 364, 560
Reverse suture paradigm, t ime Sakaski , K., 3 70, 558

course of, 489-490. See also Salasoo, A . , 60, 1 00, 1 9 7, 1 98, 559,
Visual cortex, developmen tal 5 74
models of Sal vert , D . , 350, 555

Ribak, C. E . , 363, 5 72 Samuel , A. G. , 95, 160, 5 74

Riley, M. S . , 24 1 , 264, 5 1 4 , 5 1 5 Sanderson , K . 1 . , 480, 5 74
Rinzel , J . , 381 , 382, 56 9, 5 75 Sayers , F. c . , 324, 563
Ri tz , S. A . , 56, 406, 409, 4 1 0, 4 1 8 , Scalars, m ult ip l ication by , 367, 386 .

507 , 1 73, 226, 3 1 1 , 399, 55 1 , 554 See also Matrices and l inear

Roberts, E. , 35 1 , 562 systems ; Vectors

Rock , I . , 1 1 7 , 5 1 4 Schacter , D . , 5 1 9 , 5 74

Rocke! , A. 1 . , 344, 5 73 Schaffer, M. M . , 1 7/ , 200, 536, 568
R ockland, K. S . , 352, 366 , 3 74, 5 73 Schank , R. c. , 6 , 9 , 20 1 , 202 , 5 1 4 ,
Role-assign ment model . See Case 18, 1 9, 3]4, 5 74

role assignment , model of Scheibel , A . B., 351 , 5 74
Role-specific letter un its , I�/J#fghted n§�P5WcfJ, M. E. , 351 , 5 74

Schein , S. J . , 3 74 , 558
Schema ta , concept of, 9, 78-79 ,

1 99- 2 1 3 , I , 7-3 7, 536-53 7
account of mental processing, 38-

53
consciousness , content of, 3 9
cont rol , prob lem of. 3 9-40
con versa t i ons and, 42-44
external represen tat ions and

formal reason i ng , 44-48
mental models and, 40-42
mental s t imulat ion and pract ice,

42
assumptions made about , 30-31
concl us ions on , 53-5 7
constrain t satisfact ion and, 1 7
descri ption of, I , 7-8
example of, 22-25
examples of processing of, 25-31
goodness-of-fit landscapes of, 15,

16 , 28, 29, 30, 3 1 , 32-33, 35
in harmony theory, 1 99-2 1 3

comp le t ion task , 206 - 208
construction of, 20 1 - 203
formulat ion of , 209-2 1 0
function of, 208
knowledge atoms, nature of in ,

205-206
logical structure of, 1 99-200
mathematical propert ies of

probabi l i ty and, 2 1 1 -2 1 3
micro- and microlevels of, 203-

204
modified letter perception mode l ,

204-205
h is tory of, 1 7- 1 9
important features of. 1 9-20
i nterpretation differences and, 21
PDP models as constraint

networks, 8-1 7
propert ies of

act ive processes , 36
addit ional features, 36-3 7
goodness-of-fit evaluation to data,

36
knowledge representat ion , 36
subschema, 35

variables, 33-34
summary of, 3 1 , 48

INDEX 54 1

th ink ing , goal di rection i n , 48
use of as knowledge structures , 9

Scherme r , T. M . , 96, 56 9
Sch i l ler , P. H . , 36 7, 5 74
Schmo lze , J. G . , 313, 555
Sch ne ider , W. , 1 26 , 54 9, 5 75
Schumacher , L. E. , 302 , 3 50 , 5 1 1 ,

5 1 5
Schwanenn ugel , P . 1 . , 1 8 1 , 205, 568
Schwartz, 1 . H . , 333, 507, 552, 564
Schwartz , M. F. , 1 34 , 5 1 4
Schwartz , M . , 4 7 7, 554
Schweikert , J . , 7 , 5 1 1
Sclar, G . , 492, 560
Scott , G. L., 351 , 569
Scott , 1 . P. , 4 73, 5 75
Scri pts, use of as knowledge

struct ure , 9
Sears, T. A . , 336, 553
Segev, I . , 381 , 382, 5 75
Segui n , S . , 350, 555
Sejnowsk i , T. J. , 1 1 8 , 264, 2 7 2 , 2 8 2 ,

