
 

PARALLEL DISTRIBUTED 
PROCESSING 

Copyrighted Material 



Computational Models of Cognition and Perception 

Editors 

Jerome A. Feldman 
Patrick J. Hayes 
David E. Rumelhart 

Parallel Distributed Processing: Explorations in the Microstructure of 
Cognition. Volume 1: Foundations, by David E. Rumelhart, 
James L. McClelland, and the PDP Research Group 

Parallel Distributed Processing: Explorations in the Microstructure 0/ 
Cognition. Volume 2: Psychological and Biological Models, by 
James L. McClelland, David E. Rumelhart, and the 
PDP Research Group 

Neurophilosophy: Toward a Unified Science o/the Mind-Bra;n, by 
Patricia S. Churchland 

Qualitative Reasoning About Physical Systems, edited by 
Daniel G. Bobrow 

Visual Cognition, edited by Steven Pinker 

Copyrighted Material 



PARALLEL DISTRIBUTED 
PROCESSING 

Explorations in the Microstructure 
of Cognition 

Volume 1: Foundations 

David E. Rumelhart James L. McClelland 

and the PDP Research Group 

Chisato Asanuma 
Francis H. C. Crick 
Jeffrey L. Elman 

Geoffrey E. Hinton 

Michael 1. Jordan 

Alan H. Kawamoto 
Paul W. Munro 
Donald A. Norman 
Daniel E. Rabin 
Terrence 1. Sejnowski 

Paul Smolensky 
Gregory O. Stone 
Ronald 1. Williams 
David Zipser 

Institute for Cognitive Science 

University of California, San Diego 

A Bradford Book 

The MIT Press 
Cambridge, Massachusetts 

London, England 

Copyrighted Material 



Twelfth printing, 1999 

© 1986 by The Massachusetts Institute of Technology 

All ri ghts reserved. No part of this book may be reproduced in any form by any 

electronic or mechanical means (including photocopying, recordin g, or information 

storage and retrieval) without permission in writi ng from the publisher. 

Printed and bound in the United States of America 

Library of Congress Cataloging-in-Publication Data 

Rumelhart, David E. 
Parallel distributed processing. 
(Computational models of cognition and perception) 

Vol. I by David E. Rumelhart. James L. McClelland and the PDP Research Group. 

"A Bradford book.'· 

Includes bibliographies and indexes. 
Contents: v.l. Foundations-v.2. Psychological 

and biological models. 

I. Human information processing. 2. Cognition. I. McClelland, James L. 
II. University of California. San Diego. PDP Research Group. Ill. Title. IV. Series. 

BF 45 S . R853 1986 153 85-24073 

ISBN 0-262-18120-7 (v.1 ) he ISBN 0-262-68053-X (v. I ) pb 

0-262-13218-4 (v.2) 0-262-63110-5 (v.2) 

0-262-18123-1 (set) 0-262-631 12-1 (set) 

Copyrighted Material 



Preface 

Acknowledgments 

VOLUME 1 

FOUNDATIONS 

Addresses of the PDP Research Group 

Part I THE PDP PERSPECTIVE 

Contents 

ix 

xv 

xix 

1 The Appeal of Parallel Distributed Processing 3 
1. L. MCCLELLAND, D. E. RUMELHART, and G. E. HINTON 

2 A General Framework for Parallel Distributed Processing 45 
D. E. RUMELHART, G. E. HINTON, and 1. L. MCCLELLAND 

3 Distributed Representations 77 
G. E. HINTON, 1. L. MCCLELLAND, and D. E. RUMELHART 

4 PDP Models and General Issues in Cognitive Science 110 
D. E. RUMELHART and 1. L. MCCLELLAND 

Copyrighted Material 



VI PARALLEL DISTRIBUTED PROCESSING 

Part II BASIC MECHANISMS 147 

5 Feature Discovery by Competitive Learning 151 
D. E. RUMELHART and D. Z1PSER 

6 Information Processing in Dynamical Systems: 
Foundations of Harmony Theory 194 

P. SMOLENSKY 

7 Learning and Relearning in Boltzmann Machines 282 
G. E. HINTON and T. 1. SEJNOWSKI 

8 Learning Internal Representations by Error Propagation 318 
D. E. RUMELHART, G. E. HINTON, and R J. WILLIAMS 

Part III FORMAL ANALYSES 363 

9 An Introduction to Linear Algebra in Parallel Distributed 
Processing 365 

M. I. JORDAN 

10 The Logic of Activation Functions 423 
R. J. WILLIAMS 

11 An Analysis of the Delta Rule and the Learning of 
Statistical Associations 444 

G.O STONE 

12 Resource Requirements of Standard and Programmable 
Nets 460 

J L. MCCLELLAND 

13 P3: A Parallel Network Simulating System 488 
D. ZIPSER and D. E. RABIN 

References 507 

Index 517 

Copyrighted Material 



CONTENTS VII 

VOLUME 2 
PSYCHOLOGICAL AND BIOLOGICAL MODELS 

Preface to Volume 2 

Addresses of the PDP Research Group 

Part IV PSYCHOLOGICAL PROCESSES 

IX 

xi 

14 Schemata and Sequential Thought Processes in PDP Models 7 
D. E. RUMELHART. P. SMOLENSKY, 1. L. MCCLELLAND, and G. E. HINTON 

15 Interactive Processes in Speech Perception: 
The TRACE Model 58 

J. L. MCCLELLAND and J. L. ELMAN 

16 The Programmable Bl ackboard Model of Reading 122 
J L. MCCLELLAND 

17 A Distributed Model of Human Learning and Memory 170 
J. L. MCCLELLAND and D. E. RUMELHART 

18 On Learning the Past Tenses of English Verbs 
D. E. RUMELHART and J. L. MCCLELLAND 

19 Mechanisms of Sentence Processing: Assigning Roles 

216 

to Constituents 272 
J. L. MCCLELLAND and A. H. KAWAMOTO 

Part V BIOLOGICAL MECHANISMS 327 

20 Certain Aspects of the Anatomy and Physiology of the 
Cerebral Cortex 333 

F H c. CRICK and C. ASANUMA 

21 Open Questions About Computation in Cerebral Cortex 372 
T. 1. SEJNOWSKI 

22 Neural and Conceptual Interpretation of PDP Models 390 
P. SMOLENSKY 

Copyrighted Material 



viii PARALLEL DISTRIBUTED PROCESSING 

23 Biologically Plausible Models of Place Recognition and 
Goal Location 432 

D. ZIPSER 

24 State-Dependent Factors Influencing Neural Plasticity: 
A Partial Account of the Critical Period 471 

P. W. MUNRO 

25 Amnesia and Distributed Memory 
J. L. MCCLELLAND and D. E. RUMELHART 

Part VI CONCLUSION 

26 Reflections on Cognition and Parallel Distributed 
Processing 

D. A. NORMAN 

Future Directions 

References 

Index 

Copyrighted Material 

503 

529 

531 

547 

553 

581 



Preface 

One of the great joys of science lies in the moment of shared 
discovery. One person's half-baked suggestion resonates in the mind of 
another and suddenly takes on a definite shape. An insightful critique 
of one way of thinking about a problem leads to another, better under
standing. An incomprehensible simulation result suddenly makes sense 
as two people try to understand it together. 

This book grew out of many such moments. The seeds of the book 
were sown in our joint work on the interactive activation model of word 
perception. Since then, each of us has worked with the other and with 
other collaborators. The results of these collaborations are reported in 
several of the chapters of this book. The book also contains many 
chapters by other colleagues whose explorations have become 
intertwined with ours. Each chapter has its own by-line, but each also 
reflects the influences of other members of the group. We hope the 
result reflects some of the benefits of parallel distributed processing! 

The idea of parallel distributed processing-the notion that intelli
gence emerges from the interactions of large numbers of si mple pro
cessing units-has come and gone before. The idea began to seem 
more and more attractive to us as the contrast between our convictions 
about basic characteristics of human perception, memory, language, and 
thought and the accepted formal tools for capturing mental processes 
became more apparent. Symbol-processing machines, for all their Tur
ing equivalence , had fa�}RdHtlJ}j<Ai

a
Hfnt�1 frameworks for capturing 



X PREFACE 

the simple insights about the interactive nature of processing that had 
lead to such models as the HEARSAY model of speech understanding. 
More generally, they had failed to provide a framework for representing 
knowledge in a way that allowed it to be accessed by content and effec
tively combined with other knowledge to produce useful automatic 
syntheses that would allow intelligence to be productive. And they 
made no contact with the real strengths and weaknesses of the 
hardware in the brain. A Cray computer can perform on the order of 
100 million double-precision multiplications in a second, but it does not 
exhibit natural intelligence. How then are we to understand the capa
bilities of human thought, given the time constants and noisiness 
inherent in neural systems? It seemed obvious that to get any process
ing done in real time, the slow, noisy hardware in the brain would have 
to do massively parallel processing. 

As our interest in parallel mechanisms developed, we began to study 
the work of others who shared our convictions and to build on their 
work. Particularly important in this regard was Hinton and 1. A. 
Anderson's (1981) Parallel Models oj Associative Memory. Indeed, we 
see our book as a descendant of their book on two accounts. First, the 
material presented here represents further developments on the work 
presented in Hinton and Anderson's book. Second, we owe a particular 
intellectual debt to both Hinton and Anderson. Our interest in distrib
uted, associative memories goes back to interactions with Jim Ander
son, beginning as early as 1968. Our interest in these topics began in 
earnest, however, during the period when we were developing the 
interactive activation model of word perception, in 1979, shortly after 
Geoffrey Hinton began a postdoctoral fellowship at UCSD. Geoffrey's 
crisp explanations showed us the potential power and generality of 
models created from connections among simple processing units, and 
fit together nicely with our own developing conviction that various 
aspects of perception, language processing, and motor control were best 
thought of in terms of massively parallel processing (see McClelland, 
1979, and Rumelhart, 1977, for our earliest steps in this direction). 

The project culminating in this book formally began in December, 
1981 when the two of us and Geoffrey Hinton decided to work together 
exploring the implications of network models and to write a book out
lining our conclusions. We expected the project to take about six 
months. We began in January 1982 by bringing a number of our col
leagues together to form a discussion group on these topics. During 
the first six months we met twice weekly and laid the foundation for 
most of the work presented in these volumes. Our first order of busi
ness was to develop a name for the class of models we were investigat
ing. It seemed to us that the phrase parallel distributed processing (PDP 
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PREFACE XI 

for short) best captured what we had in m ind . It emphasized the paral
lel nature of the processing, the use of distributed representations and 
distributed control, and the fact that these were general processing sys
tems, not merely memories we were studying, as the phrase associative 
memory suggests. Thus the PDP research group was born. Hinton and 
McClelland left after the first six months- Hinton to CMU and 
McClelland to MIT and later to CMU. The PDP research group, how
ever, has continued regular meetings at UCSD up to the present time. 
The group has varied from five or six of us at times to as many as 15 
or more at other times, and there is now a parallel group of about 15 or 
so psychologists and computer scientists at CMU. 

Shortly after leaving UCSD in 1982, Hinton began working with 
Terrence Sejnowski on the Boltzmann machine (Chapter 7) and decided 
to dt"�p from the role of organizer of the project to a cont r i butor , so he 
could spend more time working on the implications of the Boltzmann 
machine. Thus, the primary responsibility for putting the book 
together fell to the two of us. At first we expected to complete the 
book within a year after we began our work. Soon, however, it became 
clear that there was much work to be done and many directions to 
explore. Thus, our work continued and expanded as we and our col
leagues followed the implications of the PDP approach in many dif
ferent ways . 

A good deal has happened since we began this project. Though much 
of the initial groundwork was laid in early 1982, most of the material 
described in these volumes did not take its present form until much 
later. 

The work has been interdisciplinary and represents what we consider 
a true cognitive science approach. Although the two of us have been 
trained as cognitive psychologists, the PDP group as a whole includes 
people from a wide range of backgrounds. It includes people trained in 
physics, mathematics, neuroscience, molecular biology, and computer 
sciences, as well as in psychology. We also envision an interdisciplinary 
audience for our book. We are cognitive psychologists and we hope, 
primarily , to present PDP models to the community of cognitive 
psychologists as alternatives to the models that have dominated cogni
tive psychology for the past decade or so. We also, however, see our
selves as studying architectures for computation and methods for artifi
cial intelligence. Therefore, we hope that this book will be seen as 
relevant to researchers in computer science and artificial intelligence. 
Also, the PDP approach provides a set of tools for developing models 
of the neurophysiological basis of human information processing, and 
so we hope portions of these books will seem relevant to neuroscien
tists as well. 
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xii PREFACE 

ORGANIZATION OF THE BOOK 

Our book consists of six parts, three in each of the two volumes. 
The overall structure is indicated in the accompanying table. Part I pro
vides an overview. Chapter 1 presents the motivation for the approach 
and describes much of the early work that lead to the developments 
reported in later sections. Chapter 2 describes the PDP framework in 
more formal terms. Chapter 3 focuses on the idea of distributed 
representation, and Chapter 4 provides a detailed discussion of several 
general issues that the PDP approach has raised and explains how these 
issues are addressed in the various later chapters of the book. 

The remaining parts of the book present different facets of our 
explorations in parallel distributed processing. The chapters in Part II 
address central theoretical problems in the development of models of 
parallel distributed processing, focusing for the most part on fundamen
tal problems in learning. The chapters in Part III describe various 
mathematical and computational tools that have been important in 
the development and analysis of PDP models. Part IV considers 
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applications and implications of PDP models to various aspects of 
human cogni t ion , including perception, memory, language, and higher
level thought processes. Part V considers the relation between parallel 
distributed processing models and the brain, reviews relevant aspects of 
the anatomy and physiology, and describes several models that apply 
PDP models to aspects of the neurophysiology and neuropsychology of 
information processing , learning , and memory. Part VI contains two 
short pieces: a reflection on PDP models by Don Norman and a brief 
discussion of our thoughts about promising future directions . 

How to read this book? It is too long to read straight through. Nor 
is it designed to be read this way . Chapter 1 is a good entry point for 
readers unfamiliar with the PDP approach, but beyond that the various 
parts of the book may be approached in various orders, as one might 
explore the different parts of a complex object or machine. The vari
ous facets of the PDP approach are interrelated, and each part informs 
the others; but there are few strict sequential dependencies. Though 
we have tried to cross- reference ideas that come up in several places, 
we hope that most chapters can be understood without reference to the 
rest of the book . Where dependencies exist they are noted in the intro
ductory sections at the beginn ing of each part of the book . 

This book charts the explorations we and our colleagues have made 
in the microstructure of cognition . There is a lot of terrain left to be 
explored. We hope this book serves as a guide that helps others join us 
in these ongoing explorat ions. 

December 1985 James L. McClelland 
PITTSBURGH, PENNSYLVANIA 

David E. Rumelhart 
LA JOLLA, CALIFORNIA 
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CHAPTER 1 

The Appeal of 
Parallel Distributed Processing 

J. L. McCLELLAND, D. E. RUMELHART, and G. E. HINTON 

What makes people smarter than machines? They certainly are not 
quicker or more precise. Yet people are far better at perceivi ng objects 
in natural scenes and noting their relations , at understanding language 

and retr i eving contextually appropriate information from memory, at 
making plans and carrying out contextually appropriate actions, and at a 
wi de range of other natural cogn i t i ve tasks. People are also far better at 
learning to do these things more accurately and nuently through pro
cessing experience . 

What is the basis for these differences? One answer, perhaps the 
classic one we might expect from artificia l intel ligence , is " software ." If 
we only had the right computer program, the argum ent goes, we might 
be able to capture the nuidity and adaptab il ity of human informat ion 
processing. 

Certainly this answer is partially correct . There have been great 

breakthroughs in our understanding of cogn ition as a result of the 

development of express ive high- leve l computer languages and powerful 
algorithms. No doubt there will be more such breakthroughs in the 
future . However, we do not think that software is the whole story. 

In our view, people are smarter than today's computers because the 

brain employs a basic computational architecture that is more suited to 
deal with a central aspect of the natural information processing tasks 

that people are so good at. In this chapter, we will show t hrough exam
ples that these tasks generally requi re the simul taneous consideration of 

many pieces of i nformat ion or const raints . Each constraint may be 

imperfectly specified ancl ambiguaus.. .yet fach can play a potentia l ly copyngme M8rena 



4 THE POP PERSPECTIVE 

decisive role i n  determin ing the outcome of processing. After examin
ing these points , we will introduce a computational framework for 
model ing cogni t ive processes that seems wel l  sui ted to exploi t ing these 
constaints and that seems closer than other frameworks to the style of 
computation as it might be done by the bra in. We wi l l  review several 
early examples of models developed in this  framework, and we wi l l  
show that the mechanisms these models employ can give rise to  power
ful emergent properties that begin to suggest attracti ve alternati ves to 
tradi t ional accounts of various aspects of cogni tion . We wi l l  also show 
that models of this class provide a basis for understanding how learning 
can occur spontaneously, as a by-product of processing  act ivity .  

Multiple Simultaneous Constraints 

Reaching and grasping. Hundreds of t i mes each day we r�ach for 
things. We nearly never th ink about these acts of reach ing .  And yet, 
each t ime, a large number of different considerations appear to jointly 
determine exactly how we wi l l  reach for the object. The posi t ion of the 
object , our. posture at the t ime, what e lse we may also be holding, the 
size, shape, and antici pated weight of the object , any obstacles that may 
be in the way-al l  of these factors jointly determine the exact method 
we wil l use for reaching and grasping. 

Consider the situation shown in Figure 1 .  Figure 1 A shows Jay 
McClel land's hand, in typing posi t ion at his terminal . Figure 1B indi
cates the posi tion his hand assumed in reach ing for a smal l knob on the 
desk beside the terminal. We wil l  let  h im describe what happened in 
the fi rst person: 

On the desk next to my terminal are several objects-a  chi pped 
coffee mug, the end of a computer cable, a knob from a clock 
radio. I decide to pick the knob up. At first I hesitate , because 
i t  doesn' t  seem possible. Then I just reach for i t ,  and find 
myself grasping the knob i n  what would normal ly be considered 
a very awkward posit ion - but it solves all of the constrai nts .  
I 'm not sure what al l  the deta i ls  of the movement were , so I let 
myself try i t  a few times more. I observe that my right hand is 
carried up off the keyboard, bent at the elbow, unt i l  my 
forearm is at about a 30° angle to the desk top and paral lel  to 
the side of the terminal . The palm is  facing downward through 
most of this. Then , my arm extends and lowers down more or 
less paral le l  to the edge of the desk and parallel to the side of 
the termi nal and, as it drops, i t  turns about 90° so that the 
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B 

I. THE APPEAL OF POP 5 

FIGURE I. A: An everyday situat ion i n  which i t  is necessary to take i nto account a large 
n u m ber of constraints to grasp a desi red object. In t his case the target object is the small 
knob to the left of the cup. B: The posture the arm arrives at in meeting these 

constraints. 
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palm is facing the cup and the thumb and index finger are 
below. The turning motion occurs just in ti me, as my hand 
drops , to avoid h i t t ing the coffee cup. My index finger and 
thumb close in on the knob and grasp i t, wi th my hand com
pletely upside down. 

Though the detai l s  of what happened here might be quibbled wi th, 
the broad outl ines are apparent. The shape of the knob and i ts position 
on the table; the start ing posi t ion of the hand on the keyboard; the 
pos i t ions of the termi nal, the cup, and the knob; and the constra in ts 
i mposed by the structure of the arm and the musculature used to con
trol  i t -al l  these th ings conspired to lead to a solut ion which exact ly 
su i ts the problem. If any of these constra in ts had not been inc luded, 
the movement would  have fai led. The hand would have h i t  the cup or 
the termi nal - or it would have missed the knob. 

The mutual itifluence of syntax and semantics. MUltiple const raints 
operate j ust as strongly in language processing as they do in  reaching 
and graspi ng. Rumelhart (977) has documented many of these multi
ple constrai nts .  Rather than catalog them here, we wi l l  use a few 
examples from language to illustrate the fact that the constraints tend 
to be reci procal: The example shows that they do not run only from 
syntax to semantics-they also run the other way . 

It is clear ,  of course, that syntax constrai ns the assignment of mean
i ng. Without the syntactic rules of English to guide us, we cannot 
correctl y  understand who has done what to whom i n  the fol lowing sen
tence: 

The boy the man chased kissed the gi rl . 

But consider these examples (Rumelhart, 1977; Schank ,  1973): 

I saw the grand canyon flying to New York . 
I saw the sheep grazing i n  the field. 

Our knowledge of syntactic rules alone does not tell us what grammati
cal role is played by the prepositional phrases in these two cases. In the 
first, "flying to New York" i s  taken as descri b i ng the context in which 
the speaker saw the Grand Canyon-wh i le  he was flying to New York.  
I n  the second , "grazing in the fie ld" could syntact ically descri be an 
analogous s i tuat ion, i n  which the speaker is  grazing in  the field, but th is  
possi b i l i ty does not typical ly  become available on first  reading. Instead 
we assign "grazing in the field" as a modifier of the sheep (roughly, 
.. who were grazing in  the field"). The syntact ic structure of each of 
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these sentences, the n ,  is determined i n  part by the semantic re lations 
that the constituents of the sentence might plausibly bear to one 
another. Thus,  the i nfluences appear to run both ways , from the syn
tax to the semantics and from the semantics to the syntax .  

In these examples , we see how syntactic considerations influence 
semantic ones and how semantic ones infl uence syntactic ones . We 
cannot say that one k ind of constrai nt is  primary. 

Mutual constraints operate , not only between syntactic and semant ic 
processing, but also with i n  each of these domains as wel l. Here we 
consider an example from syntact ic processing, namely, the ass ignment 
of words to syntactic categories .  Consider the sentences: 

I l ike the joke. 
I like the dri ve . 
I like to  joke. 
I l i ke to drive. 

In th i s  case it l ooks as though the words the and to serve to determi ne 
whether the fol lowing word wi l l  be read as a noun or a verb. Th is ,  of 
course, is a very strong constraint in English and can serve to force a 
verb interpretat ion of a word that is not ordinari ly used this way: 

I li ke to mud.  

On the other hand,  i f  the informat ion spec ifying whether the function 
word preceding the final word is to or the is ambiguous, then the typical 
readi ng of the word that follows it wi l l determine which way the func
t ion word is heard. This was shown in an experiment by Isenberg, 
Walker, Ryder, and Schweikert ( 1 980). They presented sounds halfway 
between to (actual ly /0) and the (actua l ly / er f) and found that words 
l i ke joke, which we tend to th ink of first as nouns, made subjects hear 
the margi nal st imu l i as the. while words l i ke drive, which we tend to 
th ink  of first as verbs, made subjects hear the marginal sti mul i  as to. 
General ly, then, it would appear that each word can help constrai n the 
syntactic role ,  and even the ident i ty ,  of every other word . 

Simultaneous mutual constraints in word recognition. Just as the 
syntactic role of one word can i nfluence the role assigned to another in 
analyzing sentences, so the iden t ity of one letter can influence the iden
tity assigned to another in reading .  A famous example of this , from 
Selfridge, is shown in  Figure 2 . Along with this is a second example i n  
which none of  the  letters, considered separately , can be  identified 
unambiguously, but in which the poss ib i l ities that the visual 
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TAE CAT 

��8 
S�OT 

�ISH 
DEQT 

FIGURE 2. Some am biguous d i splays. The first one is fro m  Selfridge, 1955. The 
second line shows that th ree am biguous characters can each constrain the ident i ty of the 
others. The th i rd, fourth, and fifth lines show that t hese characters are indeed a m bigu
ous in that they assume other ident i t ies in other contexts. (The ink-b lot techn i que of 

making letters ambiguous is due to Lindsay and Norman, 1972). 

information leaves open for each so constra in the possi ble identities of 
the others that we are capable of identi fy ing al l  of them. 

At fi rst glance, the situation here must seem paradoxical: The iden
tity of each letter is constrai ned by the identities of each of the others. 
But since in general we cannot know the identities of any of the letters 
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unt i l  we have established the ident i ties of the others, how can we get 
the process started? 

The resolut ion of the paradox , of cou rse, is simple. One of the dif
ferent  possible letters i n  each posi tion fits together wi th the others. It 
appears then that our perceptual system is  capable of exploring all these 
possibi lit ies without committing itself  to one unti l all of the constraints 
are taken into accoun t .  

Understanding through the interplay of mUltiple sources of 
knowledge. I t  is clear that we know a good deal about a large number 
of d ifferen t  standard s i tuat ions. Several theorists  have suggested that 
we store this knowledge in terms of structures called variously: scripts 
(Schank, 1976), frames (Mi nsky, 197 5 ) ,  or schemata (Norman & 
Bobrow, 1976; Rumelhart,  1975). Such knowledge st ructures are 
assumed to be the basis  of comprehension. A great deal of progress 
has been made with i n  the context of this view. 

However, it is  i m portant to bear i n  mind that most everyday situa
t ions cannot be rigidly assigned to just a s ingle script. They general ly 
i n volve an in terplay between a number of d ifferent sources of informa
tion. Consider,  for example, a chi ld's birthday party at a restaurant. 
We know things about birthday parties, and we know things about res
taurants, but we would not want to assume that we have explicit 
knowledge (at l east , not i n  advance of our first restaurant bi rthday 
party) about the conjunction of the two. Yet we can imagine what such 
a party might  be l ike. The fact that the party was bei ng held in a res
taurant would modify certain aspects of our expectations for birthday 
parties (we would not expect a game of Pin-the-Tail-on-the-Donkey ,  
for example), whi le the fact that the event was a bi rthday party would 
inform our expectations for what would be ordered and who would pay 
the bi l l. 

Representations l i ke scri pts, frames, and schemata are useful struc
tures for encod i ng knowledge, although we believe they only approxi
mate the underlying structure of knowledge representation that emerges 
from the class of models we consider i n  this book , as explained i n  
Chapter 1 4 . Our mai n point  here i s  that any theory that tries to 
account for h uman knowledge using scri pt-like knowledge structures 
wil l  have to al low them to i nteract with each other to capture the gen
erati ve capacity of h uman u nderstanding in novel situations. Achieving 
such i n teractions has been one of the greatest difficult ies associated 
with implementing models that real ly  th ink generatively using script- or 
frame-l ike representat ions . 
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PARALLEL DISTRIBUTED PROCESSING 

In the examples we have considered , a number  of d ifferent pieces of 
i nformation must be kept in mind at once. Each plays a part, con
stra in ing others and being constrai ned by them. What kinds of 
mechanisms seem well sui ted to these task demands? Intui tively, these 
tasks seem to require mechanisms in which each aspect of the informa
t ion i n  the situation can act on other aspects, simultaneously influenc
i ng other aspects and being i nfluenced by them . To art iculate these 
intu i t ions, we and others have turned to a c lass of models we call Paral
lel Distributed Processing (POP) models. These models assume that 
information processing takes place through the interactions of a large 
n umber of s imple processing elements called un i ts, each sending excita
tory and inhib i tory signals to other uni ts. In  some cases, the units 
stand for possible hypotheses about such things as the letters in a par
ticular display or the syntactic  roles of the words i n  a particular sen
tence . In these cases , the activations stand roughly for the strengths 
associated with the different possible hypotheses , and the in terconnec
tions among the units stand for the constraints the system knows to 
exist between the hypotheses. In other cases , the un i ts stand for possi
ble goals and act ions, such as the goal of typing a particular letter ,  or 
the action of moving the left i ndex finger, and the connecti ons relate 
goals to subgoals, subgoals to actions, and act ions to muscle move
ments. In still other cases, un i ts stand not for part icular hypotheses or 
goals , but for aspects of these things. Thus a hypothesis about the 
identity of a word, for example , is i tse lf  distributed i n  the acti vations of 
a large number of units. 

PDP Models: Cognitive Science or Neuroscience? 

One reason for the appeal of POP models is the ir  obvious "physiolog
i cal" flavor: They seem so much more closely t ied to the physiology of 
the brain than are other kinds of information-processing models .  The 
brain consists of a large number of highly in terconnected elements 
(Figure 3) which apparently send very simple exci tatory and inhibitory 
messages to each other and u pdate their exci tations on the basi s  of 
these s imple messages. The properties of the uni ts in many of the POP 
models we will be exploring were i nspi red by basic properties of the 
neural hardware. In a later section of this book, we will examine i n  
some detail the relation between PDP models and the brain .  
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FIGURE 3. The arborizations of about I percent of the neurons near a vertica' , l ice 
th rough t he cerebral cortex. The full heigh t of the figure corresponds to the thickness of 
the cortex, which is in this instance about 2 mm. (From Mechanics of the Mind, p. 84, by 
C. Blakemore, 1977, Cambridge, England : Cambridge Un iversity Press. Copyright 1977 
by Cam bridge University Press. Reprinted by permission.) 

Though the appeal of POP models is defin i tely enhanced by their  
physiological plausi b i l i ty and neural inspi ration , these are not the pr i 
mary bases for thei r appeal to us . We are,  after all, cognitive scientists, 
and POP models appeal to us for psychological and computational rea
sons. They hold out the hope of offer i ng computat ional ly sufficient 
and psychologically accurate mechan ist ic accounts of the phenomena of 
human cognition which have eluded successful expl ication in  conven
tional computational formalisms; and they have radically al tered the 
way we th ink about the t ime-course of processing , the nature of 
representat ion ,  and the mechanisms of learn ing. 
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The Microstructure of Cognition 

The process of human cognit ion , examined on a ti me scale of 
seconds and minutes, has a distinctly sequentia l  character to i t .  Ideas 
come, seem promising, and then are rejected; leads in the solut ion to a 
problem are taken up,  then abandoned and replaced with new ideas. 
Though the process may not be discrete , i t  has a decidedly sequential  
character, with transit ions from state-to-state occurring, say, two or 
three t i mes a second. Clearly , any useful descript ion of the overa l l  
organizat ion of th is  sequential flow of thought wi l l  necessar i ly describe 
a sequence of states. 

But what is the internal structure of each of the states in the 
sequence, and how do they come about? Serious attempts to model 
even the simplest macrosteps of cognit ion -say, recognit ion of s ingle 
words - require vast numbers of microsteps if they are i mplemented 
sequentially. As Feldman and Ballard (I982) have pointed out , the 
biological hardware is  j ust too sluggish for sequential models of the 
microstructure to provide a plausible account , at least of the 
microstructure of human thought .  And the t ime l i mi tat i on only gets 
worse, not bet ter, when sequential mechanisms try to take large 
numbers of constraints i nto account. Each addi t ional constraint 
requi res more time i n  a sequential machine ,  and, i f  the constrai nts are 
imprecise, the constraints can lead to a computat ional explosion. Yet 
people get faster, not slower, when they are able to exploi t  addi t ional 
constraints .  

Paral le l  distri buted processing models  offer al ternatives to serial 
models of the microstructure of cogni t ion .  They do not deny that there 
is a macrostructure , just as the study of subatomic particles does not 
deny the existence of in teractions between atoms. What POP models 
do i s  describe the i nternal structure of the larger uni ts ,  just as 
subatomic physics describes the i nternal structure of the atoms that 
form the const i tuents of larger uni ts of chemical structure. 

We shal l show as we proceed through this book that the analysis of 
the microstructure of cogn i t ion has important impl icat ions for most of 
the central issues in cognitive science. In general , from the POP poi nt  
of view, the objects referred to in  macrostructural models of  cogn i t ive 
processing are seen as approx imate descri ptions of emergent properties 
of the microstructure. Somet imes these approxi mate descri pt ions may 
be sufficient ly accurate to capture a process or mechan ism well enough; 
but many ti mes, we wi l l  argue , they fail to provide suffic ient ly elegant 
or t ractable accounts that capture the very flexibili ty and open
endedness of cognition that their in ventors had originally i ntended to 
capt ure. We hope that our analysis of POP models wi l l  show how an 
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examination of the microstructure of cognition can lead us closer to an 
adequate description of the real extent of human processing and learn
ing capacities. 

The development of PDP models is still in its infancy. Thus far the 
models which have been proposed capture simplified versions of the 
kinds of phenomena we have been describing rather than the full ela
boration that these phenomena display in real settings. But we think 
there have been enough steps forward i n  recent years to warrant a con
certed effort at describing where the approach has gotten and where it 
is going now, and to point out some directions for the future. 

The first section of the book represents an introductory course in 
parallel distributed processing. The rest of this chapter attempts to 
describe in informal terms a number of the models which have been 
proposed in previous work and to show that the approach is indeed a 
fruitful one. It also contains a brief description of the major sources of 
the inspiration we have obtained from the work of other researchers. 
This chapter is followed, in Chapter 2, by a description of the quantita
tive framework within which these models can be described and exam
ined. Chapter 3 explicates one of the central concepts of the book: dis
tributed representation. The final chapter in this section, Chapter 4 ,  
returns to the question of demonstrating the appeal o f  parallel 
distributed processing models and gives an overview of our explorations 
in the microstructure of cognition as they are laid out in the remainder 
of this book. 

EXAMPLES OF PDP MODELS 

In what follows, we review a number of recent applications of PDP 
models to problems in motor control, perception, memory, and 
language. In many cases, as we shall see, parallel distributed processing 
mechanisms are used to provide natural accounts of the exploitation of 
multiple, simultaneous, and often mutual constraints. We will also see 
that these same mechanisms exhibit emergent properties which lead to 
novel interpretations of phenomena which have traditionally been inter
preted in other ways. 

Motor Control 

Having started with an example of how l)1ultiple constraints appear to 
operate in motor progrMRffi{Hi�t�d�/�propriate to mention two 
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models in this domain. These models have not developed far enough 
to capture the full details of obstacle avoidance and multiple constraints 
on reaching and grasping, but there have been applications to two prob
lems with some of these characteristics. 

Finger movements in skilled typing. One might imagine, at first 
glance, that typists carry out keystrokes successively, first programming 
one stroke and then, when it is completed, programming the next. 
However, this is not the case. For skilled typists, the fingers are con
tinually anticipating upcoming keystrokes. Consider the word vacuum. 
In this word, the v, a, and c are all typed with the left hand, leaving the 
right hand nothing to do until it is time to type the first u. However, a 
high speed film of a good typist shows that the right hand moves up to 
anticipate the typing of the u, even as the left hand is just beginning to 
type the v. By the time the c is typed the right index finger is in posi
tion over the u and ready to strike it. 

When two successive key strokes are to be typed with the fingers of 
the same hand, concurrent preparation to type both can result in similar 
or conflicting instructions to the fingers and/ or the hand. Consider, in 
this light, the difference between the sequence ev and the sequence er. 
The first sequence requires the typist to move up from home row to 
type the e and to move down from the home row to type the v, while in 
the second sequence, both the e and the r are above the home row. 

The hands take very different positions in these two cases. In the 
first case, the hand as a whole stays fairly stationary over the home 
row. The middle finger moves up to type the e, and the index finger 
moves down to type the v. In the second case, the hand as a whole 
moves up, bringing the middle finger over the e and the index finger 
over the r. Thus, we can see that several letters can simultaneously 
influence the positioning of the fingers and the hands. 

From the point of view of optimizing the efficiency of the typing 
motion, these different patterns seem very sensible. In the first case, 
the hand as a whole is maintained in a good compromise position to 
allow the typist to strike both letters reasonably efficiently by extending 
the fingers up or down. In the second case, the need to extend the 
fingers is reduced by moving the whole hand up, putting it in a near
optimal position to strike either key. 

Rumelhart and Norman (I982) have simulated these effects using 
POP mechanisms. Figure 4 illustrates aspects of the model as they are 
illustrated in typing the word very. In brief, Rumelhart and Norman 
assumed that the decision to type a word caused activation of a unit for 
that word. That unit, in turn, activated units corresponding to each of 
the letters in the word. The unit for the first letter to be typed was 
made to inhibit the units for the second and following letters, the unit 
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for the second to inhibit the th i rd and fol lowing letters,  and so on. As 
a resul t  of the i nterplay of activation and inhibi tion among these units , 
the un i t  for the first letter was at first the most strongly  act i ve, and the 
units for the other letters were partially act i vated . 

Each letter uni t exerts influences on the hand and finger involved i n  
typing the let ter .  The v unit, for example, tends t o  cause the index 
fi nger to move down and to cause the whole hand to move down with 
it. The e uni t, on the other hand , tends to cause the middle fi nger on 
the left hand to move up and to cause the whole hand to move up  also. 
The r unit also causes the left index finger to move up  and the left 
hand to move up with it. 

The extent of the influences of each let ter on the hand and finger i t  
directs depends on the extent of the act ivation of the letter. Therefore , 
at first, in typing the word very, the v exerts the greatest control. 

Response 
System 

Keypress 
Schemata 

Word 
Schema 

THUMB 

RESPONSE SYSTEM . 
L1(.I, + 05) LM(+ 1 ·03) LJ(+ 1, ·03) RII+ 1. + 1 3) 

. target finger POSition 

current finger POSition 

FIGURE 4. The i nteraction of activations in typing the word very. The very unit is 
activated from outside the model. It i n  turn  activates the units for each of the com

ponent le tters . Each letter u nit specifies the target finger positions, specified in a key
board coordinate system. L and R stand for the left and right hands. and I and M for the 
index and middle fingers. The letter units receive information about the current finger 
posi t ion from the response system .  Each letter unit inhi bi ts the activation of all letter 

un i ts that follow it in the word: inh ibitory connections are indicated by the lines with 
solid dots at their terminations. (From "Simulating a Skilled Typist: A Study of Skilled 

Motor Performance" by D. E. Rumelhart and D. A. Norman. 1982, Cognitive Science. 6, 

p. 12. Copyright 1982 by Able��eaW}{mWflcW permission ' > 
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Because the e and r are simultaneously pulling the hand up, though, the 
v is typed primarily by moving the index finger, and there is little 
movement on the whole hand. 

Once a finger is within a certain striking distance of the key to be 
typed, the actual pressing movement is triggered, and the keypress 
occurs. The key press itself causes a strong inhibitory signal to be sent 
to the unit for the letter just typed, thereby removing this unit from the 
picture and allowing the unit for the next letter in the word to become 
the most strongly activated. 

This mechanism provides a simple way for all of the letters to jointly 
determine the successive configurations the hand will enter into in the 
process of typing a word. This model has shown considerable success 
predicting the time between successive keystrokes as a function of the 
different keys involved. Given a little noise in the activation process, it 
can also account for some of the different kinds of errors that have 
been observed in transcription typing. 

The typing model represents an illustration of the fact that serial 
behavior-a succession of key strokes-is not necessarily the result of 
an inherently serial processing mechanism. In this model, the sequen
tial structure of typing emerges from the interaction of the excitatory 
and inhibitory influences among the processing units. 

Reaching for an object without falling over. Similar mechanisms 
can be used to model the process of reaching for an object without los
ing one's balance while standing, as Hinton ( 984) has shown. He con
sidered a simple version of this task using a two-dimensional "person" 
with a foot, a lower leg, an upper leg, a trunk, an upper arm, and a 
lower arm. Each of these limbs is joined to the next at a joint which 
has a single degree of rotational freedom. The task posed to this per
son is to reach a target placed somewhere in front of it, without taking 
any steps and without falling down. This is a simplified version of the 
situation in which a real person has to reach out in front for an object 
placed somewhere in the plane that vertically bisects the body. The 
task is not as simple as it looks, since if we just swing an arm out in 
front of ourselves, it may shift our center of gravity so far forward that 
we will lose our balance. The problem, then, is to find a set of joint 
angles that simultaneously solves the two constraints on the task. First, 
the tip of the forearm must touch the object. Second, to keep from 
falling down, the person must keep its center of gravity over the foot. 

To do this, Hinton assigned a single processor to each joint. On each 
computational cycle, each processor received information about how far 
the tip of the hand was from the target and where the center of gravity 
was with respect to the foot. Using these two pieces of information, 
each joint adjusted its angle so as to approach the goals of maintaining 

Copyrighted Material 



I. THE APPEAL OF PDP 1 7  

balance and bringing the tip c loser to the target . After a number of 
iterations ,  the stick-person settled on postures that satisfied the goal of 
reaching the target and the goal of maintai n ing the center of gravi ty 
over the" feeL" 

Though the s imulat ion was able to perform the task, eventually satis
fyi ng both goals at once, it had a number of inadequacies stemming 
from the fact that each joint  processor attempted to achieve a solut ion 
i n  i gnorance of what the other joints were attempting to do. This  prob
lem was overcome by using addit ional processors responsi ble for sett ing 
combinat ions of jo int  angles. Thus,  a processor for flexion and exten
sion of the l eg would adjust the knee , hip,  and ankle joints synergisti
cal l y ,  whi le  a processor for flex ion and extension of the arm would 
adjust the shoulder and elbow together. With the addition of proces
sors of this form, the number of i terat ions requi red to reach a sol ut ion 
was greatly reduced, and the form of the approach to the solution 
looked very natural. The sequence of configurations attained in  one 
process ing run is  shown in Figure 5 .  

Expl ic i t  attempts to program a robot t o  cope with the problem of 
maintain ing balance as it reaches for a desired target have revealed the 
difficulty of deriv ing expl ic i t ly the right combinations of actions for 
each possible start i ng state and goal state. This s imple model illustrates 
that we may be wrong to seek such an explicit solut ion.  We see here 
that a solution to the problem can emerge from the action of a number 
of simple processors each attempting to honor the constraints 
i ndependently. 

FIGURE S. A sequence of configurations assumed by the stick "person" performing the 
reaching task described in the text, from Hinton (I 984). The small ci rcle represents the 
center of gravity of th: whole stick-figure, and the cross represents the goal to be 
reached. The configuration is®upfrighte{/�,eration. 



18 THE PDP PERSPECTIVE 

Perception 

Stereoscopic VISIOn. One early model using parallel distributed pro
cessing was the model of stereoscopic depth perception proposed by 
Marr and Poggio (1976). Their theory proposed to explain the percep
tion of depth in random-dot stereograms (Julesz, 1971; see Figure 6) in 
terms of a simple distributed processing mechanism. 

Julesz's random-dot stereograms present interesting challenges to 
mechanisms of depth perception. A stereogram consists of two 
random-dot patterns. In a simple stereogram such as the one shown 
here, one pattern is an exact copy of the other except that the pattern 
of dots in a region of one of the patterns is shifted horizontally with 
respect to the rest of the pattern. Each of the two patterns
corresponding to two retinal images-consists entirely of a pattern of 
random dots, so there is no information in either of the two views con
sidered alone that can indicate the presence of different surfaces, let 
alone depth relations among those surfaces. Yet, when one of these 
dot patterns is projected to the left eye and the other to the right eye, 
an observer sees each region as a surface, with the shifted region 
hovering in front of or behind the other, depending on the direction of 
the shift. 

FIGURE 6. Random-dot stereograms. The two patterns are identical except that the 
pattern of dots in the central region of the left pattern are shifted over with respect to 
those in the right. When viewed stereoscopically such that the left pattern projects to the 
left eye and the right pattern to the right eye. the shifted area appears to hover above the 
page. Some readers may be able to achieve this by converging to a distant point (e.g., a 
far wall) and then interposing the figure into the line of sight. (From Foundations of 
Cyclopean Perception, p. 21, by B. Julesz, 1971, Chicago: University of Chicago Press. 
Copyright 1971 by Bell Telephone Laboratories, Inc. Reprinted by permission.) 
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What k i nd of a mechanism might we propose to account for these 
facts? Marr and Poggio (976) began by expl ici tly represen ting the t wo 
v i ews in two arrays, as human observers might  in two di fferent reti nal 
images. They noted that  correspondi ng black dots at different per
cei ved distances from the observer wi ll be offset from each other by 
gifferent amounts i n the t wo views. The job of the model is to deter
m ine which points correspond. This task is, of co urse, made difficult 
by the fact that there will be a very large number of spuri ous 
correspondences of i ndividual dots. The goal of the mechanis m ,  then, 
is to find those correspondences that represent real correspondences in 
depth and suppress those that represent spurious correspondences. 

To carry out this task, Marr and Poggio assigned a processing u n i t  to 
each possible .conj unction of a point in one image and a poi nt  in the 
other .  Since the eyes are offset horizontal ly, the possible conjunct ions 
occu r  a t  various offsets or d ispar i t ies a long the horizon tal di mensi on. 
Thus,  fo r each point in one eye, there was a set of process i n g  u n i ts 
with one un i t  assi gned to the conjunct ion of that poi nt  and the poi n t  at 
each horizontal offset from it i n  the other eye. 

Each processing u nit recei ved activat ion whenever both of the points 
the unit stood for con tained dots. So far, then, units for both real and 
spurious correspondences would be equal l y  act ivated. To allow the 
m echani s m  to find the r ight  correspondences, they pointed out two 
general princ i ples about  the visu al world: (a) Each point i n  each view 
generally corres ponds to  one and only one point in the ot her view, and 
Cb) neighbori ng points in space tend to be at nearly the same depth and 
therefore at about the sam( d isparity in the two images. While there 
are discont inu i t ies at the edges of thi ngs ,  over most of a two
dimensional view of the world there will be cont inui ty. These princi
p l es a re called the uniqueness and continuity constraints , respectively. 

Marr and Poggi o  incorporated these princi ples i nto the interconnec
t i ons betwee n  the process i n g  units. The uniqueness constraint was cap
tu red by i n h i bitory connections among the units t hat stand for altern a
t ive correspondences of the same do t . The con t inuity principle was 
captured by exc itat ory connections among the u n i ts that stand for s i m i
l ar offsets of adjacent dots. 

These additional connections allow the Marr and Poggio model to 
"so l ve" stereograms like the one sh own in t he figure. At first ,  when a 
pair of patterns is presented, the uni ts for a l l  possible correspondences 
of a dot in one eye with a dot in the other wi l l  be equal ly  exci ted. 
However, the exci tatory connect ions cause the units for the correct 
conjunctions to receive more excitation than uni ts for spur ious conjunc
t ions, and the i nh i b i tory connections allow the units for the correct 
conjunct i ons to tu rn off the un i ts for t he spurious connections. Thus, 
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the model tends to sett le down into a stable state i n  which only the 
correct correspondence of each dot remains act ive.  

There are a number of reasons why Marr and Poggio (I979) modi
fied this model (see Marr ,  1982 ,  for a discussion) , but the basic 
mechanisms of mutual excitat ion between uni ts  that are mutual ly con
sistent and mut ual inh ibi t ion between un i ts that are mutually incompa
t ible provide a natural mechanism for settl i ng on the right conjunctions 
of poin ts and reject ing spurious ones. The model also i l lust rates how 
general principles or ru les such as the uniqueness and cont inuity pri nci
ples may be embodied i n  the connect i ons between processing uni ts, and 
how behavior in accordance wi th these princi ples can emerge from the 
interact ions determi ned by the pattern of these in terconnecti ons. 

Perceptual completion of familiar patterns. Perception, of course, i s  
infl uenced by fami liarity. It i s  a wel l-known fact that we often misper
cei ve unfami liar objects as more fami l iar  ones and that we can get by 
with less t ime or with lower-quality information in perceiving fami l iar 
i tems than we need for percei ving unfami l iar i tems. Not only does 
familiar ity help us determine what the higher-level structures are when 
the lower-level information is ambiguous; it a lso allows us to fi l l  i n  
missing lower-level information wi thin famil iar higher-order patterns .  
The well-known phonemic restoration effect is a case in  poi nt .  [n this 
phenomenon, perceivers hear sounds that have been cut out of words 
as if they had actually been present . For example , Warren (I970) 
presented legi#lature to subjects ,  with a cl ick in the locat ion marked by 
the #. Not only did subjects correct ly ident i fy the word legislature; 
they also heard the missing /s/ just as though it had been presented. 
They had great d ifficulty local iz ing the click ,  which they tended to hear 
as a disembodied sound. S imi lar phenomena have been observed in 
visual perception of words since the work of Pi lIsbury (897). 

Two of us have proposed a model descr ib ing the role of fami liarity in  
perception based on exci tatory and inh ib i tory interact ions among units 
standing for various hypotheses about the input at d ifferent levels of 
abstract ion (McClelland & Rumelhart , 1981; Rumelhart & McClelland, 
1982).  The model has been applied i n  deta i l  to the role of familiarity 
in the perception of letters in visually presented words, and has proved 
to provide a very c lose account of the results of a large number of 
experiments. 

The model assumes that there are units that act as detectors for the 
visual features which dist inguish letters , wi th one set of units ass igned 
to detect the features in  each of the di fferent letter-posi tions in the 
word. For four-letter words, then , there are four such sets of detectors. 
There are also four  sets of detectors for the letters themselves and a set 
of detectors for the words .  
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In the model, each unit has an activation value, corresponding 
roughly to the strength of the hypothesis that what that unit stands for 
is present in the perceptual input. The model honors the following 
important relations which hold between these " hypotheses " or activa
tions: First, to the extent that two hypotheses are mutually consistent, 
they should support each other. Thus, units that are mutually con
sistent, in the way that the letter T in the fi rst position is consistent 
with the word TAKE, tend to excite each other. Second, to the extent 
that two hypotheses are mutually inconsistent, they should weaken each 
other. Actually ,  we can distinguish two kinds of inconsistency: The 
first kind might be called between-level inconsistency . For example, 
the hypothesis that a word begins with a T is inconsistent with the 
hypothesis that the word is MO VE. The second might be called mutual 
exclusion. For example, the h ypothesis that a word begins wi th T 
excludes the hypothesis that it begins with R since a word can only 
begin with one letter. Both kinds of inconsistencies operate i n  the word 
perception model to reduce the activations of units . Thus, the letter 
units in each posi t ion compete with all other letter units in the same 
position, and the word uni ts compete with each other. This type of 
inhi bitory interaction i s  often called competitive inhibition. In addition, 
there are inhibi tory interactions between incompatible units on different 
levels. This type of inhibitory interaction is simply called 
between-level inhibition. 

The set of excitatory and inhibi tory interactions between units can be 
diagrammed by drawing excitatory and inhibitory links between them. 
The whole picture is too complex to draw, so we illustrate only with a 
fragment: Some of the interactions between some of the units in this 
model are illustrated in Figure 7 .  

Let us consider what happens in a system like this when a familiar 
stimulus is presented under degraded conditions . For example, con
sider the d isplay shown in Figure 8. This display consists of the letters 
W, 0, and R ,  completely visible, and enough of a fourth letter to rule 
out all letters other than R and K. Before onset of the display, the 
activations of the units are set at or below O. When the display is 
presented, detectors for the features present in each position become 
active (i . e. ,  their activations grow above 0) . At this point ,  they begin to 
excite and inhibit the corresponding detectors for letters . In the fi rst 
three positions, W, 0, and R are unambiguously activated , so we will 
focus our attention on the fourth position where R and K are both 
equally consistent with the active features. Here, the activations of the 
detectors for R and K start out growing together, as the feature detec
tors below them become activated. As these detectors become active, 
they and the active letter detectors for W. 0, and R i n  the other posi
tions start to activate dei@Mtghfoti M«dg;al.hich have these letters in 
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FIG URE 7.  The uni t  for the  let ter  T i n  the fi rst posi t ion of a four- letter array and some 
of i ts  neigh bors . Note that the  feat ure and let ter  un i ts stand only for the fi rst posi t i o n ;  in  
a complete pictu re of t h e  uni ts  needed from processing four- letter d i splays , there would 
be four fu l l  sets  of feature detectors and four  fu l l  sets  of letter detectors.  ( From " An 
In teract i ve Act i va t ion Model  of Contex t Effects i n  Letter Percept ion :  Par t  I .  An Account  
of Basic Fi nd ings" by J .  L.  McClel land and D. E .  Rumelhart ,  198 1 ,  Psychological Review, 
88, p. 380. Copyright 1 98 1  by the American Psychological Associa t ion .  Reprin ted by 

permi ss ion . )  

them and to inh ib i t  detectors for words which do not have these let ters . 
A number of words are partial ly consistent wi th the act ive letters, and 
rece ive some net exci tation from the letter level , but only the word 
WORK matches one of the acti ve letters in a l l  four posi t ions. As a 
resu l t ,  WORK becomes more act i ve than any other word and inh ibi ts 
the other words , thereby successfu l ly  dominat ing the pattern of acti va
t ion among the word uni ts .  As i t  grows in  strength ,  i t  sends feedback 
to the letter level , reinforci ng the acti vations of the W, 0, R, and K in 
the corresponding positions. In the fourth posit ion, th is  feedback gi ves 
K the upper hand over R, and eventual l y  the stronger acti vation of the 
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FIG U R E  8 .  A poss ib le d is play which might  be presen t ed to t he i n t eract ive act i va t ion 
model of word recognit ion , and the resul t ing act ivat ions of selected let ter and word uni ts .  
The letter un i ts are  for the letters i ndicated i n  t h e  fou rth pos i t ion of  a four- letter d isplay.  

K detector a l lows i t  to dominate the pattern of act i vat i on ,  suppress ing 
the R detector completely .  

This example i l lustrates how PDP models can al low knowledge about 
what letters go together to form words to work together wi th natural  
constra ints  on the task ( i .e . ,  t hat there shou ld only be one letter i n  one 
place at one t i me) , to produce perceptual complet ion in a si mple and 
d i rect way. 

Completion of novel patterns. However,  the perceptual i ntel l igence 
of human perceivers far.��JB�9J}Nxl to recognize fami l iar  pat
terns and fi l l  in  missing-"P'6rtrons. ' We alSo show faci l i tat ion i n  the 
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percept ion of letters in u n fam i l i ar letter str i ngs which are word - l i ke but 
not themselves actual ly fam i l iar . 

One way of account ing for such performances is to i magine that the 
percei ver possesses , in  addit ion to detectors for fam i l iar  words , sets of 
detectors for regular subword units such as fami l iar let ter  cl usters , or 
that t hey use abstract rules, specify ing wh ich classes of let ters can go 
with wh ich others in  different contexts .  I t  turns out ,  however, that the 
model we have al ready described needs no such additional structure to 
produce perceptual fac i l i tation for word-l i ke letter str i ngs � to th i s extent 
i t  acts as i f  i t  " knows " the orthograph i c struct ure of Engl ish . We i l l us
trate this feature of the model wi th the example shown i n  Figure 9 ,  
where t h e  nonword YEAD i s  shown i n  degraded form s o  that the 
second letter i s  i ncompletely v is i ble. Gi ven the information about this 
letter, considered alone, ei ther E or F would be possible in  the second 
posit ion . Yet our model wi l l  tend to comp lete this letter as an E. 

The reason for this behavior is that , when YEAD is shown , a n umber 
of words are part ia l ly acti vated . There is no word consistent wi th y. E 
or F. A .  and D, but there are words which match YEA ( YEAR ,  for 
example) and others which match EAD (BEAD. DEAD. HEAD. and 
REA D, for example) . These and- other near

' 
misses are part ial ly  

act i vated as a resul t  of the pattern of acti vation a t  the letter level . 
While they compete w i th each other, none of these words gets strongly 
enough acti vated to completely suppress a l l  the others . Instead, these 
units act as a group to reinforce part icu larly the letters E and A .  There 
are no close part ia l  matches which incl ude the letter F i n the second 
posi t ion , so this letter recei ves no feedback support . As a resu l t , E 
comes to dominate, and eventual l y  suppress, the F in the second 
posi t ion . 

The fact that the word perception model exhibits perceptual faci l i ta
t ion to pronounceable non words as wel l as words i l l ustrates once aga in 
how behavior i n  accordance with general pr inci ples or ru les can emerge 
from the i nteractions of s imple processing elements. Of course, the 
behavior of the word perception model does not implement exact ly any 
of the systems of orthograph ic  ru les that have been proposed by 
l i nguists (Chomsky & Hal le , 1968; Venesky, 1 970) or psychologists 
(Spoeh r & Sm i th , 1 975) . In this  regard , i t  only approximates such 
rule-based descr i pt ions of perceptual processi ng. However,  rule sys
tems such as Chomsky and Halle's or Venesky's appear to be only 
approximately honored in  human performance as wel l (Smith & Baker, 
1976) . Indeed , some of the discrepancies between human performance 
data and rule systems occur in  exact l y  the ways that we would predict 
from the word perception model ( Rumelhart & McClel land , 1982) . 
This i l l ustrates the poss ibi l i ty that POP models may provide more 
accurate accounts of the detai ls  of human performance than mode ls 
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FIGURE 9. An exampl e  of  a nonword display that m ight be presented to the interact i ve 
act i vat ion model of word recogn i t ion  and the response of selected un i ts al the letter and 
word levels .  The let ter  u n i ts i l l ust rated are detectors for let ters in the second input  
posi t ion .  

based on a set of rules representing human competence - at l east i n  
some domai ns .  

Retrieving Information From Memory 

Content addressability. One very promi nent feature of human 
memory is that i t  i s  CO_y�r§I!JiMmeriYl seems fair ly clear that we 
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can access i n format i on in memory based on nearly any at t r ibute  of the 
representat ion we are trying to ret r ieve.  

Of cou rse,  some cues a re m uch bet ter  than others.  An attr ibute 
wh i ch i s  shared by a very large n u m be r  of t h i ngs we k now abo u t  i s  not 
a very effect i ve ret r ieval  cue,  s i n ce i t  does not  accuratel y p i ck out  a par
t i cu lar  memory represen tat i o n .  But, several such cues, in conj u n ct i on ,  
can d o  the job.  Th us ,  i f  we ask a friend who goes out  w i t h  several 
women , " Who was that woman I saw you wi t h ? " ,  he  may not k now 
wh ich one we mean - bu t  i f  we spec i fy someth i n g  else about her-say 
t h e  col or of her hai r ,  what she was wear ing ( i n  so far as h e  remem bers 
t h i s  at a l l ) , whe re we saw h i m  wi th  he r - h e  wi l l  l i ke l y  be able  to h i t 
upon the r ight one . 

It i s ,  of cou rse , poss ib le  t o  i m plement some k i nd of con tent 
add ressabi l i ty of mem ory on a standard computer in a variety of d if
ferent ways . One way i s  to search seq uen t i a l l y ,  exam i n i n g  each 
memory in the system to  fi nd the memory or the set of memories 
which h as t h e  part icu lar  content  spec i fied i n  the cue .  An alternat i ve ,  
somewhat more effi ci en t ,  scheme i n vo l ves some form o f  i ndex i n g 
keepi ng a l i s t ,  for every con tent  a memory m i g h t  have, o f  which 
memories have t hat content . 

Such an i ndex i n g  scheme can be made to work wi t h  error-free 
probes , but i t  wi l l  break down if th ere is an e rror i n  the speci fi cat ion of 
the retr ieval cue .  There are poss ib le  ways of recove r i ng from such 
errors , but  t h ey lead to the k i nd of com b i n ator ia l  e x pl os ions which 
plague t h i s  k i n d  of com puter i m plemen tat i o n .  

But  s u ppose t h a t  w e  i magi ne t h a t  each mem ory i s  represented b y  a 
u n i t  wh ich has m u t ua l ly  excitat ory i n terac t i on s  with u n i ts standi n g  for 
each of i ts  propert ies .  Then , whene ver  any property of the  memory 
becam e act i ve ,  the memory would tend to be act i vated , and whenever 
the memory was act i vated , a l l  of i t s  conten ts would tend to becom e 
act i vated . Such a sch eme would  automat i ca l ly  produce con tent  
add ressabi l i t y  for us .  Though i t  wou ld not be i m m u n e  to errors ,  i t  
would  not be devastated by an error i n  the  probe i f  t h e  rema i n i n g  
propert ies s pec i fi ed the  correct memory . 

As descri bed t h u s  far ,  whenever a prope rty that  i s  a part of a n u m ber 
of d i ffe rent  memories is act i vated, i t  wi l l  tend to act i vate al l of the 
memories i t  i s  in .  To keep these ot her act i v i t ies from swa m p i ng the 
" correct" memory u n i t ,  we s i m pl y  n eed to add i n i t ia l  i n h i b i tory connec
t i ons among the memory u n i t s .  An add i t i onal  des i rable feat u re would 
be m utua l ly  i n h i bi tory i n teract i ons among m u t u a l l y  i ncom pat i ble  
property u n i ts .  For example,  a person can n ot both be s i n gle  and mar
r ied at the  same t i me ,  so the u n i ts for d i fferent mari ta l  stat es wou ld be 
m u t ua l l y  i n h i bi t ory . 

Copyrighted Material 



l .  T H E  APPEAL OF PDP 27 

McClel land ( 1 98 1 )  deve loped a s i m u lat ion model that  i l l ust rates how 
a system wi t h  t hese propert i es would act as a content  addressable 
memory. The model i s obvi ously overs i m p l i fied, but i t  i l l ust rates many 
of the characterist ics of the  more com plex mode ls that wi l l  be con 
sidered in l ater chapte rs . 

Consider the i nforma t ion rep rese n ted i n  Figure 1 0, wh ich l i sts  a 
n u m be r  of people we m igh t meet i f  we wen t to l i ve i n  an unsavory 
neighborhood , and some of thei r hypothet ical characterist ics .  A subset 

The Jets and The Sharks 

N ame Gang Age Ed u Mar Occu pat i on 

A rt Jets 40's  J . H .  S i ng.  Pusher 
AI  Jets 30's  J . H .  Mar.  Burg l a r  
Sam Jets 20's  CO L .  Si n g .  Bookie  
Clyde Jets 40's J . H. Sing .  Bookie 
Mi ke Jets 30's  J . H .  S i n g .  Book ie 
J i m  Jets 20's J . H .  D i y . B u rg t a r  
G reg Jets 20's  H . S. Mar. Pushe r 
John Jets 20 's  J . H .  Mar.  B u rglar  
Doug Jets 30's H . S .  Sing .  Boo k i e  
Lance Jets 20's J . H .  Mar. Burglar 
George Jets 20's  J . H .  D i v . B u rglar  
Pete Jets  20 's  H . S .  Si n g .  Book ie 
Fred Jets 20's  H . S .  S i n g .  Pusher 
Gene Jets 20's  COL.  S i n g .  Pusher 
R a l ph Jets 30 's  J . H .  S i n g .  Pusher 

Phi l  Sharks 30's COL.  Ma r . Pusher 
I ke Sharks 30's  J . B .  S i n g .  Bookie 
N ick Sharks 30 's  H . S . Si n g .  Pusher 
Don Sha rks 30's COL. M a r .  B u rg l a r  
Ned Sharks 30's COL.  Mar .  Bookie  
Karl  Sharks  40's  H . S.  Mar . Book i e  
Ken Sha rks 20's  H . S.  S i n g .  Burglar  
Earl Sharks 40's H . S .  Mar. B u rglar  
Rick Sharks 30 's  H . S .  D i v .  Burg l a r  
01 Sharks 30 ' s  CO L .  Mar. Pusher 
Neal Sharks 30's  H . S. Sing .  Bookie 
Daye Sharks 30's  H.S.  Di y .  Pusher 

FIGURE 1 0. Characteristics of a n umber of indiv iduals belonging to two gangs, the Jets 

and the Sharks . (From " Ret r ieving General and Specific Knowledge From Stored 

Knowledge of Specifics" by 1. L .  McCle l land ,  1 98 1 , Proceedings of the Third Annual Confer-
ence of the Cognitive Science SOCiety, Berkeley, C A .  Copyright 1981  by 1 .  L. McClel land 

Repri nted by perm ission .)  
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of the units needed to represent this information is shown in Figure 1 1 . 
In this network, there is an " instance un i t "  for each of the characters 
described in Figure 10, and that unit is  l inked by mutual ly exci tatory 
connect ions to al l of the un i ts for the fel low's propert ies .  Note that we 
have included property units for the names of the characters , as wel l  as 
units for their other properties. 

Now, suppose we wish to retrieve the properties of a part icular i ndi
vidual , say Lance. And suppose that we know Lance's  name. Then we 
can probe the network by act ivating Lance's name uni t ,  and we can see 
what pattern of acti vation arises as a resu l t .  Assuming that we know of 
no one else named Lance , we can expect the Lance name un i t  to be 
hooked up only to the i nstance un i t  for Lance. This wi l l  in turn 
activate the property uni ts for Lance , thereby creating the pattern of 

FIGURE 1 1 .  S o m e  o f  t h e  units a n d  interconnections needed to represent the indi viduals 
shown in Figure 10. The units connected with double-headed arrows are mutually excita
tory. All the units within the same cloud are m utually inhibitory.  (From " Retrieving 
General and Specific .Knowledge From Stored Knowledge of Specifics" by J .  L. 
McClel land , 1 98 1 ,  Proceedings of the Third Annual Coriference of the Cognitive Science 
Society, 8erkeley, CA. Copyright 1 98 1  by J. L. McClelland. Reprinted by permission . )  
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act ivat ion corresponding to Lance . In effect ,  we have retrieved a 
representat ion of Lance. More wi l l  happen than just what we have 
descr ibed so far,  but for the moment let us stop here .  

Of course, someti mes we  may wish to retrieve a name, g iven other 
i nformat ion .  In this case , we might start with some of Lance 's 
propert ies,  effect i vely ask ing the system, say " Who do you know who i s  
a Shark and i n  h is  20s?" by act i vating the Shark and 20s uni ts .  I n  th is  
case i t  turns  out that  there is  a single i ndividual , Ken , who fi ts the 
descript ion . So, when we actiyate these two properties, we wi l l  acti vate 
the i nstance un i t  for Ken ,  and this in  turn wi l l  act i vate his name un i t , 
and fil l  i n  h is  other properties as wel l .  

Graceful degradation. A few o f  t h e  desi rable properties o f  this k ind 
of model are v is ib le from consideri ng what happens as we vary the set 
of features we use to probe the memory in an attempt to retrieve a par
t icular i ndi vidual ' s  name. Any set of features which i s  sufficient to 
un iquely characterize a part icular i tem wi l l  act i vate the i nstance node 
for that item more strongly than any other i nstance node . A probe 
which contains misleading features wi l l  most strongly act i vate the node 
that i t  matches best .  This wi l l  clearly be a poorer cue than one which 
contains no mis leading information - but i t  wi l l  st i l l  be sufficient to 
activate the " right answer " more strongly than any other, as long as the 
in t roduction of mislead ing information does not make the probe closer 
to some other i tem.  In genera l ,  though the degree of acti vat ion of a 
part icular i nstance node and of the corresponding name nodes varies i n  
th i s  model a s  a funct ion of  the exact content of  the probe , errors i n  the 
probe wi l l  not be fatal unless they make the probe poi nt to the wrong 
memory. This k ind of model 's  handl i ng of i ncomplete or part ial  probes 
also requi res no special error-recovery scheme to work - i t  is  a natu ral 
by-product of the nature of the retrieval mechan ism that i t  is  capable of 
graceful degradation . 

These aspects of the behavior of the Jets and Sharks model deserve 
more detai led considerat ion than the present  space al lows . One reason 
we do not go into them i s  that we view this model as a stepping stone 
in the development of other models, such as the models using more 
distri buted representat ions, that occur  in other parts of this book .  We 
do, however, have more to say about this s imple model , for l i ke some 
of the other  models we have al ready examined, this model exhibi ts 
some useful properties which emerge from the interactions of the pro
cessing uni ts. 

Default assignment. I t  probably wi l l  have occurred to the reader that 
in many of the s i tuations we have been examining, there wi l l  be other 

Copyrighted Material 



30 THE POP PERSPECTIVE 

acti vations occurri ng which may infl uence the pattern of act i vation 
which is  ret rieved. So, i n  the case where we ret r ieved the propert ies of 
Lance, those propert ies, once they become act ive,  can begin to act ivate 
the uni ts  for other i ndi viduals wi th those same propert ies.  The 
memory unit for Lance wi l l  be in  compet i t ion with these units and wi l l  
tend to keep their act ivation down , but to the extent that they do 
become act ive,  they wi l l  tend to act i vate their  own propert ies and there
fore fi l l  them i n .  In  th is  way, the model can fi l l  in propert ies of 
i nd i viduals based on what i t  knows about other, sim i lar i nstances . 

To i l l ust rate how this might work we have s imulated the case i n  
which we d o  not know that Lance i s  a Burglar as opposed to  a Bookie 
or a Pusher. It turns out that there are a group of i ndi viduals in  the set 
who are very s imi lar to Lance in many respects. When Lance's  
properties become act i vated , these other un i ts become partia l ly  
activated , and they start activat ing their  propert ies .  Since they a l l  share 
the same " occupat ion , "  they work together to  fi l l  in  that property for 
Lance. Of course , there is no reason why th is  should necessar i ly  be the 
right answer,  but general ly speaking, the more s imi lar two thi ngs are i n  
respects that we know about ,  t h e  more l i kely they are to b e  s imi lar i n  
respects that we d o  not , and the model implements th is  heurist ic .  

Spontaneous generalization. The model we have been descri b ing 
has another valuable property as wel l - i t  tends to retrieve what i s  com
mon to those memories which match a ret rieval cue which i s  too gen
eral to capture any one memory. Thus, for example ,  we could probe 
the system by act i vat i ng the unit corresponding to membersh ip i n  the 
Jets. This unit wi l l  part ial ly acti vate a l l  the i nstances of the Jets, 
thereby causing each to send act ivations to i ts propert ies .  In  this way 
the model can ret rieve the typical val ues that the members of the Jets 
have on each dimension - even though there is  no one Jet that has 
these typical values. In the example,  9 of 15 Jets are s ingle,  9 of 15 are 
in  thei r 20s, and 9 of 15 have only a Junior High School educat ion;  
when we probe by acti vat ing the Jet  un i t ,  al l  three of these propert ies 
domi nate .  The Jets are evenly d iv ided between the three occupat ions, 
so each of these uni ts becomes partial ly activated . Each has a d ifferent 
name, so that each name uni t  i s  very weakly act ivated , nearly cancel l ing 
each other out .  

In the example j ust gi ven of spontaneous general izat ion , i t  would not 
be unreasonable to suppose that someone might have expl ic i t ly stored a 
general ization about the members of a gang .  The account just g iven  
would be  an  al ternati ve to ·' expl ic i t  storage" of the  general i zation . I t  
has two advantages,  though , over such an account .  Fi rst , i t  does not 
requi re any special genera l izat ion format ion mechanism. Second,  it can 
provide us with general i zat ions on unantici pated l i nes, on demand. 
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Thus,  i f  we want to know, for example ,  what people i n  their 20s with a 
junior  h igh school educat ion are l ike ,  we can probe the model by 
acti vat ing  these two un i ts .  Si nce al l  such people are Jets and Burglars , 
these two uni ts  are strongly acti vated by the model i n  this case; two of 
them are divorced and two are married , so both of these units are par
t ia l ly  acti vated . I 

The sort of model we are consider ing,  then , is considerably more 
than a content addressable memory .  In addi t ion ,  i t  performs default 
ass ignment ,  and i t  can spontaneously retrieve a general concept of the 
individuals that match any specifiable probe . These properties must be 
explicit ly i mplemented as compl icated computational extensions of 
other models of knowledge retr ieval , but in  POP models they are 
natural by-products of the retr ieval process i tself. 

REPRESENTATION AND LEARNING IN PDP MODELS 

I n  the Jets and Sharks model , we can speak of the model ' s  active 
representation at a part icular t ime ,  and associate th is  with the pattern of 
act ivat ion over the un i ts in the system. We can also ask: What i s  the 
stored knowledge that gi ves rise to that pattern of acti vat ion ?  In con 
sidering th is  quest ion , we see immediately an important d ifference 
between POP models and other models of cogni t ive processes . In most 
models ,  knowledge is stored as a static copy of a pattern . Retrieval 
amounts to findi ng the pattern in l ong-term memory and copying i t  i nto 
a buffer or working memory . There is no  real difference between the 
stored representat ion i n  long-term memory and the act ive representa
t ion in  working memory . In PDP models ,  though , this is not the case . 
In these models ,  the patterns themselves are not stored . Rather ,  what 
is stored is the connection strengths between un i ts that al low these pat
terns to be re-created . In the Jets and Sharks mode l ,  there is an 
instance un i t  ass igned to each indi vidual ,  but that uni t  does not contain 
a copy of the representation of that indiv idual . Instead, i t  i s  s imply the 
case that the connect ions between i t  and the other uni ts  in the system 
are such that act i vat ion of the uni t  wi l l  cause the pat tern for the 
ind ividual to be reinstated on the property un i ts .  

I In  th is a n d  a l l  other  cases , there is a tendency for Ihe  pattern of act i va t ion to b e  i n fl u ·  
enced b y  part ia l ly  act i vated, near neigh bors, which do not  q u i t e  match t h e  probe. Thus,  
in  this case,  there is a Jet  AI ,  who is  a Mar r ied Burglar.  The un i t  for AI gets sl ightly 
activated , giving Married a s l ight  edge over Divorced i n  the s imulat ion . 
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This difference between POP models and conventional models has 
enormous i mpl ications, both for processing and for learn i ng. We have 
al ready seen some of the impl icat ions  for processing.  The representa
tion of the knowledge i s  set up in such a way that the knowledge neces
sari ly influences the course of processing.  Usi ng knowledge in process
i ng is no longer a matter of finding the relevant information i n  memory 
and bringing it to bear� i t  is part and parcel of the processing i tself. 

For learn ing ,  the impl ications are equal ly  profound. For if the 
knowledge is  the strengths of the connect ions, learn ing must be a 
matter of find ing the right connection strengths so that the right pat
terns of activat ion wi l l  be produced under the right c i rcumstances . This 
is an extremely important property of this c lass of models, for i t  opens 
up  the poss ibi l i ty that an information processing mechan ism could 
learn , as a result  of tuning i ts connect ions , to capture the 
i nterdependencies between acti vations that i t  i s  exposed to i n  the 
course of processing. 

In recent  years, there has been quite a lot of i nterest i n  learni ng in 
cogni t ive science.  Computational approaches to learn ing fal l  predom
inantly into what might be cal led the " expl ic i t  rule formulation " trad i 
t ion , as  represented by the work of Winston ( 1 975 ) , the suggest ions of 
Chomsky, and the ACT* model of 1. R. Anderson ( 1 983 ) . Al l  of this 
work shares the assumption that the goal of learn ing is  to formulate 
explicit rules (proposit ions,  productions, etc. ) which capture powerful  
general izat ions i n  a succinct way .  Fai r ly powerful  mechanisms, usuall y  
w i th  considerable innate knowledge about a domain ,  and/or some start
ing set of primi t ive propos i t ional represen tat ions , then formulate 
hypothetical general rules, e .g . , by compari ng part icular cases and for
mu lati ng explicit general izations. 

The approach that we take in  developing POP models is completely 
d ifferent . Fi rst , we do not assume that the goal of learn ing is the for
mulation of expl ic i t  rules. Rather ,  we assume it is the acquis i t ion of 
connection strengths which al low a network of s imple un i ts to act as 
though i t  knew the rules .  Second , we do not attri bute powerful compu
tational capabi l i ties to the learni ng mechan ism. Rather, we assume 
very s imple connect ion st rength modulat ion mechan isms which adjust 
the strength of connections between units based on informat ion loca l ly  
avai lable at the connect ion . 

These i ssues wi l l  be addressed at length in  later sect ions of this book .  
For now,  our purpose is to give a s imple ,  i l l ustrat i ve example of the 
connect ion strength modulation process , and how i t  can produce net
works which exhi bi t  some in terest ing behavior. 

Local vs. distributed representation. Before we turn to an explicit 
considerat ion of this issue, we raise a basic quest ion about 
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representat ion .  Once we have achieved the ins ight that the knowledge 
is stored in the strengths of the in te rconnections between un i ts ,  a ques
tion arises. Is there any reason to ass i gn one un i t  to each pattern that 
we wish to l earn ? Another possi bi l i ty - one that we explore extensi vely 
in this book -is  the possi bi l i ty that the knowledge about any i ndi vidual 
pattern is not stored i n  the connect ions of a special unit reserved for 
that pattern , but is d istr i buted over the connect ions among a large 
number of processing units .  On th is  view, the Jets and Sharks model 
represents  a special case in which separate un i ts are reserved for each 
i nstance . 

Models i n  which connecion information i s  expl ic i t ly thought of as 
distributed have been proposed by a number of invest igators. The 
units i n these col lect ions may themselves correspond to conceptual 
pr imit i ves, or they may have no part icular meaning as indi viduals .  In 
e i ther case , the focus sh i fts to patterns of act i vat ion over these un i ts 
and to mechanisms whose expl ic i t  purpose is to learn the right connec
t ion strengths to  allow the right patterns of act i vation to become 
activated under the right ci rcumstances. 

In the rest of this section ,  we wi l l  give a s imple example of a POP 
model in which the knowledge is distr i buted. We wi l l  fi rst explain how 
the model would work,  given pre-ex is t ing connections, and we wi l l then 
describe how it could come to acqu i re the right connect ion strengths 
through a very si mple learni ng mechanism . A number of models which 
have taken this distr ibuted approach have been discussed in this book's  
predecessor, H inton and 1 .  A.  Anderson's  ( 1 98 1 )  Parallel Models of 
Associative Memory. We wi ll  consider a s imple version of a common 
type of distributed mode l ,  a pattern associator. 

Pattern associators are models in which a pattern of act ivation over 
one set of un i ts can cause a pattern of act i vat ion over another set of 
un i ts wi thout any in terven ing units  to stand for ei ther pat tern as a 
whole .  Pattern associators WOUld,  for example, be capable of 
associat i ng a pattern of act ivat ion on one set of uni ts corresponding to 
the appearance of an object with a pattern on another set  correspondi ng 
to the aroma of the object,  so that, when an object i s  presented visu
al ly, causing its visual pattern to become acti ve ,  the model produces the 
pattern corresponding to i ts aroma. 

How a pattern associator works. For purposes of i l l ust rat ion , we 
present a very si mple pattern assoc iator in Figure 1 2 .  In this model , 
there are four units i n  each of two pools. The first pool , the A units ,  
wi l l  be the pool in which patterns corresponding to the s ight of various 
objects might  be represented. The second pool ,  the B units ,  wi l l  be the 
pool in which the pattern corresponding to the aroma wi l l  be 
represented. We can pr�pyh�alMaflMiHe patterns of activation on 
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FIG U R E  1 2 - A si m p le pattern associator_ The exam ple assumes that patterns of act i va

t ion i n  the A u n i ts can be produced by the visual system and patterns i n  the B un i ts can 

be prod uced by the olfactory system.  The synaptic connections allow the outputs of the  

A uni ts  to i n fl uence the  act i vat ions of the B u n i ts.  The synapt ic weights l ink ing the A 
un i ts to the B u n i ts were selected so as to a l low t he pal lern of act i va t ion shown on the  A 
uni ts to reprod uce the pallern of act ivat ion shown on the B u n i ts without  the need for 

any olfactory i n p u t .  

the A units are produced upon viewing a rose or a gri l led steak , and 
al ternati ve patterns on the B units are produced upon sniffi ng the same 
objects . Figure 13 shows two pai rs of patterns, as wel l as sets of inter
connections necessary to a l low the A member of each pai r to reproduce 
the B member. 

The detai l s  of the behavior of the i ndi vidual units vary among dif
ferent versions of pattern associators . For present purposes, we' l l  
assume that t h e  u n i t s  can take o n  posit ive or negat ive acti vation values, 
wi th 0 representing a kind of neutral in termediate val ue. The strengths 
of the interconnections between the uni ts can be posi t ive or negat i ve 
real numbers .  

The effect of an A unit  on  a B unit  is  determined by mult iplyi ng the 
act ivation of the A unit t i mes the strength of i ts  synaptic  connection 
wi th the B uni t .  For example ,  i f  the connection from a part icular A 
unit  to a particular B unit has a posi t ive s ign , when the A unit  i s  
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FIGURE 1 3 . Two si mple associators represen ted as matr ices. The weights in the fi rst two 

matrices al low the A pat tern shown above the matrix to produce the B pa t tern shown to  

the r igh t of i t .  Note t hat the weights i n  the fi rst matr ix  are the same as those shown i n  
t h e  d iagram i n  Figure 1 2 . 

exci ted (act i vation greater than 0) , i t  wi l l  excite the B uni t .  For th is  
example ,  we ' l l  s imply assume that the acti vat ion of each uni t  is set  to 
the sum of the exci tatory and inhibitory effects operating on i t .  This i s  
one of the s implest poss ib le cases . 

Suppose, now, that we have created on the A un i ts the pattern 
corresponding to the fi rst visual pattern shown in Figure 1 3 ,  the rose. 
How should we arrange the strengths of the interconnecti ons between 
the A un i ts and the B uni ts  to reproduce the pattern corresponding to 
the aroma of a rose? We simply need to arrange for each A un i t  to 
tend to excite each B uni t  which has a posi t ive acti vat ion in the aroma 
pattern and to inh ib i t  each B uni t  which has a negat ive act ivat ion in the 
aroma pattern.  I t  turns out that th is  goal i s  achieved by set t ing the 
strength of the connect ion between a given A un i t  and a gi ven B uni t  
to a va lue proportional to the product of the act ivation of the two uni ts .  
In  Figure 1 2 , the weights on the connections were chosen to allow the 
A pattern i l l ustrated there to produce the i l l ustrated B pattern accord ing 
to th i s  pr inciple .  The actual strengths  of the connect i ons were set to 
± . 2 5 ,  rather than ± 1 ,  so that the A pattern wil l  produce the right mag
n i tude, as wel l  as the right sign , for the act ivations of the uni ts in  the B 
pattern . The same connections are reproduced i n  matri x form i n  Fig
ure l 3 A .  

Pattern associators l i ke the one  i n  Figure 1 2  have a number of nice 
properties .  One is that they do not requi re a perfect copy of the i nput 
to produce the correct output ,  though i ts strength wi l l  be weaker in th is  
case. For example,  suppose that the associator shown i n  Figure 12 were 
presented with an A pattern of ( 1 ,- 1 ,0, 1 ) .  This  is the A pattern shown 
in the figure ,  with the acti vat ion of one of its elements set to 0 .  The B 
pattern produced i n  response wi l l  have the act i vat ions of al l  of the B 
un i ts i n  the  right d i rect ion;  however,  they wi l l  be somewhat weaker 
than they would be, ha£qp;rightfffMfa�r4alttern been shown . Similar 
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effects are produced if an element of the pattern is distorted -or if the 
model is  damaged, ei ther by removing whole units ,  or random sets of 
connections, etc. Thus, thei r pattern retrieval performance of the 
model degrades gracefully both under degraded input and under 
damage . 

How a pattern associator learns. So far ,  we have seen how we as 
model bui lders can construct the right set of weights to allow one pat
tern to cause another.  The i nterest ing thing, though , is  t hat we do not 
need to bui ld these i nterconnection strengths in by hand.  Instead, the 
pattern associator can teach itself the right set  of interconnecti ons 
through experience processing the patterns in conjunction with each 
other. 

A number of d ifferent rules for adjusting connection strengths have 
been proposed . One of the fi rst - and definitely the best known - i s  due 
to D. O. Hebb (1949). Hebb's actual proposal was not sufficiently 
quanti tati ve to build into an explicit model . However, a number of dif
ferent variants can t race their ancestry back to Hebb. Perhaps the sim
plest version is :  

When unit  A and unit  B are simul taneously excited, i ncrease 
the strength of the connection between them. 

A natural extension of this rule to cover the posi t ive and negati ve 
acti vation values allowed in our example is :  

Adjust the strength o f  t h e  connection between units A and B i n  
proport ion t o  the product o f  their  s imultaneous act i vat ion.  

In this formulation , i f  the product i s  posi t ive,  the change makes the 
connection more exci tatory, and if  the product is negati ve, the change 
makes the connection more inhi bitory. For s impl icity of reference , we 
wil l  cal l this the Hebb rule, although it is not exactl y  Hebb's  original 
formulation . 

With this si mple learn ing  rule,  we could t ra in  a " blank copy " of the 
pattern associator shown in Figure 1 2  to produce the B pattern for rose 
when the A pattern is shown , simply by present ing the A and B pat
terns together and modulat ing the connection st rengths according to the 
Hebb rule .  The size of the change made on every trial would,  of 
course, be a parameter. We general ly assume that the changes made on 
each instance are rather smal l ,  and that connect ion strengths bui ld up 
gradual l y .  The values shown i n  Figure l 3 A ,  then , would be acqui red as 
a result  of a number of experiences with the A and B pattern pai r .  
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It  i s  very i m portant to note that the information needed to  use t he 
Hebb ru le  to determ i n e  the value each connect ion should have is locally 
available at the connect ion . Al l  a given connect ion needs to consider i s  
the acti vat ion of the units on both s ides of i t .  Th us, i t  would be  poss i 
ble to actual ly  i mplement such a connect ion modulat ion scheme local ly ,  
in  each connect i on , without  requ ir ing any programmer to reach in to  
each connect ion and set  i t  to just the right val ue . 

It turns out that the Hebb rule as stated here has some ser ious l i m i 
tat i ons,  and, to our  knowledge, no theorists cont inue to use i t  i n  th is  
s imple form.  More sophisticated connection modulat ion �chemes have 
been proposed by other workers; most i m portant among these are the 
delta ru le ,  d iscussed extens i vely i n  Chapters 8 and 1 1 ; the compet i t i ve 
l earn i ng ru le ,  d i scussed i n  Chapter 5 ; and the rules for learn ing  i n  sto
chast ic  paral le l  models ,  descri bed in Chapters 6 and 7. Al l  of these 
learning rules have the property that they adj ust the strengths of con
nections between units on the basis of informat ion that can be assu med 
to be local ly avai l able to the uni t .  Learning, then, in all of these cases, 
amounts to a very s imp le process that can be i m plemented local ly  at 
each connect i on without the need for any overal l  supervis ion .  Thus , 
models which i ncorporate these learning rules tra i n  themsel ves to have 
the right in terconnections in the course of processing the members of 
an ensemble of patterns.  

Learning multiple patterns in the same set of interconnections. Up 
to now, we have considered how we might teach our pattern associator 
to associate the visual pattern for one object wi th a pattern for the 
aroma of the same object . Obvious ly ,  different patterns of i nterconnec
t ions between the A and 8 un i ts are appropriate for causing the visual 
pat tern for a different object to gi ve rise to the pattern for i ts aroma. 
The same princi p les appl y ,  however ,  and if we presented our  pattem 
associator with the A and 8 patterns for steak , i t  would l earn the r i&ht 
set of i n terconnections for that case i nstead (these are shown i n  Figure 
1 38) . In fact , it turns out  that we can actually teach the same pattern 
associator a n u m be r  of different associations.  The matrix represent ing 
the set  of interconnections that would be learned i f  we taught the same 
pattern associator both the rose associat ion and the steak assoc iat ion is 
shown in Figure 14 .  The reader can verify this by adding the two 
matrices for the indi vidual pat terns together. The reader can also verify 
that this set of connections wi l l  a l low the rose A pattern to produce the 
rose 8 pattern , and the steak A pattern to produce the steak 8 pattern : 
when either i nput  pattern i s  presented , the correct corresponding output 
i s  produced . 

The examples used here have the property that the two d ifferent 

visual patterns are comp l�te ly uncorrelated with each other .  This be i ng 
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FIG U R E  1 4 .  T h e  weights i n  t h e  th i rd mat r i x  a l low e i ther A pattern shown i n  Figure \ 3  
to recreate t h e  corresponding B pat tern . Each weight  i n  t h i s  case is equal to t h e  sum of  
the weight for the  A pat tern and the weight for the  B pat tern , as i l l ustrated. 

the case , the rose pat tern produces no effect when the i nterconnect ions 
for the steak have been establ i shed, and the steak pattern produces no 
effect when the i nterconnections for the rose associat ion are in effect . 
For th is  reason , it i s  poss i ble to add together the pattern of i ntercon
necti ons for the rose associat ion and the pattern for the steak associa
t ion ,  and st i l l  be able to associate the s ight  of the steak with the sme l l  
o f  a steak a n d  t h e  sight of a rose wi th t h e  s m e l l  of a rose.  The t w o  sets 
of i nterconnect i ons do not interact at al l .  

One o f  the l i mi tations o f  the Hebbian learn i ng rule i s  that i t  can 
learn the connection strengths appropriate to an ent i re ensemble of pat
terns only when all the patterns are completely uncorrelated. Th is  
rest riction does not , however, apply  to pattern associators which use 
more sophist icated learn i ng schemes. 

A ttractive properties of pattern associator models. Pat tern associator 
models have the property that u ncorrelated patterns do not i nteract with 
each other, but more s i m i lar ones do.  Thus,  to the extent that a new 
pattern of acti vation on the A units i s  s imi lar to one of the old ones, it 
wi l l  tend to  have s imi lar effects.  Furthermore ,  if we assume that learn
ing the i n terconnect ions occurs in small i ncrements,  s i milar patterns 
wi l l  essent ia l ly  reinforce the strengths of the l i n ks they share in com
mon with other patterns. Thus, if we present the same pai r of patterns 
over and over,  but each t ime we add a l i tt le random noise to each ele
ment of each member of the pai r ,  the system wi l l  automatical ly  learn to 
associate the central tendency of the two patterns and wi l l  l earn to 
ignore the noise.  What wi l l  be stored wi l l  be an average of the s i m i lar 
patterns wi th the s l ight  variat ions removed . On the other hand, when 
we present the system with completely uncorrelated patterns, they wi ll  
not i n teract with each other in  this way. Thus , the same pool of uni ts 
can extract the cen t ral tendency of each of a number of pai rs of unre
lated patterns. Thi s  aspect of distri buted mode ls is  exploited extens i vely 
i n  Chapters 17 and 25 on distributed memory and amnesia .  
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Extracting the structure of an ensemble of patterns. The fact that 
s imi lar  patterns tend to produce s imi lar  effects al lows distri buted 
models to  exh ib i t  a kind of spontaneous general i zation , extendi ng 
behavior appropriate for one pattern to  other  s imi lar patterns. This  
property i s  shared by other POP models,  such as the word perception 
model and the Jets and Sharks model descri bed above; the main d iffer
ence here is  i n  the existence of s impl e ,  l ocal , learning mechanisms that 
can al low the acquis i t ion of the connect ion strengths needed to produce 
these general izations through experience wi th members of the ensem
ble of patterns . Distributed models have another in terest ing property 
as wel l :  If there are regulari t ies in  the correspondences between pai rs 
of patterns , the model wi l l  natural ly extract these regularit ies .  Th is 
property al l ows distri buted models to acquire patterns of 
interconnections that lead them to behave i n  ways we ordinari ly take as 
evidence for the use of l i nguist ic rules. 

A detailed example of such a model is  described i n  Chapter 18 .  
Here, w e  descri be t h e  model very briefly .  The model is a mechanism 
that learns how to construct the past tenses of words from thei r root 
forms through repeated presentations of examples of root forms pai red 
wi th the corresponding past-tense form. The model consists of two 
pools  of uni ts .  In one pool , patterns of act ivat ion representing the pho
nological structu re of the root form of the verb can be represented , 
and, in the other , patterns represent ing the phonological structure of 
the past tense can be represented . The goal of the model is s imply to 
learn the r ight  connection strengths between the root uni ts and the 
past-tense units ,  so that  whenever the root form of a verb i s  presented 
the model wi l l  construct the corresponding past· tense form.  The model 
is trained by p resenting the root form of the verb as a pattern of acti va
t ion over the root un i ts ,  and then using a s imple,  local , learn i ng rule to 
adjust the connect ion strengths so that th is  root form wi l l  tend to pro
duce the correct pattern of act ivation over the past-tense units .  The 
model is  tested by s imply presenting the root form as a pattern of 
acti vation over the root units  and examin ing the pattern of act i vation 
produced over the past-tense un its .  

The model i s  trained in i t ia l ly wi th a smal l number of  verbs chi ldren 
learn early in  the acquis i t ion process . At this point  in  learning,  i t  can 
only produce appropriate outputs for inputs that i t  has explicit ly been 
shown. But as it learns more and more verbs, i t  exhibits  two interest· 
ing behaviors. Fi rst , i t  produces the standard ed past tense when tested 
wi th pseudo-verbs or verbs i t  has never seen. Second, i t  " overregular
izes " the past tense of i rregular words i t  previously completed correctly . 
Often,  the model wi l l  blend the i rregular past tense of the word wi th 
the regular ed ending, and produce errors l i ke CAMED as the past of 
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COME. These phenomena mirror those observed i n  the early phases of 
acquis i t ion of control over past tenses in young chi ldren.  

The generat ivi ty of the chi ld 's  responses - the creation of regular 
past tenses of new verbs and the overregu larizat ion of the i rregular 
verbs - has been taken as strong evidence that the child has i nduced the 
rule which states that the regular correspondence for the past tense in 
Engl ish is  to add a fi nal ed (Berko, 1 958) . On the evidence of i ts per
formance, then , the model can be said to have acqui red the rule.  How
ever, no special rule-induction mechanism is  used, and no special 
language-acquisit ion device is  requi red. The model learns to behave in 
accordance with the rule, not by expl ic i t ly  noting that most words take 
ed in the past tense in Engl ish and storing this rule away expl ici t ly ,  but 
s imply by bui lding up a set of connect ions in a pattern associator 
through a long series of s imple learning experiences . The same 
mechanisms of paral lel  distri buted processing and connection modifica
tion which are used i n  a number of domains serve , i n  this case, to pro
duce i mplic i t  knowledge tantamount to a l i nguist ic rule .  The model 
also provides a fai r ly detailed account of a number of the specific 
aspects of the error patterns chi ldren make i n  learning the rule .  In this 
sense , i t  provides a richer and more detai led description of the acqu is i
t ion process than any that fal l s  out natural ly  from the assumption that 
the chi ld is bui ld ing up a repertoi re of expl ic i t  but i naccessible rules.  

There is  a lot more to be said about distributed models of learni ng, 
about thei r strengths and thei r weaknesses , than we have space for in 
this prel i minary consideration.  For now we hope mainly  to have sug
gested that they provide dramatical ly  different accounts of learning and 
acquisi t ion than are offered by trad i t ional models of these processes . 
We saw i n  earl ier sections of this  chapter that performance i n  accor
dance with rules can emerge from the i nteractions of s imple,  i ntercon
nected un i ts .  Now we can see how the aquis i t ion of performance that 
conforms to l inguistic rules can emerge from a s imple,  local , connec
tion strength modulation process. 

We have seen what the properties of PDP models are in informal 
terms, and we have seen how these propert ies operate to make the 
models  do many of the kinds of things that they do.  The busi ness of 
the next chapter is to lay out these properties more formal ly ,  and to 
introduce some formal tools for the ir  descri ption and analysis .  Before 
we turn to this ,  however,  we wish to descri be some of the major 
sources of i nspi ration for the PDP approach . 
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ORIGINS O F  PARALLEL DISTRIBUTED PROC ESSING 

The i deas behi nd the POP approach have a h istory that st retches 
back i ndefi n i te ly. In th is  sect ion , we mention briefly  some of the peo
ple who have thought i n  t hese terms, part icularly those whose work has 
had an i mpact on our own thi nking.  Th is section should not been seen 
as an authoritat i ve review of the h istory, but only as a descr ipt ion of 
our own sources of i nspiration.  

Some of the earl iest roots of the POP approach can be found i n  the 
work of the unique neurologists,  Jackson 0 869/ 1 958) and Luria  
( 1 966) . Jackson was a forceful  and persuas i ve crit ic of the s i mpl ist ic  
local izationist doctrines of late n i neteenth century neurology, and he 
argued con vincingly for distr ibuted,  mul t i level conceptions of process
i ng systems . Lur ia ,  the Russian psychologist and neurologist , put for
ward the notion of the dynamic fUnctional system. On this view, every 
behavioral or cogni t i ve process resulted from the coordination of a large 
number of d i fferent components, each roughly local ized in different 
regions of the brain ,  but al l  working together in dynamic i nteract ion .  
Nei ther Hugh l ings-Jackson nor Lur ia  i s  noted for the clarity of  h is 
views , but we have seen i n  thei r ideas a rough characterization of the 
kind of paral le l  distri buted processing system we envis ion .  

Two other contr ibutors to the deep background of POP were Hebb 
( 1 949) and Lashley ( 1 950) . We al ready have noted Hebb's contribu
tion of the Hebb rule of synapt ic modi ficat ion;  he also i ntroduced the 
concept of cell assembl ies - a  concrete example of a l imited form of dis
tr ibuted process ing- and discussed the i dea of reverberat i on of act i va
tion within neural networks. Hebb's ideas were cast more in the form 
of speculations about neural funct ioning than in the form of concrete 
processing models ,  but his thinki ng captures some of the flavor of 
paral lel  distributed processing mechanisms.  Lashley ' s  contr i bution was 
to i nsist upon the idea of distri buted representat ion .  Lash ley may have 
been too radical and too vague, and his doctr ine of equi potential i ty of 
broad regions of cortex clearly overstated the case. Yet many of h is  
insights into the difficulties of storing the " engram" locally i n  the brain 
are telling, and he seemed to capture quite precisely the essence of dis
tributed representation i n  i nsisting that " there are no special cells 
reserved for special memories"  (Lashley,  1 950, p. 500) . 

In the 1 950s , there were two major figures whose ideas have contri 
buted to the deve lopment of our approach.  One was Rosenblatt  0 959 ,  
1 962) a n d  t h e  other was Selfridge ( 1 955) . In h i s  Principles of Neuro
dynamics ( I  962) , Rosenblatt articulated clearly the promise of a neur
ally i nspired approach to computation , and he developed the perceptron 
convergence procedure, aeojJyW�i�I¥��mge over the Hebb rule for 
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changing synapt ic  connect ions.  RosenblaU's  work was very controver
sial at the t ime, and the specific models he proposed were not up to al l  
the hopes he had for them.  But his  vis ion of the human information 
processing system as a dynamic ,  interact ive,  self-organ iz ing system l i es 
at the core of the POP approach . Selfridge's contri bution was his 
insi stence on the importance of i n teract ive processing, and the develop
ment of Pandemonium, an expl ic i t ly  computational example of a 
dynamic,  in teract ive mechan ism appl ied to computational problems in 
percept ion.  

In the late 60s and ear ly 70s,  serial processing and the von Neumann 
computer domi nated both psychology and artificial i ntel l igence , but 
there were a number of researchers who proposed neural mechanisms 
which captu re much of the flavor of POP models .  Among these fig
ures, the most influent ial i n  our work have been J. A. Anderson, 
Grossberg, and Longuet-Higgins.  Grossberg 's mathematical analysis of 
the properties of neural networks led h im to many i ns ights we have 
only come to appreciate through extensi ve experience with computer 
s imulation,  and he deserves credit for seeing the relevance of neural ly  
i nspi red mechanisms in  many areas of perception and memory wel l  
before the  field was ready for these kinds of  ideas (Grossberg , 1 978) . 
Grossberg ( 1 976) was also one of the fi rst to analyze some of the 
properties of the compet i t ive learn ing mechanism explored i n  
Chapter 5 .  Anderson's  work differs from Grossberg's i n  i nsisting u pon 
distr ibuted representation , and in showing the relevance of neural ly 
inspi red models for theories of concept learn ing (Anderson , 1 973 ,  
1 977) ; the  work i n  Chapters 17  and 25  on distr i buted memory and 
amnesia owes a great deal to Anderson 's i nspi rat ion . Anderson 's work 
also played a crucial role in the formulation of the cascade model 
(McClel land, 1 979) , a step away from serial processing down the road 
to POP. Longuet-Higgins and h is  group at Edinburgh were also pursu
ing distri buted memory models during the same period, and Oavid 
Wi l l shaw, a member of the Edi nburgh group,  provided some very 
elegant mathematical analyses of the properties of various d ist ri buted 
representation schemes (Wi l lshaw, 1 98 1 ) .  His ins ights provide one of 
the sources of the idea of coarse coding described at length in Chapter 
3 .  Many of the contri butions of Anderson , Wi l l shaw, and others 
distri buted modelers may be found in Hinton and Anderson ( 98 1 ) . 
Others who have made i mportant contri butions to learni ng i n  POP 
models i ncl ude Amari ( 1 977a) , Bienenstock, Cooper,  and Munro 
( I  982) , Fukush i ma ( I  975) , Kohonen ( 1 977 , 1 984) , and von der 
Malsburg (I 973) . 

Toward the middle of the 1 970s ,  the idea of paral lel  processing began 
to have someth i ng of a renaissance in computational ci rcles. We have 
al ready mentioned the Marr and Poggio ( 976) model of stereoscopic 
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depth percept ion .  Another model from this period , the HEA RSA Y 
model of s peech understand ing,  played a promi nent role in the 
development of our th i n k ing . Unfortunately  , HEARSAY's computa
t ional architecture was too demand i ng for the avai lable com putat ional 
resources , and so the model was not a computational success . But i ts 
basical l y  paral le l , i n teract i ve character i nspi red the in teract i ve model of 
read ing  (Rume lhart , 1 97 7) , and the i nteract ive acti vation model of 
word recogn i t ion ( McClel land & Rumelhart ,  1 98 1 ;  Rumelhart & 
McClel land , 1 982) . 

The ideas represented i n  the i nteract i ve act i vation model had other 
precursors as we l l . Morton 's  logogen model ( Morton , 1 969) was one of 
the first models to capture concretely the pri nciple of i n teract ion of d if
ferent  sources of i n formati on ,  and Marslen-Wi l son (e .g . ,  Mars len
Wi lson & Welsh,  1 978)  provided i m portant empi rical demonstrat i ons of 
i n teract i on between d i fferent levels  of language processing .  Levi n ' s  
( 1 976) Proteus model demonst rated t h e  vi rtues o f  act i vat ion
compet i t i on mechanisms,  and Gl ushko ( 1 979) hel ped us see  how con 
spi rac i es of partial  act i vat ions cou ld  account  for certa in  aspects of 
apparent ly  rule-guided behavior .  

Our work also owes a great deal  to a number of col leagues who have 
been working on related ideas in recent years . Many of these col 
leagues appear as authors or coauthors of chapters i n  th is  book . But 
t here are others as wel l .  Several of these people have been very 
influent i al i n  the development of the ideas in th is  book .  Feldman and 
Ballard ( 1 982) laid out many of the com putat i onal pri nc ip les of the 
POP approach (under the name of connectionism) ,  and stressed the bio
logi cal i m plausibi l i ty of most of the prevai l i ng computational models i n  
art ificial i ntel l igence.  Hofstadter ( 1 979,  1 98 5 )  deserves cred i t  for 
st ressing the existence of a subcogni t i ve - what we cal l  
microstructural - level , and poi n t i ng out how important i t  can be t o  
del ve i nto the m icrostructure to gain i ns igh t . A sand dune,  he has  said ,  
i s  not a grai n o f  sand .  Others have contributed cruc ial techn ical 
i nsights. Sutton and Barto  ( 98 1 )  provided an i ns ightful analysis of the 
connection modi fication scheme we call the delta rule and i l l ust rated the 
power of the rule to account for some of the subtler propert ies of clas
sical condi t i on i ng . And Hopfield's  ( 982)  contri but ion of the idea that 
network models can be seen as seeking m i n i ma in energy landscapes 
played a prom i nen t role in the development of the Bol tzmann mach i ne 
(Chapter 7 ) , and i n  the crysta ll izat i on of the ideas presented i n  
Chapters 7 and 1 4  o n  harmony theory and schemata. 

The power of paral lel  d istr ibuted process i ng is  becoming more and 
more apparent , and many others have recent ly jo ined in the expl orat ion 
of the capabi l i t ies of these mechan isms.  We hope th is  book represents 
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the nature of the enterprise we are al l involved in, and that i t  does jus
tice to the poten t ial of the PDP approach . 
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CHAPTER 2 

A General Framework for 
Parallel Distributed Processing 

D. E. RUMELHART, G. E. HINTON, and 1. L. McCLELLAND 

In Chapter 1 and throughout this book, we describe a large number 
of models, each different in detail-each a variation on the parallel dis
tributed processing (PDP) idea. These various models, and indeed 
many in the literature, clearly have many features in common, but they 
are just as clearly distinct models. How can we characterize the general 
model of which these specific models are instances? In this chapter we 
propose a framework sufficiently general so that all of the various 
models discussed in the book and many models in the literature are 
special cases. We will proceed by first sketching the general framework 
and then by showing properties of certain specific realizations of the 
general model. I 

The General Framework 

It is useful to begin with an analysis of the various components of 
our models and then describe the various specific assumptions we can 

I We are, of course, not the first to attempt a general characterization of this general 
class of models. Kohonen 0977, 1984), Amari (l977a), and Feldman and Ballard (1982) 
are papers with similarly general aims. 
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make about these components. There are eight major aspects of a 
parallel distributed processing model: 

• A set of processing units 
• A state of activation 
• An output junction for each unit 
• A pattern of connectivity among units 
• A propagation rule for propagating patterns of acti vities through 

the network of connect ivit ies 
• An activation rule for combin ing the inputs i mpinging on a unit  

with the current state of that unit  to produce a new level of 
activation for the unit. 

• A learning rule whereby patterns of connectivity are modified by 
experience 

• An environment within which the system must operate 

Figure 1 i l lustrates the basic aspects of these systems. There is  a set of 
processing units generally  indicated by ci rcles in our diagrams; at each 
point in t ime, each unit Uj has an activation value, denoted in the 
diagram as aj (t); this acti vation value is passed through a function fj to 
produce an output value OJ (t). This output value can be seen as pass
ing through a set of unidi rectional connections ( indicated by l ines or 
arrows in our diagrams) to other units in the system. There is assoc i 
ated wi th each connection a real number, usually  cal led the weight or 
strength of the connection designated wi) which determines the amount 
of effect that the fi rst unit has on the second. All of the inputs must 
then be combined by some operator (usually addit ion) -and the com
bined inputs to a unit, along with i ts current acti vation value, deter
mine, via a function F, i ts new activation value. The figure shows i l lus
trative examples of the function f and F. Finally,  these systems are 
viewed as being plastic in the sense that the pattern of interconnections 
is not fixed for all t ime; rather, the weights can undergo modificati on 
as a function of experience. In  this way the system can evolve . What a 
unit represents can change wi th experience, and the system can come 
to perform in substantial ly different ways. In the fol lowing sections we 
develop an explicit notation for each of these components and describe 
some of the alternate assumptions that have been made concerning 
each such component .  

A set of processing units. Any parallel activation model begins wi th 
a set of processing units . Specifying the set of processing units and 
what they represent is typically the fi rst stage of specifying a PDP 
model. In some models these units may represent particular conceptual 
objects such as features, letters ,  words, or concepts; in others they are 
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FIGURE 1. The basic components of a parallel distributed processing system. 

simply abstract elements over which meaningful patterns can be 
defined. When we speak of a distributed representation, we mean one 
in which the units represent small, feature-like entities. In this case it is 
the pattern as a whole that is the meaningful level of analysis. This 
should be contrasted to a one-unit-one-concept representational system 
in which single units represent entire concepts or other large meaning
ful entities. 

We let N be the number of units. We can order the units arbitrarily 
and designate the ith unit Ui' All of the processing of a PDP model is 
carried out by these units. There is no executive or other overseer. 
There are only relatively simple units, each doing it own relatively sim
ple job. A unit's job is simply to receive input from its neighbors and, 
as a function of the inputs it receives, to compute an output value 
which it sends to its neighbors. The system is inherently parallel in that 
many units can carry out their computations at the same time. 
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Within any system we are modeling, it is useful to characterize three 
types of units: input, output, and hidden. Input units receive inputs from 
sources external to the system under study. These inputs may be either 
sensory input or inputs from other parts of the processing system in 
which the model is embedded. The output units send signals out of the 
system. They may either directly affect motoric systems or simply 
influence other systems external to the ones we are modeling. The hid
den units are those whose only inputs and outputs are within the sys
tem we are modeling. They are not "visible" to outside systems. 

The state of activation. In addition, to the set of units, we need a 
representation of the state of the system at time t. This is primarily 
specified by a vector of N real numbers, a (t) ,  representing the pattern 
of activation over the set of processing units. Each element of the vec
tor stands for the activation of one of the units at time t. The activa
tion of unit Ui at time t is designated 0i (t ). It is the pattern of activa
tion over the set of units that captures what the system is representing 
at any time. It is useful to see processing in the system as the evolu
tion, through time, of a pattern of activity over the set of units. 

Different models make different assumptions about the activation 
values a unit is allowed to take on. Activation values may be continu
ous or discrete. If they are continuous, they may be unbounded or 
bounded. If they are discrete, they may take binary values or any of a 
small set of values. Thus in some models, units are continuous and 
may take on any real number as an activation value. In other cases, 
they may take on any real value between some minimum and max
imum such as, for example, the interval [0,11. When activation values 
are restricted to discrete values they most often are binary. Sometimes 
they are restricted to the values 0 and I where I is usually taken to 
mean that the unit is active and 0 is taken to mean that it is inactive. 
In other models, activation values are restricted to the values {- I ,+ I}  
(often denoted simply (-,+}). Other times nonbinary discrete values 
are involved. Thus, for example, they may be restricted to the set 
{- I ,O,+ I} ,  or to a small finite set of values such as { I ,2,3,4 ,5,6,7,8 ,9}. 
As we shall see, each of these assumptions leads to a model with 
slightly different characteristics. It is part of the program of research 
represented in this book to determine the implications of these various 
assumptions. 

Output of the units. Units interact. They do so by transmitting sig
nals to their neighbors. The strength of their signals, and therefore the 
degree to which they affect their neighbors, is determined by their 
degree of activation. Associated with each unit, Ui, there is an output 
function, Ii (0, (1», which maps the current state of activation 0i (I) to 
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an output signal OJ (t) (i.e., OJ (t) = Ij (aj (t)). In vector notation, we 
represent the current set of output values by a vector, 0 (t). In some of 
our models the output level is exactly equal to the activation level of 
the unit . In th is case I is the identity function I (x )=x. More often ,  
however, I is some sort o f  threshold function so that a unit has no 
affect on another unit unless its activation exceeds a certain value. 
Sometimes the function I is assumed to be a stochast ic function in 
which the output of the unit depends in a probabilistic fashion on its 
activation values. 

The pattern of connectivity. Units are connected to one another. It 
is this pattern of connectivity that consti tutes what the system knows 
and determines how it will respond to any arbitrary input. Specifying 
the processing system and the knowledge encoded therein is, in a paral
lel distributed processing model, a matter of specifying this pattern of 
connectivity among the processing units. 

In many cases, we assume that each unit provides an additive contri
bution to the input of the units to which it is connected . In such cases, 
the total input to the unit is simply the weighted sum of the separate 
inputs from each of the individual units. That is, the inputs from all of 
the incoming units are simply multiplied by a weight and summed to 
get the overall input to that unit. In this case, the total pattern of con
nectivity can be represented by merely specifying the weights for each 
of the connections in the system. A positive weight represents an exci
tatory input and a negative weight represents an inhibitory input. As 
mentioned in the previous chapter, it is often convenient to represent 
such a pattern of connect i vi ty by a weight matrix W in which the entry 
wij represents the strength and sense of the connect ion from uni t Uj to 
unit Ui' The weight wi} is a positive number if unit Uj excites unit Uj; it 
is a negative number if unit Uj inhibits uni t  Uj; and i t  is 0 if unit Uj has 
no direct connection to unit u,. The absolute value of wi} specifies the 
strength 01 the connection. Figure 2 illustrates the relationship between 
the connectivity and the weight matrix. 

In the general case, however, we require rather more complex pat
terns of connect ivi ty. A given unit may receive inputs of different kinds 
whose effects are separately summated. For example, in the previous 
paragraph we assumed that the excitatory and inhibi tory connections 
simply summed algebraically with positive weights for excitation and 
negative weights for inhibit ion. Sometimes, more complex 
i nhibition/excitation combination rules are required. In such cases i t  is 
convenient to have separate connectivity matrices for each kind of con
nection . Thus, we can represent the pattern of connectivity by a set of 
connectivity matrices, Wi, one for each type of connection . It is com
mon, for example, to ��py�}g9JtW'MaPJr;�?nnections in a model: an 
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inhibitory connection and an excitatory connection. When the models 
assume simple addition of inhibition and excitation they do not consti
tute different types of connections in our present sense. They only con
stitute distinct types when they combine through some more complex 
rules. 

The pattern of connectivity is very important. It is this pattern which 
determines what each unit represents. As we shall see below, many of 
the issues concerning whether top-down or bottom-up processing systems 
are correct descriptions or whether a system is hierarchical and if so 
how many levels it has, etc., are all issues of the nature of the connec
tivity matrix. One important issue that may determine both how much 
information can be stored and how much serial processing the network 
must perform is the fan-in and fan-out of a unit. The fan-in is the 
number of elements that either excite or inhibit a given unit. The fan
out of a unit is the number of units affected directly by a unit. Note, 
in some cases we need more general patterns of connectivity. Specify
ing such a pattern in the general case is complex and will be addressed 
in a later section of this chapter. 

The rule of propagation. We also need a rule which takes the output 
vector, 0 (t), representing the output values of the units and combines 
it with the connectivity matrices to produce a net input for each type of 
input into the unit. We let netij be the net input of type i to unit u). 
Whenever only one type of connectivity is involved we suppress the 
first subscript and use net) to mean the net input into unit u). In vec
tor notation we can write net; (I) to represent the net input vector for 
inputs of type i. The propagation rule is generally straightforward. For 
example, if we have two types of connections, inhibitory and excitatory, 
the net excitatory input is usually the weighted sum of the excitatory 
inputs to the unit. This is given by the vector product nete = Weo (I). 
Similarly, the net inhibitory effect can be written as net j = W jO (t). 
When more complex patterns of connectivity are involved, more com
plex rules of propagation are required. We treat this in the final section 
of the chapter. 

Activation rule. We also need a rule whereby the net inputs of each 
type impinging on a particular unit are combined with one another and 
with the current state of the unit to produce a new state of activation. 
We need a function, F, which takes a (t) and the vectors net) for each 
different type of connection and produces a new state of activation. In 
the simplest cases, when F is the identity function and when all connec
tions are of the same type, we can write a (t+ 1) = Wo (t } = net (t}. 
Sometimes F is a threshold function so that the net input must exceed 
some value before contE8_fhVlWa&�'X/state of activation. Often, 
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the new state of activation depends on the old one as well as the 
current input. In general, however, we have 

a (1+ 1) = F (a (t), net (I)" net(t h. .. .) ; 

the function F itself is what we call the activation rule. Usually, the 
function is assumed to be deterministic. Thus, for example, if a 
threshold is involved it may be that aj (t) = 1 if the total input exceeds 
some threshold value and equals 0 otherwise. Other times it is 
assumed that F is stochastic. Sometimes activations are assumed to 
decay slowly with time so that even with no external input the activa
tion of a unit will simply decay and not go directly to zero. Whenever 
aj (t) is assumed to take on continuous values it is common to assume 
that F is a kind of sigmoid function. In this case, an individual unit can 
saturate and reach a minimum or maximum value of activation. 

Perhaps the most common class of activations functions is the quasi
linear activation function. In this case the activation function, F ,  is a 
nondecreasing function of a single type of input. In short, 

aj (1+ 1) = F (netj (t)) = F <L wij OJ ) . 
j 

It is sometimes useful to add the constraint that F be a differentiable 
function. We refer to differentiable quasi-linear activation functions as 
semilinear functions (see Chapter 8). 

Modifying patterns oj connectivity as a function oj experience. 
Changing the processing or knowledge structure in a parallel distributed 
processing model involves modifying the patterns of interconnectivity. 
In principle this can involve three kinds of modifications: 

1. The development of new connections. 
2. The loss of existing connections. 
3 .  The modification of the strengths of connections that already 

exist. 

Very little work has been done on (1) and (2) above. To a first order 
of approximation, however, (1) and (2) can be considered a special 
case of (3). Whenever we change the strength of connection away 
from zero to some positive or negative value, it has the same effect as 
growing a new connection. Whenever we change the strength of a con
nection to zero, that has the same effect as losing an existing connec
tion. Thus, in this section we will concentrate on rules whereby 
strengths of connections are modified through experience. 
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Virtually all learning rules for models of this type can be considered a 
variant of the Hebbian learning rule suggested by Hebb in his classic 
book Organization of Behavior ( 949) . Hebb's basic idea is this: If a 
unit, U;, receives a input from another unit, Uj; then, if both are highly 
active, the weight, wij, from Uj to U; should be strengthened. This idea 
has been extended and modified so that it can be more generally stated 
as 

a W;j = g (a; (t) ,1; (I» h(Oj (t), w;) , 

where t; (t) is a kind of leaching input to U;. Simply stated, this equa
tion says that the change in the connection from Uj to U; is given by the 
product of a function, gO, of the activation of U; and its teaching input 
I; and another function, hO, of the output value of Uj and the con
nection strength wij. In the simplest versions of Hebbian learning there 
is no teacher and the functions g and h are simply proportional to their 
first arguments. Thus we have 

where TJ is the constant of proportionality representing the learning 
rate. Another common variation is a rule in which h (OJ (t), wij) = OJ (I) 
and g (a; (I) ,1; (I» = TJ (I; (t )-a; (I». This is often called the Widrow
Hoff rule (Sutton & Barto, 1 98 1 ) . However, we call it the delta rule 
because the amount of learning is proportional to the difference (or 
delta) between the actual activation achieved and the target activation 
provided by a teacher. (The delta rule is discussed at length in 
Chapters 8 and 11.) In this case we have 

a Wij = TJ (tj (I)-Oj (t ))OJ (t). 

This is a generalization of the perceptron learning rule for which the 
famous perception convergence theorem has been proved. Still another 
variation has 

a Wij = TJOi (t) (OJ (t )- Wi) ) . 
This is a rule employed by Grossberg (1976) and a simple variant of 
which has been employed in Chapter 5. There are many variations on 
this generalized rule, and we will describe some of them in more detail 
when we discuss various specific models below. 

Representation of the environment. It is crucial in the development 
of any model to have a clear model of the environment in which this 
model is to exist. In PDP models, we represent the environment as a 
time-varying stochastic function over the space of input patterns. That 
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is, we imagine that at any point in time, there is some probabil ity that 
any of the possible set of i nput patterns is impinging on the input units. 
This probabil ity function may in general depend on the history of 
inputs to the system as wel l  as outputs of the system. In practice, most 
PDP models involve a much simpler characterization of the environ
ment. Typical ly, the environment is characterized by a stable probabi l ity 
distribution over the set of possible input patterns independent of past 
inputs and past responses of the system. In this case, we can i magine 
listing the set of possible inputs to the system and numbering them 
from 1 to M. The environment is then characterized by a set of proba
bil i ties ,  Pi for i = 1, . . .  , M. Since each input pattern can be con
sidered a vector, it is sometimes useful to characterize those patterns 
with nonzero probabi l ities as constituting orthogonal or linearly indepen
dent sets of vectors.  2 Certain PDP models are restricted in the kinds of 
patterns they are able to learn: some being able to learn to respond 
correctly only if the i nput vectors form an orthogonal set; others if they 
form a l inearly independent set of vectors; and stil l others are able to 
learn to respond to essentially arbitrary patterns of inputs. 

CLASSES OF PDP MODELS 

There are many paradigms and classes of PDP models that have been 
developed. In this sect ion we describe some general classes of assump
tions and paradigms. In the fol lowing section we describe some specific 
PDP models and show their relationships to the general framework out
lined here. 

Paradigms of Learning 

Although most learning rules have roughly the form indicated above, 
we can categorize the learning situation into two distinct sorts. These 
are: 

• Associative learning, in which we learn to produce a partIcular 
pattern of activati on on one set of units whenever another par
ticular pattern occurs on another set of units. In general , such 
a learning scheme must allow an arbitrary pattern on one set of 

2 See Chapter 9 for explication of these terms. 
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units to produce another arbitrary pattern on another set of 
units. 

• Regularity discovery, in which units learn to respond to "interest
ing" patterns in their input. In general, such a scheme should 
be able to form the basis for the development of feature detec
tors and therefore the basis for knowledge representation in a 
PDP system. 

In certain cases these two modes of learning blend into one another, 
but it is valuable to see the different goals of the two kinds of learning. 
Associative learning is employed whenever we are concerned with stor
ing patterns so that they can be re-evoked in the future. These rules 
are primarily concerned with storing the relationships among subpat
terns. Regularity detectors are concerned with the meaning of a single 
units response. These kinds of rules are used when feature discovery is 
the essential task at hand. 

The associative learning case generally can be broken down into two 
subcases-pattern association and auto-association. A pattern association 
paradigm is one in which the goal is to build up an association between 
patterns defined over one subset of the units and other patterns defined 
over a second subset of units. The goal is to find a set of connections 
so that whenever a particular pattern reappears on the first set of units, 
the associated pattern will appear on the second set. In this case, there 
is usually a teaching input to the second set of units during training indi
cating the desired pattern association. An auto-association parad igm is 
one in which an input pattern is associated with itself. The goal here is 
pattern completion. Whenever a portion of the input pattern is 
presented , the remainder of the pattern is to be filled in or completed . 

This is similar to simple pattern association, except that the input pat
tern plays both the role of the teaching input and of the pattern to be 
associated . It can be seen that simple pattern association is a special 
case of auto-association. Figure 3 i l lustrates the two kinds of learning 
parad igms. Figure 3A shows the basic structure of the pattern associa

tion situation. There are two distinct groups of units-a set of input 

units and a set of output units. Each input unit connects with each out

put unit and each output unit receives an input from each input unit. 

During train ing , patterns are presented to both the input and output 

units. The weights connecting the input to the output units are modi

fied during this period. During a test, patterns are presented to the 

input units and the response on the output units is measured . Figure 

3B shows the connectivity matrix for the pattern associator. The only 

modifiable connections are from the input units to the output units. 

All other connections ate fixed tal, zero .. Fl igure 3C shows the hasic 
(;opyngTi au Matena 



56 THE PDP PERSPECTIVE 

A B 
Matrix at Cannectivities OJ 

Inpul 

UnllS 

OUlpul 

Unll. 

SeIDl Inpul Unils Sel 01 Oulpul Unils 

c 0 

Inpul & 
Oulput Units 

Inputs 

Inpul Unlls Oulpul Unll. 

Modlflable 
Welghls 

Connacllvlly Malrl. 

lor 
Pall.rn Assoclalor 

All weights 

.r. Modifi abl. 

Connecllvlly IIIllrl. 
lor 

AulO Auoetslor 

FIGURE 3. A: The basic structure of the pattern association situation. There are two 
distinct groups of units-a set of input units and a set of output units. Each input unit 
connects with each output unit and each output unit receives an input from each input 
unit. During training, patterns are presented to both the input and output units. The 
weights connecting the input to the output units are modified during this period. During 
a test, patterns are presented to the input units and the response on the output units is 
measured. (After Anderson, 1977.) B: The connectivity matrix for the pattern associ a
tor. The only modifiable connections are from the input units to the output units. All 
other connections are fixed at zero. C: The basic structure of the auto-association situa
tion. All units are both input and output units. The figure shows a group of 6 units 
feeding back on itself through modifiable con nections. Note that each unit feeds back on 
itself as well as on each of its neighbors. (After Anderson, Silverstein , Ritz , & Jones, 
1977.) D: The connectivity matrix for the auto-associator. All units connect to all other 
units with modifiable weights. 

structure of the auto-association situation . All  units are both input and 
output units .  The figure shows a group of 6 units feeding back on i tself 
through modifi able connections. Note that each unit feeds back on 
itself as well as on each of its neighbors . Figure 3D shows the connec
t ivity matrix for the auto-associator. All units connect to all other units 
with modifiable weights. In the case of auto-association, there is  
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potential ly a modifiable connection from every unit to every other unit .  
In the case of pattern association,  however, the units are broken into 
two subpatterns, one representing the input  pattern and another 
representing the teaching input . The only modifiable connections are 
those from the input units to the output units recei ving the teach ing 
input. In other cases of associat ive learning the teachi ng input may be 
more or less indirect . The problem of dealing wi th indirect feedback is 
difficult ,  but central to the development of more sophisticated models 
of learning .  Barto and Sutton ( I  98 1) have begun a nice analysis of 
such learning si tuations. 

In the case of regularity detectors, a teaching input is  not expl icit ly 
provided; i nstead, the teaching function is determined by the unit itself. 
The form of the internal teachi ng funct ion and the nature of its input 
patterns determine what features the unit will learn to respond to. This 
is  sometimes cal led unsupervised learning. Each different kind of 
unsupervised learning procedure has its own evaluati on function . The 
part icular evaluation procedures are mentioned when we treat these 
models .  The three unsupervised learning models discussed in this book 
are addressed in Chapters 5 ,  6, and 7 .  

Hierarchical Organizations of PDP Networks 

It has become commonplace in cognit ive science to describe such 
processes as top-down , bottom-up, and interactive to consist of many 
stages of processing, etc. It  is  useful to see how these concepts can be 
represented in terms of the patterns of connect ivity in the PDP frame
work. It is  also useful to get some feel i ng for the processing conse
quences of these various assumptions. 

Bottom-Up Processing 

The fundamental characteristic of a bottom-up system is that units at 
level i may not affect the activity of units at levels lower than i. To 
see how this maps onto the current formulation , it i s  useful to partition 
the coal i t ions of units into a set of discrete categories corresponding to 
the levels their inputs come from.  There are assumed to be no coal i 
t ions wi th inputs from more than one level . Assume that there are L; 
units at level i in the system. We then order the units such that those 
in  level L 1 are numbered u 1, • • .  , UL 

I' those in level L 2 are numbered 

UL1+l, • • .  ,UL1+L2, etc. �ectMal'U'aBtt that the system be a pure 
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bottom-up system is equi valent to the constraint that the connectivity 
matrix ,  W, has zero entries for wi} in  which Uj is  the member of a level 
no higher than Uj. This amounts to the requirement that the upper 
right-hand region of W contains zero entries. Table 1 shows this con
straint graphical ly. The table shows an example of a three-level system 
wi th four units at each level .  3 This leads to a 1 2  x 12 connecti vity matrix 
and an a vector of length 12 . The matrix can be di vided up into 9 
regions. The upper-left region represents interactions among Level 1 
units. The entries in  the left-middle region of the matrix represents 
the effects of Level 1 units on Level 2 uni ts .  The lower-left region 
represents the effects of Level 1 units on Level 3 units. Often 
bottom-up models do not al low units at level i effect uni ts at level i+ 2. 
Thus, in the diagram we have left that region empty representing no 
effect of Level 1 on Level 3. I t  is typical in a bottom-up system to 
assume as wel l  that the lowest level units (Level 1) are input units and 
that the highest level units (Level 3) are output units .  That is ,  the 
lowest level of the system is the only one to receive d irect inputs from 
outside of this module and only the highest level uni ts affect other 
units outside of this module .  

TABLE I 

Levell Level 2 Level 3 
Input Un its  Hidden Units Output Units 

ul u2 u3 u4 uS u6 u7 u8 u9 ulO ull u12 

ul within 
Levell u2 Level I 

Units u3 effects 
u4 

uS Levell within 
Level 2 u6 affecting Level 2 

Units u7 Level 2 effects 
u8 

u9 Level 2 within 
Level 3 ulO affecting Level 3 

Units ull Level 3 effects 
ul2 

3 In general, of course, we would expect many levels and many units at each level. 
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Top-Down Processing 

The generalization to a hierarchical top-down system should be clear 
enough. Let us order the units into levels just as before. A top-down 
model then requires that the lower-left regions of the weight matrix be 
empty-that is, no lower level unit affects a higher level unit. Table 2 
illustrates a simple example of a top-down processing system. Note, in 
this case, we have to assume a top-down input or "message" that is 
propagated down the system from higher to lower levels as well as any 
data input that might be coming directly into Levell units. 

Interactive Models 

Interactive models are simply models in which there can be both 
top-down and bottom-up connections. Again the generalization is 
straightforward. In the general interactive model, any of the cells of 
the weight matrix could be nonzero. The more restricted models in 
which information flows both ways, but in which information only 
flows between adjacent levels, assume only that the regions of the 
matrix more than one region away from the main diagonal are zero. 
Table 3 illustrates a simple three-level interactive model with both top
down and bottom-up input. Most of the models that actually have been 
suggested count as interactive models in this sense. 

TABLE 2 

Levell Level 2 Level 3 
Input Units Hidden Units Output Units 

ul u2 u3 u4 u5 u6 u7 u8 u9 ulO u11 ul2 

ul within Level 2 

Level I u2 Level I affecting 

Units u3 effects Levell 

u4 

u5 within Level 3 

Level 2 u6 Level 2 affecting 

Units u7 effects Level 2 

u8 

u9 within 

Level 3 ulO Level 3 
Units u 1 1  effects 

ul2 G6-{JYfighied MtJf� jar 
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ul 
Level I u2 

Units u3 
u4 

uS 
Level 2 u6 

Units u7 
uS 

u9 
Level 3 ulO 
Units ull 

ul2 

TABLE 3 

Level I Level 2 Level 3 
Input Units Hidden Units Output Units 

ul u2 u3 u4 uS u6 u7 uS u9 ulO ull u12 

within Level 2 
Level I affecting 
effects Level I 

Levell within Level 3 
affecting Level 2 affecting 
Level 2 effects Level 2 

Level 2 within 
affecting Level 3 
Level 3 effects 

It is sometimes supposed that a "single level" system wi th no 
hierarchical structure in which any unit can communicate wi th any other 
unit is  somehow less powerful than these mult i level hierarchical sys
tems. The present analysis shows that , on the contrary, the existence of 
levels amounts to a restriction, in general , of free communication among 
all units. Such nonhierarchical systems actually form a superset of the 
kinds of layered systems discussed above. There is, however, some
thing Ito the view that having multi ple levels can increase the power of 
certain systems . In part icular, a "one-step" system consisting of only 
input and output units and no communication between them in which 
there is  no opportunity for feedback or for hidden units is  less powerful 
than systems wi th hidden units and with feedback. Since, in general , 
hierarchical systems involve many hidden units,  some intralevel com
munication , and some feedback among levels ,  they are more powerful 
than systems not involving such hidden uni ts. However, a system with 
an equal number of hidden units,  but one not characterizable as 
hierarchical by the communication patterns is, in  general , of more 
potential computational power. We address the issue of hidden uni ts 
and "single-step" versus "multiple-step" systems in our discussion of 
speci fic models below. 
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Synchronous Versus Asynchronous Update 

Even given al l  of the components of the PDP models we have 
described so far, there is st i l l  another important issue to be resol ved in  
the deve lopment of  specifi c  models; that is the t iming of  the application 
of the act ivation rule.  In some models, there is a kind of central t iming 
pulse and after each such c lock t ick a new value is  determined simul
taneously for a l l  uni ts .  This is a synchronous update procedure. It  i s  
usually viewed as a discrete, difference approx imation to an underlying 
cont inuous, differential equation in which al l units are contin uously 
updated. In some models ,  however, units are updated asynchronously 
and at random. The usual assumption is that at each point in t ime each 
unit has a fixed probability of evaluating and applying its activation rule 
and updating its activat ion value. This later method has certa in 
theoretical advantages and was developed by Hopfield (1982) and has 
been employed in Chapters 6, 7, and 14. The major advantage is that 
si nce the units are independently being updated, if  we look at a short 
enough t ime interval ,  only one unit is updating at a time. Among 
other thi ngs , this system can help the stabil ity of the network by 
keeping it out of osc i l lations that are more readi ly entered into wi th 
synchronous update procedures . 

SPECIFIC VERSIONS OF THE GENERAL PARALLEL 

ACTIV ATION MODEL 

In the fol lowing sections we wil l  show how specification of the partic
ular functions involved produces various kinds of these models .  There 
have been many authors who have contributed to the field and whose 
work might as wel l  have been discussed. We discuss only a representa
t ive sample of this work. 

Simple Linear Models 

Perhaps the simplest model of this class is the simple linear model. 
In the simple l inear model ,  activation values are real numbers without 
restrict ion.  They can be ei ther posi t ive or negative and are not 
bounded. The output function , f (a/), in  the linear model is just equal 
to the activation level ai' Typical ly, l inear models consist of two sets of 
units: a set of input uetJp�t�c!fUaPJri&ftPut units .  (As discussed 
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below, there is no need for hidden units s ince all computation possible 
with a mult iple-step l inear system can be done with a single-step linear 
system. ) In general , any unit in  the input layer may connect to any unit 
i n  the output layer . All connections in a l inear model are of the same 
type. Thus, only a single connectivity matrix is  required . The matrix 
consists of a set of posit ive,  negative, and zero values , for exci tatory 
values , inhibitory values, and zero connections, respectively .  The new 
value of act ivation of each unit i s  s imply given by the weighted sums of 
the inputs. For the simple l inear model with connectivity matrix W we 
have 

a(t+1) = Wa(t). 

In general , it can be shown that a l inear model such as thi s  has a 
number of l imitations .  In particular, it can be shown that nothing can 
be computed from two or more steps that cannot be computed by a 
single step. This fol lows because the above equation implies 

a (t) = W' a (0). 

We can see this by proceedi ng step by step. Clearly ,  

a (2) = Wa (1) = W (Wa (0» = W 2a (0) . 

It should be clear that similar arguments lead to a (t) = W' a (0). 
From this, it fol lows that for every l inear model with connecti vity 
matrix W that can attain a particular state in t steps, there i s  another 
l inear model with connectivity matrix W ( that can reach the same state 
in one step. This means,  among other things , that there can never be 
any computational advantage in a linear model of multi ple-step sys
tems, nor can there ever be any advantage for allowing feedback .  

The pattern association paradigm is the typical learning situation for a 
l inear model .  There is a set of input units and a set of output units. In  
general , each input un i t  may be connected to any output un i t .  Since 
this is a l inear network , there is no feedback in the system nor are 
there hidden units between the i nputs and outputs. There are two 
sources of input in the system. There are the input patterns that estab
l i sh a pattern of act ivation on the input units, and there are the teach
ing units that establish a pattern of activation on the output uni ts. Any 
of several learn ing rules could be employed with a l inear network such 
as this, but the most common are the simple Hebbian rule and the 
delta rule. The l inear model wi th the simple Hebbian rule is called the 
simple linear associator (cf. Anderson , 1970; Kohonen , 1977, 1984). In 
thi s  case, the increment in weight wI} is given by A wi} = TJaj t;. In 
matrix notation , this means that A W = TJT aT. The system is then 
tested by presenting an input pattern without a teaching input and 
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seeing how close the pattern generated on the output layer matches the 
original teaching input .  It can be shown that if  the input patterns are 
orthogonal,4 there wi l l  be no interference and the system wil l  perfectly 
produce the relevant associated patterns exactly on the output layer. If 
they are not orthogonal , however, there wi l l  be interference among the 
input patterns. It i s  possible to make a modification in the learning rule 
and al low a much larger set of possible associations. In part icular, it is 
possible to build up correct associations among patterns whenever the 
set of input patterns are l inearly independent. To achieve this, an error 
correcting rule must be employed . The delta rule is most commonly 
employed. In this case, the rule becomes !:1wij = ",(tj-aj)aj' What is 
learned i s  essent ia l ly the difference between the desi red response and 
that actually attained at uni t  Uj due to the input . Al though i t  may take 
many presentations of the input pattern set , if  the patterns are linearly 
independent the system wi l l  eventual l y  be able to produce the desired 
outputs . Kohonen 0977, 1984) has provided an important analysis of 
this and related learn ing rules. 

The examples descri bed above were for the case of the pattern asso
ciator. Essential l y  the same results hold for the auto-associator version 
of the l inear model . In this case, the input patterns and the teaching 
patterns are the same, and the input layer and the output layer are also 
the same. The tests of the system involve presenting a portion of the 
input pattern and having the system attempt to reconstruct the missing 
parts. 

Linear Threshold Units 

The weaknesses of purely l inear systems can be overcome through 
the addi t ion of nonlineari t ies . Perhaps the s implest of the nonlinear 
system consists of a network of l inear threshold units .  The linear 
threshold unit is a binary unit whose act i vation takes on the values 
{O, I} . The act i vation value of unit Uj i s  I if the weighted sum of its 
inputs i s  greater than some threshold 9 j and i s  0 otherwi se. The con
nectivity matri x for a network of such un its, as in the l inear system, is 
a matrix consisting of posi t ive and negat ive numbers . The output func
tion, /, is  the identity function so that the output of a unit is  equal to 
its acti vation value. 

4 See Chapter 9 for a discussion of orthogonality, linear independence, etc. 
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It is useful to see some of the kinds of functions that can be com
puted with l inear threshold units that cannot be computed with simple 
l inear models. The classic such function is the exclusive or (XOR) i l lus
t rated in Figure 4 .  The idea is to have a system which responds ( I } if  it 
receives a ( 0,  l )  or a (1  ,OJ and responds (O} otherwise . The figure 
shows a network capable of this pattern. In this case we requi re two 

Outp ut 
Unit 

Internal 
Units 

Input 
Units 

XOR Netwo rk 

+1 + 1  

Thresholds = .01 

Input Output 

1 1 J 0 
0 0  

1 0 ] 1 
0 1  

FIGURE 4. A network of linear threshold un i ts  capable of responding correct ly on the 
XOR problem . 
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layers of units .  Each unit has a zero threshold and responds just in case 
i ts input is greater than zero. The weights are ± 1 .  Si nce the set of 
st i mul us patterns is not l inearly independent, this is a discri mination 
that can never be made by a si mple l inear model and cannot be done in  
a single step by any network of  l inear threshold units .  

Although mult i layered systems of li near threshold units are very 
powerful and, in fact ,  are capable of computing any boolean function , 
there is no general ly known learning algori thm for this general case 
(see Chapter 8) . There is ,  however, a wel l -understood learning algo
rithm for the special case of the perceplron. A perceptron is essential ly 
a single- layer network of l inear threshold units without feedback. The 
learning s i tuation here is exactly the same as that for the l i near model . 
An input pattern is presented along with a teaching input . The percep
tron learning rule is precisely of the same form as the del ta rule for 
error correcting in the l inear model, namely, � wij = 'Y/ (/;-a; )aj . Si nce 
the teaching input and the acti vat ion values are only 0 or 1, the rule 
reduces to the statements that: 

1. Weights are only changed on a given input l ine when that l ine 
is turned on (Le . ,  aj = O .  

2. If the system is correct on unit i (i . e . ,  I; = a; ) ,  make no change 
on any of the input weights .  

3 .  If the unit j responds 0 when i t  should be I ,  increase weights 
on all active l ines by amount 'Y/ .  

4.  If the un i t  j responds 1 when i t  should be 0, decrease weights 
on al l  act ive l ines by amount 'Y/ .  

There is  a theorem, the perceptron convergence theorem, that guaran

tees that i f  the set of patterns are learnable by a perceptron , th is learn

ing procedure wi l l  find a set of weights which al low it to respond 

correctly to all input patterns. Unfortunately ,  even though mult i layer 

l inear threshold networks are potential ly much more powerful than the 

l inear associator , the percept ron for which a learni ng result exists can 

learn no patterns not learnable by the l inear associator. It was the l im i 

tat ions on what perceptrons could possibly learn that led to  Minsky and 

Papert ' s  ( 969) pessimistic evaluation of the perceptron . Unfortunately 

that evaluation has incorrectly tainted more i nteresting and powerful 

networks of l inear threshold and other nonl inear units .  We have now 

developed a version of the delta rule - the generalized delta rule - which 

is capable of learn ing arbi trary mappings . It does not work for l inear 

threshold units but does workh foL the class of semilinear activation , (.;opyng teu Matenal 
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funct ions ( i .e . , differentiable activation funct ions) . See Chapter 8 for a 
ful l  discussion. As we shall see in the course of this book, the l i mita
t ions of the one-step perceptron in no way apply to the more complex 
networks .  

Brain State in a Box 

The brai n state in a box model was developed by J .  A. Anderson 
(I 977) . This  model too is a close relati ve of the s imple l inear associa
tor . There is ,  however, a maximum and minimum activation value 
associated with each unit .  Typical ly ,  units take on activat ion values in 
the interval [- I , l L  The brain state in a box (BSB) models are organ
ized so that any unit  can, in general , be connected to any other unit .  
The auto-associator i l lustrated in  Figure 3 i s  the typical learning para
digm for BSB. Note that with this pattern of interconnections the sys
tem feeds back on i tself and thus the activation can recycle through the 
system in a posi t ive feedback loop. The posi t ive feedback is especially 
evident in J .  A .  Anderson and Mozer ' s  ( 1 98 0  version . Their  acti vation 
rule is gi ven by 

aj (t + I )  = aj (1 )+ L wij a; (I ) 

i f  aj is less than I and greater than - I .  Otherwise ,  if the quantity is 
greater than I ,  aj = I and if  i t  i s  less than - I , aj = - 1 .  That is ,  the 
activation state at t ime t+ 1 i s  given by the sum of the state at t ime t 
and the act ivation propagated through the connectivi ty matrix provided 
that total is i n  the interval [- I , l l .  Otherwise i t  si mply takes on the 
maximum or minimum value. This formulat ion wi l l  lead the system to 
a state in which all of the uni ts are at either a maximum or minimum 
value .  It i s  possible to understand why this is  cal led a brain state in a 
box model by consideri ng a geometric representation of the system. 
Figure 5 i l lustrates the " act ivation space " of a simple BSB system con
sist ing of three units .  Each point in the box corresponds to a particular 
val ue of act ivation on each of the three units .  In this  case we have a 
three-di mensional space i n  which the first coordinate corresponds to the 
activat ion value of the fi rst un i t ,  the second coordinate corresponds to 
the act i vation val ue of the second uni t ,  and the th i rd coordinate 
corresponds to the activat ion value of the th i rd unit . Thus, each point 
in the space corresponds to a possi ble state of the system. The feature 
that each unit i s  l imi ted to the region (- I , l l means that all points must 
l ie somewhere wi thin the box whose vertices are given by the points 
(- 1 ,- 1 ,- 0 ,  (- 1 ,- 1 ,+ I ) ,  (- 1 ,+ 1 ,- 0 , (- 1 ,+ 1 ,+ 0 ,  (+ 1 ,- 1 ,- 0 ,  
(+ 1 ,- 1 ,+ 0 , (+ 1 ,+ 1 ,- 0 , and (+ 1 ,+ 1 ,+ 0 . Moreover, since the 
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( - , - ,+) 
I-----'"�-----..{ 

Act ivat ion ! 
of U n i t  2 

( - , -,-) ----------.1 

Act ivat ion  of Un i t  1 

( + .+ .-) 

FIGURE 5 .  The state space for a three-unit version o f  a BSB model . Each d imension of 
the box represents the act ivation value of one unit .  Each unit is  bounded in  act i vation 
between [- I , l l .  The curving arrow in the box represents the sequence of states the sys
tem moved through. It began at the black spot near the middle of the box and, as pro
cessing proceeded, moved to the (- ,+ ,+ ) corner of the box .  BSB systems a lways end up 
in  one or another of the corners. The particular corner depends on the start state of the 
network,  the input to  the system, and the pat tern of connections among the units.  

system involves posit ive feedback, it is  eventually forced to occupy one 
of these vertices . Thus, the state of the system is constrained to lie 
within the box and eventually , as processing cont inues , is pushed to 
one of the vertices. Of course, the same geometric analogy carries over 
to higher dimensional systems. If there are N units, the state of the 
system can be characterized as a point within this N-dimensional hyper
cube and eventually the system ends up in one of the 2N corners of the 
hypercube. 
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Learning in the BSB system involves auto-association. In different 
applications two different learning rules have been applied. J. A .  
Anderson and Mozer ( 1 98 1 )  appl ied the simplest rule. They simply 
al lowed the system to settle down and then employed the simple Heb
bian learning rule .  That is, � wI} = 'Y/a/ aj '  The error correction rule has 
also been applied to the BSB model . In this case we use the input as 
the teaching input as wel l  as the source of act ivation to the system. 
The learning rule thus becomes � wI} = 'Y/ (t,-a, ) aj where t, is the input 
to .unit i and where a, and aj are the act ivation val ues of the system 
after it has stabi l ized in one of the corners of the hypercube. 

Thermodynamic Models 

Other more recent developments are the thermodynamic models .  
Two examples of such models are presented in the book . One, har
mony theory, was developed by Paul Smolensky and is described in  
detai l in  Chapter 6 . The other, the Boltzmann machine, was developed 
by Hinton and Sejnowski and is described in Chapter 7 .  Here we 
describe the basic . idea behind these models and show how they relate 
to the general class of models under discussion . To begin ,  the thermo
dynamic models employ binary units which take on the values { O, 1) . 

The units are divided into two categories: the visible units correspond
ing to our input and output units and the hidden units .  In general , any 
unit may connect to any other unit .  However ,  there is a constraint that 
the connections must be symmetric .  That is ,  the wi} = wji ' In these 
models, there is no distinction between the output of the unit and its 
acti vation value. The act ivation values are , however , a stochastic func
tion of the inputs. That is, 

where 'Y/, i s  the input from outside of system into unit i ,  0, i s  the 
threshold for the uni t ,  and T is a parameter, called temperature, which 
determines the slope of the probabi l i ty function. Figure 6 shows how 
the probabi l i t ies vary wi th various values of T. It  should be noted that 
as T approaches zero , the individual units become more and more l i ke 
l inear threshold units .  In general , if the unit exceeds threshold by a 
great enough margin it wi l l  always attain value 1 .  If it is far enough 
below threshold, i t  always takes on value O. Whenever the uni t  is 
above threshold, the probabi l i ty that i t  wi l l  turn on is  greater than 1 12 .  
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FIGURE 6.  Probabil ity of at tain ing value 1 as a function o f  t h e  d istance o f  the i n pu t  of 

the u n i t  from threshold .  The fu nction is plotted for several val ues of T. 

Whenever i t  i s  below threshold , the probabi l i ty that i t  wi l l  turn off i s  
greater than 1 12 .  The temperature si mply determines the range of 
uncertainty as to whether it wi l l  turn on or off. Th is  particular 
configuration of assumptions al lows a formal analogy between these 
models and thermodynamics and allows the proof of theorems concern 
ing i ts performance as a function of the temperature of the system . 
This  is not the place to discuss these theorems in  detai l ,  suffice it to say 
that this system, l i ke the BSB system ,  can be viewed as attain ing states 
on the corners of a hypercube.  There i s  a global measure of the degree 
to which each state of the system is consistent with its i nput .  The sys
tem moves i nto those states that are maximally consistent with the 
input and wi th the internal constraints represented by the weights.  It 
can be shown that as the temperature approaches 0, the probabi l i ty that 
the system attains the maximally consistent state approaches 1 .  These 
results are discussed in some detai l in Chapters 6 and 7 .  

There i s  a learn ing scheme associated with the Boltzmann machine 
which i s  somewhat more complex than the others . In  this case , the 
learning events are divided into two phases . During one phase ,  a set of 
patterns is randomly presented to the visi ble uni ts and the system is 
al lowed to respond to each in turn.  During this phase of learning, the 
system is environmental�h(eaf �aHebbian rule is assumed to 
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apply so that Il Wjj = .,., aj aj . Note, since acti vati ons take on values of 0 
and 1 this says that the weight is i ncremented by an amount .,., when
ever unit ; and j are on, otherwise no change occurs . During the 
second phase of learning, the system is al lowed to respond for an equal 
period of t ime in a so-cal led free-running state in which no inputs are 
presented . S ince the system is stochastic, i t  wi l l  cont inue to respond 
even though no actual stimuli  are presented . During this phase , a s im
ple anti -Hebbian rule i s  employed, Il wi} = -.,.,aj Qj ' The i ntui t ion is 
roughly that the performance during the environmental ly driven phase 
is determined by both the pattern of interconnections and by the 
environment .  The performance during the free-running phase is  deter
mined only by the internal set of connections. To correctly reflect the 
environment,  we should look at its performance due to the environ
ment plus internal structure and then subtract out its performance due 
to internal structure alone. This is  actually quite a powerful learning 
scheme. It can be shown that i f  a portion of the input units are turned 
on after the system has learned, it wi l l  complete the remain ing portion 
of the visible uni ts with the probabi l i ty that those units had been 
present in the st imulus patterns given the subpattern that had been 
turned on. These issues are again addressed in Chapter 7 .  

Grossberg 

Stephen Grossberg has been one of the major contributors to models 
of this c lass over the years. His work is  complex and contains many 
important details which we cannot review here . We will i nstead 
describe some of the central aspects of his work and show how i t  relates 
to the general framework. Perhaps the clearest summary of 
Grossberg's work appears in  Grossberg ( 1 980) . Grossberg's units are 
allowed to take on any real act ivation value between a minimum and a 
maximum value. The output function is ,  in many of Grossberg's appl i 
cations , a threshold function so  that a given unit wi l l  affect another unit 
only if its act ivation level is above i ts threshold. Moreover, Grossberg 
argues that the output function must be a sigmoid or S-shaped function 
of the act ivation val ue of the unit. Grossberg's activation rule is  rather 
more complex than the others we have discussed thus far in that excita
tory and inhibitory inputs don't  s imply sum, but appear separately in 
the activation rule. Grossberg has presented a number of possible 
act ivation rules , but they typically have the form 
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aj (1+ 1 )  = aj (r ) O-A ) + (B-aj (r ) netej (t) - (aj (t }+ C ) neti) (t ) 

where A is the decay rate, B represents the maximal degree of excita
t ion of the un i t ,  and C i s  much smaller in  magnitude than B and 
represents the maximal amount the uni t  can be inhibi ted below the 
resti ng value of O. Grossberg general ly assumes that the inhi bi tory 
inputs come from a kind of recurrent inhibitory field in which the unit  
is embedded and the excitatory inputs come from the unit  i tself and 
from another level of the system. 

Grossberg has studied learning in these networks over a number of 
years and has studied several different learning schemes. The learning 
rule he has studied most , however,  i s s imi lar to the one analyzed in 
Chapter 5 and is  given by 

A wi) = "f) a; (OJ- wi) . 

Grossberg has appl ied this and s imi lar learning rules in a number of 
cases, but a review of these appl ications i s  beyond the scope of the 
present discussion. 

Interactive Activation Model 

The interacti ve acti vation model of McClel land and Rumelhart 
( 98 1 )  and Rumelhart and McClelland ( 982) had units which 
represented visual features, letters and words.  Units could take on any 
value in the range [min, max] . The output function was a threshold 
function such that the output was 0 if  the activation was below 
threshold and was equal to the difference of the activat ion value and 
the threshold if  the activation was above threshold .  The interactive 
act ivation model involves a connect iv i ty pattern in which units are 
organized in layers , such that an element in a layer connects with exci
tatory connections with all elements in  the layers above and below that 
are consistent wi th that unit , and connects negati vely to al l uni ts i n  the 
layers above and below that are i nconsistent wi th that un i t .  In addit ion ,  

each unit  inhibi ts al l  uni ts in  its own layer that are inconsistent with the 
unit in quest ion .  Thus, the interactive acti vation model is a ki nd of 

posit ive feedback systerr.. with maximum and minimum values for each 

uni t ,  l i ke the BSB model .  The information coming i nto each unit i s  

weighted (by the interconnection strengths) and summed algebraical ly  

to  yield a " net i nput" to the uni t .  Let net) = r. Wi) a;  be the net  input to 

unit  j .  This net input i s  then combined wi th the previous acti vation 
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value to produce the new activation value according to the fol lowing 
acti vation rule: 

where e is  the decay rate of the act ivation given no input. In other 
words, the new act ivation value is given by the old activation value 
properly decayed, plus (or minus) a factor that pushes toward the 
minimum or maximum value depending on the magni tude of the net 
input into the uni t .  This acti vation rule is s imi lar to that employed by 
Grossberg, except in this formulat ion the excitation and inhibit ion are 
algebraical ly combined . 

The interacti ve act ivation model was designed as a model for a pro
cessing system and our goals were to show how we could account for 
specific aspects of word perception . Thus, there was no specific model 
of learning proposed to explain where the particular network we 
assumed came from. As we shall see, much of the work on learning 
reported in  this book has been aimed at giving plausible accounts of 
how such a network might have been learned . (See especial ly Chapters 
5 and 6 . )  

Feldman and Ballard 

Feldman and Bal lard (982)  have proposed a framework they cal l 
connectionist modeling. The units  have cont inuous act i vation val ues , 
which they cal l potential which can take on any value in the range 
[- 10, 10] . Their  output function is a kind of threshold functIOn which 
is al lowed to take on a smal l number of discrete integer values 
(O� OJ � 9) . They have proposed a number of other unit types each 
with a somewhat different act ivation rule. Thei r  s implest unit type is 
what they call the P-unit . In this case the act ivation rule is given by 

aj (t + 1) = aj (t ) + (3 netj (r ) .  

Once the activation reaches its maximum or minimum value i t  i s  sim
ply pinned to that value. Decay is implemented by self inhibit ion. 
Feldman and Bal lard also have a cOrUunctive unit  similar to our sigma-pi 
uni ts described below. Feldman 0 98 I )  has also considered learning. 
In general , the approach to learning offers more machinery than is 
avai lable wi thin our current framework .  In practice, however, the 
learning rules actually examined are of the same class we have al ready 
discussed . 
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Before completing our section on a general framework , i t  should be 
mentioned that we have sometimes found i t  useful  to postulate units 
that are more complex than those descri bed up to this point in this 
chapter .  In our descript ions thus far ,  we have assumed a si mple addi
t ive unit i n  which the net input to the unit  is given by L wij a/ . This i s  
certainly the most common form in  most of our  models .  Somet imes, 
however, we want mult ip l icat ive connections in which the output val ues 
of two (or possibly more) units are mUlt ip l ied before entering into the 
sum. Such a mult ipl icative connection a l lows one unit  to gate another. 
Thus,  if  one unit of a mult ip l icat ive pai r  i s  zero , the other member of 
the pai r  can have no effect , no matter how strong its output .  On the 
other hand, i f  one unit of a pai r has val ue 1 ,  the output of the other is  
passed unchanged to the receiving unit .  Figure 7 i l lustrates several 
such connections. In this case , the input to unit  A is the weighted sum 
of the products of units B and C and units D and E. The pairs, BC and 
DE are cal led co,yuncts. In this case we have conjuncts of size 2 .  In 
general , of course , the conjuncts could  be of any size. We have no 
appl ications, however, which have required conjuncts larger than s ize 2 .  
In general , then , we assume that the net input to  a un i t  i s  given by  the 
weighted sum of the products of a set of individual inputs.  That is, the 
net input to a unit is given by L wijIIai \ai 2 • . .  aik where i i ndexes the 

conjuncts impinging on unit j and Ui \ ' Ui 2 • • • • •  Uik are the k units in  

the  conjunct . We cal l units such as  these sigma-pi units. 
In addi tion to their use as gates, sigma-pi units can be used to con

vert the output level of a unit into a signal that acts l ike a weight con
necting two units. Thus, assume we have the pattern of connections 
i l lustrated in the figure. Assume further that the weights on those con
nections are all 1 .  In this case, we can use the output levels of uni ts B 
and D to, i n  effect ,  set the weights from C to A and E to A respec
tively. S ince, in general , it is the weights among the units that deter
mine the behavior of the network, sigma-pi units al low for a dynami
cal ly  programmable network in  which the act ivation value of some units 
determine what another network can do. 

In addit ion to i ts general usefulness in  these cases, one might ask 
whether we might not someti me need st i l l  more complex patterns of 
interconnections. Interestingly ,  as described in Chapter 10 ,  we wi l l  
never be forced to develop any more complex interconnection type, 
since sigma-pi units are sufficient to mimic any function monotonic of 
i ts inputs . 
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Sigma Pi Units 

Con ) - QB . QC 
Con 2 - aD ' aE 

FIGURE 7. Two conjunct ive inputs to unit  A from the conjunct B and C and D and E. 
The input to unit A is  the sum of the product of the outputs of units BC and DE. 

CONCLUSION 

We have provided a very general mathematical and conceptual 
framework within which we develop our models .  This framework pro
vides a language for expressing PDP models, and, though there i s  a lot 
of freedom within i t ,  it is at least as constrained as most computational 
formalisms, such as production systems or high- level languages such as 
Lisp. 

We must take note of the fact, however ,  that the framework does 
not specify a/l of the constraints we have imposed on ourselves in our 
model building efforts. For example , virtually any computing device ,  
serial or paral lel, can be described in the framework we have described 
here . 

Copyrighted Material 



2. A F R A MEWORK FOR PDP 75 

There is a further set of considerat ions which has gu ided our particu
lar formulations. These further considerations arise from two sources : 
our bel iefs about the nature of the hardware avai lable for carrying out 
mental processes in  the brain and our bel iefs about the essential charac
ter of these mental processes themselves. We discuss below the addi 
t ional constraints on our model bui lding which arise from these two 
bel iefs . 

. 
Fi rst , the operat ions in  our models can be characterized as .. neural ly 

inspi red . "  We wish to replace the " computer metaphor" as a model of 
mind with the " brai n metaphor" as model of mind . This leads us to a 
number of considerations which further inform and constrai n our 
model bu i lding efforts . Perhaps the most crucial of these is t ime. Neu
rons are remarkably slow relati ve to components in modern computers .  
Neurons operate in the t ime scale of  m i l l iseconds whereas computer 
components operate in the time scale of nanoseconds - a factor of 106 
faster. This means that human processes that take on the order of a 
second or less can involve on ly  a hundred or so t ime steps . Si nce most 
of the processes we have studied- perception,  memory retrieval , speech 
processing , sentence comprehension, and the l i ke - take about a second 
or so, i t  makes sense to impose what Feldman ( 985) cal ls the " 1 00-
step program " constraint . That i s ,  we seek explanations for these men
tal phenomena which do not requi re more than about a hundred ele
mentary sequent ial operat ions. Given that the processes we seek to 
characterize are often quite complex and may involve consideration of 
l arge numbers of s imultaneous constraints, our algori thms must involve 
considerable paral le l ism. Thus , although a serial computer could be 
created out of the kinds of components represented by our units, such 
an i mplementat ion would surely violate the 1 00-step program constraint 
for any but the s implest processes . 

A second considerat ion differentiates our models from those inspi red 
by the computer metaphor: that is ,  the constraint that all the 

knowledge is in the connections. From conventional programmable com

puters we are used to thinking of knowledge as being stored in the state 

of certain units in the system. In our systems we assume that only very 

short term storage can occur in the states of uni ts; long term storage 

takes place in the connections among units .  Indeed , it is the 

connect ions - or perhaps the rules for forming them through 

experience -which primari ly  differentiate one model from another. 

This i s  a profound difference between our approach and other more 

conventional approaches, for it means that almost al l knowledge is 

implicit in the structure of the device that carries out the task rather 

than explicit i n  the states of units themsel ves. Knowledge is not di rectly 

accessi ble to interpretation by some separate processor, but i t  is bui l t  

i n to  the  processor i tself and d i rect ly determines the course of 
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processing. It is acquired through tuning of connections as these are 
used in processing, rather than formulated and stored as declarati ve 
facts. 

In addition to these two neurally inspi red working assumptions, there 
are a number of other constraints that derive rather di rectly from our 
understanding of the nature of neural information processing. These 
assumptions are discussed more fully in Chapter 4.  

The second class of constraints arises from our beliefs about the 
nature of human information processing considered at a more abstract , 
computational level of analysis .  We see the kinds of phenomena we 
have been studying as products of a kind of constraint satisfaction pro
cedure in which a very large number of constraints act s imultaneously 
to produce the behavior. Thus , we see most behavior not as the pro
duct of a single,  separate component of the cogni tive system, but as the 
product of large set of i nteracting components, each mutually constrain
ing the others and contributing in its own way to the global ly observ
able behavior of the system. It is very difficult to use serial algori thms 
to implement such a conception , but very natural to use highly paral lel 
ones . These problems can often be characterized as best match or 
optimization problems. As Minsky and Papert ( I 969) have pointed out, 
i t  i s  very difficult to solve best match problems serially. However , this 
i s  precisely the kind of problem that i s  readi ly implemented using 
highly parallel algorithms of the kind we consider in  this book . See 
Kanerva (I 984) for a discussion of the best match problem and its 
solution with paral lel processing systems . 

To summarize ,  the PDP framework consists not only of a formal 
language, but a perspective on our models. Other qual i tative and quan
ti tative considerations arising from our understanding of brain process
ing and of human behavior combine with the formal system to form 
what might be viewed as an aesthetic for our model building enter
prises . The remainder of our book is  largely a study of this aesthetic in 
practice. 
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CHAPTER 3 

Distributed Representations 

G. E. HINTON, 1. L. McCLELLAND, and D. E. RUMELHART 

Given a network of simple computing elements and some ent i t ies to 
be represented, the most straightforward scheme is  to use one comput
ing element for each entity. Th is is cal led a local representation. It i s  
easy to understand and easy to implement because the structure of the 
physical network mirrors the structure of the knowledge i t  contains. 
The naturalness and s impl icity of this relationsh ip  between the 
knowledge and the hardware that implements i t  have led many people 
to simply assume that local representations are the best way to use 
paral lel  hardware . There are, of course, a wide variety of more compl i 
cated implementations in  which there is  no  one-to-one correspondence 
between concepts and hardware uni ts, but these implementations are 
only worth considering if they lead to increased efficiency or to 
interest ing emergent propert ies that cannot be conveniently ach ieved 
using local representations. 

This chapter describes one type of representation that is  less fami l iar 
and harder to th ink about than local representations. Each ent i ty is 
represented by a pattern of act ivi ty distri buted over many computing 
elements, and each computing element is involved in  represent ing 
many di fferent entities. The strength of this more complicated kind of 
representation does not l i e  in i ts notational convenience or i ts ease of 
implementation i n  a convent ional computer, but rather in the efficiency 
with which i t  makes use of the processing abi lities of networks of sim
ple, neuron- l ike computing elements. 
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Every representational scheme has its good and bad points. Distrib
uted representations are no exception. Some desirable properties arise 
very naturally from the use of patterns of activity as representations. 
Other properties, like the ability to temporarily store a large set of arbi
trary associations, are much harder to achieve . As we shall see, the 
best psychological evidence for distributed representations is the degree 
to which their strengths and weaknesses match those of the human 
mind. 

The first section of this chapter stresses some of the virtues of 
distributed representations. The second section considers the efficiency 
of distributed representations, and shows clearly why distributed 
representations can be better than local ones for certain classes of prob
lems. A final section discusses some difficult issues which are often 
avoided by advocates of distributed representations, such as the 
representation of constituent structure and the sequential focusing of 
processing effort on different aspects of a structured object. 

Disclaimers. Before examining the detailed arguments in favor of 
distributed representations, it is important to be clear about their status 
within an overall theory of human information processing. It would be 
wrong to view distributed representations as an alternative to representa
tional schemes like semantic networks or production systems that have 
been found useful in cognitive psychology and artificial intelligence. It 
is more fruitful to view them as one way of implementing these more 
abstract schemes in parallel networks, but with one proviso: Distrib
uted representations give rise to some powerful and unexpected emer
gent properties. These properties can therefore be taken as primitives 
when working in a more abstract formalism. For example, distributed 
representations are good for content-addressable memory, automatic 
generalization, and the selection of the rule that best fits the current 
situation .  So if one assumes that more abstract models are imple
mented in the brain using distributed representations, it is not unrea
sonable to treat abilities like content-addressable memory, automatic 
generalization, or the select ion of an appropriate rule as primitive 
operations, even though there is no easy way to implement these opera
tions in conventional computers. Some of the emergent properties of 
distributed representations are not easily captured i n  higher-level for
malisms. For example, distributed representations are consistent with 
the simultaneous application of a large number of partially fitting rules 
to the current situation, each rule being applied to the degree that it is 
relevant. We shall examine these properties of distributed representa
tions in the chapter on schemata (Chapter 14). There we will see clearly 
that schemata and other higher-level constructs provide only approxi
mate characterizations of mechanisms which rely on distributed 
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representat ions. Thus, the contribution that an analysis of distri buted 
representations can make to these nigher-level formalisms is to legit i
mize certain powerful, primitive operations which would otherwise 
appear to be an appeal to magic; to enrich our repertoire of primit ive 
operat ions beyond those which can conveniently be captured in many 
higher-level formalisms; and to suggest that these higher-level formal
isms may only capture the coarse features of the computational capabi l i 
t ies of the underlying processing mechanisms. 

Another common source of confus ion is the idea that distributed 
representations are somehow in conflict with the extensive evidence for 
localization of function in the brain (Luria, 1973). A system that uses 
distributed representations still requires many different modul('s for 
representing completely different ki nds of thing at the same time. The 
distributed representations occur within these localized modules. For 
example, different modules would be devoted to things as different as 
mental i mages and sentence structures, but two different mental images 
would correspond to alternative patterns of activ i ty in the same module. 
The representations advocated here are local at a global scale but global 
at a local scale. 

VIRTUES OF DISTRIBUTED REPRESENTATIONS 

This section considers three important features of dist ributed 
representations: (a) their essential ly constructive character; (b) thei r 
ability to general ize automatical ly to novel s i tuations ; and (c) their 
tunability to changing envi ronments. Several of these vi rtues are 
shared by certain local models, such as the interact i ve activation model 
of word perception, or McClelland's (1980 model of generalizat ion and 
retrieval descri bed in Chapter 1. 

Memory as Inference 

People have a very flexible way of accessing their memories: They 
can recall i tems from partial descript ions of their contents (Norman & 
Bobrow, 1979). Moreover, they can do this even if some parts of the 
partial description are wrong . Many people , for example, can rapidly 
retrieve the i tem that sati sfies the fol lowing partial descript ion: I t  is an 
actor, it is intelligent, it is a polit ic ian . This kind of content-addressable 
memory i s  very useful and it .is very hard. to implement on a conven
tional computer becaus'i°eKf$!!£efSM�o�J each item at a particular 
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address, and to retrieve an item they must know its address. If all the 
combinat ions of descriptors that wil l be used for access are free of 
errors and are known in advance, it i s  possible to use a method called 
hash coding that quickly yields the address of an i tem when given part 
of its content. In general , however ,  content-addressable memory 
requires a massive search for the i tem that best fi ts the partial descrip
t ion. The central computational problem in memory is how to make 
th is  search efficient . When the cues can contain errors, th is is very d if
ficult because the fai lure to fi t one of the cues cannot be used as a fi lter 
for quickly e l iminat ing i nappropriate answers. 

Distributed representations provide an efficient way of using parallel 
hardware to implement best-fi t searches. The basic idea is  fai rly sim
ple, though i t  is quite unlike a convent ional computer memory. Dif
ferent i tems correspond to different patterns of act ivi ty over the very 
same group of hardware units. A partial descript ion is presented in the 
form of a part ial acti vity pattern , activating some of the hardware 
units. 1 I nteract ions between the units then al low the set of acti ve units 
to influence others of the units ,  thereby complet ing the patteft1, and 
generat ing the item that best fits the descript ion. A new item is 
"stored" by modifying the i nteractions between the hardware units so as 
to create a new stable pattern of acti vity. The main d ifference from a 
conventional computer memory is that patterns which are not acti ve do 
not exist anywhere . They can be re-created because the connection 
strengths between units have been changed appropriately, but each con
nection strength is involved in storing many patterns, so it i s  impossible 
to point to a part icular place where the memory for a particular i tem is 
stored . 

Many people are surprised when they understand that the connec
t ions between a set of simple processing units are capable of supporting 
a large number of d ifferent patterns. I l lust rations of this aspect of dis
tri buted models are provided i n  a number of papers in  the literature 
(e.g., Anderson , 1 977; Hinton, 1 981a) ; this property is i l lustrated in  
the  model of memory and amnesia described i n  Chapters 17  and 25. 

One way of thinking about distributed memories is in terms of a very 
large set of plausible inference rules. Each act ive unit represents a 
"microfeature" of an i tem, and the connection strengths stand for plau
sible " microinferences" between microfeatures. Any part icular pattern 

I This is easy if the partial description is simply a set of features,  but it i s  much more 
difficult if the partial description mentions relationships to other o bjects. If, for example, 
the system is asked to retrieve John's father ,  it must represen t  John, but  if John and his  
father are represented by mutually exclusive patterns of activity in  the very same gro u p  
o f  u n its , i t  is hard to see how this can b e  done w ithout preventing the representa t ion of 
John's father . A distributed solution to this problem is described in the text. 
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of activity of the units wil l  satisfy some of the microinferences and 
violate others. A stable pattern of activity is one that violates the plau
sible microinferences less than any of the neighboring patterns. A new 
stable pattern can be created by changing the inference rules so that the 
new pattern violates them less than its neighbors. This view of 
memory makes it clear that there is no sharp distinction between 
genuine memory and plausible reconstruction. A genuine memory is a 
pattern that is stable because the inference rules were modified when it 
occurred before. A "confabulation" is a pattern that is stable because of 
the way the inference rules have been modified to store several dif
ferent previous patterns. So far as the subject is concerned, this may 
be indistinguishable from the real thing . 

The blurring of the distinction between veridical recall and confabu
lation or plausible reconst ruction seems to be characteristic of human 
memory (Bartlett, 1932� Neisser, 1981). The reconstructive nature of 
human memory is surprising only because it conflicts with the standard 
metaphors we use. We tend to think that a memory system should 
work by storing literal copies of items and then retrieving the stored 
copy, as in a filing cabinet or a typical computer database. Such sys
tems are not naturally reconstructive . 

If we view memory as a process that constructs a pattern of activity 
which represents the most plausible item that is consistent with the 
given cues, we need some guarantee that it will converge on the 
representation of the item that best fits the description, though it might 
be tolerable to somet i mes get a good but not optimal fit. It is easy to 
imagine this happening, but it is harder to make it actually work. One 
recent approach to this problem is to use statistical mechanics to 
analyze the behavior of groups of interacting stochastic units. The 
analysis guarantees that the better an item fits the description, the more 
likely it is to be produced as the solution. This approach is described in 
Chapter 7 ,  and a related approach is described in Chapter 6. An alter
native approach, using units with continuous activations (Hopfield, 
1984) is described in Chapter 14. 

Similarity and Generalization 

When a new item is stored, the modifications in the connection 
strengths must not wipe out existing items. This can be achieved by 
modifying a very large number of weights very slightly . If the modifi
cations are all in the direction that hel ps the pattern that is being 
stored, there will be a conspiracy effect: The total help for the 
intended pattern will be ��t@f1�aNJ;;§Jl1all separate modifications. 
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For unrelated patterns, however, there will be very little transfer of 
effect because some of the modifications will help and some will 
hinder. Instead of all the small modifications conspiring together, they 
will mainly cancel out. This kind of statistical reasoning underpins 
most distributed memory models, but there are many variations of the 
basic idea (See Hinton & Anderson, 1981, for several examples). 

It is possible to prevent interference altogether by using orthogonal 
patterns of activity for the various items to be stored (a rudimentary 
example of such a case is given in Chapter O. However, this elim
inates one of the most interesting properties of distributed representa
tions: They automatically give rise to generalizations. If the task is 
simply to remember accurately a set of unrelated items, the generaliza
tion effects are harmful and are called interference. But generalization 
is normally a helpful phenomenon. It allows us to deal effectively with 
situations that are similar but not identical to previously experienced 
situations. 

People are good at generalizing newly acquired knowledge. If you 
learn a new fact about an object, your expectations about other similar 
objects tend to change. If, for example, you learn that chimpanzees like 
onions you will probably raise your estimate of the probability that 
gorillas like onions. In a network that uses distributed representations, 
this kind of generalization is automatic. The new knowledge about 
chimpanzees is incorporated by modifying some of the connection 
strengths so as to alter the causal effects of the distributed pattern of 
activity that represents chimpanzees. 2 The modifications automatically 
change the causal effects of all similar activity patterns. So if the 
representation of gorillas is a similar activity pattern over the same set 
of units, its causal effects will be changed in a similar way. 

The very simplest distributed scheme would represent the concept of 
onion and the concept of chimpanzee by alternative activity patterns 
over the very same set of units. It would then be hard to represent 
chimps and onions at the same time. This problem can be solved by 
using separate modules for each possible role of an item within a larger 
structure. Chimps, for example, are the" agent" of the liking and so a 
pattern representing chimps occupies the" agent" module and the pat
tern representing onions occupies the "patient" module (see Figure I). 

2 The internal structure of this  pattern may also change. There is always a choice 
between changing the weights on the outgoing connections and changing the pattern itself 
so that different outgoing connections become relevant. Changes in the pattern i tself 
alter its similarity to other patterns and thereby alter how generalization wil l occur in the 
future. It is generally much harder to figu re out how to change the pat tern that represents 
an item than it is to figure out how to change the outgoing connections so that a particu
lar pattern wi l l  have the desired effects on another part of the network. 
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Each module can have alternative patterns for all the various items, so 
this scheme does not involve local representations of items. What is 
localized is the role. 

If you subsequently learn that gibbons and orangutans do not like 
onions your estimate of the probability that gorillas like onions will fall, 
though it may still remain higher than it was initially. Obviously, the 
combination of facts suggests that liking onions is a pecul iar quirk of 
chimpanzees. A system that uses distr ibuted representations will 
automatically arrive at this conclusion, provided that the alternative pat
terns that represent the various apes are related to one another in a par
ticular way that is somewhat more specific than just being similar to 
one another: There needs to be a part of each complete pattern that is 
identical for all the various apes. In other words, the group of units 
used for the distributed representations must be divided into two 

RELATIONSHIP 

AGENT PATIENT 

FIGURE I. In this Simplified scheme there are two different modules, one of which 
represents the agent and the other the patient. To incorporate the fact that chimpanzees 
l ike onions, the pattern for chimpanzees in one module must be associated with the pat
tern for onions in the other module. Relationships other than "liking" can be imple
mented by having a third group of units whose pattern of activity represents the relation
ship. This pattern must then "gate" the interactions between the agent  and patient 
groups. Hinton (1981a) describes one way of doing this gating by using a fourth group of 
units. 