289 , 297 , 302 , 3 0 6 , 3 1 3 , 3 1 7 ,
3 3 5 , 348 , 3 5 0 , 507 , 508, 509,
5 1 0, 5 i l , 5 1 4 , S I S , 23, 24, 63,
1 28, 3 73, 3 7 7, 3 79, 380, 393,
554, 562, 5 75

Se lfridge , O. G . , 8 , 4 1 , 2 1 2 , 5 1 5
Selman , 8 . , 321 , 5 75
Semantic cues . See Word-order and

semantic cues to role assignment
Semantic memory, emergence of

from episod ic t races , 206. See
also Memory, a distr ibu ted model
of

Semantic microfeatu res, 2 78-283.
See also Case role assignment ,
model of

Sememe units , 97-98, 99, 1 0 1 - 1 02 ,
305- 3 1 0. See also Arb i t rary
mapping; Damage, effects of on a
network

Semi l inear act ivat ion funct ions. See
Act i va tion funct ions , semi l inear

Sencer, W. , 352 , 5 79

Copyrighted Material

542 INDEX

Sentence processing in PDP 4 1 8 , 507, 1 73, 226, 3 1 1 , 399,
networks. See Case role 55 J, 554
assignment , model of Simon, H. A. , 24 1 , 508

Sentence-structu re (SS) S i mple b inary addi t ion problem ,
representat ion , 283-286. See also 34 1 ·346. See also Delta rule,
Case role ass ignment , model of general ized

Sequential symbol process ing, 1 06- S imulated annea l ing , 287, 288-289,
1 08 3 1 3 . See also Cool ing schedule;

Sequentia l thought processes i n PDP Harmony theory
models . See also Recurrent S imulat ion system environment , as
networks; Sequent ia l symbol major component of P3 system ,
processing; Seria l i ty , emergent 489 , 497-500

account of mental processi ng , Singer, W. , 4 76 , 4 78, 5 75 , 5 76
development of, 38-39 Single·level i n teract i ve model , 60

conclusions on, 53-57 S ingle-shot algori thms, 380. See also
consciousness, contents of, 39 Cerebral cortex , questions about
control , problem of, 39-40 computation in
conversat ions , 42-44 S ingle-un i t l earn ing, focus on , 4 72 .
external represen tat ions and formal See also Neural plast ic i ty and

reasoning, 44-48 learning
important aspects of , 47 Singley, 209
role of l anguage i n , 4 7 Sk i rbol l , L . R. , 350, 5 7 7

mental models and, 40-42 Slate r , P . c . , 513 , 515 , 5 76
mental s imulat ions and pract ice, 42 Siobi n , D. 1 . , 221 , 24 7, 249, 250,
summary of, 48 251 , 254, 255, 256 , 556
th inking, goal di rect ion i n , 48 Siowiaczek , L. M . , 120, 5 71

t ic-tac-toe example of, 48-53, 54 Smal l , S . L. , 2 77, 3/4, 55 7, 5 76
Seria l i ty , emergent, 247 , 249. See Sm i th , D. c . , 490, 565

also Electrici ty problem-solving Smi th , E. , 24 , 5 1 5
Settlage, P. H . , 352, 5 79 Smith , P. T. , 24 , 5 1 5
Shal l ice, T . , /45, 543 , 5 70, 5 75 Smolensky, P. , 1 2 5 , 24 1 , 2 59 , 264 ,
Shankweiler, D. , 92, 94, 566 277 , 289 , 447 , 5 1 4 , 5 1 5
Shannon , C. E . , 1 95 , 267 , 5 1 5 Sokolov, 1 . L. , 2 74, 56 7
Sharma, v. K. , 4 7 7, 561 Somogyi , P. , 362, 363, 56 7, 5 76
Shaw, G. L . , 385, 5 75 Spared learning i n amnesia, 518-519 ,
Shepard, R . N . , 1 98 , 5 1 5 , 501 , 536, 521 -524. See also Amnesia

5 75 Spear, P. D. , 490, 565
Shepherd, G. M. , 336, 381 , 382, Speech , fundamental aspects for