Copyrighted Material 



84 THE PDP PERSPECTIVE 

subgroups, and all the various apes must be represented by the same 
pattern in the first subgroup, but by different patterns in the second 
subgroup. The pattern of activity over the first subgroup represents the 
type of the item, and the pattern over the second subgroup represents 
additional microfeatures that discriminate each instance of the type 
from the other i nstances. Note that any subset of the microfeatures 
can be considered to define a type. One subset might be common to all 
apes, and a different (but overlapping) subset might be common to all 
pets. This allows an item to be an instance of many different types 
simultaneously. 

When the system learns a new fact about chimpanzees, it usually has 
no way of knowing whether the fact is true of all apes or is just a 
property of chimpanzees. The obvious strategy is therefore to modify 
the strengths of the connections emanating from all the active units, so 
that the new knowledge will be partly a property of apes in general and 
partly a property of whatever features distinguish chimps from other 
apes. If it is subsequently learned that other apes do not like onions, 
correcting modifications will be made so that the information about 
onions is no longer associated with the subpattern that is common to all 
apes. The knowledge about onions will then be restricted to the sub
pattern that distinguishes chimps from other apes. If it had turned out 
that gibbons and orangutans also liked onions, the modifications in the 
weights emanating from the subpattern representing apes would have 
reinforced one another, and the knowledge would have become associ
ated with the subpattern shared by all apes rather than with the patterns 
that distinguish one ape from another. 

A very simple version of this theory of generalization has been 
implemented in a computer simulation (Hinton, 1981a). Several appli
cations that make use of this property can be found in Part IV of this 
book. 

There is an obvious generalization of the idea that the representation 
of an item is composed of two parts, one that represents the type and 
another that represents the way in which this particular instance differs 
from others of the same type. Almost all types are themselves 
instances of more general types, and this can be implemented by divid
ing the pattern that represents the type into two subpatterns, one for 
the more general type of which this type is an instance, and the other 
for the features that discriminate this particular type from others 
instances of the same general type. Thus the relation between a type 
and an instance can be implemented by the relationship between a set 
of units and a larger set that includes ·it. Notice that the more general 
the type, the smaller the set of units used to encode it. As the number 
of terms in an intensional description gets smaller, the corresponding 
extensional set gets larger. 
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In traditional semantic networks that use local representations, gen
eralization is not a direct consequence of the representation. Given 
that chimpanzees l ike onions, the obvious way of incorporating the new 
knowledge is by changing the strengths of connections belonging to the 
chimpanzee unit. But this does not automatically change connections 
that belong to the gorilla unit. So extra processes must be invoked to 
implement generalization in a localist scheme. One commonly used 
method is to al low activation to spread from a local unit to other units 
that represent similar concepts (Collins & Loftus, 1 975; Quillian, 
1 968). Then when one concept unit is activated, it will partially 
activate its neighbors and so any knowledge stored in the connections 
emanating from these neighbors will be partially effective. There are 
many variations of this basic idea (Fahlman, 1979; Levin, 1976; 
McClelland, 1981). 

It is hard to make a clean dist inction between systems that use local 
representations plus spreading activation and systems that use distrib
uted representations. In both cases the result of activating a concept is 
that many different hardware units are active. The distinction almost 
completely disappears in some models such as McClelland's (981) 
generalization model, where the properties of a concept are represented 
by a pattern of activation over feature units and where this pattern of 
activation is determined by the interactions of a potentially very large 
number of units for instances of the concept. The main difference is 
that in one case there is a particular individual hardware unit that acts 
as a "handle" which makes it easy to attach purely conventional proper
ties like the name of the concept and easier for the theorist who con
structed the network to know what the individual parts of the network 
stand for. 

If we construct our networks by hand-specifying the connections 
between the units in the network, a local representation scheme has 
some apparent advantages. First, it is easier to think one understands 
the behavior of a network if one has put in all the "knowledge" -all  the 
connections-oneself. But if it is the entire, distributed pattern of 
interacting influences among the units in the network that is doing the 
work, this understanding can often be illusory. Second, it seems intui
tively obvious that it is harder to attach an arbitrary name to a distrib
uted pattern than it is to attach it to a single unit. What is intuitively 
harder, however, may not be more efficient. We will see that one can 
actually implement aribitrary associations with fewer units using distrib
uted representations. Before we turn to such considerations, however, 
we examine a different advantage of distributed representations: They 
make it possible to create new concepts without allocating new 
hardware. 

Copyrighted Material 



86 THE PDP PERSPECTIVE 

Creating New Concepts 

Any plausible scheme for representing knowledge must be capable of 
learning novel concepts that could not be anticipated at the time the 
network was initially wired up. A scheme that uses local representa
tions must first make a discrete decision about when to form a new con
cept, and then it must find a spare hardware unit that has suitable con
nections for implementing the concept involved. Finding such a unit 
may be difficult if we assume that, after a period of early development, 
new knowledge is incorporated by changing the strengths of the existing 
connections rather than by growing new ones. If each unit only has 
connections to a small fraction of the others, there will probably not be 
any units that are connected to just the right other ones to implement a 
new concept. For example, in a collection of a million units each con
nected at random to ten thousand others, the chance of there being any 
unit that is connected to a particular set of 6 others is only one in a 
million. 

In an attempt to rescue local representations from this problem, 
several clever schemes have been proposed that use two classes of 
units. The units that correspond to concepts are not directly connected 
to one another. Instead, the connections are implemented by indirect 
pathways through several layers of intermediate units (Fahlman, 1 980; 
Feldman, 1982). This scheme works because the number of potential 
pathways through the intermediate layers far exceeds the total number 
of physical connections. If there are k layers of units, each of which 
has a fan-out of n connections to randomly selected units in the follow
ing layer, there are nk potential pathways. There is almost certain to be 
a pathway connecting any two concept-units, and so the intermediate 
units along this pathway can be dedicated to connecting those two 
concept-units. However, these schemes end up having to dedicate 
several intermediate units to each effective connection, and once the 
dedication has occurred, all but one of the actual connections emanat
ing from each intermediate unit are wasted. The use of several inter
mediate units to create a single effective connection may be appropriate 
in switching networks containing elements that have units with rela
tively small fan-out, but it seems to be an inefficient way of using the 
hardware of the brain. 

The problems of finding a unit to stand for a new concept and wiring 
it up appropriately do not arise if we use distributed representations. 
All we need to do is modify the interactions between units so as to 
create a new stable pattern of activity. If this is done by modifying a 
large number of connections very slightly, the creation of a new pattern 
need not disrupt the existing representations. The difficult problem is 
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to choose an appropriate pattern for the new concept. The effects of 
the new representation on representations in other parts of the system 
wi l l  be determined by the un i ts that are active, and so it is  important to 
use a collect ion of act ive units that have roughly the correct effects. 
Fi ne-tun ing of the effects of the new pattern can be achieved by 
slightly altering the effects of the act i ve units it contains, but it would 
be unwise to choose a random pattern for a new concept because major 
changes would then be needed in the weights, and th is would disrupt 
other knowledge . Ideal ly,  the d istri buted representation that is chosen 
for a new concept should be the one that requires the least modification 
of weights to make the new pattern stable and to make i t  have the 
required effects on other representations. 

Naturally , it is not necessary to create a new stable pattern all in one 
step.  It  is  possible for the pattern to emerge as a result of modifications 
on many separate occasi ons. This  al leviates an awkward problem that 
arises wi th local representations: The system must make a discrete all 
or-none decis ion about when to create a new concept. If we view con
cepts as stable patterns, they are much less discrete in character. It is 
possible ,  for example, to differentiate one stable pattern into two 
closely related but d ifferent variants by modifying some of the weights 
slightly. Unless we are allowed to clone the hardware uni ts (and all 
their connections) , this kind of gradual, conceptual di fferentiation is 
much harder to achieve with local representat ions. 

One of the central problems in  the development of the theory of dis
tributed representation is the problem of speci fying the exact pro
cedures by which distr ibuted representations are to be learned. All 
such procedures involve connection strength modulation, following 
" learning rules" of the type outl ined in Chapter 2. Not all the problems 
have been solved , but significant progress is being made on these prob
lems. (See the chapters in Part II. ) 

DISTRIBUTED REPRESENTATIONS THAT 
WORK EFFICIENTLY 

In th is  section, we consider some of the techn ical details about the 

implementation of distri buted representati ons . Fi rst , we point out that 

certa in distri buted representat ion schemes can fai l  to provide a suffi

cient basis for differentiating different concepts, and we point out what 

is required to avoid this l im itation. Then ,  we describe a way of using 

distributed representations to get the most i nformation possib le out of a 

simple network of connected units. The central resu l t  is a surprisi ng 

one' If you want to eru:.ode features_ a�curately using as few units as . (;opyngntea Matenal 
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possib le,  it pays to use units that are very coarsely tuned, so that each 
feature activates many different units and each uni t  is activated by 
many different features. A specific  feature is then encoded by a pattern 
of act iv i ty in many uni ts rather than by a si ngle act ive unit ,  so coarse 
coding is a form of distr ibuted representation. 

To keep the analysis s imple , we shall assume that the units have only 
two values , on and off.3 We shall also ignore the dynamics of the sys
tem because the question of interest , for the t ime being, is how many 
units it takes to encode features with a gi ven accuracy. We start by 
considering the kind of feature that can be completely specified by giv
ing a type (e .g . , line-segment , corner, dot) and the values of some 
continuous parameters that dist inguish it from other features of the 
same type (e. g., posi t ion,  orientation ,  size . ) For each type of feature 
there is a space of possi ble instances . Each cont inuous parameter 
defines a dimension of the feature space, and each particular feature 
corresponds to a point in the space. For features l i ke dots in a plane , 
the space of possible features is two-dimensional . For features l i ke 
stopped, oriented edge-segments in three-d imensional space, the 
feature space is si x-dimensional . We shall start by considering two
dimensional feature spaces and then generalize to higher d imensionali
ties. 

Suppose that we wish to represent the pos i t ion of a single dot in a 
plane, and we wish to ach ieve h igh accuracy without using too many 
units. We define the accuracy of an encoding scheme to be the number 
of d ifferent encodings that are generated as the dot is moved a standard 
distance through the space. One encoding scheme would be to di vide 
the units into an X group and a Y group, and dedicate each unit to 
encoding a part icular X or Y i nterval as shown in Figure 2. A given dot 
would then be encoded by act i vity in two uni ts, one from each group , 
and the accuracy would be proportional to the number of units used . 
Unfortunately , there are two problems with this .  Fi rst , if two dots have 
to be encoded at the same t ime, the method breaks down. The two 
dots wil l  act ivate two uni ts in each group, and there wi l l  be no way of 
tel l ing ,  from the acti ve un i ts , whether the dots were at (x 1, y 1) and 
(x 2, y 2) or at (x 1, Y 2) and (x 2, y 1). This is called the binding prob
lem. It arises because the representation does not specify what goes 
with what . 

3 Similar arguments apply wi th mul ti valued activity levels, but  it is important not to 
allow activity levels to have arbitrary precision because this makes it possible to represent 
an infinite amount of information in a single activity level. Units that transmit a discrete 
impulse with a probability that varies as a function of their activation seem to approxi
mate the kind of precision that is possible in neural circuitry (see Chapters 20 and 21). 
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X group 

X group 

FIGURE 2. A: A simple way of using two groups of binary units to encode the position 
of a point in a two-dimensional space. The active units in the X and Y groups represent 
the x- and y-coordinates. B: When two points must be encoded at the same time, it is 
impossible to tell which x-coordinate goes with which y-coordinate. 

The second problem arises even if we al low only one point to be 
represented at a time. Suppose we want certain representations to be 
associated with an overt response, but not others: We want (x I, y 1) 
and (x 2, y 2) to be associated with a response, but not (x I, y 2) or 
(x 2, y 1). We cannot implement this associat ion using standard 
weighted connections to response units from units standing for the 
values on the two dimensions separately. For the unit for x 1 and the 
unit for x 2 would both have to,,,activ.a.te

t 
the

, 
response, and the unit  for 
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y 1 and the unit for y 2 would both have to activate the response. There 
would be no way of preventing the response from being acti vated when 
the unit for x 1 and the unit for y 2 were both activated. This is another 
aspect of the binding problem since, again, the representation fails to 
specify what must go with what. 

In a conventional computer it is easy to solve the binding problem. 
We simply create two records in the computer memory. Each record 
contains a pair of coordinates that go together as coordinates of one 
dot, and the binding information is encoded by the fact that the two 
coordinate values are sitting in the same record (which usually means 
they are sitting in neighboring memory locations). In paral lel  networks 
it is much harder to solve the binding problem. 

Conjunctive Encoding 

One approach is to set aside, in advance, one unit for each possible 
combination of X and Y values. This amounts to covering the plane 
with a large number of small, nonoverlapping zones and dedicating a 
unit to each zone. A dot is then represented by activity in a single unit 
so this is a local representation. The use of one unit for each discrimin
able feature solves the binding problem by having units which stand for 
the conjunction of values on each of two dimensions. In general, to 
permit an arbitrary association between particular combinations of 
features and some output or other pattern of activation, some conjunc
tive representation may be required. 

However, this kind of l ocal encoding is very expensive. It is much 
less efficient than the previous scheme because the accuracy of pin
pointing a point in the plane is only proportional to the square root of 
the number of units. In general, for a k -dimensional feature space, the 
local encoding yields an accuracy proportional to the kth root of the 
number of units. Achieving high accuracy without running into the 
binding problem is thus very expensive. 

The use of one unit for each discriminable feature may be a reason
able encoding if a very large number of features are presented on each 
occasion, so that a large fraction of the units are active. However, it is 
a very inefficient encoding if only a very small  fraction of the possible 
features are presented at once. The average amount of information 
conveyed by the state of a binary unit is 1 bit if the unit is active half 
the time, and it is m uch less if the unit is only rarely active.4 It would 

4 The amount of information conveyed by a unit that has a probability of p of being on 
is -p log(l- 0 - p) logO - Ptopyrighted Material 
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therefore be more efficient to use an encoding in which a larger frac
tion of the units were act ive at any moment. This can be done if we 
abandon the idea that each discriminable feature is represented by 
act ivity in a single unit .  

Coarse Coding 

Suppose we divide the space into larger, overlapping zones and assign 
a unit to each zone. For s implici ty ,  we wi l l  assume that the zones are 
circular, that thei r centers have a uniform random distribution 
throughout the space, and that all the zones used by a given encoding 
scheme have the same radius. The question of interest is  how 
accurately  a feature is encoded as a function of the radius of the zones. 
If we have a given number of units at our disposal is it better to use 
large zones so that each feature point fal l s  in many zones , or is it better 
to use small zones so that each feature i s  represented by act ivity in 
fewer but more finely tuned uni ts? 

The accuracy is proportional to the number of different encodings 
that are generated as we move a feature point along a straight line from 
one side of the space to the other. Every t ime the l ine crosses the 
boundary of a zone, the encoding of the feature point changes because 
the act ivity of the unit corresponding to that zone changes. So the 
number of d iscriminable features along the line is just twice the 
number of zones that the l ine penetrates. 5 The line penetrates every 
zone whose center l ies within one radius of the l ine (see Figure 3) . 
This number i s  proportional to the radius of the zones, r, and it is also 
proportional to their number, n. Hence the accuracy, a, is related to 
the number of zones and to thei r radi us as fol lows: 

aa: nr. 

In general, for a k-dimensional space, the number of zones whose 
centers l ie within one radius of a line through the space is proportional 
to the volume of a k -dimensional hypercylinder of radius r. This  
volume is equal to the length of  the cylinder (which is  fixed) t imes its 
(k - 1) -di mensional cross-sectional area which is proportional to rk - I. 

5 Problems arise if you enter and leave a zone without crossing other zone borders in 
between because you revert to the same encoding as before, but this effect is negligible if 
the zones are dense enough for there to be many zones containing each point in the 
space. 
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FIGURE 3. The number of zone boundaries that are cut by the line is proportional to 
the number of zone centers within one-zone radius of the line. 

Hence, the accuracy is given by 

So, for example, doubling the radius of the zones increases by a fac
tor of 32, the linear accuracy with which a six-dimensional feature like a 
stopped oriented three-dimensional edge is represented. The intuitive 
idea that larger zones lead to sloppier representations is entirely wrong 
because distributed representations hold information much more effi
ciently than local ones. Even though each active unit is less specific in 
its meaning, the combination of active units is far more specific. 
Notice also that with coarse coding the accuracy is proportional to the 
number of units, which is much better than being proportional to the 
kth root of the number. 

Units that respond to complex features in retinotopic maps in visual 
cortex often have fairly large receptive fields. This is often interpreted 
as the first step on the way to a translation invariant representation. 
However, it may be that the function of the large fields is not to 
achieve translation invariance but to pinpoint accurately where the 
feature is! 

Limitations on coarse coding. So far, only the advantages of coarse 
coding have been mentioned, and its problematic aspects have been 
ignored. There are a number of limitations that cause the coarse cod
ing strategy to break de'tYIJyrYf}Hl�dt�iew5FPtive fields" become too 
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large. One obvious limitation occurs when the fields become compar
able in size to the whole space. This limitation is generally of little 
interest because other, more severe, problems arise before the recep
tive fields become this large. 

Coarse coding is only effective when the features that must be 
represented are relatively sparse. If many feature points are crowded 
together, each receptive field will contain many features and the activity 
pattern in the coarse-coded units will not discriminate between many 
alternative combinations of feature points. (If the units are allowed to 
have integer activity levels that reflect the number of feature points faI
ling within their fields, a few nearby points can be tolerated, but not 
many.) Thus there is a resolution/accuracy trade-off. Coarse coding 
can give high accuracy for the parameters of features provided that 
features are widely spaced so that high resolution is not also required. 
As a rough rule of thumb, the diameter of the receptive fields should 
be of the same order as the spacing between simultaneously present 
feature points.6 

The fact that coarse coding only works if the features are sparse 
should be unsurprising given that its advantage over a local encoding is 
that it uses the information capacity of the units more efficiently by 
making each unit active more often. If the features are so dense that 
the units would be active for about half the time using a local encoding, 
coarse coding can only make things worse. 

A second major limitation on the use of coarse coding stems from 
the fact that the representation of a feature must be used to affect other 
representations. There is no point using coarse coding if the features 
have to be recoded as activity in finely tuned units before they can 
have the appropriate effects on other representations. If we assume 
that the effect of a distributed representation is the sum of the effects 
of the individual active units that constitute the representation, there is 
a strong limitation on the circumstances under which coarse coding can 
be used effectively. Nearby features will be encoded by similar sets of 
active units, and so they will inevitably tend to have similar effects. 
Broadly speaking, coarse coding is only useful if the required effect of a 
feature is the average of the required effects of its neighbors. At a fine 
enough scale this is nearly always true for spatial tasks. The scale at 
which it breaks down determines an upper limit on the size of the 
receptive fields. 

6 It is interesting that many of the geometric visual i l lusions illustrate interactions 
between features at a distance much greater than the uncertainty in t he subjects' 

knowledge of the position of a feature. This is just what would be expected if coarse cod

ing is being used to represent complex features accurately. 
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Another l imi tation is that whenever coarse-coded representations 
interact, there is a tendency for the coarseness to increase. To coun
teract this tendency , i t  i s  probably necessary to have lateral inhibition 
operating within each representation. This issue requires further 
research. 

Extension to noncontinuous spaces. The principle underlying coarse 
coding can be generalized to noncontinuous spaces by thinking of a set 
of items as the equivalent of a receptive field. A local representation 
uses one unit for each possible i tem. A distributed representation uses 
a unit for a set of items, and it impl ic i t ly encodes a particular item as 
the intersection of the sets that correspond to the act ive units. 

In the domain of spatial  features there is generally a very strong 
regularity: Sets of features with similar parameter values need to have 
s imi lar effects on other representations. Coarse coding i s  efficient 
because i t  al lows this regularity to be expressed in  the connection 
strengths. In other domains, the regularities are different, but the effi
ciency arguments are the same: It is better to devote a uni t  to a set of 
i tems than to a single item, provided that the set is chosen in such a 
way that membership i n  the set impl ies something about membershi p  
in other sets . This  implication can then be  captured a s  a connection 
strength. Ideal ly,  a set should be chosen so that membershi p  of this 
set has strong implications for memberships of other sets that are also 
encoded by individual units . 

We i l lustrate these points with a very simple example. Consider a 
microlanguage consisting of the three-letter words of English made up 
of w or I ,  fol lowed by i or e,  fol lowed by g or r. The strings wig and leg 
are words , but weg, fig, and al l  strings ending in r are not. Suppose we 
wanted to use a distributed representation scheme as a basis for 
representing the words, and we wanted to be able to use the distributed 
pattern as a basis for deciding whether the string is a word or a non
word . For simpl icity we wi l l  have a single " decis ion " unit .  The prob
lem is to find connections from the uni ts representing the word to the 
decision unit such that it fi res whenever a word is present but does not 
fire when no word is present .  7 

7 Note that the problem remains the same if the  decision uni t  is replaced by a set of 

units and the task of the network is to produce a different pattern for the word and non

word decisions. For when we examine each un i t ,  i t either takes the same or a d ifferent 

value i n  the two patterns; i n  the cases where the value is the same, there is no problem , 
but neither do such units d ifferentiate the two patterns. When the values are different,  

the unit behaves just l ike t he s ingle decision unit  discussed in  the text. 
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Figure 4 shows three representat i on schemes: a distributed scheme 
that does not work, a distributed scheme that does work, and a local 
scheme. In the first scheme, each letter/ posi ti on combination is 
represented by a different unit. Since there are only five letter/ position 
possibi l i t i es, only five units  have connecti ons to the output uni t .  Each 
word and nonword produces a different and unique pattern over these 
five uni ts, but the connections from the five uni ts to the decision unit  
cannot be set in such a way as to make the decision uni t fire whenever 
one of the words is present and fai l  to fire whenever one of the non
words is  present . 

The reason for the problem i s  simply that the connections between 
the letter/ posi tion uni ts and the decisi on units can only capture the 
degree to which each letter indicates whether the string is a word or 
not. The g tends to i ndicate that a word is present, whereas the r i ndi 
cates that the i tem is not a word; but each of the other letters , taken 
individually,  has absolutely no predictive ability in this case. 

Whether a letter string is a word or not cannot be determined con
clusivel y from the i ndividual letters it contains;  it is necessary to con
sider also what combinations of letters it contains. Thus, we need a 
representation that captures what combinations of letters are present in  
a way that is  sufficient for the purposes of  the network . One could cap
ture this  by using local representations and assigning one node to each 
word, as in the third panel of Figure 4. However, it is important to see 
that one need not go all the way to local representations to solve the 

FIGURE 4. Three networks appl ied to the problem of determining wh ich of the strings 
that can be made from w or I, followed by i or e, fol lowed by g or r form words. 
Numbers on the connections rep resent con nect ion strengths; numbers on the units  
represent the units' th resholds. A unit wil l  take on an acti vation equal to I if  i ts  input 
exceeds i t  threshold; otherwise, i ts activat i on is O. 
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problem facing our network . Conjunctive distributed representations 
will suffice. 

The scheme illustrated in the second panel of the figure provides a 
conjunctive distributed representati on. In this scheme, there are units 
for pairs of letters which, in  this l imited vocabulary, happen to capture 
the combinations that are essential for determining whether a string of 
letters is a word or not. These are, of course, the pairs wi and Ie. 
These conjunctive units, together with direct input to the decision unit 
from the g unit, are sufficient to construct a network which cOlTectly 
classifies all strings consisting of a w or an I, followed by an i or an e, 
followed by a g or r. 

This example illustrates that conjunctive coding is often necessary if 
distributed representations are to be used to solve problems that might 
easily be posed to networks. This same point could be illustrated with 
many other examples- the exclusive or problem is the classic example 
(Minsky & Papert , 1 969) . Other examples of problems requiring some 
sort of conjunctive encoding can be found in Hinton ( 1 98 1  a) and in 
Chapters 7 and 8 .  An application of conjunctive coding to a psychologi
cal model is found in Chapter 1 8 . 

Some problems (mostly very simple ones) can be solved without any 
conjunctive encoding at all ,  and others will require conjuncts of more 
than two units at a time. In general, it is hard to specify in advance just 
what " order" of conjunctions wi l l  be required. Instead, it is better to 
search for a learning scheme that can fi nd representations that are ade
quate. The mechanisms proposed in Chapters 7 and 8 represent two 
steps toward this  goal . 

Implementing an Arbitrary Mapping Between Two Domains 

The attentive reader will have noticed that a local representation can 
always be made to work in the example we have just considered. How
ever , we have already discussed several reasons why distributed 
representations are preferable. One reason is that they can make more 
effi cient use of parallel hardware than local representations. 

This section shows how a distributed representation in one group of 
units can cause an appropriate distributed representation in another 
group of units. We consider the problem of implementing an arbitrary 
pairing between representati ons i n  the two groups, and we take as an 
example an extension of the previous one: the association between the 
visual form of a word and its meaning. The reason for considering an 
arbitrary mapping is that this  is the case in which local representations 
seem most helpful . If distributed representati ons are better in this 
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case, then they are certainly better in  cases where there are underlying 
regularities that can be captured by regularit ies in  the patterns of activa
tion on the units in one group and the uni ts in another. A discussion 
of the benefit distributed representations can provide in  such cases can 
be found in Chapter 1 8 .  

If we restrict ourselves t o  monomorphemic words, the mapping from 
strings of graphemes onto meanings appears to be arbit rary in  the sense 
that knowing what some strings of graphemes mean does not help one 
predict what a new string means. 8 This arbi trariness in the mapping 
from graphemes to meanings is  what gives plausib i l i ty to models  that 
have explicit word un i ts .  It i s  obvious that arbi trary mappings can be 
implemented if there are such units .  A grapheme string activates 
exactly one word uni t ,  and this activates whatever meaning we wish to 
associate with it (see Figure S A) . The semantics of simi lar grapheme 
strings can then be completely independent because they are mediated 
by separate word units .  There is none of the automatic general ization 
that is  characteristic of distributed representations. 

Intuit i vely ,  i t  is not at all obvious that arbi trary mappings can be 
implemented in  a system where the intermediate layer of units encodes 
the word as a distri buted pattern of act iv i ty instead of as acti vity in a 
single local uni t .  The distri buted al ternati ve appears to have a serious 
drawback.  The effect of a pattern of act ivi ty on other representations is 
the combined result  of the indi vidual effects of the acti ve units in  the 
pattern. So s imi lar patterns tend to have s imi lar effects. I t  appears that 
we are not free to make a given pattern have whatever effect we wish 
on the meaning representations without thereby altering the effects that 
other patterns have . This  kind of interaction appears to make i t  diffi
cult to  implement arbi trary mappings from distributed representations 
of words onto meaning representat ions. We shall now show that these 
intuit ions are wrong and that distri buted representations of words can 
work perfectly wel l  and may even be more efficient than single word 
units .  

Figure SB shows a three-layered system i n  which grapheme/ posit ion 
uni ts feed into word-set units which, in turn , feed into semantic or 
sememe units .  Models of this  type, and closely related variants, have 
been analyzed by Wi llshaw ( 1 98 0 , V. Dobson (personal communica
t ion ,  1 984) , and by David Zipser (personal communication, 1 98 1 ) ; 
some further relevant analyses are discussed in Chapter 1 2. For s impl i -

8 Even for monomorphemic words there may b e  particular fragments that have associ 

ated meaning. For example,  words starting with sn usually mean something u n pleasant 

to d o  with the l i ps o r  nose (sneer, snarl, snigger) , and words with long vowels are more 

l ikely to stand for large, slow things than words with short vowels (George Lakoff, per

sonal communicat ion) . Much of Lewis Carrol l 's  poetry relies on such effects. 
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FIGURE S. A: A three-layer network . The bOllom layer contains units that represent 
particular graphemes in particular positions within the word . The middle layer contains 
units that recognize complete words, and the top layer contains units that represent 
semantic features of the meaning of the word. This network uses local representations of 

words in  the middle layer. B: The top and bollom layers are the same as i n  (A ) ,  but the 
middle layer uses a more distributed representation. Each unit in  this layer can be 

activated by the graphemic representation of any one of a whole set of words. The unit 

then provides input to every semantic feature that occurs in the meaning of any of the 

words that activate it .  Only those word sets containing the word cat are shown i n  this 

example. Notice that the only semantic features which receive input from all these word 
sets are the semantic features of cat .  

city, we shall assume that each unit is either active or inactive and that 
there is no feedback or cross-connections. These assumptions can be 
relaxed without substantially affecting the argument.  A word-set unit is 
activated whenever the pattern of the grapheme/ position units codes a 
word in a particular set . The set could be all the four-letter words start
ing with HE, for example, or all the words containing at least two T's.  
All that is required is that it is possible to decide whether a word is in 
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the set by applying a s imple  test to the acti vated grapheme/ posi t ion 
units .  So, for example, the set of al l  words meaning " nice" i s  not 
al lowed as a word set. There is an impl icit assumption that word mean
ings can be represented as sets of sememes. This is a contentious 
issue. There appears to be a gulf between the componential view in 
which a meaning i s  a set of features and the structural ist view in  which 
the meaning of a word can only be defined in terms of i ts relationships 
to other meanings . Later in  this chapter we consider one way of 
integrating these two views by al lowing articulated representations to be 
built out of a number of different sets of acti ve features . 

Returning to Figure 5B,  the quest ion is whether it i s  possible to 
implement an arbi trary set of associations between grapheme/ posi t ion 
vectors and sememe vectors when the word-set units are each activated 
by more than one word. I t  wi l l  be sufficient to consider just one of the 
many possible specific models .  Let us assume that an act ive word-set 
unit provides posit ive input to all the sememe units that occur in the 
meaning of any word in  the word set. Let us also assume that each 
sememe uni t  has a variable threshold that is dynamically adjusted to be 
just sl ightly less than the number of active word-set units .  Only 
sememe units that are receivi ng input from every act ive word-set unit 
wi l l  then become active .  

All the  sememes of  the  correct word wi l l  be activated because each 
of these sememes wi l l  occur in the meaning of one of the words in the 
act ive word sets. However ,  additional sememes may also be act i vated 
because , just by chance , they may recei ve input from every acti ve 
word-set uni t .  For a sememe to receive less input than its threshold , 
there must be at least one act i ve word set that does not contain any 
word which has the sememe as part of its meaning. For each acti ve 
word set the probabi l i ty ,  i ,  of this happening is 

i =  ( l _ p ) (w - O 

where p is the proport ion of words that contain the sememe and w i s  
the number of words in the word set  of the word-set un i t .  The reason 
for the term w - 1 is that the sememe is already assumed not to be 
part of the meaning of the correct word, so there are on ly  w - 1 
remain ing words that could have it in thei r meaning. 

Assume that when a word is coded at the graphemic level i t  activates 
u units at the word-set level . Each sememe that is not part of the 
word's mean ing has a probabi l i ty i of fai l ing to receive i nput from each 
word-set unit .  The probabi l i ty, f ,  that al l of these word-set units wi l l  
provide input to i t  i s  therefore 
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f = ( I  - j ) u 

== [ I  - ( I  - p ) (w - I ) ]u . 
By inspection, this probabi l i ty of a " false-posit ive "  sememe reduces 

to zero when w is 1 .  Table 1 shows the value of f for various combi
nations of values of p ,  u ,  and w .  Notice that if p is very smal l ,  f can 
remain negl igible even i f  w is quite large. This  means that d istributed 
representations in which each word-set unit partic i pates in the represen
tat ion of many words do not lead to errors if  the semantic features are 
relatively sparse in  the sense that each word meaning contains only a 
small fract ion of the total set of sememes. So the word-set units can be 
fair ly nonspecific provided the sememe units are fai rly specific (not 
shared by too many different word meanings) . Some of the entries in 
the table make it clear that for some values of p ,  there can be a negl igi
ble chance of error even though the number of word-set units is con
siderably less than the number of words (the rat io of words to word-set 
units is w/ u ) .  

The example described above makes many simpl i fying assumptions. 
For example, each word-set unit i s  assumed to be connected to every 
relevant sememe unit .  If any of these connections were missing, we 
could not afford to give the sememe units a threshold equal to the 
number of acti ve word-set units .  To al low for missing connections we 
could lower the threshold. This  would increase the false-posi t ive error 
rate ,  but the effect may be quite smal l and can be compensated by 
adding word-set uni ts to increase the specifici ty of the word-level 
representations (Wil lshaw, 1 98 1 ) . Alternati vely, we could make each 
word-set unit  veto the sememes that do not occur in any of i ts words . 
This  scheme is robust against missing connections because the absence 
of one veto can be tolerated if there are other vetos (V. Dobson , per
sonal communication, 1 984) . 

There are two more s impl i fying assumptions both of which lead to an 
underestimate of the effecti veness of distributed representat ions for the 
arbi trary mapping task.  First , the calculations assume that there is  no 
fine-tuning procedure for incrementing some weights and decrementing 
others to improve performance in  the cases where the most frequent 
errors occur. Second, the calculat ions ignore cross-connections among 
the sememes. If each word meaning is  a fami l iar stable pattern of 
sememes, there wi l l  be a strong " clean-up" effect which tends to 
suppress erroneous sememes as soon as the pattern of act ivation at the 
sememe level is  sufficiently close to the fami l iar pattern for a particular 
word meaning. Interactions among the sememes also provide an expla

nation for the abi l i ty of a s ingle grapheme string (e.g . , bank) to e l i ci t  
two quite different mean ings. The bottom-up effect of the activated 
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u 

5 
5 
5 
5 
5 

w p 

5 . 2  
1 0  . 2  
20 .2 
40 2 
80 . 2  

0 .07 1 
0.49 
0.93 
1 .0 
1 .0 

1 0  1 0  . 2  0.24 
10 20 .2 0 .86 
1 0  40 . 2  1 .0 
10  80 . 2  1 .0 
1 0  1 60 .2 1 .0 

40 40 .2 0 .99 
40 80 .2 1 .0 
40 1 60 .2 1 .0 
40 320 .2 1 .0 
40 640 .2 1 .0 

1 00 1 00 . 2  1 .0 
1 00 200 . 2  1 .0 
100 400 .2 1 .0 
1 00 800 . 2  1 .0 

u 

5 
5 
5 
5 
5 

w 

5 
1 0  
20 
40 
80 

1 0  1 0  
1 0  20 
1 0  40 
1 0  80 
1 0  1 60 

40 40 
40 80 
40 1 60 

40 3 20 
40 640 

1 0  1 00  

1 0  200 
1 00 400 
1 00 800 
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TABLE 1 

p 

. 1  

. 1  

. 1 

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. 1  

. I  

. 1  

. 1  

. 1  

. 1  

f 

0.0048 
0.086 

0.48 
0 .92 
1 .0 

0.0074 
0 .23 
0 .85  
1 .0 
1 .0 

0.52  

0.99 
1 .0 
1 .0 
1 .0 

0.99 
1 .0 
1 .0 
1 .0 

u 

5 
5 
5 
5 
5 

w 

5 
1 0  
2 0  
40 
80 

1 0  1 0  
1 0  20 
1 0  40 
1 0  80 
1 0  1 60 

40 40 
40 80 
40 1 60 
40 3 20 
40 640 

1 00 1 00 
1 00 200 
1 00 400 
1 00 800 

p 

.0 1 

. 0 1  

.0 1 

.0 1  

.0 1 

9 .5x 10- 8 
4.8x 10-6 
0.000 1 6  
0.0036 
0 .049 

.01 2.3x 10- 1 1  
. 0 1  2. 5x 10-8 
.0 1  I . 3x H r 5  
. 0 1  0.0024 
.01  0. 1 0  

.0 1  2 .7x 1 0- 20 

. 0 1  3 . 5x 10- 1 1  

. 0 1  0 .000 1 2  

.0 1  0. 1 9 

. 0 1  0.94 

.01 9 .0x 10- 2 1  
. 0 1  4 .8x 1 0- 7 
.0 1 0 . 1 6  
.0 1  0.97 

The probability , !, of a false-posi t ive sememe as a function of the n u m ber  of act ive word
set units per word, U, the number of words in each word-set , w, and the probabi l i ty ,  p, of 
a sememe bei n g  part of a word meaning.  

word-set uni ts helps both sets of sememes, but as soon as top-down fac
tors give an advantage to one meaning, the sememes in the other 
meaning wi l l  be suppressed by competi t ive interactions at the sememe 
level (Kawamoto & Anderson , 1 984) . 

A simulation. As soon as there are cross-connections among the 
sememe units and tine-tuning of individual we ights to avoid frequent 
errors, the relatively straightforward probabi l ist ic analysis given above 
breaks down . To give the cross-connections time to clean up the out
put , i t  is necessary to use an iterat ive procedure instead of the simple 
"straight-through " processing in  which each l ayer completely determines 
the states of all the units in the subsequent layer in a single ,  synchro
nous step. Systems containing cross-connections, feedback ,  and asyn
chronous processing elements are probably more real ist ic, but they are 
generally  very hard to analyze . However, we are now beginning to dis
cover that there are subclasses of these more complex systems that 
behave in tractable wayf00Vi4§"d�fttaJj'falhis subclass is described i n  
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more detai l in Chapter 7. It uses processing elements that are 
inherently stochastic. Surprisingly , the use of stochastic elements 
makes these networks better at performing searches, better at learning, 
and easier to analyze. 

A simple network of this kind can be used to i l l ustrate some of the 
claims about the abi lity to " clean Uph the output by using interactions 
among sememe units and the abi l i ty to avoid errors by fine- tun ing the 
appropriate weights. The network contains 30 grapheme units, 20 
word-set units, and 30 sememe units .  There are no di rect connections 
between grapheme and sememe units ,  but each word-set unit i s  con
nected to all the grapheme and sememe units. The grapheme uni ts are 
divided into three sets of ten , and each three-letter word has one active 
un i t  i n  each group of ten (units can only have act ivi ty levels of 1 or 0) . 
The " meaning" of a word is chosen at random by select ing each 
sememe unit to be active with a probabil i ty of 0 . 2 .  The network shown 
in Figure 6 has learned to associated 20 different grapheme strings wi th 
thei r chosen meanings. Each word-set unit is involved in the represen
tation of many words , and each word involves many word-set units .  

The detai ls  of the learni ng procedure used to create this network and 
the search procedure which is used to settle on a set of act ive sememes 
when given the graphemic i nput are described in Chapter 7. Here we 
simply summarize the main results of the simulat ion . 

After a long period of learning, the network was able to produce the 
correct pattern of sememes 99.9% of the t ime when given a graphemic 
i nput. Removal of any one of the word-set units after the learn ing typ
ical ly caused a slight rise in the error rate for several different words 
rather than the complete loss of one word. Similar effects have been 
observed in other distributed models (Wood, 1 978) . In our simula
tions, some of the erroneous responses were quite interest i ng . In 
1 0,000 tests with a missing word-set unit there were 1 40 cases in  which 
the model fai led to recover the right sememe pattern . Some of these 
consisted of one or two missing or extra sememes, but 83 of the errors 
were exactly the pattern of sememes of some other word . This is  a 
result of the cooperative interactions among the sememe units. If the 
input coming from the word-set units is  noisy or underspecified as it 
may be when units are knocked out, the clean-up effect may settle on a 
similar but incorrect meaning. 

This  effect is reminiscent of a phenomenon cal led deep dyslexia which 
occurs with certain kinds of brain damage in adul ts .  When shown a 
word and asked to read i t ,  the subject wil l sometimes say a d ifferent 
word wi th a very s imilar meaning. The incorrect word somet imes has a 
very different sound and spe l l ing. For example, when shown the word 
PEA CH, the subject might say APRICOT. (See Coltheart , Patterson , & 
Marshal l , 1 980, for more information about acquired dyslexia.)  
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FIG U R E  6. A compact d isp lay that  sh ows a l l  the  connect ion st rengths of th e 20 u n i t s  i n  
t h e  middle layer o f  a t h ree-layer netwo r k .  The network can m a p  from a pattern of 
act i vity over the 30 units i n  the bottom layer ( represent ing graphemes) to an associated 
pal \ern of act i v i t y  over t h e  30 u n i ts of the lop layer ( represent i n g  sememes) . Wi t h i n 
each of the large rectangles that are used to depict midd le-layer u n i t s ,  I he 30 black and 

whi te rectangles at the  top  dep i ct t h e  we igh ts of t h e  connect ions to th e  top laye r ,  and the 
30 rectangles at the bottom depict  the we ights from the bot tom l ayer .  White rectangles 
are pos i t i ve weights ,  black are nega t i v e ,  and the a rea of a rectan gle depicts the  magn i t ud e  

of the weigh t . T h e  s i ngle we igh t that  occurs somewhere i n  t he m i d d l e  of a unit  is i t s  
th resho ld (b lack means a posi t i ve t h reshold ) .  T h e  weights be tween the  30 u n i ts i n  the  
top layer a r e  not  shown in  t h is display . 

Semantic errors of th is k ind seem bizarre because it seems as i f  the 
subject must have accessed the lexical i tem PEA CH i n  order to make 
the semantical l y  related error, and i f  he can get to the lexical item why 
can 't he say it ? (These subjects may know and be able to say the 
words that they misread . )  Distributed representations al low us to 
dispense wi th the rigid dist inction between accessi ng a word and not 
accessing i t . In a network that has learned the word PEA CH, the gra
phemic representation of PEA CH wi l l  cause approx i mately the righ t  
i nput to the  sememe un i t s ,  a n d  interactions a t  the  sememe level can 
then cause exactly the pattern of sememes for APRICOT. Another 
psychological ly interesti��ftf&l1fIB�WBJl the network relearns after 
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it has been damaged . The network was damaged by adding noise to 
every connection that involved a word-set uni t .  This reduced the 
performance from 99.3% correct to 64.3%. 9 The network was then 
retrained and i t  exhibited very rapid relearning, much faster than i ts 
original rate of learning when its performance was 64. 3% correct .  This  
rapid recovery was predicted by a geometrical argument which shows 
that there is something special about a set of connection strengths that 
is  generated by adding noise to a near-perfect set. The resulting set is 
very different from other sets of connection strengths that exhibit the 
same performance. (See Chapter 7 for further discussion . ) 

An even more surprising effect occurs i f  a few of the words are omit
ted from the retraining. The error rate for these words is substantial ly 
reduced as the retraining proceeds , even though the other grapheme
sememe pai rings have no intrinsic relation to them because all the pai r
ings were selected randomly. The " spontaneous " recovery of words 
that the network is not shown again is a result of the use of distributed 
representat ions. All the weights are involved in encoding the subset of 
the words that are shown during retrain ing, and so the added noise 
tends to be removed from every weight .  A scheme that used a separate 
uni t for each word would not behave in th is way , so one can view spon
taneous recovery of unrehearsed i tems as a qual itat ive signature of dis
tributed representati ons. 

STRUCTURED REPRESENTATIONS AND PROCESSES 

In this section we consider two extensions of distributed representa
tions . These extensions i l lustrate that the idea of distributed represen
tations is consistent with some of the major insights from the field of 
art ificial intel l igence concerning the importance of structure in 
representations and processes. Perhaps because some proponents of 
distri buted · representations have not been particularly attuned to these 
issues, it is often unclear how structure is  to be captured in a distri
buted representational scheme. The two parts of this section give some 
indication of the d irections that can be taken in extending distributed 
representations to deal with these important considerations. 

9 The error rate was 99.3% rather than 99 . 9% i n  th is  example because the network was 
forced to respond faster ,  so the cooperat ive effects had less t i me to settle on the optimal 
output . 
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Representing Const i tuent Structure 

Any system that attempts to implement the kinds of conceptual 
structures that people use has to be capable of represent ing two rather 
different k inds of h ierarchy .  The first is the " IS-A" hierarchy that 
relates types to instances of those types . The second is  the part/ whole 
h ierarchy that relates i tems to the constituent i tems that they are com
posed of. The most important characterist ics of the IS-A hierarchy are 
that known properties of the types must be " inheri ted " by the i nstances , 
and properties that are found to apply to al l  instances of a type must 
normally be attributed to the type. Earl ier in this chapter we saw how 
the IS-A hierarchy can be i mplemented by making the distri buted 
representat ion of an instance include, as a subpart , the distr ibuted 
representati on for the type. This representat ional tr ick automatical ly 
yields the most important characterist ics of the IS-A hierarchy , but the 
trick can only be used for one kind of hierarchy. If we use the 
part/ whole relationsh i p  between patterns of act i vity to represent the 
type/ instance relationship between items, it appears that we cannot also 
use it to represent the part/ whole relationship  between i tems. We can
not make the representat ion of the whole be the sum of the representa
t ions of its parts. 

The question of how to represent the relationship between an item 
and the const ituent i tems of which i t  i s  composed has been a major 
stumbling block for theories that postulate distributed representations. 
In the ri val , l ocal ist scheme , a whole is  a node that i s  l i nked by labeled 
arcs to the nodes for its parts . But the central tenet of the distributed 
scheme is  that different i tems correspond to alternative pat terns of 
activity in the same set of uni ts ,  so i t  seems as i f  a whole and i ts parts 
cannot both be represented at the same t ime.  

Hinton 0 98 1 a) descri bed one way out of th is  d i lemma. It rel ies on 
the fact that  wholes are not s imply the sums of thei r parts .  They are 
composed of parts that play particular roles wi th in  the whole structure . 
A shape, for example, is composed of smal ler shapes that have a partic
ular size , orientation, and posit ion relative to the whole. Each const i 
tuent shape has i ts  own spatial role ,  and the whole shape is  composed 
of a set of shape/ role pai rs . 1O  Simi larly , a proposi t ion is composed of 
objects that occupy particular semantic roles in the whole proposit ional 

10 Relat ionsh ips between parts are i m portant as wel l .  One advantage of expl icit ly 
represent ing shape/ role pa i rs is that  i t  a l lows d i fferent pairs to support each other.  One 
can view the various different locations with in  an object as slots and the shapes of parts 
of an object as the fi l lers of these slots. Knowledge of a whole shape can then be i m ple
mented by posit ive interactions between the various slot -fi l lers.  
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structure. This suggests a way of implementing the relationship between 
wholes and parts: The identity of each part should fi rst be combined 
with its role to produce a s ingle pattern that represents the combination 
of the identity and the role ,  and then the distributed representation for 
the whole should consist of the sum of the distri buted representations 
for these identity/ role combinations (plus some addit ional " emergent"  
features) . This proposal differs from the simple idea that the represen
tat ion of the whole is the sum of the representations of i ts parts 
because the subpatterns used to represent identity/ role combinations 
are quite different from the patterns used to represent the identities 
alone. They do not , for example ,  contain these patterns as parts. 

Natural ly ,  there must be an access path between the representation 
of an item as a whole in its own right and the representation of that 
same i tem playing a particular role with in  a larger structure. It must be 
possible, for example, to generate the identity/ role representation from 
two separate, expl ici t ,  distributed patterns one of which represents the 
identi ty and the other of which represents the role.  It must also be 
possible to go the other way and generate the expl ic i t  representations of 
the identity and role from the s ingle combined representation of the 
identi ty / role combination (see Figure 7). 

The use of patterns that represent identity/ role combinat ions al lows 
the part/ whole hierarchy to be represented in the same way as the 
type/ instance h ierarchy. We may view the whole as s imply a particular 
instance of a number of more general types, each of which can be 
defined as the type that has a particular ki nd of part playing a particular 
role (e .g . , men with wooden legs) . 

Sequential Symbol Processing 

If const i tuent st ructure is  implemented i n  the way described above, 
there is  a serious issue about how many structures can be act ive at any 
one t ime. The obvious way to al locate the hardware is to use a group 
of uni ts for each possible role wi thin a structure and to make the pat
tern of activity in this group represent the identity of the const ituent 
that is currently playing that role .  This implies that only one structure 
can be represented at a t ime,  unless we are wi l l ing to postulate mult iple 
copies of the ent i re arrangement. One way of doing this ,  using units 
with programmable rather than fixed connections, i s  described in  
Chapter 1 6 .  However, even th is  technique runs into difficult ies if  more 
than a few modules must be " programmed " at once . However, people 
do seem to suffer from strong constraints on the number of structures 
of the same general type that they can process at once . The 
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IDENT ITY 

PATI EN T  L OCATIO N  

FIGURE 7 .  A sketch o f  the apparatus that might b e  necessary for com bining separate 
representations of an ident i ty  and a role into a s ingle pattern.  Only one identity and only 
one role can be explici t ly represented at a time because the identity and role groups can 
each have only one pattern of act ivi ty at a t ime.  Howeve r ,  the various role groups allow 
many identity/ role com binations to be encoded s imul taneousl y. The small  triangular 
symbols represent the abi l i ty of the pattern of act iv i ty  in the group that expl ictly 
represents a role to determine which one of the many role groups is currently i nteracting 
with the ident ity group. This allows the ident i ty occupying a particular  role to be " read 
out " as well as allowing the reverse operation of com bining an identity and a role. 

sequentiali ty that they exhibit  at this h igh l evel of descri ption is ini t ia l ly 
surprising given the massively parallel archi tecture of the brai n ,  but i t  
becomes much eas ier to understand if we abandon our l ocalist predelic
t ions in favor of the distributed alternat ive which uses the paral lel ism 
to give each active representat ion a very rich internal structure that 
allows the right kinds of general izat ion and content-addressabi l i ty. 
There may be some truth to the notion that people  are sequential sym
bol processors if each " symbolic representat ion " i s  identified with a 
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success ive state of a large i nteractive network. See Chapter 1 4  for 
further discussion of these issues . 

One central tenet of the sequential symbol processing approach 
(Newell ,  1 980) is the abi l i ty to focus on any part of a structure and to 
expand that into a whole that is  just as r ich in content as the original 
whole of which it was a part . The recursive abi l i ty to expand parts of a 
structure for indefini tely many levels and the inverse abil ity to package 
up whole structures into a reduced form that al lows them to be used as 
consti tuents of larger structures is the essence of symbol processing. It 
al lows a system to build structures out of things that refer to other 
whole structures without requiri ng that these other structures be 
represented in all their cumbersome detai l .  

In conventional computer implementations, this abi l i ty i s  achieved by 
using pointers. These are very convenient ,  but they depend on the use 
of addresses.  In a parallel network , we need something that is func
t ional ly equivalent to arbit rary pointers in  order to implement symbol 
processing. This is exactly what is  provided by subpatterns that stand 
for identity/ role combinations. They allow the ful l  identi ty of the part 
to be accessed from a representation of the whole and a representation 
of the role that the system wishes to focus on , and they also al low 
expl icit representations of an identity and a role to be combined into a 
less cumbersome representat ion , so that several identi ty/ role combina
tions can be represented simultaneously in order to form the represen
tat ion of a larger structure. 

SUMMARY 

Given a paral lel network, i tems can be represented by act ivity in a 
single ,  local unit or by a pattern of act ivity in a large set of units with 
each unit encoding a microfeature of the item. Distributed representa
tions are efficient whenever there are underlying regularities which can 
be captured by interactions among microfeatures. By encoding each 
piece of knowledge as a large set of interactions, it is possible to 
achieve useful properties l i ke content-addressable memory and 
automatic general izat ion ,  and new i tems can be created wi thout having 
to create new connections at the hardware level . In the domain of con
t inuously varyi ng spatial features i t  i s  relati vely easy to provide a 
mathematical analysis of the advantages and drawbacks of using distri
buted representions.  

Distributed representat ions seem to be unsui table for implementing 
purely arbi trary mappings because there is no underlying structure and 
so general ization only causes unwanted i nterference. However, even 
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for this task , distributed representati ons  can be made fai rl y  efficient and 
they exhibi t  some psychological ly interesting effects when damaged. 

There are several difficult problems that must be solved before 
distributed representat ions can be used effect ively .  One is to decide on 
the pattern of activity that is to be used for representing an i tem. The 
similarit i es between the chosen pattern and other existing patterns wi l l  
determine the kinds of general izat ion and i nterference that occur.  The 
search for good patterns to use is equivalent to the search for the 
underly ing regularites of the domain .  This learning problem is 
addressed i n  the chapters of Part II .  

Another hard problem is to clarify the relationship between distrib
uted representations and techniques used in  art ificial i ntel l igence l i ke 
schemas , or h ierarchical structural descriptions.  Existing artificial intel 
l igence programs have great difficulty i n  rapidly fi nding the schema that 
best fi ts the current s i tuation . Paral lel networks offer the potential of 
rapidly applying a lot of knowledge to this best-fit search, but this 
potential wi l l  only be real ized when there is a good way of implement
ing schemas in  paral le l  networks . A discussion of how this might be 
done can be found in Chapter 14. 
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CHAPTER 4 

PDP Models and 
General Issues in Cognitive Science 

D. E. RUMELHART and 1. L. MCCLELLAND 

We are natural ly  optimistic about paral lel distributed processing as a 
valuable framework for creating cogn i tive models .  This  does not mean , 
however, that there are no tough problems to be solved . Indeed , we 
have spent much of our effort convincing ourselves that PDP models 
could form a reasonable basis for modeling cognit ive processes in  gen
eral . In this chapter we shal l  address some of the objections that we 
and others have raised to the work and sketch our answers to these 
objections.  However,  we should l ike to say at the outset that we do not 
bel ieve that any such general considerations as those discussed here 
will ,  in the end, bear much weight. The real proof is in the pudding. 
If PDP models are a valuable way to proceed, their usefulness wi l l  be 
proved in the added insights they bring to the particular substant ive 
areas i n  which they are appl i ed .  The models we describe in  later 
chapters are largely intended to constitute the beginnings of such a 
proof. 

Many of the questions and i ssues raised below are addressed by 
material described in detai l in other chapters in the book. For this rea
son , much of our present discussion is in the form of pointers to the 
relevant discussions .  In this sense , this chapter serves not only as a 
discussion of our approach but as an overview of the issues and topics 
that are addressed in the chapters that fol low. 
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SOME OBJECTIONS TO THE PDP APPROACH 

PDP Models Are Too Weak 

The one-layer perceptron. The most commonly heard objection to 
PDP models is a variant of the claim that PDP models cannot perform 
any in terest ing computations .  One variant goes l ike this: "These PDP 
models sound a lot l i ke perceptrons to me. Didn't Minsky and Papert 
show that perceptron-Iike models couldn 't do anything i nteresting?" 
Thi s  comment represents a misunderstanding of what Minsky and 
Papert (1969) have actual ly shown. A brief sketch of the context in 
which Minsky and Papert wrote will help clar ify the situation .  (See 
Chapter 5 for a somewhat ful ler account of this history . )  

In the late 1 950s and early 1960s there was a great deal of  effort in 
the development of self-organ iz ing networks and si milar PDP-like com
putational devices. The best known of these was the perceptron 
developed by Frank Rosenblatt (see, for example, Rosenblat t ,  1 962) . 
Rosenblatt was very enthusiastic about the perceptron and hopeful  that 
i t  could serve as the basis both of art ificial in tell igence and the model 
ing of the brain. Minsky and Papert , who favored a serial symbol pro
cessing approach to art ificial i ntel l igence, undertook a very careful 
mathematical analysis of the perceptron in  their 1969 book entitled, 
s imply , Perceptrons. 

The perceptron Minsky and Papert analyzed most closely i s  i l lustrated 
in Figure 1. Such machines consist of what is  generally  called a retina, 
an array of binary inputs sometimes taken to be arranged in a two
dimensional spatial layout; a set of predicates, a set of binary threshold 
units with fi xed connections to a subset of units in  the retina such that 
each predicate computes some local function over the subset of uni ts to 
which it is connected; and one or more decision uni ts, with modifiable 
connections to the predicates . This machine has only one layer of 
modifiable connections; for this reason we will cal l  it a one-layer percep
tron. 

Minsky and Papert set out to show which functions can and cannot 
be computed by this  class of machines . They demonstrated , in  particu
lar, that such perceptrons are unable to calculate such mathematical 
functions as parity  (whether an odd or even number of poi nts are on in  
the  retina) or the  topological funct ion of  connectedness (whether all 
points that are on are connected to al l other poin ts that are on e i ther 
directly or via other points that are also on) without making use of 
absurdly large numbers of predicates. The analysis i s  extremely elegant 
and demonstrates the importance of a mathematical approach to analyz
ing computational systercJ:bpyrighted Material 
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FIGURE I. The one-layer perceptron analyzed by Minsky and Papert. (From Perceprrons 
by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by 
MIT Press. Reprinted by permission.) 

Minsky and Papert's analysis of the li mitations of the one-layer per
ceptron, coupled with some of the early successes of the symbolic pro
cessing approach in art ificial intel l igence, was enough to suggest to a 
large number of workers in the field that there was no future in 
perceptron-l ike computational devices for art ificial intell igence and cog
ni t ive psychology. The problem is that although Minsky and Papert 
were perfectly correct in their analysis, the results apply only to these 
simple one-layer percept rons and not to the larger class of perceptron
like models .  In part icular (as Minsky and Papert actually conceded) , i t  
can be shown that a multi layered percept ron system, including several 
layers of predicates between the retina and the decision stage, can com
pute funct ions such as parity, using reasonable numbers of units each 
computing a very local predicate.  (See Chapters 5 and 8 for examples 
of mult i layer networks that compute pari ty) . S imi larly, i t  is not diffi
cult to develop networks capable of solving the connectedness or 
inside/outside problem. Hinton and Sejnowski have analyzed a version 
of such a network (see Chapter 7) . 

Essential ly, then , although Minsky and Papert were exactly correct in 
thei r analysis of the one-layer perceptron, the theorems don't apply to 
systems which are even a l i ttle more complex .  In particular ,  i t  doesn't 
apply to multilayer systems nor to systems that al low feedback loops . 

Minsky and Papert argued that there would not be much value to  
mult i layer perceptrons . Fi rst, they argued that these systems are suffi
ciently unrestricted as to be vacuous. They pointed out, for example, 
that a uni versal computer could be bui l t  out of l inear threshold units .  
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Therefore, restrict ing consideration of machines made out of linear 
threshold units is no restriction at all on what can be computed .  

We don ' t ,  of  course , believe that the  class of  models sketched in 
Chapter 2 is a smal l or restrict ive class. (Nor, for that matter, are the 
languages of symbol processing systems especial ly restrict ive .>  The real 
issue, we bel ieve, is that different algori thms are appropriate to dif
ferent archi tectural designs . We are investigating an arch i tecture in 
which cooperative computation and paral lel ism is natural. Serial sym
bolic systems such as those favored by Minsky and Papert have a 
natural domain of algor i thms that di ffers from those in  PDP models .  
Not everythi ng can be done i n  O:1e step without feedback or  layering 
(both of which suggest a k ind of "serial i ty"). We have been led to con
sider models that have both of these features . The real point is that we 
seek algori thms that are as parallel as possible. We bel ieve that such 
algorithms are going to be closer in  form to the algorithms which could 
be employed by the hardware of the brai n and that the kind of paralle l 
ism we employ al lows the exploitation of mult iple informat ion sources 
and cooperati ve computat ion in a natural way . 

A further argument advanced by Minsky and Papert agai nst 
perceptron-l i ke models with hidden uni ts i s  that there was no indication 
how such mult i layer networks were to be trained. One of the appeal ing 
features of the one-layer perceptron is the existence of a powerful 
learning procedure , the perceptron convergence procedure of Rosen
blatt .  In Minsky and Papert's day, there was no such powerful learning 
procedure for the more complex mul t i layer systems. This is no longer 
true. Chapters 5, 6, 7, and 8 all provide schemes for learning in sys
tems with hidden units .  Indeed, Chapter 8 provides a di rect generaliza
t ion of the perceptron learn ing procedure which can be appl ied to arbi
trary networks with mult iple layers and feedback among layers . This 
procedure can , in princip le ,  learn arbitrary functions i ncluding, of 
course, pari ty and connectedness . 

The problem of stimulus equivalence. A second problem with early 
PDP models- and one that is  not necessari ly completely overcome by 
multi layer systems-is the problem of invariance or stimulus equivalence. 
An A is an A is an A, no matter where on the ret ina it appears or how 
large it is or how it is oriented; and people can , in  general, recognize 
patterns rather wel l  despite various transformations. It has always 
seemed elegant and natural to imagine that an A, no matter where it is 
presented, is normalized and then processed for recogni t ion usi ng 
stored knowledge of the appearance of the letter (Marr, 1 98 2; Neisser, 
1967). 

In  conventional computer programs this seems to be a rather 
straightforward matter r�yWgntn�MJt9hIDal izat ion of the input ,  and, 
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second,  analysis of the normalized i nput. But in early PDP models i t  
was never clear just how normal izat ion could be made to work. Indeed, 
one of the main cri t icisms of perceptrons-one that is often leveled at 
more recent PDP models, too-is that they appear to provide no 
mechanism of attention, no way of focusing the machine on the 
analysis of a part of a larger whole and then swi tching to another part or 
back to the consideration of the whole. 

While it is certainly true that certa in PDP models lack explicit atten
t ional mechanisms, i t  i s  far from true that PDP mechanisms are in 
principle i ncapable of exhibit ing attentional phenomena. Likewise, 
whi le  i t  is true that certain  PDP models do not come to grips with the 
stimulus equi valence problem, i t  far from true that they are incapable 
of doing this in principle .  To prove these points, we will describe a 
method for solving the st imulus equivalence problem that was 
described by Hinton ( I98 1 b) .  The idea is sketched in Figure 2 .  Essen
tial ly, i t  invol ves two sets of feature detectors. One (at the bottom of 
the figure) consists of retinocentric feature detectors and the other 
(above the ret inocentric units) consists of canonical feature detectors .  
Higher order units that recognize canonical patterns ( in  th i s  example, 
letters) sit above the canonical feature detectors and can have mutually 
excitatory connect ions to these feature detectors , just as in  the interac
t ive act ivation model of word recognit ion. What Hinton described was 
a method for mapping retinocentric feature patterns into canonical pat
terns. In general , for patterns in three-space , there are si x degrees of 
freedom, but for present purposes we wi l l  consider only figures that are 
rotated around a fixed point in the plane . Here normal ization simply 
amounts to a one-dimensional rotat ional transformation .  

A fixed mapping from retinocentric units to canonical units would 
involve connecting each retinocentric feature detector to the 
corresponding canonical feature detector. Thus, to correct for a 90° 
clockwise rotation in the plane , we would want each retinal unit  to pro
ject to the canonical unit corresponding to i t  at an offset of 90° . 

How to implement variable mappings? Hinton proposed the use of a 
set of mapping units which act to switch on what amount to dynamically 
programmable connections from the ret inocentric units to the canonical 
units. In the figure , three different mapping units are shown on the 
right: one that produces no rotation at al l ,  one that produces a 90° 
clockwise rotation, and one that produces a 90° counterclockwise rota
tion. When one of these mapping units is active, it provides one of two 
inputs to a subset of the programmable connections. Thus , when the 
90° clockwise mapping unit is active, i t  provides one of two inputs to 
the connection from each ret inocentric unit to the central unit that 
corresponds to it under the 90° clockwise rotat ion. These connections 
are mul t ipl icative - they pass the product of thei r two inputs on to the 
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FIGURE 2. Hinton's (I981b) scheme for mapping patterns in one coordinate system 
into patterns in another coordinate system. At the top are two letter-detector units, with 
mutual excitatory connections to the six canonical feature un i ts (the position and orienta
tion of the l i ne segment each of these detectors represents is ind icated by the line seg
ment in the "body" of each unit). At the bottom are six retinocentric feature units, and al 
the right are units corresponding to each of th ree different mappings from retinocentric 
to canonical featu res. (The arrows on the units indicate which direction in the retinocen
tric frame corresponds to upright in the canonical frame , and the arrow o utside the unit 

indicates the nature of the transformat ion imposed on the retinocentric pattern). Each 

canonical unit receives three pairs of inputs, w ith each pair arriving at a multiplicative 

connection . These inputs are illustrated for one canonical unit only. 

recetvmg un i t .  In this case , if a part icular ret i nocentric feat ure is on 
and the 90° c lockwise mapping unit is on, then the canonical feature 
corresponding to the acti ve retinal feature will rece i ve an excitatory 
i nput .  If just one of the two inputs to the connection is  on , no activa
tion wi l l  flow to the central uni t. In this way, when a mapping unit i s 
act ive ,  it effect ive ly programs the multipl icati ve connect ions needed to 
i mplement the corresponding mappi ng by act ivat ing one of the two 
i n puts to each of the programmable con nect i ons. 

Using this mechanism, i t  is possible to map from retinal to central 
coordinates if the mapping is known in  advance. Object recognit ion can 
now proceed as fol l ows : A mapping is  chosen (perhaps on the basis of 
processing the preceding st imulus> , and this is  used to map a reti nal  
input onto the canonCCopyMl)iUbd _tetia�ystem involving variable 
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translational mappings, in  addi tion to the rotational mappi ngs shown 
here, it would be possible to focus the attention of the system succes
s ively on each of several d ifferent pat terns merely by changing the 
mapping.  Thus it would not be difficult to implement a complete sys
tem for sequent ial processing of a series of patterns using Hinton's 
scheme (a number of papers have proposed mechanisms for performing 
a set of operations i n  sequence, including Grossberg, 1 97 8 ,  and 
Rumelhart & Norman, 1 982; the latter paper is discussed i n  Chapter 1 ) .  

S o  far, we have descri bed what amounts t o  a PDP implementation of 
a conventional pat tern recogni tion system. First, map the pattern into 
the canonical frame of reference , then recogn ize it. Such is the pro
cedure advocated, for example , by Neisser (I967)  and Marr (I 982) . 
The demonstrat ion shows that PDP mechanisms are in  fact capable of 
normalization and of focusing attent ion success i vely on one pattern 
after another. 

But the demonstration may also seem to gi ve away too much. For it 
seems to suggest that the PDP network is s imply a method for imple
menting standard sequential algori thms of pattern recognit ion .  We 
seem to be left with the questi on, what has the PDP implementation 
added to our understanding of the problem? 

It turns out that it has added someth ing very important .  It a l lows us 
to begi n to see how we could solve the problem of recognizing an i nput 
pattern even in the case where we do not know in  advance ei ther what 
the pattern is or  which mapping is  correct . In a conventional sequential 
algori thm, we might proceed by serial search , try ing a sequence of map
p ings and looking to see which mapping resulted in the best recognit ion 
performance. With Hinton's mapping units , however,  we can actually 
perform this search in paral lel . To see how this paral lel search would 
work, i t  is first necessary to see how another set of mult i plicati ve con
necti ons can be used to choose the correct mapping for a pattern gi ven 
both the retinal input and the correct central pattern of act i vation . 

In this situation , this simul taneous activation of a central feature and 
a reti nal feature consti tutes evidence that the mapping that connects 
them is the correct mapping. We can use this fact to choose the map

ping by al lowing central and ret inal units that correspond under a par
t icular mapping to project to a common mult iplicat i ve connection on 
the appropriate mapping uni t .  Spurious conjunctions will of course 
occur, but the correct mapping units wil l general ly receive more con
junctions of canonical and ret i nal features than any other (unless there 
is an ambiguity due to a symmetry in the figure) . If the mapping units 
compete so that the one receiving the most excitation is al lowed to win , 
the network can settle on the correct mapping. 

We are now ready to see how it  may be possible to simul taneously 
settle on a mapping and a central representat ion using both sets of 
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mul t ipl icat i ve connect ions. We s imply need to arrange things so that 
when the retinal i nput is shown, each possible mapping we wish to con
sider is partially act ive .  Each ret inal feature then provides partial 
activation of the canonical feature corresponding to i t  under each of the 
mappings. The correct mapping al lows the correct canonical pattern to 
be partial ly activated, a lbeit partial ly  obscured by noise generated by the 
other partially activated mappings. Interact ive activation between this 
central pattern and higher level detectors for the pattern then reinforces 
the elements of the pattern relat ive to the noise. This  process by i tself 
can be sufficient for correct recogni tion .  Further clean up of the central 
pattern can be achieved, though , by al lowing the pattern emerging on 
the central uni ts to work together wi th the input pattern to support the 
correct mapping over the other part ial ly  acti ve mappings via the mult i
pl icative connect ions onto the mapping units .  This then results in 
further suppression of the noise. As this process cont inues , it eventu
ally locks in  the correct in terpretat ion of the pattern , the correct canoni 
cal feature representat ion , and the correct mappi ng, all from the ret inal 
input alone. Prior act i vation of the correct mapping facil itates the pro
cess of sett l ing i n ,  as do prior cues to the identi ty of the figure (see 
Rock, 1973, and Palmer, 1980, for evidence that these cl ues do facil i 
tate performance) , but are not , in general , essential unless the input  is 
in fact ambiguous without them. 

Hinton's mapping scheme al lows us to make two poi nts. Fi rst, that 
parallel dist ri buted processing is in fact compat ible with normal i zation 
and focusing of altention; and second, that a PDP implementation of a 
normalization mechanism can actual ly produce a computational advan
tage by al lowing what would otherwise be a painful , slow, serial search 
to be carried out in a s i ngle settling of a paral lel network. In general , 
Hinton's mapping system illustrates that PDP mechan isms are not res
tricted to fixed computat ions but are qu i te clearly capable of modula
t ion and control by signals arising from other parts of an integrated pro
cessing system; and that they can , when necessary, be used to imple
ment a serial process, in  which each of several patterns is considered, 
one at a time. 

The introduct ion of mul t i plicat ive or cont ingent connections (Feld
man & Bal lard, 1 982) is a way of great ly increasing the power of PDP 
networks of fi xed numbers of un its (Marr, 1982; Poggio & Torre, 1 978; 
see Chapter 10). I t  means, essential ly, that each unit can perform com
putations as complex as those that could be performed by an ent i re 
one-layer perceptron , including both the predicates and the decis ion 
uni t .  However, it must also be noted that multiplicative connect ions are 
not strictly necessary to perform the requi red conjunctive computational 
operations. Nonl inear, quasi-multiplicative interact ions can be imple
mented in a variety ofC�Py�fghJlJdt�tttrJ1t case , whole un i ts could 
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be dedicated to each multipl icative operation (as in the predicate layer 
of the percept ron) . 1 

While Hinton's mapping mechanism indicates how attent ion might 
be implemented in PDP systems and imports some of the power of 
parallel distributed processing i nto the problem of simultaneously solv
ing the mapping problem and the recognit ion problem, it does leave 
something to be desi red. This  is the fact that it allows only a single 
input pattern to be processed at one t ime since each pattern must be 
mapped separately onto the canonical feature units. Serial attent ion i s  
sometimes required, but when we must resort to  i t ,  we  lose the possi 
b i l i ty of exploit ing simultaneous, mutual constraints among several pat
terns. What has been processed before can st i l l  influence processing, 
but the ensemble of to-be-processed patterns cannot exert s imultane
ous, mutual i nfluence on each other. 

There is no doubt that sequential ity i s  forced upon us in some 
tasks-precisely those tasks i n  which the thought processes are 
extended over several seconds or minutes in time-and in such cases 
PDP mechanisms should be taken to provide potential accounts of the 
internal structure of a iJrocess evolving in t ime during the temporally 
extended structure of the thought process (see Chapter 14). But, in  
keeping with our general goals ,  we have sought to discover ways to 
maximally exploit simultaneous mutual constraints-that is ,  to 
maximize parallel ism. 

One mechanism which appears to make some progress in  this di rec
t ion is the connection i nformation distribut ion mechanism described in  
Chapter 16. That mechanism uses mult ipl icative connections like those 
used in Hinton's model to send connection i nformation out from a cen
tral knowledge store so that i t  can be used in  local processing networks, 
each allocated to the contents of a different display location .  The 
mechanism permits mult iple copies of the same knowledge to be used 
at the same time,  thereby effectively al lowing tokens or local copies of 
patterns to be constructed from centrally stored knowledge of types in a 
parallel distributed processing system. These tokens then can interact 
with each other, al lowing several patterns, all processed using the same 
centrally stored information, to exert s imultaneous , mutual constraints 
on each other. Since these ideas, and their relat ion to attention ,  are 
discussed at length in Chapter 16, we wi l l  not elaborate on them further 
here. 

I The linear threshold unit provides a quasi-multiplicative combination rule, and 
Sejnowski (1981) has described in detail how close approximation of the quantitative 
properties of mUltiplication of signals can be achieved by units with properties very much 
like those observed in real neurons. 
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Recursion. There are many other specific points that have been 
raised with respect to exis t ing PDP models. Perhaps the most common 
one has to do with recursion . The ability to perform recurs ive funct ion 
calls i s  a major featu re of certain computati onal frameworks , such as 
augmented trans i t ion network (ATN) parsers (Woods , 1973; Woods & 
Kaplan, 1971), and i s  a property of such frameworks that gives them 
the capability of process ing  recursively defined struct ures such as sen
tences , in  which embedd i ng may produce dependencies between ele
ments of a surface string that are indefinitely far removed from each 
other (Chomsky , 1957). It has often been suggested that PDP 
mechanisms lack the capaci ty to perform recurs i ve computat ions and so 
are s imply incapable of provid ing mechanisms for processing sentences 
and other recursi vely defined st ructures. 

As before, these suggestions are si mply wrong. As we have al ready 
seen, one can make an arbitrary computational machine out of linear 
threshold units ,  including, for example, a machine that can carry out all 
the operati ons necessary for implement ing a Turing machine; the one 
l imitat ion i s  that real b iological systems cannot be Turing machines 
because they have fin i te hardware. In Chapter 14, however, we point 
out that with external memory aids (such as paper and pencil and a 
notational system) such l imitations can be overcome as well. 

We have not dwel t on PDP implementations of Turing machines and 
recursive processing engines because we do nut agree wi th those who 
would argue that such capabi l i t ies are of the essence uf human compu
tation. As anyone who has ever attempted to process sentences l ike 
"The man the boy the gir l  hit  kissed moved" can attest ,  our abi l i ty to 
process even moderate degrees of center-embedded structure is  grossly 
impaired relative to that of an ATN parser. And yet , the human abili ty 
to use semanti c  and pragmatic contextual information to faci l i tate 
comprehension far exceeds that of any existing sentence processing 
machine we know of. 

What is needed, then,  is not a mechanism for flawless and effortless 
processing of center-embedded constructions. Compilers of computer 
languages generally provide such fac i l i ties, and they are powerful tools, 
but they have not demonstrated themselves sufficient for processing 
natural language. What is needed i nstead is a parser bui l t  from the 
kind of mechanism which faci l i tates the simultaneous consideration of 
large numbers of mutual and interdependent constraints. The challenge 
is to show how those processes that others have chosen to expla in i n  
terms o f  recurs i ve mechanisms can be better explained by the k inds of 
processes natural for PDP networks . 

This challenge is one that has not yet been fully met. However, 
some in i t ial steps toward a PDP model of language processing are 
described i n  Chapter �pyriJfh�d ��Hr)ia/whose i mplementation is 
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described in  that chapter il lustrates how a variety of different con
straints may be combined by PDP models  to aid in the assignment of 
underlying roles to the consti tuents of sentences. The chapter also pro
vides a discussion of three different ways in which the model could be 
extended to process embedded clauses in a way that i s  roughly con
sistent with human capabilities and limitati ons in this regard. 

We do not claim to have solved these problems . Our existing models 
have limitations and much remains to be done . Our explorations have 
just begun. The question is not, is the job done - no computational 
framework can claim much on this score. The question instead i s ,  can 
more progress be made through further exploration of the PDP per
spective on the microstructure of cognition? The discovery of mul
tilayer learning rules, the use of multipl icative connections to imple
ment transformations of input patterns ,  the distribution of connection 
information, and the host of other developments described throughout 
this book, indicate to us that the answer to the question is "yes .h 

PDP Models Are Not Cognitive 

We have observed that the cooperative character of paral lel 
distributed processing often allows us to account for behavior which has 
previously been attributed to the application of specific rules of 
grammar or rules of thought. This has sometimes led us to argue that 
lawful behavior is not necessarily rule-driven behavior.  Here ,  we must 
distinguish between rules and regularities. The bouncing ball and the 
orbiting planet exhibit regularities in their  behavior, but neither is 
applying rules. We have demonstrated the power of this approach in 
our earl ier work on word perception (McClel land & Rumelhart ,  1981; 
Rumelhart & McClelland , 1982) and on the learn ing of English mor
phology (Chapter 18). In these cases we have been able to show how 
the apparent application of rules could readily emerge from interactions 
among simple processing units rather than from application of any 
higher level rules. 

Some have viewed our argument against explicit rules as an argu
ment against the cognitive approach to psychology. We do not agree. 
We believe that we are studying the mechanisms of cognition. The 
application of a rule (e .g . , the fi ring of a production) i s  neither more 
nor less cognitive than the activation of our units .  The real character 
of cognitive science is the attempt to explain mental phenomena 
through an understanding of the mechanisms which underl i e  those 
phenomena. 
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A related claim that some people have made is that our models 
appear to share much in common with behaviorist accounts of 
behavior.  While they do involve simple mechani sms of learning, there 
is a crucial difference between our models and the radical behaviorism 
of Skinner and his followers . In our models, we are expl icit ly con
cerned with  the problem of internal representat ion and mental process
ing, whereas the radical behaviorist explicit ly denies the scient ific util ity 
and even the validity of the consideration of these constructs . The 
training of hidden units is , as is argued in Chapters 5 to 8, the con
struction of internal representations . The models described throughout 
the book all concern internal mechanisms for act ivating and acquiring 
the abi l i ty to activate appropriate i nternal representations. In this 
sense, our models must be seen as completely anti thetical to the radical 
behaviorist program and strongly committed to the study of representa
tion and process . 

PDP Models Are the Wrong Level of Analysis 

It is sometimes said that although PDP models are perfectly correct ,  
they are at the wrong level of analysis and therefore not relevant to 
psychological data .  2 For example, Broadbent (1985) has argued that 
psychological evidence is  i rrelevant to our argument about distributed 
memory because the distribution assumption is only meaningful at what 
Marr (I982) has cal led the implementational (physiological) level and 
that the proper psychological l evel of description is  the computational 

level . 
The issues of levels of analysis and of theorizing is difficult and 

requires a good deal of careful  thought .  It is , we bel ieve, largely an 
issue of scientific judgement as to what features of a lower level of 
analysis are relevant to a higher one. We are quite sure that it i s  not a 
matter for prescri pt ion. We begin our response to this objection with a 

review of Marr's analysis and his  three levels of description . We then 
suggest that i ndeed our models are stated at the same level (in Marr's 
sense) as most t radi t ional models from cognit ive science . We then 
describe other senses of levels ,  i ncluding one in which higher level 
accounts can be said to be convenient approximations to lower level 
accounts . Thi s  sense comes closest to capturing our view of the 

2 The following discussion is based on a paper (Rumelhart & McClelland, 1985) written 
in response to a critique by Donald Broadbent (1985) on our work on distributed 

memory (cf. Chapter 17 and McClelland & Rumelhart, 1985). 
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relation between our PDP models and other t radit ional information 
processi ng models. 

Marr's Notion of Levels 

David Marr (1982) has provided an influential analysis of the issue 
of levels in  cognitive science. Although we are not sure that we agree 
enti rely with Marr's analysis,  it is thoughtful and can serve as a starting 
point .  Whereas Broadbent acknowledges only two levels of theory, the 
computational and the implementational, Marr actual ly  proposes three, 
the computational, the algorithmic, and the implementational levels. 
Table 1 gives a description of Marr's three levels. We believe that PDP 
models are generally  stated at the algorithmic level and are primarily 
ai med at specifying the representation of information and the processes 
or procedures involved in cognit ion .  Furthermore , we agree wi th 
Marr's assertions that "each of these levels of descri ption will have their 
place" and that they are "logical ly and causal ly  related." Thus, no par
ticular level of descri ption is independent of the others. There is an 
impl icit computational theory in PDP models  as wel l as an appeal to 
certain implementational (physiological ) considerations. We believe 
this to be appropriate. It is  clear that different algori thms are more 
naturally  implemented on different types of hardware and, therefore, 
informat ion about the implementation can inform our hypotheses at the 
algorithmic level .  

TABLE 1 

THE THREE LEVELS AT WHICH ANY MACHINE CARRYING OUT 

INFORMA TION PROCESSING TASKS MUST DE UNDERSTOOD 

Computational Theory 

What is the goal of the 
computation, why is it 
appropriate, and what is 
the logic of the strategy 
by which it can be carried 
out? 

Representation and 
Algorithm 

How can this computa
tional theory be imple
mented? In particular, 
what is the representation 
for the input and output, 
and what is the algorithm 
for the transformation? 

Hardware 
Implementation 

How can the representa
tion and algorithm be 
realized physically? 

Note. From Vision by D. Marr, 1982, San Francisco: W. H. Freeman. Copyright 1982 
by W. H. Freeman. Reprinted by permission. 
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Computational models, according to Marr, are focused on a formal 
analysis of the problem the system is solving- not the methods by 
which it is  solved. Thus, in l inguistics, Marr suggests that Chomsky's 
(1965) view of a competence model for syntax maps most closely  onto a 
compulationa/level theory, whereas a psycholinguistic theory is more of 
a performance theory concerned with how grammatical structure might 
actually be computed. Such a theory is concerned with the algori thmic 
level of description . It is the algori thmic level at which we are con
cerned with such issues as efficiency, degradation of performance under 
noise or other adverse conditions, whether a particular problem is easy 
or difficult, which problems are solved quickly and which take a long 
time to solve, how information i s  represented, etc .  These are all ques
t ions to which psychologi cal inquiry is di rected and to which psychologi 
cal data is relevant. Indeed ,  it would appear that this  is the level to 
which psychological data speaks most strongly. At the computational 
level, i t  does not matter whether the theory is  stated as a program for a 
Turing machine,  as a set of axioms, or as a set of rewrite rules. It does 
not matter how long the computation takes or how performance of the 
computation is affected by " performance" factors such as memory load, 
problem complexity ,  etc. It doesn' t  matter how the information is  
represented, as long as the representation i s  rich enough, in  princi ple, 
to support computat ion of the requi red function. The question is s im
ply what junction is being computed, not how is it being computed. 

Marr recommends that a good strategy i n  the development of theory 
is to begin wi th a careful analysis of the goal of a particular computation 
and a formal analysis of the problem that the system is trying to solve . 
He believes that this top-down approach wi l l  suggest plausible algo
rithms more effectively than a more bottom-up approach . Thus , the 
computational level is given some priori ty. However, Marr certainly 
does not propose that a theory at the computational level of descript ion 
is an adequate psychological theory, 

As psychologists , we are committed to an elucidation of the algo
rithmic level. We have no quarrel with Marr's top-down approach as a 
strategy leading to the discovery of cognitive algorithms, though we 
have proceeded in a different way. We emphasize the view that the 
various levels of description are interrelated. Clearly,  the algorithms 
must, at least roughly, compute the function specified at the computa
tional level . Equal ly clearly,  the algori thms must be computable in 
amounts of time commensurate with human performance, using the 
kind and amount of hardware that humans may reasonably be assumed 
to possess . For example, any algorithm that would requi re more 
specific events to be stored separately than there are synapses in  the 
brain should be given a l ower plausi bility rating than those that requi re 
much less storage. Similarly" in the time Qomain ,  those algori thms that 
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would requi re more than one serial step every mi l l i second or so would 
seem poor candidates for implementation in  the bra in  (Feldman & 
Bal lard , 1 982) . 

In short , the claim that our models address a fundamentally different 
level of description than other psychological models  is based on a 
fai lure to acknowledge the pri mary level of descri ption to which much 
psychological theoriz ing is  di rected. At this  level , our models should 
be considered as competitors of other models as a means of explaining 
psychological data. 

Other notions of levels. Yet we do bel ieve that in  some sense PDP 
models are at a different level than other cogni t ive models such as pro
totype theories or schema theory. The reason i s  that there is more 
between the computational and the implementational levels than is  
dreamt of, even in  Marr's scheme. Many of our col leagues have chal
lenged our approach with a rather d ifferent conception of levels bor
rowed from the notion of levels of programming languages. It  might 
be argued that a model such as , say , schema theory or the ACT* model 
of John R. Anderson (983) is  a statement in a "h igher level" l anguage 
analogous, let us say, to the Pascal or LISP programming languages and 
that our distributed model is a statement in a "lower level" theory that 
is ,  let us say , analogous to the assembly code into which h igher level 
programs can be compiled. Both Pascal and assembler, of course , are 
considerably above the hardware level , though the latter may in some 
sense be closer to the hardware and more machine dependent than the 
former. 

From this point of view one might ask why we are mucking around 
trying to specify our algorithms at the level of assembly code when we 
could state them more succinctly in a high-level language. We bel ieve 
that most people who raise the levels issue wi th regard to our models 
have a relationshi p something l i ke this in  mind. People who adopt this 
notion have no objection to our models. They only believe that 
psychological models are more simply and easi ly  stated in  an equivalent 
higher level language-so why bother? 

We believe that the programming language analogy is very mislead
ing, unless it is analyzed more careful ly .  The relationship between a 
Pascal program and i ts assembly code counterpart is very special indeed. 
It is necessary for the Pascal and assembly language to map exactly onto 
one another only when the program was written in Pascal and the 
assembly code was compiled from the Pascal version . Had the original 
. . programming" taken place in  assembler, there i s  no guarantee that 
such a relationship would exist . Indeed , Pascal code wi l l ,  in  general, 
compile into only a smal l fraction of the possible assembly code pro
grams that could be wri tten . Since there is every reason to suppose 
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that most of the programming that might be tak ing place in the brain is 
taking place at a "lower level" rather than a "higher level ," i t  seems 
unlikely that some particular h igher level description wi l l  be ident ical to 
some particular lower level description .  We may be able to capture the 
actual code approximately in a higher level language -and it may often 
be useful  to do so- but this does- not mean that the h igher level 
language is an adequate characterizat ion .  

There i s  s t i l l  another notion of levels which i l lustrates our view. 
This i s  the notion of levels impl icit in  the dist inction between 
Newtonian mechanics on the one hand and quantum theory on the 
other. 3 It might be argued that convent ional symbol processing models 
are macroscopic accounts, analogous to Newtonian mechanics, whereas 
our models offer more microscopic accounts, analogous to quantum 
theory . Note, that over much of their range , these two theories make 
precisely the same predictions about behavior of objects in the world. 
Moreover, the Newtonian theory is often much simpler to compute 
with since it involves discussions of entire objects and ignores much of 
the i r  i nternal structure. However, i n  some situations Newtonian theory 
breaks down. In these situat ions we must rely on the microstructural 
account of quantum theory . Through a thorough understanding of the 
relat ionshi p between the Newtonian mechanics and quantum theory we 
can understand that the macroscopic level of description may be only an 
approximation to the more microscopic  theory . Moreover, in physics , 

we understand just when the macrotheory wil l  fai l and the microtheory 
must be invoked. We understand the macrotheory as a useful forma l 
tool by virtue of its relat i onshi p  to the microtheory . I n  th is  sense the 
objects of the macrotheory can be viewed as emerging from interact ions 
of the particles described at the microlevel . 

The basic perspecti ve of this book is that many of the constructs of 
macrolevel descriptions such as schemata, prototypes, rules, produc

tions, etc. can be viewed as emerging out of i nteractions of the 
microstructure of distributed models .  These points are most expl icitly 
considered in Chapters 6 ,  1 4 , 1 7 , and 1 8. We view macrotheories as 
approx imations to the underlying microstructure which the distri buted 
model presented in our paper attempts to capture. As approximations 
they are often useful , but in some situations i t  wi l l  turn out that an 
examination of the microstructure may bring much deeper insight . 
Note for example, that i n  a convent ional model of language acquis i t ion , 
one has to make very delicate decisions about the exact circumstances 
under which a new rule will be added to the rule system. In our PDP 
models no such decision need be made. Since the analog to a rule is 

3 This analogy was suggested to us by Paul Smolensky. 
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not necessari ly discrete but simply something that may emerge from 
interact ions among an ensemble of processing uni ts ,  there is no prob
lem with having the functional equivalent of a " partial " rule. The same 
observation appl ies to schemata (Chapter 14) , prototypes and logogens 
(Chapter 18) , and other cognit ive constructs too numerous to mention.  
Thus, although we imagine that rule-based models of language 
acquis i t ion -the logogen model , schema theory , prototype theory, and 
other macrolevel theories- may al l be more or less valid approximate 
macrostructural descriptions, we bel ieve that the actual algori thms 
involved cannot be represented precisely in any of those macrotheories . 

It may also be , however, that some phenomena are too complex to 
be easily represented as PDP models.  If these phenomena took place at 
a t ime frame over which a macrostructural model was an adequate 
approximation , there is no reason that the macrostructural model ought 
not be appl ied . Thus, we bel ieve that the concepts of symbols and 
symbol processing can be very useful .  Such models may someti mes 
offer the s implest accounts. It is , however, important to keep i n  mind 
that these models are approximations and should not be pushed too far. 
We suspect that when they are , some account simi lar to our PDP 
account wil l  again be requi red. Indeed, a large part of our own motiva
t ion for exploring the PDP approach came from the fai lure of schema 
theory to provide an adequate account of knowledge application even to 
the task of understanding very simple stories. 

Lest i t  may seem that we have given too much away, however,  it 
should be noted that as we develop clearer understandings of the 
microlevel models ,  we may wish to formulate rather different 
macrolevel models . As pointed out in Chapter 3, PDP mechanisms 
provide a powerfu l  alternative set of macrolevel primit ives. 4 

Imagine a computational system that has as a primit ive, " Relax into a 

state that represents an optimal global interpretation of the current 
input ." This would be, of course , an extremely powerful place to begin 
building up a theory of higher level computations. Related primit ives 
would be such things as " Retrieve the representation in memory best 
matching the current input, blending into i t  plausible reconstructions of 
detai ls missing from the original memory trace," and " Construct a 
dynamic configuration of knowledge structures that captures the present 
situation, with variables instantiated properly." These sorts of primi
tives would be unthinkable in most conventional approaches to higher 
level cognit ion ,  but they are the kinds of emergent properties that PDP 
mechanisms give us, and it seems very l ikely that the avai labi l i ty of 

4 We thank Walter Sch neider for st ressing i n  h is com ments on an earl ier d raft of t h is 
chapter the i m portance of the d i fferences between the computat ional  primi t ives offered 
by PDP and those offered by other formal isms for model ing  cogn i t i ve processes. 
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such primit ives wi l l  change the shape of higher level theory 
considerably.  

PDP mechanisms may also place some constraints on what we might 
real ist ically ask for in  the way of computat ional primit i ves because of 
the costs of implementing certain kinds of computations in paral lel 
hardware in  a single relaxation search . The paral lel matching of vari 
ablized product ions is one case i n  point .  Theories such as ACT* (J. R. 
Anderson , 1 983) assume that this can be done wi thout worrying about 
the implementation and, therefore , provide no principled accounts of 
the kinds of crosstalk exhib i ted in human behavior when processing 
multiple patterns s imultaneously . However ,  i t  appears to be a quite 
general property of PDP mechanisms that they wi l l  exhibit  crosstal k 
when processing mult ip le patterns in  parallel (Hinton & Lang, 1 985 ;  
Mozer,  1 984; see Chapters 1 2  and 1 6) . 

High-level languages often preserve some of the character of the 
lower level mechanisms that implement them, and the resource and 
time requi rements of algori thms drastically depends on the nature of 
the underlying hardware . Higher level languages that preserve the 
character of PDP mechanisms and exploit the algori thms that are effec
t ive descriptions of paral lel  networks are not here yet ,  but we expect 
such things to be coming along in the future. This wi l l  be a welcome 
development ,  in our view, since certain aspects of cogni t ive theory 
have been too strongly influenced by the d iscrete, sequential algori thms 
available for expression in most current high-level languages . 

As we look closely ,  both at the hardware in which cognit ive algo
rithms are i mplemented and at the fine structure of the behavior that 
these algori thms are designed to capture, we begin to see why i t  may be 
appropriate to formulate models which come closer to describing the 
microstructure of cogni t ion. The fact that our microstructural models 
can account for many of the facts about the representat ion of general 
and specific information, for example,  as discussed in Chapter 1 8 ,  
makes u s  ask why we should view constructs l ike logogens, prototypes , 
and schemata as anything other than convenient approxi mate descri p
tions of the underlying structure of memory and thought . 

Reductionism and Emergent Properties 

A sl ightly different,  though related, argument is that the PDP enter
prise i s  an exercise in reductionism - an exercise in  which all  of 
psychology is reduced to neurophysiology and ult imately to physics .  It 
i s  argued that coherent phenomena which emerge at any l evel (psychol 
ogy or physics or sociolW'Jyh���� �9gri
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and explanation and that we are denying the essence of what is cogn i 
t ive by  reducing i t  to units and connections rather than adopting a more 
psychological ly relevant language in our explanations. 

We do not classify our enterprise as reductionist,  but rather as 
interact ional . We understand that new and useful  concepts emerge at 
different levels of organization . We are simply trying to understand the 
essence of cognit ion as a property emerging from the interactions of 
connected units in networks . 

We certainly bel ieve in emergent phenomena in  the sense of 
phenomena which could never be understood or predicted by a study of 
the lower level elements in isolation . These phenomena are functions 
of the part icular kinds of groupings of the elementary units .  In genera l ,  
a new vocabulary is useful to talk about aggregate phenomena rather 
than the characteristics of isolated elements. This is the case in many 
fields. For example,  we could not know about diamonds through the 
study of isolated atoms; we can ' t  understand the nature of social sys
tems through the study of isolated i ndividuals; and we can 't understand 
the behavior of networks of neurons from the study of isolated neu
rons. Features such as the hardness of the diamond is  understandable 
through the interaction of the carbon atoms and the way they l ine up.  
The whole is different than the sum of the parts . There are nonl inear 
interactions among the parts . This does not , however, suggest that the 
nature of the lower level elements is i rrelevant to the higher level of 
organization - on the contrary , the higher level is, we bel ieve, to be 
understood primari ly through the study of the interactions among lower 
level units .  The ways in which units interact is not predictable from the 
lower level elements as isolated ent i t ies .  It  i s ,  however, predictable if 
part of our study involves the interactions among these lower level 
units .  We can understand why diamonds are hard,  not as an i solated 
fact , but because we understand how the atoms of carbon can l ine up to 
form a perfect lattice. This  is  a feature of the aggregate, not of the 
i ndividual atom , but the features of the atom are necessary for under
standing the aggregate behavior. Unti l  we understand that, we are left 
with the unsati sfactory statement that diamonds are hard,  period. A 
useful fact, but not an explanation. Simi lar ly,  at the social leve l ,  social 
organizations cannot be understood without understanding the 
individuals which make up the organization.  Knowing about the 
individuals tel ls us l i tt le about the structure of the organizat ion, but we 
can't understand the structure of the higher level organizations without 
knowing a good deal about individuals and how they function. This is 
the sense of emergence we are comfortable with. We bel ieve that i t  is 
entirely consistent with the PDP view of cogni t ion . 

There is a second, more practical reason for rejecting radical reduc
tionism as a research strategy .  This has nothing to do with emergence; 
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i t  has to do with the fact that we can ' t  know everyth ing and find out 
everything at once. The approach we have been argui ng for suggests 
that to understand something thoroughly at some level requi res 
knowledge at that level , plus knowledge of the lower levels .  Obviously , 
this is i mpract ical . In practice, even though there might be effects of 
lower levels on higher levels, one cannot always know them. Thus,  
attempting to formulate a description at this higher level as a fi rst order 
of approximation is an important research strategy. We are forced into 
it if  we are to learn anything at a l l . I t  is  poss ible to learn a good deal 
about psychology without any reference whatsoever to any lower levels. 
This practical strategy is  not, however, an excuse for ignoring what is 

known about the lower levels in the formulation of our higher level 
theories . Thus, the economist is wrong to ignore what we might know 
about i ndividuals when formulating his theories. The chemist would be 
wrong to ignore what is known about the structure of the carbon atom 
in explaining the hardness of diamonds. We argued above that the 
view that the computational level is  correct derives from experience 
wi th a very special kind of device in which the h igher level was designed 

to gi ve the right answers-exactly .  In describ ing natural intel l igence 
that can' t ,  we suspect , be righ t-exactly .  It can be a fi rst order of 
approximation .  As we learn more about a topic and as we look at i t  in 
more and more detai l we are going to be forced to consider more and 
more how i t  might emerge ( in  the above sense) from the interactions 

among its const i tuents. Interaction is the key word here . Emergent 
properties occur whenever we have non l i near i nteractions.  In these 
cases the princi ples of interaction themselves must be formulated and 
the real theory at the higher level is, l i ke chemistry, a theory of in terac
t ions of elements from a theory one level lower .  

Not Enough Is Known From Neuroscience t o  Seriously 
Constrain Cognitive Theories 

Many cognit ive scientists bel ieve that there wil l  eventually be an 
understanding of the relationships between cognit ive phenomena and 
brain function ing. Many of these same people feel ,  however,  that the 
brain is such an exceptionally powerful computat ional device that i t  is 
capable of performing just about any computation . They suppose that 
facts now known from neuroscience place l i t t le or no restriction on 
what theories are possible at a cogni t ive leve l . In the meant ime, they 
suppose, a top-down analysis of possible mechanisms of cognit ion can 
lead to an understanding of cognit ion that wil l  stand independently of 
whatever might be discqsf)pyJ-;�m# �;fHnct ioning. Moreover, they 
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bel ieve that neuroscientists can be guided in their bottom-up search for 
an understanding of how the brain functions. 

We agree wi th many of these senti ments. We bel ieve that an under
standing of the relationships between cogni ti ve phenomena and brain 
functions wil l  slowly evolve. We also bel ieve that cognit ive theories can 
provide a useful source of information for the neuroscientist .  We do 
not, however, believe that current knowledge from neuroscience pro
vides no guidance to those interested in the functioning of the mind. 
We have not , by and large , focused on the kinds of constraints which 
arise from detailed analysis of particular ci rcuitry and organs of the 
brain .  Rather we have found that information concerni ng brain-style 
processing has i tself been very provocati ve in  our model bui lding 
efforts. Thus, we have, by and large, not focused on neural modeling 
( i .e . , the modeling of neurons) , but rather we have focused on neurally 
inspired modeling of cognit ive processes . Our models have not 
depended strongly on the details of brain structure or on issues that are 
very controversial in neuroscience . Rather, we have discovered that if  
we take some of the most obvious characteristics of brain-style process
ing seriously we are led to postulate models which differ in  a number of 
important ways from those postulated wi thout regard for the hardware 
on which these algori thms are to be implemented. We have found that 
top-down considerations revolving about a need to postulate parallel , 
cooperative computational models (cf. Rumelhart , 1977) have meshed 
nicely with a number of more bottom-up considerations of brain style 
processing. 

There are many brain characteristics which ought to be attended to in 
the formulation of our models (see Chapters 20 and 2 1 ) .  There are a 
few which we have taken most seriously and which have most affected 
our thinking. We discuss these briefly below. 

Neurons are slow. One of the most important characteristics of 
brain -style processing stems from the speed of its components. Neu
rons are much slower than convent ional computational components. 
Whereas basic operations in our modern serial computers are measured 
in the nanoseconds, neurons operate at ti mes measured in the 
mi l l i seconds - perhaps l Os of mi l l iseconds. Thus, the basic hardware of 
the brain is  some 1 ()6 t imes slower than that of serial computers. Ima
gine slowing down our conventional AI programs by a factor of 1()6 .  
More remarkable is the fact that we  are able to do  very sophist icated 
processing in a few hundred mil l iseconds. Clearly, perceptual process
i ng, most memory retrieval , much of language processing, much intui
t ive reasoning, and many other processes occur in this t ime frame. 
That means that these tasks must be done in no more than 1 00 or so 
serial steps. This is  what Feldman ( 1 985) calls the l OO-step program 
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constraint. Moreover ,  note that individual neurons probably don ' t com
pute very complicated functions. It seems unl ikely that a single neuron 
computes a function much more complex than a single instruction in a 
digi tal computer. Imagine, again ,  wri t ing an interesting program in  
even 1 000 operations of  this l imited complexity of  a serial computer . 
Evidently, the brain succeeds through massive parallelism . Thus, we 
conclude , the mechanisms of mind are most l ikely best understood as 
result ing from the cooperative act i vity of very many relat ively s imple 
processing uni ts operati ng i n  paral lel . 

There is a very large number of neurons. Another self-evident,  but 
important , aspect of brain-style processing is the very large number of 
processing units involved. Conventional estimates hold that there are 
on the order of 1 0 10  to 1 0 1 1  neurons in the brain .  Moreover, each neu
ron is  an active processing unit .  This suggests paral lel ism on a very 
large scale indeed. An understanding of parallel computation involving 
a few hundred reasonably complex processors provides the wrong 
model . It may well  be that it is the massive scale of the parallel ism of 
the brain that gives it its amazing power.  

Although the human brain is  large , the number of neurons i s  not 
unl imited. It happens that our models sometimes push the l imits of 
plausibi l i ty because of the large number of uni ts they require. This is a 
real constraint , one that we and others have begun to take into account 
in  evaluating our models (see Chapter 12 for a discussion of this i ssue) .  

Neurons receive inputs from a large number of other neurons. 
Another important feature of brain processing is the large fan- in and 
fan-out to and from each unit .  Estimates vary , but single cortical neu
rons can have from 1 ,000 to 1 00,000 synapses on their dendrites and , 
l i kewise , can make from 1 ,000 to 1 00,000 synapses on the dendri tes of 
other neurons .  Generally ,  one or a small number of act ion potentials 
received are not enough to generate an act ion potential (see, for exam
ple , Chapter 20) . This suggests that human computation does not 
involve the kind of logic ci rcuits out of which we make our digital com
puters, but that it involves a kind of stati st ical process in  which the sin 
gle units do not  make decisions, but  in  which dec is ions are the  product 
of the cooperative action of many somewhat independent processing 
units .  Rel iabil i ty  derives from the stabi l i ty of the statistical behavior of 
large numbers of units . Again ,  this degree of connectivity should be 
contrasted with the number of i mmediate neighbors of processors i n  
current parallel computers . Usually these numbers are measured in  the 
tens (or less) rather than in  the thousands . Moreover,  this large degree 
of connecti vi ty suggests that no neuron is  very many synapses away 
from any other neuron . df

p for/iar2umenCs sake, we assume that every o yn9 1cetJ Matenal 
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cortical neuron is connected to 1 ,000 other neurons and that the system 
forms a lattice, all of the neurons in the brain would be wi th in ,  at most , 
four synapses from one another . Thus,  large fan- in and fan-out leads 
to shal low networks . It should finally be noted that even though the 
fan- in  and fan-out is large , it is not unl imited . As described in Chapter 
1 2 ,  the l imi tations can cause problems for extending some simple ideas 
of memory storage and retrieval . 

Learning involves modifying connections. Another key feature of 
our models which derives from our understandi ng of learn ing mechan
i sms in the brain is  that the knowledge is in the connections rather than in 
the units themselves . Moreover,  learn ing is generally assumed to 
involve modifying connection strengths. There are real computational 
advantages to such a s imple learni ng procedure. Its s implicity and 
homogeneity allow us to develop powerful  learning procedures which 
work simply and i ncrementally .  (See Chapters 5, 6, 7, 8; Chapters 1 1 ,  
1 7 ,  1 8 , 24,  and 25  consider the impl icat ions of this view.) 

Neurons communicate by sending activation or inhibition through 
connections. Communication among neurons involves s imple excita
tory and inhibitory messages. Only a few bits can be communicated per 
second. Thus, unl ike other paral lel message passing systems such as 
Hewitt's ( 975)  ACTOR system which al lows arbitrary symbol ic mes
sages to be passed among its units ,  we require simple, signed numbers 
of l imited precision . This  means that the currency of our systems i s  
not  symbols,  but excitation and inhi bit ion . To the degree that symbols 
are required, they must emerge from this subsymbolic level of 
processing (Hofstadter , 1 979) . 

Connections in the brain seem to have a clear geometric and 
topological structure. There are a number of facts about the pattern of 
connect ions in the brain which, we bel ieve, are probably important , but 
which have not yet had a large impact on our models. First , most con
nections are rather short . Some are long (these tend to be exci tatory) , 
but not most.  There are rather strong geometric and topological con
straints. There is  a rough mapping in that input parameters (such as 
spatial location in vision or frequency in audition) are mapped onto spa
tial extent in the brain .  In general it seems that nearby regions in one 
part of the brain map onto nearby regions in another part of the brain .  
Moreover ,  there is a general symmetry of  connections. If there are 
connections from one region of the brain to another, there are usual ly 
connect ions in the reverse di rect ion. Some of these features have been 
implemented in our models,  though , interestingly ,  most often for com
putational reasons rather than for biological veris imi l itude. For 
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example, rough symmetry was a feature of our earl ier work on word 
perception (cf. McClel land & Rumelhart , 1 98 1 ) , and i t  is a feat ure of 
the work described i n  Chapters 6, 7 ,  1 4 ,  1 5 , and 1 6 . The error propaga
tion learn ing rule of Chapter 8 requ i res a back path for an error si gnal 
to be propagated back through. In general ,  rec iprocal ly in teract ing sys
tems are very important for the k ind of processing we see as charac
terist i c  of PDP models.  This  is  the defining featu re of interactive activa
tion models.  We have also employed the view that connecti ons 
between systems are exci tatory and those with in a region are i nh ib i tory. 

This is employed to advantage in  Chapters 5 and 1 5 . 
The geometric structure of connections in  the brain have not had 

much impact on our work .  We general ly have not concerned ourselves 
wi th where the un i ts might physical ly be with respect to one another.  
However, i f  we imagine that there is a constraint  toward the conse rva
tion of connect i on length (which there must be) , i t  i s  easy to see that 
those units which in teract most should be the closest together.  If you 
add to this the view that the very high-dimensional space determined 
by the number of i nterconnections must be embedded in to the two- or 
three-di mensional space (perhaps two and a half dimensions) of the 
cortex ,  we can see the i m portance of mappi ng the major di mensions 
physical ly  in  the geometry of the brai n (see Bal lard ,  in press , for a dis
cussion of embedd i ng h i gh-di mensional  spaces i nto two di mensions) . 

Information is continuously available. Another important feature of 

neural informat ion processing is that the neurons seem to provide con
tinuously a vailable output (Norman & Bobrow, 1 975) . That is ,  there 
does not seem to be an appreciable decision phase during which a unit 
provides no output.  Rather i t  seems that the state of a unit reflects i ts 
current input . To the degree that a unit  represents a hypothesis and i ts  
activation level (instantaneous fir ing rate or probabi l i ty  of fi ring) 
represents the degree to which evidence favors that hypothes is ,  the 
activation level of the uni t  provides cont inuous information about the 
current evaluation of that hypothesis .  This hypothesis was incorporated 
into the precursors of our own work on paral lel  distri buted processing,  
especial ly the cascade model (McClel land, 1 979) and the i nteract ive 
model of reading (Rumelhart , 1 977) , and i t  i s a feature of v irtually al l 
of the PDP models in  this book.  5 Interestingly , this contrasts starkly 
with what used to be the standard approach, namely, stage models of 
information processing (Sternberg, 1 969) , and thereby offers a very 

5 Though some PDP models use discrete binary units (e.g., Hinton ,  198 1 a;  Hopfield, 

1 982) , they generally use large n umbers of Ihese 10 represent any object , so that when a 
few of the u n i ts that form part of a pattern are on, the pattern can be said to be part ial l y  
active. Copyrighted Material 
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different perspect ive on decision-making processes and the basic notion 
of stages . 

Graceful degradation with damage and information overload. 
From the study of brain lesions and other forms of brai n damage, it 
seems fai rly clear there is  not some single neuron whose funct ion ing is 
essential for the operation of any particular cogni t ive process. While 
reasonably circumscribed regions of the brain may play fai rly specific 
roles, particularly at lower levels of processing, i t  seems fai rly  clear that 
wi thin regions, performance is characterized by a kind of graceful degra
dation i n  which the system's performance gradually deteriorates as more 
and more neural units are destroyed, but there is  no s ingle crit ical point 
where performance breaks down. This kind of graceful degradation is 
characteristic of such global degenerative syndromes as Alzheimer's 
disease (cf. Schwartz, Marin ,  & Saffran, 1979) . Again ,  this is quite dif
ferent from many serial symbol processing models i n  which the disrup
t ion of a single step in a huge program can catastrophically impact the 
overal l performance of the system. Imagine the operation of a com
puter in which a particular i nstruction did not work . So long as that 
instruction was not used, there would be no effect on the system. 
However, when that instruction was employed in some process , that 
process simply would not work. In the brain it seems that the system is 
highly redundant and capable of operating with a loss in performance 
roughly si milar in magnitude to the magnitude of the damage (see 
Chapter 1 2  for details) . This is a natural performance characteristic of 
PDP models. 

Distributed, not central, control. There is one final aspect of our 
models which is  vaguely derived from our understanding of brain func
tioning. This is  the notion that there is no central executive overseeing 
the general flow of processing. In conventional programming frame
works it is easy to imagine an executive system which cal ls  subroutines 
to carry out its necessary tasks . In some information processing models 
this notion of an executive has been carried over .  In these models, all 
processing is  essential ly top-down or executive-driven; if  there is no 
executive, then no processing takes place at all . 

Neuropsychological investigat ion of patients wi th brain damage indi 
cates that there is no part of the cortex on whose operation al l  other 
parts depend. Rather it seems that all parts work together, influencing 
one another, and each region contributes to the overall performance of 
the task and to the integration into i t  of certain kinds of constraints or 
sources of informat ion . To be sure, brainstem mechanisms control 
vital bodily functions and the overall state of the system, and certain 
parts of the cortex are cri t ical for receiving information in particular 
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modali t ies. But higher level functions seem very much t o  be character
ized by distributed, rather than central control . 

This  point has been made most clearly by the Russian neuropsychol
ogist Luria ( I  966; 1 973) . Luria's investigations show that for every 
integrated behavioral function (e .g . ,  visual perception , language 
comprehension or production , problem solving, reading) , many dif
ferent parts of the cortex play a role so that damage to any part influ
ences performance but is not  absolutely crucial to i t .  Even the frontal 
lobes , most frequently associated wi th execut ive functions , are not 
absolutely necessary in Luria's view, in that some residual function is 
generally observed even after mass ive frontal damage (and mild frontal 
damage may result i n  no detectable symptomatology at al l ) . The fron
tal lobes have a characteristic role to play, fac i l i tating strategy shifts and 
inhibit ing impulsive responding, but the overal l  control of processing 
can be as severely impaired by damage to parietal lobe structures that 
appear to be responsible for maintaining organized representations that 
support coordinated and goal-di rected acti vity .  

Our view of the overall organization of process ing is s imi lar to 
Luria 's .  We have come to believe that the notion of subroutines with 
one system " cal l ing"  another is probably not a good way to view the 
operation of the brain .  Rather, we bel ieve that subsystems may modu
late the behavior of other subsystems, that they may provide constraints 
to be factored i nto the relaxat ion computat ion . An elaborat ion of some 
aspects of these ideas may be found in Chapter 1 4 .  

Relaxation is the dominant mode oj computation. Although there 
is no specific piece of neuroscience which compels the view that brain
style computat ion involves relaxat ion ,  all of the features we have just 
discussed have led us to bel ieve that the pri mary mode of computation 
in  the brain is best understood as a kind of relaxation system (cf. 
Chapters 6, 7, 1 4, 1 5 ,  and 2 1 )  in which the computat ion proceeds by 
i terati vely  seeking to satisfy a large number of weak constraints .  Thus, 
rather than playing the role of wires in  an electric ci rcui t ,  we see the 
connections as representing constraints on the co-occurrence of pai rs of 
units . The system should be thought of more as settling into a solution 
than calculating a solution. Again ,  this is an important perspective 
change which comes out of an interaction of our understanding of how 
the brain must work and what kinds of processes seem to be required 
to account for desired behavior. 

As can be seen, this l ist does not depend on specific discoveries from 
neuroscience. Rather ,  i t  depends on rather global considerations. 
Al though none of these general properties of the brain tell us i n  any 
detai l how the brain functions to support cognit ive phenomena, 
together they lead to aoo��fIAA9�Rhl how the brain works that 
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serves as a set of constraints on the development of models of cogni
t ive processes. We find that these assumptions, together with those 
that derive from the constraints imposed by the tasks we are trying to 
account for ,  strongly influence the form of our models of cognit ive 
processes. 

PDP Models Lack Neural Real ism 

On the one hand, i t  is sometimes said-as indicated in the previous 
section -that there is l i tt le or no constraint to be gained through look
ing at the brain .  On the other hand, i t is often said that we don 't  look 
closely enough . There are many facts of neuroscience that are not fac
tored di rectly into our models. Sometimes we have fai led to capture 
the fine structure of neural processing in our models. Other times we 
have assumed mechanisms that are not known to exist in brains (see 
Chapter 20) . One prominent example is the near-ubiquitous assump
tion that units can have both exci tatory and inhibitory connections 
when i t  seems reasonably clear that most cortical units are ei ther excita
tory or inhibi tory . If, as we argued above, i t  is important to understand 
the microstructure of cogni t ion , why do we ignore such detailed charac
teristics of the actual physical processes underlying that microstructure? 

To be sure,  to the extent that our models are di rectly relevant to 
brains, they are at best coarse approximations of the detai ls of neuro
physiological processing. Indeed , many of our models are clearly 
intended to fall  at a level between the macrostructure of cognit ion and 
the detai ls of neurophysiology. Now, we do understand that some of 
our approximations may have ramifications for the cognit ive 
phenomena which form our major area of interest; by missing certain 
detai ls of neurophysiology , we may be missing out on certain aspects of 
brain function that would make the difference between an accurate 
account of cognit i ve-level phenomena and a poor approximation. Our 
defense is simply that we see the process of model building as one of 
success ive approximations. We try to be responsive to information from 
both the behavioral and the neural sciences. We also bel ieve that the 
key to scientific progress is making the right approximations and the 
right s impl ifications . In this way the structure can be seen most clearly. 
This  poi nt is con�idered further in Chapter 21 . 

We have been pleased with the structure apparent through the set of 
approximations and simpl ificat ions we have chosen to make . There 
are ,  however, a number of other facts from neuroscience that we have 
not included in  most of our models, but that we imagine wi l l  be impor
tant when we learn how to incl ude them. The most obvious of these is 
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the fact that we normally assume that uni ts communicate via numbers. 
These are sometimes associated with mean fi ring  rates. In fact ,  of 
course, neurons produce spi kes and this spik ing i tself may have some 
computational s ignificance (see Chapters 7 and 2 1  for discussions of the 
possible computational s ignificance of neural spik ing) . Another exam
ple of possi bly i mportant facts of neuroscience which have not played a 
role i n  our models is the d iffuse pattern of communicat ion which 
occurs by means of the dispersal of chemicals i nto various regions of 
the brai n th rough the blood stream or otherwise . We general ly assume 
that communication i s  point-to-poi nt from one unit to another. How
ever. we understand that diffuse communication can occur through 
chemical means and such communicat ion may play an important role i n 
sett ing  parameters and modulati ng the networks so that they can per
form rather di fferent tasks in d ifferent situations. We have employed 
the idea of diffuse distr ibut ion of chemicals in our account of amnesia 
(Chapter 25 ) , but,  i n  general , we have not otherwise i ntegrated such 
assumptions i n to our models .  Roughly, we imagine that we are study
ing networks in which there i s  a fixed sett ing  of such parameters, but 
the situation may wel l  be much more complex than that . (See Chapter 
24 for some discussion of the role of norepinephrine and other neuro
modulators . ) 

Most of our models are homogeneous wi th  respect to the funct ioning 
of our units .  Some of them may be designated as inh ibitory and others 
as exci tatory , but beyond that , they are rarely different iated. We 
understand that there are perhaps hundreds of kinds of neurons (see 
Chapter 20) . No doubt each of these k inds play a s l ightly d ifferent role 
in the information processing system.  Our assumptions in this regard 
are obviously only approx i mate. S imi larly, we understand that there 
are many different kinds of neurotransmitters and that there are d if
ferent systems i n  which d ifferent  of these neurotransmitters are dom
i nant.  Agai n ,  we have i gnored th is  d ifference (except for exci tatory 
and i nhi bitory connections) and presume that as more i s  understood 
about the i nformat ion process ing i mpl ications of such facts we wi l l  be 
able to determine how they fit i n to our class of models.  

It is also true that we have assumed a number of mechan isms that 
are not known to exist i n  the brain (see Chapter 20) . In general , we 
have postulated mechanisms which seemed to be requi red to achieve 
certain important functional goals ,  such as, for example, the develop
ment of i nternal representat ions in mult i layer networks (see Chapter 
8) . I t i s  poss ible that these hypothesized mechanisms do exist i n  the 
brain but have not yet been recognized .  In that sense our work could 
be considered as a source of hypotheses for neuroscience . It  is  also 
possible that we are correct about the computations that are performed , 
but that they are perfo�&JKf6MfM1 k ind of neural mechan ism 
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than our formulations seem at first glance to suggest . If this is the 
case , it merely suggests that the most obvious mapping of our models 
onto neural structures is incorrect . 

A neuroscientist might be concerned about the ambiguity inherent in  
the fact that many of the mechanisms we have postulated could be 
implemented in different ways. From our point of view, though, this is 
not a serious problem. We think  it useful to be clear about how our 
mechanisms might be implemented in the brain ,  and we would certainly 
be worried if  we proposed a process that could not be implemented in 
the brain .  But since our primary concern is  with the computations 
themselves , rather than the detailed neural implementation of these 
computati ons, we are wi l l ing to be instructed by neuroscienti sts on 
which of the possible implementations are actually employed . This 
posi t ion does have its dangers. We have already argued in this chapter 
that the mechanism whereby a function is  computed often has strong 
implications about exactly what function is being computed . Neverthe
less, we have chosen a level of approx imation which seems to us the 
most fruitfu l ,  given our goal of understanding the human information 
processi ng system. 

We close this section by noting two different ways in  which PDP 
models can be related to actual neurophysiological processes, apart from 
the possibi l i ty that they might actually be i ntended to model what is 
known about the behavior of real neural c i rcuitry (see Chapters 23  and 
24 for examples of models of this class) . Fi rst , they might be intended 
as ideal izations. In this approach, the emergent properties of systems 
of real neurons are studied by idealiz ing the properties of the indi vidual 
neurons, in much the same way that the emergent properties of real 
gasses can be studied by idealiz ing the properties of the individual gas 
molecules. This approach is described at the end of Chapter 2 1 .  An 
alternat ive is that they might be intended to provide a higher level of 
descri ption , but one that could be mapped on to a real neurophysiologi 
cal implementation . Our interactive act ivation model of word recogni 
tion has some of th i s  flavor, as do  most of the  models described in  
Chapters 1 4  through ! 9. Specifically wi th regard to  the word recogni 
t ion model,  we do not  claim that there are individual neurons that 
stand for visual feature, letter, and word units, or that they are con
nected together just as we proposed in  that model . Rather, we really 
suppose that the physiological substrate provides a mechanism whereby 
various abstract informati onal states - such as, for example, the state in 
which the perceptual system is entertain ing the hypothesis that the 
second letter in a word is  either an H or an A -can give rise to other 
informati onal states that are contingent upon them.  
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Nativism vs . Empiricism 

Historically ,  perceptron- I ike models have been associated wi th the 
idea of " random self-organizing"  networks , the learn ing of arbitrary 
associations, very general , very simple learning rules, and simi lar ideas 
which show the emergence of structure from the tabula rasa. We often 
find, especia l ly in discussion with colleagues from l inguistics surround
i ng issues of language aquisition (see Chapters 1 8  and 1 9) ,  that PDP 
models are judged to involve learning processes that are too general 
and, all in al l ,  give too l i t t le  weight to innate characteristics of language 
or other information processing structures . This  feel ing is brought out 
even more by demonstrat ions that some PDP learn ing mechanisms are 
capable of learning to respond to symmetry and of learn ing how to deal 
with such basic perceptual problems as perceptual constancy under 
translation and rotat ion (see Chapter 8) . In fact , however, PDP models 
are , in  and of themselves, qui te agnostic about issues of nati vism 
versus empiric ism. Indeed, they seem to us to offer a very useful per
spective on the issue of innate versus acquired knowledge . 

For the purposes of discussion let us consider an organism that con
sists of a very large set of very simple but highly interconnected pro
cessing units .  The uni ts are assumed to be homogeneous in the ir  
properties except that some are special ized to serve as " input " units 
because they recei ve inputs from the environment and some are spe
cial ized to serve as " output " uni ts because they drive the effectors of 
the system . The behavior of such a system is thus ent irely determined 
by the pattern of inputs , the pattern of interconnections among the 
units, and the nature of and connections to the effectors . Note, that 
i nterconnections can have various strengths - posi t ive, negat ive ,  and 
zero. If the strength of connection is pos i t ive ,  then acti vity in one unit 
tends to increase the activity of the second unit .  If the strength of con
nection is negative, then the acti vity i n  the first unit  tends to decrease 
the activity of the second uni t .  If the strength is zero, then activi ty of 
the first unit  has no effect on the activity of the second. 

In such a system the radical nativism hypothesis would consist of the 
view that al l of the interconnections are genetical ly determined at birth 
and develop only through a biological ly dri ven process of maturat ion .  
I f  such were the case , the system could have any particular behavior 
entirely wired in. The system could be designed in  such a way as to 
respond differential ly to human speech from other acoustic st imul i ,  to 
perform any sort of computation that had proven evolut ionari ly adap
tive, to mimic any behavior it  might observe , to have certa in stimulus 
di mensions to which i t  was pretuned to respond, etc .  In short , i f  al l  of 
the connections were genetical l y  I>r.edetermined , the system could 

Copyrighted Material 



1 40 THE PDP PERSPECTIVE 

perform any behavior that such a system of units, interconnections, and 
effectors might ever be capable of. The question of what behaviors it 
actually did carry out would presumably be determined by evolutionary 
processes . In this sense , this s imple PDP model is  clearly consistent 
wi th a rabidly nat ivist world view. 

The radical empiricist hypothesis ,  on the other hand , suggests that 
there are no a priori l imits on how the network of interconnections 
could be constituted . Any pattern of interconnections is possible .  
What determines the actual set of connections i s  the pattern of experi 
ences the system gets . In this sense there is no prior l imit  on the 
nature of language; any language that could be processed by such a net
work could be learned by such an organ ism. The only l imi tations 
would be very general ones due to the nature of the learni ng rule in the 
system. Wi th a sufficiently powerfu l  learning rule, the organism could 
organize i tself into whatever state proved maximally  adapti ve. Thus, 
there would be no l imitation on the degree to which the behavior of the 
system could adapt to i ts environment . It cou ld learn completely arb i 
trary associations. In short , if all connect ions in the system were 
modifiable by experience, the system could learn to perform any 
behavior at all that such a system of units, i nterconnections, and effec
tors might ever be capable of. The question of what behaviors it actu
al ly  did carry out would presumably be determined by the learning pro
cess and the patterns of inputs the system actually experienced.  In this 
sense, the simple PDP model is  clearly consistent with a rabidly empiri
cist world view. 

Obviously, i t  would be a straightforward matter to find a middle 
ground between the radical nativist view and the radical empiricist view 
as we have laid them out . Suppose, for sake of argument ,  that we have 
an organ ism whose in i t ial state is  wholly  determined genetical ly .  Sup
pose further that al l  of the connections were modifiable so that what 
ever the start state, any pattern of interconnections could emerge 
through interaction of the organism with i ts environment . 6 In such a 
system as this we have ,  it seems to us,  the benefits of both nativism 
and empiricism. Like good nat ivists ,  we have given the organism a 
starting point that has been selected by i ts evol utionary history . We 
have not , however, strapped the organ ism with the rigid predetermin
ism that tradi t ional ly goes along wi th the nat ivist v iew.  If there are 

6 Obviously both of these views are o verstatemen ts . Clearly the genes do not deter
mine every connect ion at b i r th .  Probably some sort of random processes are also 
i n volved . Equal ly clearly , not  every pattern of interconnect ivity is  possi ble si nce the spa
t ia l  layout of the neurons in the cortex , for example, surely l imit the connect iv i ty .  St i l l ,  
there is probably a good deal  of genetic specification of neu ral connect ion,  and there is  a 

good deal of plastici ty  i n  the pat tern of connect ivit ies after b i rth . 
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certain patterns of behavior which ,  in  evolut ionary t ime, have proven 
to be useful (such as sucking, reaching,  or whatever) we can bui ld 
them in ,  but we leave the organism free to modify or completely 
reverse any of these behavioral predisposit ions.7 At the same time, we 
have the best of the empiricist view- namely,  we place no a priori l im
i tations on how the organism may adapt to its environment .  We do, 
however,  throw out the weakest aspect of the empiricist dogma 
namely,  the idea of the tabula rasa (or total ly  random net) as a start ing 
point .  The organism could start at whatever in i t ial state i ts evolut ionary 
h istory prepared it for. 

Perhaps, at this stage , al l  of this seems painful ly obvious. It seems 
obvious to us too, and nevertheless, it gives us a new perspecti ve on 
the nat ivism /empiricism issue. The i ssue is not what is the set of 
predetermined modules as some would suggest (cf. Fodor, 1 983) . On 
this view it seems quite reasonable ,  we submit ,  that to the degree that 
there are modules, they are co-determined by the start state of the sys
tem (the genetic predispos i t ion) and by the envi ronment . (We take a 
module to be roughly a set of units whi ch are powerfully intercon
nected among themselves and relatively weakly connected to un i ts out
side of the set ; of course , this concept admits al l  gradat ions of modu
lari ty, just as our view of schemata a l lows al l degrees of schematizat ion 
of knowledge . )  There i s ,  on this view, no such th ing as " hardwi ring ." 
Nei ther is there any such thing as " software ." There are only connec
t ions. All  connections are in  some sense hardwired ( in as much as they 
are physical enti t ies) and al l  are software ( in as much as they can be 
changed.)  Thus, i t  may very well be that there is a part of the network 
prewired to deal with this or that processing task .  If that task i s  not 
relevant in  the organism's environment ,  that part of the network can be 
used for something else. If that part of the network is  damaged , 
another part can come to play the role " normal ly"  carried out by the 
damaged port ion . These very propert ies have been noted characteristics 
of the brain si nce Hughl ings-Jackson 's work in  the late 1 9th century 
(e.g. , Jackson,  1 869/ 1 958) ; Jackson pointed them out as difficulties for 
the strict local izationist views then popular among students of the brai n .  
Note too that our  scheme al lows for the organism to be  especial ly sensi
t ive to certain relationsh ips (such as the relationship between nausea 
and eat ing, for which there might be stronger or more d i rect prewired 

7 Here agai n .  our orga n ism overs impl i fies a b i t .  It appears that some parts of the ner

vous system - particular ly  lower level .  reOexive. or regulatory mechanisms -seem to be 
prewired and subject only to  control by trainable modulatory connections to higher level .  

more adapt i ve mechanisms. ra ther than to  be d i rectly modifiable themselves: for d iscus

sion see Te itelbaum ( I 967) and Gal l i stel ( 1 980) . 
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connections) whi le at the same time al lowing quite arbitrary associa
tions to be learned . 

Finally, it should be mentioned that all of the learning schemes that 
have been proposed for networks of the sort we have studied are incre
mental (cf. Chapters 7, 8, 1 1 , 1 8 ,  1 9 , and 25) , and therefore as an 
organism moves from its primarily genetically predetermined start state 
to i ts primarily environmentally determined final state, i t  will pass 
through a sequence of more or less i ntermediate states. There wil l  be a 
kind of trajectory through the space of possible networks. This trajec
tory wil l  constitute the developmental sequence for the organism. To 
the degree that different individuals share the same genetics (start 
state) and to the degree that their environments are similar, they will 
pass through similar trajectories. It should also be said that since, in 
PDP systems, what i s  learned is  a product of both the current state of 
the organism and the current pattern of inputs, the start state will have 
an important effect on what is learned and the shape of the network 
following any given set of experiences . However, the greater the 
amount of experience, the more independent the system should be 
from its start state and the more dependent i t  should be on the struc
ture of its environment. 

Of course, not all connections may be plastic - certainly, many sub
cortical mechanisms are considerably less plastic than cortical ones. 
Also , plasticity may not continue throughout l ife (see Chapter 24) . It 
would, of course, be a simple matter to suppose that certain connec
tions are not modifiable .  This  is an issue about which our framework 
provides no answer. The major point is that there is no inconsistency 
between prewired, innate knowledge, and mutabi l i ty and adaptabil ity. 

We cannot resist making one more point  about the 
nativi sm/empiricism issue. This i s  that our PDP account of innate 
knowledge seems to provide a rather plausible account of how we can 
come to have innate " knowledge ." To the extent that stored knowledge 
is assumed to be in the form of explici t ,  inaccessible rules of the kind 
often postulated by l inguists as the basis for linguistic competence (see 
Chapter 1 8) ,  it is  hard to see how it could " get into the head" of the 
newborn . It seems to us implausible that the newborn possesses ela
borate symbol systems and the systems for interpreting them required 
to put these expl ic i t ,  inaccessi ble rules to use in guiding behavior. On 
our account ,  we do not need to attribute such complex machinery .  If 
the innate knowledge is simply the prewi red connections, it is encoded 
from the start in just the right way to be of use by the processing 
mechanisms. 
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Why Are People Smarter Than Rats?  

Some have argued that since we claim that human cogni t ion can be 
explained i n  terms of PDP networks and that the behavior of lower 
animals such as rats can also be described in terms of such networks we 
have no princi pled way of explain ing why rats are not as smart as peo
ple . Given al l  of the above, the Question does seem a bit puzzl ing. We 
are not claiming, in any way, that people and rats and al l  other organ
isms start out with the same prewired hardware . People have much 
more cortex than rats do or even than other primates do; in  particular 
they have very much more prefrontal and parietal cortex - more bra in 
structure not  dedicated to i nput /output -and presumably ,  this extra 
cortex is strategical ly placed in  the bra in to subserve just those func
tions that differentiate people from rats or even apes . A case in point  
is the part of the brain known as the angular gyrus. This part of the 
brain does not  ex is t  even in  chimpanzees. It s i ts  at  the intersection 
between the language areas of the temporal lobe and the visual areas of 
the parietal lobe,  and damage to th is  area produces serious deficits in  
language and in  the mapping of words onto meanings. While i t  is  pos
sible that structures l i ke the angular gyrus possess some special in ternal 
wiring that makes them fundamental ly different ,  somehow, in the kinds 
of cogni t ive operat ions they perform , their cytoarchi tecture is not 
markedly d ifferent from that of other parts of the brain (see Chapters 
20 and 2 1 ) .  Thus it seems to us quite plausible that some of the differ
ences between rats and people lie in the potent ial i ty for forming con
nections that can subserve the vital functions of l anguage and thought 
that humans exhibit  and other ani mals do not. 

But there must be another aspect to the d ifference between rats and 
people as wel l .  This is  that the human environment i ncludes other 
people and the cul tural devices that they have developed to organ ize 
their thinking processes. Some thoughts on how we i magine these cul
tural devices are exploi ted in  higher forms of i ntell igent behavior are 
presented in Chapter 14 .  

Conscious Knowledge and Ex plici t Reasoning 

There may be cognit ive scientists who accept some or al l of what we 
have said up to this point ,  but st i l l  feel that something is missing, 
namely ,  an account of how we guide behavior using expl icit , conscious 
knowledge, how we reason from what we know to new conclusions 
based on that knowled�'O�9r1gRRW1 'NIBtQR9t a path through a problem 
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space through a series of sequential steps. Can paral lel  distributed pro
cessing have anyth i ng to say about these expl ici t ,  i ntrospecti vely acces
s ible,  temporal ly extended acts of th ink ing? Some have suggested that 
the answer is no- that PDP models may be fi ne as accounts for percep
t ion , motor control , and other low-level phenomena, but that they are 
si mply unable to account for the h igher level mental processing of the 
kind involved in reasoning, problem solving, and other higher level 
aspects of thought .  

We agree that many of the most natural appl icat ions of PDP models 
are in the domains of percept ion and memory (see, for example, 
Chapters 1 5 ,  1 6 , and 1 7 ) .  However, we are convinced that these 
models are equal ly appl icable to higher level cogni t ive processes and 
offer new insights i nto these phenomena as wel I .  We must be clear, 
though , about the fact that we cannot and do not expect PDP models to 
handle complex, extended, sequential  reasoning processes as a single 
set t l ing of a paral Iel network.  We th ink  that PDP models descri be the 
microstructure of the thought process, and the mechanisms whereby 
these processes come , through pract ice, to flow more quickly and run 
together into each other. 

Part ly because of the temporal ly  extended nature of sequential 
thought processes - the fact that they in volve many sett l ings of a net
work i nstead of just one - they are natural ly more d ifficult to deal with , 
and our efforts in  these areas are , as yet , somewhat tentat ive .  
Nevertheless , we have begun to develop models of language processing 
(Chapter 1 9) ,  language acquis i t ion (Chapter 1 8) ,  sequential thought 
processes and consciousness (Chapter 1 4) ,  and problem solving and 
think ing in general (Chapters 6, 8, and 1 4) . We view this work as 
prel iminary, and we fi rmly bel ieve that other frameworks provide addi 
t i onal , important levels of description that can augment our accounts, 
but we are encouraged by the progress we have made in these areas and 
bel ieve that the new perspecti ves that arise from these efforts are suffi 
ciently provocati ve t o  b e  added to the pool o f  possible explanat ions of 
these higher level cogni t ive processes . Obviously,  the extension of our 
explorat ions more deeply into these domains is  h igh on our ongoing 
agenda . We see no princi pled reasons why these explorat ions cannot 
succeed, and every i ndicat ion is  that they will lead us somewhat further 
toward an understanding of the microstructure of cognit ion .  

MANY MODELS OR J UST ON E ?  

Before concl uding this chapter, some comment should b e  made 
about the status of the various models we and other members of the 
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PDP research group offer throughout the book .  As the t i t le of the 
book suggests ,  we understand our work as an exploration. We have 
been i mpressed with the potential of PDP models for changi ng our per
spect i ves on the human information processing system. We have tr ied 
to maintain the ki nds of general princi ples out l i ned i n  this chapter ,  but 
we have fel t  free to vary the detai l s  from appl ication to application . 
Somet imes the variat ions are due to the fact that certai n features of the 
models need to be elaborated to deal with  certain phenomena but can 
be suppressed for other phenomena. Other t imes , we have simply 
made a different choice to explore a d ifferent part of the space of PDP 
models .  We do not see oursel ves capable as yet to produce the super
model which would connect all of our areas of explorat ion together . 
Rather, we feel that the PDP framework which we are developing 
forms a k ind of metatheory from which specific models can be generated 
for speci fi c  applicat ions. The success of the part icular models reflects 
indi rect ly on the metatheory , but we feel that the proper approach is  to 
study detai led models of detai led appl ications whi le  at the same t ime 
keeping one eye on the bigger picture. Thus, we don 't  real ly have a 
single model . Rather,  we have a family of related models .  In the best 
of all worlds each of our speci fic models may turn out to be a rough 
approxi mation to some un ifying, underlying model as special i zed to the 
problem area in quest ion .  More l i kely, however, each represents an 
explorat ion into a more or less uncharted region of the space of PDP 
models .  Each application has lead to useful insights- both into the 
phenomena under study and into the behavior of the specific versions 
of the models used to account for them. 

CONCLUSION 

Some of the i ssues we have considered in  this chapter are quite 
specific to our part icular enterprise, but in the mai n ,  they are more 
general . They concern such questions as the scope of cogn i t ive theory ,  
the  relation between levels,  the  question of  nature vs. nurture, and the 
relevance of neural mechanisms to an analysis of cogn it ion .  

The presen t  chapter has provided an overview of our views on a 
number of these central quest ions. In so doing, i t  has also provided an 
overview of the work that is described i n  the rest of the book,  along 
with some of the reasons for doing i t .  Indeed, in  many ways the rest of 
the book is our response to the i ssues we have touched on here .  The 
chapters in Part I I  seek ways to overcome the computational l imi tat ions 
of earl ier network models,  and the chapters i n  Part III  provide some of 
the formal tools that ar�cPJIf§mRi/these k inds of goals. The 
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chapters in  Part IV address themsel ves to cognit Ive constructs and 
attempt to redefine the cogni t ive structures of earl ier theories in  terms 
of emergent propert ies of PDP networks . The chapters in Part V con
sider the neural mechanisms themselves and thei r relation to the algo
r i thmic level that i s  the focus of most of the work described in Parts II 
and IV.  
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PART II 

BASIC MECHANISMS 

The chapters of Part II represent explorations into specific architec
tures and learning mechanisms for PDP models. These explorations 
proceed through mathematical analysis coupled with results from simu
lations. The major theme which runs through all of these explorations 
is a focus on the learning problem. How can PDP networks evolve to 
perform the kinds of tasks we require of them? Since one of the pri
mary features of PDP models in general is their ability to self-modify, 
these studies form an important base for the application of these 
models to specific psychological and biological phenomena. 

In Chapter 5, Rumelhart and Zipser begin with a summary of the 
history of early work on learning in parallel distributed processing sys
tems. They then study an unsupervised learning procedure called com
petitive learning. This is a procedure whereby feature detectors capable 
of discriminating among the members of a set of stimulus input pat
terns evolve without a specific teacher guiding the learning. The basic 
idea is to let pool s of potential feature detector units compete among 
themselves to respond to each stimulus pattern. The winner within 
each pool-the one whose connections make it respond most strongly 
to the pattern-then adjusts its connections slightly toward the pattern 
that it won. Several earlier in vest igators have considered variants of 
the competitive learning idea (e.g., Grossberg, 1976; von der Malsberg, 
1973). Rumelhart and Zipser show that when a competitive network is 
trained through repeated presentations of members of a set of patterns, 
each un it in a pool CO�}P;d"RPic?�at���P patterns with a particular 
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attribute or property are presented. If there are two units in a pool, 
each comes to respond to opposite values of a binary feature which is 
useful in describing the stimulus set. If there are three units in the 
pool, each unit comes to respond to a value of a trinary feature, etc. It 
is shown through simulations and mathematical analysis that the com
petitive learning system can serve as a basis for the development of 
useful pattern descriptions. 

Chapters 6 and 7 describe Smolensky's harmony theory and Hinton 
and Sejnowski's Boltzmann machine, respectively. These approaches 
were developed at the same time, and they have much in common. 
Both harmony theory and Boltzmann machines employ binary units 
whose values are determined probabilistically according to the 
Boltzmann equation. Each employs simulated annealing in which the 
temperature of the Boltzmann equation is moved slowly to zero as the 
system relaxes into its solution state where it finally freezes. Both sys
tems apply mathematical formulations borrowed from physics to their 
systems to describe and analyze their behavior. 

In spite of these similarities, the two systems were developed from 
very different perspectives. The similarities arose largely because both 
systems tapped mathematical physics as a tool for formalizing their 
ideas. Smolensky's harmony theory grew from an attempt to formalize 
the notion of schema and the ideas of schema theory. Hinton and 
Sejnowski's Boltzmann machine is based on the idea that stochastic 
units can be used as a mechanism of search-for finding globally good 
states of networks through simulated annealing. It combines insights 
on simulated annealing from Kirkpatrick, Gelatt, and Vecchi (1983) 
with the proof by Hopfield (982) that there is a global energy function 
that can be locally minimized through a process of asynchronously 
updating individual units. 

Chapter 6 provides a mathematical development of harmony theory 
and shows how a symbolic level of description can be seen as emerging 
from interactions among the individual processing units in harmony 
theory. It shows how harmony theory can be applied to a variety of 
phenomena, including intuitive problem solving and aspects of percep
tion. It also provides a useful description of the mathematical relation
ships among harmony theory, Boltzmann machines, and the related 
mechanisms studied by S. Geman and D. Geman (1984). 

Chapter 7 focuses on the issue of learning in Boltzmann machines. 
One of the most important contributions of the work on Boltzmann 
machines is the development of the two phase (wake/sleep) learning 
procedure. Hinton and Sejnowski show that if a Boltzmann machine 
runs under the influence of environmental inputs for a while and then 
runs "freely" -without inputs from the environment-there is a very 
simple learning rule which will allow the Boltzmann machine to pick up 
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environmental regularities and develop its own internal representations 
for describing those regularities. The major part of Chapter 7 is an 
analysis of this learning procedure. 

Chapter 8 is the study of still another l earning procedure. In this 
chapter, Rumelhart, Hinton, and Williams show that it is possible to 
develop a generalization of the delta rule described in Chapter 2 so that 
arbitrary multilayered networks of units can be can be trained to do 
interesting tasks . Using this learning rule, the system can learn to asso
ciate arbitrary input/ output pairs and in this way can learn to compute 
arbitrary input/output functi ons. The generalized delta rule is shown to 
provide a method of modify ing any weight in any network, based on 
local ly available information, so as to implement a gradient descent pro
cess that searches for those weights that m inim ize the error at the out
put units. Further, simulation work presented in the chapter shows 
that the problems of local minima often associated with gradient des
cent and other hill- climb ing methods are suprisingly rare. 

In general , the chapters in this section demonstrate that the barriers 
to progress in understanding learning in networks of simple neuron-like 
units have begun to crumble. There are still deep problems that remain 
unsolved, but the learning mechanisms described in these chapters 
make several inroads into some of the most challenging aspects of the 
theory of parallel distributed processi ng . 
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CHAPTER S 

Feature Discovery by Competitive Learning 

D. E. RUMELHART and D. ZIPSER 

This chapter reports the resu l ts of our studies with an unsupervised 
l earning paradigm that we call competitive learning. We have examined 
competitive l earning using both computer simulat ion and formal 
analysis and have found that when it is applied to paral le l  networks of 
neuron-like e lements, many potentia l ly  useful learning tasks can be 
accomplished. We were attracted to competitive learning because i t  
seems to provide a way to  d iscover the  salient, general features which 
can be used to classify a set of patterns. The bas ic components of the 
competitive learning scheme are: 

• Start with a set of units that are all the same except for some 
randomly distributed parameter which makes each of them 
respond slight ly different ly  to a set of input patterns. 

• Limi t  the "st rength" of each unit. 

• Allow the units to compete in some way for the right to 
respond to a given subset of inputs. 

The net result of correctly applying these three components to a learn
ing paradigm is that individual units learn to specialize on sets of 

This chapter originally appeared in Cognitive Science, 1985, 9, 75-112. Copyright 1985 

by Ablex Publishing. Reprinted by permission. 
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s imilar patterns and thus become "feature detectors" or "pattern classif
iers." In add i ti on to Frank Rosenblatt , whose work will be d iscussed 
below, several others have exploi ted compet i t ive learning in one form 
or another over the years. These i nclude von der Malsburg (973), 
Grossberg (976), Fukush ima (975) , and Kohonen (982). Our 
analyses differ from many of these in that we focus on the develop
ment of feature detectors rather than pattern classificati on. We address 
these i ssues further below. 

One of the central i ssues in the study of the processing capaci t ies of 
neuron-like elements concerns the l imi tat ions inherent i n  a one-level 
system and the difficulty of developing learning schemes for multi
layered systems. Competi t ive learning is  a scheme in which i mportant 
features can be discovered at one level that a mult i layer system can use 
to classify pattern sets which cannot be classified wi th a s i ngle level 
system. 

Thi rty-five years of experience have shown that get t ing neuron-li ke 
elements to learn some easy things is often quite straightforward, but 
designing systems with powerful general learn ing propert ies is a difficult 
problem, and the competi tive learning paradigm does not change this 
fact. What we hope to show i s  that compet i t ive learning is a powerful 
strategy which, when used in a variety of s i tuations,  greatly expedi tes 
some difficult tasks. Si nce the competi t ive learn ing paradigm has roots 
which go back to the very beginnings of the study of artificial learning 
devices, i t  seems reasonable to put the whole issue into h istorical per
spective. This  is even more to the point ,  s ince one of the first s imple 
learn ing devices , the perceptron, caused great furor and debate, the 
reverberations of which are still wi th us. 

In the beginning, th irty-five or forty years ago, it was very hard to 
see how anyth ing resembling a neural network could learn at all , so any 
example of learn ing was immensely interesting. Learning was elevated 
to a status of great importance in those days because it was somehow 
un iquely associated with the properties of ani mal bra ins. After 
McCulloch and Pi t ts (943) showed how neural- l i ke networks could 
compute, the main problem then fac ing workers in th is  area was to 
understand how such networks could learn. 

The first set of ideas that really got the enterprise going were con
tai ned in Donald Hebb's Organization oj Behavior (I 949). Before Hebb's 
work, it was believed that some physical change must occur in a net
work to support learning, but it was not clear what th is  change could 
be. Hebb proposed that a reasonable and biologically plausible change 
would be to strengthen the connections between elements of the net
work only when both the presynapt ic and postsynaptic units  were act ive 
simultaneously. The essence of Hebb's ideas still pers ists today in 
many learning paradigms. The details of the rules for changi ng weight 
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may be d ifferent , but the essential notion that the strength of connec
tions between the units must change in response to some function of 
the corre lated act ivity of the connected units still dominates learn ing 
models. 

Hebb's ideas remained untested speculations about the nervous sys
tem unt i l  it became poss ib le to build some form of s imulated network 
to test learning theories. Probably the first such attempt occurred in 
1951 when Dean Edmonds and Marvin Minsky built thei r  learning 
machine. The flavor of th is  mach ine and the milieu in which it 

operated i s  captured i n  Minsky's own words which appeared in a 
wonderful New Yorker profile of h i m  by Jeremy Bernste in (1981): 

In the  summer of 1951 Dean Edmonds and I wen t up to 
Harvard and bui l t  our machine. It had three hundred tubes and 
a lot of motors. It needed some automat ic electric clutches, 
which we machi ned ourselves. The memory of the machine 
was stored in the posi tions of its control knobs, 40 of them, 
and when the machine was learning, it used the clutches to 
adjust its own knobs. We used a surplus gyropilot from a B24 
bomber to move the clutches. (p. 69) 

This machine actual ly worked and was so fascinating to watch that 
Minsky remembers: 

We sort of qui t  science for awh i l e to watch the machine. We 
were amazed that it could have several activities going on at 
once i n  this little nervous system. Because of the random 
wiring it had a sort of fai l  safe characteristic. If one of the 
neurons wasn't working, it wouldn ' t  make much difference and 
with nearly three hundred tubes, and the thousands of 
connections we had soldered there would usual ly be someth ing 
wrong somewhere. . I don 't th ink we ever debugged our 
machine completely, but that didn't matter. By having this 
crazy random design it was almost sure to work no matter how 
you built it. (p. 69) 

In fact , the functioning of this machine apparent ly stimulated Mi nsky 
sufficient ly to write his PhD thesis on a prob lem related to learning 
(Minsky , 1954). The whole idea must have generated rather w ide 
interest; von Neumann, for example, was on Minsky's Ph D comm i t tee 
and gave him encou ragement. Although Minsky was perhaps the first 
on the scene with a learn ing  mach ine, the real beginnings of mean ing
ful neuron- l i ke network learning can probably be traced to the work of 
Frank  Rosenblatt, a BE?� �g�1 of Science c lassmate of 
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Minsky's. Rosenblatt invented a class of simple neuron-l ike learning 
networks which he cal l ed perceptrons. In his book, Principles of Neuro
dynamics (1962), Rosenblatt brought together all of his results on per
ceptrons. In that book he gives a particularly clear description of what 
he thought he was doing: 

Perceptrons are not intended to serve as detai led copies of any 
actual nervous system. They're simplified networks, designed 
to permit the study of l awful relationshi ps between the organi
zation of a nerve net, the organization of its envi ronment, and 
the "psychological" performances of which it is capable. Per
ceptrons might actual ly  correspond to parts of more extended 
networks and biological systems� in  this case, the results 
obtained will be di rectly appl icable. More l i kely they represent 
extreme simpl ifications of the central nervous system, in which 
some properties are exaggerated and others suppressed. In th is 
case, successive perturbations and refinements of the system 
may yield a closer approximation. 

The main strength of this approach is that it permits mean
i ngful questions to be asked and answered about particular 
types of organizations, hypothetical memory mechanisms, and 
neural models. When exact analytical answers are unobtainable, 
experimental methods, either with digital simulation or 
hardware models, are employed . The model i s  not the terminal 
result ,  but a start ing point for exploratory analysis of its 
behavior. (p. 28) 

Rosenblatt pioneered two techniques of fundamental importance to the 
study of learning in neural - l i ke networks: digital computer simulation 
and formal mathematical analysis, although he was not the first to 
simulate neural networks that could l earn on digital computers (cf. 
Farley & Clark, 1954). 

Since the paradigm of competit i ve l earning uses concepts that appear 
in the work of Rosenblatt, it is worthwhile reviewi ng some of his ideas 
in th is area. His most influential resu lt was the "perceptron learn ing 
theorem" which boldly asserts: 

Gi ven an elementary IX -percept ron , a stimulus world W, and 
any classification C (W) for which a sol ution exists� let all 
stimul i  in W occur in any sequence, provided that each 
stimulus must reoccur in finite t ime� then begi nning from an 
arbitrary in itial state , an error correct ion procedure wi l l  a lways 
yield a solution to C (W) i n  fi nite time, . " (p. 596) 
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As it turned out, the real problems arose out of the phrase "for which a 

solution ex ists" -more about this later. 
Less widely known i s  Rosenblatt's work on what he called " spon tane

ous learn i ng." All network learning models requ i re rules which te l l  how 
to present the st imuli and change the values of the weights in  accor
dance with the response of the model. These rules can be characterized 
as forming a s pectrum, at one end of which is learning with an error
correct ing  teacher, and at the other is  completely spontaneous, unsu
pervised discovery . In between is a cont inuum of rules that depend on 
man ipulat i ng the content of the in put stimulus stream to bring about 
learni ng. These intermediate rules are often referred to as "forced 
learning." Here we are concerned primari ly wi th attempts to design a 
perceptron that would discover somethi ng interesti ng without a teacher 
because th is  i s  s i m i lar to what happens in the compet i tive learning case. 
In fact, Rosenblatt was able to bu i ld a perceptron that was able to spon 
taneously dichotomize a random sequence of i nput patterns i n to classes 
such that the members of a single c lass were s imilar to each other ,  and 
different from the members of the other class. Rosenblatt realized that 
any randomly in i t i alized perceptron would have to dichotomize an arbi
trary i nput pattern st ream i nto a "I-set," consisting of those patterns 
that happened to produce a response of I ,  and a "O-set," consisting of 
those that produced a response of O. Of course one of these sets could 
be empty by chance and neither would be of much interest in general. 
He reasoned that if a perceptron could reinforce these sets by an 
appropriate rule based only on the perceptron's spontaneous response 
and not on a teacher's error correction, i t  might eventually end up with 
a dichotomization in which the members of each set were more li ke 
each other than l ike the members of the opposite set . What was the 
appropriate rule to use to achieve the desi red dicotomization? The first 
rule he tried for these perceptrons, which he called C -type, was to 
i ncrement weights on l i nes active with patterns in the I-set , and decre
ment  weights on lines active with patterns in the O-set. The idea was to 
force a dichotomization i n to sets whose members were s imilar in the 
sense that they activated overlapping subsets of l i nes. The· results were 
d isastrous . Sooner or later all the input patterns were classi fied in one 
set . There was no d ichotomy but there was stability . Once one of the 
sets won, it  remained the victor forever. 

Not to be daunted, he exami ned why this undesirable result occurred 
and realized that the problem lay i n  the fact that since the weights 
could grow without l im i t ,  the set that i nitially had a majority of the pat

terns would recei ve the majority of the reinforcement. This meant that 

weights on l ines which could be act ivated by patterns in both sets would 

grow to infinite magnitudes in favor of the majority set, which in turn 

wou ld lead to the captuBbPYr1BiHBaw!81�»Sfns by the majority set and 
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ultimate total victory for the maJorIty. Even where there was i nitial 
equality between the sets, inevi table fluctuations in the random presen
tation of patterns would create a majority set that would then go on to 
win. Rosenblatt overcame this problem by introducing mechanisms to 
l i m i t  weight growth in such a way that the set that was to be posit ively 
rei nforced at active l i nes would compensate the other set by giving up 
some weight from all its lines. He called the modified perceptrons C. 
An example of a C rule is to lower the magni tude of all weights by a 
fixed fraction of their  current  value before specifically  incrementing the 
magnitude of some of the weights on the basis of the response to an 
i n put pattern. This type of rul e had the desired result of maki ng an 
equal dichotomy of patterns a stable rather than an unstable state. Pat
terns in each of the sets were similar to each other in the sense that 
they depended on simi lar sets of input lines to produce a response. In 
Rosenblatt's i n i t ial  experiment, the main featu re of similarity was not 
so much the shape of the patterns involved, but their location on the 
retina. That is , his system was able to spontaneously learn somethi ng 
about the geomet ry of its i n put line arrangement. Later, we wi l l  exam
ine this i m portant property of spontaneous geometry learning i n  consid
erable detail. Depending on the desired learn i ng task, i t  can be ei ther a 
boon or a nuisance. 

Rosenblatt was extremely enthusiastic about his spontaneous learning 
results. In fact ,  his response can be descri bed as sheer ecstasy. To see 
what he thought about his achievements, consider his claim 
(Rosen blatt, 1959): 

It seems clear that the class C perceptron introduces a new 
kind of information processi ng automaton: For the first time, 
we have a machine which is capable of having original ideas . 
As an analogue of the biological brain, the perceptron, more 
precisely, the theory of statistical separabi lity, seems to come 
closer to meeti ng the requi rements of a functional explanat ion 
of the nervous system than any system previously proposed. 
(p. 449) 

Although Rosenblat t's results were both interesti ng and significant, the 
claims impl ied in the above quote struck his contemporaries as 
unfounded. What was also sign ificant was that Rosenblatt appeared to 
be sayi ng that the type of spontaneous learn ing he had demonstrated 
was a property of perceptrons, which could not be repl icated by ordi
nary computers. Consider the fol lowi ng quote from the same source: 

As a concept, it  would seem that the perceptron has 
established , beyond doubt, the feasibi lity and principle of 
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non-human systems which may embody human cognit ive func
tions at a level far beyond that which can be achieved through 
present  day automatons. The future of information processing 
devices which operate on statist ical, rather then logical princi
ples seems to be clearly indicated. (p. 449) 

It is th is  notion of Rosenblatt's-that perceptrons are in some way 
superior to computers-that i gnited a debate in artificial intel l igence 
that had significant effects on the development of neural-like network 
models  for both learn ing and other cognit ive processes. Elements of 
the debate are sti l l  wi th us today in arguments about what the brain can 
do that computers can't do. There is no doubt that this was an impor
tant issue in Rosenblatt's mind, and almost certai nly contri buted to the 
acrimonious debate at that t ime. Consider the following statement by 
Rosenblatt made at the important conference on Mechanization of 
Thought Processes back in 1959: 

Computers seem to share two main functions wi th the brain: 
(a) Decision making, based on logical rule ,  and (b) control ,  
again based on logical rules. The human brain performs these 
functions, together wi th a third: in terpretation of the envi ron
ment. Why do we hold interpretation of the environment to be 
so important? The answer, I think ,  is to be found in the laws 
of thermodynamics. A system with a completely self contained 
logic can never spontaneously improve i ts abi l i ty to organize , 
and to draw val id  conclusions from information. (Rosenblatt, 
1959, p. 423) 

Clearly i n  some sense, Rosenblatt was saying that there were things 
that the brain and perceptrons, because of their  statistical properties, 
could do which computers could not do. Now this may seem strange 

since Rosenblatt knew that a computer program could be wri tten that 

would simu late the behavior of statistical perceptrons to any arbi trary 

degree of accuracy. Indeed, he was one of the pioneers in the applica

tion of digital simulation to this type of problem. What he was actual ly  
referring to is  made clear when we examine the comments of other par

t ici pants at the conference, such as Minsky (I959) and McCarthy 

(I 959), who were usi ng the symbol manipulating capabilities of the 

computer to di rect ly s imulate the logical processes involved in  decis ion 

making, theorem proving, and other intellectual activities of thi s  sort. 

Rosenblatt bel ieved the computer used in this way would be inadequate 

to mimic the brain's true inte llectual powers. This  task, he thought, 

could only be accompl ished if  the computer or other electronic devices 

were used to simulate perceptrons. We can summarize these di vergent 
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points of view by saying that Rosenblatt was concerned not only with 
what the brain did, but with how i t  did i t, whereas others, such as Min
sky and McCarthy, were concerned with s imulating what the brai n did, 
and didn't real ly  care how it was done. The subsequent history of AI 
has shown both the successes and failures of the standard AI approach. 
We sti l l  have the problems today, and it's st i l l  not clear to what degree 
computational strategies s imi lar to the ones used by the brai n must be 
employed in order to simulate its performance. 

In addi tion to producing fertilizer, as al l  debates do, this one also 
stimulated the growth of some new resu l ts on perceptrons, some of 
which came from Minsky. Rosenblatt had shown that a two layer per
ceptron could carry out any of the 22N possible classifications of N 
binary i nputs; that i s ,  a solution to the classi fication problem had always 
existed in principle. This  result  was of no practical value however, 
because 2N uni ts were required to accomplish the task in the com
pletely general case. Rosenblatt's approach to this problem was to use a 
much smaller number of units in the first layer with each unit con
nected to a small subset of the N inputs at random. His hope was that 
this would give the percept ron a high probabi l i ty of learning to carry 
out class ificat ions of interest. Experiments and formal analysis showed 
that these random devices could learn to recognize patterns to a signifi
cant degree but that they had severe l im i tat ions. Rosenblatt (I 962) 
characterized his  random perceptron as fol lows: 

It does not generalize wel l  to similar forms occurring in new 
positions in the retinal field, and i ts performance in detection 
experiments, where a fami l iar figure appears against an 
unfamil iar background ,  is apt to be weak. More sophist icated 
psychological capabi lit ies,  which depend on the recognit ion of 
topological properties of the stimulus field, or on abstract rela
tions between the components of a complex image, are lacking. 
(pp. 191-192) 

Minsky and Papert worked through most of the s ixt ies on a mathemati
cal analysis of the computing powers of perceptrons with the goal of 
understanding these l imitations. The results of their work are available 
in a book cal led Perceptrons (Minsky & Papert, 1969).  The central 
theme of this work is that paral le l  recognizing elements, such as per
ceptrons, are beset by the same problems of scale as serial pattern 
recognizers. Combinatorial explosion catches you sooner or later, 
although sometimes in di fferent ways in paral le l  than i n  serial. Minsky 
and Papert's book had a very dampening effect on the study of 
neuron-l i ke networks as computational devices. Minsky has recently 
come to reconsider this negative effect: 
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I now bel ieve the book was overkill. . So after being irri tated 
with Rosenblatt for overclai ming and divert ing all those people 
along a fal se path, I started to real ize that for what you get out 
of i t  - the kind of recogni t ion it  can do-it is such a simple 
machine that it would be astonishi ng if nature did not make use 
of i t  somewhere . (Bernstein, 1981, p. 103) 

Perhaps the real lesson from all this is that it real ly is worthwhile trying 
to put things i n  perspective . 

Once the problem of scale has been understood, networks of 
neuron-like elements are often very useful in practical problems of 
recogni t ion and classificat ion. These networks are somewhat analogous 
to computers, in that they won't do much unless programmed by a 
clever person; networks, of course, are not so much programmed as 
designed. The problem of finding networks of practical size to solve a 
part icular problem is chal lenging because relatively small changes in 
network design can have very large effects on the scale of a problem. 
Consider networks of neuron-like units that determi ne the parity of 
their N bi nary inputs (see Figure 1). In the simple perceptrons studied 
by Minsky and Papert, units in the first layer output 1 only i f  all their 
inputs are 1 and output 0 otherwise. This takes 2N uni ts in the first 
layer, and a s ingle linear threshold un i t  with a fan-in of 2N in the 
second layer, to determine pari ty. If the units in the first layer are 
changed to l inear threshold elements, then only N of them are 
requi red, but all must have a fan- in of N. If we allow a mult ilayer net 
work to do the job, then about 3N units are needed, but none needs a 
fan-in of more than 2. The number of layers is of order log2N. The 
importance of all this to the competit ive learning paradigm, or any 
other for that matter, is that no network can learn what it is not capable 
of doing in principle. What any particular network can do is dependent 
on its st ructure and the computational properties of i ts  component ele
ments. Unfortunately, there is no canonical way to find the best net
work or to determine what it  will learn, so the whole enterprise st i l l  has 
much of the flavor of an experimental science. 

THE COMPETITIVE LEARNING MECHANISM 

Paradigms of Learning 

It is possib le  to classify learning mechanisms in  several ways. One 
useful classification is in. terms of tb e l earn ing paradigm in  which the Gopynghted Malenal 
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FIGURE I. A: Parity network from Minsky and Papert (1969). Each.p unit has an out
put of I only if all of its inputs are I. 1: is a linear threshold unit with threshold of 0, i.e., 
like all the other linear threshold units in the figure, it fires only when the sum of its 
weighted inputs is greater than the threshold. This and all the other networks signal odd 
parity with a I in the rightmost unit of the network. B: Parity network made from two 
layers of linear threshold units. C: Three-unit network for determining the parity of a 
pair of inputs. D: Two-layer network using the subnetwork d escribed in (C). In general, 
the number of P-units is of order N and the number of layers is of order log2N. 

model is supposed to work. There are at least four common learning 
paradigms in neural-li ke processing systems: 
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• Auto Associator. In this paradigm a set of patterns are repeat
edly presented and the system is supposed to "store" the pat
terns. Then, later, parts of one of the original patterns or pos
sibly a pattern similar to one of the original patterns is 
presented, and the task is to "retrieve" the original pattern 
through a kind of pattern completion procedure. This is an 
auto-association process in which a pattern is associated with 
itself so that a degraded version of the original pattern can act 
as a retrieval cue. 

• Pattern Associator. This paradigm is really a variant on the 
auto-association paradigm. A set of pairs of patterns are repeat
edly presented. The system is to learn that when one member 
of the pair is presented it is supposed to produce the other. In 
this paradigm one seeks a mechanism in which an essentially 
arbitrary set of input patterns can be paired with an arbitrary set 
of output patterns. 

• Classification Paradigm. The classification paradigm also can be 
considered as a variant on the previous learning paradigms, 
although the goals are sufficiently different and it is sufficiently 
common that it deserves separate mention. In this case, there 
is a fixed set of categories into which the stimulus patterns are 
to be classified. There is a training session in which the system 
is presented with the stimulus patterns along with the categories 
to which each stimulus belongs. The goal is to learn to 
correctly classify the stimuli so that in the future when a partic
ular stimulus or a slightly distorted version of one of the 
stimuli is presented, the system will classify it properly. This is 
the typical paradigm in which the perceptron is designed to 
operate and in which the perceptron convergence theorem is 
proved. 

• Regularity Detector. In this paradigm there is a population of 
stimulus patterns and each stimulus pattern, Sk' is presented 
with some probability Pk. The system is supposed to discover 
statistically salient features of the input population. Unlike the 
classification paradigm, there is no a priori set of categories into 
which the patterns are to be classified; rather, the system must 
develop its own featural representation of the input stimuli 
which captures the most salient features of the population of 
input patterns. 

Competitive learning is a mechanism well-suited for regularity detec
tion, as in the environmrnJ,*�!QB'M�t�J¥clye. 
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Competitive Learning 

The architecture of a competitive learning system (illustrated in Fig
ure 2) is a common one. It consists of a set of hierarchically layered 
units in which each layer connects, via excitatory connections, with the 
layer immediately above it. In the most general case, each unit of a 
layer receives an input from each unit of the layer immediately below 
and projects output to each unit in the layer immediately above it. 
Moreover, within a layer, the units are broken into a set of inhibitory 
clusters in which all elements within a cluster inhibit all other elements 
in the cluster. Thus the elements within a cluster at one level compete 
with one another to respond to the pattern appearing on the layer 
below. The more strongly any particular unit responds to an incoming 
stimulus, the more it shuts down the other members of its cluster. 

There are many variations on the competitive learning theme. A 
number of researchers have developed variants of competitive learning 
mechanisms and a number of results already exist in the literature. We 
have already mentioned the pioneering work of Rosenblatt. In addi
tion, von der Malsburg (973), Fukushima (1975), and Grossberg 
(1976), among others, have developed models which are competitive 
learning models, or which have many properties in common with com
petitive learning. We believe that the essential properties of the com
petitive learning mechanism are quite general. However, for the sake 
of concreteness, in this paper we have chosen to study, in some detail, 
the simplest of the systems which seem to be representative of the 
essential characteristics of competitive learning. Thus, the system we 
have analyzed has much in common with the previous work, but wher
ever possible we have simplified our assumptions. The system that we 
have studied most is described below: 

• The units in a given layer are broken into a set of nonoverlap
ping clusters. Each unit within a cluster inhibits every other 
unit within a cluster. The clusters are winner-take-all, such 
that the unit receiving the largest input achieves its maximum 
value while all other units in the cluster are pushed to their 
minimum value. I We have arbitrarily set the maximum value 
to 1 and the minimum value to O.  

I A s imple circu i t  for achieving this result i s  attained b y  having each unit activate i tself 
and inhibit its neighbors. Grossberg (976) employs just such a network to choose the 
maximu m  value of a set of units. 
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INPUT PATTERN 

Excitatory 
Connections 
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FIGURE 2. The architecture of the competitive learning mechanism. Competitive learn
ing takes place in a context of sets of h ierarchically layered units. Units are represented 
in the diagram as dots. Units may be active or inactive. Active units are represented by 
filled dots, inactive ones by open dots. In general, a unit in a given layer can receive 
inputs from aJl of the units in the next lower layer and can project outputs 10 all of the 
units in the next higher layer. Connections between layers are excitatory and connections 
within layers are inhibitory. Each layer consists of a set of clusters of mutually inhibitory 
units. The units within a cluster inhibit one another in such a way that only one unit per 
cluster may be active. We think of the configuration of active units on any given layer as 
representing the input pattern for the next higher level. There can be an arbitrary 

number of such layers . A given cluster contains a fixed number of units, but different 
clusters can have different numbers of units. 
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• Every element in every cl uster recei ves i nputs from the same 
lines. 

• A unit learns if and only if it wins the competition with other 
units i n  its cluster. 

• A stimulus pattern S. consists of a b inary pattern in which each 

element of the patteln is either active or inactive. An active ele
ment is assigned the value I and an i nactive element is  
assigned the value O. 

• Each uni t has a fixed amount of weight (all weights are posi
t i ve) which is d istributed among i ts i nput l ines. The weight on 
the l ine connecting unit i on the lower (or i nput) layer to uni tj 
on the upper layer, is designated wi}. The fixed total amount of 
weight for unit j is designated I, wi} = 1. A unit learns by 

i 
shifting weight from its inactive to its active input lines. If a 
unit does not respond to a particular pattern, no learning takes 
place in that unit. If a unit wins the competition, then each of 
its input lines gi ve up  some proportion g of its weight and that 
weight is then distributed equal ly  among the active input lines. 2 
More formally, the learn ing rule we have studied is: 

if unit j loses on stimulus k 

if unit j wins on st imulus k 

where Cik is equal to 1 if in stimulus pattern Sk, unit i i n  the 
lower layer is active and zero otherwise, and nk is the number 
of acti ve units in  pattern Sk (thus nk = I,Cik). 

Figure 3 i l l ustrates a useful geometric analogy to th is  system. We 
can consider each stimul us pattern as a vector. If all patterns contain 
the same number of acti ve l ines, then all vectors are the same length 
and each can be viewed as a point on an N-dimensional hypersphere , 

2 This learning rule was proposed by von der Malsburg (1973). As Grossberg (1976) 
points out, renormalization of the weights is not necessary. The same result can be 
obtained by normalizing the input patterns and then assuming that the weights approach 
the values on the input lines. Normalizing weights is simpler to implement than normal
izing pallerns, so we chose that option. For most of our experiments, however, it does 
not mailer which of these two rules we chose since all pallerns were of the same 
magnitude. 
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FIGURE J. A geometric interpretation of compet itive learning. A: It is useful to concep
t ualize stimulus pat terns as vectors whose tips all lie on the surface of a hypersphere. We 
can then directly see the similarity among stimulus patterns as d istance between the 
points on the sphere. In the figure, a stimulus pattern is represented as an x. The figure 
represents a population of eight st imulus patterns. There are two clusters of three pat
terns and two st imulus patterns which are rather distinct from the others. B: It is also 
useful to represent the weights of units as vectors falling on the surface of the same 
hypersphere. Weight vectors are represented in the figure as 0 'so The figure illustrates 
the weights of two units falling on rather different parts of the sphere. The response rule 
of this model is equivalen t to the rule that whenever a stimulus pattern is presented , the 
unit whose weight vector is closest to that stimulus pattern on the sphere wins the com
petition. In the figure , one unit would respond to the cluster in the northern hemisphere 
and the other unit would respond to the rest of the stimul us patterns. C: The learning 
rule of this model is roughly equivalent to the rule that whenever a unit wins the com
petition (i.e., is closest to the stimulus pattern), that weight vector is moved toward the 
presented stimulus. The figure shows a case in which there are three units in the cluster 
and three natural groupings of the stimulus patterns. In this case, the weight vectors for 
the three units will each migrate toward one of the st imulus groups. 

where N is the number of units in the lower level, and therefore , also 
the number of input lin...es received by each un i t  in the upper level. 
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Each x i n  Figure 3A represents a part icular pattern . Those patterns 
that are very s imi lar are near one another on the sphere; those that are 
very d ifferent wi l l  be far from one another on the sphere . Now note 
that s ince there are N i nput l i nes to each unit  in the upper layer, i ts 
weights can also be considered a vector i n  N-d imensional space. Since 
all ul'lits have the same total quantity of weight, we have N-dimensional 
vectors of approximately fi xed length for each unit i n  the cluster. 3 
Thus, properly scaled, the weights themselves form a set of vectors 
which (approxi mately) fal l  on the surface of the same hypersphere. In 
Figure 38, the o's represent the weights of two uni ts superi mposed on 
the same sphere with the sti mulus patterns. Now, whenever a st imulus 
pattern is presented , the uni t  which responds most strongly is s imply 
the one whose weight vector is nearest that for the st imulus. The 
learning rule spec ifies that whenever a uni t  wins a competi t ion for a 
stimulus pattern, i t  moves a percentage g of the way from its current 
location toward the locat ion of the stimulus pattern on the hypersphere. 
Now, suppose that the input patterns fel l  into some number, M, 
"natural" groupings . Further, suppose that an inhibi tory cluster receiv
ing inputs from these st imuli contained exactly M uni ts (as in Figure 
3C). After sufficient t rain ing, and assuming that the st imulus group
i ngs are sufficiently dist inct , we expect to find one of the vectors for 
the M uni ts placed roughly in  the center of each of the sti mulus group
i ngs. In this case, the units have come to detect the grouping to which 
the input patterns belong. In this sense, they have "discovered" the 
structure of the input pattern sets .  

Some Features of Competitive Learning 

There are several characterist ics of a competi t ive learning mechanism 
that make i t  an interesting candidate for further study, for example: 

• Each cluster class ifies the stimulus set i nto M groups, one for 
each unit  i n  the cl uster. Each of the uni ts  captures roughly an 
equal number of st imulus patterns. It i s  possible to consider a 
cluster as forming an M-ary feature in  which every st imulus 
pattern i s  class ified as having exactly one of the M possible 

3 It should be noted that this geometric i nterpretation is only approximate. We have 
used the constraint that 1: Wu = 1 rather than the constraint that 1: wJ = 1. Th is latter 

I I 
constraint would ensure that all vectors are in fact the same length. Our assumption only 
assures that they will be approximately the same length. 
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values of th is  feature. Thus,  a cluster contain ing 2 units acts as 
a b inary feature detector. One element of the cluster responds 
when a part icular feature i s  present in the st imulus pattern , oth
erwise the other element responds. 

• If  there is structure in the stimu lus patterns ,  the uni ts will break 
up the patterns along structurally relevan t  li nes . Roughly 
speaking,  th is  means that the system will find clusters if they 
are there. (A key problem, which we address below, is specify
ing the nature of the structure that this system discovers.) 