5 72, 5 75 development of TRACE model
Sherk , H . , 350, 3 74, 566 archi tecture for TRACE model ,
Sherman , S . M., 351 , 560 importance of, 63-64
Shiffrin , R. M. , 1 9 7, 1 98, 559 , 5 74 context effects , left and righ t , 60
Shlaer, R . , 494, 5 71 cues , sensi t i vi ty of, 62

Sickels , E. R. , 324, 563 lack of boundaries , 60, 61
Sigma-pi units, 72 , 7 3 · 7 4 , 426 speech s ignal , noise and

generalized delta rule for , 353 i ndeterminacy i n , 62-63
S i lverman , D. 1 . , 385, 5 75 s t imu l us , temporal nature of, 59-60
Si lverste i n , I . W., 56, 406. 409 . 4 1 0 , temporal overlap, 60·61

Copyrighted Material

Spencer , W. A . , 364, 5 76
Spoehr, K. , 24 , 5 1 5
Spoken word recogni t ion , study of,

97- 98
Spontaneous learn ing (Rosenblatt) ,

1 55- 1 56
Squashing funct ion , 4 2 5 , 485-489.

See also Act ivation functions;
Oculari ty state and its effect on
plasticity

Squi re , L. R., 505 , 510, 513, 515,
516, 51 7, 525, 52 7, 556, 5 76

Standard pattern associators. See also
Program mable pattern associators

conclusions on , 486
degradat ion , effects of, 472
l imited fan-ou t , effects of, 468-472
programmable nets , resource

requ i rements , 465-468
redundancy, benefi ts of, 472
resource requ irements of, 460,

46 1 -465
computat ions of, 463-465

Stanford , L. R., 351 , 560
State of act ivat ion as major aspect of

PDP model , 46, 48
State space (S) , 398·399. See also

Kinematics of the dynamical
system

coordinate system for , 400
of general nonl inear act ivation

model , 402
pattern view of, 406
un i t coord inates for , 400-401

Statistical learn ing, analyzing case of,
4 53 ·4 5 7 . See also Delta rule,
analysis of

Steedman , M . , 2 74 , 55 7
Sternberger, 1. P . , 248, 5 76
Sternberg, S . , 1 33 , 5 1 5 , 402, 566
Stevens, K. N. , 61, 1 68, 561 , 5 76
St imulus equivalence, problem of,

1 1 3 · 1 1 4
Stochas t i c generat ive model , 293·

294, 3 1 3
Stochastic un its , 8 1

INDEX 543

Structu re in representat ions and
processes , 1 04· 1 08

const i tuent structu re , 1 05· 1 06
sequential symbol process ing , 1 06-

1 08
Studdert-Kennedy, M . , 92, 94, 566,

5 76
Subsymbol ic and symbolic

paradigms, learn ing i n , 2 6 1 ·262
Subth reshold summation , 420. See

also Nonl inear systems , use of
Summerfield, Q., 85, 5 76
Sur, M . , 352, 354, 385, 56 9, 5 70
Surround effects in visual cortex ,

3 74-3 77. See also Cerebral
cortex, questions about
computation in

S utton , R . S . , 4 3 , 5 3 , 5 7 , 444 , 508,
5 1 5 , 383, 539, 554, 5 76

Swanson , L. W. , 350, 5 76
Swets , 1 . A . , 466 , 5 1 0, 225, 56 1
Swinney , D . A . , 109, 5 7 7
Symbol ic a n d subsymbolic

paradigms, learn ing i n , 26 1 ·262
Symmetry problem , 340·34 1 . See

also Delta rule , genera l ized
Synapses in the cerebral cortex ,

basi c types , 338·339
Synaptic change , neurochemistry of,

50 7·509. See also Amnesia
Synchronous u pdate vs .

asynchronous update , 6 1
Syn tactic processing i n PDP models,

31 7·323
Szentagothai , 1 . , 351 , 361, 5 77

T-C problem , 348· 3 5 2 . See also
Delta ru le, general ized

Tabula rasa , 1 39 , 1 4 1
Takeuch i , A . , 489, 495 , 553
Talbot , W. H . , 366, 56 7
Tan k , D . , 389, 562
Tash , 1 . , 92 , 5 72
Tei te lbaum , P. , 1 4 2 , 5 1 5
Tel ler , A . H . , 230, 2 7 7 , 5 1 3
Tel ler , E . , 230 , 2 7 7 , 5 1 3 Strang, G . , 4 1 1 , 4 2 2 , 5 1 5