• If the st imul i are highly structured, the classi ficat ions are highly 
stable. If the st im uli are less well-st ructured, the classifications 
are more variable, and a gi ven stimulus pat tern will be 
responded to first by one and then by another member of the 
cluster. In our experiments, we started the we ight vectors in 
random directions and presented the stimuli randomly. In th is 
case, there is rapid movement as the system reaches a relati vely 
stable configuration (such as one with a unit roughly in the 
center of each cluster of stimulus patterns) . These configura
tions can be more or less stable. For example , if the stimulus 
points don't actually fall into nice clusters , then the configura
t ions will be relatively unstable , and the presentation of each 
sti mulus will modify the pattern of responding so that the sys
tem will undergo cont inual evolution. On the other hand , i f  
the  st imulus patterns fall rather nicely into clusters, then the 
system will become very stable in the sense that the same units 
will always respond to the same stimuli.4 

• The part i cular grouping done by a particular cluster depends on 
the start ing value of the wei ghts and the sequence of sti mulus 
patterns actually presented. A large number of clusters , each 
receiving inputs from the same input l i nes can , i n  general, clas
s ify the inputs into a large number of different groupings , or 
alternati vely, d i scover a variety of independent features present 
in the st imulus population. This  can provide a kind of coarse 
coding of the stimulus patterns. 5 

4 Grossberg (976) has addressed this problem in his very similar system. He has 

proved that if the patterns are sufficiently sparse, and/ or when there are enough units in 

the cluster, then a system such as this will find a perfectly stable classification. He also 

points out that when these conditions don't hold, the classification can be unstable. Most 

of our work is with cases in which there is no perfectly stable classification and the 

number of patterns is much larg.er than the number of units in the inhibitory clusters. 
(;opyrighted Material 
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Formal Analysis 

Perhaps the simplest mathematical analysis that can be gi ven of the 
competi tive learning model under d i scussion i nvol ves the determi nation 
of the sets of equilibrium states of the system -that i s, states in  which 
the average i nflow of weight to a particular l ine  is equal to the average 
outflow of weight on that l ine .  Let Pk be the probabili ty that st i mulus 
Sk is presented on any trial .  Let Vjk be the probabil ity that unit} wins 
when st imulus Sk i s  presented. Now we want  to consider  the case in  
which I',A wij vjkPk = 0, that is , the  case in  which the  average change i n  k 
the weights is zero. We refer to such states as equilibrium states. Thus, 
usi ng the learn ing rule and averaging over stimulus patterns we can 
wri te 

which implies that at equ i l i br ium 

and thus 

There are a number of important observat ions to note about this equa
t ion. First , note that LPk Vjk is s imply the probabi lity that un i t} wins 

k 
averaged over al l  sti mulus patterns. Note fu rther that LPkCik Vjk is the 

k 
probabi l i ty  that i nput l i ne i is act ive and un i t} wi ns .  Thus, the rat io 

LPkCik vjk 
k ��...--- is the conditional probabil i ty that l ine i is active gi ven unit} L.Pk vjk 

k 

5 There is a problem in that one can't be certain that the d ifferent clusters will d iscover 
different features. A slight modification of the system in which clusters "repel" one 
another can insure that d ifferent clusters find different features. We shall not pursue that 
further in this paper. 
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wins ,  P ( l i nei = 1 1  uni tj wins) . Th us, i f  a l l  patterns are of  the same 
s ize , i .e . ,  nk = n for al l  k, then the weight wi} becomes proport ional to 
the probabil i ty that l ine i i s  act i ve given uni t  j wins.  That is ,  

wi} - ! P ( I inei = 1 1  unitj wins ) .  

We are now i n  a pos i t ion to speci fy the response , at equ i l i bri um ,  of 
uni t  j when st i mulus S, is presented . Let Ol jI be the i nput to un i t  j i n  
the  face of st i mulus S, . Thi s  is  s imply the  sum of weights on the acti ve 
i nput l i nes. This can be wri tten 

1: Pk Cik VJk 

k nk 

LPk vjk 
k 

which imp l i es that at equi l i bri um 

Oljl = 

where 'Ii represents the overlap between st i mulus I and st imu lus i, 
',,' __ � Cki Ck' 

L. Thus,  at equi l i bri um a uni t  responds most strongly to 
k ni 

patterns that overlap other patterns to which the un i t  responds and 
responds most weakly to patterns that are far from patterns to which i t  
responds . Final ly ,  i t  should be noted that  there is another se t  of  
restrict ions on the value of Vjk - the probabi l i t y  that  uni t  j responds to 
st imulus Sk ' In fact , the compet i t i ve learn i ng ru le we have st udied has 
the further rest rict ion that 

_ 1 1 Oljk > Ol ik for all i ,cj 
Vjk - 0 otherwise. 

Thus , in general , there are many solut ions to the equ i l i br ium equat i ons 
descri bed above. The compet i t i ve learning mechanisms can only reach 
those equi l i bri um states in which the above-stated relat ionsh i ps 
between the Vjk and the Ol jk also hold.  

Whenever the system i s  in a state i n  which ,  on average , the weights 
are not changing, we say that the system has reached an equilib,ium 
state. I n  such a state the val ues of Ol Jk become relati vely stable ,  and 
therefore, the values of Vik become stable . When th is  happens, the sys
tem always responds the same way to a part i cular st i mulus pattern . 
However, i t  is possi ble that the weights w i l l  be pushed out of 
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equi l ibri um by an unfortunate sequence of st imul i .  In this  case , the 
system can move toward a new equi l i brium state (or possibly back to a 
previous one) . Some equi l ibrium states are more stable than others in  
the sense that the "ik become very un l ikely to change val ues for long 
periods of t ime .  In part icular,  this wi l l  happen whenever the largest otjk 
is much larger than any other ot ik for a l l  s t imulus patterns Sk ' In this 
case, small movements i n  the weight vector of one of the un i ts i s  very 
unli kely to change which un i t  responds to which st imulus pattern . Such 
equ i l ibrium states are said to be h ighly stable. We should expect , then , 
that after i t  has been learning for a period of t ime,  the system wi l l  
spend most of  i t s  t ime i n  the  most h igh ly  stable of  the  equ i l ibrium 
states . One good measure of the stabi l i ty of an equi l ibrium state is 
given by the average amount by which the input to the winn ing uni ts is 
greater than the response of all of the other un i ts averaged over all pat
terns and al l uni ts in a cluster. This  measure is given by T below: 

T = LPkl>jk (otjk - ot ik ) ' k j ,i 

The larger the value of T, the more stable the system can be expected 
to be and the more t ime we can expect the system �o spend in that 
state. Roughly ,  if we assume that the system moves i nto states which 
maximize T, we can show that this amounts to maximizing the overlap 
among patterns wi th in  a group whi le min imizing the overlap among 
patterns between groups. In the geometric analogy above, this wil l  
occur  when the weight vectors poin t  toward maximal ly  compact 
st imulus regions that are as d istant as poss ib le from other such regions. 

SOME EXPERI MENTAL RESULTS 

Dipole Experi ments 

The essential structure that a compet i t i ve learn i ng mechanism can 
discover is represented in the overlap of st imulus patterns . The s im
plest st imulus population i n  which st i mulus patterns can overlap with 
one another is  one const ructed out of dipoles-st imulus patterns con
s ist ing of exactly two act ive elements and the rest inact ive .  If we have 
a total of N i nput units there are N(N-J) /2  possible dipole st imul i .  Of 
course , if the actual s t imulus population cons ists of al l N(N-J) / 2 possi 
bi l i t ies ,  there i s  no structure to be  d iscovered . There are no  clusters 
for our units  to poin t  at (unless we have one uni t  for each of the poss i 
ble st imUl i ,  i n  which case we can point  a weight vector at each of the 
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possi ble in put st imul i ) .  If, however , we restrict the possi ble d ipole 
sti mul i  i n  certain ways, then there can be meaningfu l groupings of the 
st imulus patterns that the system can find . Consider, as an example, a 
case i n  which the st imulus l ines cou ld be thought of as forming a two

dimensional grid i n  which the only possi ble sti mul us patterns were 
those which formed adjacent pai rs in  the grid . If we have an N x M 
grid ,  there are N (M- O + M (N- 1) possible sti mu l i .  Figure 4 shows 
one of the 24 possible adjacent d i pole patterns defi ned on a 4 x 4 grid .  
We carried out  a number of experi ments emp loying st imul us sets of 
this kind .  In most of these experiments we employed a two-layer sys
tem wi th  a si ngle inh ibitory cluster of s ize two. Figure 5 i l lustrates the 
arch i tecture of one of our experi ments. The results of three runs with 
th is arch itecture are i l l ust rated i n  Figure 6, which shows the re lat ive 
values of the weigh ts for the two units .  The values are shown laid out 
on a 4 x 4 grid so that weights are next to one another i f  the units wi th 
which they connect are next to one another .  The relat i ve val ues of the 
weights are ind icated by the fi l l ing  of the ci rcles. If  a ci rcle is  fi l led , 

that indicates that Uni t  1 had the largest we ight on that l i ne .  If the c i r
cle i s  unfil led,  that means that Unit 2 had the largest weight on that 
l ine .  The grids on the left indicate the in i t ia l  configu rat i ons of the 
weights. The grids on the right indicate the final configurations of 
weights .  The l i nes connecti ng the ci rcles represent the possible st imul i .  
For example , t h e  dipole st imulus pattern consist ing o f  the upper left 
input l ine  and the one immediately to the right of i t  i s  represented by 
the l i ne connect ing the upper- left circle i n  the grid w i th i t s  right neigh 
bor. The u n i t  that wins when this st imulus is  presented i s  i nd icated by 
the width of the l i ne  connecting the two c i rcles .  The wide l i ne indicates 

o o o o 
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o o • o 
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FIGURE 4. A dipole stimulus defined on a 4 x 4 mat r ix  of input units. The rule for gen 
erat ing  such st im u l i  is s imply that any t wo adjacent units may b e  s i m u l t aneously active. 
Nonadjacen t  uni ts  may not be act i ve and more t han two units may not be s i m ultaneously 
acti ve. Act ive units are ind icaG9tJylf?jf!1hRJwmterial 
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FIGURE 5 .  The architecture of a compet i tive learn ing system with 16 input units and 
one cluster of size two i n  t h e  second layer .  

that Unit 1 was the winner, the narrow l i ne indicates that Unit 2 was 
the winner.  It should be noted , therefore ,  that two unfi l led c ircles 
m ust al ways be joi ned by a narrow l ine and two fi l led ci rcles m ust 
always be joined by a wide l ine. The reason for this is that if a part icu
lar uni t h as more weight on both of the act ive l i nes then that uni t must 
win the competition. The resul ts  clearly show that the weights move 
from a rather chaot ic  ini t ial  arrangement to an arrangement in which 
essent ial ly  al l of those on one s ide of the grid are fi l led and al l  on the 
other side are unfil led .  The border separating the two hal ves of the 
grid may be at any orientat ion , but most often i t  is oriented vert ical ly 
and hori zontal ly, as shown in the upper two examples. Only rarely i s  

the  or ientat ion  d i agona l ,  as in the example i n  the lower r ight-hand grid. 
Thus , we have a case in which each un i t  has chosen a coherent half of 
the grid to wh ich they respond . I t  is important  to real i ze that as far as 
the compet i t i ve l earn i ng mechanism i s  concerned the  si xteen i nput 
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FIGURE 6. Relative weight values for the two mem bers of the inh ibi tory cluster .  A: 
The results for one run with the d ipole stimuli  defined over a two-dimensional grid .  The 
left-hand grid shows the relative values of the weights in i t ia l ly  and the right-hand grid 
shows the relative values of the weights after 400 trials .  A fi lled circle means that Un i t 1 

had the larger weight on the corresponding input . An unfil led circle m eans that Unit  2 

had the larger weight .  A heavy l ine connecting two c i rcles means that  Uni t  1 responded 
to the stimulus pattern consisting of the acti vation of the two circles, and a l ight l ine 
means that Unit 2 won the corresponding pattern. In this case the system has di vided the 
grid horizontally. B: The resul ts for a second run under the same condit ions. In this  
case the system has divided the gr id horizontal ly. C: The results for a t h i rd run.  In this  
case the left-hand grid represents the state of the system after 50 t rials. Here the grid 
was divided diagonally. 
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l ines are unordered . The two-di mensional grid-l ike arrangement exists 
only  in  the statistics of the population of stimulus patterns. Thus, the 
system has discovered the dimensional structure inherent i n  the sti mulus 
population and has devised binary feature detectors that tell which half 
of the grid contains the stimulus pattern . Note, each unit responds to 
roughly half of the st imul us patterns. Note also that whi le some units 
break the grid vertical ly, some break the grid horizontal ly, and some 
break it diagonal ly; a combination of several clusters offers a rather 
more precise classification of a sti mulus pattern . 

In other experiments, we tried clusters of other sizes. For example, 
Figure 7 shows the results for a cluster of size four .  It  shows the in i t ial 
configurat ion and its sequence of evolution after 1 00,  200, 400, 800 , 
and after 4000 training trials. Again ,  in i tial ly the regions are chaot ic . 
After train ing, however, the system settles i nto a state in which st imuli  
i n  compact regions of the grid are responded to by the same units .  It 
can be seen, in  this case, that the trend is toward a given unit respond
ing to a maximal ly  compact group of stimul i .  In this experiment, three 
of the units settled on compact square regions while the remaining one 
settled on two unconnected stimulus regions . It  can be shown that the 
state into which the system sett led does not quite maxi mize the value 
T, but does represent a relatively stable equ i l i brium state.  

In  the examples discussed thus far, the system, to a fi rst approxima
tion , settled on a highly compact representation of the i n put patterns in  
which all  patterns in a region are captu red by one of the units .  The 
grids discussed above have al l  been two-dimensional . There is no need 
to restrict the analysis to a two-dimensional grid. In fact , a two-unit 
cl uster wi l l ,  essent ia l ly ,  pass a plane through a space of any d i men
sionality. There is a preference for planes perpendicular to the axes of 
the spaces. Figure 8 shows a typical result for the system learning a 
th ree-di mensional space . In the case of three di mensions , there are 
three equal ly good planes which can be passed through the space and ,  
depending o n  t h e  start ing di rections of  t h e  weight vectors and o n  the 
sequence of st imul i ,  d ifferent clusters wi l l  choose different ones of 
these planes. Thus, a system which recei ves input from a set of such 
clusters wi l l  be gi ven information as to which quadrant of the space in 
which the pattern appears . It  i s  important to emphasize that the coher
ence of the space is entirely in the choice of input sti mul i ,  not in the 
arch itecture of the competi t ive learning mechanism . The system discov

ers the spatial structure in the input l i nes. 

Formal analysis. For the d i pole examples described above, i t  is  pos
si ble to develop a rather precise characterization of the behavior of the 
competi t ive learn ing system.  Recal l our argument that the most stable 
equi l ibrium state (and therefore the one the system is most l i kely to 
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80 0 4000 

FIGURE 7.  The relat i ve weights of each of the four  e lements  of the cluster after 0, 1 00, 
200, 400, 800, and 4000 st imulus presentat ions .  

end up in)  is  the one that maximizes the funct ion 

T = LPk L Vjk (CXjk - CX ik ) '  k j ,i 
Now, in the dipole examples, all st imulus patterns of the sti mulus 
population are equal ly l ikely ( i .e . , Pk = 1 /  N) , al l  st imulus patterns 
involve two active l ines, and for every stimulus pattern in the popula
tion of patterns there are a fi xed number of other stimulus patterns in 
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FIGURE 8. The relat i ve weights ro r a system in wh ich the sti m u l us patterns were 
chosen rrom a three-d i mensional grid after 4000 presen tat ions.  

the population which overlap it .  6 This i mpl ies that f/kj = R for al l  j. 
k 

Wi th these assumptions,  i t  is poss ib le  to show that maxi mizing T i s  
equ ivalent  to mini mizing the function 

fli I N; 
(see appendix for deri vation) , where N; i s  the number of patterns on 
which unit  i wi ns,  M is the n umber of uni ts in the cluster, and B; i s  the 
number of cases in which unit i responds to a part icular pattern and 
does not respond to a pattern which overlaps it. This is the number of 
border patterns to which unit i responds . Formal ly,  we have 

B; = tt vi} ( I- v;k ) for rjk > O. 
i k 

From this  analysis , it is clear that the most stable states are ones in 
which the size of the border i s  m in i mized . Since total border region i s  
mini mized when regions are  spherical , we can concl ude that i n  a s itua
t ion in which sti mulus pairs are drawn from adjacent poi nts in a 

6 Note that th is  latter condit ion does not Quite hold ror the exam ples presented above 
due to edge effects. It is possib le to e l iminate edge effects by the  use or a to rus . We 
have carried out e x per iments  on t ori as wel l ,  and the results are essential ly the same. 
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h igh -d imensional hyperspace , our compet i t ive learn ing mechanism wi l l  
form essent ial ly spherical reg ions that part i t ion the  space in to  one  such 
spherical region for each element of the cluster. 

Another resu l t  of our s imulat ions which can be explai ned by these 
equations is the tendency for each element of the c luster to capture 
roughly equal ly s ized regions.  This  results from the interconnectedness 
of the stimulus popu lat ion . The result  i s  easiest in the case in  which 
M =  2 .  In this case,  the function we want to min imize is gi ven by 

B I B2 
NI + N2 ' 

Now, in  the case of M= 2 ,  we have B 1= B2, si nce the two regions 
must border on one another. Moreover, we have N 1 + N 2 = N ,  si nce 
every pattern is ei ther responded to by Uni t  1 or Unit  2. Thus , we 
want to mini mize the function 

Thi s  function is  min imized when NI  = N1 2 .  Thus, there are two pres
sures which determine the performance of the system in these cases: 

• There i s  a pressure to reduce the number of border s t imul i  to a 
min imum.  

• There i s  a pressure to  di vide the st i mu l us patterns among the 
units  in a way that depends on the total amount of we ight  that 
un i t  has. If two un its have the same amount of we ight , they 
wi l l  capture rough ly equal numbers of equal ly l i kely sti mu lus 
pat terns . 

Learn ing Words and Letters 

It i s  common pract ice to handcraft networks to carry out part icu lar 

tasks . Whenever one creates such a network that performs a task 

rather successfu l ly ,  the quest i on ari ses as to how such a network might 
have evol ved . The word percept ion model developed in  McClel land 

and Rumelhart ( l 98 l ) and Rumel hart and McClel land ( I 982)  is one 

such case- in - point . That model offers rather detailed accounts of a 
variety of word percept ion experiments ,  but i t  was crafted to do i ts job . 
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How could it have evolved natural ly?  Could a competi t ive l earning 
mechanism create such a network? 

Let 's begi n with the fact that the word perception model required a 
set of posit ion-specific letter detectors. Suppose that a competi t ive 
learning mechanism is faced with a set of words- to what features 
would the system learn to respond ? Would it create posi t ion-specific 
letter detectors or their equivalent?  We proceeded to answer this ques
tion by again viewing the lower level units as forming a two
dimensional grid .  Letters and words could then be presented by 
acti vati ng those units on the grid corresponding to the points of a stan
dard CRT font .  Figure 9 gi ves examples of some of the sti m ul i  used i n  
o u r  experiments. The grid we used was a 7 x 14 grid.  Each letter 
occurred in a 7 x 5 rectangular region on the grid .  There was room for 
two letters with some space i n  between, as shown in the figure. We 
then carried out a series of experiments in which we presented a set of 
word and/ or letter stimul i  to the system allowing i t  to extract relevant 
features. 

Before proceedi ng with a description of our experiments , i t  should be 
mentioned that these experiments required a sl ight addi t ion to the com
pet i t ive learni ng mechanism. The problem was that, unl ike the dipole 
st imul i , the letter st imul i  only sparsely covered the grid and many of 
the units in  the lower level never became active at all . Therefore, 
there was a possib i l i ty that , by chance, one of the uni ts would have 
most of i ts weight on input l ines that were never active, whereas 
another unit  may have had most of its weight on l ines common to al l of 
the stimulus patterns. Since a unit  never learns unless it wins, it is 
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FIG URE 9. Example st i m u l i  for the  word and let ter  exper i ments . 
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possib le that one of the un i ts wi l l  never win ,  and therefore never learn . 
Th is ,  of course, takes the compet i t ion out of compet i t i ve learning .  
Thi s  s i tuat ion i s  analogous to the s i tuat ion i n  the geometr ic analogy in  
which a l l  of the st imulus poin ts are relat ively close together on the 
hypersphere, and one of the weight vectors ,  by chance, poi nts near the 
cluster whi l e  the other one poin ts far from the s t imul i .  (See Figure 
1 0) . It i s  clear that the more distant vector is not closest to any 
st imulus and thus can never move toward the col lect ion . We have 
invest igated two modificat ions to the system which deal with the prob
lem. One, which we call the leaky learni ng model ,  modifies the learn
ing rule to state that both the winning and the losing un i ts move toward 
the presented st imulus :  the close vector s imply moves much further. 
In  symbols this suggests that 

Cik 
g, - - g, w ·  

nk 
IJ 

Cik 
gw -;;; - gw wij 

i f  un i t  j loses on st imulus k 

if unit  j wins on st imu lus  k 

where g, is the learn ing rate for the losing un i ts ,  gw is the learn ing rate 
for the winn ing un i t , and where g, «  gw . In our experiments we made 

FIGURE 1 0. A geometric interpretation of changes in st im u l us sensit i vity.  The larger 
the circle around the head of the weight vector the more sensi t i ve the unit. The decision 
as to which unit  wins is made on the basis of the distance from the circle rather than 
from the head of the weight vector. In  the example, the stimulus pattern i nd icated by 
the y is actually closer to the head of one vector 0 ,  but since i t  is closer to the circle sur
rounding vector p ,  unit  p wO�jhWftJ?8W�al 
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g, an order of magnitude smal ler than gw . This change has the property 
that it s lowly moves the losing units i n to the region where the actual 
stimul i  l ie ,  at which point they begin to capture some units and the 
ordinary dynamics of compet i t ive learn i ng take over. 

The second method i s  s imi lar to that employed by Bienenstock,  
Cooper, and Munro ( 1 982) , i n  which a unit modulates i ts own sensi
t iv ity so that when it  is  not receiving enough i n puts, i t  becomes 
i ncreasingly sensit ive .  When it is receiving too many inputs , i t  
decreases i ts sensit i vity.  This mechanism can be i mplemented i n  the 
present context by assuming that there is a threshold and that the 
relevant act i vation is the degree to which the unit  exceeds i ts threshold.  
If, whenever a uni t  fai l s  to win i t  decreases its threshold and whenever 
it does win i t  i ncreases i ts threshold, then this method wi l l  also make 
a l l  of the units eventually respond, thereby engaging the mechanism of 
compet i t ive learn i ng.  This  second method can be understood in terms 
of the geometric analogy that the weight vectors have a c ircle surround
ing the end of the vector. The relevant measure is not the distance to 
the vector i tself but the distance to the c ircle surrounding the vector. 
Every t ime a unit loses , i t  i ncreases the radi us of the c ircle; every t ime 
i t  wins, it decreases the rad i us of the ci rcle .  Eventually, the c i rcle on 
the losing unit wi l l  be large enough to be closer to some sti mulus pat
tern than the other units.  

We have used both of these mechanisms i n  our experiments and 
they appear to result in essential ly s imi lar behavior. The former, the 
leaky learning method, does not alter the formal analysis as long as the 
ratio  gd gw is sufficiently small .  The varying threshold method is more 
difficult to analyze and may, u nder some ci rcumstances, distort the 
competit ive learning process somewhat . After this diversion,  we can 
now return to our experi ments on the development of word/ posit ion
specific letter detectors and other feature detectors.  

Position-specific letter detectors. In our fi rst experi ment , we 
presented letter pai rs drawn from the set : AA, AB, BA , and BB. We 
began wi th clusters of size two. The results were u nequi vocal . The sys
tem developed posit ion-specific letter detectors. In some experimental 
runs, one of the units responded whenever AA or AB was presented, 
and the other responded whenever BA or BB was presented. In this 
case , Unit 1 represents an A detector i n  pos i t ion 1 and Unit 2 
represents a B detector for posit ion 1 .  Moreover, as i n  the word per
ception model , the letter detectors are, of course, in a mutually i nh i bi 
tory pool . On other experimental runs , the pattern was reversed . One 
of the uni ts responded whenever there was an A in the second posit ion 
and the other unit responded whenever there was a B in  the second 
posit ion.  Figure 1 1  shows the final configuration of weights for one of 
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FIGURE 1 1 .  The final configurat ion of weights for a system t rai ned on the s t imulus 
patterns A, B, C, D. 

our experimental runs. Note that although the uni ts  i l l ustrated here 
respond only to the letter in  the first pos i t ion , there i s  sti l l  weight on 
the active' l ines in the second posi t ion . It i s  just that the weights on the 
first posi t ion different iate between A and 8, whereas those on the 
second posit ion respond equal ly to the two letters .  In particular,  as sug
gested by our formal analysis ,  asym ptot ical l y  the weights on a gi ven 
l ine are proportionj'!  to the probabi l i ty that that l i ne is acti ve when the 
uni t  wins .  That i�, wij - p (un i t; = 1 1  un i tj wins) . Since the l ower 
level uni ts  unique to A occur equal ly as often as those unique to 8, the 
weights on those l i nes are roughly equal . The i n put l i nes common to 
the two letters are on twice as often as those unique to either letter, 
and hence, they have twice as much weight .  Those l i nes that never 
come on reach zero weight . 

Word detection units. In another experi men t ,  we presented the 
same st i m u l us patterns , but i ncreased the elements in  the cluster from 
two to four.  In th is  case , each of the four  level- two uni ts came to 
respond to one of the fou r  i nput patterns - i n  short , the system 
developed word detectors. Thus, if layer two were to consist of a 
number of clusters of various s izes, large cl usters wi th approx i mately 
one unit per word pattern wi I I  develop into word detectors, whi l e  
smal ler cl usters with approximately t h e  number of letters per spatia l  
posit ion wi I I  develop i nto posi t ion-specific  letter detectors. As we shal l 
see below, if the number of elements of a cluster i s  substant ially l ess 
than the number of letters per pos i t ion , then the cluster wi l l  come to 
detect posi t ion-specific l etter features . 

Effects of number of elements per serial position. In another experi
men t ,  we varied the number of elements in  a cluster and the number 
of letters per serial P�gW�JMl st imulus patterns drawn 
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from the set : AA. AB. A C. AD. BA . BB. BC. BD. In this case , we 
found that wi th clusters of size two, one unit  responded to the patterns 
beginning with A and the other responded to those beginning with B. 
In our previous experiment, when we had the same number of letters 
in each posi t ion , we found that the cl usters were indifferent as to which 
serial posit ion they responded. Some responded to posit ion 1 and oth
ers to posit ion 2. In this experi ment ,  we found that a two-element 
cluster always becomes a letter detector specific to serial posi t ion in 
which two letters vary . S imilarly, in the case of cl usters of size four we 
found that they always became letter detectors for the posi t ion i n  which 
four letters varied. Thus, in this case one responded to an A in the 
second posi t ion,  one responded to a B in  the second posit ion , one 
responded to a C in the second posit ion, and one responded to a D in  
the  second posit ion .  Clearly, there are two natural ways to cluster the 
stimulus patterns- two levels of structure. If the patterns are to be put 
in two categories , then the binary feature A or B in  the fi rst posit ion is 
the relevant distinction. On the other hand, if  the st imul i  are to be 
grouped into four  groups , the four  value feature determining the 
second letter is the relevant distinct ion.  The compet i t ive learning algo
rithm can discover ei ther of the levels of structure -depending on the 
number of elements in a cluster . 

Letter similarity effects. In another experiment ,  we studied the 
effects of letter s imi larity to look for units that detect letter features. 
We presented letter patterns consisting of a l etter in the fi rst posit ion 
only.  We chose the patterns so they formed two natural clusters based 
on the s imi lari ty of the letters to one another. We presented the letters 
A. B. S. and E. The letters were chosen so that they fel l  natural ly into 
two classes . In our font ,  the letters A and E are quite simi lar and the 
letters B and S are very similar .  We used a cluster of size two. Natur
ally, one of the units responded to the A or the E whi le  the other unit  
responded to the B or the S. The weights were largest on those 
features of the stimulus pai rs which were common among each of these 
s imi lar pai rs .  Thus, the system developed subletter-size feature detec
tors for the features relevant to the discrimination . 

Correlated teaching inputs. We carried out one other set of experi
ments with the word/ letter patterns. In this case, we used clusters of 
size two and presented stimuli drawn from the set : AA. BA. SB. EB. 
Note that on the left-hand side, we have the same four letters as we 
had i n  the previous experiment ,  but on the right-hand side we have 
only two patterns; these two patterns are correlated wi th the letter i n  
the first position. A n  A in  the second posit ion means that the first 
posit ion contains either an A or a B, whereas a B in the second position 
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means that the fi rst posit ion con tains either an S or an E. Note further 
that those correla t ions between the first and second pos i t ions are i n  
opposi t ion t o  the " natural " s imilarity of t h e  letters in  the first serial 
posi t ion.  In this experiment,  we fi rst trained the system on the four 
sti mul i  described above. Since the second serial posit ion had only t wo 
letters in i t ,  the size-two cluster became a posi t ion-specific letter detec
tor for the second serial posi t ion.  One uni t  responded to the A and one 
to the B in the second posi t ion .  Notice that the un i ts are also respond
ing to the letters in the fi rst serial posi t ion as wel l .  One unit  is 
responding to an A or a B in the fi rst posit ion whi le the other responds 
to an E or an S. Figure 1 2  shows the patterns of weights developed by 
the two uni ts .  After train i ng, the system was then presented patterns 
containing only  the fi rst letter of the pai r and , as expected , the system 
had learned the " unnatural " classification of the let ters in the fi rst pos i 
t ion .  Here the strong correlation between the fi rst and second posi t ion 
led the competi t i ve learni ng mechanism to override the strong correla
t ion between the highly similar stimulus patterns in the fi rst serial posi
t ion.  This  suggests that even though the compet i t i ve learning system is 
an " unsupervised " learni ng mechanism, one can control what i t  learns 
by control l ing the stat ist ical structure of the stimulus patterns bei ng 
presented to i t .  In this sense , we can th ink of the right-hand letter i n  
this experiment as being a kind o f  teaching st imulus aimed at determin
i ng the classification learned for other aspects of the st imulus .  I t  
should also be noted that th is  teach ing mechanism is essential ly the 
same as the so-cal led errorless learning procedure used by Terrace 
( 963) in train ing pigeons to peck a certain  color key by associating that 
color with a response situation where the ir  pecking is  determi ned by 
other factors . As we shall see below, this correlational teaching 
mechanism is  useful in al lowi ng the competi t i ve learning mechan ism to 
discover features which i t  otherwise would be unable to discover . 
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FIGURE 1 2. The pattern of weights developed i n  the correlated learning e x periment .  
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Horizontal and Vertical Lines 

One of the c lassical ly difficult  problems for a l i near threshold device 
l i ke a perceptron is to distinguish between horizontal and vert ical l ines .  
In  general , horizontal and vertical l i nes are not l i nearly separable and 
requi re a mult i layer perceptron system to dist inguish them. One of the 
goals of the competi t ive learn ing device is for i t  to discover features 
that , at a higher level of analysis, might be useful for discriminating 
patterns which might not otherwise be discr iminable with a l i near 
threshold-type device. It is therefore of some interest to see what 
k inds of features the competi t ive learning mechan ism discovers when 
presented wi th a set of vertical and horizontal l ines . In the fol l owing 
discussion , we chronicle a series of experi ments on this problem. 
Several of the experiments ended i n  fai l u re ,  but we were able to dis
cover a way i n which competi t i ve learn ing systems can be put together 
to bui ld a h ierarchical feature detect ion system capable of d iscrimi nat
i ng vertical and horizontal l i nes. We proceed by sketchi ng several of 
our fai lures as well  as our successes because the way in which the sys
tem fai ls  is elucidat ing .  It should be noted at the outset that our goal is 
not so much to present a model of how the h u man learns to disti nguish 
between vertical and horizontal l ines ( i ndeed, such a d ist inction is  prob
ably prewi red in the human system) , but rather to show how competi
t ive learni ng can d iscover features which al low for the system to learn 
dist inctions with  multi ple layers of un i ts t hat cannot be learned by 
s ingle-layered systems. Learning to dist inguish verti cal and horizontal 
l ines is simply a paradigm case . 

I n  this set of experi ments, we represented the lower level of units as 
if they were on a 6 x 6  grid.  We then had a total of 1 2  sti mulus pat
terns, each consist ing of turning on six Level 1 units in a row on the 
grid. Figure 1 3  i l lustrates the grid and several of the st i mulus patterns. 
Ideally ,  one might hope that one of the uni ts would respond whenever 
a vertical l ine is  presented� the other would respond whenever a 
horizontal l ine is presented. Unfortunately, a l i t t le  thought indicates 
that this is i mpossible.  S ince every input un i t  part ici pates in exactly 
one vertical and one horizontal l i ne ,  there is no configurat ion of 
weights which wi l l  disti nguish vertical from horizonta l .  This i s  exactly 
why no l inear threshold device can dist inguish between vertical and 
horizontal l i nes in one leve l .  S i nce that must fai l ,  we might hope that 
some clusters in  the compet i t i ve learning device wi l l  respond to vertical 
l i nes by assigning weights as i l l ustrated in Figure 1 4 .  In  this case, one 
unit  of the pai r would respond whenever the fi rst, second, or fourth 
vertical l i ne was presented , and another would respond whenever the 
thi rd ,  fi fth,  or  sixth vertical line was presented� si nce both units would 
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· . . . . . 
· . . . .  . 

A · . . . . . 
· . . . . . 
· . . . . . · . . . .  . 

· . . . . . 
· . . . . . 

8 · . . . .  . 

· . . . .  . 
· . . . . . 
· . . . . . 

• • • • • •  

c 
· . . . . . 

o 
• • • • • •  

FIGURE 1 3 .  Stimulus patterns for the horizontal / vertica l  d iscr imination experi ments.  

receive about the same i n put in  the face of a horizontal l ine, we might 
expect that someti mes one and someti mes the other wou ld  wi n the 
compet i t ion but that the primary response would be to vertical l i nes. If  
other c lusters settled down si mi larly to horizontal l ines, then a uni t at 
the third level look ing at the output of the various clusters could dist in
guish vertical and horizontal . Unfortunate ly ,  that i s  not the pattern of 
weights discovered by the competi t ive learn ing mechanism. Rather, a 
typical pattern of we ights is i l lustrated i n  Figure 1 5 . In th is  arrange
ment ,  each cluster responds to exactly three horizontal and three vert i 
cal l ines. Such a cl uster has l ost a l l  information that m ight dist inguish 
vertical from horizontal . We have discovered a feature of absol utely no 
use i n  this  dist inction . In fact ,  such featu res systemat ical ly throw away 
the informat ion relevant to horizontal vs . vertical . Some further 
thought indicates why such a result  occurred. Note, in particular, that 
two horizontal l ines have exactly nothing in common. The grid that we 
show i n  the diagrams is merely for our convenience . As far as the 
units are concerned there are 36 unordered input units;  someti mes 
some of those uni ts are acti ve .  Pattern s imi larity is determi ned ent i rely 
by pattern overlap. Since horizon tal l i nes don ' t i ntersect , they have no 
units in  common , thus they are not seen as s imi lar at al l .  However , 
every horizontal l ine  intersects with every vertical l ine  and thus has 
much more in commorCDAb"igfdltitM'clfDmJlthan wi th other hori zontal 
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· .. . . .. .. 
· . . . .  .. 
· . . . . . Unit 1 Cluster 1 
· .. . . .  .. 
· . . . . .. 
· .. . . ..  . 
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· . . . . .  
.. . . .. . .  Unit 2 Cluster 1 
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• • • • • •  
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FIGURE 14 .  A poss ib le weight configuration which could dist inguish vertical rrom 
horizontal .  

· . .. . ..  

• • • • • 

· . .. . .  

• • • • • 

• • • • • 
• • • • • 

Unit 1 

Unit 2 

FIGURE 1 5. A typical configuration or weights for the vertica l/horizontal discrimina
t ion.  

ones . It is this simi lari ty that the competit ive learning mechanism has 
discovered . 

Now, suppose that we change the system somewhat . Suppose that 
we " teach " the system the difference between vert ical and horizontal 
(as we did in the previous experiments with letter strings) . In this 
experiment we used a 1 2  x 6 grid.  On the right-hand side of the grid we 
presented either a vertiebtPyri3hPJ>hiijlOfI);Jjne, as we did before . On 
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the left- hand side of the grid we always presented the u ppermost 
horizontal l ine whenever any horizontal l ine was presented on the 
right-hand grid,  and we always presented the vertical l ine furthest to 
the left on the left-hand grid whenever we presented any vertical l ine 
on the right-hand side of the grid.  We then had a cluster of two units 
receiving inputs from all 1 2 x 6  = 72  lower level units .  (Figure 1 6  
shows several of the stimulus patterns.)  

As expected, the two uni ts soon l earned to discriminate between 
vertical and horizontal l ines. One of the units responded whenever a 
vertical l ine was presented and the other responded whenever a 
horizontal l ine was presented. They were responding, however, to the 
pattern on the left-hand side rather than to the vertical and horizontal 
pattern on the right .  This too should be expected. Recall  that the 
value of the wij approaches a value which is proportional to the proba
bi l i ty that input unit  ; is active, given that unit  j won the competit ion.  
Now, in  the case of the unit  that responds to vertical l ines for example ,  
every unit  on the  right-hand grid occurs equally often so  that a l l  of  the 
weights connecting to units in that grid have equal weights. The same 
is true for the unit responding · to the horizontal l ine. The weights on 

· . . . . . . . . . . . 
· . . . . . . . . 
· . . . . . . .  

A · ·  . . . . . . • . .  . 

B 

c 

o 

· . . . . . • . 
· . . . . . 

• · · • · · 

• · · • · · 

• · · • · · 

• · . · • · · 

• · . . · • · 

· . . . . . . . . . 

• • • • • • • • • • • •  

• • • • • • • • • •  
· . . . . . . . .  . 

· . . . . . . . .  . 
· . . . . . . . . . .  . 

• • • • • • • •  
· . . . . . . . . . . . 

FIGURE 16 .  Stimulus patterns for the vertical/ horizontal d iscrimination experiments 
with a correlated " teaching" inO){)�.tiWfrtrIJl¥M· 
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the right-hand grid are identical for the two cluster members. Thus, 
when the " teacher" is  turned off, and only the right-hand figure is 
presented, the two units respond randomly and show no evidence of 
having learned the horizontal I vertical distinct ion .  

Suppose , however ,  that we have four, rather than two, uni ts in the 
level -two clusters. We ran this experiment and found that of the four 
un i ts ,  two of them divided up the vertical patterns and two of them 
di vided up the horizontal patterns . Figure 1 7 i l l ustrates the weight 
values for one of our runs. One of the units took three of the vertical 
l i ne patterns; another unit took three other vert ical patterns. A third 
uni t  responded to three of the horizontal l ine  patterns , and the last unit  
responded to the remaining three horizontal l ines. Moreover, after we 
took away the " teaching"  pattern , the system continued to classify the 
vertical and horizontal l ines just as i t  did when the left-hand " teaching"  
pattern was present .  

• 
• 
• 
• 
• 
• 

Unit 1 

Unit 3 

Cluster 1 

• 
• 
• 
• 
• 
• 

Unit 2 

Unit 4 
. . . .  . .  . . . . . . • • • • • •  

• 
• 
• 
• 

Un it 1 

Unit 3 
• • • • • •  

Cluster 2 

U n it 2 
. . . . . . . . . . . .  

• 
• 
• 
• 
• 
• 

Unit 4 

FIGURE 1 7 .  The weight values for the two clusters of size four for the 
vert ical/ horizontal discri mination experiment wi th a correlated " teaching " stimulus. 
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In one final experi ment wi th vert i cal  and horizontal l ines,  we 
developed a three-level system in which we used the same st imulus pat
terns as in the previous experi ment ;  the only d ifference was that we 
had two clusters of four units at the second level and one cluster of two 
units at the t h i rd level . Figure 1 8  shows the archi tecture employed . In 
th is  case , the two four-element cl usters each learned to respond to sub
sets of the vertical and horizontal l ines as in the previous experi ment .  
The two clusters general ly responded to different subsets , however. 
Thus, when the upper horizontal l ine was presented,  Unit 1 of the fi rst 
cluster responded and Unit  3 of the second cluster responded. When 
the bottom horizontal l ine was presented , Unit  1 of the fi rst cl uster 
responded again ,  but Unit 4 of the second cl uster also responded . 
Thus, the cluster of size two at the highest level was recei ving a k ind of 
dipole st imulus .  I t  has four i nputs and on any trial , two of them are 
act i ve .  As wi t h  our analysis of di pole st imul i ,  we know that st imul i that 
overlap are always put in the same category. Note that when a vertical 
l ine is  presented, one of the two units in each of the middle layers of 
clusters that responds to vertical l ines wi l l  become act ive ,  and that none 
of the uni ts that respond to horizontal l ines wi l l  ever be acti ve; thus, 
th is  means that there are two uni ts i n  each middle layer cluster that 
respond to vertical l ines . Whenever a vert ical l i ne i s  presented ,  one of 
the uni ts in each cl uster wi l l  become acti ve .  None of the horizontal 
units will ever be acti ve i n  the face of a vertical sti mulus.  Thus, one of 
the units at the h ighest level learns to respond whenever a vertical l ine  
is  presented , and the other unit  responds whenever a horizontal l i ne is  

Layer 1 

Layer 2 

• • • • • Input Units 

FIGURE 1 8 .  The archi tect ure for t he three-level horizontal / vert ica l d iscri m i nation 

experi ment.  
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presented.  Once the system has been trained,  this occurs despite the 
absence of the " teachingh stimulus. Thus, what we have shown is that 
the competitive learning mechanism can, under certain conditions, 
develop feature detectors which allow the system to distinguish among 
patterns that are not differentiable by a simple l inear unit in one level .  

CONCLUSION 

We have shown how a very simple competit ive mechanism can dis
cover a set of feature detectors that capture important aspects of the set 
of stimulus input patterns. We have also shown how these feature 
detectors can form the basis of a multilayer system that can serve to 
learn categorizations of stimulus sets that are not linearly separable. 
We have shown how the use of correlated stimul i  can serve as a kind of 
''teachingh input to the system to allow the development of feature 
detectors which would not develop otherwise. Although we find the 
competitive learning mechanism a very interesting and powerful learn
ing principle, we do not, of course , i magine that i t  is the only learning 
principle. Competitive learning is an essentially nonassociative, statisti
cal learning scheme. We certainly i magine that other kinds of learning 
mechanisms wil l  be involved in  the building of associations among pat
terns of activation in a more complete neural network . We offer this 
analysis of these competitive learning mechanisms to further our 
understanding of how simple adaptive networks can discover features 
important in the description of the stimulus environment in which the 
system finds itself. 
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APPENDIX 

For the case of homogeneous dipole stimulus patterns, i t  is possible 
to derive an expression for the most stable equi l ibrium state of the sys
tem. We say that a set of d ipole st imulus patterns is homogeneous i f  
(a) they are equally likely and (b) for every input pattern in the set 
there are a fi xed number of other input patterns that overlap them. 
These condi t ions were met i n  our si mulations. Our measure of stabi l i ty 
is given by 

T = LPkLL Vjk (£rjk - £r ik ) '  
k j i 

S. 1 . 
mce Pk = N ' we can WrIte 

Summing the fi rst portion of the equation over i and the second over j 
we have 

T = M
N LL Vjk£rjk - N

1 LL£r ik L Vjk ' 
j k i k j 

Now note that when Pk = 1/ N,  we have £r ik = L 'kj vijl L Vkl '  Further-
j , 

more, L V,k = 1 and L V'k = N" where N, is the number of patterns 
I k 

captured by unit I .  Thus, we have 

Now, since all stimuli  are the same size, we have 'ij = 'ji '  Moreover, 
since all stimuli have the same number of neighbors , we have 
L'/j = L'i} = R ,  where R is a constant determined by the d imen-

slonal i t/of the stimulus space from which the dipole stimuli are drawn. 
Thus, we have 

L Vii 
M R ""  I 

T = -N LL Vjk£rjk - N �-N.. ' 
j k I I 
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and we have 

M RM 
T =  N�� Vjk(ljk - N '  

Since R ,  M. and N are constants, we have that T is maximum when
ever T ' =  L L VjkCXjk is maximum. Now substituting for (ljb we can 

j k 
write 

We can now substitute for the product Vjk vjI the term 
Vjk - Vjk ( 1  - vjl ) ' We then can write 

T ' = L N
1 

LL 'kl Vjk - L N
1 

LL 'kl Vjk ( l - vjI ) ' 
j J k l j J k l 

Summing the first term of the equation first over I, then over k, and 
then over j, gi ves us 

T ' = MR - L N
1 

LL 'kl Vjk ( l - vjI ) ' 
j J k I 

Now, recall that 'kl is given by the degree of stimulus overlap between 
stimulus 1 and stimulus k. In the case of dipoles there are only three 
possible values of 'k( 

'kl = I � 
1/ 2 

no overlap 
k=1 
otherwise 

Now, the second term of the equation for T '  is 0 if either 'kl = 0 or if 
Vjk ( 1 - vjI ) = O.  S ince Vik is either 1 or 0, this will be zero whenever 
j= l .  Thus, for all nonzero cases in the second term we have 'kl = 0.  
Thus we have 

T ' = MR - .1. L _1 
LL vjk ( l - vjI ) ' 

2 j
N

j k l 

Finally, note that LL vjk ( 1  - vjI ) is I and 'kl is � in each case in 
k I 

which different units capture neighboring patterns. We refer to this as 
a case of bad neighbo,s and let Bj designate the number of bad 
neighbors for unit j. Thus, we have 
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1 B · T ' = MR - _r,_l . 
2 . Nj 1 

B 
Finally, we can see that T '  wi l l  be a maximum whenever T il = � �. i s  

I .I 
minimum. Thus, minimiz ing T il leads to the max imal ly  stable sol u t ion 
in this case. 
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CHAPTER 6 

Information Processing in Dynamical Systems: 

Foundations of Harmony Theory 

P. SMOLENSKY 

INTRODUCTION 

The Theory of Information Processing 

At this early stage in the development of cognit ive science, methodo
logical issues are both open and central . There may have been t imes 
when developments in neuroscience, artificial intell igence, or cognitive 
psychology seduced researchers into bel ieving that their discipline was 
on the verge of discovering the secret of intel l igence. But a humbling 
history of hopes disappointed has produced the realization that under
standing the mind will chal lenge the power of al l these methodologies 
combined. 

The work reported in this chapter rests on the conviction that a 
methodology that has a crucial role to play in the development of cog
nit ive science is mathematical analysis. The success of cognitive sci
ence, l ike that of many other sciences , wi l l ,  I believe ,  depend upon the 
construction of a sol id body of theoretical results: results that express in 
a mathematical language the conceptual insights of the field; results 
that squeeze al l possible impl ications out of those insights by exploiting 
powerful mathematical techniques. 

This body of results, which I wi l l  cal l  the theory 0/ in/ormation process
ing, exists because information is a concept that lends itself to 
mathematical formalization. One part of the theory of information pro
cessing is al ready wel l -developed. The classical theory of computation 
provides powerful and elegant results about the notion of effective 
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procedure, including languages for precisely expressing them and 
theoretical machines for realizing them. This body of theory grew out 
of mathematical logic, and in tum contributed to computer science, 
physical computing systems, and the theoretical paradigm in cognitive 
science often called the (von Neumann) computer metaphor.l 

In his paper "Physical Symbol Systems," Allen Newell (1 980) articu
lated the role of the mathematical theory of symbolic computation in 
cognitive science and furnished a manifesto for what I will call the sym
bolic paradigm. The present book offers an alternative paradigm for 
cognitive science, the subsymbolic paradigm, in which the most powerful 
level of description of cognitive systems is hypothesized to be lower 
than the level that is naturally described by symbol manipulation. 

The fundamental insights into cognition explored by the subsymbolic 
paradigm do not involve effective procedures and symbol manipulation. 
Instead they involve the "spread of activation," relaxation, and statistical 
correlation. The mathematical language in which these concepts are 
naturally expressed are probability theory and the theory of dynamical 
systems. By dynamical systems theory I mean the study of sets of 
numerical variables (e.g., activation levels) that evolve in time in paral
lel and interact through differential equations. The classical theory of 
dynamical systems includes the study of natural physical systems (e.g., 
mathematical physics) and artificially designed systems (e.g., control 
theory). Mathematical characterizations of dynamical systems that for
malize the insights of the subsymbolic paradigm would be most helpful 
in developing the paradigm. 

This chapter introduces harmony theory, a mathematical framework 
for studying a class of dynamical systems that . perform cognitive tasks 
according to the account of the subsymbolic paradigm. These dynami
cal systems can serve as models of human cognition or as designs for 
artificial cognitive systems. The ultimate goal of the enterprise is to 
develop a body of mathematical results for the theory of information 
processing that complements the results of the classical theory of (sym
bolic) computation. These results would serve as the basis for a mani
festo for the subsymbolic paradigm comparable to Newell's manifesto 
for the symbolic paradigm. The promise offered by this goal will, I 
hope, be suggested by the results of this chapter, despite their very lim
ited scope. 

1 Mathematical logic has recently given rise to another approach to formalizing infor
mation: situation semantics (Barwise & Perry, 1983). This is related to Shannon's 

(1948/1963) measure of information through the work of Dretske (1981). The approach 
of this chapter is more faithful to the probabilistic formulation of Shannon than is the 

symbolic approach of situation semantics. (This results from Dretske's move of identify
ing information with conditional probabilities of I.) 
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It should be noted that harmony theory is a "theoryh in the 
mathematical sense, not the scientific sense. By a "mathematical 
theory" -e.g., number theory, group theory, probability theory, the 
theory of computation-I mean a body of knowledge about a part of the 
ideal mathematical world� a set of definitions, axioms, theorems, and 
analytic techniques that are tightly interrelated. Such mathematical 
theories are distinct from scientific theories, which are of course bodies 
of knowledge about a part of the "real" world. Mathematical theories 
provide a language for expressing scientific theories� a given mathemat
ical theory can be used to express a large class of scientific theories. 
Group theory, for example, provides a language for expressing many 
competing theories of elementary particles. Similarly, harmony theory 
can be used to express many alternative theories about various cogni
tive phenomena. The point is that without the concepts and techniques 
of the mathematical language of group theory, the formulation of any 
of the current scientific theories of elementary particles would be essen
tially impossible. 

The goal of harmony theory is to provide a powerful language for 
expressing cognitive theories in the subsymbolic paradigm, a language 
that complements the existing languages for symbol manipulation. 
Since harmony theory is conceived as a language for using the subsym
bolic paradigm to describe cognition, it embodies the fundamental 
scientific claims of that paradigm. But on many important issues, such 
as how knowledge is represented in detail for particular cases, harmony 
theory does not itself make commitments. Rather, it provides a 
language for stating alternative hypotheses and techniques for studying 
their consequences. 

A Top-Down Theoretical Strategy 

How can mathematical analysis be used to study the processing 
mechanisms underlying the performance of some cognitive task? 

One strategy, often associated with David Marr (I 982), is to charac
terize the task in a way that allows mathematical derivation of mechan
isms that perform it. This top-down theoretical strategy is pursued in 
harmony theory. My claim is not that the strategy leads to descriptions 
that are necessarily applicable to all cognitive systems, but rather that 
the strategy leads to new insights, mathematical results, computer 
architectures, and computer models that fill in the relatively unexplored 
conceptual world of parallel, massively distributed systems that perform 
cognitive tasks. Filling in this conceptual world is a necessary subtask, 
I believe, for understanding how brains and minds are capable of intel
ligence and for assessing whether computers with novel architectures 
might share this capabili�opyrighted Material 
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The Centrality of Perceptual Processing 

The cognitive task I wi l l  study i n  this chapter is an abstract ion of the 
task of percept ion . This abstraction includes many cogn iti ve tasks that 
are customari ly regarded as much " higher level" than perception (e.g. , 
intuiting answers to physics problems) .  A few comments on the role of 
perceptual processing in the subsymbolic paradigm are useful at this 
point .  

The vast majority of cognit ive process ing l ies between the highest 
cogn itive levels of expl icit logical reasoning and the lowest levels of 
sensory processing. Descriptions of processing at the extremes are rela
tively well-informed -on the high end by formal logic and on the low 
end by natura l  science . In the middle l ies a conceptua l abyss. How are 
we to conceptualize cognitive process ing in this abyss? 

The strategy of the symbolic paradigm is to conceptual ize processing 
in the intermediate levels as symbol manipulation . Other kinds of pro
cessing are viewed as l imited to extremely low levels of sensory and 
motor processing. Thus symbol ic theorists climb down into the abyss , 
clutching a rope of symbol ic logic anchored at the top, hoping it wi l l  
stretch al l  the way to the bottom of the abyss. 

The subsymbol ic paradigm takes the opposite view, that intermediate 
processing mechanisms are of the same kind as perceptual processing 
mechanisms. Logic and symbol manipulat ion are viewed as appropriate 
descripti ons only of the few cogni t ive processes that explic it ly invol ve 
logical reasoning. Subsymbolic theorists c l imb up into the abyss on a 
perceptual l adder anchored at the bottom, hoping i t  wil l  extend all the 
way to the top of the abyss. 2 

2 There is no contradiction between working from lower level, perceptual processes up 
towards higher processes, and pursuing a top-down theoret ical strategy. It is important to 
distinguish levels of processing entities from levels of theoretical entities. Higher level 
processes involve computational entities that are computationally distant from the peri
pheral, sensorimotor entities that comprise the "lowest level" of processing. These pro
cessing levels taken together form the processing system as a whole; they causally interact 
with each other through bottom-up and top-down processing. Higher level theories 
involve descriptive entities that are descriptively distant from entities that are directly part 
of an actual processing mechanism; these comprise the "lowest level" description. Each 
theoretical level individually describes the processing system as a whole; the interaction of 
descriptive levels is not causal, but definitional. (For example, changes in individual 
neural firing rates at the ret ina cause changes in individual firing rates in v isual cortex 
after a delay related to causal information propagation . The same changes in individual 
retinal neuron firing rates by definition change the average firing rates of pools of retinal 
neurons; these higher level descriptive entities change instantly, without any causal infor
mation propagation from the lower level description.) Thus in harmony theory, models 
of higher level processes are derived from models of lower level, perceptual, processes, 
while lower level descriptions oe8p�M��'lfJ&�a

rJ�i�f from higher level descriptions. 
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In this chapter, I wil l  analyze an abstraction of the task of perception 
that encompasses many tasks, from low, through intermediate, to high 
cognit ive levels. The analysis l eads to a general kind of " perceptual" 
processing mechanism that is a powerful potential component of an 
information processing system. The abstract task I analyze captures a 
common part of the tasks of passing from an intensity pattern to a set 
of objects in three-dimensional space , from a sound pattern to a 
sequence of words, from a sequence of words to a semantic description, 
from a set of patient symptoms to a set of disease states, from a set of 
givens in  a physics problem to a set of unknowns. Each of these 
processes is viewed as completing an internal representation of a static 
state of an external world. By sui tably abstracting the task of interpreting 
a static sensory input , we can arri ve at a theory of interpretation of static 
input generally, a theory of the completion task that applies to many cog
nit ive phenomena in  the gulf between perception and logical reasoning. 
An application that will be described in some detail is qualitative prob
lem solving in ci rcuit analysis . 3 

The central idea of the top-down theoretical strategy is that properties 
of the task are powerful ly constraining on mechanisms. This idea can 
be wel l exploited wi thin a perceptual approach to cognit ion , where the 
constraints on the perceptual task are characterized through the con
straints operative in the external environment from which the inputs 
come. This permits an analysis of how internal representation of these 
constraints within the cognit ive system i tself al lows it to perform its 
task. These kinds of considerations have been emphasized in the 
psychological l i terature prominently by Gibson and Shepard (see 
Shepard, 1984); they are fundamental to harmony theory. 

Structure of the Chapter 

The goal of harmony theory is to develop a mathematical theory of 
information process ing in the subsymbol ic paradigm. However,  the 
theory grows out of ideas that can be stated with l i tt le or no mathemat
ics. The organization of this chapter reflects an attempt to ensure that 
the central concepts are not obscured by mathematical opacity. The 
analysis will be presented in three parts ,  each part increasing in the 
level of formality and detail. My hope is that the sl ight redundancy 

3 Many cognitive tasks involve interpreting or controlling events that unfold over an 
extended period of time. To deal properly with such tasks, harmony theory must be 
extended from the interpretation of static environments to the interpretation of dynamic 
environments. 
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introduced by this expository organization wi l l  be repaid by greater 
accessibi l i ty . 

Section 1 is a top-down presentation of how the perceptual perspec
tive on cognit ion l eads to the basic features of harmony theory. This 
presentation starts with a part icular perceptual mode l ,  the l etter
perception model of McClelland and Rumelhart (I 98 1), and abstracts 
from it general features that can apply to model ing of higher cognitive 
processes .  Crucial to the development is a particular formulation of 
aspects of schema theory, along the l ines of Rumelhart (I 980) . 

Section 2 ,  the majority of the chapter , is a bottom-up presentati on of 
harmony theory that starts wi th the primitives of the knowledge 
representation. Theorems are i nformal ly described that provide a com
petence theory for a cogni t ive system that performs the completion 
task, a machine that real izes this theory, and a learning procedure 
through which the machine can absorb the necessary information from 
its environment . Then an appl icat ion of the general theory is 
described : a model of intu i t ive ,  qual i tative problem-solving in elemen
tary electric c ircui ts .  This model i l l ustrates several points about the 
relation between symbolic and subsymbol ic descriptions of cogni t ive 
phenomena; for example ,  i t  furnishes a sharp contrast between the 
description at these two levels of the nature and acquisition of 
expertise. 

The final part of the chapter is an Appendix containing a concise but 
self-contained formal presentation of the definit ions and theorems . 

SECTION 1: SCHEMA THEORY AND 
SELF -CONSISTENCY 

THE LOGICAL STRUCTURE OF HARMONY THEORY 

The logical structure of harmony theory is shown schematically in  
Figure 1 .  The box labeled Mathematical Theory represents the use of  
mathemati cal analysis and computer s imulation for drawing out  the 
implications of the fundamental principles .  These principles comprise a 
mathematical characterizat ion of computat ional requ i rements of a cog
nit ive system that perforCJljip}lnyRftJlJJM8mffctask. From these principles 
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FIGURE \. The logical structure of harmony theory. 
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it is possible to mathematically analyze aspects of the resulting perform
ance as well as rigorously derive the rules for a machine implementing 

the computational requirements. The rules defining this machine have 
a different status from those defining most other computer models of 
cognition: They are not ad hoc, or post hoc; rather they are logically 
derived from a set of computational requirements. This is one sense in 
which harmony theory has a top-down theoretical development. 

Where do the " mathematically characterized computational require
ments" of Figure I come from? They are a formalization of a descrip

tive characterization of cognitive processing, a simple form of schema 
theory. In Section 1 of this chapter, I will give a description of this 
form of schema theory and show how to transform the descriptive char
acterization into a mathematical one-how to get from the conceptual 
box of Figure 1 into the mathematical box. Once we are in the formal 
world, mathematical analysis and computer simulation can be put to 

work. 
Throughout Section 1, the main points of the development will be 

explicitly enumerated. 

Point I. The mathematics of harmony theory is founded on familiar 
concepts Q{ cognitive science: inference through activation q{ schemata. 
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DYNAMIC CONSTRUCTION OF SCHEMATA 

The basic problem can be posed a la Schank (980), Whi le eat ing at 
a fancy restaurant, you get a headache. Without effort , you ask the 
wai tress i f  she could poss ibly get you an aspi rin .  How is this plan 
created? You have never had a headache in a restaurant before .  Ordi
narily, when you get a headache your plan is to go to your medicine 
cabinet and get yourself some aspiri n .  In the current s i tuation , this 
plan must be modified by the knowledge that i n  good restaurants, the 
management is  wi lling to expend effort to please i ts customers , and that 
the waitress is a l iaison to that management. 

The cogni t ive demands of this situation are schematically i llustrated 
in Figure 2. Ordinari ly, the restaurant context calls for a "restaurant 
script" which supports the plann ing and inferenci ng requi red to reach 
the usual goal of gett ing a meal . Ordinarily, the headache context calls 
for a "headache script" which supports the plann ing requi red to get aspi
rin in the usual context of home. The completely novel context of a 
headache i n  a restaurant calls for a special-purpose scri pt integrating the 
knowledge that ordinarily manifests i tself in two separate scripts. 

What k ind of cogni t ive system is capable of this degree of flexi bil i ty? 
Suppose that the knowledge base of the system does not consist of a set 
of scripts like the restaurant script and the headache script . Suppose 

restaurant 

context 

headache 

contexl 

restaurant ---"'... 
& headache --v-"'" 
context 

Headache in a Restaurant 

restaurant 

script 

headache 

script 

special

purpose 

script 

... Inferences, goals 

... inferences, goals 

... 'ask waitress 

for aspirin' 

FIGURE 2. In three different contexts, the knowledge base must produce three different 

scripts. 
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i nstead that the knowledge base is a set of knowledge atoms that config
ure themselves dynamically  in each context to form tailor-made scripts. 
This is the fundamental idea formalized in harmony theory. 4 

The degree of flexibi l ity demanded of scripts is equaled by that 
demanded of all conceptual structures. 5 For example, metaphor is an 
extreme example of the flexibi lity demanded of word meanings; even 
so-called l i teral meaning on c loser inspection actual ly relies on extreme 
flexibility of knowledge application (Rumelhart , 1 979) .  In this chapter 
I wil l  consider knowledge structures that embody our knowledge of 
objects , words, and other concepts of comparable complexity; these I 
wil l  refer to as schemata. The defining propert ies of schemata are that 
they have conceptual interpretations and that they support inference. 

For lack of a better term, I wil l  use knowledge atoms to refer to the 
elementary constituents of which I assume schemata to be composed. 6 
These atoms will shortly be given a precise description; they will be 
interpreted as a particular instantiation of the idea of memory trace. 

Point 2. At the time of inference, stored knowledge atoms are dynami
cally assembled into context-sensitive schemata. 

This view of schemata was explicitly articulated in Feldman ( 1 98 1 ) .  
I t  is in part embodied i n  the McClelland and Rumelhart (I 98I ) letter
perception model (see Chapter 1 ). One of the observed phenomena 
accounted for by this model is the facilitat ion of the perception of 
l etters that are embedded in words. Viewing the perception of a letter 
as the resul t  of a perceptual i nference process , we can say that this 
inference is supported by a word schema that appears in the model as a 
single processing unit that encodes the knowledge of the spell i ng of that 
word. This is not an instantiation of the view of schemata as dynami
cally created entit ies. 

4 Schank (J 980) describes a symbolic implementation of the idea of dynamic script con
struction; harmony theory constitutes a subsymbolic formalization. 

5 Hofstadter has long been making the case for the inadequacy of traditional symbolic 
descriptions to cope with the power and flexibility of concepts. For his most recent argu
ment, see Hofstadter (\985). He argues for the need to admit the approximate nature of 
symbolic descriptions, and to explicitly consider processes that are subcognitive. In 

Hofstadter (\979, p. 324m, this same case was phrased in terms of the need for "active 
symbols," of which the "schemata" described here can be viewed as instances. 

6 A physicist might call these particles gnosons or sophons, but these terms seem quite 
uneuphonious. An acronym for Units for Constructing Schemata Dynamically might serve, 
but would perhaps be taken as an advertising gimmick. So I have stuck with "knowledge 

atoms." 
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However, the model also accounts for the observed fac i l i tat ion of 
letter perception with in  orthographically regular nonwords or pseudo
words l i ke MAVE. When the model processes this st imulus, several 
word units become and stay quite acti ve, including MAKE, WA VE, 
HA VE, and other words orthographical ly s imi lar to MA VE. In this 
case, the perception of a letter in the st imulus is the result of an infer
ence process that i s  supported by the collection of acti vated units. This  
collection is a dynamically created pseudo word schema. 

When an orthographically irregular non word is processed by the 
model , letter perception i s  slowest. As in the case of pseudowords, 
many word units become act ive .  However, none become very act i ve, 
and very many are equally acti ve ,  and these words have very li ttle s imi
larity to each other, so they do not support i nference about the letters 
effect ively. Thus the knowledge base i s  incapable of creating schemata 
for i rregular nonwords . 

Point 3. Schemata are coherent assemblies of knowledge atoms; only 
these can support inference. 

Note that schemata are created simply by activating the appropriate 
atoms. This brings us to what was labeled in  Figure 1 the " descripti vely 
characterized computational requirements" for harmony theory: 

Point 4: The harmony principle. The cognitive system is an engine for 
activating coherent assemblies of atoms and drawing inferences that are 
consistent with the knowled,?e represented by the activated atoms. 

Subassemblies of activated atums that tend to recur exactly or approxi
mately are the schemata. 

This principle focuses attention on the notion of coherency or con
sistency. This concept will be formal ized under the name of harmony, 
and its centrality is acknowledged by the name of the theory. 

MICRO· AND MACROLEVELS 

It is important to realize that harmony theory, l ike al l subsymbolic 
accounts of cognition, exists on two dist inct l evels of description: a 
microlevel involving knowledge atoms and a macrolevel involving sche
mata (see Chapter 1 4) .  These levels of description are compl etely 
analogous to other micro- and macrotheories , for example, i n  physics. 
The microtheory, quantum physics, is assumed to be universally valid. 
Part of its job as a theory is to explain why the approximate 

macrotheory classical phvsics..2 works when it does and why it breaks , 
COPYflghted Matenal 
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down when it does . Understanding of physics requi res understanding 
both levels of theory and the relation between them. 

In the subsymbol ic paradigm in cognit ive science , i t  i s  equal ly impor
tant to understand the two levels and thei r relationship .  In harmony 
theory, the microtheory prescribes the nature of the atoms, their 
interaction, and their development through experience.

· 
This  descrip

t ion is assumed to be a un iversal ly val id description of cogn ition . It is 
also assumed (although this has yet to be expl ic i t ly worked out) that in 
performing certain cogni t ive tasks (e.g . , logical reasoning) , a h igher 
level description is a val id approxi mation . Thi s  macrotheory describes 
schemata , their i nteraction ,  and thei r development through experience. 

One of the features of the formal ism of harmony theory that dist in
guishes i t  from most subsymbol ic accounts of cogni t ion i s  that i t  
exploits a formal i somorphism wi th statist ical physics. Since the main 
goal of stat ist ical physics is to relate the microscopic descript ion of 
matter to its macroscopic properties, harmony theory can bring the 
power of statist ical physics concepts and techniques to bear on the 
problem of understanding the relat ion between the micro- and macro
accounts of cognit ion. 

THE NATURE OF KNOWLEDGE 

In  the previous sect ion ,  the letter-perception model was used to i l l us
trate the dynamic construction of schemata from consti tuent atoms. 
However, i t  is on ly pseudowords that correspond to composite sche
mata; word schemata are singl e  atoms . We can also represent words as 
composi te schemata by using digraph uni ts at the upper level instead of 
four-letter word units .  A portion of this modified letter-perception 
model i s  shown in  Figure 3. Now the processing of a four- letter word 
involves the act ivation of a set of digraph uni ts, which are the 
knowledge atoms of this model. Omitted from the figure are the 

Knowledge 
Atoms 

Representational 
Features 

FIGURE 3. A portion of a modified reading model. 
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o 0) 
o 0) 
+ -) 

FIGURE 4. Each knowledge atom is a vector of +. -. and 0 values of the representa
tional featu re n odes. 

l ine-segment units , which are l ike those in the original letter-percept ion 
model . 

Thi s  s imple model i l lustrates several points about the nature of 
knowledge atoms in  harmony theory . The digraph un i t  WI A 2 
represents a pattern of val ues over the l etter units :  WI and A 2 on , wi th 
al l other letter units for posi t ions 1 and 2 off. Th is  pattern is shown in 
Figure 4, using the labels +, - ,  and 0 to denote on, off, and irrelevant. 
These indicate whether there i s  an exci tatory connection, inh ib i tory 
connection , or no connection between the corresponding nodes . 7 

Figure 4 shows the basic structure of harmony models .  There are 
atoms of knowledge, represented by nodes in an upper layer, and a 
lower layer of nodes that comprises a representation of the state of the 
perceptual or problem domain wi th which the system deals. Each node 
is a feature in the representat ion of the domain . We can now view 
"atoms of knowledge" like WI and A 2 in several ways . Mathematical ly ,  
each atom i s  s imply a vector of +, -, and 0 values, one for each node 
in the l ower,  representation layer .  This pattern can also be viewed as a 
fragment of a percept: The 0 values mark those features omi tted in the 
fragment. Thi s  fragment can in  turn be interpreted as a trace l eft 
behind in memory by perceptual experience. 

7 Omitted are the knowledge atoms that relate the letter nodes to the line segment 
nodes. Both line segment and letter nodes are in the lower layer, and all knowledge 
atoms are in the upper layer. Hierarchies in harmony theory are imbedded within an 
architecture of only two layers of nodes, as will be discussed in Section 2. 
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Point 5. Knowledge atoms are fragments of representations that accu
mulate with experience. 

THE COMPLETION TASK 

Having specified more precisely what the atoms of knowledge are, i t  
i s  t ime to specify the task in which they are used . 

Many cogni t ive tasks can be viewed as inference tasks . In  problem 
solvi ng, the role of inference is obvious; in percepti on and language 
comprehension , inference is less obvious but j ust as central . In har
mony theory , a t ightly prescribed but extremely general inferential task 
is studied: the completion task. In a problem-solving completion task ,  a 
partial description of a s i tuation is given (for example, the i n i t ial state 
of a system) ; the problem is to complete the description to fi l l  in the 
missing information (the final state, say) . In a story understanding 
completion task,  a part ial description of some events and actors'  goals is 
given; comprehension involves fi l l i ng in the missing events and goals .  
In percept ion , the st imulus gives values for certain low-level features of 
the environmental state ,  and the perceptual system must fi l l  in values 
for other features. In general , i n the completion task some features of 
an environmental state are given as input ,  and the cogn i t ive system 
must complete that i nput by assigning l i kely values to unspecified 
features . 

A simple example of a completion task (Lindsay & Norman , 1972) is 
shown in Figure 5. The task is to fill in  the features of the obscured 
portions of the st imulus and to decide what letters are present. Th is 
task can be performed by the model shown i n  Figure 3 ,  as fol lows . 
The stimulus assigns values of on and off to the unobscured letter 
features. What happens is summarized in Table 1 .  

Note that which atoms are activated affects how the representat ion is 

FIGURE 5. A perceptual completion task. 
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TABLE I 
A PROCEDURE FOR PERFORMING THE COMPLETION TASK 

Input: 

Activa t ion : 

Inference: 

Assign values to some features in the representation 

Activate atoms that are consistent with the representation 

Assign values to unknown features of representation that 
are consistent with the active knowledge 

fi l led i n ,  and how the representation is fi l led in  affects which atoms are 
acti vated . The act i vat ion and inference processes mutual l y  constra in 
each other; these processes must run i n  paral lel . Note a lso that al l  the 
decis ions come out of a stri ving for consistency. 

Point 6. A ssembly of schemata (activation of atoms) and iriference 
(completing missing parts of the representation) are both achieved by 
finding maximally self-consistent states Qf the system that are also con
sistent with the input. 

The complet ion of the stimu lus shown in Figure 5 is shown i n  
Figure 6. The consistency is high because wherever an  acti ve atom i s  

o 
_ active; 

on 

inactive; 
off 

FIGURE 6. The state of the �Y'Hwr&cfmtl!jf9Iof the stimulus shown in Figure 5. 
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connected to a representational feature by a + ( respect i vely, -) connec
t ion,  that feature has value on (respecti ve ly ,  oJ!). In fact, we can define 
a very simple measure of the degree of sel f-consistency just by consid
ering al l act i ve atoms, counting + 1 for every agreement between one 
of its connect ions and the value of the corresponding feature, and 
counting -1 for every disagreement. (Here + with on or - wi th off 
const i tutes agreement . ) Thi s  is the simplest example of a harmony 
jUnction - and brings us into the mathematical formulation . 

THE HARMONY FUNCTION 

Point 6 asserts that a central cogni t ive process i s  the construction of 
cognitive states that are" maximally sel f-consistent ." To make this pre
cise, we need only measure that self-consistency. 

Point 7. The self-consistency 0/ a possible state 0/ the cognitive system 
can be assigned a quantitative value by a harmony jUnction, H. 

Figure 7 displays a harmony function that generalizes the simple exam
ple discussed in the preceding paragraph. A state of the system is 
defined by a set of atoms which are active and a vector of values for all 
representational features . The harmony of such a state is the sum of 
terms, one for each acti ve atom, weighted by the strength of that atom. 
Each weight mUl t ip l ies the self-consistency between that part icular atom 
and the vector of representational feature values. That self-consistency 
is the s imilari ty between the vector of features defin ing the atom (the 
vector of i ts connections) and the representational feature vector. In 
the simplest case discussed above, the function h that measures this 
s imilari ty i s  just the number of agreements between these vectors 
minus the number of disagreements . For reasons to be discussed, I 
have used a s l ightly more compl icated version of h i n  which the 
simpler form is fi rst d iv ided by the number of (nonzero) connections 
to the atom, and then a fixed value I( i s  subtracted . 

harmonYknowledge (representational feature vector, actiVatiOns) 
bese 

� ( strength Of) ( 0 /�a�
t
g:. ) Similarit.1 feature vector. representational ) 

� atom a '1 if active' Yl of atom a ' feature vector eloms 
a 

FIGURE 7. A schematic repree!8p�gA�i} �a"l�PiBfunction. 
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The next step in the theoretical development requi res returning to 
the h igher level, symbol ic  descri pt ion of inference , and to a more 
detailed d iscussion of schemata. 

Cons ider a typical inference process described with schemata. A 
ch i ld i s  reading a story about presents, party hats, and a cake wi th can
dIes. When asked questions, the chi ld says that the gi rl gett i ng the 
presents i s  having a bi rthday. In the terminology of schema theory, 
while reading the story , the chi ld's birthday party schema becomes act ive 
and al lows many inferences to be made, fil ling i n  detai ls of the scene 
that were not made explic it in the story. 

The bi rthday party schema is presumed to be a knowledge structure 
that contains variables l i ke birthday cake, guest of honor, other guests, 
gifts, location, and so forth . The schema con tains i n formation on how 
to assign val ues to  these variables. For example, the schema may 
specify :  de/ault values to be assigned to variables in  the absence of any 
counterindicat ing information; value restrictions l imit ing the kind of 
val ues that can be assigned to variables; and dependency i nformat ion, 
specify ing how ass igning a particular val ue to one variable affects the 
values that can be assigned to another variable .  

A conven ient framework for concisely and uniformly expressing a l l  
th is information i s  given by probability theory. The default value for a 
variable can be viewed as its most probable value: the mode of the mar
ginal probabi lity distr ibution for that variable .  The val ue restrict ions on 
a variable spec ify the val ues for which it has nonzero probabi l i ty: the 
support of its marginal distri but ion. The dependencies between vari 
ables are expressed by their stat ist ical correlations, or, more completely ,  
by their joint  probabil i ty distr ibutions. 

So the birthday party schema can be viewed as contain ing informa
tion about the probabi l i t ies that its variables wil l  have various possible 
values. These are c learly stat ist ical propert ies of the part icular domain 
or environment i n  which the inference task is bei ng carried out. In read
ing the story , the chi ld is gi ven a part ial descript ion of a scene from the 
everyday environment-the values of some of the features used to 
represent that scene-and to understand the story , the child must com
plete the descr ipt ion by fil l i ng i n  the values for the unknown features. 
These values are assigned in such a way that the resul t ing scene has the 
highest possible probabi lity. The bi rthday party schema contains the 
probabi l i st ic information needed to carry out these inferences . 

In a typical cogn i t ive task ,  many schemata become act ive at once and 
i nteract heavi ly during the inference process. Each schema contains 
probabi l istic informationc:f6y;�Rt8ft wi�RIGts, which are only a fract ion 
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of the complete set of variables involved in  the task. To perform a 
completion, the most probable set of val ues must be assigned to the 
unknown variables, using the informat ion in a l l  the act i ve schemata. 

This probabi l ist ic formulat ion of these aspects of schema theory can 
be s imply summarized as fol lows. 

Point 8. Each schema encodes the statistical relations among a few 
representational features. During inference. the probabilistic information 
in many active schemata are dynamically folded together to find the most 
probable state of the environment. 

Thus the stat ist ical knowledge encoded in all the schemata al low the 
estimation of the relati ve probabili t ies of possi ble states of the environ
ment. How can this be done? 

At the macrolevel of schemata and variables , coordinating the folding 
together of the information of many schemata i s  difficult to describe . 
The i nabil i ty to devise procedures that capture the flex ibi l i ty displayed 
in human use of schemata was in fact one of the primary h istorical rea
sons for turning to the microlevel descri ption (see Chapter 1 ) . We 
therefore return to the microdescript ion to address this difficult 
problem. 

At the microlevel , the probabi l ist ic knowledge in the birthday party 
schema is distributed over many knowledge atoms, each carrying a 
smal l b i t  of stat ist ical information. Because these atoms all tend to 
match the representat ion of a bi rthday party scene ,  they can become 
acti ve together; in some approximation , they tend to funct ion col lec
t ively, and in that sense they comprise a schema. Now, when many 
schemata are act i ve at once , that means the knowledge atoms that 
comprise them are s imul taneously active. At the microlevel, there is 
no real difference between the decis ions requi red to activate the 
appropriate atoms to instant iate many schemata s imul taneously and the 
decisions requi red to acti vate the atoms to instant iate a single schema. 
A computational system that can dynamicalIy create a schema when i t  is 
needed can also dynamical ly  create many schemata when they are 
needed . When atoms, not schemata, are the elements of computation ,  
the problem o f  coordinat ing many schemata becomes subsumed in  the 
problem of act ivat ing the appropriate atoms. And this is  the problem 
that the harmony funct ion ,  the measure of self-consistency , was created 
to solve. 

HARMONY THEORY 

According to Points 2 ,  6, and 7 ,  schemata are collect i ons of 
knowledge atoms that become active in order to maximize harmony, 
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and inferences are also drawn to maxim ize harmony. This suggests that 
the probability of a possible state of the environment is estimated by 
comput ing its harmony: the h igher the harmony, the greater the proba
bi l i ty .  In fact ,  from the mathematical properties of probabi l i ty  and har
mony, in Section 2 we wi l l  show the fol lowing: 

Point 9. The relationship between the harmony junction H and 
estimated probabilities is of the form 

probabi l i ty  a: eH/ T 

where T is some constant that cannot be determined a priori. 

This relationshi p between probabil i ty and harmony is mathemat ical ly 
ident ical to the relationsh i p  between probability and (minus) energy i n  
statistical physics: t h e  Gibbs or Bol tzmann law. This i s  the basis  o f  the 
isomorphism between cogn it ion and physics exploi ted by harmony 
theory. In  statist ical physics, H i s  cal led the Hamiltonian junction; it 
measures the energy of a state of a physical system.  In physics, T i s  
the temperature of the system . In  harmony theory , T is called the com
putational temperature of the cogn i t ive system. When the temperature is  
very high, completions with high harmony are assigned est imated pro
babi l it ies that are only s l ightly h igher than those assigned to low har
mony complet ions; the environment is t reated as more random in the 
sense that a l l  completions are est imated to have roughly equal probabi l
ity. When the temperature is very low, only the complet ions with 
highest harmony are gi ven nonnegl ig ible est imated probabi l i t i es. 8 

Point 10. The lower the computational temperature, the more the 
estimated probabilities are weighted towards the completions of highest 
harmony. 

In part icular, the very best completion can be found by lowering the 
temperatu re to zero . This process, cooling, is fundamental to harmony 
theory. Concepts and techniques from thermal physics can be used to 
understand and analyze decision-making processes in harmony theory . 

A technique for performing Monte Carlo computer studies of ther
mal systems can be readi ly adapted to harmony theory. 

Point 11. A massively parallel stochastic machine can be designed that 
per/orms completions in accordance with Points 1-10. 

8 Since harmony corresponds to minus energy, at low physical temperatures only the 
state with the lowest energy (the ground stale) has nonnegligible probability. 
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For a given harmony model (e .g . , that of Figure 4) , this machine is 
constructed as fol lows . Every node in the network becomes a s imple 
processor ,  and every l ink in  the network becomes a communication l ink 
between two processors. The processors each have two possible values 
(+ 1 and - 1  for the representat ional feature processors� 1 = active and 
o = inactive for the knowledge atom processors) . The input to a com
pletion problem is provided by fix ing the values of some of the feature 
processors . Each of the other processors continually updates its value 
by making stochastic decisions based on the harmony associated at the 
current time with its two possible values. It is most l i kely to choose the 
value that corresponds to greater harmony; but wi th some 
probabi l i ty-greater the higher is the computational temperature T -it  
wi l l  make the other choice . Each processor computes the harmony 
associated with its poss ible  values by a numerical calculation that uses 
as input the numerical values of al l the other processors to which it is 
connected. Alternately , all the atom processors update in parallel , and 
then all the feature processors update in paral l el . The process repeats 
many times , implementing the procedure of Table 1 .  All the whi le ,  the 
temperature T is lowered to zero, pursuant to Point 10. It can be 
proved that the machine wi l l  eventually " freeze" into a completion that 
maximizes the harmony. 

I cal l this machine harmonium because, l i ke the Selfridge and Neisser 
( 960) pattern recognition system pandemonium, it is a paral lel distri
buted processing system in which many atoms of knowledge are simul
taneously " shouting" out their l i tt le contributions to the inference pro
cess; but unli ke pandemonium, there is an explicit method to the mad
ness: the collective search for maximal harmony. 9 

The final point concerns the account of learning in  harmony theory. 

POint 12. There is a procedure for accumulating knowledge atoms 
through exposure to the environment so that the system will perform the 
completion task optimally. 

The precise meaning of " optimality " wi l l  be an important topic i n  the 
subsequent discussion . 

This  completes the descriptive account of the foundations of har
mony theory. Section 2 fills in many of the steps and details omi tted 

9 Harmonium is closely related to the Boltzmann machine discussed in Chapter 7. The 

basic dynamics or the machines are the same, although there are differences in most 

details. In the Appendix, i t  is shown that in a certain sense the Boltzmann machine is a 
special case or harmonium, in which knowledge atoms connected to more than two 
reatures are forbidden. In another sense, harmonium is a special  case of the Boltzmann 
machine, in which the connections are restricted to go only between two layers. 
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above, and reports the results of some particular studies. The most for
mal matters are treated in the Appendix. 

SECTION 2 :  HARMONY THEORY 

. . .  the privileged unconscious phenomena, those susceptible of 
becoming conscious, are those which . . . affect most profoundly our 
emotional sensibility . . .  Now, what are the mathematic entities to 
which we attribute this character of beauty and elegance . . .  ? 
They are those whose elements are harmoniously disposed so that 
the mind without effort can embrace their totality while realizing the 
details. This harmony is at once a satisfaction of our esthetic needs 
and an aid to the mind, sustaining and guiding. . . .  Figure the 
future elements of our combinations as something like the unhooked 
atoms of Epicurus. . . .  They flash in every direction through the 
space . . .  like the molecules of a gas in the kinematic theory of 
gases. Then their mutual impacts may produce new combinations. 

Henri Poincare ( 1 9 1 3) 
Mathematical Creation \0  

In Sect ion 1 ,  a top-down analysis led from the demands of the com
pletion task and a probabi l istic formulation of schema theory to percep

tual features, knowledge atoms, the central notion of harmony, and the 
role of harmony in est imating probabi l i ties of environmental states . In 
Section 2, the presentation wi l l be bottom-up,  start ing from the 
primit ives . 

KNOWLEDGE REPRESENTATION 

Representation Vector 

At the center of any harmony theoretic model of a particu lar cogni 
t ive process i s  a set of representational features r j ,  r 2 ,  . . . . These 

10 I am indebted to Yves Chauvin for recently point ing out this remarkable passage by 
the great mathematician .  See @�lIfi�� MSMrllB· 655-656) . 
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features const i t ute the cogn i t ive system's  representation of possible 
states of the envi ronment with which i t  deals .  In the envi ronment of 
visual percept ion,  these features might include pixels, edges , depths of 
surface elements, and ident ifications of objects .  In medical diagnosis, 
features might be symptoms , outcomes of tests, diseases, prognoses , 
and treatments. In the domain of qual i tati ve ci rcu i t  analysis ,  the 
features might i ncl ude increase in current through resistor x and increase 
in voltage drop acrOss resistor x . 

The representational features are variables that I wi l l  assume take on 
binary values that can be thought of as present and absent or true and 
false. Binary values conta in a tremendous amount of representat ional 
power, so i t  i s  not a great sacrifice to accept the conceptual and techni
cal s impl ificat ion they afford . I t  wi l l  turn out to be conven ient to 
denote present and absent respecti ve ly by + 1 and - 1 ,  or, equ ivalent ly, 
+ and - .  Other val ues could be used i f  corresponding modifications 
were made in the equations to fol low. The use of cont inuous numeri
cal feature variables, whi le  in troducing some addi t ional technical com
plexity, would not affect the bas ic character of the theory . " 

A representational state of the cogn i t ive system i s  determined by a 
col lect ion of val ues for al l  the representational variables { r; } . This  col 
lection can be designated by a l i st or vector of + 's and - 's: the 
representation vector r .  

Where do the features used i n  the representat ion vector come from ? 
Are they " innate" or do they develop with experience ? These crucial 
quest ions wi l l  be deferred unt i l  the last sect ion of this chapter. The 
evaluat ion of various possible representat ions for a given envi ronment 
and the study of the development of good representations through 
exposure to the envi ronment is harmony theory's raison d 'etre. But a 
prerequis i te for understanding the appropriateness of a representation is 
understanding how the representation supports performance on the task 
for which it used; that is the primary concern of this chapter. For now, 
we simply assume that somehow a set of representational features has 
al ready been set up: by a programmer ,  or experience, or evolut ion.  

I I While continuous val ues make the ana�ysis more complex , they may well i mprove 
the performance of the simulation models. In simulat ions with discrete val ues, the sys
tem state jumps between corners of a hypercube ; with cont inuous values, the  system 
state crawls smoothly around inside the hypercube. It was observed in the work reported 
in Chapter 1 4  that " bad " corners corresponding to stable nonopti mal completions Oocal 
harmony max ima) were typica l l y  not visited by the smoothly moving cont inuous state; 

these corners typica l ly  are visited by the jumping discrete state and can only be escaped 
from through thermal stochasticity .  Thus cont inuous values may sometimes el iminate 

the need for stochast ic  simulation. 

Copyrighted Material 
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Acti vat i o n  Vector 

The representational features serve as the blackboard on wh ich the 
cogni t i ve system carries out i ts computat ions. The knowledge that 
guides those computat ions is assoc iated with the second set of ent i t ies ,  
the knowledge atoms . Each such atom a is characterized by a knowledge 
vector ka , which is a l i st of + I ,  - I ,  and 0 val ues, one for each 
representation variable rj . This l i s t  encodes a p iece of knowledge that 
specifies what val ue each rj  should have : + I ,  - 1 ,  or unspecified (0) . 

Associated wi t h  knowledge atom a is i ts activation variable , a a ' Th is  
variable wi l l  a lso be taken to be bi nary: 1 wi l l  denote act i ve ;  0 ,  i nact ive .  
Because harmony theory is probabi l i s t ic ,  degrees of act i vation are 
represented by varying probab i l i ty of being act i ve rather than vary ing 
values for the ac t i vat ion variable. (L ike cont i nuous val ues for 
representat ion variables, cont i nuous val ues for act i vat ion variables 
could be i ncorporated i n to the theory with l i t t le d i fficu l ty, but a need to 
do so has not yet ar isen . )  The l ist of { O , I } val ues for the act i vat ions 
{ a a } comprises the activation vector a .  

Knowledge atoms encode subpatterns of feature val ues that occur i n  
the envi ronment. The di fferent frequencies with which various such 
patterns occur  is encoded in the set of strengths , {u a } , of the atoms. 

I n  the example of qual i tat ive c i rcui t  analysis ,  each knowledge atom 
records a pattern of qual i ta t ive changes in some of the circuit features 
(currents ,  vol tages , etc. ) .  These patterns are the ones tha t are con
sistent wi th the laws of physics, which are the constraints characteriz ing 
the c i rcu i t  environment .  Knowledge of the laws of phys ics i s  encoded 
in the se t of knowledge atoms. For example, the atom whose 
knowledge vector contains a l l  zeroes except those features encoding the 
pattern < current decreases. voltage decreases. resistance increases> i s  one 
of the atoms encoding qual i tat ive knowledge of Ohm's law. Equal ly 
important  is the absence of an atom l i ke one encoding the pattern 
< current increases. voltage decreases. resistance increases> , wh i ch 
violates Ohm's  law. 

There is a very usefu l  graph ical representat ion for knowledge atoms; 
it was i l l ustrated i n Figure 4 and i s  repeated as Figure 8. The represen
tat ional features are designated by nodes drawn in a lower layer; the 
acti vation variables are depicted by nodes drawn i n  an upper layer. The 
connections from an act ivat ion variable aa to the representat ion vari 
ables { rj }  show the knowledge vecto r ka . When ka contains a + or -

for rj , the connect ion between aa and rj is labeled wi th the appropriate 
sign; when ka contains a 0 for rj , the connect ion between ao. and rj is 
omitted . 

In Figure 8 ,  al l  atoms are assumed to have un i t  strength .  In general , 
d ifferent  atoms wi l l  hav¢�d�� the strength of each atom 
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Knowledge 
Atoms 

Representational 
Features 

k W , A2 
kM A = , 2 
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FIGURE 8. The graphical representation of a particular harmony model . 

0) 
0) 
-) 

would them be indicated above the atom in  the drawing. (For the com
pletely general case, see Figure 1 3 . )  

Hierarchies and t h e  Arch itecture o f  Harmony Networks 

One of the characteri st ics that dist inguishes harmony models from 
other paral lel network models is that the graph always contains two 
layers of nodes , wi th rather different semantics. As in many networks, 
the nodes in  the upper layer correspond to patterns of values in  the 
lower layer .  In the letter-perception model of McClel land and 
Rumelhart , for example, the word nodes correspond to patterns over 
the letter nodes , and the letter nodes in turn correspond to patterns 
over the l i ne-segment nodes. The letter-perception model is typical in 
i ts hierarchical structure: The nodes are strat ified into a sequence of 
several layers, wi th nodes in one layer bei ng connected only to nodes in 
adjacent layers . Harmony models use on ly two layers . 

The formal ism could be extended to many layers , but the use of two 
layers has a pri ncipled foundat ion in the semantics of these layers. The 
nodes i n  the representation layer support representations of the environ
ment at all levels of abstractness. In the case of written words , this layer 
could support representation at the levels of l ine segments, letters , and 
words, as shown schematical ly in Figure 9. The upper, knowledge , 
layer encodes the patterns among these representations. If information 
is gi ven about l ine sef!l1p9}fgh;&Y?AcNUfI5l of the knowledge atoms 
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connect that information with the l etter nodes , completing the 
representation to i nclude letter recogni t ion .  Other knowledge atoms 
connect pattern s on the l etter nodes with word nodes , and these com
plete the representation to include word recognit ion.  

The pattern of connect ivi ty of Figure 9 al lows the network to be 
redrawn as shown i n  Figure 1 0 . This network shows an al ternation of 
representat ion and knowledge nodes, restoring the image of a series of 
layers. In this sense , . .  vert ical ly "  h ierarchical networks of many layers 
can be imbedded as " horizontal ly "  hierarchical networks wi th in a two
layer harmony network.  

Figure 10 graphical ly displays the fact that in a harmony archi tecture, 
the nodes that encode patterns are not part of the representation; there 
is a fi rm dist inct ion between representation and knowledge nodes. This 
distinction i s  not made in  the or ig inal letter-perception model , where 
the nodes that detect a pattern over the l ine-segment features are iden
t ical with the nodes that actual l y  represent the presence of letters. Th is 
dist inction seems art i ficial ; why is i t  made? 

I claim that the art ific ia l i ty actual ly resides in  the original letter
perception mode l ,  i n  which the presence of a letter can be identified 
with a s ingle pattern over the primit ive graphical features Wne seg
ments) . In a less ideal ized reading task ,  the presence of a letter would 
have to be inferable from many different combinat ions of primi t ive 
graphical features . In harmony theory, the idea i s  that there would be a 
set of representation nodes dedicated to the representation of the pres
ence of letters i ndependent of thei r shapes, s izes, orientations, and so 
forth. There would also be a set of representation nodes for graph ical 

segmentl l etter 

k nowledge atoms 

l i n e-segment nodes letter nodes 

l etter/ word 

k n ow l edge atoms 

word nodes 

FIGURE 9. The representat ional features support representat ions a t  a l l  levels of 

abst ractness. Copyrighted Material 
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word nodes 

l etter/ word 
atoms 

l etter nodes 

segment/ l etter 
atoms 

l in e-segmen t 
nodes 

FIGURE 1 0. A rearrangement of the network of Figure 9. 

features, and for each letter there would be a multitude of knowledge 
atoms, each relat ing a part icular configurat ion of graphi cal features with 
the representat ion of that letter . Thus the knowledge or schema for 
that letter would be distr ibuted over many knowledge atoms, al l of 
which would be invol ved i n sett ing up the same representat i on on the 
letter nodes . To provide a broader context ,  Figure I I  schemat ically 
depicts a possi ble  model for language processi ng .  The fu l l  representa
t i on consists of graph ical features, phonological features, syntact i c  
features , and semant ic  features .  Some of the  knowledge atoms provide 
connect ions among features wi th in a s ingle category, whi l e  others con
nect features in d ifferent categories. The nodes in the upper layer do 
not themselves comprise parts of the represen tat i on ,  but rather encode 
relations between parts of the representat ion . 

The advantages of the two-layer scheme come from s impl ic i ty and 
un iformi ty .  There are no connect i ons wi th in layers , only between 
layers . Th is s imp l ifies �6��4fi�� jWa�JWll cons iderably and permi ts  a 
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syntactic 

features 
semantic 
features 

FIG U R E  1 1 .  A complete model for l anguage process ing would i n v o l ve representat ional 

va r iables of many types ,  and the  a toms relat ing them . 

truly paral lel implementat ion .  The uniformity means that we can ima
gine a system start ing out with an " innate" two-layer st ructure and 
learning a pattern of connections l i ke that of Figu re 9, i . e . ,  learn ing a 
h ierarch i cal representation scheme that was in  no sense put i nto the 
model in advance . The formal ism is set up to analyze the envi ronmen
tal condit ions under which certa in k inds of representations (e .g . , 
h ierarch ical ones) might emerge or be expedient .  

The l ack of wi th in- layer connect ions in  harmony networks is symp
tomati c  of a major di fference between the goals of harmony theory and 
the goals of other s imi lar approaches . The effect of a binary connect ion 
between two representat ion nodes can be achieved by creat ing a pai r of 
upper level nodes that connect to the two lower  level nodes . [ 2 Thus we 
can dispense wi th lower level connect ions at the cost of creat ing upper 
leve l  nodes . Harmony theory has been developed with a systematic com
mitment to buy simplici(y with extra upper level nodes. The hope i s  that by 
plac ing al l the knowledge in the patterns encoded by knowledge atoms , 
we wi l l  be better able to understand the funct ion and structure of the 
models . This explains why restr ict ions have been placed on the net 
work that to many would seem extraord inari ly confining .  

If  the goal i s  i nstead to get the most " intel l igent" performance out of 
the fewest number of nodes and connect ions, it is obviously wiser to 

1 2 A negat ive connect ion between two lower l e v e l  nodes means  that  the  va lue  pa i rs 

(+ ,- ) and (- .+ ) are fa vored re la t i ve to t h e  o t her two pa i rs . This effect can be achie ved 

by creat ing two knowledge atoms that each encode one o f  the two favored pal l erns.  A 

pos i t i ve con nect ion s imi lar ly can be rep laced by two atoms for the  pal lerns (+ .+ ) and 
(- .- ) . Copyrighted Material 
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al low arbi trary connect iv i ty patterns, weights, and thresholds, as in the 
Boltzmann machine. There are , however, theoretical disadvantages to 
having so many degrees of freedom, both in psychological modeling 
and in  art ificial intel l igence appl ications. Too many free parameters in 
a psychological model make i t  too theoretical ly  unconstrained and 
therefore i nsufficiently instruct ive. And as suggested in Chapter 7, net
works that take advantage of all these degrees of freedom may perform 
the i r  computat ions in ways that are completely i nscrutable to the theor
ist .  Some may take delight in such a resul t ,  but there is reason to be 
concerned by i t .  It can be argued that getting a machine to perform 
intel l igently is more important than understanding how it does so. If a 
magic procedure -say for learning-did in  fact lead to the level of per
formance desi red , despite our i nabi l i ty to understand the resul t ing com
putat ion, that would of course be a landmark accomplishment .  But to 
expect this kind of breakthrough is just the sort of nai vete referred to 
in the fi rst paragraph of the chapter. We now have enough disappoint
i ng experience to expect that any part icular insight i s  going to take us a 
very small fraction of the way to the kind of truly intel l igent mechanisms 
we seek.  The only way to reasonably expect to make progress is by 
chain ing together many such smal l steps . And the only way to chain 
together these steps i s  to understand at the end of each one where we 
are , how we got there, and why we got no further, so we can make an 
informed guess as to how to takf'\ the next small step. A "  magic" step is 
apt to be a last step; i t  is fine, as long as i t  takes you exactly where you 
want to go . 

HARMONY AND PROBABILITY 

The Harmony Funct ion 

The preceding sect ion described how environmental states and 
knowledge are represented i n  harmony theory. The use of this 
knowledge in  completing representations of environmental states is 
governed by the harmony function , which , as discussed in  Section 1 ,  
measures the self-consistency of any state of a harmony mode\ .  I wi l l  
now discuss the properties required of  a harmony function and present 
the part icular funct ion I have studied. 

A state of the cogni t ive system is determined by the values of the 
lower and upper level nodes. Such a state is determined by a pai r 
( r , a )  consist ing of a representation vector r and an activation vector a .  
A harmony function assWBf>fr/�atWefiUK ( r ,  a )  to each such state. 
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The harmony function has as parameters t he  set o f  knowledge vectors 
and their strengths: { (ka ,fT a ) } ; I wi l l  cal l this the knowledge base K .  

The basic requirement on the harmony function H is that i t  be addi
tive under decompositions of the system. I J  This means that i f  a network 
can be part i t ioned into two unconnected networks . as in  Figure 1 2 .  the 
harmony of the whole network is the sum of the harmonies of the 
parts: 

H ( r , a ) = H ( r h a l ) + H ( r 2 , a 2) . 

In th is case , the knowledge and representational feature nodes can each 
be broken i nto two subsets so that the knowledge atoms in subset 1 all 
have 0 connections wi th the representational features in subset 2, and 
vice versa. Corresponding to th is  part i t ion of nodes there is a decom
posit ion of the vectors r and a in to the pieces r h r 2 and a J , a 2 '  

The harmony function I have studied (recal l Figure 7) is 

( 1 )  
a 

Here, h I(  ( r ,  ka ) is the harmony contributed by acti vat i ng atom a ,  
gi ven the current representation r .  I have taken th is to be 

r "k 
hl« r . ka ) 

= Ikai - I( . 

1--10---------- r -------------1 .. 1 

FIGURE 1 2 .  A decomposable harmony network .  

1 3  In physics, one says that H must be an extensive quantity. 

Copyrighted Material 
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The vector i nner product (see Chapter 9) is defined by 

r ·k" = L,'j (k,, ) / 

and the norm 14 is defined by 

I wi l l  now comment on these defini t ions. 
Fi rst note that this harmony function HK is a sum of terms , one for 

each knowledge atom, with the term for atom a depending only on 
those representation variables 'j to which i t  has nonzero connect ion 
( kQ ) / . Thus HK satisfies the addi t ivity requirement .  

The contr ibut ion to H of an inactive atom is zero. The contribution 
of an acti ve atom a is the product of i ts strength and the consistency 
between its knowledge vector k" and the representation vector r ;  this is 
measured by the funct ion hK ( r , kQ ) .  The parameter K always l ies in 
the in terval (- 1 , 1 ) .  When I( = 0 ,  h K  ( r ,  ka ) i s  the number of 
representational features whose val ues agree with the corresponding 
value in  the knowledge vector minus the number that disagree. This 
gives the s implest harmony funct ion ,  the one described in  Section 1 .  
The trouble is that according to th is measure, i f  over 50% of the 
knowledge vector k" agrees with r ,  the harmony is raised by activating 
atom a .  This  is a pretty weak cri terion of match ing, and sometimes it 
i s  important to be able to have a more str i ngent criterion than 50%. As 
I( goes from - 1  through 0 towards I ,  the criterion goes from 0% 
through 50% towards 1 00% .  In fact i t  is easy to see that the criterial 
fraction is ( 1 + K )/ 2. The total harmony will be raised by activating 
any atom for which the number of representat ional features on which 
the atom's knowledge vector agrees with the representation vector 
exceeds this fraction of the total number of poss ible agreements ( lk" I ) .  

An important l im i t  of the theory is K - I .  In this l im i t ,  the criterion 
approaches perfect matching. For any gi ven harmony model , perfect 
matching is requ i red by any K greater than some defini te value less 
than 1 because there is a l imi t  to how close to 1 00%  matchi ng one can 
achieve with a fin i te number of possib le matches. Indeed it is easy to 
compute that if n i s  the largest number of nonzero connect ions to any 
atom in a model (the maximum of lk,, ! ) .  then the on ly way to exceed a 

14 This is the so-ca l led L 1 norm,  wh ich is d i fferen t from the L 2  norm defi ned i n  
Chapter 9. For each p i n (0,00 ) t h e  Lp norm of a vector  v is defined b y  

Copyrighted Material 
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cri terion of 1 - 2 1n i s  with a perfect match.  Any K value greater than 
this wi l l  place the model in what I wi l l  cal l the perfect matching limit. 
Note that si nce harmony theory is probabi l i st ic, even i n  the perfect 
match ing l imi t ,  atoms wi l l  sometimes become active even when they do 
not match the current representation perfect ly ;  the closer the match, 
the more l i kely they wil l  be active. 

By choosi ng + 1 and - 1  as the binary values for representational 
features , we have ensured that the product ( ka ) ; r; wi l l  be + 1 i f  the 
knowledge vector agrees with r; , - 1  i f  i t  d isagrees , and 0 i f  i t  doesn ' t  
specify a val ue for feature i .  The maximum value that can be atta ined 
by ka ·r is Ika I ,  the number of nonzero connections to node ex ,  i rrespec
t ive of whether those connect ions are + or -

In fact ,  th is  harmony function is in variant under the exchange of + and 
- at any representation node. That is ,  s imultaneously fl i pping the signs 
of r;  and ( kJ ;  for al l ex leaves the value of HK ( r , a ) unchanged , for 
every a .  Thi s  symmetry was del iberately inserted into the general  har
mony function because I could th ink of no pr inci pled reason to break i t .  
If a systemat ic  bias i n  the representat ion variables toward one of the 
binary values is to be bu i l t  in from the outset , how large should the 
bias be ? I t  seemed reasonable to start the theory in a symmetric way , 
unbiased toward either val ue .  Of course a bias can be inserted through 
the kno wledge K .  To take an extreme example, i f  the value of feature i 
is + i n  al l  knowledge atoms, i .e . ,  ( ka ) ,  = + for al l ex ,  then the i th 
feature r; wi l l  be strongly biased toward + .  

There is nothing sacred about the values + 1 and - 1  i n  this theory . 
The values I and 0 ,  for example ,  could be used as wel l .  The preceding 
harmony funct ion can eas i ly  be rewri tten to g ive the same harmony 
values when r i s  changed from the {+ I ,- I } form to the { I ,O} form. 
The underlyi ng i nvariance under s ign change would however be 
transformed into a more complicated in variance. 

Est i mat i n g  Probabi l i t ies Wi th the Harmony Funct ion 

In Section 1 ,  I suggested that a cogn i t ive system performing the com
plet ion task could use a harmony function for est imat ing the probabi l i 
t ies of values for unknown variables. In fact ,  Poin t  9 asserted that the 
estimated probabi l i ty of a set of values for unknown variables was an 
exponential function of the corresponding harmony val ue: 

probabi l i ty ex: e H/ T. (2 )  

It i s  this relat ionsh ip  that establ i shes the mappi ng with statist ical phy
sics . In this sect i on anficJlJfrif}fmkJ Wt£f,;M.t ionsh ip  between harmony 
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and probabi l i ty is analyzed . In this section I wil l point out that if proba
b i l i t ies are to be estimated using H , then the exponential relationsh ip  
of  Equat ion 2 should be used. In the  next section I adapt an  argument 
of Stuart Geman (personal communicat ion ,  1 984) to show that , starting 
from the extremely general probabi l i st ic assumption known as the prin
ciple of maximum missing in/ormation, both Equation 2 and the form of 
the harmony function (Equation 1 )  can be jointly derived. 

What we know about harmony funct ions i n  general is that they are 
addit ive under network decomposi t ion. If a harmony network consists 
of two unconnected components, the harmony of any given state of the 
whole network is the sum of the harmonies of the states of the com
ponent networks. In the case of such a network ,  what is requi red of 
the probability assigned to the state? I claim i t  should be the product of 
the probabi l i t i es assigned to the states of the component networks. The 
meaning of the unconnectedness is that the knowledge used in the 
inference process does not relate the features in the two networks to 
each other . Thus the resu l ts of inference about these two sets of 
features should be independent. Since the probabi l i t ies assigned to the 
states in the two networks should be i ndependent, the probabi l i ty  of 
their  joint occurrence -the state of the network as a whole-should be 
the product of their individual probabi l i t ies .  

In other words , adding the harmonies of the components' states 
should correspond to multiplying the probabilities of the components' 
states . The exponential function of Equat ion 2 establ ishes just this 
correspondence . I t  i s  a mathemat ical fact that the only continuous 
functions f that map addit ion into mult ip l ication , 

f (x + y ) = f (x ) f Cy )  
are the exponential funct ions, 

for some posi t ive number a . Equivalent ly, these functions can be 
wri tten 

f (x )  = exI T 

for some value T ( where T = 1/ l na ) . 

This general argument leaves undetermined the val ue of T ,  the com
putational temperature. However several observations about the value 
of T can be made. 

Fi rst , the sign of T must be posi t ive,  for otherwise greater harmony 
would correspond to smaller probabi l i ty .  

For the second observat ion ,  consider a cogn i t ive system a that est i 
mates i ts envi ronmental �[JI11Jl?j�cJIAj�n with a certain value for 
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Ta and a certain harmony funct ion Ha . Then gi ven any other pos i t ive 
temperature Tb , we could hypothesi ze another cogn it i ve system b using 
that computational temperature and the modifi ed harmony funct ion 
Hb = ( Tbl Ta ) Ha · Both cogn i t ive systems would have the same est i 
mates of environmental probabi l i t ies si nce Hbl Tb = Hal Ta . Thus thei r 
behavior on the completion task would be indist inguishable .  

Thus ,  the magnitude of T i s  on ly meaningful once a specific scale has 
been set for H.  This means that if H is being learned by the system, 
rather than programmed in  by the modeler ,  then any convenient choice 
of T wi l l  do; the choice simply determines the scale of H that the sys
tem wi l l  learn . 

The third observat ion refi nes the second. A convenient way of 
expressing Equation 2 is to use the likelihood ratio of two states s 1 and 
S 2 :  

prob (s l ) 
= e

IH (s l )-H (S 2J JI T  
prob (s 2) 

. (3 )  

Thus, T sets the scale for those differences in harmony that correspond to 
significant differences in probability. (It is understood here that " differ
ences" in harmony are measured by subtraction while " differences" i n  
probabi l i ty are measured by  division . ) The smal ler the val ue o f  T,  the 
smal ler the harmony differences that wi l l  correspond to s ign i ficant l i kel
ihood ratios .  Thus, once a scale of H has been fixed, decreasing the 
value of T makes the probabi l i ty distr ibution more sharply peaked. In 
fact , Equation 3 can be rewri tten 

Prob (S I ) 
= 

[
e

H(S I J- H (S 2)J
1I T

. prob ( s 2) 
If state s 1 has greater harmony than s 2 ,  the l i ke l ihood ratio  at T = 1 
wi l l  be the number i n  square brackets, a number greater than one; as T 
goes to zero this number ' gets raised to h igher and higher powers so 
that the l ike l ihood ratio  goes to infin i ty .  In other words , compared to 
T, the fixed d ifference in harmony between the two states looks larger 
and larger as T gets smal ler and smal ler .  

In the preceding argument , the exponential functions emerged as the 
only cont inuous functions mapping addit ion i nto mult i pl icat ion .  Of 
course we could consider discontinuous funct ions, one example being 
the l imi t  as T - 0 of the exponential . In this l imi t ,  the est imated 
probabi l i ty of all states i s  zero, except the ones with maximal harmony. 
If there are several states with exactly  the same maximal harmony, in 
the zero temperature l imi t  they wi l l  a l l  end up wi th equal , nonzero 
probabi l i ty .  This probabi l i ty distr ibut ion wi l l  be cal led the zero tempera
ture distribution. It does .Dot corresp.and to. &n exponent ial distr ibut ion, 

c;opyngntea Matenal 
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but i t  can be obtained as the l im i t  of exponential distri butions; in fact , 
the zero-temperature l imi t  plays a major role i n  the theory since the 
states of maximal harmony are the best answers to completion 
problems. 

THE COMPETENCE, REALIZABIL ITY, AND 
LEARN ABILITY THEOREMS 

In this section, the mathematical results that currently form the core 
of harmony theory are informal ly descri bed. A formal presentation 
may be found in the Appendix .  

The Competence Theorem 

In harmony theory, a cogni t ive system's knowledge i s  encoded in its 
knowledge atoms. Each atom represents a pattern of values for a few 
features describing environmental states , values that sometimes co
occur in the system 's envi ronment .  The strengths of the atoms encode 
the frequencies with which the d ifferent patterns occur in the envi ron
ment. The atoms are used to est imate the probab i l i t ies of events in the 
environment . 

Suppose then that a part icular cogni t ive system is capable of observ
ing the frequency with which each pattern in some pre-existing set {karl 
occurs in i ts environment .  (The larger the set {ka} , the greater i s  the 
potential power of this cogni t i ve system . )  Given the frequencies of 
these patterns, how should the system estimate the probabi l i t ies of 
environmental events ? What probab i l ity distri but ion should the system 
guess for the envi ronment?  

There wi l l  general ly be many possi ble envi ronmental distributions 
that are consistent with the known pattern frequencies. How can one 
be selected from all these possib i l i t ies? 

Consider a s imple example .  Suppose there are only two envi ronmen
tal features in the representat ion,  ' I  and ' 2 ,  and that the system's only 
informat ion i s  that the pattern ' I  = + occurs with a frequency of 80%.  
There are infinitely many probabi l i ty d istri butions for the four envi ron
mental events (' I h) E { (+ ,+ )  (+ ,- ) (- ,+ ) (- ,- )} that are consistent 
with the gi ven information . For example, we know nothing about the 
relative l ikel ihood of the two events (+ ,+ ) and (+ ,- ) ;  all we know is 
that together their probabi l i ty is . 80 . 

One respect i n  which the poss ible probabi l i ty d istributions differ is in  
the ir  degree of homoge�P<Jr;�tiJ}jtM}]t&�PcH P i n  which P (+ ,+ ) ... . 7 
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and P (+ ,-) = . 1  i s  l ess homogeneous than one for which both these 
events have probabi l i ty  . 4 .  

Another way of  saying th i s  is that the  uncertainty associated wi th the 
second distr ibution i s  greater than that of the fi rst . In Shannon ' s  
( 1 948/ 1 963) terms, i f  the second , more homogeneous , distri but ion 
applies , then at any given moment there i s  a greater amount of missing 
in/ormation about the current state of the environment than there i s  i f  
the more i nhomogenous distri but ion appl i es .  Shannon's formula for 
the miss ing i n formation of a probab i l i ty distr ibut ion P i s  

-l:P (x )  I nP (x ) . 
x 

Thus the missi ng information in  the inhomogeneous probabi l i t ies 
( . 7 , . I ) is 

- [ . 7 I n ( ' 7 )  + . 1 In ( . 0] = . 48 

whi le  the missing i n format i on i n  the homogeneous probabi l i t ies { . 4 ,  . 4} 
is 

- [ . 4 In {. 4) + . 4l n(4)] = . 73 .  

The cogni t ive system's informat ion on  the frequency o f  patterns con
tains some i n format ion about any l ack of homogeneity in  the envi ron
mental distribut ion . One princi ple for guessing the envi ronmental dis
tribut ion is to select , of all probabi l i ty distri but ions that are consistent 
with the known frequencies , the one that is  most homogenous ; the one 
that supposes the envi ronment to have no more inhomogeneity than is 
needed to account for the known informat ion .  This  principle can be 
formal ized as the principle 0/ maximal missing in/ormation; i t  i s  often 
used to extrapolate from some given stat ist ical informat ion to an est i 
mate for an enti re probabi l i ty d istr ibut ion (Christensen , 1 98 1 ;  Levine & 
Tribus , 1 979) . 

For the s imple example di scussed above, the principle of maximal 
missing i n format ion impl ies that the cogn i t i ve system should estimate 
the environmental distr ibution to be P (+ ,+ ) = P (+ ,- )  = . 40 ,  
P (- ,+ ) = P (- ,- ) = . 1 0 .  Th is distri but ion i s  inhomogeneous with 
respect to the fi rst feat ure , ' J ,  because it must be to account for the 
known fact that P (' \ = +) = . 80 .  It is homogeneous in the second 
feature, r 2 ,  because it can be without violat i ng any known information .  
The justificat ion for choosing this distr ibut ion i s  that there i s  not 
enough given information to just ify selecting any other distribut ion with 
less missing i nformat ion. 

In the general case, one can use the formula for m issing information 
to derive the distri but i'a>p

W8hma�Mrimissing informat ion that is 



228 BASIC MECHANISMS 

consistent with the observed frequencies of the patterns ka . The resul t  
is a probabi l i ty distribution I wi l l  call 17' :  

17' ( r ) a: e U (r ) 

where the function U is defined by 

a 

The values of the real parameters Aa (one for each atom) are con
strained by the known pattern frequencies; they wi l l shortly be seen to 
be proportional to the atom strengths, U a '  the system should use for 
model ing the environment .  The value of Xa ( r )  is simply 1 when the 
environmental state r i ncl udes the pattern ka defining atom a ,  and 0 
otherwise . 

Now that we have a formula for estimating the probabi l i ty of an 
environmental state, we can in  principle perform the completion task. 
An i nput for this task i s  a set of values for some of the features. The 
best completion is formed by assign ing values to the unknown features 
so that the result ing vector r represents the most probable environment 
state, as estimated by 17' .  

I t  turns out that the completions performed i n  this way are exactly 
the same as those that would be formed by using the same procedure 
with the different distribution 

p (r , a )  a: e H (r ,a ) ,  

Here, H is the  harmony function defined previously , where the 
strengths are 

and K is any value sat isfyi ng 

1 > K > } - 2/[ma
ax 1ka l ] . 

(This  condition on K is the exact matching limit defined earl ier ,) 
In passing from 1T ( r ) to p (r ,a ) ,  new variables have been introduced : 

the acti vations a .  These serve to el iminate the funct ions Xa from the 
formula for est imating probab i l i t ies, which wi l l  be important short ly 
when we try to design a device to actual ly perform the completion com
putat ion. The result is that in  addition to fi l l ing in the unknown 
features in r ,  al l  the act ivations in a must be fi l led in as wel l .  In other 
words, to perform the c0DP�dI1wcfRJmilive system must find those 
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val
.
ues of the unknown rj and those values of the Qa that together max

imize the harmony H ( r , a )  and thereby maximize the est imated proba
bi l i ty p ( r , a ) .  

This discussion i s  summarized i n  the fol lowing theorem: 

Theorem 1: Competence. Suppose a cogn i t ive system can observe 
the frequency of the patterns Ika l in its environment .  The probabi l 
i t y  distribut ion with the  most Shannon missing information that i s  
consi stent with the  observations i s  

7T ( r )  ex: e V (x ) 

wi th U defined as above. The maximum-l ike l i hood completions of 
this distr ibut ion are the same as those of 

p ( r  , 8 )  ex: e H (r ,a ) 

with the harmony function defined above . 

This theorem describes how a cogni t ive system should perform com
plet ions, according to some mathemat i cal pri nciples for stat ist ical extra
polat ion and inference, In this sense, it is a competence theorem. The 
obvious next question is: Can we design a system that wi l l  real ly com
pute complet ions according to the specifications of the competence 
theorem? 

The " Physics Analogy " 

It turns out that design ing a machine to do the required computa
t ions is a relati vely straightforward appl i cation of a computational tech
nique from statist i cal physics. It is therefore an appropriate t ime to dis
cuss the " analogy" to physics that is exploi ted in harmony theory . 

Why is the relation between probabi l i ty and harmony expressed i n  
the competence theorem the same as the relation between probabi l i ty 
and energy in  stat ist ical physics? The mapping between statistical phy
sics and inference that is being exploited is one that has been known 
for a long t ime. 

The second law of thermodynamics states that as physical systems 
evolve in t ime , they wi l l  approach condit ions that maxi mize random
ness or entropy, subject to the constraint that a few conserved quant i t ies 
l ike the systems' energy must always remain unchanged . One of the 
triumphs of stat ist ical mechanics was the understanding that this law is 
the macroscopic manifesfJU(K{i�t�I\1ft(ftff4Ying microscopic descri ption 
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of matter in  terms of const i tuent part icles. The particles wi l l  occupy 
various states and the macroscopic propert ies of a system wi l l  depend 
on the probabi l i t ies with which the states are occupied. The random
ness or entropy of the system, in part icular, is the homogeneity of this 
probabi l i ty  distr i but ion. It i s  measured by the formula 

-LP (x )  In P (x ) .  
x 

A system evolves to maximize this entropy , and, in  part icular, a system 
that has come to equ i l ibr ium in contact with a large reservoi r  of heat 
wi l l  have a probabi l i ty distri but ion that maximizes entropy subject to 
the constrain t  that i ts energy have a fixed average value. 

Shannon real ized that the homogeneity of a probabi l i ty distri bution ,  
as measured by  the microscopic formula for entropy,  was a measure of 
the missing information of the distr ibut ion . He started the book of 
i nformation theory with a page from stat ist ical mechanics. 

The competence theorem shows that the exponent ial relat ion 
between harmony and probabi l i ty stems from max imizing missing 
information subject to the constraint that given information be 
accounted for .  The exponential relation between energy and probabi l i ty 
stems from maximizing entropy subject to a constraint on average 
energy . The physics analogy therefore stems from the fact that entropy 
and missing information share exactly the same relat ion to probabi l i ty .  
I t i s  not surpris ing that the theory of informat ion processing should 
share formal features with the theory of stat ist ical physics. 

Shannon began a mapping between stat is t ical physics and the theory 
of information by mapping entropy onto information content .  Har
mony theory extends this mapping by mapping self-consistency ( i . e . , 
harmony) onto energy. In the next subsect ion,  the mapping wi l l  be 
further extended to map stochastic i ty of inference ( i . e . , computational 
temperature) onto physical temperature. 

The Realizabil i ty Theorem 

The mapping wi th stat ist ical physics a l lows harmony theory to exploit 
a computational technique for studying thermal systems that was 
developed by N. Metropol is ,  M. Rosenbluth , A .  Rosenbluth , A. 
Tel ler ,  and E. Teller in  1 953 .  This technique uses stochast ic or "  Monte 
Carlo "  computat ion to s imulate the probabi l i st ic dynamical system 
under study. (See Binder, 1 979. ) 

The procedure for s imulating a physical system at temperature T i s  
as  fol lows: The variabICopjri�e«YM.mrilte assigned random in i t ial 
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values . One by one , they are updated accord ing to a stochast ic rule: 
The probabi l i ty of assigning a new val ue x to the variable i s  propor
t ional to eH

x
l T

, where Hx is (minus) the energy the system would have 
if the val ue x were chosen .  Thus the higher T, the more random are 
the decisions. As the computation proceeds, the probabi l i ty that the 
system is in state s at any moment becomes proportional to the desi red 
value,  eH( s )I T

. 
Adapt ing th is technique to the computations of harmony theory 

leads, through an analysis descri bed in  the Appendi x ,  to the fol l owing 
theorem. I t  defines the machine harmonium that real izes the theory of 
complet ions expressed in Theorem 1 .  

Theorem 2: Realizability. In the graphical representation of a har
mony system (see Figure 1 3 ) let each node denote a processor. 
Each feature node processor can have a val ue of + 1 or - 1 ,  and each 
knowledge atom a value of 1 or 0 ( i ts act ivat ion) . Let the i nput to a 
complet ion problem be specified by assign ing the given feature 
nodes their correct val ues; these are fixed throughout the computa
t ion .  Al l  other nodes repeatedly update the i r values during the com
putat ion . The features not speci fied i n  the i nput are assigned ran 
dom in i t ial values, and the knowledge atoms in i t ia l ly  a l l  have val ue 
O.  Let each node stochastical ly update i ts value according to the 
rule: 

prob(value = l) = 

1 + e - /I T 

where T is a global system parameter and I is the " i nput " to the 
node from the other nodes attached to i t  (defi ned below) . Al l  the 

fT a fT a . 

FIG U R E  1 3 .  A general harm�Opywahted Material 
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nodes in the upper layer update in paral lel , then al l  the nodes in the 
lower layer update i n  paral lel , and so on al ternately throughout the 
computation. During the update process, T starts out at some posi
t ive value and i s  gradual ly lowered. If T i s  l owered to 0 sufficiently 
slowly, then asymptotical ly, with probabi l i ty 1 ,  the system state 
forms the best completion (or one of the best completions if  there 
are more than one that maximize harmony) . 

To define the input I to each node, it is convenient to assign to the 
l ink in the graph between atom a and feature i a weight Wi" whose 
sign is that of the l ink and whose magnitude is the strength of the atom 
divided by the number of l inks to the atom: 

Using these weights , the input to a node i s  essential ly the weighted sum 
of the values of the nodes connected to it. The exact definit ions are 

for feature nodes, and 

for knowledge atoms . 
The formulae for Ii and I" are both derived from the fact that the 

i nput to a node is precisely the harmony the system would have if the 
given node were to choose the value 1 minus the harmony result ing 
from not choosi ng 1 .  The factor of 2 in the input to a feature node is 
i n  fact the difference (+ 1) - (- 1 )  between its possible values. The 
term K in the input to an atom comes from the K i n  the harmony func
t ion; it is a threshold that must be exceeded if activating the atom is to 
increase the harmony. 

The stochastic decis ion rule can be understood with the aid of Figure 
1 4 . If the input to the node is large and posit ive ( i . e . ,  selecting value 1 
would produce much greater system harmony) , then it wi l l  almost cer
tainly choose the value 1 .  If the input to the node is large and negative 
( i . e . ,  select ing value 1 would produce much lower system harmony) , 
then it wil l  almost certainly not choose the value 1 .  If the input to the 
node is near zero, i t  wi l l  choose the value 1 with a probabil i ty near . 5 .  
The width o f  the zone o f  random decisions around zero input is  larger 
the greater is T. 

The process of gradu�'�.fWg'fi'" flaII,;;be thought of as cooling the 
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.... s l o p e =  1 1 T  

FIGURE 14 .  The relation between the input I t o  a harmon ium processor node and the 

probabi l i ty  the processor wi l l  choose the va lue 1 .  

randomness out of the initial system state . In  the l imi t  that T- O, the 
zone of random decisions shrinks to zero and the stochastic decision 
rule becomes the determinist ic l inear threshold rule of perceptrons 
(Minsky & Papert , 1 969; see Chapter 2 ) . In this l im i t ,  a node wi l l  
always select the val ue wi th h igher harmony . At nonzero T,  there is a 
fin i te probab i l i ty  that the node wi l l  select the value wi th lower har
mony. 

Early in a given computat ion , the behavior of the processors wi l l  be 
highly random . As T i s  l owered , gradual ly the decisions made by the 
processors wi l l  become more systemat ic .  I n  this way , parts of the net
work gr.adual l y  assume val ues that become stable ;  the system commits 
itself to decisions as i t  cools; i t  passes from flu id behavior to the r ig id 
adoption of an answer .  The decis ion-making process resembles the 
crystal l izat ion of a l i quid into a sol id .  

Concepts from statist ical physics can i n  fact usefu l ly  be brought to 
bear on the analysis of decis ion making i n  harmony theory, as we shal l  
see in  the next section .  As suffic ient understand ing of the computa
t ional effects of different cool ing procedures emerges , the hope is that 
harmony theory wi l l  acqui re an account of how a cogni t ive system can 
regulate its own computat ional temperature. 

Theorem 2 descri bes how to find the best complet ions by lowering to 
zero the computational temperature of a paral le l  computer
harmonium-based on the function H. Harmonium thus real izes the 
second half of the competence theorem, which deals with opt imal com
pletions. But Theorem 1 also states that estimates of envi ronmental 
probabi l it ies are obtained by exponent iat ing the function U .  It i s also 
possible to bui ld a stochast ic machi ne based on U that is useful for 
simulat ing the envi ronment .  I wi l l  cal l th is  the simulation machine. 

Figure 1 5 shows the port ion of a harmonium network i nvolving the 
atom a ,  and the corresponding port ion of the processor network for the 
corresponding simulation machine .  The knowledge atom wi th strength 

Copyrighted Material 
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Simulation M achine Graph 

Harmon ium Graph + 

FIG U R E  1 5 . The graph for a one-atom harmony function and the graph for the 
correspond ing U funct ion.  In the latter, there are only featu re nodes. Each feature node 
has a s ingle i nput  poin t  labeled ± ,\ ,  where the sign is the same as that assigned to the 
feature by the knowledge atom. Into th is  i n put  poi n t come l inks  from all the other 
features assigned val ues by the knowledge ato m .  The label on each arc leaving a feature 
is the same as the value assigned to that feature by the knowledge atom. 

(j 0< and feature pattern (+ , - ,- ) i s  replaced by a set of connections 
between pai rs of features . In  accordance with Theorem I ,  
Ao< = (j a ( I-K ) .  For every atom a connected to a gi ven feature i n  har
monium, in the s imulation machine there is a corresponding input 
point  on that featur,e ,  labeled wi th Aa . 

The update rule for the s imulation machine is the same as for har
mon ium.  However, only one node can update at a t ime, and the defi 
n i t ion of the input I to a node i s  different . ' s  The input to a feature node 
is the sum of the inputs coming through al l  i nput points to the node. If 
an input point on node i is labeled ± Ao< '  then the input coming to i 
through that point is ± Ao< i f  the values of al l  the nodes connected to i 
agree wi th the label on the arc connect ing i t  to i ,  and zero otherwise. 

If  the s imulat ion machine i s  operated at a fixed temperature of I ,  the 
probabi l i ty that i t  wi l l  be found in state r asymptotical ly becomes pro
portional to e U ( r )/ I .  By Theorem I ,  th is  is the cogni t ive system's esti 
mate 1T (r) of the probabi l i ty that the envi ronment wi l l  be in  the state 
represented by r .  Thus running this machine at temperature 1 gi ves a 
s imulation of the environment .  As we are about to see , this wi l l  turn 
out to be important for learn ing. 

The general type of search procedure used by harmonium, with a 
random " thermal noise " component that is reduced during the compu
tat ion, has been used to find maxima of functions other than harmony 

1 5  Analogously to harmonium, the i nput to a node is the va lue U would have if the 
node adopted the va lue + I ,  m inus the value U i t  would have i f  i t  adopted the value - \ . 
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functions. Physic ists a t  IBM independently appl ied the technique, 
under the name simulated annealing, to both practical computer design 
problems and classical maximization problems (Kirkpatrick, Gelat t ,  & 
Vecchi , 1 983) . Benchmarks of s imulated anneal ing against other search 
procedures have produced mixed resul ts (Aragon,  Johnson , & 
McGeoch , 1 985 ) . 

The contribut ion of harmony theory is not so much the search pro
cedure for finding maxima of H, but rather the funct ion H i tself. 
Theorem 2 is important :  It describes a stat ist ical dynamical system that 
performs complet ions; it gives an implementat ion-level descri ption of a 
kind of completion machine.  But Theorem 1 is more central : It gi ves a 
high , functional - level characterizat ion of the performance of the 
system -says what the machine does-and introduces the concept of 
harmony .  More central to the theory also is  Theorem 3 , which says 
how the harmony function can be tuned with experience. 

The Learnabi l i ty Theorem 

Performing the complet ion task in different envi ronments cal l s  for 
different knowledge .  In the formal i sm of Theorem 1 ,  a gi ven cogn i t ive 
system i s  assumed to be capable of observing the frequency i n  i t s  
environment of a predetermi ned set  of feature patterns .  What vari es 
for a g iven cogni t ive system across environments i s  the frequencies of 
the patterns; th is manifests itself in the varia t ion across envi ronments 
of the strengths of the knowledge atoms represent ing those patterns. 

Theorem 3: Learnability. Suppose states of the environment are 
se lected according to the probabi l i ty  distr i but ion defin ing that 
envi ronment ,  and each state is presented to a cogn i t i ve system . 
Then there is a procedure for gradual ly  modify ing the st rengths of 
the knowledge atoms that wi l l  converge to the val ues requ i red by 
Theorem 1 .  

The basic idea of the learn ing procedure i s  simple .  Whenever one of 
the patterns the cogn i t ive system can observe is present i n  a st imu lus  
from the  envi ronment ,  the  parameter associated w i th  that pattern i s  
incremented . In  harmonium,  this means  that whenever a knowledge 
atom matches a st imulus ,  its strength increases by a smal l amount D.rr . 
In the s imulat ion machine, th is  means that the A parameter on al l the 
connect ions  corresponding to that atom must be incremented by 
D.A = D.rr ( 1 - K ) .  In t8b�1nBNiedW/a?�Wl}1 corresponds to a memory 
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trace of a feature pattern , and the strength of the atom is the strength 
of the trace: greater the more often it has been experienced. 

There i s  an error-correcting mechanism in the learning procedure 
that decrements parameters when they become too large. Intermixed 
with i ts observation of the environment, the cogn i t ive system must per
form simulation of the environment .  As discussed above, this can be 
done by running the simulation machine at temperature 1 without input 
from the environment . During simulat ion , patterns that appear in the 
feature nodes produce exactly the opposite effect as during environmen
tal observat ion,  i . e . , a decrement in the corresponding parameters. 

Harmonium can be used to approximate the s imulation machine. By 
running harmonium at temperature 1 ,  without input, states are visited 
wi th a probabi l i ty of eH , which approximates the probabi l i t ies of the 
simulation machine, e lf.  16 When harmonium is used to approximately 
s imulate the environment ,  every t ime an atom matches the feature vec
tor i ts strength is decremented by AO" . 

This error-correcting mechanism has the fol lowing effect .  The 
st rength of each atom wil l  stabi l i ze when it gets (on the average) incre
mented during environmental observation as often as it gets decre
mented during environmental s imulation . I f  envi ronmental observation 
and simulation are intermixed in equal proport ion,  the strength of each 
atom wi l l  stabi l i ze when its pattern appears as often in simulation as in 
real observation .  This  means the s imulation i s  as veri t ica l  as i t  can be, 
and that is why the procedure leads to the strengths requi red by the 
competence theorem. 

DECISION-MAKING AND FREEZING 

The Com putati on al S ignificance of Phase Transit ions 

Performing the completion task requi res s imul taneously satisfying 
many constrai nts .  In such problems, i t  i s  often the case that i t  is easy 
to find " local " solut ions that sat isfy some of the constraints but very 
difficult to find a global sol ution that s imultaneously satisfies the max
imum number of constraints . In harmony theory terms , often there are 
many completions of the input that are local maxima of H ,  in  which 
some knowledge atoms are activated , but very few completions that are 
global maxima,  in which many atoms can be s imultaneously activated . 

When harmonium solves such problems, in i t ia l ly ,  at high 

1 6 Theorem I makes th i s  a pprox i mat ion precise: These two distr ibutions are not equal ,  
b u t  t h e  max imum -probab i l i ty states are t h e  same for a n y  possible input .  
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temperatures, it occupies states that are local solutions , but finally, at 
low temperatures, it occupies only states that are global solutions. If 
the problem is well posed, there is only one such state. 

Thus the process of solving the problem corresponds to the passage 
of the harmonium dynamical system from a high-temperatu re phase to 
a low-temperature phase . An important question is: Is there a sharp 
transition between these phases? This is a " freezing poin t "  for the sys
tem, where major decisions are made that can only be undone at lower 
temperatures by wai t ing a very long time. It is important to cool slowly 
through phase transitions, to maximize the chance for these decis ions 
to be made properly; then the system wil l  relatively quickly find the 
global harmony maximum without getting stuck for very long times in 
local maxi ma.  

In th is sect ion , I wi l l  discuss an analysis that suggests that phase tran
sitions do exist in very simple harmony theory models of decision
making. In the next sect ion , a more complex model that answers sim
ple physics questions wi l l  furnish another example of a harmony system 
that seems to possess a phase transit ionP 

The cool ing process is an essentially new feature of the account of 
cogn i t ive processing offered by harmony theory. To analyze the impl i 
cations of cool ing for cognit ion ,  i t  is necessary to analyze the tempera
ture dependence of harmony models .  Since the mathematical frame
work of harmony theory sign ificantly overlaps that of statistical 
mechanics, general concepts and techniques of thermal physics can be 
used for this analysis .  However , s ince the structure of harmony models 
is quite d ifferent from the structure of models of real physical systems, 
specific results from physics cannot be carried over .  New ideas part icu
lar to cognit ion enter the analysis; some of these wi l l  be discussed i n  a 
later section on the macrolevel i n  harmony theory. 

Symmetry Breaking 

At high temperatures, physical systems typical ly have a disordered 
phase , l i ke a flu id ,  which dramatical l y  sh ifts to a highly ordered phase, 

1 7  It is tempting to ident ify freezing or " crystal l izat ion "' of harmon i u m  wi th the 
phenomenal e x per ience of sudden " 'crystal l ization "' of scattered thoughts into a coherent 
form.  There may even be some usefulness i n  th is  ident ificat ion .  However ,  i t  should be 
pointed out that since cool ing should be slow at the freezing poin t ,  i n  terms of i terat ions 
of harmoni u m ,  the t rans i t ion from the d isordered to the ordered phase may not be sud
den . If iterat ions of harmonium are i n terpreted as real cogn i t ive processing l ime ,  th i s  
calls into quest ion the  argument that " sudden "' changes as a funct ion of temperature 
correspond to "' sudden "' changedfJfrf� fJaMrNiPe .  
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l ike a crystal , at a certain freezing temperature. In the l ow-temperature 
phase, a single ordered configurat ion is adopted by the system , whi le at 
h igh temperatures , parts of the system shift i ndependently among 
pieces of ordered configurations so that the system as a whole is a con
stantly changing, disordered blend of pieces of different ordered states. 

Thus we might expect that at high temperatures , the states of har
monium models wi l l  be shifting blends of pieces of reasonable comple
t ions of the current i nput; i t  wi l l  form locally coherent solutions. At 
low temperatures ( i n  equi l ibr ium) , the model wi l l  form completions 
that are globally coherent .  

Finding the best solut ion to a complet ion problem may involve fine 
discriminations among states that all have high harmonies. There may 
even be several completions that have exactly the same harmonies,  as 
i n  i nterpreting ambiguous input . This is a usefu l  case to consider, for 
in an ordered phase , harmonium must at any t ime construct one of 
these " best answers " in i ts pure form, without admix ing parts of other 
best answers (assuming that such mixtures are not themselves best 
answers, which is typical ly the case) . In physical terminology, the sys
tem must break the symmetry between the equal ly good answers in order 
to enter the ordered phase . One technique for finding phase transi t ions 
is to l ook for crit ical temperatures above which symmetry is respected, 
and below which i t  i s  broken .  

An Idealized Decision 

This suggests we consider the fol l owing ideal ized decision-making 
task . Suppose the envi ronment is always in one of two states , A and 
B ,  wi th equal probabi l i ty .  Consider a cogni t ive system performing the 
completion task. Now for some of the system 's representational 
features, these two states wi l l  correspond to the same feature value. 
These features do not enter i nto the decision about which state the 
envi ronment is i n ,  so let us remove them . Now the two states 
correspond to opposite values on all features. We can assume without 
loss of general i ty that for each feature , + is  the value for A , and - the 
value for B (for if this were not so we could redefine the features , 
exploit ing the symmetry of the theory under fl ipping signs of features) . 
After train ing in  this envi ronment ,  the knowledge atoms of our system 
each have either all + connect ions or all - connect ions to the features. 

To look for a phase transi t ion,  we see if  the system can break sym
metry .  We gi ve the system a completely ambiguous i nput :  no input at 
al l .  It wi l l  complete this to either the al l - +  state , representi ng A ,  or 
the al l - - state ,  represent ing B ,  each outcome being equal ly l i kely . 
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Observing the harmonium model we see tha t  for high temperatu res , the 
states are typical ly blends of the al l -+  and al l - - states. These blends 
are not t hemsel ves good complet ions si nce the environment has no 
such states. But at low temperatures , the model i s  almost always in one 
pure state or the other, with only short - l i ved in trusions on a feature or 
two of the other state . I t  is equal ly l i kely to cool i n to ei ther state and , 
gi ven enough t ime,  wi l l  n i p  from one state to the other through a 
sequence of (very i mprobable) intrusions of the second state in to the 
fi rst . The t ransi t ion between the hi gh - and low- temperature phases 
occurs over a qu i te  narrow temperatu re range . At th is freezing tem
perature ,  the system dri fts eas i ly back and forth between the two pure 
states . 

The harmon ium s imulat ion gi ves empi rical evidence that there is a 
cri t ical temperat ure below which the symmetry between the in terpreta
t ions of ambiguous inpu t i s  broken . There i s  also analyt ic  evidence for 
a phase t ransit ion i n  th is case. Th is analysis rests on an important con 
cept from stat is t ical mechan ics: the thermodynamic l im i t .  

The Thermodynamic Li mi t  

Statist ical mechan ics relates microscopic descri pt ions tha t  view matter 
as dynamical systems of const i tuent particles to the macrolevel descri p
tions of matter used in thermodynamics . Thermodynamics provides a 
good approx imate descri pt ion of the bulk propert ies of systems contain 
i ng an extremely large number of part icles. The thermodynamic limit is 
a theoret ical l im i t  in which the number of part icles in a statistical 
mechanical system is  taken to infin i ty ,  keeping fini te ce rta in aggregate 
propert ies l i ke the system 's density and pressure. I t  is i n  th is l i mi t  that 
the microtheory provably admits the macrotheory as a val id approx i 
mate descr ipt ion . 

The thermodynamic l im i t  wil l later be seen to relate i mportant ly to 
the l imit  of harmony theory in which symbol ic macro-accounts become 
val id .  But for present  purposes, it i s  relevant to the analysis of phase 
trans i t ions .  One of the important insights of stat ist ical mechanics is  
that qualitative changes in  thermal systems, l ike those characterist ic of 
genuine phase t ransit ions , cannot occur i n  systems with a fin i te number 
of degrees of freedom (e.g . , part icles) . I t  is only i n  the thermodynamic 
l imit that phase t rans i t ions can occur. 

This means that an analysis of freezing in the idea l ized-decis ion 
model must consider the l im i t  i n  which the number of features and 
knowledge atoms go to infin i ty . In th is  l im i t ,  certai n approximat ions 
become valid that sugge�o/ltnfpHe8'M!lre,;ci' a phase t ransi t ion .  
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Robustn ess of Coherent Interpretat ion 

To concl ude this sect ion , let me point out the significance of this 
simple decis ion-making system. Harmony theory started out to design 
an engine capable of construct ing coherent interpretations of input and 
ended up with a class of thermal models real ized by harmoni um. We 
have just seen that the result ing models are capable of taking a com
pletely ambiguous input and nonetheless construct ing a completely 
coherent interpretation (by cool i ng below the crit ical temperature) . 
This suggests a robustness i n  the dri ve to construct coherent interpreta
t ions that should prove adequate to cope with more typical cases charac
terized by less ambiguity but greater complexity . The greater complex
i ty wi l l  surely hamper our attempts to analyze the models ' performance; 
it remains to be seen whether greater complexity wi l l  hamper the 
models '  abi l i ty to construct coherent i nterpretat ions. With this in 
mind, we now jump to a much more complex decision-making prob
lem : the qual i tati ve analys is  of a s imple e lectric c ircui t .  

AN APPLICATION : ELECTRICITY PROBLEM SOLVING 

Theoretical context of the model. In this section I show how the 
framework of harmony theory can be used to model the intuition that 
al lows experts to answer, without any conscious appl ication of " rules," 
questions l i ke that posed in  Figure 1 6 . Theoretical conceptions of how 
such problems are answered plays an i ncreasingly sign ificant role in the 
design of i nstruct ion .  (For example ,  see the new journa l ,  Cognition and 

V lolal 

FIGURE 16 .  If  the resistance of R 2 is  increased (assuming that �oral and R I remain the 
same) , what happens to the curren t and voltage drops ? 

Copyrighted Material 



6. H A R MONY THEORY 24 1 

Instruction, and Ginsburg, 1 983 . )  Even such simple problems as that of 
Figure 16 have important i nstructional implications (Riley, 1 984) . 

The mode l  I wi l l  describe was studied in  col laborat ion wi th Mary S .  
Riley (Ri ley & Smolensky, 1 984) and Peter DeMarzo ( 1 984) . This 
model provides answers, without any symbol ic mani pulation of rules,  to 
qual i tati ve questions about the part icular circui t  of Figure 1 6. I t  should 
not be assumed that we imagine that a d ifferent harmony network l i ke 
the one I wi l l  describe is created for every different c ircu i t  that i s  
analyzed . Rather we assume that experts contain a small number of 
fixed networks l i ke the one we propose, that these networks represent 
the effects of much cumulated experience with many different ci rcu i ts ,  
that they form the " chunks " wi th which the expert 's intuition represents 
the circu it  domain ,  and that complex problem sol ving somehow 
employs these networks to di rect the problem solv ing as a whole 
through i ntu i t ions about chunks of the problem. At this early stage we 
cannot say much about the coordination of act ivi ty i n  complex problem 
solving . But we do claim that by gi ving an expl ic i t example of a non
symbol ic account of problem sol ving , our model offers insights into 
expertise that complement n icely those of tradit ional production-system 
models . The model also serves to render concrete many of the general 
features of harmony theory that have been described above. 

Representational features. The fi rst step in developing a harmony 
model is to select features for represent ing the envi ronment . Here the 
environment is the set of qual i tat ive changes i n  the electric ci rcu i t  of 
Figure 16 that obey the laws of physics. What must obviously be 
represented are the changes in the physical components: whether R 1 
goes up ,  goes down , or stays the same, and s imi larly for R 2 and the 
battery's vol tage Vrola/ '  We also hypothesize that experts represent 
deeper features of this envi ronment ,  l i ke the current I ,  the voltage 
drops VI and V2 across the two resistors , and the effect ive resistance 
Rlola/ of the circui t .  We claim that experts " see " these deeper features; 
that perceiving the problem of Figure 16 for experts invol ves fi l l ing in 
the deeper features just as for al l  sighted people-experts in  vis ion 
perceiving a scene i nvolves fi l l ing in  the features describing objects i n  
three-dimensional space. Many studies of  expertise in  the  psychological 
l i terature show that experts percei ve the i r  domain differently from 
novices: Thei r  represen tat ions are much richer; they possess addit ional 
representational features that are special ly developed for capturing the 
structure of the part icular envi ronment .  (See, for example, Chase & 
Simon , 1 973 ; Lark in ,  1 983 . )  

So  the  representational features in  ou r  model encode the qual itat ive 
changes in  the seven ci rcu i t  variables: R I t  R 2 , R'o(ai l  V I t  V 2 ,  Vrola/ '  and 
I . Our claim is that e'8'crpY;ri�a�JfeW3

I 
set of features like these; 
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there are undoubtedly many other possi bi l i t ies, wi th different sets being 
appropriate for model ing different experts. 

Next , the three qual i tat i ve changes UP. down. and same for these 
seven variables need to be given binary encodings . The encoding I wil l  
discuss here uses one binary variable t o  indicate whether there i s  any 
change and a second to indicate whether the change is up. Thus there 
are two bi nary variables, I. c and I. u ,  that represent  the change i n the 
current , I .  To represent no change in I ,  the change variable I.c is set 
to - 1 ; the value of I. u i s ,  in this case , i rrelevant. To represent 
increase or decrease of I ,  I. c is given the value + 1 and I. u i s  assigned 
a value of + 1 or - I ,  respect ively .  Thus the total number of represen
tational features in the model is 1 4 :  two for each of the seven c i rcuit 
variables. 

Knowledge atoms. The next step in construct ing a harmony model 
is to encode the necessary knowledge into a set of atoms, each of which 
encodes a subpattern of features that co-occur  in the environment. The 
environment of ideal ized c i rcuits i s  governed by formal laws of physics, 
so a specifi cation of the knowledge requi red for mode l ing the envi ron
ment is straightforward . In most real -world envi ronments, no formal 
laws exist , and it is not so simple to gi ve a priori methods for di rectly 
constructing an appropriate knowledge base . However, in such 
environments , the fact that harmony models encode statistical informa
tion rather than rules makes them much more natural candidates for 
viable models than rule-based systems. One way that the statisti cal 
prop-ert ies of the envi ronment can be captured in the strengths of 
knowledge atoms i s  given by the learn ing procedure .  Other methods 
can probably be deri ved for di rectly passing from statist i cs about the 
domain (e .g . , medical stat ist ics) to an appropriate knowledge base . 

The fact that the envi ronment of electric ci rcuits is explici t ly rule
governed makes a probabi l i st ic model of i n tui t ion , l i ke the model under 
construct ion, a part icularly interesting theoretical contrast to the obvi
ous rUle-applying models of explicit conscious reasoning. 

For our model we selected a min imal set of atoms; more realistic 
models of experts would probably invol ve addit ional atoms . A minimal 
specification of the necessary knowledge is based di rectly on the equa
tions constrain ing the c i rcuit :  Ohm 's law, Ki rchoff's law, and the equa
t ion for the total resistance of two resistors i n  series. Each of these is 
an equat ion constrain ing the simul taneous change i n  three of the ci rcu it 
variables. For each law, we created a knowledge atom for each combi
nat ion of changes in the three variables that does not violate the law. 
These are memory traces that might be left beh ind after experiencing 
many problems i n  this domaioA, ite:.J after observing many states of this 
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envi ronment .  It tu rns out that this process gi ves r ise to 65  knowledge 
atoms! 8  all of which we gave strength 1 .  

A port ion of the model i s  shown i n  Figure 17 . The two atoms shown 
are respecti vely i nstances of Ohm 's law for R 1 and of the formula  for 
the total res istance of two resis tors in series. 

It can be shown that with the knowledge base I have descri bed , 
whenever a completion problem posed has a unique correct answer, 
that answer wi l l  correspond to the state wi th highest harmony. This  
assumes that K i s  set  wi th in  the range determined by Theorem 1 :  the 
perfect matchi ng l imi t .  1 9  

The parameter K .  According to  the  formula defin ing the  perfect 
match ing l i m i t ,  K must be less than 1 and greater than 1 - 2/6 = 2/3 
because the knowledge atoms are never connected to more than 6 
features (two binary featu res for each of t h ree variables) . In the 

Knowledge 
Atoms 

Representat ional  
Featu res 

• • • 

FIG URE 1 7 . A schematic diagram of the feature nodes and two knowledge atoms of the 
model of circuit analysis . u, d, and s denote up, down , and same. The box labeled 1 
den otes the pair o f binary feature nodes representing I, and simi lar ly for the other s ix cir
cuit variables.  Each connection labeled d denotes a pair of connections labeled with the 
binary encoding (+ ,- ) representing down, and si m ilarly for connections labeled u and s.  

1 8  Ohm 's law applies t hree t imes for this circuit ;  once each for R I ,  R 2 ,  and R,o,al ' This 
together with the other two laws gives five constraint equations. In each of these equa
tions, the three variables in volved can undergo 1 3  combinations of qualitative changes . 

19 Proof The correct answer sat isfies all  five circuit equations, the maximum possible.  
Thus i t  exact ly matches five atoms, and no possible answer can exactly match more than 
live atoms. In the exact matching limi t ,  any nonexact matches can not produce higher 
harmony, so the correct answer has the maxim um possible harmony.  If enough informa
tion is given in the problem so that there is only one correct answer, then there is only 
one state with th is  maximal harmony value.  

Copyrighted Material 



244 BASIC MECH ANISMS 

simulat ions I wi l l  describe, K was actually raised during the computation 
to a value of . 75 ,  as shown in Figure 1 8 .  (The model actually performs 
better if K = . 75 throughout: DeMarzo, 1 984. ) 

Cooling schedule. It was not difficult to find a cool i ng rate that per
mitted the model to get the correct answer to the problem shown i n  
Figure 1 6  on  28 out o f  30 trials. This cool ing schedule is  shown in Fig
ure 1 9 . 2oThe in i tial temperature (4.0) was chosen to be sufficiently high 

1 .00 ....----------------------, 
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0.25 

0.00 L....o::::...--......L.. __ 1...-_-.L. __ .L-_� __ ..L..__ ........ _---' 
o 1 00 200 

Ti m e  
300 

FIGURE 18 .  The schedule showing K as a function of time during the computat ion . 

400 

20 In the reported simulations, one node, selected randomly, was updated at a time. 
The computation lasted for 400 " iterations " of 100 node updates each; that is, on the 
average each of the 79 nodes was updated about 500 t imes. " Updating" a node means 
deciding whether to change the value of that node, regardless of whether the decision 
changes the value. (Note on "psychological plaUSibility" :  500 updates may seem like a lot to 
solve such a simple problem. But I claim the model cannot be dismissed as implausible 
on this ground. According to current very general hypotheses about neural computation 
(see Chapter 20) , each node u pdate is a computation comparable to what a neuron can 

perform in its " cycle t ime" of about 10 msec. Because harmonium could actually be 
implemented i n  paral lel hardware, i n  accordance with the realizabil ity theorem,  the 500 
updates could be achieved in 500 cycles. With the cycle t ime of the neuron, this  comes 

to about 5 seconds. This is clearly the correct order of magnitude for solving such prob· 
lems intu i t ively. Whi le  it is also possible to sol ve such problems by tiring a few symbolic 
product ions, i t  is  not so clear that an implementation of a production system model could 
be devised that would run in 500 cycles of parallel computations comparable to neural 

computations.)  
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300 .roo 

FIGURE 1 9 .  The sched u le showi ng T as a function of t ime dur ing the computation . 

that nodes were fl ipping between thei r val ues essential ly at random; the 
final temperature (0.25) was chosen to be sufficient ly smal l that the 
representational features hardly ever fl i pped, so that the completion 
could be said to be its " final decision ." Considerable computation time 
was probably wasted at the upper and lower ends of the cool i ng 
schedule .  

The simulation. The graphical display used i n  the s imulat ion pro
vides a useful  image of the computational process . On a gray back
ground , each node was denoted by a box that was white or black 
depending on the current node val ue. Throughout the computat ion,  
the nodes encoding the gi ven information maintai n thei r fixed values 
(colors) . In i t ial ly ,  al l  the atoms are black (i nacti ve) and the unknown 
features are assigned random colors. When the computation starts, the 
temperatu re is high, and there is much fl i ckering of nodes between 
black and whi te. At any moment many atoms are acti ve .  As computa
t ion proceeds and the system cools, each node fl ickers less and less and 
eventually sett les into a final val ue.2 1 The " answer" is read out by 

2 1 I t may happen that some representat ion var iables wil l  be connected only to 
knowledge atoms that are i nacti ve towards the end of the computat io n ;  these representa· 
t ion variables will con tin ue to nicker at arbitrari ly low temperat ures, spending 50% of the 
t ime in each state. In fact , th is  happens for bi t s of the representation ( l ike R l ' U ) that 
encode the " d irect ion of change" of c i rcuit variables that are in  state no change, indicated 
by - on the · presence of change" b i t .  These bits are ignored by the act ive knowledge 
atoms (those i nvolving no change for the circui t  variable) and are also ignored when we 
" read out " the final answer pr0I!fo'ff�llliiaV3f�iial 
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decoding the features for the unknowns. Ninety-three percent of the 
t ime, the answer is  correct .  

The microdescription of problem solving. Since the model correctly 
answers physics quest ions, i t  . . acts as though " it knows the symbolic 
rules govern i ng electric c i rcuits . In other words, the competence of the 
harmonium model (using Chomsky's  meaning of the word) could be 
accurately described by symbol ic inference procedures (e .g . , produc
t ions) that operate on symbol ic representations of the circui t  equations. 
However the performance of the model ( including its occasional errors) 
is achieved without i nterpreting symbol ic rules.22 In fact , the process 
underlying the model 's  performance has many characteri stics that are 
not natura l ly represented by symbol ic  computat ion. The answer is 
computed through a series of many node updates , each of which is a 
microdecision based on formal numerical rules and numerical computa
t ions. These microdecisions are made many times , so that the eventual 
values for the different ci rcu i t  variables are i n  an important sense being 
computed in parallel. Approximate matching i s  an important part of the 
use of the knowledge: Atoms whose feature patterns approximately 
match the current feature val ues are more l i kely to become act ive by 
thermal noise than atoms that are poorer matches ( because poorer 
matches lower the harmony by a greater amount) . And al l the 
knowledge that is act i ve at a given moment blends in its effects: When 
a gi ven feature updates its val ue ,  its microdecision is based on the 
weighted sum of the recommendations from all the acti ve atoms. 

The macrodescription of problem solving. When watching the simu
lat ion, i t  i s  hard to avoid anthropomorph iz ing the process . Early on , 
when a feature node is fl i ckering furiously, it is clear that " the system 
can ' t  make up its mind about that variable yet ." At some point during 
the computat ion, however, the node seems to have stopped 
flickering-" i t 's  decided that the current went down ." It is reasonable to 
say that a macrodecision has been made when a node stops fl ickering, 

22 The d ist i nct ion between character iz ing the  competence and performance of dynami
ca l  systems is a common one i n  physics , a l though I know of no terminology for i t .  A 
product ion system express ing the ci rcu i t  laws can be viewed as a grammar for generating 
the high-harmony states of the dynamical system .  These laws neat ly express the states into 
which the system wi l l  set t le .  However, completely d i fferent laws govern the  dynamics 
th rough wh ich the system en ters equi l i br ium states.  Other examples from physics of th is  
dist i nction are to  be found essent ia l ly everywhere. Keple r ' s  laws ,  for example ,  neatly 
character ize the planetary orb i ts ,  but completely d i fferent laws, Newton's  laws of motion 
and gravi tat ion,  descri be the dynam ics of planetary mot ion.  Balmer 's  form u la neatly 
characterizes the l ight em i t ted by the hyd rogen ato m ,  but  u t ter ly d i fferent laws of quan
t u m  physics describe the dyna�m�fffaterial 
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although there seems to be no natural  formal defin i t ion for the concept .  
To study the propert ies of macrodecis ions, i t  is appropriate to look at 
how the average values of the stochast ic node variables change during 
the computat ion .  For each of the unknown variables , the node val ues 
were averaged over 30 runs of the complet ion problem of Figure 1 6 , 
separately for each t i me dur ing the computat ion . The result ing graphs 
are shown in Figure 20 .  The plots hover around 0 in i t ial ly ,  i ndicating 
that val ues + and - are equal ly l i kely at h igh temperatures-lots of 
fl ickeri ng. As the system cools ,  the average values of the representa
t ion variables dri ft toward the values they have in the correct sol ut ion 
to the problem (RlolaJ = up, I = down , VI = down, V2 = up) . 

Emergent seriality. To better see the macrodecis ions, i n  Figure 2 1  
the graphs have been super imposed and the " i ndecis ive "  band around 0 
has been removed. The stri k ing resul t  is that out of the stat ist ical d in 
of paral le l microdecis ions emerges a sequence of macrodecis ions. 

Propagation of givens. The resu l t  is even more in terest ing when i t  
i s  observed that in  symbol ic  forward-chain ing reasoning about th is 
problem , the dec is ions are made i n  t he order  R ,  I ,  V I ,  V2 .  Thus not 
on l y  i c;  the ('(JmnPlpncp of t he m nrle l  neH t l y  clec;cr i hah l e <;ym hol i ca l l y .  h u t  
even  t he  performance,  w h e n  descr i bed a t  I h e  macro l eve l , cou ld be 
modeled by t he  sequen t i a l  fi r i n g  of p rod uct i ons  t ha t  cha i n I h rough t h e  
i n ferences.  O f  course, macrodecis ions emerge firs t  about t hose vari 
ables that are most d i rectly  constrained by the given i nputs, but not 
because ru les are being used that have condit i ons that only al low them 
to apply when al l but one of the variables is known. Rather i t  i s 
because the variables given i n  the inpu t  are fIXed and do not fluctuate: 
They provide the information that is the most consistent over t ime ,  and 
therefore the knowledge consistent with the i nput is  most consistently 
act i vated , a l lowing those variables involved i n  this knowledge to be 
more consistent ly completed than other variables . As the temperature 
is lowered, those variables " near " the input (wi th  respect to the connec
tions provided by the knowledge) stop fluctuat ing fi rs t ,  and their rela
t ive constancy of value over time makes them function somewhat l i ke 
the original input to support the next wave of completion .  In th is  
sense, the stabi l i ty of variables " spreads out " through the network, 
start ing at the inputs and propagat ing with the help of cool ing .  Un l i ke 
the s imple feedforward " spread of act ivat ion " through a standard act i va
t ion network, this process is a spread of feedback-mediated coherency 
through a decis ion-making network.  Like the growth of droplets or 
crystals ,  this amounts to the expansion of pockets of order into a sea of 
disorder .  
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FIGURE 2 1 .  Emergent  serial i ty :  The decis ions about the di rect ion of change o f  the cir
cui t  var iables " freeze i n "  i n  the order R = R/o/al ' I = I/o/QI ' VI ' VI (R and I are very 
c lose) .  

Phase transition. I n  the previous sect ion , a h igh ly ideal ized 
decis ion-making model was seen to have a freezing temperature at 
which the system behavior changed from disordered (undecided) to 
ordered (decided) . Does the same th ing occur i n  the more compl icated 
c ircuit model ? As a signal for such a phase transi t ion ,  physics says to 
look for a sharp peak in the quant i ty 

< H2> - < H> 2 
C = T2 

This is global property of the system wh ich is proport ional to the rate at 
which entropy-disorder-decreases as the temperature decreases; in 
physics , i t  is cal led the specific heat. If there i s  rapid increase i n  the 
order of the system at some temperature ,  the specific heat wi l l  have a 
peak there. 

Figure 22 shows that i ndeed there is a rather pronounced peak . Does 
this macrostat ist ic of the system correspond to anyth ing significant in 
the macrodecis ion process ? In Figure 23 ,  the speci fic  heat curve is 
superimposed on Figure 2 1 .  The peak i n  the specific heat coincides 
remarkably wi th the fi rst two major decis ions about the total res istance 
and current .  
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FIGURE 22 .  The specific heat of the ci rcui t  analysis model t h rough the cou rse of t he 
com putat ion.  
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FIG U R E  23 .  The re i s  a peak in  the speci fic heat at  t h e  t i me when t h e  R and I decisions 

are being made. 
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MACRODESCRIPTION : PRODUCTIONS,  SCH EMATA, 
AND EXPERTISE 

Product ions and Ex pert ise 

While there are s imi lari t ies in  the production-system account of prob
lem solving and the macrodescript ion of the harmony account ,  there 
are important d ifferences. These differences are most apparent in the 
accounts of how experts' knowledge is  acquired and represented . 

A symbolic account 0/ expertise acquisition. A standard descri ption 
with in the symbol ic  paradigm of the acquis i t ion of expertise is based on 
the idea of knowledge compilation (Anderson , 1 982) . Appl ied to circu i t  
analysis ,  the account goes roughly l i ke th is .  Novices have procedures 
for i nspect i ng equations and using them to assign val ues to unknowns. 
At this stage of performance , novices consciously scan equations when 
solv ing ci rcu i t  problems. As ci rcuit problems are solved, knowledge is 
proceduralized: special i zed c i rcu i t -analysis productions are stored in the 
knowledge base . An example of might be " IF gi ven : R I and R 2 both 
go up , THEN conclude: RlOlal goes up" which can be abbreviated 
R I U R 2u - Rlolal U Another migh t be Rlolal U �olal s _ Id At this stage 
of performance, a series of logical steps is consciously experienced , but 
no equations are consciously searched . As the c i rcui t  productions are 
used together to sol ve problems , they are composed together (Lewis ,  
1 978) . The two product ions just ment ioned, for example ,  are com
posed into a single product ion , R i ll R 2" Vlola/ - RIOlal 1l Id As the pro
ductions are composed, the condit ions and actions get larger, more is 
inferred in  each production fi ring, and so fewer productions need to 
fi re to sol ve a given problem. Eventual ly ,  the compi lat ion process has 
produced productions l i ke R 1 " R 211 �ola/ - R,o,al u  Id Vld V2u .  Now we 
have an expert who can solve the problem in Figure 1 6  all at once, by 
fir ing this si ngle production . The reason is that the knowledge base 
contains ,  prestored, a rule that says " whenever you are gi ven this prob
lem, give this answer ," 

A subsymbolic account. By contras t ,  the harmony theory account of 
the acquis i t ion of expertise goes l ike th is .  (This  account has not yet 
been tested wi th simulat ions ' >  Beginn ing physics students are novices i n  
ci rcui t  analysis bu t  experts (more or less) at symbol man ipulat ion .  
Through experience with language and mathemat ics , they have bui l t  
up - by means of the l earn ing process referred to i n  the learnab i l i ty 
theorem -a set of features and knowledge atoms for the perception and 
manipulat ion of symbols . Tbese can be used to inspect the c ircuit  
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equations and draw inferences from them to solve c ircuit problems. 
With experience, features dedicated to the perception of c ircuits evolve ,  
and knowledge atoms relati ng these features develop. The final net
work for c ircuit  perception contains wi thin it someth ing l ike the model 
described in the previous section (as wel l  as other portions for analyz
i ng other types of s imple ci rcui ts) . This final network can solve the 
entire problem of Figure 1 6  in  a single cool i ng. Thus experts percei ve 
the solut ion in a single conscious step. (Although sufficiently careful 
perceptual experiments that probe the i nternal structure of the con
struction of the percept should reveal the kind of sequential fi l l ing-in 
that was displayed by the model . )  Earl ier networks , however, are not 
sufficiently wel l - tuned by experience; they can only solve pieces of the 
problem i n  a single cool ing. Several coolings are necessary to solve the 
problem , and the answer is deri ved by a series of consciously experi
enced steps . (This  gives the symbol -manipulating network a chance to 
partic ipate, offering justifications of the intu i ted conclusions by ci t ing 
ci rcuit laws . )  The number of circuit constraints that can be satisfied in 
paral lel during a single cool ing grows as the network is learned . Produc
tions are higher level descriptions of what input/ output pairs
completions-can be reliably peiformed by the network in a single cooling. 
Thus, in  terms of thei r product ions, novices are described by produc
t ions with simple condi tions and actions , and experts are described by 
complex condit ions and actions. 

Dynamic creation of productions. The point is ,  however, that in the 
harmony theory account ,  productions are just descriptive entities; they are 
not stored, precompiled, and fed through a formal inference engine; rather 
they are dynamically created at the t ime they are needed by the appropri
ate collect ive action of the small knowledge atoms. Old patterns that 
have been stored through experience can be recombined in completely 
novel ways , giving the appearance that protluctions had been precom
pi led even though the part icular condi t ion/ action pai r had never before 
been performed. When a fami l iar input is changed sl ightly ,  the net
work can sett le down in a sl ightly different way, flexing the usual pro
duction to meet the new situat ion . Knowledge is not stored in large 
frozen chunks; the productions are truly context sensit ive .  And since 
the productions are created on-l ine by combin ing many smal l pieces of 
stored knowledge, the set of avai lable productions has a size that is an 
exponential function of the number of knowledge atoms . The 
exponential explosion of compi l ed product ions is virtual , not precom
piled and stored . 

Contrasts with logical inference. It should be noted that the har
monium model can an�Matafiidons just as it can answer 
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wel l -posed ones. If insuffici en t informat ion is provided, there wi l l  be 
more than one state of highest harmony , and the model wi l l  choose one 
of them. It does not stop dead due to " i nsuffic ient informat ion " for 
any formal inference rule to fire .  If incons istent information is given, 
no avai lable state wil l  have a harmony as high as that of the answer to a 
wel l -posed problem; nonetheless , those answers that violate as few cir
cu it laws as possible wi l l  have the h ighest harmony and one of these 
wil l  therefore be selected . It is not the case that " any conclusion fol 
lows from a contrad ict ion ." The mechanism that al lows harmon ium to 
solve wel l -posed problems allows it to find the best possible answers to  
i l l -posed problems, wi th no mod ification whatever . 

Schemata 

Productions are h igher level descri ptions of the completion process 
that ignore the internal structures that bring about the i nput/ output 
mapping. Schemata are h igher level descri ptions of chunks of the 
knowledge base that ignore the internal structure with in the chunk .  To 
suggest how the relat i on between knowledge atoms and schemata can 
be formal ized , i t  is usefu l to begin wi th the ideal ized two-choice dec i 
sion model discussed in  the preceding section ent i t led Dec is ion - Making 
and Freezing. 

Two-choice model. In this model , each knowledge atom had either 
all + or all - connect ions . To form a higher level descript ion of the 
knowledge , let ' s  l ump all the + atoms together i nto the + schema , and 
denote it with the symbol S+ . The activation level of this schema , 
A (S+ ) , wi l l  be defined to be the average of the act ivations of i ts con
sti tuent atoms. Now let us consider all the feature nodes together as a 
slot or variable, s ,  for this schema. There are two states of the slot that 
occur in completions: al l + and all - .  We can define these to be the 
possible fillers or values of the slot and symbol ize them by 1+ and 1- . 
The informat ion i n  the schema S+ is that the slot s should be fi l led 
with 1+ ; the proposi t ion s = 1+ .  The " degree of truth" of this proposi 
t ion , ds = 1+ ) ,  can be defined to be the average value of al l  the 
feature nodes comprising the slot : If they are all + ,  this i s  1 or true; i f  
all - this is  - l or lalse. A t  intermediate points in  the computation 
when there may be a mixture of signs on the feature nodes, the degree 
of truth is  somewhere between 1 and - 1 . 

Repeat ing the construction for the schema S_ , we end up with a 
higher level descript ionotp;h»hMtJiAWJte11§pel depicted in  Figure 24 .  
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FIG URE 24.  Micro- and macrodescriptions of the ideal ized decis ion model .  

The interest ing fact is that the harmony of any state of the original 
model can now be re-expressed using the higher level variables : 

In this s imple homogeneous case , the aggregate higher level variables 
contain sufficient information to exactly compute the harmony 
function .  Copyrighted Material 
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The analysis of  decision making in  th i s  model considered the  l im i t  as 
the number of features and atoms goes to infini ty-for only  in this 
"thermodynamic l im i t "  can we see real phase transi t ions. In this l im i t ,  
the  set of poss ible  val ues for the averages tha t  define the aggregate 
variables comes closer and c loser to a cont inuum. The central l imit  
theorem constrains these averages to deviate less and less from their 
means; stat i st i cal fluctuations become less and less significant ;  the 
model ' s  behavior  becomes more and more determin ist ic . 

Thus, just as the stat ist ical behavior of matter disappears i nto the 
determin ist ic laws of thermodynamics as systems become macroscopic 
in size , so the statistical behavior of individual features and atoms i n  
harmony models becomes more and more closely approximated by  the 
higher level descri pt ion i n  terms of schemata as the number of const i t 
uents aggregated i n to the schemata increases . However there are two 
important d ifferences between harmony theory and stat ist ical physics 
relevant here. Fi rst , the number of const i tuents aggregated i nto sche
mata i s  nowhere near the number- I 023 -of particles aggregated into 
bulk matter. Schemata provide a useful but significantly l imi ted 
descript ion of real cogni t ive processing. And second, the process of 
aggregation in  harmony theory i s  much more complex than in  physics . 
Th is point  can be brought out by passing from the grossly oversimpl i 
fied two-choice decision model just  considered to a more real ist ic cogn i 
tive domain .  

Schemata for rooms. In a real ist i cal l y  compl icated and large net
work, the schema approx imation would go someth ing l i ke th is .  The 
knowledge atoms encode clusters of values for features that occur i n  
the envi ronment . Commonly recurring clusters would show up in  
many atoms that d iffer s l ight ly from each other. ( In  a d ifferent 
language, the many exemplars of a schema would correspond to 
knowledge atoms that d iffer s l ight ly but share many common features . )  
These atoms can be  aggregated i n to  a schema , and their average act iva
t ion at any moment defi nes the activation of the schema. Now among 
the atoms in the cluster corresponding to a schema for a living-room, for 
example, might be a subcluster corresponding to the schema for 
sofa/ coffee-table. These atoms comprise a subschema and the average of 
thei r act ivations would be the activat ion variable for this subschema. 

The many atoms comprising the schema for kitchen share a set of 
connecti ons to representat ional features relat ing to cooking devices . It 
is convenient to group together these connections into a cooking-device 
slot, Smoking ' Different atoms for different i nstances of kitchen encode 
various patterns of values over these representational features , 
corresponding to instances of stove, conventional oven , microwave oven , 
and so forth .  Each of t��� tJriMw§/a possible filler, fk ' for the 
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slot. The degree of truth of a proposi t ion l i ke Scooking = Ii is the 
number of matches minus the number of mismatches between the pat
tern defining Ii and the current values over the representation nodes in 
the s lot  Scooking , a l l  di vided by the total number of features in the slot .  
Now the harmony obtai ned by acti vat ing the schema is determined by 
the degrees of truth of proposi t ions specifying the possi ble fi l lers for 
the slots of the schema. Just l ike in the s imple two-decision model ,  the 
harmony funct ion , original ly  expressed in terms of the microscopic 
variables , can be re-expressed in terms of the macroscopic variables, 
the act ivations of schemata , and slot fi l lers . However, s ince the 
knowledge atoms being aggregated no longer have exactly the same 
l inks to features, the new expression for H in terms of aggregate vari 
ables is on ly approximately val id .  The macrodescript i on involves fewer 
variables , but the structure of these variables is more complex. The 
objects are becoming richer, more l i ke the structures of symbolic com
putat ion. 

This is the basic idea of the analyt ic program of harmony theory for 
relat ing the micro- and macro-accounts of cognit ion.  Macroscopic vari
ables for schemata , thei r act i vat ions, thei r slots , and proposi t ional con
tent are defined. The harmony function is approximately rewri tten in 
terms of these aggregate variables, and then used to study the macro
scopic theory that is determined by that new function of the new vari
ables .  This theory can be s imulated ,  defining macroscopic models. 
The nature of the approximat ion relat ing the macroscopic to the 
microscopic models is clearly art iculated , and the si tuations and senses 
in which this approximation is val id are therefore specified. 

The k ind of variable aggregation involved in the schema approxima
t ion is i n  an important respect qui te un l ike any done in physics. The 
physical systems t rad i t ional ly  studied by physicists have homogeneous 
structure , so aggregat ion is done i n  homogeneous ways . In cogn it ion , 
the dist inct roles played by different schemata mean aggregates must be 
special ly defined . The theory of the schema l imi t  corresponds at a very 
general level to the theory of the thermodynamic l imi t ,  but is rather 
sharply dist inguished by a much greater complexity. 

The Schema Approx imat ion 

In this subsecti on I would l ike to briefly discuss the schema approxi
mation in a very general informat ion-process ing context. 

In harmony theory ,  the cogn i t ive system fi l l s  in  missing information 
with reference to an internal model of the environment represented as 

Copyrighted Material 
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a probabi l i ty distri but ion . Such a distri but ion of cou rse contains poten
tial ly a phenomenal amount of informat ion:  the joi nt statistics of all 
combinat ions of al l features used to represent the envi ronment . How 
can we hope to encode such a distri but ion effect ive ly? Schemata pro
vide an answer .  They comprise a way of breaking up the envi ronment 
i nto modules-schemata- that can indi vidual ly by represented as a 
min iprobabi l i ty dist ri bution . These min id istr i but ions must then be 
folded together duri ng processing to form an est imate of the whole dis
tri buti on .  To analyze a room scene, we don't  need information about 
the joint probabi l i ty of al l possible features� rather, our schema for 
" chai r" takes care of the joint probabi l i ty of the features of chai rs �  the 
schema for " sofa/ coffee-table "  contains i nformat ion about the joi nt 
probabi l i ty of sofa and coffee-table features , and so on . Each schema 
ignores the features of the others, by and large . 

This  modularization of the encoding can reduce tremendously the 
amount of informat ion the cogni t ive system needs to encode. If there 
are f bi nary features , the whole probabi l i ty d istr i bution requi res 21 
numbers to specify .  If we can break the features i nto s groups 
corresponding to schemata, each involving f / s features, then only 
s pis numbers are needed . This can be an enormous reduct ion ; even 
wi th such smal l numbers as f == 1 00 and s = 1 0 , for example ,  the 
reduction factor is 1 Ox 2-9� 1 0- 28 . 

The reduction in  i nformation afforded by schemata amounts to an 
assumption that the probabi l i ty distribut ion represent i ng the en vi ron
ment has a special , modular structure-at least , that it can be useful ly 
so approximated. A very crude approximat ion would be to di vide the 
features i n to disjoint groups, to separately store in scllemata the proba
bi l it ies of possi ble combinations of features wi th in each group,  and then 
to simply multiply together these probabi l i t ies to estimate the joint prob
abi l i ty of al l  features. This  assumes the features in the groups are com
pletely statistically independent, that the values of features of a chair 
i nteract with other features of the cha i r  but not with features of the 
sofa. To some extent this assumption i s  val id, but there clearly are 
l imits to its val idity . 