Strange, W. , 4 73, 569 Copyrighted �aum , J . M . , 63 , 554

544 INDEX

Termina l parameters, 49 1 . See also 57-59
P3 system Top-down theoret ical st rategy

Terrace , H. S . , 1 83 , 5 1 5 pursued i n harmony theory, 1 96,
Theorems, harmony, (App.) 1 99- 2 1 3

Boltzmann machines , second-order Torre , V. , 1 1 7 , 5 1 3 , 129 , 365, 381 ,
observables and, 273 -275 565, 5 72

harmony function H, cogn i t ive Touret , M . , 350, 555
systems and, 267-268 Touretzky, D., 322 , 548, 5 7 7
terminology , 268-269 TRACE model of speech perception

overview of defin i t ions , 264-267 compared to Fanty's parser, 321-
proofs of, 275-28 1 322
retrieving information from H, conclus ions on , 120- 1 2 1

269-272 deficiencies of, 1 1 9- 120

storing informat ion in H, 272-273 descri ption of , 2, 58-59, 64-68,
Thermal equ i l i br ium of network , 1 23- 124, 1 43, 153- 154

290-29 1 , 3 1 3 phoneme ident ification , factors
Thermodynamic l imit , 239 i n fl uencing
Thermodynamic models , 68-70 categorical percept ion , 84, 88- 95

Boltzmann mach ines , 68, 69 lexical effects of on , 7 7-81
harmony theory , 68 phoneme detectors, retun ing of

Thibadeau , R., 1 6 1 , 549, 5 7 7 b y context , 95- 9 7
Thomas , G . 8. , J r . , 2 7 6 , 5 1 5 s imulat ions , summary of, 9 7
Thompson , H. , 6 0 , 6 3 , 8 4 , 1 0 7, 5 7 7 t rading relat ions , 84-88
Thompson , R. F. , 383, 552, 561 use of phonotact ic rules in , 81 -83
Th ree-dimensional plots , 429, 430- phoneme units , context-sens i t ive

438 . See also Activat ion tuning of, 68-69
funct ions programmable version of, 1 6 7- 168

Three- layer network , 97-98. See also speech , fundamental aspects for ,
Arbi t rary mapping, implement ing 5 9-63

Th ree-level interactive mode l , 59 spoken word recogn i t ion , study of,
Three-stage learn ing curve, 240-245. COHORT model , 98- 1 0 1 , 1 02,

See also Verbs , learn ing past 1 03
tenses of word segmentat ion , lex ical bas is

Th reshold logic uni t , 425. See also of, 1 06- 1 1 5
Acti vat i on functions word segmentat ion s imu lat ions,

Tic- tac-toe , as example of sequential summary of, 1 15- 1 1 7
thought processes i n PDP models , successes , summary of, 1 1 7- / 1 9
48-53, 54 TRACE I model , 6 9 , 70- 71 , 75, 76

Tigges , J . , 348, 5 77 TRACE II model , 6 9, 70, 71 - 75,
Ti gges, M. , 348, 5 7 7 76, 102, 1 10
Timing Travis , A. M., 352, 5 79

problem of, 3 78-380 Tri bus , M . , 227 , 5 1 2
of sensory st imulat ion , 383-384 T'so, D. Y . , 385 , 5 7 7
temporal b inding, 383-385 Turner, M. R . , 385, 560

Timney , B . N . , 4 75, 558 Tversky , A . , 4 99, 560
TombOl , T., 35/ , 36 / , 363, 5 77 Two-dimens ional space , i n ner
Top-down approach , 1 23 products i n , 380-38 2 . See also
Top-down processing syst��ghted MateYfifl.ors

Two- layer scheme in harmony
theory, advan tages of, 2 1 8-2 1 9

Tyler , L . K . , 97, 98, 99, 104, 2 75,
56 7, 5 7 7

Type-token problem, a s weakness o f
PDP approach t o cogn i t ion , 539-
540

Uchizono, K., 339, 5 7 7
Ungerleider, L . G . , 3 74 , 558
Ungerstred t , U . , 350, 553
Uniform monotonic i ty , 426-428
Un iformly nondecreas i ng function .

as spec ial case of un i formly
monoton ic fu nc t ion , 427

Un iqueness and con t in u i ty
constrai nts, 1 9-20

Unit parameters, 49 1 . See also P3
system

UNIT TYPE s tatemen t for pattern
generator in P3 , 493 -494

Un learning, 296-298 . See also
Bo l tzmann mach i nes

I NDEX 545

i n ner products , 3 7 5 -376
algebraic properties of i n ner

product . 382 -383
angle , 3 77 -379
length , 3 76- 3 7 7
project ions, 3 79-380
two-di mensional space, i n ner

products i n , 380-382
l i near combi nat ions and

i ndependence
combinat ions of vectors , 370-37 1
l i nea r i ndependence, 3 7 1 - 373

vector spaces , 374-375
st ructure of , 403-406

Venesky , R. L . , 24 , 5 1 5
Verb-frame select ion for role

assignment models , 300-301
Verbs , i rregu lar , types of, 245-246 ,

24 7-254. See also Verbs , learning
past tenses of

Verbs , learn i ng past tenses of
b i nd ing networks for (App.) , 26 9-

2 71
conclusions on , 266-268

Valverde , F . , 363, 559 example of model based on LAD

Van Dam , A . , 46 7, 559 approach , 21 7-2 1 9

Van der Loos , H. , 366 , 5 77 issue of, 3 , 216-21 7

Van Essen, D. c., 352, 353, 355, model of
356, 368, 500. 566, 568, 5 7 7 learn ing a n d , 225-226

Van Hoesen , G. W. , 350, 569 operat ion of, 223-225
van Santen , J . P . H . , 159 , 160, 563, phono logica l patterns, featural

5 74 representat ions of, 233-239

Van Sluyters, R. C. , 489 , 490, 491 , s imple pattern associa tor model ,
555 226-233

Variable t ranslat ional mappi ngs , 1 1 6 struct u re of, 221-223

Vaughn , J. E. , 351 , 562 summary of structure of, 239-240
Vecchi , M. P., 1 48 , 23 5 , 287 , 5 1 1 novel verbs , t ransfer to, 261-266

Vector nota t ion , delta ru le i n , 445- s imulat ions, main points of

447 . See also Delta rule, analysis i rregular verbs , types of, 245-246 ,

of 24 7-254

Vectors. See also Linear a lgebra regularizat ion , types of, 25 7-260

bas ic operat ions of regular verbs , types of, 245-246,

calculat ing averages , 369 24 7

scalars , mult ipl icat ion by, 367 three-stage learn ing curve , 240-

vectors , add i t ion of 368-369 245

concepts , use of to analyze s imple vowel-change verbs, 254-25 7

PDP model , 383 -3 8 5 . stages, sequence o f i n acquisit ion

descript ion of, 365 -366 Copyrighted MatdiMse of, 2 1 9-221

546 INDEX

Verbs , regular , 245-246 , 24 7, 254-
25 7, 2j8-260. See also Verbs,
learn ing past tenses of

Verbrugge , R., 4 73 , 569
Vertical and horizontal l i nes,

experiments wi th , 1 84- 1 90
Vertical ly h ierarchical networks, 2 1 7
Videen , T. 0. , 4 9 7, 5 7 7

View-field model . distr ibuted . See
Distr ibuted view-field model

Vincen t , S. R . , 350, 5 7 7

Visual cortex , developmental models
of. 489-494

alternati ng monocular occlusion ,
4 90, 491

norepinephrine, role of, 492-494
responsi vity, relat ion of to

connect iv i ty , 4 90, 492
reverse suture paradigm, t ime

course of, 489-490
Visual system, 282-283 . See also

Boltzmann machines
Vital-Durand . F . • 497. 500. 555, 5 77
Voight , H . F. , 383, 5 74
Volman, S . F . , 36 7, 5 74

von der Heydt. R .• 3 76. 5 78
von der Malsberg, C .• 42. 1 47 . 1 5 2 .