A less crude approx imation is to allow schemata to share features so 
that the shared features can be constrai ned s imultaneously by the joi nt 
probabil i t i es with the different sets of variables contained in  the dif
ferent schemata to which it relates. Now we are i n  the s i tuation 
modeled by harmony theory. A representational feature node can be 
attached to many knowledge atoms and thereby part ic i pate in  many 
schemata. The distr ibut ion eHI T manages to combine into a s ingle 
probabi l ity  distribut ion al l  the separate but interact ing distr ibut ions 
corresponding to the separate schemata. Although the s i tuation i s  not 
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as s imple as the case of nonoverlapping schemata and completely 
independent subdistributions, the informational savi ngs is sti l l  there. 
The trick is to isolate groups of environmental features which each 
comprise a small fraction of the whole feature set , to use these groups 
to define more abstract features , and record the probabi l i ty distributions 
using these features . The groups must be selected to capture the most 
important in terrelationshi ps in the environment. This is the problem of 
constructing new features. The last section offers a few comments on 
this most important issue. 

LEARNING NEW REPRESENTATIONS 

The Learning Procedure and Abstract Featu res 

Throughout this chapter I have considered cogni t ive systems that 
represent states of thei r environment using features that were esta
bl ished prior to our investigat ion , e i ther through programming by the 
modeler , or evolut ion , or learning. In this sect ion I would l i ke to make 
a few comments about this last possi bi l i ty ,  the establ ishment of features 
through learn ing .  

Throughout this chapter I have emphasized that the features i n  har
mony models represent the envi ronment at all levels of abstractness. 
In the preceding account of how expertise in circuit analysis is acquired, 
i t  was stated that through experience , experts evolve abstract features 
for representing the domain .  So the basic notion is that the cognit ive 
system comes into existence with a set of exogenous features whose 
values are determined completely by the state of the external environ
ment ,  whenever the environment is being observed . Other endogenous 
features evolve, through a process now to be descri bed, through experi
ence , from an in it ia l  state of meaninglessness to a final state of abstract 
meaning. Endogenous features always get their values through internal 
completion , and never directly from the external environmentP 

As a specific example, consider the network of Figure 9, which is 
repeated as Figure 25 . In this network , features of several levels of 

23 In Chapter 7, Hinton and Sejnowski use the terms visible and hidden units. The 

former correspond to the exogenous feature nodes , while the latter encompass both the 
endogenous feature nodes amuhe krwvt'ledl!l': .a1oOls . .  I GOpyngnreu Marena 
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FIGURE 25 .  A network represent ing words at several levels of abstractness. 

abstractness are used to represent words . Here is a hypothetical account 
of how such a network could be learned.24 

The features represent ing the l i ne segments are taken to be the exo
genous features given a priori . Th is network comes into existence with 
these l ine-segment nodes , together wi th extra endogenous feature 
nodes which, through experience, wi l l  become the letter and word 
nodes . 

As before ,  the cogni t ive system is assumed to come into existence 
wi th a set of knowledge atoms whose st rengths wi l l  be adjusted to 
match the envi ronment .  Some of these atoms have connections only to 
exogenous features, some onl y  to endogenous features, and some to 
both types of features. 

The environment ( in this case , a set of words) is observed . Each 
t ime a word is presented , the appropriate values for the l ine-segment 
nodes are set . The current atom strengths are used to complete the 
input, through the cool i ng procedure discussed above .  The endogenous 
features are thus assigned values for the particular input . In i t ia l ly ,  

24 The issue of selecting patterns o n  exogenous features for use  i n  defining endogenous 
features - i nclud ing  the word domain - i s  discussed in Smolensky ( 983 ) .  To map the 
terminology of that paper on to  t hat of this chapter , replace schemas by knowledge atoms 
and beliefs by feature I/Q/ues. That paper oITers an a l ternat ive use of t he harmony concept 
in learn ing .  Rather than speCify ing a learn ing  process , it specifies an opt imal i ty  condit ion 
on the atom strengths:  They should max i m i ze the tota l  harmony associa ted with inter
preting a l l  environmenta l  st i mu l i .  Th is  cond i t ion is related, but not equ iva len t ,  to 
informat ion- theoretic cond i t ions  on the  s trengt hs .  
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when the atoms' strengths have received l i t t le environmental tuning, 
the values assigned to the endogenous featu res will be highly random. 
Nonetheless, after the i nput has been completed , l earning occurs: The 
strengths of atoms that match the feature nodes are a l l  increased by 
�(7' • 

Intermixed with this i ncrementing of strengths during envi ronmental 
observat ion is a process of decrementing strengths during environmen
tal simulat ion. Thus the l earn ing process is exactly l ike the one 
referred to in the learnabi l i ty theorem, except that now, during obser
vation, not all the features are set by the envi ronment; the 
endogenous features must be fil led in by complet ion .  

In i t ia l ly ,  the val ues o f  the endogenous features are random. But as 
learning occurs, correlations between recurring patterns in the exo
genous features and the random endogenous features wi l l  be ampl ified 
by the strengthen i ng of atoms that encode those correlations. An 
endogenous feature by chance tends to be + when patterns of l ine seg
ments defin ing the letter A are present and so leads to strengthening of 
atoms relating it to those patterns; it gradual ly comes to represent A . 

In this way, self-organization of the endogenous features can potential ly 
lead them to acquire meaning. 

The learnabi l i ty theorem states that when no endogenous features are 
present , th is learning process wi l l  produce strengths that optimally 
encode the envi ronmental regularit ies, in the sense that the comple
t ions they give rise to are precisely the maximum-l ikelihood comple
t ions of the estimated envi ronmental probabi l i ty distri bution with maxi
mal missing information that i s  consistent with observable stat istics. At 
present there i s  no comparable theorem that guarantees that in the 
presence of endogenous features this learning procedure wi l l  produce 
strengths with a corresponding optimal ity characterization .25 

Among the most important future developmen ts of the theory is the 
study of self-organization of endogenous features. These developments 
include a possi ble extension of the learnabi l i ty theorem to include 
endogenous features as wel l as computer s imulations of the learning 
procedure in specific envi ronments. 

2S [ n Chapter 7 ,  Hinton and Sejnowski use a d i fferent but  related opt i mality condi t ion .  

They use a fun ct ion G which measures the i n formation-theoretic d i fference between the 
t r ue e n v i ronmental  probabi l i ty  dist ribut ion and the est i mated dist r ibut ion eH For the 

case of no endogenous features,  the fol lowing is t rue  (see Theorem 4 of the Append i x ) .  
The strengths that correspond to the maximal -missing-i nformat ion distribution consisten t 
with observable stat ist ics are the same as the strengths that minimize G. That the 
est imated distr ibut ion is of the form eH m ust be assumed a priori i n  using the m ini mal -G 
cri ter ion;  it is entailed by t h e  IllJlx i mal -m�sinJl-information criter ion.  r.;opyngnreu Marenal 
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Learning in the Symbolic and Su bsymbolic Paradigms 

Nowhere is the contrast between the symbol ic and subsymbol i c  
approaches to cogni t ion more dramatic than in  learning. Learning a 
new concept in the symbol ic approach entai ls creating something l i ke a 
new schema. Because schemata are such large and complex knowledge 
structures , developing automatic procedures for generat ing them in ori
ginal and flex ible ways is extremely d i fficult . 

In the subsymbol ic account ,  by contrast ,  a new schema comes into 
bei ng gradual ly ,  as the strengths of atoms slowly shifts in  response to 
envi ronmental observat ion, and new groups of coherent atoms slowly 
gain important infl uence i n  the processing. During learn ing, there need 
never be any decision that " now is the t ime to create and store a new 
schema." Or rather ,  i f  such a decision i s  made , i t i s  by the modeler 
observing the evolving cognit ive system and not by the system itself. 

S imi larly there is never a t ime when the cogn i t i ve system decides 
"now is the t ime to assign this meaning to th is  endogenous feature." 
Rather ,  the strengths of al l  the atoms that connect to the gi ven 
endogenous feature slowly  shift ,  and with it the " meaning" of the 
feature. Eventual ly, the atoms that emerge with dominant strength 
may create a network l i ke that of Figu re 25 ,  and the modeler observing 
the system may say " this feature means the letter A and this feature the 
word ABLE." Then again , some completely d ifferent representat ion may 
emerge. 

The reason that learn ing procedures can be deri ved for subsymbol ic 
systems, and thei r propert ies mathematically analyzed, is that in these 
systems knowledge representations are extremely impoverished .  It is 
for this same reason that they are so hard for us to program. It is 
therefore in the domain of learni ng, more than any other, that the 
potent ial seems greatest for the subsymbol ic paradigm to offer new 
insights into cognit ion . Harmony theory has been motivated by the 
goal of establishing a subsymbol i c  computational environment where 
the mechanisms for using knowledge are s imul taneously sufficiently 
powerful and analytical ly tractable to faci l i tate- rather than hinder-the 
study of learn ing. 

CONCLUSIONS 

In  this chapter I have described the foundations of harmony theory ,  a 
formal subsymbol ic framework for performing an important class of 
general ized perceptual CtfP�ten§F completion of part ial 
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descript ions of static states of an envi ronment .  In harmony theory, 
knowledge is encoded as constraints among a set of wel l - tuned percep
tual features. These constraints are numerical and are imbedded in an 
extremely powerful  paral lel constraint sat isfact ion machine :  an informal 
inference engi ne. The constraints and features evolve gradual ly 
through experience. The numerical processing mechanisms implement
i ng both performance and learn ing are deri ved top-down from 
mathematical principles .  When the computation is descri bed on an 
aggregate or macrolevel , qual i tati vely new features emerge (such as 
serial ity) . The competence of models in  this framework can sometimes 
be neatly expressed by symbol ic rules, but thei r performance is never 
ach ieved by expl ic i t ly storing these rules and passing them through a 
symbol ic interpreter. 

In harmony theory, the concept of self-consistency plays the leading 
role .  The theory extends the relat ionsh i p  that Shannon exploi ted 
between information and physical entropy: Computational self
consistency is related to physical energy , and computational randomness 
to physical temperature. The central i ty of the consistency or harmony 
function mi rrors that of the energy or Hami ltonian function in stat isti 
cal physics. I nsights from statist ical physics , adapted to the cognit ive 
systems of harmony theory , can be exploited to relate the micro- and 
macrolevel accounts of the computat ion .  Theoret ica l  concepts , 
theorems , and computational techniques are being pursued, towards the 
ult imate goal of a subsymbol ic formulation of the theory of information 
process ing. 
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APPEN DIX :  
FORMAL PRESENTATION O F  THE THEOREMS 

Formal relat ionsh ips between paral lel (or neural) computation and 
statistical mechanics have been exploi ted by several researchers .  Three 
research groups in part icular have been in rather close contact since 
their in i t ial ly i ndependent development of closely related ideas. These 
groups use names for the ir  research which reflect the independent per
specti ves that they mainta in :  the Boltzmann machine (Ackley, Hinton , & 
Sejnowski , 1 985 ;  Fahlman , Hinton , & Sejnowsk i ,  1 983 ;  Hinton & 
Sejnowski , 1 983a ,  1 983b;  Chapter 7) ,  the Gibbs sampler (Gem an & 
Geman, 1 984) , and harmony theory (Smolensky, 1 983 ,  1 984; Smolen
sky & Riley,  1 984) . In  this appendix ,  al l results are presented from the 
perspect ive of harmony theory , but ideas from the other groups have 
been incorporated and are so referenced. 26 

Because the ideas have been informal ly moti vated and pursued at 
some length i n  the text, this appendix is deliberately formal and con
cise . The proofs are presented in the final section . In making the for
mal presentation properly self-contained , a certain degree of redun
dancy with the text is necessari ly i ncurred; this is an inevitable conse
quence of presenting the theory at three levels of formal ity within a 
single, l inearly ordered document .  

Preli minary Defini tions 

Overview of the definitions. The basic theoretical framework i s  
schematical ly represented in  Figure 26 .  There is an external envi ron
ment wi th structure that al lows prediction of which events are more 
l i kely than others .  This environment is passed through t ransducers to 
become represented internal ly in the exogenous features of a representa
t ional space . (Depending on the appl icat ion , the transducers might 
include considerable perceptual and cogni t ive processing, so that the 
exogenous features might in fact be quite high level ; they are just 
unanalyzed at the level of the part icular model . )  The features in the 

26 Hofstadter ( 1 983) uses the idea of computational temperature in  a heu ristic rather 
than formal  way to modulate the paral le l  symbolic processing in  an A I  system for doing 
anagrams.  His insights into relat ionships between statist ica l  mechanics and cognit ion 
were inspirat ional for the development of harmony theory (see Hofstadter, 1 98 5 ,  pp. 
654-665) .  Copyrighted Material 
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FIGURE 26. A schematic representation of the theoret ical framework . 

representation are taken to be binary. The predict ion problem is to 
take some features of an envi ronmental state as input and make best 
guesses about the unknown features. This amounts to extrapolat ing 
from some observed statist ics of the environment to an ent i re probabi l 
i ty distr ibution over all possi ble feature combinations. This extrapola
tion proceeds by construct ing the distribut ion that adds minimal infor
mation ( in  Shannon's sense) to what i s  observed. 

Notation. B = (- 1 ,  + I ) , the default binary values. R = the real 
numbers. xn 

= Xx Xx . . .  x X  (n t imes) , where x is the cartesian 
product . If  X , y E Xn , then x ·y = r.�_ lxmYm and I x i = L�= l lxm l  . 
2x is the set of al l  subsets of X .  I X I  is the number of elements of X . 
Bn is called a binary hypercube. The i th coordinate junction of B n  
(; = 1 ,  . . . , n ) gives for any poin t  ( i . e . ,  vector) in  B n  its i th B -valued 
coordinate ( i . e . , component) . 

De/. A distal environment Edistol = (E , P )  is a set E of environmental 
events and a probabi l i ty distribution P on E .  

De/. A representational space R i s  a cartesian product Rex x Ren of 
two binary hypercubes. Each of the N (Nex ; Nen ) binary-valued coordi
nate functions ri of R (Rex ; Ren ) i s  cal led an (exogenous; endogenous) 
feature . 

De/. A transduction map T from an environment Edistol to a represen
tational space R = Rex x Ren is a map T :  E --+ Rex .  T i nduces a proba
bi l i ty distribution p on Rex : p = p o T - I . This distribut ion is the 
(proximal) environment. 

Copyrighted Material 
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De! Let R be a representat ional space . Associated wi th this space 
is the input space I = {- I ,  0, + I I Na .  

De! A point r in R i s  called a completion of a point t i n  I i f  every 
nonzero feature of , agrees wi th the corresponding feature of r .  This 
relationsh i p  wi l l  be designated r ::> t .  A completion junction c is a map 
from I to 2R (the subsets of R )  for which r E dd implies r ::> t o  The 
features of L with val ue 0 are the " unknowns " that must be fi lled in by 
the completion funct ion . 

De! Let p be a probabi l i ty distribution on a space X = Rex x A . 
The maximum-likelihood completion junction determined by p ,  
cp : I - 2R , i s  defined by 

dd = { r E R I for some a E A ,  and al l ( a' ,r') E R x A 
such that r' ::> , : p ( r  , a ) � p ( r' , a') I 

(A wi l l  be either empty or the set of possi ble knowledge atom act iva
t ion vectors . )  

De! A basic event (X has the  form 

a : [r ·  = b l ]  & [r ·  = b 2] & . . .  & [r . = b,, ]  ' 1 ' 2  ' {J  ,.. 
where { ri l '  ri 2 • . . . . riBI is a collect ion of exogenous features and 
(b I >  b 2 • • • • •  b � )  E B� . a can be characterized by the function 
Xor : R - ( 0, 1 )  defined by 

Xa (  r) = Ii: 'h I r; ( r )+ bJ 
1' = 1 I' 

which is I if the features al l have the correct values, and 0 otherwise. 
A convenient specification of a i s  as the knowledge vector 

ka = (0, O • . . . •  0, bi l , O • . . . •  0, b' 2 ' O • . . . •  0, b;{J ' O • . . . • 0) 

E {- I ,  O ,+ I I N 

i n  which the il' th  element is bl' and the remain ing elements are all 
zero. 

De! A set 0 of observables is a col lect ion of basic events. 

De! Let p be an envi ronment and 0 be a set of observables. The 
observable statistics of p i s  the set of probabi l i t ies of all the events in 0 :  
{p (a )}a E o ·  

Copyrighted Material 
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De! The entropy (or the missing i!iformation ; Shannon , 1 948/ 1 963) 
of a probabi l i ty d istr ibut ion p on a fin i te space X i s  

S (P ) = - 1: p (x )  In p (x ) .  
r E X 

De! The maximum entropy estimate 1Tp .O of envi ronment p with 
observables 0 i s  the probabil i ty distribut ion with maximal entropy that 
possesses the same observable statist ics as p .  

Thi s  concludes the prel iminary defin i t ions. The distal environment 
and transducers wi l l  play no further role in the development .  They 
were introduced to acknowledge the important conceptual role they 
play: the root of all the other defini t ions. A truly sat isfactory theory 
would probably include analys is of the structure of distal envi ronments 
and the transformations on that structure induced by adequate 
transduction maps .  Endogenous features wi l l  also play no further role :  
Henceforth, Ren i s  taken to be empty. It i s  an open question how to 
incorporate the endogenous variables into the fol lowing results .  They 
were introduced to acknowledge the important conceptual role they 
must play i n  the future development of the theory .  

Cognit ive Systems and the Harmony Function H 

De! A cognitive system is a quintuple (R , p ,  0 ,  1T ,  c )  where: 

R i s  a representational space , 
p is an environment ,  
o i s  a se t  of statist ical observables, 
1T i s  the maximum-entropy estimate 1T p ,0 of envi ronment p 

with observables 0 ,  
c is the maximum- l i ke l i hood completion function determined 

by 1T .  

De! Let X be a finite space and V :  X - R .  The Gibbs distribution 
determined by V i s  

Pv (x ) = Z- I e V (x )  

where Z i s  the normal i zation constant :  

Copyrighted Material 
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Theorem 1: Competence. A :  The distribution 1T of the cognitive 
system (R , p , 0 ,  1T ,  c )  is the Gibbs distribution Pu determined by 
the function 

U ( r > = L Aa Xa ( r > 
a E O  

for suitable parameters A == {Aa la E 0 (S. Geman, personal com
munication ,  1 984) . B: The completion function c is the maximum
l ikel ihood completion function cPH of the Gibbs distribution PH , 
where H :  M -R , M "" R x  A ,  A = ( O, I l I O I ,  is defined by 

H (r , a )  = L a-a aa h ( r , ka) a E O 
and 

for suitable parameters a- = (a-ala E 0 and for K sufficiently close 
to 1 :  

1 > K > 1 - 2I [ max 1ka l ) . a E O  

Theorem 2 wi l l  describe how the variables a = {aa la E 0 can be used 
to actual l y  compute the completion function. Theorem 3 wi l l  describe 
how the parameters a- can be learned through experience in the 
environment .  Together, these theorems motivate the fol lowing 
interpretation. 

Terminology. The triple ( ka ,  a-a '  aa ) defines the knowledge atom or 
memory trace a .  The vector ka i s  cal led the knowledge vector of atom a .  
The knowledge vector is an unchanging aspect of the atom. The real 
number a-a is cal led the strength of atom a .  This  strength changes with 
experience in the environment . The { O, I }  variable aa is cal led the 
activation of atom a .  The activation of an atom changes during each 
computation of the completion function . The set K = { (ka ,  a-a ) l a  E 0 
is the long-term memory state or knowledge base of the cogni t ive system . 
The vector a of knowledge atom act ivations {aa la E 0 is the working
memory state. The val ue h ( r , ka)  is a measure of the consistency 
between the representation vector r and the knowledge vector of atom 
a ;  it is the potential contribution (per unit strength) of atom a to H .  
The value H ( r ,  a )  i s  a measure of  the  overal l consistency between the 
entire vector a of knowledge atom act ivations and the representation r , 
relat ive to the knowled��tJied Nmt8Htri K ,  H internalizes within 
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the cognit ive system some of the statist ical regularit ies of the environ
ment. Viewing the completion of an input , as an inference process , 
we can say that H al lows the system to distinguish which patterns of 
features r are more self-consistent than others , as far as the envi ronmen
tal regularit ies are concerned . This is why H is cal l ed the harmony 
function. 

De! The cognit ive system determined by a harmony function H can 
be represented by a graph which wil l  shortly be interpreted as a network 
of stochastic paral le l  processors (see Figure 27) . For each coordinate of 
the cogni t i ve system's mental space M, that is ,  for each feature ri and 
each atom Q , there is a node . These nodes carry binary val ues; the 
node for feature r, carr ies the value of r i  E {+ 1 ,  - 1 1 ,  while the node 
for atom Q carries the act ivation value a", E { I , OJ . If the value of k", 
for a feature ri i s  + 1 or - 1 ,  there is a l ink  with the corresponding ± 1 
label join ing the nodes for a", and r, . Final ly , each node Q is labeled by 
i ts strength,  (J" "' . The graphs of harmony networks are two-color; i f  
feature nodes are assigned one color and atom nodes another, al l  l inks 
go between nodes of different colors. Th is wi l l  turn out to permit  a 
high degree of paral le l ism in the processing network .  

Retrieving Information From H: Performance 

De! Let {Pr j ;'"  = 0 be a sequence of probabi l i ty distri butions on a 
binary cube X = B n . The paths of the (one-variable heat bath) stochas
tic process x determined by {Pr j  is defined by the fol lowing procedure. 
At t ime t = 0, x occupies some state x (0) = x E X , described by 

FIG U R E  27 .  A harmony nel'loJlyn'��lMatemHd with a harmony funct ion .  
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some arbitrary initial distribution, pr(x (O) = x ) .  Given the init ial state 
x ,  the new state at Time 1 ,  x ( 1 ) ,  is constructed as fol lows . One of the 
n coordinates of M is selected (with uniform dist ri bution) for updating. 
All the other n- l coordinates of x ( 1 )  wi l l  be the same as those of 
x (0) = x .  The updated coordinate can reta in its previous value, lead
ing to x ( 1 )  = x ,  or i t can fl ip  to the other binary value, leading to a 
new state that wi l l  be denoted x' . The select ion of the value of the 
updated coordinate for x ( 1 )  is stochasti cal ly chosen according to the 
l i kel ihood rat io :  

pr (x ( 1 )  = x' ) = 
Po (x' ) 

pr(x ( 1 )  = x )  Po (x ) 

(where Po is the probabi l i ty distribut ion for t = 0 i n  the given 
sequence (p, } ;",_ 0) . Thi s  process- randomly select a coordinate to 
update and stochastically select a binary value for that coordinate- is 
i terated i ndefinitely, producing states x (t )  for all t imes 
t = 1 ,  2 ,  . . . . At each t ime t ,  the l i kel ihood ratio of values for the 
stochastic choice is  determined by the distribution p, . 

De/. Let P be a probabi l i ty distribution . Define the one-parameter 
family of distributions Pr by 

Pr = Ni l p v r 

where the normal ization constants are 

Nr = I. P (x ) v r . 
x E x 

T is cal led the temperature parameter. An annealing schedule T i s  a 
sequence of pos i t ive values ( T, } ,':o that converge to zero. The anneal
ing process determined by P and T is  the heat bath stochastic process 
determined by the sequence of distributions , Pr . If P is the Gibbs dis-I 
tr ibution determined by V ,  then 

where 

Pr (x ) = Zi l e V(x )/ r  

Zr = I. e V ( x )/ T .  
x E X  

This is the same (except for the sign of the exponent) as the relation
sh i p  that holds in  classical stat ist ical mechanics between the probabi l i ty 
P ( x )  of a microscopic state x ,  i ts  energy V ( x ) , and the temperature T. 
This is the basis for the name� " temperature "  and " anneal i ng schedule ." 
In the anneal ing processCfefJ(fli'iJ18tM�ut ion PH of Theorem 1 on 
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the space M ,  the graph o f  the harmony network has the fol lowing sig
nificance. The updat ing of a coordinate can be conceptual ized as being 
performed by a processor at the corresponding node i n  the graph. To 
make its stochastic choice wi th the proper probabi l i t ies, a node updat ing 
at t ime t must compute the ratio  

PT, (x' ) 
= e IH (x' ) - H (x ) I! T, 

PT, (x ) 

The exponent is the d ifference i n  harmony between the two choices of 
value for the updating node, di vided by the current computational tem
perature. By examin ing the defin i t ions of the harmony function and its 
graph, this difference is easi ly seen to depend only on the values of 
nodes connected to the updat ing node. Suppose at times t and t+ 1 two 
nodes i n  a harmony network are updated . If these nodes are not con
nected , then the computat ion of the second node is not affected by the 
outcome of the fi rst : They are statist ically independent .  These compu
tations can be performed in parallel without changing the statist ics of 
the outcomes (assuming the computational temperature to be the same 
at t and t+ l ) .  Because the graph of harmony networks is two-color, 
this means there i s  another stochastic process that can be used without 
violat ing the val idity of the upcoming Theorem 2.27  A ll the nodes of one 
color can update in parallel. To pass from x (t )  to x (t+  l ) ,  al l the nodes 
of one color update in paral lel ; then to pass from x (t+ 1 )  to x (t+  2) , a l l  
the nodes of the other color update i n  paralle l . In twice the t ime i t  
takes a processor to perform an update, plus twice the t ime requi red to 
pass new values along the l inks, a cycle i s  completed in which an 
entirely new state (potential ly different in all N + 1 0 1 coordinates) is 
computed. 

Theorem 2: Realizability. A :  The heat bath stochastic process 
determined by Pu converges, for any in i t ial distribut ion , to the dis
tribution 1T" of the cogni t ive system (R , p ,  0 ,  1T" ,  c ) (Metropol is et 
aI . ,  1 953] . B: The annealing process determined by PH converges, 
for any i ni t ial distribution , to the completion function of the cogni 
t ive system, for any annealing schedule that approaches zero suffi
ciently slowly (Geman & Geman , 1 984) . 

Part A of this theorem means the following. Suppose an input t is 
given.  Those features specified in t to have values + 1 or - 1  are 

27 This is an important respect i n  which harmony networks differ from the arbitrary 
networks allowed in the Boltz£iOfD}fri§/bted Material 
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assigned the i r  val ues, which are thereafter fi xed . The remammg 
features are assigned random in i t ial values ; these wi l l  change through 
the stochastic process . Now we begin the stochastic  process determined 
by Pu . (The state space X is now R ,  and the same distribut ion Pu is 
used for al l t imes . )  The nonfixed variables n ip back and forth between 
thei r bi nary values. As t ime progresses , the probabi l i ty of finding the 
system in any state r � L  approaches the maximum-entropy est imate 
71" ( r )  (condit ioned on L ,  so that only completions of L have nonzero 
probabi l i ty) . The meani ng of Part B of Theorem 1 is this :  As in Part 
A, we fi x the features specified in the input L and start the other 
features off wi th random values. The activation variables are assigned 
in i t ia l  values, say , of O. We start the anneal ing process determined by 
PH . (The state space X is now M = R x A . ) The unfixed features and 
all the act ivations fl ip  between their val ues. The temperature drops 
according to the anneal ing schedule .  As t ime progresses , the probabi l 
i ty of finding the system in  a state other than a maximum-l i kel ihood 
completion of L goes to zero. ( I f  there are mult iple maximum
l i ke l ihood completions, these completions become equal ly l i kely as time 
progresses . )  

Storing Information in H: Learning 

De! (After Hinton & Sejnowski , 1 983a . )  Let (R , p ,  0 . 71" ,  c) be a 
cogni t ive system. The trace learning procedure is defined i teratively as 
fol lows. Init ia l ly ,  let X", = 0 for al l a E O . Present  the system wi th a 
sample of states, r ,  drawn from the envi ronmental distribution, P 
(environmental observation) .  Now store an increment for each X", equal 
to the mean of x'" ( r) in this sample. Next ,  use the current X to define 
U as in Theorem 1 and use the stochastic process determined by Pu to 
generate a sample of values of r from the distribution Pu , fol lowing 
Theorem 2 (environmental simulation) .  Now store a decrement for each 
X", equal to the mean of X'" ( r )  in this sample .  Final ly ,  change each X", 
by the stored increment minus the decrement . Repeat this observe
envi ronment/ simulate-envi ronment/ modify-A. cycle. Throughout the 
learn ing, defi ne 

X ",  
eT ",  

= -
1
--

. - K  

For smal l �X , a good approx imate way to implement this procedure is 
to alternately observeCQMd1g8tmilMiteritie envi ronment in  equal 
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proportions , and to increment ( respecti ve ly ,  decrement )  Aa by AA  each 
time the feature pattern defining a appears during observation (respec
t ively, s imulation) . I t i s  in  this sense that (T a i s  the strength of the 
memory trace for the feature pattern ka defining a . Note that in learn
ing, equi l i brium is establ ished when the frequency of occurrence of 
each pat tern ka during simulation equals that during observati on ( i . e . , 
Aa has no net change) . 

Theorem 3: Learnability. Suppose al l  knowledge atoms are 
independent . Then if sufficient sampl i ng is  done in the t race learn
ing procedure to produce accurate estimates of the observable stat is 
t ics ,  A and (T wi l l  converge to the values requi red by Theorem 1 .  

Independence of the knowledge atoms means that the functions 
L�a}a E O  are l inear ly independent .  This means no two atoms can have 
exactly the same knowledge vector. I t  also means no knowledge atom 
can be simply the " or "  of some other atoms :  for example ,  the atom 
with knowledge vector +0 is  the " or "  of the atoms ++ and +- , and so 
is not independent of them . ( Indeed , X+o = x++ + x+- . ) The sampl ing 
condit ion of this theorem indicates the tradeoff between learn ing speed 
and performance accuracy . By adding higher order statistics to 0 
( longer patterns) , we can make 1T a more accurate representation of p 
and thereby increase performance accuracy , but then learning wi l l  
require greater sampl ing of  the environment .  

Second-Order Observables a n d  the Boltzmann Machine 

Consider the special case i n  which the observables 0 each invol ve no 
more than two features. The largest independent set of  such observ
abies is  the set of all observables ei ther of the form 

or the form 

with i <j ,  i . e . ,  
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To see that the other fi rst- or second-order observations are not 
i ndependent of these , consider a particular pai r of features 'i and 'j , 
and let 

and 

X Ob 2 = X ('j -b 2) ' 

Then notice: 

X+- = X+o - X++ 

X-o = 1 - X+o 

X-- = I - X++ - X+- - X-+ 

= I - X++ - fx+o - x++ l - fxo+ - x++ 1 .  
Thus, the X -functions for al l  fi rst- and second-order observations can 
be l inearly generated from the set 

o = (X ij ) ; <j U {X ; } ; 

which wi l l  now be taken to be the set of observables. I wi l l  abbreviate 
Aa as A ;I)' and Aa as A i '  Next,  consider the U function for this set , 0 :  Ij I 

U = L AaXa = LAijXij+ LA ;X i 
a E O  i <j i 

= LA ijX iXj + LA iX ; , i <j i 
Here I have used 

which fol lows from 

Now using the formula for X given above , 

I I  i f  '; = + 
V ,' = Ih (r. + I ) = O 'f I\. I I '; = _ .  
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If we regard the variables of the system to be the X ;  i nstead of the r; , 
this formula for U can be identified wi th minus the formula for energy, 
E ,  i n  the Boltzmann machine formal ism (see Chapter 7 ) . The mapping 
ta�es the harmony feature r; to the Bol tzmann node X I ' the harmony 
parameter A i} to the Boltzmann weight W;j ' and minus the parameter A ;  
to the threshold 9 ; . Harmony theory 's est imated probabi l i ty  for states 
of the environment ,  e U ,  i s  then mapped onto the Boltzmann machine 's  
est imate , e- E . For the isomorphism to be complete, the value of A
that arises from learn ing i n  harmony theory must map onto the weights 
and thresholds given by the Bol tzmann machine learning procedure. 
This is established by the fol lowing theorem, which also i ncorporates 
the preceding resul ts .  

Theorem 4 .  Consider a cogni t ive system wi th the above set  of first
and second-order observables, O .  Then the weights { wi) }  i <j and 
thresholds {9 ; L  learned by the Boltzmann machine are related to the 
parameters A- generated by the trace learn ing procedure by the rela
t ions wi} = A i} and 9; = -A ; . It fol lows that the Bol tzmann 
machine energy funct ion, E ,  is equal to - U ,  and the Boltzmann 
machine's estimated probabi l i t ies for environmental states are the 
same as those of the cogn it ive system. 

This  resul t  shows that the Bol tzmann criterion of minimizing the 
information-theoretic distance, G ,  between the environmental and 
estimated distributions, subject to the constraint that the estimated dis
tribution be a Gibbs distribution determined by a quadratic function , 
-E ,  is a consequence of the harmony theory criterion of minimizing 
the information of the estimated distribution subject to environmental 
constraints, in  the special case that these constraints are no higher than 
second order. 

Proofs of the Theorems 

Theorem 1.  Part A :  The desi red maximum-entropy distribution 71' is 
the one that max imizes S (71' ) subject to the constraints 

r, 71' (r )  = 1 
r E R 

and 

< X", > ". = p", 

where < > ". denotes the expected value with respect to the distribu
t ion 7t ,  and {p } E 0 are the .observable �tatistics of the environment . '" '" copyngflted Matenal 
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We introduce the Lagrange mult ip l iers A and Aa (see, for example, 
Thomas , 1 968) and solve for the values of ", ( r) obeying 

o = a � 
) I L ", ( r' ) In ",  ( r' ) 

", r r' E R  

L Au [ L Xa ( r' )", ( r' )  - Pa] - x [  L ", (r' ) - 1] 1 ' 
'" E 0 r' E R r' E R 

This leads di rectly to A. Part B: Since Xa can be expressed as the pro
duct of Ika l terms each l inear i n  the feature variables , the function U i s  
a polynomial in the features of degree Ika l. By introducing new vari 
ables aa ' U wil l  now be replaced by a quadratic function H. The trick 
is to write 

as 

1 1  i f  r ·kal lka l = 1 
Xa ( r ) = 0 otherwise 

where K is chosen close enough to 1 that r 'ka/ lka l  can only exceed K 
by equal ing 1 .  Thi s  is assured by the condi t ion on K of the theorem. 
Now U can be written 

U ( r ) == L (Ta max [aa h ( r , ka » )  = max H (a , r ) 
a E 0 at> E 1 0, 1 )  a E A 

where the strengths (T a are s imply the Lagrange mult ipl iers ,  rescaled: 

Computing the maximum-l ikel ihood completion funct ion Cfr requires 
maximizing ", ( r ) ex e U ( r )  over those r E R that are completions of the 
input £ .  This is equivalent to max imizing U ( r ) , since the exponential 
function is monotonical ly increasing. But , 

max U (r ) = max max H ( r ,  a ) .  
r :> ,  r :> ,  a E A 

Thus the maximum-l ike l ihood completion function cfr = cPu deter
mined by "' ,  the Gibbs distribution determined by U , is the same as 
the maximum-l i kel ihood completion function cPH determined by PH ,  
the Gibbs distribution d�f.IjJ_9YA«te�te that PH i s  a distribution 
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on the enlarged space M == R x A .  For Theorem 3 ,  the condi tions 
determining the Lagrange mult ip l iers (strengths) wi l l  be examined. 

Theorem 2. Part A: This classic result has, since Metropol is  et al . 
( 1 953) , provided the foundation for the computer simulation of ther
mal systems. We wil l  prove that the stochastic process determined by 
any probabi l i ty d ist ri but ion p always converges to p . The stochastic 
process x is  a Marko v process with a stationary transition probability 
matrix. (The probabi l i ty of making a transit ion from one state to 
another is t ime- independent. This  is not true of a process in which 
variables are updated in  a fixed sequence rather than by randomly 
selecting a variab le according to some fixed probab i l i ty distri but ion .  
For the sequential updat ing process , Theorem 2A st i l l  holds, but the 
proof is less di rect [see , for example,  Smolensky , 1 98 1 ) ) .  Since only 
one variable can change per t ime step, I X I  steps are requ i red to com
pletely change from one state to another. However in I X I  t ime steps, 
any state has a nonzero probabi l i ty of changing to any other state . In 
the language of stochast ic processes , this means that the process is 
irreducible. I t  is an important result from the theory of stochastic 
processes that in a fin i te state space any i rreducible Markov process 
approaches, in the above sense, a unique l imit ing distribut ion as t-oo 
(Lamperti , 1 977) . It remains only to show that this l imiting distribu
t ion is p .  The argument now i s  that p i s  a stationary distribution of the 
process. This means that if at any t ime t the distribution of states of 
the process is p , then at the next t ime H I  (and hence at al l later 
times) the distr ibut ion wi l l  remain p . Once p i s  known to be stat ion
ary, i t  follows that p i s  the unique l imit ing distribution, since we could 
always start the process with distribut ion p ,  and i t  would have to con
verge to the l imit ing distr ibut ion, al l  the while remain ing i n  the stat ion
ary distribution p .  To show that p i s  a stationary distribut ion for the 
process, we assume that at t ime t the distribution of states is p . The 
distribut ion at time t+ 1 is then 

pr (x (t+ 1 ) == x )  = L pr (x (I ) = x' ) pr (x (t+ 1 ) = x I x (I ) = x ' ) 
x' E Xx 

= L p (x' )  WII:' II: '  
x' E Xx 

The sum here runs over XII: ' the set of states that differ from x i n at 
most one coordinate ; for the remaining states, the one t ime-step transi 
t ion probabi l i ty Wx' x = pr(x (H I )  = x lx (t )  = x' ) is zero . Next we 
use the important detailed balance condition, 

p ( x' )  Wx' x = P (x ) W](](· 
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which states that in an ensemble of systems with states distributed 
according to p ,  the number of transit ions from x' to x is equal to the 
number from x to x' . Detai led balance holds because , for the non
trivial case in which x' and x differ in the single coordinate v ,  the tran
s i t ion matrix W determined by the distr ibution p is 

w .  = p p (x ) 
x I v p (x ) + p (x ' ) 

where Pv is the probabi l i ty of select ing for update the coordi nate v .  
Now we have 

pr(x (t+ l ) = x ) = L p ( x' )  WX' I = L p (x ) WI I· 
x' E X. x' E X. 

= p ( x ) L Wx x' = p (x ) .  
y '  E X. 

The last equal ity fol lows from 

L Wx x' = 1 
x' E X. 

which simply states that the probabi l i ty of a transition from x to some 
state x· is 1 .  The conclusion is that the probabi l i ty distribut ion at t ime 
t+ 1 remains p , which is therefore a stationary distri bution. 

Part B: Part A assures us that with infin ite pat ience we can arbi trari ly 
wel l  approximate the distribution Pr at any fin ite temperature T. It 
seems intu i t ively clear that with st i l l  further patience we could sequen
tial ly  approx imate in  one long stochastic process a series of distr ibutions 
Pr wi th temperatures T, monotonical ly  decreasing to zero .  This pro-I 
cess would presumably converge to the zero-temperature distri bution 
that corresponds to the maximum-l ikel ihood completion function . A 
proof that this is true, provided 

T, > C/ ln t  

for suitable C ,  can be found in  S .  Geman and D .  Geman ( 1 984) . 

Theorem 3. We now pick up the analysis from the end of the proof 
of Theorem 1 .  

Lemma. (S .  Geman , personal communicat ion , 1 984 , )  The values of 
the Lagrange mult ipl iers A. = ! A-a l a E 0 defining the function U of 
Theorem 2 are those that minimize the convex funct ion : 
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I r A.a  [)Ca ( r ) - P a  1 /  
F (A )  = I n Zv (A ) = I n  L e 

a E  0 

r E R 
Proof of Lemma: Note that 

pu ( r ) = pv ( r ) = ZV (}.. )- l e V ( r ) 

where 

V( r )  = L A" lx,, ( r ) - p,, ]  = U ( r ) - L A-" p" .  
" E O " E O 

From this i t  fol lows that the gradient of F i s  

of 
(lA- a  = 

< x'" > Pu - p", 

The const raint that A enforces is precisely that this vanish for al l  a ;  
then Pu = 1f' .  Thus the correct A is a cri t ical point of F .  To see that 
in fact the correct A is a minimum of F, we show that F has a 
pos i t ive-defin i te matrix of second-partial deri vat i ves and is therefore 
convex .  It is straightforward to verify that the quadrat ic form 

a 2 F L q q,,' " ,,,,' E O
" 

OA-" (lA-,,' 

i s  the variance 

< (Q - < Q >p)2 > Pu 

of the random variable Q defined by Q ( r ) = L q" x'" ( r ) .  Th is 
" E O 

variance is clearly nonnegative definite .  That Q cannot vanish i s  
assured by  the  assumption that the  Xa are l inearly independent .  Since a 
Gibbs dist r ibut ion Pu is nowhere zero, th is means that the variance of 
Q is  posit ive, so the Lemma is  proved . 

Proof of Theorem 3 : Si nce F is convex ,  we can find i ts min imum, A- , 

by gradient descent from any start ing point .  The process of learn ing 
the correct A ,  then, can proceed in  time accord ing to the gradient des
cent equat ion 

dA" o f  � ex: - aA" 
= - « X,, > pu - p", ) = < X"' > P - < X,, > pu 

where it is understood that the funct ion U changes as A. changes . The 
two phases of the t race learn ing procedure generate the two terms in  
this equat ion. In  the  e�tttalA6IImJjalltt ion phase, the i ncrement 
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< Xa>  p i s  estimated� in the envi ronmental s imulat ion phase , the decre
ment < Xa > pu is estimated (fol lowing Theorem 2) . By hypothesis, 
these estimates are accurate. (That is ,  th is theorem treats the ideal case 
of perfect samples, with sample means equal to the true population 
means . )  Thus A wi l l  converge to the correct val ue. The proport ional 
relat ion between CT and A was derived in the proof of Theorem 1 . 

Theorem 4. The proof of Theorem 3 shows that the trace learning 
procedure does gradient descent  in  the function F .  The Bol tzmann 
learning procedure does gradient descent in the function G :  

Pu ( r )  G (A )  = -L P ( r )  In --
r P ( r )  

where, as always , the function U impl ic i t ly depends on  A .  Theorem 4 
wi l l  be proved by showing that i n  fact F and G differ by a constant 
i ndependent of A ,  and therefore they define the same gradient descent 
trajectories . From the above definit ion of V, we have 

V ( r )  = U ( r ) - L Aa < Xa > = U ( r ) - < U> 
a E O  

where , here and henceforth ,  < > denotes expectation values with 
respect to the envi ronmental distribution p .  This impl ies 

i .e . , 

Zv = Zu e-< u> .  
By the defin i t ion of F ,  

F = I n Zv = In Zu - < U> = < I n Zu - U > . 

To evaluate the last quant i ty in  angle brackets , note that 

pu ( r )  = ZiJ l e U ( r )  
implies 

In pu (r ) = - ln Zu + U (r) 
so that the preceding equation for F becomes 

F = < In Zu - U >  = - < I npu > = - L P (r ) InPu (r ) . 
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Now, 

G = - LP (r )  In pu ( r )  + !:p (r ) Inp ( r ) ,  

so we have 

G (). ) = F (). ) - S (P ) .  
Thus, as claimed , G i s  just F minus a constant that i s  independent of 
). :  the entropy of the envi ronment .  
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CHAPTER 7 

Learning and Relearning in Boltzmann Machines 

G. E. HINTON and T. 1. SEJNOWSKI 

Many of the chapters in this volume make use of the ability of a paral
lel network to perform cooperative searches for good solutions to prob
lems. The basic idea is simple: The weights on the connections 
between processing units encode knowledge about how things normally 
fit together i n  some domain  and the initial states or external i nputs to a 
subset of the uni ts encode some fragments of a structure within the 
domain. These fragments const i tute a problem: What is the whole 
structure from which they probably came? The network computes a 
"good solution" to the problem by repeatedly updat ing the states of 
units that represent possible other parts of the st ructure unt i l  the net
work eventually settles into a stable state of activity that represents the 
solution. 

One field in which this style of computation seems particularly 
appropriate is vision (Ballard, Hinton, & Sejnowsk i , 1983). A visual 
system must be able to solve large constraint-satisfaction problems 
rapidly in order to interpret a two-dimensional i ntensity image in terms 
of the depths and orien tat ions of the three-dimensional surfaces in the 
world that gave rise to that image . In general, the informat ion in the 
image is not sufficient to specify the three-dimensional surfaces unless 
the interpretive process makes use of addit ional plaus ible constraints 
about the k inds of st ructures that typically appear. Ne ighbor ing pieces 
of an i mage, for example, usually depict fragments of surface that have 
si milar depths, similar surface orientations, and the same reflectance. 
The most plausible interpretation of an image is the one that satisfies 
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constraints of thi s  kind as  well as  possible ,  and the human visual sys
tem stores enough plausible constraints and is  good enough at apply ing 
them that i t  can arrive at the correct interpretation of most normal 
images. 

The computat ion may be performed by an iterative search which 
starts wi th a poor interpretation and progressively improves it by reduc
ing a cost function that measures the extent to which the current 
interpretation violates the plausible constraints. Suppose, for example, 
that each unit stands for a smal l  three-dimensional surface fragment, 
and the state of the unit i ndicates the current bet about whether that 
surface fragment i s  part of the best three-dimensional interpretat ion.  
Plausible constraints about the nature of surfaces can then be encoded 
by the pairwise i nteractions between processing elements. For 
example, two units that stand for neighboring surface fragments of 
simi lar depth and surface orientation can be mutually excitatory to 
encode the constrai nts that each of these hypotheses tends to support 
the other (because objects tend to have continuous surfaces) . 

RELAXATION SEARCHES 

The general idea of us ing parallel networks to perform relaxation 
searches that simultaneously satisfy mU l t i ple  constraints is  appealing. It 
might even provide a successor to telephone exchanges, holograms, or 
communi ties of agents as a metaphor for the style of computation in 
cerebral cortex. But some tough techn ical questions have to be 
answered before this style of computation can be accepted as e i ther 
efficient or plausible: 

• Wi1\ the network settle down or will it osci1\ate or wander aim
lessly? 

• What does the network compute by set t l ing down? We need 
some characterizati on of the computation that the network per
forms other than the network itself .  Ideally we would l i ke to 
be able to say what ought to be computed (Marr , 1982) and 
then to show that a network can be made to compute i t .  

• How long does the network take to  sett le on a solution? If 
thousands of iterations are requi red the method becomes 
implausible as a model of how the cortex solves constraint
satisfaction problems . 
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• How much information does each unit need to convey to i ts 
neighbors? In many relaxation schemes the units communicate 
accurate real values to one another on each iteration.  Again 
this is implausible if the units are intended to be l ike cortical 
neurons which communicate using al l -or-none spikes. To send 
a real-value, accurate to with in 5%, using firing rates requires 
about 100 ms which is about the t ime allowed for the whole 
iterative process to settle down . 

• How are the weights that encode the knowledge acquired? For 
models of low-level vision it is possible for a programmer to 
decide 6n the weights, and evolution might do the same for the 
earl iest stages of biological visual systems . But if the same kind 
of constraint-satisfaction searches are to be used for higher 
level functions l ike sh.ape recognit ion or content-addressable 
memory , there must be some learning procedure that automati
cal ly encodes properties of the domain into the weights . 

This chapter is mainly concerned with the last of these questions, but 
the learning procedure we present is  an unexpected consequence of our 
attempt to answer the other questions, so we shall start with them. 

Relaxation, Optimization, and Weak Constraints 

One way of ensuring that a relaxation search is computing something 
sensible (and wil l  eventually settle down) is to show that it is solving an 
optimization problem by progressively reducing the value of a cost 
function . Each possible state of activity of the network has an associ
ated cost, and the rule used for updating activity levels is chosen so 
that this cost keeps fall ing. The cost function must be chosen so that 
low-cost states represent good solutions to problems i n  the domain. 

Many optimization problems can be cast in a framework known as 
l inear programming. There are some variables which take on real 
values and there are l inear equal ity and inequality constraints between 
variables. Each combination of values for the variables has an associ
ated cost which is the sum over al l the variables of the current value 
times a cost-coefficient. The aim is to find a combination of values 
that satisfies al l the constraints and minimizes the cost function . If the 
variables are further constrained to take on only the values 1 or 0 the 
problem is cal led zero-one programming. Hinton ( 1977) has shown 
that certain zero-one programming problems can be implemented as 
relaxation searches in  parallel networks. This al lows networks to find 
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good solutions to problems in  which there are d iscrete hypotheses that 
are true or false .  Even though the al lowable solut ions all assign values 
of 1 or 0 to the hypotheses, the relaxat ion process works by passing 
through i ntermediate states in which hypothesis units have real-valued 
activity levels lying between 1 and O.  Each constraint is enforced by a 
feedback loop that measures the amount by which the current values 
violate the constraint and tries to alter the val ues of the variables to 
reduce this violation .  

Linear programming and i ts variants make a sharp distinction 
between constraints (which must be sati sfied) and costs . A solution 
which achieves a very low cost by violati ng one or two of the con
straints is  simply not al lowed. In many domains, the distinct ion 
between constraints and costs is not so clear-cut . In vision, for 
example, i t  is usually helpful to use the constraint that neighboring 
pieces of surface are at similar depths because surfaces are mostly con
tinuous and are rarely parallel to the l ine of sight .  But this is not an 
absolute constraint .  It doesn't apply at the edge of an object. So a 
visual system needs to be able to generate interpretations that violate 
this constraint if i t  can satisfy many other constraints by doing so. 
Constraints l ike these have been called "weak" constraints (Blake, 1983 )  
and i t  i s  possible t o  formulate opt imization problems in which all the 
constraints are weak and there is  no distinction between constraints and 
costs. The optimal solution i s  then the one which minimizes the total 
constraint violation where different constraints are given differen t  
strengths depending on how reliable they are. Another way of  saying 
this i s  that a l l  the constraints have associated plausibi l i t ies ,  and the 
most plausible solut ion is the one which fits these plausible constraints 
as wel l  as possible. 

Some relaxation schemes dispense with separate feedback loops for 
the constraints and implement weak constraints directly in  the excita
tory and inhibi tory interactions between units .  We would l i ke these 
networks to settle into states in which a few un i ts are ful ly acti ve and 
the rest are inactive. Such states constitute clean "digi tal" interpreta
tions. To prevent the network from hedging its bets by settl ing i nto a 
state where many uni ts are sl ightly active, i t  is usually necessary to use 
a strongly nonlinear decision rule, and this also speeds convergence. 
However, the strong nonl inearities that are needed to force the network 
to make a decision also cause i t  to converge on different states on d if
ferent occasions: Even wi th the same external inputs, the final state 
depends on the in i t ial state of the net. This has led many people (Hop
field, 1982; Rosenfeld, Hummel ,  & Zucker, 1976) to assume that the 
particular problem to be solved should be encoded by the i nit ial  state of 
the network rather than by sustained external inpu t  to some of i ts 
units. 
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Hummel and Zucker (I983) and Hopfield (I982) have shown that 
some relaxat ion schemes have an associated "potential " or cost function 
and that the states to which the network converges are local min ima of 
this function . This means that the networks are performing opt i miza
t ion of a well-defined function. Unfortunately, there is no guarantee 
that the network wi l l  find the best mini mum. One possibility is to 
redefine the problem as finding the local min imum which is closest to 
the i ni t ial state. This  is usefu l  if the minima are used to represent 
"i tems" in  a memory, and the i ni t ia l  states are queries to memory 
which may contai n missing or erroneous information. The network 
simply finds the minimum that best fits the query. This idea was used 
by Hopfield ( 1982) who i ntroduced an interest ing kind of network in 
which the un i ts were always i n  one of two states. 1 Hopfield showed that 
if the uni ts are symmetrical ly  connected (Le., the weight from unit i to 
un i t  j exactly equals the weight from unit  j to unit ;) and if they are 
updated one at a t ime, each update reduces (or at worst does not 
i ncrease) the value of a cost function which he called "energy" because 
of the arialogy with physical systems. Consequent ly, repeated i terations 
are guaranteed to find an energy minimum. The global energy of the 
system is defined as 

E = - L wijs;Sj + L9;s; 
;<j ; 

(1) 

where wij is the strength of connection (synaptic  weight) from the jth 
to the ith unit, SI i s  the state of the i th un i t  (0 or 1), and 9 I is a 
threshold .  

The updat ing rule  is  t o  switch each unit into whichever o f  i t s  two 
states yields the lower total energy given the current states of the other 
units .  Because the connect ions are symmetrical, the difference between 
the energy of the whole system with the kth hypothesis false and its 
energy with the k th hypothesis t rue can be determined l ocal ly  by the 
k th un i t ,  and i s  just 

AEk = LWklSI - 9k. ; 
(2) 

Therefore, the rule for mini mizing the energy contributed by a unit is 
to adopt the true state if i ts total i nput from the other units exceeds its 
threshold. This  is the fami liar rule for binary threshold units .  

t Hoplield used the states 1 and - 1 because his model was derived from physical sys
tems called spin glasses in which spins are either "up" or "down." Provided the units 
have thresholds, models that use 1 and -1 can be translated into models that use 1 and 0 
and have different thresholds. 
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Using Probabilistic Decisions to Escape From Local Minima 

At about the same t ime that Hopfield showed how paral lel networks 
of this kind could be used to access memories that were stored as local 
minima, Kirkpatrick , working at IBM, introduced an interesting new 
search technique for solving hard optimization problems on conven
tional computers. 

One standard technique i s  to use gradient descent: The values of the 
variables in the problem are modified in  whatever di recti on reduces the 
cost function (energy) . For hard problems, gradient descent gets stuck 
at local min ima that are not global ly opt imal. Th is  is an inevi table 
consequence of only allowing downhill  moves. If jumps to higher 
energy states occasionally occur ,  it is possible to break out of local 
minima, but it is not obvious how the system will then behave and it i s  
far from clear when uphill steps should be al lowed. 

Kirkpatrick, Gelatt, and Vecchi (I 983)  used another physical analogy 
to guide the use of occasional uphill steps . To find a very low energy 
state of a metal. the best st rategy is to melt it and then to slowly reduce 
its temperature .  This process is cal led anneali ng, and so they named 
thei r search method "simulated anneal i ng." Chapter 6 contains a dis
cussion of why annealing works. We gi ve a s imple intui tive account 
here. 

One way of seeing why thermal noise is helpful  is to consider the 
energy landscape shown in Figure 1 .  Let us suppose that a bal l -bearing 
starts at a randomly chosen point  on the landscape. If i t  always goes 
downhill (and has no i nertia), it wi l l  have an even chance of ending up 
at A or B because both minima have the same width and so the in i t ial 

A 

B 

FIGURE I. A simple energy landscape containing two local minima separated by an 

energy barrier. Shaking can be used to allow the state of the network (represented here 
by a ball-bearing) to escape fr�glitf1rJaMaterial 
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random point is equal ly l ike ly to l ie  in either minimum. If we shake 
the whole  system, we are more l i kely to shake the ball-bearing from A 
to B than vice versa because the energy barrier is lower from the A 
side. If the shaking is gent le,  a transi t ion from A to B will be many 
times as probable as a t ransi t ion from B to A, but both transit ions wi l l  
be very rare . So although gentle shaking will ultimately lead to a very 
high probabili ty of being in B rather than A, i t  wi l l  take a very long 
t ime before this happens. On the other hand, if the shaking is violent ,  
the ball-bearing wi l l  cross the barrier frequently and so the ult imate 
probabi l i ty rat io will be approached rapidly ,  but th is  ratio  will not be 
very good: With violent shaking it is almost as easy to cross the barrier 
in the wrong direction (from B to A) as in the right direction . A good 
compromise is to start by shaking hard and gradually shake more and 
more gently .  This ensures that at some stage the noise level passes 
through the best possible compromise between the absolute probabi l i ty 
of a transit ion and the ratio  of the probabi l i ties of good and bad transi
t ions. I t  also means that at the end, the bal l-bearing stays right at the 
bottom of the chosen minimum. 

This view of why anneal ing helps i s  not the whole story . Figure 1 is 
misleading because al l the states have been laid out in  one dimension . 
Complex systems have high-dimensional state spaces , and so the barrier 
between two low-lying states i s  typical ly massively degenerate: The 
number of ways of getting from one low-lying state to another is an 
exponential function of the height of the barrier one is will ing to cross . 
This  means that a rise in the level of thermal noise opens up an enor
mous variety of paths for escaping from a local minimum and even 
though each path by i tself is unl i kely ,  it is  highly probable that the sys
tem wi l l  cross the barrier. We conjecture that simulated anneal ing wi l l  
only work well in domains where the energy barriers are highly 
degenerate. 

Applying Simulated Annealing to Hopfield Nets 

There is a simple modificat ion of Hopfield's updat ing rule that al lows 
paral lel networks to implement simulated anneal ing. If the energy gap 
between the 1 and 0 states of the k th uni t  is AEk then , regardless of 
the previous state set, Sk = 1 with probabi l i ty 

(3) 
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where T i s  a parameter which acts l i ke the temperature of a physical 
system. This local decis ion rule ensures that in thermal equi l i bri um the 
relat ive probabi l i ty of two global states is  determined solely by thei r 
energy d ifference, and fol lows a Boltzmann distr i bution: 

Pa = e-(E",-E/3)/T 
P� 

(4) 

where Pa i s  the probabi l i ty of being in  the ath global state , and Ea i s  
the energy of  that state. 

At low temperatures there is  a strong bias in  favor of states with low 
energy, but ·the t ime requi red to reach equil ibr ium may be long. At 
higher temperatures the bias is  not so favorable, but equ i l ibr ium is 
reached faster. The fastest way to reach equ i l i bri um at a gi ven tem
perature i s  general ly to use s imulated anneal ing: Start with a h igher 
temperature and gradually reduce i t .  

The idea of  implement ing constra ints as  interactions between sto
chast ic processing elements was proposed by Moussouris (974) who 
discussed the identity between Bol tzmann distr i butions and Markov 
random fields. The idea of using simulated anneal ing to find low 
energy states i n  paral lel networks has been investigated independently 
by several d ifferent groups. S. Geman and D.  Geman (1 984) esta
blished l imits  on the al lowable speed of the anneal i ng schedule and 
showed that s imulated anneal ing can be very effecti ve for removing 
noise from i mages. Hinton and Sejnowski 0983b) showed how the use 
of binary stochast ic elements could solve some problems that plague 
other relaxation techniques, in particular the problem of learning the 
weights . Smolensky (983) has been investigat ing a s imi lar scheme 
which he calls " harmony theory." Thi s  scheme is d iscussed i n  detail i n  
Chapter 6 .  Smolensky's harmony i s  equi valent to our energy (wi th  a 
sign reversal) .  

Pattern Completion 

One way of using a paral le l  network is to t reat it as a pattern comple
t ion device. A subset of the units are "clamped" i nto their on or off 
states and the weights in the network then complete the pattern by 
determining the states of the remain ing uni ts .  There are strong l imi ta
tions on the sets of binary vectors that can be learned i f  the network 
has one un i t  for each component of the vector. These l imits can be 
transcended by using extra units whose states do not correspond to 
components i n  the vectors to be learned . The weights of connections 
to these extra units  can e8p�/9drNPJIiJWBl complex interactions that 



290 BASIC MECHANISMS 

cannot be expressed as pairwise correlations between the components 
of the vectors .  We call these extra units hidden units (by analogy with 
hidden Markov processes) and we call the units that are used to specify 
the patterns to be learned the visible units. The visible un i ts are the 
interface between the network and the environment that specifies vec
tors for it to learn or asks it to complete a partial vector. The hidden 
units are where the network can bui ld i ts  own internal representations. 

Someti mes, we would l i ke to be able to complete a pattern from any 
sufficiently large part of it without knowing in advance which part will 
be gi ven and which part must be completed . Other times we know in 
advance which parts wi l l  be given as i nput and which parts wi l l  have to 
be completed as output .  So there are two different completion para
digms. In the first, any of the visible units might  be part of the 
required output .  In the second , there is  a dist inguished subset of the 
visible units, cal led the input uni ts, which are always clamped by the 
environment, so the network never needs to determine the states of 
these units. 

EASY AND HARD LEARNING 

Consider a network which is al lowed to run freely ,  using the proba
bi l istic decision rule in Equation 3, without having any of i ts units 
clamped by the envi ronment. When the network reaches thermal 
equilibrium, the probabi l i ty of finding it in any particular global state 
depends only on the energy of that state (Equation 4) . We can there
fore control  the probabi l i ties of global states by control l ing their ener
gies. If each weight only contributed to the energy of a single global 
state, thi s  would be straightforward, but changing a weight wi l l  actually 
change the energies of many different states so it is not immediately 
obvious how a weight-change wi l l affect the probability of a part icular 
global state.  Fortunately, if  we run the network unt i l  it reaches thermal 
equil i brium, Equations 3 and 4 allow us to derive the way in which the 
probability of each global state changes as a weight is changed: 

(5) 

where st is the binary state of the i th unit in  the a th global state and 
P;; is the probabi l i ty, at thermal equi l i br ium, of global state a of the 
network when none of the vi s ible units are clamped (the lack of clamp
ing is  denoted by the superscript - ) .  Equation 5 shows that the effect 
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of a weight on the log probabi l i ty of a global state can be computed 
from purely local informat ion because i t  only involves the behavior of 
the two units that the weight connects (the second term is just the 
probabi l i ty of finding the ith and jth units on together) . This makes it 
easy to manipulate the probabi l i t ies of global states provided the desi red 
probabi l i t ies are known (see Hinton & Sejnowski , 1 983a,  for detai ls) . 

Unfortunately, i t  is normally unreasonable to expect the environment 
or a teacher to specify the requi red probabi l i t ies of ent i re global states 
of the network. The task that the network must perform is defined in 
terms of the states of the vis ible uni ts ,  and so the environment or 
teacher only has d irect access to the states of these uni ts .  The difficul t  
learning problem is  to  decide how to use the  hidden units to help 
achieve the requi red behavior of the vis ible uni ts .  A learn ing rule 
which assumes that the network i s  i nstructed from outside on how to 
use all of i ts units i s  of l imi ted interest because i t  evades the main 
problem which i s  to discover appropriate representations for a given 
task among the hidden uni ts .  

In statistical terms, there are many kinds of statist ical structure impl i 
ci t in  a large ensemble of  envi ronmental vectors. The separate proba
bi l i ty of each visible uni t  being act ive is the first-order structure and 
can be captured by the thresholds of the visible uni ts. The v2/2 pai r
wise correlations between the v visible units consti tute the second
order structure and this can be captured by the weights between pai rs of 
uni ts.2 All structure higher than second-order cannot be captured by 
pai rwise weights between the visible units. A simple example may help to 
clarify this crucial poin t . 

Suppose that the ensemble consists of the vectors: (I 1 0) , (I 0 0, 
(0 1 0, and (00 0) ,  each with a probabi l i ty of 0 . 25. There is clearly 
some structure here because four of the eight possible 3 -b i t  vectors 
never occur. However,  the structure i s  enti rely th i rd-order .  The fi rst
order probabi l i t ies are all 0. 5 ,  and the second-order correlations are al l 
0, so if we consider only these stat ist ics, this ensemble is indistinguish
able from the ensemble in which all eight vectors occur equiprobably. 

The Widrow-Hoff rule or perceptron convergence procedure (Rosen
blatt , 1 962) is  a l earning ru le  which is designed to capture second-order 
structure and it therefore fai ls  miserably on the example just gi ven. If 
the fi rst two bits are treated as an input and the last bi t  is t reated as the 
required output ,  the ensemble corresponds to the function "exclusi ve
or" which is one of the examples used by Minsky and Papert (I969) to 
show the strong l imi tations of one-layer perceptrons. The Widrow-Hoff 

2 Factor analysis confines itself to capturing as m uch of the second-order structure as 
possible in a few underlying "factors." It ignores al l  higher order structure which is where 
much of the interesting infor�lftedIVWBt�ost simple ensembles of vectors. 
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rule can do easy learning, but it cannot do the kind of hard learning 
that involves decid ing how to use extra units whose behavior is  not 
di rectly specified by the task. 

It is tempting to think that networks with pai rwise connections can 
never capture higher than second-order stat istics. There is one sense in 
which this is true and another in which it is false. By introducing extra 
units which are not part of the definit ion of the original ensemble , it is 
possible to express the thi rd-order structure of the original ensemble in 
the second-order structure of the larger set of uni ts. In the example 
given above , we can add a fourth component to get the ensemble 
{ ( 1 1 0l) , ( 1 0 1 0) ,  (01 1 0) ,  (OOOO) }. It is now possible to use the thresh
olds and weights between all four uni ts to express the thi rd-order struc
ture in the fi rst three components. A more famil iar way of saying this 
i s  that we introduce an extra "feature detector" which in  this example 
detects the case when the fi rst two units are both on. We can then 
make each of the fi rst two units excite the th i rd unit ,  and use strong 
inhibi t ion from the feature detector to overrule this excitation when 
both of the fi rst two uni ts are on. The difficult problem in introducing 
the extra unit was deciding when it should be on and when i t  should be 
off -deciding what feature it should detect .3 

One way of thinking about the higher order structure of an ensemble 
of environmental vectors is that it implici tly specifies good sets of 
underlying features that can be used to model the structure of the 
environment. In common-sense terms, the weights in the network 
should be chosen so that the h idden units represent significant underly
ing features that bear strong, regular relationshi ps to each other and to 
the states of the visible units .  The hard learn ing problem is  to figure 
out what these features are , i .e . ,  to find a set of weights which turn the 
hidden units into useful feature detectors that expl ic it ly represent 
properties of the envi ronment which are only impl ic i tly present as 
higher order statist ics in the ensemble of environmental vectors. 

Maximum Likelihood Models 

Another view of learning is that the weights in  the network consti
tute a generati ve model of the environment-we would li ke to find a 
set of weights so that when the network is running freely , the patterns 
of acti vity that occur  over the visi ble units are the same as they would 
be if the environment was clamping them. The number of units in the 

3 In this example there are six different ways of using the extra unit to solve the task. 
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network and thei r interconnect iv i ty define a space of possi ble models of 
the envi ronment , and any part icular set of weights defines a part icular 
model withi n this space. The learning problem is to fi nd a combination 
of weights that gi ves a good model gi ven the limitations imposed by the 
archi tecture of the network and the way i t  runs. 

More formal ly, we would l i ke a way of finding the combination of 
weights that is most l i ke ly to have produced the observed ensemble of 
environmental vectors. This i s  cal led a maximum likelihood model and 
there is a large l iterature wi thin stat ist ics on maximum l i kel ihood est i 
mation . The learning procedure we describe actually has  a close rela
t ionship to a method cal led Expectation and Maximizat ion (EM) 
(Dempster, Lai rd ,  & Rubin ,  1976). EM is used by stat ist icians for 
est imati ng missing parameters . It represents probabil ity distri but ions by 
using parameters l i ke our weights that are exponential ly related to 
probabi l i t ies, rather than usi ng probabi l i t ies themselves. The EM algo
rithm is closely related to an earl ier  algorithm invented by Baum that 
manipulates probabi l i t ies d irectly. Baum's algorithm has been used suc
cessful ly for speech recogni t ion (Bahl, Jelinek, & Mercer ,  1983). It 
est imates the parameters of a hidden Markov chai n-a transit ion net
work which has a fixed structure but variable probabi l i t ies on the arcs 
and variable probabi l i t ies of emitt ing a part icular output symbol as i t  
arrives at each i nternal node. Gi ven an ensemble of  strings of  symbols 
and a fixed-topology transi t ion network , the algori thm fi nds the combi
nation of transi t ion probabi l i t ies and output probabilities that is most 
l ikely to have produced these strings (actually it only finds a local max
imum) . 

Maximum l ikel ihood methods work by adjust ing the parameters to 
increase the probabi l i ty that the generative model will produce the 
observed data .  Baum's algori thm and EM are able to estimate new 
values for the probabil i t ies (or weights) that are guaranteed to be better 
than the previous values. Our algori thm simply estimates the gradient 
of the log l i ke l ihood with respect to a weight, and so the magnitude of 
the weight change must be decided using addit ional criteria. Our algo
ri thm, however,  has the advantage that it is easy to i mplement in a 
paral lel network of neuron-l i ke units .  

The idea of a stochastic generative model is attractive because i t  pro
vides a clean quant i tat ive way of comparing al ternat ive representational 
schemes . The problem of saying which of two representational schemes 
is  best appears to be intractable. Many sensible rules of thumb are 
available,  but these are general ly pulled out of th in air and just ified by 
commonsense and practical experience . They lack a fi rm mathematical 
foundat ion .  If we confine ourselves to a space of al lowable stochastic 
models, we can then get a simple Bayesian measure of the qual i ty of a 
representational schem�o�t�8W"atifriaJ1e observed ensemble of 
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envi ronmental vectors gi ven the representational scheme? In our net
works, representations are patterns of acti vity in the units,  and the 
representational scheme therefore corresponds to the set of weights that 
determines when those patterns are active .  

THE BOLTZMANN MACHINE LEARNING ALGORITHM 

If we make certa in assumptions it is possible to derive a measure of 
how effectively the weights in the network are being used for modeling 
the structure of the environment, and i t  is also possible to show how 
the weights should be changed to progressi vely improve this measure. 
We assume that the environment clamps a particular vector over the 
visible units and it keeps it there long enough for the network to reach 
thermal equil ibrium with this vector as a boundary condi t ion ( i . e. ,  to 
" interpret" i t) . We also assume (unrealist ically) that the there is no 
structure in the sequential order of the environmentally clamped vec
tors. This means that the complete structure of the ensemble of 
environmental vectors can be specified by giving the probabili ty, 
P +(Va ) ,  of each of the 2v vectors over the v vis ible units . Notice that 
the P + (Va) do not depend on the weights in the network because the 
environment clamps the visible uni ts. 

A particular set of weights can be said to consti tute a perfect model 
of the structure of the environment if it leads to exactly the same 
probability distribution of visible vectors when the network is running 
freely with no units being clamped by the environment. Because of the sto
chastic behavior of the units ,  the network will wander through a variety 
of states even with no environmental input and it will therefore gen
erate a probability distribution, P - (Va), over all 2v visible vectors. 
This distribution can be compared with the environmental distribution, 
P + (Va) '  In general, i t  wi l l  not be possi ble to exactly match the 2v 
environmental probabi l i t ies using the weights among the v visible and 
h hidden units because there are at most (v+ h-l )( v+ h) / 2 
symmetrical weights and (v+ h) thresholds. However, i t  may be possi
ble to do very well if  the environment contains regulari t ies that can be 
expressed in the weights. An information theoretic measure (Kullback, 
1 959) of the distance between the environmental and free-running 
probabi l i ty distri butions is gi ven by: 

G= � P +(V ) ln P +(Va) 
� a P -( V) a a 

(6) 

where P +( Va) is the p�6�tOpMeJ��/state of the visible units in 
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phase+ when their states are determined by the environment, and 
p-( Va) is the corresponding probability in phase- when the network is 
running freely with no env i ronmental i nput . 

G is never negati ve and is only zero if the distributions are identical. 
G is actually the distance in bits /rom the free running distribution to 
the environmental distribut ion.4 It is someti mes called the asymmetric 
divergence or information gain .  The measure is  not symmetric with 
respect to the two distri butions. This seems odd but is actually very 
reasonable. When trying to approximate a probabi l i ty distri bution , i t  i s  
more important to  get t he  probabil ities correct for events that happen 
frequently than for rare events .  So the match between the actual and 
predicted probabilities of an event should be weighted by the actual 
probabi l i ty as in Equation 6. 

It is possible to  i mprove the network's model of the structure of i ts  
env i ronment by changing the weights so as to reduce G. 5 To perform 
gradient descent in G, we need to know how G will change when a 
weight is changed. But changing a single weight changes the energies 
of one quarter of all the global states of the network, and it changes the 
probabil ities of al l  the states in ways that depend on all the other 
weights in the network. Consider, for example, the very simple net
work shown in  Figure 2. If we want the two un i ts at the ends of the 
chain to be either both on or both off, how should we change the 
weight W),4? It clearly depends on the signs of remote weights like w1,2 
because we need to have an even number of inhibitory weights i n  the 
chain .6  So the partial deri vative of G with respect to one weight 
depends on al l  the other weights and minimizing G appears to be a 

input 
unit 

output 
unit 

FIGURE 2. A very simple network with one input unit, one output unit, and two hidden 
units. The task is to make the output unit adopt the same state as the input unit. The 
difficulty is that the correct value for weight w3,4 depends on remote information like the 

value of weight wl,2' 

4 If we use base 2 logarithms. 

5 Peter Brown (personal communication) has pointed out that minimizing G is 

equivalent to maximizing the log of the likelihood of generating the environmental 

probability distribution when the network is running freely at equilibrium. 

6 The thresholds must also ted�J1rJrffiMff�t'tflral 
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difficult computational problem that requi res nonlocal information. 
Fortunately, all the infOimation that is required about the other 

weights in order to change wi} appropriately shows up in the behavior 
of the ith and jth units at thermal equ i l i br ium. In addi t ion to perform
ing a search for low energy states of the network , the process of reach
ing thermal equi l i brium ensures that the joint activi ty of any two units 
contains al l the informati on required for changing the weight between 
them in order to give the network a better model of its environment. 
The joi nt act iv i ty impl ic it ly encodes information about all the other 
weights in the network . The Appendix  shows that 

aG 1 [+ _] � = - -T Pi} - Pi) uWIJ 
(7) 

where Pij is the probabi l ity ,  averaged over al l envi ronmental inputs and 
measured at equ i l ibri um, that the ith and jth units are both on when 
the network is being dri ven by the envi ronment ,  and pi; is the 
corresponding probability when the network is free running. One 
surprising feature of Equation 7 is  that it does not matter whether the 
weight is between two visible uni ts, two hidden uni ts, or one of each . 
The same rule appl ies for the gradient of G 

Unlearning 

Crick and Mitchison (I983)  have suggested that a form of reverse 
learning might occur during REM sleep i n  mammals. Their proposal 
was based on the assumption that paras i t ic  modes develop in large net
works that hinder the distributed storage and retrieval of information. 
The mechanism that Crick and Mitchison propose i s  based on 

More or less random st imulation of the forebrain by the brain 
stem that wi l l  tend to st imulate the inappropriate modes of 
brain act ivity . . . and especial ly those which are too prone to be 
set off by random noise rather than by highly st ructured 
specific signals. (p. 1 1 2) 

During this state of random excitation and free running they postulate 
that changes occur at synapses to decrease the probabi l i ty of the 
spurious states . 

A s imulation of reverse learning was performed by Hopfield, Fein
stein ,  and Palmer (I983 ) who independently had been studying ways to 
improve the associati ve storage capaci ty of simple networks of binary 
processors (Hopfield, 1982) .  In thei r algori thm an input is presented to 
the network as an in i t iac88W1jp,�&t tWcHeHm system evolves by fal l ing 
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into a nearby local energy min i mum. However, not all local energy 
minima represent stored information. In creat ing the desired min ima ,  
they accidentally create other spurious min ima, and to el iminate these 
they use "unlearning": The learn ing procedure is appl ied with reverse 
sign to the states found after start ing from random init ial conditions. 
Following this procedure, the performance of the system in accessi ng 
stored states was found to be improved. 

There is an i nteresting relationshi p  between the reverse learn ing pro
posed by Crick and Mitchison and Hopfield et at . and the form of the 
learni ng algori thm which we derived by consideri ng how to min imize 
an information theory measure of the discrepancy between the environ
mental structure and the network's internal model (Hinton & 
Sejnowski, 1983b) .  The two phases of our learning algori thm resemble 
the learning and unlearning procedures: Posit ive Hebbian learning 
occurs in phase+ during which information in the environment is cap
tured by the weights; during phase- the system randomly samples states 
according to their Boltzmann distr ibut ion and Hebbian learning occurs 
wi th a negati ve coefficient. 

However, these two phases need not be implemented in the manner 
suggested by Crick and Mitchison. For example, during phase- the 
average co-occurrences could be computed without making any changes 
to the weights. These averages could then be used as a baseline for 
making changes during phase+; that is, the co-occurrences during 
phase+ could be computed and the baseli ne subtracted before each per
manent weight change. Thus, an alternative but equivalent proposal for 
the function of dream sleep is to recal i brate the baseline for 
plasticity-the break-even point which determines whether a synaptic 
weight is  i ncremented or decremented. This would be safer than mak
ing permanent weight decrements to synaptic weights during sleep and 
solves the problem of deciding how much" unlearning" to do. 

Our learni ng algori thm refines Crick and Mitchison's in terpretation 
of why two phases are needed. Consider a hidden unit  deep within the 
network: How should i ts connections with other units be changed to 
best capture regularity present i n  the environment? If i t  does not 
receive di rect input from the envi ronment, the hidden uni t  has no way 
to determine whether the information it receives from neighbori ng 
units i s  ultimately caused by structure in  the environment or is ent i rely 
a result of the other weights. This can lead to a "folie a deux" where 
two parts of the network each construct a model of the other and 
ignore the external environment. The contr ibut ion of in ternal and 
external sources can be separated by compari ng the co-occurrences i n  
phase+ with similar information that is  collected i n  the absence of 
environmental input. phase- thus acts as a control condi t ion. Because 
of the special properties��Hhf�te,w,possible to subtract off thi s 
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purely internal contri bution and use the difference to update the 
weights . Thus, the role of the two phases is to make the system maxi
mally responsive to regularities present i n  the environment and to 
prevent the system from using i ts capaci ty to model internally
generated regulari ties. 

Ways in Which the Learning Algorithm Can Fail 

The abi l i ty to discover the partial derivative of G by observing Pit 
and pi; does not completely determine the learning algorithm. It is st i l l  
necessary to decide how much to change each weight , how long to col
lect co-occurrence statistics before changing the weight, how many 
weights to change at a time, and what temperature schedule to use dur
i ng the anneal ing searches. For very simple networks in very simple 
environments, i t  is possib le  to discover reasonable values for these 
parameters by trial and error. For more complex and interesting cases , 
serious difficulties arise because it is very easy to violate the assump
tions on which the mathematical results are based (Derthick, 1984) . 

The fi rst d ifficu l ty is that there is noth ing to prevent the learning 
algori thm from generating very large weights which create such high 
energy barriers that the network cannot reach equil ibrium i n  the al lot
ted time. Once this happens, the statistics that are collected wi l l  not be 
the equi l ibr ium statistics required for Equation 7 to hold and so all bets 
are off. We have observed this happening for a number of different 
networks. They start off learning quite wel l  and then the weights 
become too large and the network "goes sour" -its performance 
deteriorates dramat ically, 

One way to ensure that the network gets close to equi l ibr ium is to 
keep the weights smal l .  Pearl mutter (personal communication) has 
shown that the learn ing works much better i f, in  addit ion to the we ight 
changes caused by the learni ng, every weight cont inual ly decays towards 
a value of zero, with the speed of the decay being proportional to the 
absolute magnitude of the weight. This keeps the weights small and 
eventually leads to a relat ively stable situation in which the decay rate 
of a weight is balanced by the partial derivative of G with respect to the 
weight . This has the satisfactory property that the absolute magni tude 
of a weight shows how important i t is for model ing the environmental 
structure . 

The use of weight-decay has several other consequences which are 
not so des i rab le .  Because the weights stay smal l ,  the network cannot 
construct very deep mini ma in the energy landscape and so it cannot 
make the probabi l ity ratios for s imilar global states be very different . 

Copyrighted Material 
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This  means that i t  i s  bound to give a sign ificant number of errors in  
modeling environments where very similar vectors have very d ifferent 
probabil i ties . Better performance can be achieved by annealing the net
work to a l ower final temperature (which is equi valent to making all the 
weights larger) , but this wil l  make the learning worse for two separate 
reasons. First , wi th less errors there i s  less to drive the learn ing 
because i t  rel ies on the difference between the phase+ and phase
statistics . Second ,  i t  wi l l  be harder to reach thermal equi l ibrium at this 
lower temperatu re and so the co-occurrence statist ics wil l be unreliable .  
One way of gett ing good statistics to drive the learning and a lso gett ing 
very few overt errors is  to measure the co-occurrence statistics at  a 
temperature h igher than the final one. 

Another way of ensuring that the network approaches equ i l ibr ium is 
to el iminate deep, narrow min ima that are often not found by the 
anneal ing process . Derthick (1984) has shown that this can be done 
using a longer gentler anneal ing schedule in phase-. This means that 
the network is more likely to occupy the hard-to-find minima in phase
than in phase+ , and so these minima wi l l  get filled in because the learn
ing rule raises the energies of states that are occupied more in phase
than in phase+ . 

AN EXAMPLE OF HARD LEARNING 

A simple example which can only be sol ved by capturing the higher 
order statistical structure in the ensemble of input vectors is  the 
"shifter" problem. The vis ible  units are divided into three groups. 
Group VI is a one-di mensional array of 8 units, each of which is 
clamped on or off at random with a probabili ty of 0. 3 of being on. 
Group V2 also contains 8 units and their states are determined by shift
ing and copying the states of the uni ts i n  group VI' The only shifts 
al lowed are one to the left, one to the right, or no shift. Wrap-around 
is used so that when there is a right shift, the state of the right-most 
uni t  in VI determi nes the state of the left-most unit in V2• The three 
possi ble  shifts are chosen at random with equal probabi liti es. Group V3 
contains three un i ts to represent the three poss ible shi fts, so at any one 
time one of them is clamped on and the others are clamped off. 

The problem i s  to learn the structure that relates the states of the 
three groups. One facet of this problem is to "recognize" the shift
i . e., to complete a part ial i nput vector in which the states of VI and V2 
are clamped but the units in V3 are left free. It is fai rly easy to see why 
this  problem cannot possibly be solved by just adding together a lot of 
pai rwise in teract ions between units in Vb V2, and V3• If you know 
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that a particular unit i n  VI is  on, i t  tells you nothing whatsoever about 
what the shift is. It is  on ly by finding combinations of active units in VI 
and V2 that i t  is possible  to predict the shift, so the information 
required is of at least third-order .  This means that extra hidden units 
are required to perform the task .  

The obvious way to recognize the shift i s  to have extra units which 
detect informati ve features such as an acti ve unit  i n  VI and an active 
unit one place to the right in  V2 and then support the unit V3 that 
represen ts a right shift .  The empirical question is whether the learning 
algorithm is  capable of turn ing some hidden units into feature detectors 
of this kind, and whether it wi l l generate a set of detectors that work 
well together rather than duplicat ing the same detector. The set of 
weights that m inimizes G defines the optimal set of detectors but it is 
not at a l l  obvious what these detectors are, nor is it obvious that the 
learning algori thm is capable  of finding a good set . 

Figure 3 shows the result  of runn ing a version of the Boltzmann 
machine learning procedure. Of the 24 hidden uni ts ,  5 seem to be 
doing very l i tt le but the remainder are sensible l ooking detectors and 
most of them have become spatial ly local ized . One type of detector 
which occurs several times consists of two large negative weights, one 
above the other,  flanked by smaller exci tatory weights on each side .  
This is a more discriminating detector of no-shift than s imply having 
two posi t ive weights, one above the other. It interesting to note that 
the various i nstances of this feature type al l have different locations in 
VI and V2, even though the hidden units are not connected to each 
other. The pressure for the feature detectors to be different from each 
other comes from the gradient of G ,  rather than from the kind of 
lateral inhibi t ion among the feature detectors that is used in  " competi
t ive learning" paradigms (Fukushima,  1 980� Rumelhart & Zipser, 
1 985 ) . 

The Training Proced ure 

The training procedure alternated between two phases. In  phase+ , all 
the units in V" V2, and V3 were clamped into states representing a pai r 
of 8-bit vectors and thei r relat ive shift .  The hidden un i ts were then 
al lowed to change thei r states unt i l  the system approached thermal 
equi l ibri um at a temperature of 1 0 . The annealing schedule is  
described below.  After annealing, the network was assumed to be close 
to therma l equ i l i br ium and it was then run for a further 1 0  i terations 
during which t ime the frequency with which each pai r of connected 
units were both on was measured . This was repeated 20 times wi th 
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FIGURE 3 .  The weights o f  the 2 4  h idden u n i t s  i n  t h e  s h i fter  network . Each la rge region 

corresponds to a u n i t .  Within t h is region the black rectangles represent  negati ve weights 
and the white rectangles represent positive ones.  The size of a rectangle  represents t he 
magnitude of the weigh t .  The two rows of we ights at the bottom of each un i t are i ts con 
nect ions to the two groups of input uni ts ,  VI and V2 . These weights the refore represent 
the " recept ive field"  of the h idden u n i t .  The three wei ghts in the midd le of the top row 

of each unit a re its connect ions to the three output un i ts  that represen t  sh ift- left , no
sh ift,  and shift-r ight .  The sol itary we igh t at t h e  top left of each unit  is  i ts  t h reshold . 
Each hidden uni t  is d i rect ly con nected to a l l  1 6  input un i ts and a l l  3 ou tput units .  In t h i s  
example,  th e  hidden u n i ts are n o t  connected t o  each other .  The top-left un i t  h a s  we igh ts 
that are easy to understand :  Its optimal st imu lus is act iv i ty  in the fourth  u n i t  of  VI  and 
the fi fth uni t  of V2 , and it votes for sh ift-r igh t .  It has negat ive wei ghts to make it less 
l i kely to come on when there is  an al ternati ve explanat i o n  for why i ts two favor ite input  

uni ts  are  act ive .  

different clamped vectors and the co-occurrence stati st ics were averaged 
over all 20 runs to yield an est i mate ,  for each connection , of Pi) i n  
Equation 7 .  In phase- , none o f  the un i ts were clam ped and the net 
work was annealed in the same way. The network was then run for a 
further 1 0  iterations and the co-occurrence stat istics were co l lected for 
al l  connected pai rs of uni ts .  This was repeated 20 t i mes and the co
occurrence statist ics wer€QP�ct<MEitrl'f1ican est imate of Pi; · 
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The entire set of 40 annealings that were used to esti mate Pit and Pi} 
was cal led a sweep .  After each sweep, every weight was incremented 
by 5 (Pit - Pin . In addit ion, every weight had its absolute magnitude 
decreased by 0.0005 t imes i ts absolute magni tude. This weight decay 
prevented the weights from becoming too large and it also helped to 
resuscitate hidden units which had predominantly negati ve or predom
inantly posit ive weights. Such units spend all their t ime in the same 
state and therefore convey no information. The phase+ and phase
statistics are identical for these units ,  and so the weight decay gradually 
erodes thei r weights until they come back to l i fe (units with all zero 
weights come on half the t ime) . 