1 62 , 1 64 , 5 1 6 . 384. 489. 494. 5 78
Von Neumann archi tecture . 534-535.

See also PDP approach ,
reflect ions on

Von Neumann computer metaphor.
1 95

Vygotsky. L. S . , 43, 4 7, 5 78

Walker, A. E. , 349, 5 78
Wal ker , E. C. T . , 7 , 5 1 1
Walker, J . A . • 435. 554
Wall . J T. , 385, 569

Waltz, D. L . , 2 7 7. 2 78, 3 l I , 314.
5 78

Warren , R. M . • 20, 5 1 6

Webster. H . de F . • 338, 5 71
Weight-decay. use of in Boltzmann

machine. 298·299.
Weller. R . E. , 345, 5 78

Welsh, A . , 43 , 5 1 2 , 63, 77 , 79, 80,

98, 99, 56 7

Werbl in , F. S . , 336, 5 78
Wessels, J , 99, 1 04, 5 7 7
Westrum, L . E. , 336, 5 78
Whit teridge , D. , 354, 363, 558, 56 7,

5 76
Whi ttlesea, B. W. A . , 1 71 , I ll, 200,

20 1 , 202 , 203, 204, 556, 5 78
Wickelfeature representat ion

(Wickelgren)
b lurr ing, 238-239
detai ls of, 234-239

Wickelgren , W. A . , 62, 181 , 233,

5 1 0, 5 l I , 52 7, 5 78
Wickelphones, 233-234, 236-238
Widrow, G . , 3 2 1 , 5 1 6
Widrow- Hoff rule, 5 3 , 2 9 1 -292 . See

also Delta rule
Wiener, 534
Wiese l , T. N . , 340, 353, 356, 358,

366, 36 7, 3 73, 3 74, 385, 4 74,
4 75, 483, 4 9 7, 500, 56 1 , 562,
563, 566 , 5 7 7, 5 78

Wil l iams, R. J . , 425 , 5 1 6
Wil lshaw, D . J. , 42 , 97 , 1 00, 460,

46 1 , 465-466, 468, 472 , 475 , 5 1 6
Wi l l s haw nets , 46 1 -46 5

comparison of to various kinds of
local representat ion , 465

d ifficul t ies wi t h , 465-468
Wi lson , H . R. , 381 , 389, 5 78
Winston , P. H . , 3 2 , 5 1 6 , 524, 5 78
Wise , R. A . , 493, 5 78
Wise, S . P . , 35 7, 564

Wolverton , G. S . , 1 6 1 , 568
Wood, C. c . , 1 02 , 5 1 6 , 55 1 , 5 78
Woods , W. , 1 1 9 , 5 1 6 . 322. 5 78
Woolsey , C. N . , 352, 5 79
Woolsey , T. A . , 355, 500. 558. 579
Word identification s imulat ions in

TRACE, summary of . l I 5- 1 1 7
Word-order and semantic cues to

role assignment. 293-300. See
also Case role assignment. model
of

Word perception model (McC le l land
& Rumelhart) . See Interact i ve
act ivat ion model of word
perception

Copyrighted Material

Word segmentat ion , lexical basis of
for TRACE, 1 06- 1 1 5

identification , word, 1 12- 1 1 5
nonwords , e n d of, 1 1 1 - 1 1 2
short sentence example, J 1 5

word inputs , single and mul t iple ,
1 0 7- 1 1 1

Wu, T. Y . , 350, 5 7 7
Wyatt , H . J . , 500, 558

XOR problem, 3 1 9-32 1 , 330-334 .
See also Del ta ru le , genera l ized

Yin, T. C. T. , 366 , 56 7
Young, E. D . , 383, 5 74

Zadeh , L. A . , 423 , 5 1 6
Zek i , S . M . , 368, 3 74 , 5 7 7, 5 79
Zipser, D . , 97, 300, 5 1 4 , 432, 43 7,

438, 440, 442, 443, 444, 44 7, 5 79

Zola , D . , 1 6 1 , 568
Zucker, S. W . , 285 , 286 , 5 1 1 , 5 1 4

Copyrighted Material

INDEX 547