The Annealing Schedule 

The annealing schedule spent the fol lowing number of i terations at 
the following temperatures : 2 at 40, 2 at 35 ,  2 at 30, 2 at 2 5 ,  2 at 20, 2 
at 1 5 ,  2 at 1 2 , 2 at 1 0. One i teration is defined as the number of ran
dom probes requi red so that each unit is probed one t ime on average. 
When it is probed, a unit uses i ts energy gap to decide which of i ts two 
states to adopt using the stochastic decision rule in  Equation 3. Si nce 
each uni t gets to see the most recent states of all the other units, an 
i terat ion cannot be regarded as a single parallel step. An truly paral lel 
asynchronous system must tolerate t ime delays. Units must decide on 
their new states without being aware of very recent changes in  the 
states of other units .  It  can be shown (Sejnowski , Hinton , Kienker, & 
Schumacher , 1 985)  that first-order t ime delays act l i ke added tempera
ture and can therefore be tolerated by networks of this k ind .  

The Performance of the Shifter Network 

The sh ifter network is  encouraging because i t  is a clear example of 
the kind of learn ing of h igher order structure that was beyond the capa
bi l i ty of perceptrons ,  but i t  also i l lustrates several weaknesses in the 
current approach. 

• The learn ing was very slow. It requi red 9000 learn ing sweeps, 
each of which i nvol ved reachi ng equi l i brium 20 t imes in phase+ 
with vectors clamped on VI >  V2 , and V3 , and 20 times in 
phase- with no uni ts clamped . Even for low-level perceptual 
learn ing, this seems excessi vely s low. 
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• The weights are fai rly clearly not optimal because of the 5 h id
den units that appear to do nothing usefu l .  Also, the 
performance is far from perfect . When the states of the units 
in  V I and V 2 are clamped and the network is  annealed gently to 
half the fi nal temperature used during learning, the units in V3 
quite frequently adopt the wrong states . If the number of on 
units in VI is 1 , 2 ,3 ,4 , 5 ,6 , 7 ,  the percentage of correctly recog
n ized shifts is 50%, 7 1  %, 8 1  %, 86%, 89%, 82%, and 66% 
respectively.  The wide variat ion in the number of acti ve units 
i n  V I natural ly makes the task harder to learn than i f  a constant 
proportion of the units were acti ve. Also, some of the input  
patterns are ambiguous . When al l the  units in  VI and V2 are 
off, the network can do no better than chance. 

ACHIEVING RELIABLE COMPUTATION WITH 

UNRELIABLE HARDWARE 

Conventional computers only work if  all their indi vidual components 
work perfectly , so as systems become larger they become more and 
more unrel iable. Current computer technology uses extremely reliable 
components and error-correcting memories to achieve overal l rel iabi l i ty.  
The brain appears to have much less rel i able components, and so i t  
must use much more error-correction.  It is conceivable that the brain 
uses the kinds of representations that would be appropriate given rel i 
able hardware and then superimposes redundancy to  compensate for i ts 
unrel iable hardware . 

The rel iabi l i ty  issue is typically treated as a tedious residual problem 
to be dealt wi th after the main decisions about the form of the compu
tation have been made. A more direct approach is to treat rel iabi l i ty as 
a serious design constraint from the outset and to choose a basic style 
of computation that does not require rel i able components. Ideally ,  we 
want a system in which none of the i ndividual components are critical 
to the abi l i ty of the whole system to meet its requi rements. In other 
words, we want some high-level description of the behavior of the sys
tem to remain valid even when the low-level descriptions of the 
behavior of some of the i ndi vidual components change. This is  only 
possi ble if the high-level  description i s  related to the low level descrip
tions in a particular way: Every robust high-level property must be 
implemented by the combined effect of many local components, and no 
single component must be crucial for the real izat ion of the high-level 
property. This makes distri buted representations (see Chapter 3) a 
natural choice when des�llftMJwmt�tant system. 
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Distributed representations tend to behave robustly because they 
have an internal coherence which leads to an automatic  " clean-up" 
effect . This  effect can be seen in the patterns of act ivi ty that  occur 
wi thin a group of units and also in the interact ions between groups . If 
a group of units, A, has a number of disti nct and wel l -defined energy 
minima then these minima wi l l  remain even if a few units are removed 
or a l i tt le noise is added to many of the connections within A. The 
damage may distort the minima sl ightly and it may also change thei r 
relative probabi l i t ies, but mi nor damage wi l l  not alter the gross topogra
phy of the energy landscape, so it wi l l  not affect higher level descri p
tions that depend only on this gross topography. 

Even if  the patterns of activity in  A are sl ightly changed , this wi l l  
often have no  effect o n  the patterns caused i n  other groups o f  units .  If 
the weights between groups of units have been fixed so that a part icular 
pattern in  A regularly causes a part icular pattern in  B, a smal l  variation 
in the input coming from A wi l l  typical ly make no difference to the pat
tern that gets selected in B, because this pattern has its own internal 
coherence , and if the input from A is  sufficiently accurate to select 
approxi mately the right pattern , the interactions among the elements in 
B wi l l  ensure that the detai ls are right . 

Damage resistance can be achieved by using a s imple kind of 
representation in which there are many identical copies of each type of 
unit  and each macroscopic i tem is encoded by act ivi ty in all the units of 
one type . In the undamaged system all these copies behave identically 
and a lot of capacity is  therefore wasted . If we use distributed 
representations in which each uni t  may be used for representing many 
d ifferent i tems we can achieve comparable resistance to damage without 
wast ing capacity .  Because all the un i ts behave d ifferently from each 
other,  the undamaged system can implement many fine dist inctions in  
the  fine detail of the energy landscape . At  the  macroscopic level , these 
fine dist inct ions wi l l  appear as somewhat unrel iable probabi l ist ic ten
dencies and will be very sensit ive to minor damage . 

The fine detai ls in the current energy landscape may contain the 
seeds of future changes in the gross topography. If learni ng novel dis
t i nctions invol ves the progressi ve strengthening of regulari t ies that are 
in i t ia l ly tentat ive and unreliable ,  then it fol lows that learn ing may wel l  
suffer considerably when physical damage washes out these minor 
regularit ies .  However ,  the simulations described below do not bear on 
this interesting issue . 

AN EXAMPLE OF THE EFFECTS OF DAMAGE 

To show the effects of damage on a network , i t  is necessary to 
choose a task for the network to_ .perform. S ince we are mainly 
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concerned with properti es that are fai rly domain-independent ,  the 
detai ls  of the task are not especial ly relevant here .  For reasons 
described in  Chapter 3 ,  we were interested in  networks that can learn 
an arbitrary mapping between i tems in two different domains,  and we 
use that network to investigate the effects of damage . As we shall see, 
the fact that the task in volves purely arbi t rary associations makes it 
easier to interpret some of the interest i ng transfer effects that occur 
when a network relearns after sustain ing major damage. 

The Network 

The network consisted of three groups or layers of uni ts . The gra
pheme group was used to represent the letters i n  a three-letter word . I t  
contained 30 uni ts and was subdivided in to three groups of 10 units 
each. Each subgroup was dedicated to one of the three letter pos i t ions 
wi th in a word, and i t  represented one of the 10 possi ble letters i n  that 
posi t ion by having a single act i ve unit  for that letter. The th ree- letter 
grapheme strings were not Engl ish words . They were chosen randomly, 
subject to the constrai nt that each of the 10 poss ib le  graphemes i n  each 
posi tion had to be used at l east once . The sememe group was used to 
encode the semantic features of the " word .,, 7 It  contained 30 un i ts ,  one 
for each possible semant i c  feature. The semantic features to be associ 
ated wi th a word were chosen randomly, with each featu re having a 
probabi l i ty of 0 . 2  of being chosen for each word . There were connec
t ions between al l  pai rs of uni ts in  the sememe group to al low the net
work to learn fami l iar combinations of semantic features . There were 
no di rect connect ions between the grapheme and sememe groups. 
Instead, there �as an i n termediate layer of 20 u n i ts ,  each of which was 
connected to al l  the units in both the grapheme and the sememe 
groups. Figure 4 is ;10 art ist ' s  i mpression of the network.  It uses 
English letters and words to convey the functions of the u n i ts in the 
various layers .  Most of the connections are missing. 

The Training Procedure 

The network was trained to associate each of 20 patterns of act i vity 
in the grapheme uni ts  with an arbi t rari ly  related pattern in  the sememe 

7 The representation of meaning is clearly more complicated than j ust a set of features, 
so the use of the word " semanti.c "  here �hould not be taken too l i teral l y .  
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FIGURE 4.  Part of the network used for associating t h ree-letter words with sets of 
semantic features. English words are used i n  this  figure to help convey the funct ional 
roles of the units .  In the actual s imulat ion, the letter-str ings and semantic features were 
chosen randomly. 

units. As before, the training procedure alternated between two phases . 
In phase+ all the grapheme and sememe units were clamped in  states 
that represented the physical form and the meaning of a single word, 
and the intermediate units were allowed to change their states until the 
system approached thermal equi l ibrium at a temperature of 1 0. The 
annealing schedule was : 2 at 30, 2 at 26, 2 at 22 ,  2 at 20, 2 at 1 8 , 2 at 
16 ,  2 at 1 5 ,  2 at 1 4 ,  2 at 1 3 , 4 at 1 2 , 4 at 1 1 , 8 at 10 .  After annealing, 
the network was assumed to be close to thermal equi l ibrium and i t  was 
then run for a further 5 i terations during which t ime the frequency with 
which each pai r of connected uni ts were both on was measured . This 
was repeated twice for each of the 20 possible grapheme/ sememe asso
ciat ions and the co-occurrence statistics were averaged over all 40 
anneal ings to yield an esti mate, for each connection , of pi! . In phase- , 
only the grapheme units were clamped and the network settled to 
equi l ibr ium (using the same schedule as before) and thus decided for 
i tself what sememe units should be act ive.  The network was then run 
for a further 5 i terations and the co-occurrence statist ics were col lected 
for all connected pai rs of un i ts . This was repeated twice for each of the 
20 grapheme strings and the co-occurrence statist ics were averaged to 
yield an estimate of pi; . Each learning sweep thus involved a total of 
80 anneal ings . 

After each sweep,  every weight was either incremented or decre
mented by 1 ,  with the sign of the change being determined by the sign 
of Pit - Pi} ' 8 In addit ion , some of the weights had thei r absolute 

8 See Hi nton, Sejnowski ,  and Ackley ( 1 984) for a discussion of the advantages of 
discrete weight increments over the more obvious steepest descent technique in which 
the weight i ncreme n t  is propof!j�e71 tMaterial 



7, LEARNING IN BOLTZM ANN MACHINES 307 

magnitude decreased by 1 .  For each weight ,  the probabi l i ty of this hap
pening was 0.0005 t imes the absolute magni tude of the weight .  

We found that the  network performed better if there was a 
prel iminary learn ing stage which just involved the sememe units .  In 
this stage , the intermediate un i ts were not yet connected . During 
phase+ the required patterns were clamped on the sememe units and Pit 
was measured (anneal ing was not requ i red because al l the uni ts 
involved were clamped) . Duri ng phase- no units were clamped and the 
network was al lowed to reach equi l i br ium 20 t imes using the annea l ing 
schedule given above . After an neal ing , pi; was estimated from the co
occurrences as before, except that only 20 phase- anneal ings were used 
instead of 40. There were 300 sweeps of this l earn ing stage and they 
resul ted in weights between pai rs of sememe uni ts that were sufficient 
to give the sememe group an energy landscape with 20 strong minima 
corresponding to the 20 possible " word meanings ." This  hel ped subse
quent learning considerably, because i t  reduced the tendency for the 
intermediate units to be recruited for the job of modeling the structure 
among the sememe units. They were therefore free to model the struc
ture between the grapheme units and the sememe units.9 The results 
described here were obtained using the prel iminary learning stage and 
so they correspond to learni ng to associate grapheme strings wi th  
" meanings " that are al ready fami l iar .  

The Performance of the Network 

Using the same annealing schedule as was used during learning, the 
network can be tested by clamping a grapheme string and looking at the 
resulting activit ies of the sememe units. After 5000 learni ng sweeps, it  
gets the semantic features exactly correct 99.3% of the t ime. A 
performance level  of 99.9% can be achieved by using a " careful " 
anneal ing schedule that spends twice as long at each temperature and 
goes down to half the final temperature.  

The Effect of Local Damage 

The learning procedure generates weights which cause each of the 
units in the intermediate l ayer to be used for many different words. 

9 There was no need to have a similar stage for learning the structure among the gra
pheme units because in the main stage of learning the grapheme units are always clamped 
and so there is no tendency fr(;ttp�StJtMlltf!HitIfOdel the structure among them . 
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This k ind of distr ibuted representation should be more tolerant of local 
damage than the more obvious method of using one i ntermediate unit 
per word . We were part icularly i nterested in the pattern of errors pro
duced by local damage . If the connect ions between sememe units are 
left in tact , they should be able to " clean up "  patterns of act i vity that are 
close to fami l iar ones. So the network should st i l l  produce perfect out
put even if  the input to the sememe uni ts is sl ightly disrupted. If the 
disrupt ion is more severe, the clean-up effect may actual ly produce a 
different fami l iar meaning that happens to share the few semantic 
features that were correctly activated by the intermediate layer. 

To test these predict ions we removed each of the intermediate units 
i n  turn , leaving the other 19 intact . We tested the network 25  t imes on 
each of the 20 words with each of the 20 uni ts removed. In all 1 0 ,000 
tests, using the careful annealing schedule,  it made 1 40 errors (98 . 6% 
correct) . Many errors consisted of the correct set of semantic features 
with one or two extra or missing features, but 83 of the errors consisted 
of the precise meaning of some other grapheme string . An analysis of 
these 83 errors showed that the hamming distance between the correct 
meanings and the erroneous ones had a mean of 9.34 and a standard 
deviat ion of 1 . 27  which is s ign ificantly lower ( p < .00 than the com
plete set of hamming distances which had a mean of 1 0.30 and a stan
dard deviat ion of 2 .4 1 . We also looked at the hamming distances 
between the grapheme strings that the network was g iven as input and 
the grapheme strings that corresponded to the erroneous familiar mean
ings . The mean was 3 .95 and the standard deviation was 0.62 which is 
significantly lower (p < . 00 than the complete set which had mean 
5 . 53  and standard deviation 0 .87 .  (A hamming distance of 4 means 
that the strings have one letter in common .)  

In summary, when a s ingle unit  i s  removed from the intermediate 
layer ,  the network sti l l  performs wel l .  The majority of i ts errors consist 
of producing exactly the meaning of some other grapheme string, and 
the erroneous meanings tend to be s imi lar to the correct one and to be 
associated with a grapheme string that has one letter in  common with 
the string used as i nput .  

The Speed of Relearning 

The original learn ing was very slow. Each item had to be presented 
5000 t i mes to el iminate almost all the errors. One reason for the slow
ness is the shape of the G-surface in weight-space . It  tends to have 
long diagonal ravines which can be characterized in  the following way: 
In the di rection of steepest descent ,  the surface slopes steeply down for 
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a short d istance and then steeply up again ( l ike the cross-sect ion of a 
ravine) . \ O  In most other di rections the surface slopes gently upwards . In 
a relatively narrow cone of di rect ions, the surface slopes gently down 
with very low curvature. This  narrow cone corresponds to the Ooor of 
the ravine and to get a low value of G (which is the defini tion of good 
performance) the learning must fol low the floor of the ravine wi thout 
going up the sides .  This is particularly hard in  a high-dimensional 
space . Unless the gradient of the surface is measured very accurately, a 
step in  the di rect ion of the estimated gradient wi l l  have a component 
along the floor of the ravi ne and a component up one of the many 
sides of the ravine. Because the sides are much steeper than the Ooor, 
the result  of the step wi l l  be to raise the value of G which makes 
performance worse. Once out of the bottom of the ravine, almost all 
the measurable gradient wi l l  be down towards the floor of the ravine 
instead of along the ravine .  As a resu l t ,  the path fol lowed in weight 
space tends to consist of an i rregular sloshing across the ravine wi th 
only a smal l  amount of forward progress . We are investigat ing ways of 
ameliorat ing this difficul ty ,  but i t  is a wel l -known problem of gradient 
descent techniques i n  h igh-dimensional spaces , and i t  may be 
unavoidable .  

The ravine problem l eads to a very in terest ing prediction about 
relearning when random noise is  added to the weights. The original 
learning takes the weights a considerable distance along a ravine which 
is slow and difficult  because most di rections in weight space are up the 
sides of the ravine .  When a lot of random noise is added, there wi l l  
typical ly  be a smal l component along the ravine and a large component 
up the sides. Performance wi l l  therefore get much worse (because 
height in th is  space means poor performance) , but relearning wi l l  be 
fast because the network can get back most of its performance by sim
ply descending to the floor of the ravine (which is easy) wi thout mak
i ng progress along the ravi ne (which is hard) . 

The same phenomenon can be understood by considering the energy 
landscape rather than the weight-space (recal l that one point in weight
space consti tutes a whole energy landscape) . Good performance 
requi res a rather precise balance between the relative depths of the 20 
energy min ima and it  also requi res that all the 20 minima have consid
erably lower energy than other parts of the energy landscape. The bal
ance between the min ima in  energy-space is the cross-section of the 
ravine in weight-space (see Figure 5) and the depth of all the minima 
compared with the rest of the energy landscape corresponds to the 
di rect ion along the ravine .  Random noise upsets the precise balance 

1 0 The surface is never very steep. Its gradient parallel to any weight axis m ust always 
l ie between 1 and - 1  because tlfpl>ff�W'M8fe;r§/Probab i l i t ies. 
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FIGURE 5. One cross-sect ion of a ravine in weight-space . Each point in weight space 
corresponds to a whole energy landscape. To ind icate this , we show how a very s imple 
landscape changes as the weights are changed . Movemen t to the right along the K -aK is 
corresponds to increasing the weights between pairs of units that are both on in state B 
and not both on in state A. This increases the depth of A. If the task requi res that A 
and B have about the same depth ,  an imbalance between them wil l lower the 
performance and thus raise G. 

between the various minima wi thout significantly affecting the gross 
topography of the energy landscape. Relearning can then restore most 
of the performance by restoring the balance between the existing 
minima. 

The simulation behaved as predicted. The mean absolute value of 
the weights connecting the intermediate units to the other two groups 
was 2 1 . 5 .  These weights were first perturbed by adding uniform ran
dom noise in the range - 2 to + 2. This had surprisingly l ittle effect ,  
reducing the performance using the normal annealing schedule from 
99.3% to 98 .0%. This shows that the network is robust against slight 
noise in the weights.  To cause significant deterioration , uniform ran
dom noise between - 22  and + 22 was added . On average, this perturbs 
each weight by about half its magni tude which was enough to reduce 
normal performance to 64 . 3% correct.  Figure 6 shows the course of the 
relearning and compares it with the speed of the original learning when 
performance was at this leve l .  It also shows that other kinds of damage 
produce very similar relearning curves . 
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U 1 oor---------------____ _________________________________ __ 
CD 
... 
... 
o (,) 
-c 
CD (,) 
... 
CD 
a.. 

100=------�5�------�t�O------�15�------2�O�----�2�5�----�30 
Learn ing sweeps 

FIGURE 6. The recovery of performance after various types of damage. Each data
point represents 500 tests (25 with each word) . The heavy l ine is a sect ion of the original 
learning curve after a considerable number of learning sweeps. It shows that in the origi
nal learning, performance increases by less than 10% i n  30 learning sweeps. Al l the other 
l ines show recovery after damaging a net that had very good performance (99.3% 
correct) . The l ines with open circles show the rapid recovery after 20% or 50% of the 
weights to the hidden units have been set to zero (but allowed to relearn ) .  The dashed 
l ine shows recovery after 5 of the 20 h idden units have been permanently ablated. The 
remain ing l ine is the case v.'hen uniform random noise between - 22 and + 22 is added to 
all the connections to the hidden units. In al l  cases, a successful t rial was defined as one 
in which the network produced exactly the correct semantic features when given the gra
phemic input. 

Spontaneous Recovery of Unrehearsed Items 

When it  learns the associations, the network uses distributed 
representations among the i ntermediate units. This means that many 
of the weights are involved in encoding several different associations, 
and each association is encoded in many weights. If a weight is 
changed, i t  will affect several different energy minima and all of them 
will requi re the same ���e\¥;wcWe�t to restore them to thei r 
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previous depths.  So, in relearn ing any one of the associat ions, there 
should be a posi t ive transfer effect which tends to restore the others. 
This effect is  actually rather weak and is easi ly masked so i t  can only be 
seen clearly if we retrain the network on most of the original associa
tions and watch what happens to the remaining few. As predicted , 
these showed a marked improvement even though they were only ran
domly related to the associations on which the network was retrained. 

We took exact ly the same perturbed network as before (uniform ran
dom noise between + 22 and - 22 added to the connections to and from 
the i ntermediate un i ts) and retrai ned i t  on 1 8  of the associations for 30 
learning sweeps. The two associations that were not ret rained were 
selected to be ones where the network made frequent minor errors 
even when the careful anneal i ng schedule was used . As a result  of the 
retraini ng, the performance on these two i tems rose from 30/ 1 00 
correct to 90/ 1 00 correct with the careful schedule, but the few errors 
that remained tended to be completely wrong answers rather than 
minor perturbations of the correct answer .  We repeated the experiment 
selecting two associat ions for which the error rate was high and the 
errors were typical ly  large . Retrain ing on the other 1 8  associations 
caused an improvement from 1 7 / 1 00 correct to 98/ 1 00 correct . 
Despi te these impressive improvements,  the effect disappeared when 
we retrained on only 1 5  of the associat ions.  The remain ing 5 actually 
got sl ightly worse. I t  is  clear that the fraction of the associations which 
needs to be retrained to cause improvement i n  the remainder depends 
on how distributed the representations are , but more analysis is 
requi red to characterize this relationship  properly .  

The spontaneous recovery of unrehearsed i tems seems paradoxical 
because the set of 20 associations was randomly generated and so there 
is no way of general izing from the 1 8  associations on which the net
work is  retrained to the remain ing two. During the original learning, 
however,  the weights capture regulari t ies in  the whole set of associa
tions. In this example, the regulari t ies are spurious but the network 
doesn 't know that-i t  just fi nds whatever regulari t ies i t  can and 
expresses the associat ions in terms of them. Now, consider two dif
ferent regularit ies that are equally strong among 1 8  of the associations. 
If one regularity also holds for the remaining two associations and the 
other doesn ' t ,  the fi rst regularity is  more l i kely to be captured by the 
weights. During retraining, the learn ing procedure restores the weights 
to the values needed to express the regulari t ies i t  originally chose to 
capture and it therefore tends to restore the remaining associations. 

I t  would be interesting to see i f  any of the neuro-psychological data 
on the effects of brain damage could be i nterpreted in terms of the 
kinds of qual i tative effects exhibited by the s imulation when it is 
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damaged and relearns. However, we have not made any serious 
attempt to fit  the simulat ion to particular data . 

CONCLUSION 

We have presented three ideas: 

• Networks of symmetrical ly connected, binary uni ts  can escape 
from local min ima duri ng a relaxat ion search by using a sto
chastic  decis ion rule. 

• The process of reach ing thermal equ i l i brium in a network of 
stochasti c  un i ts propagates exactly the information needed to do 

. credit  assignment .  This  makes possible a local learning rule 
which can modify the weights so as to create new and useful  
feature detectors . The learn ing rule only needs to observe how 
often two un i ts are both act i ve (at thermal equi l i br ium) in two 
d ifferent  phases. It can then change the weight between the 
units to make the spontaneous behavior of the network i n  one 
phase m i mic  the behavior that i s  forced on i t  i n  the other 
phase . 

• The learning rule tends to construct distr i buted representations 
which are resistant to minor damage and exh i bi t  rapid relearn
i ng after major damage . The relearn ing process can bring back 
associati ons that are not practiced dur ing the relearn ing and are 
only randomly related to the associat ions that are practiced . 

These three ideas can be assessed separately. In part icular ,  res istance 
tq damage, rapid relearn ing,  and spontaneous recovery of unrehearsed 
i tems can be exhi bited by other k inds of para l lel network that use 
distributed representations. The use of stochastic uni ts ,  anneal i ng 
search, and the two-phase learn ing algori thm are not crucial for these 
properties, though they are a convenient testbed in which to investigate 
them. Hogg and Huberman ( 1 984) have demonstrated sel f- repa ir  
effects in  nonstochastic ,  layered networks s imi lar to those used by 
Fukushima ( 980) . 

We have left many loose ends, some of which are discussed else
where . Sejnowski and Hinton ( in press) give a deta i led example of a 
search problem where anneal ing helps, and they also d iscuss the rela
t ionsh ip  between between these networks and the mammal ian cortex .  
Ackley , Hinton , and S�tJdCJia�eNJ'(e a different example of 
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learning in which the network constructs efficient internal codes for 
communicating information across narrow bandwidth channels. At 
present, the learning algorithm is too slow to be tested properly on 
large networks and future progress hinges on being able to speed it up. 
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APPENDIX: 

DERIV ATION OF THE LEARNING ALGORITHM 

When a network is  free-running at equ i l ibrium the probabil ity distrib
ution over the visible units is given by 

P - (  Va )  == LP- ( Va A Hp) 
p 

(8) 

where Va is  a vector of the states of the visible units ,  HI3 is  a vector of 
states of the hidden units , and Eal3 is the energy of the system in state 
Va A Hp 

Hence, 

Ea/3 - L wij sri3 st13 , 
i <j 

n -EafJ I T  1 u e _ aQ al3 - EafJ l T - - so "' s · e n w- . T I } U IJ 

Differentiating (8) then yields 

This derivative is used to compute the gradient of the G -measure 

where P + ( Va )  is the clamped probabi l i ty distribution over the visible 
units and is independent of Wij ' So 

8 G  = _ 
L 

P: ( Va )  ap - ( va )  
a Wl} a P ( Va ) a Wij 

Copyrighted Material 



3 1 6  BASIC MECHANISMS 

Now, 

and 

P + ( Va A Hf,i ) = P+ (Hf,i 1  Va ) P + ( Va ) ,  

P - ( Va A Hp ) = P - (Hp I Va )P - ( Va ) , 

(9) 

Equation 9 holds because the probabi l i ty of a hidden state given some 
visible state must be the same in equ i l ibri um whether the visible units 
were clamped in  that state or arri ved there by free-running. Hence , 

Also, 

where 

and 

_ P + ( Va )  
+ P ( Va A Hp ) 

P- ( Va ) 
= P ( Va A Hp ) . 

a 

Pij= !. P + ( VaA Hp ) srP slP 
ap 

Pij= !. P - ( V>, A HjJ)S/ILS/IL . 
>'IL 

The Bol tzmann machine learning algori thm can also be formulated as 
an input-output mode l .  The visible units are divided i nto an input set f 
and an output set 0 ,  and an environment specifies a set of conditional 
probabi l i ties of the form P + (Op I fa ) '  During phase+ the environment 
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clamps both the input and output un i ts ,  and the Pit s are est imated . 
During phase- the i nput units are clamped and the output un i ts and 
hidden units free-run , and the PijS are est imated . The appropriate G 
measure in  this case is  

G = l:P + (Ja A O/3 ) ln P + (O/3 l /a )
. 

a/3 p - (O/3 l /a ) 

Similar mathematics apply in this formulat ion and a G/a wij is the same 
as before. 
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CHAPTER S 

Learning Internal Representations 
by Error Propagation 

D. E. RUMELHART, G. E. HINTON, and R. 1. WILLIAMS 

THE PROBLEM 

We now have a rather good understanding of simple two-layer associ
ative networks in which a set of i nput patterns arriving at an input layer 
are mapped directly to a set of output patterns at an output layer. Such 
networks have no hidden uni ts. They involve only input and output 

units. In these cases there is no internal representation. The coding pro
vided by the external world must suffice. These networks have proved 
useful i n  a wide variety of appl ications (cf. Chapters 2 ,  17, and 18). 
Perhaps the essent ial character of such networks is that they map simi
lar i nput patterns to si mi lar output patterns. This  is what al lows these 
networks to make reasonable general izations and perform reasonably on 
patterns that have never before been presented. The s imilarity of pat
terns in a PDP system is determi ned by their overlap . The overlap in 
such networks is  determi ned outside the learning system itself-by 
whatever produces the patterns. 

The constraint that similar input patterns lead to similar outputs can 
lead to an inabi lity of the system to learn certain mappings from input 
to output .  Whenever the representation provided by the outside world 
is such that the s imilarity structure of the input and output patterns are 
very different , a net\\C),*Jy�ijfltetttMatt8i8h1 representations (Le. , a 
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network without hidden un i ts) wi l l  be unable to perform the necessary 
mappings. A classic example of this case is the exclusive-or (XOR) 
problem illustrated in Table 1. Here we see that those patterns which 
overlap l east are supposed to generate identical output val ues .  This 
problem and many others l i ke it cannot be performed by networks 
without hidden units with which to create their own internal representa
tions of the input patterns. It is interest ing to note that had the input 
patterns contained a thi rd input tak ing the value 1 whenever the fi rst 
two have value 1 as shown in Table 2 , a two-layer system would be able 
to solve the problem. 

Minsky and Papert (I969) have provided a very careful analysis of 
conditions under which such systems are capable of carrying out the 
required mappings . They show that in a large number of interest ing 
cases , networks of this ki nd are incapable of solving the problems. On 
the other hand, as Minsky and Papert also pointed out , if  there is a 
layer of simple perceptron-like h idden un i ts ,  as shown in Figure 1 ,  with 
which the original input pattern can be augmented, there is always a 
recoding ( i . e., an internal representat ion)  of the input patterns i n  the 
hidden units in  which the s imi larity of the patterns among the h idden 
units can support any required mapping from the input  to the output 
units. Thus, if we have the right connections from the input units to a 
large enough set of h idden units, we can always find a representat ion 
that wi l l  perform any mapping from input to output through these hid
den units .  In the case of the XOR problem, the addit ion of a feature 
that detects the conjunction of the i nput units changes the similarity 

Input Patterns 

00 

01 
1 0  
11 

Input Patterns 

TABLE 1 

Output Pat terns 

TABLE 2 

o 
1 
I 
o 

Output Patterns 

000 0 

010 1 
100 1 
111 0 
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Output Patterns 

Input Patterns 

Internal 

Representation 

Units 

FIGURE I. A multilayer network. In this case the information coming to the input 
units is reroded into an internal representation and the outputs are generated by the inter· 
nal representation rather than by the original pattern. Input patterns can always be 
encoded, if there are enough hidden units, in a form so that the appropr iate output pat· 
tern can be generated from any  input pattern. 

structure of the patterns sufficiently to al low the solution to be learned . 
As i l lustrated in  Figure 2 ,  this can be done wi th a single hidden uni t. 
The numbers on the arrows represent the strengths of the connections 
among the units .  The numbers wri tten i n  the ci rcles represent the 
thresholds of the units .  The value of + 1. 5 for the th reshold of the hid
den unit  insures that it wi l l  be turned on only when both input units 
are on.  The value 0 . 5  for the output unit insures that i t  will tu rn on 
only when it receives a net posi tive input greater than 0 . 5 .  The weight 
of - 2 from the h idden uni t  to the output unit insures that the output 
unit wi l l  not come on when both input units are on. Note that from the 
po int of view of the outpu t unit, the hidden unit is treated as simply 
another input unit .  It is as jf the jOP'ut . p'atterns consisted of three 
rather than two uni ts . 

Copynghted Matenal 
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Hidden Unit 

Input Units 

FIGURE 2. A simple XOR network with one hidden unit. See text for explanation. 

The exi stence of networks such as t h i s  i l lustrates the potential power 
of hidden units and i n ternal rep resen tations. The problem, as noted by 
Minsky and Papert , is that whereas there is a very simple guaranteed 
learning rule for all problems that can be solved without hidden units, 
namely , the percept ron convergence procedure (or the variation due 
origi nally to Widrow and Hoff, 1960, wh ich we call the delta rule; see 
Chapter 1 1), there is no equally powerful rule for learning in ne tworks 
with hidden units. There have bee n  three basic responses to this lack. 
One response is represented by competit i ve learning (Chapter 5) in 
which si mple unsupervised learn ing ru les are employed so that useful 
hidden units develop. Although these approaches are prom i si ng , there 
is no external force to insure that hidden units appropriate for the 
requ ired mappi ng are developed. The second response is  to si mply 
assume an internal representation that, on some a priori grounds, seems 
reasonable. Thi s  is the tack taken in the chapter on verb learning 
(Chapter 18) and in the i nteracti ve activat ion model of word perception 
(McClelland & Rumelhart, 1981; Rumelhart & McClel land , 1982) . 
The third approach is to attempt to develop a learning procedure capable 
of learning an i nternal representation adequate for performing the task 
at  hand. One such development is  presented in the discuss ion of 
Boltzmann machines in Chapter 7. As we have seen, this procedure 
invol ves the use of stochastic units , requ i res the network to reach 
equi l ibri um in two d ifferent phases, and is l i m ited to symmetric net
works. Another recent approach, also employing stochastic units, has 
been developed by Bart�18ed MlDaria/of his col leagues (cf. Barto 
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& Anandan , 1985). In this chapter we present another alternat ive that 
works with determinist ic units, that involves only l ocal computations, 
and that is a clear general ization of the delta rule .  We cal l  this the gen
eralized delta rule. From other considerations, Parker (1985) has 
independently deri ved a s imi lar general ization , which he cal ls learning
logic. Le Cun (1985) has also studied a roughly s imi lar learning 
scheme. In the remainder of this chapter we fi rst derive the general
ized delta rule ,  then we i l lustrate its use by providing some results of 
our s imulations , and finally we indicate some further general izations of 
the basic idea. 

THE GENERALIZED DELTA RULE 

The learn ing procedure we propose involves the presentation of a set 
of pai rs of input and output patterns. The system fi rst uses the input 
vector to produce its own output vector and then compares this with 
the desired output, or target vector. If there is no difference, no learning 
takes place. Otherwise the weights are changed to reduce the differ
ence. In this case , with no h idden units, this generates the standard 
delta rule as described in Chapters 2 and 11 .  The rule for changing 
weights following presentation of input/ output pai r  p i s  given by 

(1) 
where tpj is the target input for jth component of the output pattern for 
pattern p, Opj is the jth element of the actual output pattern produced 
by the presentation of input pattern p, ip; is the value of the ith ele
ment of the input pattern , 8pi = tpi - 0pi' and flp wi} is  the change to be 
made to the weight from the ith to the jth uni t  fol lowing presentation 
of pattern p . 

The delta rule and gradient descent. There are many ways of deriv
ing this rule. For present purposes, it is useful to see that for l inear 
units it minimizes the squares of the differences between the actual and 
the desi red output values summed over the output units and al l pairs of 
input/ output vectors . One way to show this is to show that the deriva
t ive of the error measure with respect to each weight is proportional to 
the weight change dictated by the delta rule, with negative constant of 
proportionali ty. This corresponds to performing steepest descent on a 
surface in  weight space whose height at any point in weight space is 
equal to the error measure . (Note that some of the fol lowing sections 
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are written in ital ics .  These sections consti tute i n formal deri vations of 
the claims made i n  the surrounding text and can be omitted by the 
reader who finds such derivations tedious') 

To be more specific, then, let 

1 
Ep = 2'1;: «(pj - Opj)2 

I 

be our measure of the error on input/output pattern p and let E = LEp be our 

overall measure of the error. We wish to show that the delta rule implements a gra
dient descent in E when the units are linear. We will proceed by simply showing 
that 

which is proportional to Lip Wj; as prescribed by the delta rule. When there are no 
hidden units it is straightforward to compute the relevant derivative. For this purpose 
we use the chain rule to write the derivative as the product of two parts: the deriva
tive of the error with respect to the output of the unit times the derivative of the out
put with respect to the weight. 

aEp aEp aOpj 
aWj; = aOpj aWj; • 

(]) 

The first part tells how the error changes with the output of the j th unit and the 
second part tells how much changing Wj; changes that output. Now, the derivatives 
are easy to compute. First, from Equation 2 

aEp 
-

!l
- = - (tpj - op) = - apj' 

uOpj 
(4) 

Not surprisingly, the contribution of unit Uj to the error is simply proportional to a pj . 
Moreover, since we have linear units, 

Opj = LWjlip;. 
i 

from which we conclude that 

aOpj . 
-!l - = 'pi' u Wj; 

Thus, substituting back into Equation 3, we see that 

aEp . 
- -!l- = apj/PI UWji 
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as desired. Now, combining this with the observation that 

aE 
= 

1: aEp 
aWj; p aWj; 

should lead us to conclude that the net change in Wj; after one complete cycle of pat
tern presentations is proportional to this derivative and hence that the delta rule 
implements a gradient descent in E. In fact, this is strictly true only if the values of 
the weights are not changed during this cycle. By changing the weights after each 
pattern is presented we depart to some extent from a true gradient descent in E. 
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi
ciently small, this departure will be negligible and the delta rule will implement a very 
close approximation to gradient descent in sum-squared error. In particular, with 
small enough learning rate, the delta rule will find a set of weights minimizing this 
error function. 

The delta rule for semilinear activation functions in feedforward 
networks. We have shown how the standard delta rule essentially 
implements gradient descent in sum-squared error for l inear activation 
functions.  In this case , without h idden units ,  the error surface is shaped 
like a bowl with only one minimum, so gradient descent  is guaranteed 
to find the best set of weights . With hidden units, however, it is not so 
obvious how to compute the deri vatives , and the error surface is not 
concave upwards , so there is the danger of gett ing stuck in local 
min ima. The main theoretical contri bution of this chapter is to show 
that there is an efficient way of computing the deri vat ives. The main 
empi rical contr ibut ion is to show that the apparently fatal problem of 
local min ima is  i rrelevant in a wide variety of learning tasks. 

At the end of the chapter we show how the general ized delta rule can 
be appl ied to arbitrary networks , but , to begin With , we confine our
selves to layered feedforward networks . In  these networks , the input 
un i ts are the bottom layer and the output units are the top layer. There 
can be many layers of h idden units i n  between , but every unit  must 
send its output to h igher layers than its own and must receive i ts input 
from lower layers than i ts own. Given an i nput vector, the output vec
tor is computed by a forward pass which computes the activity levels of 
each layer in turn using the already computed acti vity levels in the ear
l ier layers. 

Since we are primari ly interested in extending th is  result to the case 
wi th h idden units and since, for reasons outl i ned in Chapter 2 ,  hidden 
units with l inear acti vat ion functions provide no advantage , we begin by 
general iz ing our analysis to the set of non l inear act i vation functions 
which we cal l semilinear (see Chapter 2). A semi l i near acti vation func
t ion is one in  wh ich the output of a unit is a nondecreasi ng and dif
ferentiable function of t�d>MfJl8tjal 
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where 0; = i; if u n it i is an i nput unit. Th us, a semi l i near act i vat i on 
function i s  one i n  which 

(8) 
and f is differen tiable and nondecreasi ng. The gene ral i zed del ta  rule 
works if  the network consists of units having semilinear activation func
tions. Notice that li near threshold units do not sati sfy the requirement 
because their derivat i ve is infi nite at the threshold and zero elsewhere. 

To get the correct generalization of the delta rule. we must set 

aEp ap wji ex: - -!\-, 
V wji 

where E is the same sum-squared error function defined earlier. As in the standard 
delta rule it is again useful to see thiS derivative as resulting from the product of two 
parts: one part reflecting the change in error as a function of the change in the net 
input to the unit and one part representing the effect of changing a particular weight 
on the net input. Thus we can write 

aEp aEp anetpj 

aWji 
= 

ane/pj aWji . 

By Equation 7 we see that the second factor is 

Now let us define 

aEp 0 · = - --
PJ anel .. PJ 

(9) 

(JO) 

(By comparing this to Equation 4. note that this is consistent with the definition of 
o pj used in the original delta rule jor linear units since Opj = netpj when unit Uj is 
linear. ) Equation 9 thus has the equivalent form 

aEp 
--!\- = OpjOp;. 

VWji 

This says that to implement gradient descent in E we should make our weight 
changes according to 

6.p Wji = TjOpjOph (IJ) 
Copyrighted Material 
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just as in the standard delta rule. The trick is to figure out what 8pj should be for 
each unit U) in the network. The interesting result, which we now derive, is that 
there is a simple recursive computation 0/ these 8 's which can be implemented by 
propagating error signals backward through the network. 

aE 
To compute 8 p) = - �, we apply the chain rule to write this partial deriva-onetp) 

tive as the product 0/ two factors, one factor reflecting the change in error as a /unc
tion 0/ the output 0/ the unit and one reflecting the change in the output as a /unc
tion 0/ changes in the input. Thus, we have 

aEp aEp aop) 8p) = --- = ------, 

anetpj aOpj anetpj 

Let us compute the second factor. By Equation 8 we see that 

aOpj _ I 
-�-- - I ; (netpj), onetpj 

(1) 

which is simply the derivative 0/ the squashing /unction Ij for the j th unit, 
evaluated at the net input netp) to that unit. To compute the first factor, we con
sider two cases. First, assume that unit Uj is an output unit 0/ the network. In this 
case, it /ollows /rom the definition 0/ Ep that 

aEp 
-�- = - (tpj - Opj), 
OOp) 

which is the same result as we obtained with the standard delta rule. Substituting 
for the two factors in Equation 11, we get 

(J3) 

for any output unit U). /fUj is not an output unit we use the chain rule to write 

12 flEp anetplc = 12 aEp -a-Lwk;op;= 12 aEp Wkj=-L8p1cWkj' k anetpk aOpj k anetpk aOpj ; k anetpk k 

In this case, substituting /or the two factors in Equation 12 yields 

8 pj = I 'j (netpj ) 128 pic Wkj (J4) 
k 

whenever u) is not an output unit. Equations J3 and 14 give a recursive procedure 
for computing the 8 's for all units in the network, which are then used to compute 
the weight changes in the network according to Equation 11. This procedure consti
tutes the generalized delta rule for a /eed/orward network 0/ semilinear units. 

These results can be summarized in three equations. First, the gen
eralized delta rule has exactly the same form as the standard delta rule 
of Equation 1 .  The weight on each line should be changed by an 
amount proportional to ctbp� MfJitftialrror signal, 8 ,  available to 
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the unit receiving input along that l ine and the output of the unit send
ing activation along that l ine. In symbols ,  

The other two equations specify the error signal. Essential ly,  the deter
mination of the error signal is a recursive process which starts wi th the 
output units. If a unit i s  an output uni t ,  i ts error signal is very simi lar 
to the standard delta rule. It is given by 

Spj = (tpj - Opj)/ j (netpj) 
where / j (netpj) is the derivati ve of the semi l inear act ivati on function 
which maps the total input to the uni t  to an output value. Finally, the 
error signal for hidden un i ts for which there is no specified target is  
determined recursively i n  terms of the error signals of the uni ts to 
which i t  di rectl y  connects and the weights of those connect ions. That is ,  

S pj = / j (netpj ) I,s pk Wkj 
k 

whenever the unit  is not an output uni t .  
The applicat ion of the general i zed delta rule ,  thus, involves two 

phases: During the first phase the i nput is presented and propagated 
forward through the network to compute the output value Opj for each 
unit. This output is  then compared wi th  the targets, resulting in an 
error signal Spj for each output unit . The second phase involves a 
backward pass through the network (analogous to the initial forward 
pass) during which the error signal is passed to each uni t  in  the net
work and the appropriate weight changes are made. This second, back
ward pass al lows the recursive computation of 8 as indicated above. 
The first step is to compute S for each of the output uni ts. This is s im
ply the difference between the actual and desi red output values t imes 
the derivati ve of the squashing function. We can then compute weight 
changes for all connections that feed into the final layer. After this is 
done, then compute 8 's for all units in the penul timate layer. This 
propagates the errors back one layer, and the same process can be 
repeated for every layer. The backward pass has the same computa
tional complexity as the forward pass , and so it is not unduly expensive. 

We have now generated a gradient descent method for findi ng 
weights in  any feedforward network wi th  semi l inear uni ts. Before 
reporting our resu l ts wi th these networks , it i s  useful to note some 
further observations. I t  i s  interesting that not all weights need be vari 
able. Any number of weights i n  the network can be fixed . In this 
case, error is  st i ll propag��.YIfghrJW'M�"GOxed weights are simply not 



328 BASIC M ECH ANISMS 

modified . It should also be noted that there is  no reason why some 
output units might not recei ve inputs from other output un i ts i n  earl ier 
layers. In th is  case, those uni ts  recei ve two differen t  ki nds of error: 
that from the di rect comparison with the target and that passed through 
t he other output u n i ts whose acti vation it affects. In th is case , the 
correct procedure is  to si mply add the weight changes dictated by the 
direct comparison to that propagated back from the other output uni ts. 

SIMULATION RESULTS 

We now have a learn ing procedure which could, in principle, evolve 
a set of weights to produce an arbit rary mapping from input to output. 
However, the procedure we have produced is a gradient  descent pro
cedure and, as such, is bound by all of the problems of any hill climb
ing procedu re-namely, t h e  problem of local maxima or ( i n  our case) 
min i ma. Moreover, there is a quest ion of how long i t  might take a sys
tem to learn. Even if we could guarantee t hat i t  would eventual ly find 
a solution , there is the question of whether  our procedure could learn 
in a reasonable period of t i me. It is  i n terest ing  to ask what hidden 
units the system actually develops in the solution of part icular prob
lems. This is  the question of what kinds of in ternal representat ions the 
system actually creates. We do not yet have defin i tive answers to t hese 
quest ions. However, we have carried out many simulat i ons which lead 
us to be opt i mist ic about the local mi nima and t i me questi ons and to be 
surprised by the kinds of represen tations our learning mechan ism dis
covers. Before proceeding with  our results, we must describe our simu
lat ion system in more detail. In part icular, we must specify an activa
t ion function and show how the system can compute the deri vative of 
th is  function. 

A useful activation function. In our above deri vations the derivative 
of the act i vation funct ion of unit u), r j (net), always played a role. 
This implies that we n eed an act i vation funct ion for wh ich a deri vative 
exists. It is in terest i n g  to note that the linear threshold funct ion, on 
whi ch the percept ron is based, is d iscontinuous and hence will not suf
fice for the generalized delta rule. Simi larly, since a linear system 
achieves no advantage from hidden un i ts, a linear activat ion function 
will not suffice e i ther. Thus, we need a contin uous, nonlinear activa
t ion function. In most of our experi ments we have used the logistic 
act i vation function i n  w��Jyrighted Material 
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( 1 5) 

where () j is a b ias similar i n  funct ion to a threshold . 1 I n  order to apply 
our l earning ru le, we need to  k now the derivative of th is  funct ion with 
respect to i ts total i nput,  netpj, where netpj = L, wJ; op; + () J. It is easy to 
show that this derivative is given by 

aOpj 
-!l-- = Opj 0- op) . 
unetpj 

Thus, for the  logist ic  act i vation function, the error signal, Bpj, for an 
output unit is given by 

Bpj = (tP) - Opj )op} (1 - op}), 

and the error for an arbitrary hidden Uj is given by 

Spj = op}O - op})L,SpkWk}' 
k 

It should be n oted that the derivative, Opj (1 - op), reaches its max
imum for Opj = 0.5 and, since 0::::; Opj::::; 1, approaches i ts m i n i mum as 
Opj approaches zero or one. Since the amount of change in  a given 
weight is proportional to this deri vat i ve, weights will be changed most 
for those units that are near the i r midrange and, in some sense, not yel 
committed to being e i ther on or off. Th is feature, we bel ieve, contri
butes to the stability of the learning of the system. 

One other feature of this activation function should be noted. The 
system can not actual ly  reach its extreme values of 1 or 0 without infin
itely large weights. Therefore, in a pract ical learni ng situation i n  which 
the desired outputs are b inary (O, 1), the system can never actually 
ach ieve these val ues. The refore, we typ ica l ly use the val ues of 0 .1  and 
0.9 as the targets, e ven though we wi l l  talk as if values of (0, I} are 
sought. 

The learning rate. Our l earn i ng procedu re requires only that  the 
change in weight be proportional to aEp/aw. True gradient descent 
requires that infinitesimal steps be taken. The constant of proport ional
ity is the learning rate in o u r  procedure . The large r th is  constant, the 
larger the changes in the weights. For practical purposes we choose a 

I Note that the values of the bias, OJ, can be learned just like any other weights. We 

simply i magin e  that OJ is the w.s:.ight frpm a unit that i!l always on. 
c;opynghted Matenal 
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learning rate that is as large as possi ble wi thout leading to osci l lation . 
This offers the most rapid learning. One way to increase the learning 
rate without leading to osc i l lation is  to modify the general ized delta rule 
to include a momentum term. This  can be accomplished by the follow
ing rule: 

(16) 

where the subscript n i ndexes the presentation number, 'T/ i s  the learn
i ng rate, and a i s  a constant which determi nes the effect of past weight 
changes on the current di rection of movement in weight space . This 
provides a kind of momentum in  weight space that effecti vely fi l ters 
out high-frequency variations of the error-surface i n  the weight space. 
This is useful i n  spaces containing long ravines that are characterized by 
sharp curvature across the ravine and a gently sloping floor.  The sharp 
curvature tends to cause divergent  osci l l ations across the ravine. To 
prevent these i t  is necessary to take very small steps, but this causes 
very slow progress along the ravine. The momentum fi l ters out the 
high curvature and thus al lows the effect ive weight steps to be bigger. 
In most of our simulations a was about 0.9. Our experience has been 
that we get the same solutions by sett i ng a = 0 and reducing the size of 
'T/, but the system learns much faster overall wi th larger values of a 
and TJ. 

Symmetry breaking. Our learning procedure has one more problem 
that can be readi ly overcome and this is the problem of symmetry 
breaking. If al l  weights start out with equal values and if the solution 
requi res that unequal weights be developed, the system can never learn . 
Th is is because error is propagated back through the weights in propor
tion to the values of the weights. This means that all hidden uni ts con
nected directly to the output inputs wi l l  get identical error signals ,  and, 
since the weight changes depend on the error signals , the weights from 
those units to the output units must always be the same. The system is  
start ing out at a k ind of local maximum. which keeps the weights equal , 
but i t  is a maximum of the error function , so once i t  escapes i t  wil l  
never return. We counteract this problem by start ing the system with 
smal l random weights. Under these condit ions symmetry problems of 
this kind do not arise. 

The XOR Problem 

It is useful to begin wi th the exclusive-or problem since i t  is the clas
sic problem requi ring h idden units and since many other difficul t  

Copyrighted Material 
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problems involve an XOR as a subproblem. We have run the XOR 
problem many times and with a couple of exceptions discussed below, 
the system has always solved the problem. Figure 3 shows one of the 
solutions to the problem. This solution was reached after 558 sweeps 
through the four stimulus patterns with a learn ing rate of." = 0.5. In 
this case, both the hidden unit and the output unit  have positive biases 
so they are on unless turned off. The hidden unit turns on if neither 
input unit is on. When it is on, it turns off the output unit. The con
nections from input to output units arranged themselves so that they 
turn off the output unit whenever both inputs are on. In this case, the 
network has sett led to a solution which is a sort of mirror image of the 
one illustrated in Figure 2. 

We have taught the system to solve the XOR problem hundreds of 
times. Sometimes we have used a single hidden unit and di rect con
nections to the output unit  as il l ustrated here, and other times we have 
allowed two hidden uni ts and set the connections from the input units 
to the outputs to be zero, as shown in Figure 4. In only two cases has 
the system encountered a local minimum and thus been unable to solve 
the problem. Both cases involved the two hidden units version of the 

Output Unit 

-4.2 I 1 
I 

\-42 
\ 

\ I -9.41 

I
I � 

I __ X 
\ Hidden Unit 

\ 
\ --

-6.4 

Input Units 

FIGURE 3. Observed XOR network. The connection weights are written on the arrows 

and the biases are written in eO circle�
1t
fcf��&���ve bias means that the unit is on 

unless lltrned off. pyn!} 
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FIGURE 4. A s imple architecture for solving XOR with two hidden units and no direct 
connections from input to output. 

problem and both ended up i n  the same local mInimum. Figure 5 
shows the weights for the local minimum. In this case, the system 
correctly responds to two of the pat terns-namely, the patterns 00 and 
10. In the cases of the other two patterns 11 and 0 1 ,  the output unit 
gets a net input of zero. This leads to an output value of 0.5 for both 
of these patterns. This state was reached after 6,587 presentations of 
each pattern wi th 'T/=O.25. 2 Although many problems require more 
presentations for l earning to occur, further trials on this problem 
merely increase the magni tude of the weights but do not lead to any 
improvement in performance. We do not know the frequency of such 
local min ima,  but our experience wi th this and other problems is that 
they are quite rare. We have found only one other s i tuation in  which a 
l ocal min imum has occurred i n  many hundreds of problems of various 
sorts. We wi l l  discuss this case below.  

The XOR problem has proved a useful  test case for a number of 
other studies.  Using  the architecture illustrated in Figure 4, a student 
in our laboratory, Yves Chauvin, has studied the effect of varying the 

2 If we set 11 � 0.5 or abov'Cb'*�,s.t,I;m.AS�1!Wt minimum. In general, however, 
the best way to avoid local minlrnf(.f� 'tWb'6�y'lb ... t.l�'li'�ry small values of 11. 
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FIGURE 5. A network at a local minimum for the exclusive-or problem. The dotted 
lines indicate negative weights. Note that whenever the right most input unit is on it 
turns on both hidden units. The weights con necting the hidden units to the output are 
arranged so that when both hidden units are on, the output unit gets a net input of zero. 
This leads to an output value of 0.5. In the other cases the network provides the correct 
answer. 

number of hidden units and varying the learning rate on t ime to solve 
the problem. Using as a learning criterion an error of 0 .01 per pattern , 
Yves found that the average number of presentations to solve the prob
lem with '1/ = 0.25 varied from about 245 for the case with two hidden 
units to about 120 presentations for 32 hidden units . The results can 
be summarized by P = 280 - 3310g2H, where P is the required 
number of presentations and H i s  the number of hidden units 
employed. Thus, the t ime to solve XOR is reduced l inearly with the 
logari thm of the number of hidden units. This result holds for values of 
H up to about 40 i n  the case of XOR. The general result that the time 
to solut ion is  reduced by increasing the number of hidden uni ts has 
been observed in  virtually a l l  of our s imulations. Yves also studied the 
time to solut ion as a function of learn ing rate for the case of eight h id· 
den un i ts .  He found an average of about 450 presentations wi th 
'1/ = 0.1 to about 68 presentations with '1/ = 0.75. He also found that 

Copyrighted Material 
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learning rates larger than this led to unstable behavior. However, 
within this range larger learning rates speeded the learning substantially. 
In most of our problems we have employed learning rates of '11 = 0.25 
or smaller and have had no difficulty. 

Parity 

One of the problems given a good deal of discussion by Minsky and 
Papert (t 969) is the parity problem, in which the output required is 1 if  
the input pattern contains an odd number of Is and 0 otherwise . This 
is a very difficult problem because the most similar patterns (those 
which differ by a single bit) require different answers . The XOR prob
lem is a parity problem with input patterns of size two. We have tried a 
number of parity problems with patterns ranging from size two to eight .  
Generally we have employed layered networks in  which di rect connec
t ions from the input to the output units are not al lowed, but must be 
mediated through a set of hidden units. In thi s  archi tecture, it requires 
at least N hidden units to solve parity with patterns of length N. Fig
ure 6 i llustrates the basic paradigm for the solutions discovered by the 
system. The solid lines in the figure indicate weights of + 1 and the 
dotted l ines indicate weights of -1 . The numbers in the circles 
represent the biases of the uni ts. Basically, the hidden units arranged 

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn
ing system. See text for explanation. 

Copyrighted Material 
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themselves s o  that they count the number o f  inputs. In  the d iagram, 
the one at the far left comes on if one or more input un its are on , the 
next comes on if two or more are on ,  etc . All of the h idden units 
come on if all of the input l ines are on. The fi rst m h idden units come 
on whenever m bits are on in the input pattern . The hidden units then 
connect with alternately positi ve and negative weights . In this way the 
net i nput from the h idden units is  zero for even numbers and + 1 for 
odd numbers. Table 3 shows the actual �ol ution attained for one of our 
simulations with fou r  input l ines and four h idden units .  This solution 
was reached after 2 ,825 presentations of each of the si xteen patterns 
with "fI = 0 . 5 .  Note that the solution is roughly a mirror image of that 
shown in Figure 6 in that the number of h idden units turned on is 
equal to the number of zero i nput values rather than the number of 
ones. Beyond that the princi ple is that shown above. It should be noted 
that the i nternal representation created by the learni ng rule is to 
arrange that the number of h idden units that come on is equal to the 
number of zeros in the i nput and that the particular hidden units that 
come on depend only on the number, not on which i nput un its are on .  
This is exactly the sort of recoding required by parity . I t  is not the k ind 
of  representation readi ly d iscovered by unsupervised learning schemes 
such as competitive learning. 

The Encoding Problem 

Ackley, Hinton,  and Sejnowski ( 1 985) have posed a problem i n  
which a set o f  orthogonal input patterns are mapped to a set o f  orthogo
nal output patterns through a small set of hidden units. In such cases 
the internal representations of the patterns on the h idden units must be 
rather efficient. Suppose that we attempt to map N input patterns onto 
N output patterns. Suppose further that log2N h idden units are pro
vided. In th is case, we expect that the system wi l l  learn to use the 

Number of On 
Input Units 

TABLE 3 

Hidden Unit 
Patterns 

o 1111 

1 1011 

2 1010 

3 0010 

4 Copynghted lIfINerial 

Output 
Value 

o 
1 
o 
1 
o 
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N Output Units 

log N Hidden Units 2 

N Input Units 

FIGURE 7. A network for solving the encoder problem. In this problem there are N 
orthogonal input patterns each paired with one of N orthogonal output patterns. There 
are only log2N hidden units. Thus, if the hidden units take on binary values, the hidden 
units must form a binary number to encode each of the input patterns. This is exactly 

what the system learns to do. 

hidden units to form a binary code with a distinct binary pattern for 
each of the N input patterns. Figure 7 i llustrates the basic archi tecture 
for the encoder problem. Essential ly ,  the problem � tt. learn an encod
ing of an N bit pattern into a l og2N bit pattern and then learn to 
decode this representat ion into the output pattern . We have presented 
the system with a number of these problems. Here we present a prob
lem with eight input patterns,  eight output patterns, and three hidden 
units. In this case the required mapping is the identity mapping illus
trated in Table 4 .  The problem is simply to turn on the same bit in the 

Input Patterns 

10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 

TABLE 4 

Output Patterns 

10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 

Copyi igflted Matel iaJ 
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output as in the input . Table 5 shows the mapping generated by our 
learning system on this example . I t  i s  of some interest that the system 
employed i ts  abil ity to use intermediate values in solving this problem. 
I t  could , of course, have found a solut ion in which the hidden units 
took on only the values of zero and one . Often i t  does just that , but in 
this instance, and many others , there are solutions that use the inter
mediate values ,  and the learning system finds them even though i t  has 
a bias toward extreme values . It is possible to set up problems that 
require the system to make use of intermediate values in order to solve 
a problem. We now turn to such a case. 

Table 6 shows a very simple problem in which we have to convert 
from a distributed representation over two units into a local representation 
over four  uni ts .  The similarity structure of the distributed input pat
terns is simply not preserved in the local output representation. 

We presented this problem to our learning system with a number of 
constraints which made i t  especially difficu l t .  The two input units were 
only allowed to connect to a single hidden unit which , in turn, was 
allowed to connect to four  more h idden uni ts. Only these four hidden 
uni ts were allowed to connect to the four output uni ts. To solve 
this problem,  then , the system must first convert the distributed 

TABLE 5 

Input  Hidden Unit  Output 

Patterns Patterns Patterns 

10000000 .5 0 0 10000000 
01000000 0 1 0 0 1 000000 

00100000 1 1 0 00100000 

00010000 1 1 1 00010000 

00001 000 0 1 1 00001000 

00000100 .5 0 1 00000100 

00000010 1 0 .5 00000010 

00000001 0 0 .5 00000001 

TABLE 6 

Input Patterns Output Patterns 

00 

01 

10 

11 

1000 
0100 

0010 

0001 

Copynghled Malerial 
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representation of the input patterns into various intermediate values of 
the s ingleton hidden unit  in which different activation values 
correspond to the different input patterns. These cont inuous val ues 
must then be converted back through the next layer of hidden uni ts
first to another distributed representation and then , final ly,  to a local 
representation. This problem was presented to the system and i t  
reached a solution after 5,226 presentations with", = 0.05.3 Table 7 
shows the sequence of representations the system actual ly developed in 
order to transform the patterns and solve the problem. Note each of 
the four input patterns was mapped onto a particular activation value of 
the singleton hidden unit . These values were then mapped onto distr i
buted patterns at the next layer of h idden uni ts which were finally 
mapped into the required local representation at the output level . In 
pri nci ple, this trick of mapping patterns in to activation values and then 
converting those act i vation values back into patterns could be done for 
any number of patterns,  but i t  becomes increasingly difficult for the 
system to make the necessary distinctions as ever smal ler differences 
among acti vation values must be dist inguished. Figure 8 shows the 
network the system developed to do this job. The connection weights 
from the hidden un i ts to the output units have been suppressed for 
clarity.  (The sign of the connection, however, is i ndicated by the form 
of the connection -e.g. ,  dashed l ines mean inh ibi tory connections) . 
The four different acti vation values were generated by having relatively 
large weights of opposite sign . One input l ine turns the hidden unit full 
on, one turns it fu l l  off. The two d iffer by a relati vely smal l amount so 
that when both turn on , the unit  attains a value intermediate between 0 
and 0.5. When nei ther turns on , the near zero bias causes the unit to 
attain a value sl ightly over 0.5. The connections to the second layer of 
hidden uni ts is l i kewise i nteresti ng .  When the hidden unit  is ful l  on, 

TABLE 7 

Input Singleton Remaining Output 
Patterns Hidden Unit Hidden U nits Patterns 

1 0  0 1 1 1 0 0010 
1 1  .2 1 1 0 0 0001 
00 .6 .5 0 0 . 3  1000 
0 1  1 0 0 0 1 0 1 00 

3 Relati vely small learning rates make un its  employing intermediate values easier to 
obta in. 
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Output  
Un its 

H idden 
U n i ts  

I n p u t  
U n i ts  

FIG U R E  8 .  The network i l lustrat ing t he  use o f  intermediate values i n  sol ving a problem .  
See text for explanation .  

the right-most of these hidden uni ts is turned on and all others turned 
off. When the h idden uni t  i s  turned off, the other three of these hid
den uni ts are on and the left-most un i t  off. The other connections 
from the si ngleton hidden unit  to the other hidden units are graded so 
that a distinct pattern i s  turned on for i ts other two values. Here we 
have an example of the flexib i l i ty of the learning system . 

Our experience i s  that there is a propensity for the hidden uni ts to 
take on extreme values ,  but,  whenever the learn ing problem cal ls  for i t ,  
they can learn to take on graded values. It is  l i kely that the propensity 
to take on extreme values fol lows from the fact that the logistic is a sig
moid so that increas ing magnitudes of its inputs push i t  toward zero or 
one. This means that in  a problem in which in termediate values are 
required, the i ncoming weights must remain of moderate size . It i s  
interesti ng that the derivation of the  general ized delta ru le  does not 
depend on all of the units having identical acti vat i on functions. Thus, 
i t  would be possible for some units ,  those requi red to encode informa
tion in a graded fashion , to be l i near whi le  others might be logisti c .  
The l inear unit  would have a much wider dynamic range and could 
encode more different values. This would be a useful  role for a l inear 
uni t in a network with h�8p9r_d Material 
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Symmetry 

Another interesting problem we studied i s  that of class ifying input 
strings as to whether or not they are symmetric about the ir  center. We 
used patterns of various lengths with various numbers of hidden units. 
To our surprise, we discovered that the problem can always be solved 
with only two hidden units .  To understand the derived representat ion, 
consider one of the solutions generated by our system for strings of 
length s ix .  This solut ion was arri ved at after 1 ,208 presentat ions of each 
s ix-bit  pattern with 'T1 = 0. 1 .  The final network is shown in Figure 9 .  
For simplici ty we  have shown the s ix  input un i ts i n  the  center of  the 
diagram with one hidden unit above and one below. The output unit ,  
which signals whether or not the string is  symmetric about i ts center, is 
shown at the far right . The key point to see about this solut ion is  that 
for a given hidden unit ,  weights that are symmetric about the middle 
are equal in magnitude and opposi te i n  sign . That means that if  a sym
metric pattern is on ,  both hidden un i ts will rece ive a net i nput of zero 
from the input units ,  and, since the h idden units have a negative bias, 
both wil l  be off. In this case , the output unit, having a posi t ive bias, 
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FIGURE 9. Network for solv ing the symmetry problem.  The s i x  open ci rcles represent 
the i nput units .  There are two hidden units, one shown above and one below the input 
units. The output unit i s  shown to the far right. See text for explanation. 
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wil l  be on . The next most important th ing to note about the sol ution is 
that the weights on each side of the midpoint of the str ing are in  the 
ratio of 1 : 2:4 .  This i nsures that each of the eight patterns that can 
occur on each side of the midpoint sends a unique activat ion sum to 
the hidden uni t .  This  assures that there is no pattern on the left that 
wi l l  exactly balance a non-mi rror- image pattern on the right . Final ly ,  
the  two hidden uni ts have ident ical  patterns of  weights from the in put 
units except for sign. This insures that for every nonsymmetric pat
tern , at least one of the two hidden units wi l l  come on and turn on the 
output uni t .  To summarize,  the network is arranged so that both hid
den units wi l l  receive exact ly  zero activation from the input units when 
the pattern is  symmetric ,  and at least one of them wi l l  receive pos i t ive 
input for every nonsymmetric pattern . 

Th is problem was interesting to us because the learning system 
developed a much more elegant solution to the problem than we had 
previously considered . This problem was not the only one in which this 
happened . The pari ty solution discovered by the learning procedure 
was also one that we had not discovered prior to testing the problem 
with our learning procedure .  Indeed, we frequently discover these 
more elegant solut ions by gi vi ng the system more hidden uni ts than i t  
needs and observing that i t  does not make use of  some of those pro
vided. Some analysis of the actual solutions discovered often leads us 
to the discovery of a better solution involving fewer hidden units .  

Addition 

Another interesting problem on which we have tested our learn ing 
algorithm is the s imple binary addit ion problem. This problem is 
interesting because there i s  a very elegant sol ut ion to it , because i t  is 
the one problem we have found where we can rel iably find local 
minima and because the way of avoiding these local mi nima gi ves us 
some insight into the condit ions under which local min ima may be 
found and avoided . Figure 10 i l lust rates the basic problem and a 
min imal sol ut ion to i t .  There are four  i nput units ,  three output units ,  
and two hidden un i ts .  The output patterns can be viewed as the binary 
representation of the sum of two two-bit  b inary n umbers represented 
by the input patterns. The second and fourth input units in the 
diagram correspond to the low-order bits of the two binary numbers 
and the first and th ird units correspond to the two h igher order bits .  
The hidden un i ts correspond to the carry bits in  the summation .  Th us 
the hidden un i t  on the far right comes on when both of the lower order 
bits in  the input patter�yrig/Dtedf �t8li8J the one on the left comes 
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Output Units 

Input  U n its 

Hidden 
Units 

FIGURE 1 0 .  M i n imal  network for add ing two two- bit  binary numbers.  There are  fou r  
i n put un its,  t hree output uni ts ,  and two h idden u n i ts .  T h e  output patterns can  b e  v iewed 
as the b i nary representat ion of the sum of two two-bit  b inary numbers represented by the 
i n put patterns .  The second and fourth i n put un i ts in  t h e  d i agram correspond to t h e  low
order bits of the two b i nary n um bers, and t he fi rst and t h i rd uni ts  correspond t o  the t wo 
h i gher  order bits .  The h idden un i ts  correspond to the carry bits  in the summat ion .  The 
hidden unit o n  the far right comes on when both of t he lower order b i t s  in the i n put  pat
tern are t urned on, and the one on the left comes on when both h i gher order bits are 
turned on or when one of the higher order b i t s  and the ot her hidden uni t  is turned o n .  
The weights on a l l  l i n es a r e  assumed t o  be + I except where noted . Negat ive connec
t ions are indicated by dashed l i nes. As usua l ,  the  biases are i n d icated by the  n um bers in  
t h e  circles .  

on when both higher order bits are turned on or when one of the 
higher order bi ts and the other hidden unit i s  turned on . In the 
diagram , the we igh ts on all l ines are assumed to be + 1 except where 
noted .  Inhi bitory connect ions are ind icated by dashed l i nes. As usual , 
the b iases are i ndicated by the numbers in the ci rcles. To understand 
how th is  network works ,  i t  is useful to note that the lowest order out
put bi t is  determ i ned by an e xcl usi ve-or among the two low-order i n put 
bits .  One way to solve this XOR problem i s  to  have a hidden unit 
come on when both l ow-order i n p ut bits are on and then have i t  inh ibi t  
the output unit . Otherwi se e i ther of the low-order i nput un i ts can t u rn 
on the low-order outpu t bi t .  The middle bit  is somewhat more 
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difficul t .  Note that the middl e  bit should come on whenever an odd 
number of the set containing the two higher  order i n put bits and the 
lower order carry bit is  t urned on . Observation wil l con firm that the 
network shown performs that task. The left-most hidden unit receives 
inputs from the t wo h i gher order bits and from the carry bit . I ts bias is 
such that i t  wi l l  come on whenever two or  more of its i n puts are turned 
on . The middle output u n i t  recei ves posi tive i nputs from the same 
three u nits and a n egative input of - 2 from the second hidden unit . 
This insures that whenever j ust one of the  three are turned on ,  the 
second h idden un i t  wi l l  remain off and the output bit wil l come on .  
Whenever exactly t wo of the three are o n ,  the hidden u nit wi l l  turn on 
and counteract t h e  two units excit i ng the output  bit , so it  wil l s tay off. 
Final l y ,  when all three are t urned o n ,  the  output  bit  wi l l  receive - 2 
from its carry bit and + 3 from i ts  other three i n puts .  The net is posi
t ive , so the middle u nit wil l be on .  Finally ,  the third output  bit should 
turn on whenever the second hidden unit  i s  on - that is, whenever 
there is a carry from the second bit. Here then we have a min i mal net
work to carry out the job at hand. Moreover, it should be noted that 
the concept beh ind  t h i s  network i s  general izable to an arbi trary n umber 
of i n put and output bi ts. In general , for adding two m bit binary 
numbers we wil l require 2m i nput u n i ts ,  m h idden u n i ts ,  and m+ I out
put units .  

Unfortunately, this is  the one proble m  we have found that reliably 
leads the system i nto local min i ma .  At the start in our l earn ing trials 
on th is  problem we al low any input u nit to connect to any output  unit 
and to any hidden u nit . We al low any hidden u n i t  to con nect to any 
output unit, and we a l low one of the hidden u n i ts to con nect to the 
other hidden unit, but, since we can have no loops, the connect ion in 
the opposite di rection is d i sal lowed. Somet i mes the system wil l discover 
essentia l ly  the same network shown in the figure .  4 Often , however, the 
system ends u p  i n  a l ocal min im u m .  The problem arises when the XOR 
problem on the low-order bits i s  not sol ved i n  the way shown i n  the 
diagram. One way i t  can fail is  when the " higher "  of the two hidden 
units is " selected " to sol ve the XOR problem . Th is  is a problem 
because then the other hidden unit  cann ot " see " the carry bit and there
fore cannot final ly sol ve the problem.  Th is problem seems to stem 
from the fact that the learni ng of the second output b i t  is al ways depen
dent on l earning the fi rst ( because i nformation about the carry is neces
sary to learn the second bit ) and therefore lags beh i nd the learn i ng of 
the first bit and has no infl uence on the selection of a hidden un i t  to 

4 The network is the same except for the h ighest order b i t .  The highest order bit i s  
always o n  whenever three or more o f  t h e  i n p u t  u n i t s  a r e  on .  This  is  always learned fi rst 

and always learned with d i rect 9lJ).9� JW9R»Wipnits .  
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sol ve the fi rst XOR problem . Th us ,  about half of the t i me ( i n  this 
problem) the wrong unit  i s  chosen and the problem cannot be sol ved . 
In th is  case , the syste m  finds a solu t ion for a l l  of the sums except the 
1 1  + 1 1  - 1 1 0 (3+ 3 = 6) case i n  which i t  misses the carry i nto the 
middle bit and gets 1 1  + 1 1  - 1 00 i nstead . Th i s  problem d iffers from 
others we have sol ved i n  as much as the h idden un i ts are not " equi
potent ial " here . In  most of our other problems the hidden un i ts have 
been equi potent ia l ,  and th is  problem has not arisen .  

I t  should be  noted, however,  that there i s  a relat i vely s imple  way out 
of the problem - namely ,  add some extra h idden u n i ts .  In  th is  case we 
can afford to make a mistake on one or more select ions and the system 
can st i l l  solve the problems.  For the problem of adding two-bi t 
numbers we have found t hat the system always sol ves the problem wi th 
one extra h idden uni t .  With  l arger n umbers i t  may requi re two or three 
more. For purposes of i l lustrat ion , we show the resul ts  of one of our 
runs wit h  three rather than the min imum two hidden units .  Figure 1 1  
shows the state reached by the  network after 3 ,020 presentat ions of 
each i nput pattern and wi th a learning rate of "Y/ = 0 . 5 .  For con ven i 
ence , we show the  network in  four parts .  I n  Figure 1 1  A we show the 
connections to and among the h idden un i ts .  Th is figure shows the 
internal representation generated for th i s  problem. The " lowest " hid
den unit turns off whenever either of the l ow-order bits are on . In 
other words i t  detects the case in which no low-order bit is  turn on . 
The " hi ghest " h i dden uni t  is arranged so that it comes on whenever the 
sum i s  l ess than two. The condit ions under which the middle hidden 
unit comes on are more complex .  Table 8 shows the patterns of h idden 
units  which occur to each of the si xteen i nput patterns. Figure l I B 
shows the connect i ons to the lowest order output u n i t .  Not ing that the 
relevant h idden unit comes on when neither low-order i n put unit i s  on, 
i t  i s  c lear how the system computes XOR. When both low-order inputs 
are off, the output unit i s  turned off by the h idden un i t .  When both 
low-order i n put uni ts  are on , the output i s  turned off directly by the 
two i n put  un i ts .  If  just one is  on, the posi t i ve bias on the output unit  
keeps i t  on . Figure l l C gives the connect ions to the middle output 
u n i t ,  and i n  Figure 1 1  D we show those connect ions to the left-most , 
highest order output un i t .  It i s  somewhat d ifficult  to see how these 
connecti ons always lead to the correct output answer,  but ,  as can be 
verifi ed from the figures,  the network is balanced so that th is  works . 

It should be poi nted out that most of the problems described thus far 
have i n vol ved hidden u n i ts with qui te  s i m ple in terpretat ions.  It i s  
much more often the case, espec ial ly  when the number of hidden units 
exceeds the min i mum number requi red for the task ,  that the hidden 
uni ts are not readi ly  i nterpreted . Thi s  fol lows from the fact that there 
is very l i t t le  tendency for loealist representat ions to develop. Typically 
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FIG URE 1 1 . Network fou nd for I he summat i on problem . A :  The connecl ions from the 

input units  to the three hidden units and the connections among the h idden u n i ts .  B: 
The connect ions from the i nput and h idden units to the lowest order output unit .  C: The 

connect ions from the input  and hidden uni ts to the middle output uni t .  D: The connec

tions from the input  and hidden u n i ts to t he h i.&.hes t order output un i t .  
Copyrighted Material 



346 BASIC MECHANISMS 

TABLE 8 

Input H idden Uni t  Output 
Pat terns Patterns Patterns 

00 + 00 I I I  000 

00 +  0 1  1 1 0 001 

00 + 10 0 1 1 0 1 0  

00 + 11 010 011 

0 1  + 00 1 10 001 

01 + 0 1  010 010 

01 + 1 0  0 1 0  01 1 

01 + 1 1  000 100 

1 0 + 00 01 1 0 1 0  

1 0 + 0 1  0 1 0  0 1 1 

1 0 + 1 0  00 1 100 

1 0 + I I  000 1 01 

1 1  + 00 0 1 0  0 1 1 

1 1  + 0 1  000 100 

1 1  + 10 000 1 01 

11 + I I  000 1 1 0 

the internal representat ions are distributed and it is the pattern of 
act i vi ty over the h idden units,  not the mean ing of any particular hidden 
unit that is important .  

The Negat ion Problem 

Consider a situation in which the i nput to a system consists of pat 
terns of n+ 1 binary values and an output of n values. Suppose further 
that the general ru le is that n of the input  un i ts should be mapped 
di rectly to the output patterns. One of the i nput bits, however,  is spe
cial . It is a negat ion b i t .  When that bit is off, the rest of the pattern is 
su pposed to map straight th rough , but when it is  on , the complement 
of the pattern is  to be mapped to the output. Table 9 shows the 
appropriate mappi ng.  In this case the left element of the input pattern 
is the negation bit, but the system has no way of knowing this and 
must learn which bit i s  the negat ion bit . In  th is  case , weights were 
al lowed from any input un i t  to any h idden or output unit and from any 
hidden unit  to any output un i t .  The system learned to set al l of the 
weights to zero except those shown in  Figure 1 2 . The basic structure 
of the problem and of the sol ution is evident i n  the figure .  Clearly the 
problem was reduced to a set of three XORs between the negat ion bit 
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TABLE 9 

Input  PaUerns Out put Pal lerns  

0000 

000 1 

00 1 0  

00 1 1 

0 1 00 

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 000 

1 00 1  

1 0 1 0  

1 0 1 1 
1 1 00 

1 1 0 1  

1 1 1 0 

1 1 1 1  

000 
00 1 

0 1 0  

0 1 \ 

1 00 

1 0 1  

1 1 0 

I I I  
I I I  
l lO 
1 0 1  

1 00 

0 1 1 

0 1 0  

00 \ 

000 

and each input . In the case of the two r ight-most input units,  the XOR 
problems were solved by re::rui t ing a h idden unit  to detect the case in 
which neither the negation uni t nor the corresponding input unit was on. 
In the third case, the hidden unit  detects the case i n  which both the 
negation unit and relevant input were on.  In this case the problem was 
solved in less than 5 ,000 passes through the st imulus set with TJ = 0.25 . 

Ce) Cal 
' 1 0 ·4 X,0 · 4  ",¥, 1 0  " / 1 \  /,,, I '  

, / / .4 1 \ ",  .4 1 \ '( ;. .... "\ I ,  / ...... 1 \ I � / 
- 8  ...... I Q I + 2  

", I V 1 .8 
+ :! ...... r ..... / _ - ...... -t - -

- ... _ - 1'" ..,
- I / -�.- - 0·' (j.' 

FIGURE 1 2 .  The solution discovered for the negat ion prob lem . The left -most uni t is 
the negat ion uni t .  The problem has been reduced and so l ved as t h ree excl usi ve-ors 
between the negation unit and each of the other th ree units .  
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The T -C Problem 

Most of the problems discussed so far (except the symmetry prob
lem) are rather abstract mathematical problems . We now turn to a 
more geometric problem - that of discriminating between a T and a 
C- independent of translation and rotation . Figure 13 shows the 
st imulus patterns used in these experi ments . Note, these patterns are 
each made of five squares and differ from one another by a single 
square. Moreover ,  as Minsky and Papert ( 969) point  out,  when con
sidering the set of patterns over all possible translations and rotations 
(of 90° , 1 80° , and 270°) , the patterns do not differ in the set of dis
tances among their pairs of squares. To see a d ifference between the 
sets of patterns one must look, at least , at configurations of t ri plets of 
squares. Thus Minsky and Papert cal l this a problem of order three. 5 
In order to fac i l i tate the learn ing, a rather d ifferent archi tecture was 
employed for this problem. Figure 14  shows the basic structure of the 
network we employed. Input patterns were now conceptualized as two
dimensional patterns super imposed on a rectangular grid .  Rather than 
al lowing each input unit  to connect to each h idden unit ,  the hidden 
units themselves were organized into a two-dimensional grid with each 
unit rece iving input from a square 3 x 3 region of the input space. In 
this sense , the overlapping square regions const i tute the predefined 
receptive field of the hidden units .  Each of the hidden units, over the 
entire field , feeds into a single output uni t  which is to take on the value 

FIGURE 13 .  The st imulus set for the T-C problem .  The set consists of a block T and a 
block C in each of four orientations. One of the eight pat terns is presented on each trial .  

5 Terry Sejnowski pointed out to us that the T-C problem was d ifficul t  for models of 

th is  sort to learn and therefore worthy of study. 
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FIGURE 14 .  The network for so l ving  the T-C problem. See text  for e x planat ion.  

1 if the input i s  a T (at any location or orientat ion) and 0 if the input is 
a C. Further, in order that the learning that occurred be independent 
of where on the field the pattern appeared , we constrain ed all of the 
units to learn exactly the same pattern of weights. [n this way each uni t  
was constrained to compute exactly the same function over i ts  receptive 
field -the recept i ve fields were constrained to all have the same shape . 
This  guarantees translat ion independence and avoids any possible " edge 
effects " in the l earn ing. The learning can readily be extended to arbi 
trari ly  large fields of input units . This constraint was accompl i shed by 
simply adding together the weight changes dictated by the delta rule for 
each uni t  and then chamzing all weil!hts

t 
e�actly  the same amount . In 

copynghted�a enal 
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this way, the whole  fie ld of hidden units consists s imply of replications 
of a single feature detector centered on d i fferent regions of the input 
space , and the learning that occurs in one part of the field is automati
cally  general ized to the rest of the field.  6 

We have run this problem in  this way a number of times. As a 
resul t ,  we have found a number of sol ut ions.  Perhaps the simplest way 
to understand the system is by looking at the form of the recepti ve 
field for the h idden units .  Figure 1 5  shows several of the receptive 
fields we have seen.  7 Figure 1 5 A  shows the most local representation 
developed . This on-center-off-surround detector turns out to be an 
excellent T detector. Since, as i l lust rated, a T can extend into the on
center and achieve a net input of + 1 ,  this detector wi l l  be turned on for 
a T at any orientat ion.  On the other hand, any C extending into the 
center must cover at least two inhi bitory cel ls .  Wi th this detector the 
bias can be set so that only one of the whole field of inhibi tory units 
wi l l  come on whenever a T is presented and none of the h idden units 
wi l l  be turned on by any C. This is a kind of protrusion detector which 
d ifferentiates between a T and C by detecti ng the protrusion of the T. 

The recept ive field shown in  Figure 1 5B is again a kind of T detector. 
Every T act ivates one of the hidden units by an amount + 2 and none 
of the hidden un i ts receives more than + 1 from any of the C 's.  As 
shown in the figure, T's at 90° and 270° send a total of + 2 to the hid
den uni ts on which the crossbar l ines up.  The T's at the other two 
orientations receive + 2  from the way it detects the vertical protrusions 
of those two characters .  Figure 1 5C shows a more distr ibuted represen
tation. As i l lustrated in the figure, each T acti vates fi ve different hid
den units whereas each C excites only three hidden units .  In this case 
the system again is d ifferentiating between the characters on the basis 
of the protruding end of the T which is  not shared by the C. 

Final ly ,  the receptive field shown in  Figure 1 5 0  is  even more 
interesting. In this case every h idden unit  has a posit ive bias so that it 
is on unless turned off. The strength of the inhibi tory weights are such 
that if a character overlaps the recepti ve field of a hidden unit ,  that unit 
turns off. The system works because a C is  more compact than a T and 
therefore the T turns off more units that the C. The T turns off 2 1  
hidden units ,  and the C turns off only 20. This i s  a truly distributed 

6 A simi lar procedure has been employed by Fukushima ( 980) in his neocognitron and 
by Kienker, Sejnowski , Hinton , and Schumacher ( 985) . 

7 The ratios of the weights are about right . The actual values can be larger or smaller 
than the values gi ven in the figure. 
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FIG U RE 1 5 . Recept i ve fields found i n  d ifferent  runs o f  t h e  T-C proble m .  A :  An on
center-off-surround recept ive field for detect ing T 's. B: A vert ica l  bar detector which 
responds to T's  more strongly than C 's. C:  A d i agona l  bar detector .  A T act i vates fi ve 
such detectors whereas a C act i vates only th ree such detectors .  D: A compact ness detec
tor . This i n h i bi tory recept i ve field t urns off whenever an input covers any region of i t s  
recept i ve field . Si nce the C i s  more compact t han  the T i t  t u rns off 20 such detectors 
whereas the T t u rns off 21 of them. 

representation .  In each case, the solut ion was reached i n  from about 
5 ,000 to 1 0 ,000 presentations of the set of eight pat terns. 8 

It is interest ing that the inh ibitory type of recept ive field shown i n  
Figure 1 50 was t h e  most common and that there i s  a predominance of 
inhibitory connect ions i n  this and i ndeed all of our simulations. Th is 
can be understood by considering the traject ory through wh ich the 
learning typically moves. At fi rst , when the system is  presented with a 

8 Si nce translat ion  independence was bu i l t into t he learn ing  proced ure, it makes no 
d ifference where t he i nput  occu rs: the same t h i n g  w i l l  be learned wherever the  pat tern is 

presented . Thus, there are on�t5�pr@HiOO MWtIDfaP be presented to t h e  system . 
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difficult  problem , the init ia l  random connections are as l ikely to mislead 
as to gi ve the correct answer. In this case,  it is best for the output 
units to take on a value of 0. 5 than to take on a more extreme value. 
This fol lows from the form of the error function gi ven in  Equation 2. 
The output unit can achieve a constant output of 0.5 by turning off 
those uni ts feeding into i t .  Thus,  the fi rst th ing that happens i n  vi rtu
ally every difficult  problem is  that the hidden units are turned off. One 
way to achieve this is to have the input units inhib i t  the hidden units. 
As the system begins to sort things out and to learn the appropriate 
function some of the connections wil l  typical l y  go posi t ive ,  but the 
majority of the connections wi l l  remain negat i ve .  Th is bias for solu
t ions involving inhibitory inputs can often lead to nonintui t ive results 
in  which hidden units are often on unless turned off by the i nput. 

More Simulation Results 

We have offered a sample of our results i n  this sect ion.  In addi t ion 
to having studied our learning system on the problems discussed here , 
we have employed back propagation for l earning to mult iply binary 
digits, to play t ic-tac-toe , to dist inguish between vert ical and horizontal 
l ines, to perform sequences of actions , to recognize characters , to asso
ciate random vectors , and a host of other applicat ions.  In all of these 
appl ications we have found that the genera l ized delta rule was capable 
of generating the kinds of internal representations required for the 
problems in quest ion .  We have found local minima to be very rare and 
that the system learns in a reasonable period of t ime.  Sti l l  more studies 
of this type wi l l  be requi red to understand precisely the condit ions 
under which the system wi l l  be plagued by local min ima. Suffice it to 
say that the problem has not been serious to date .  We now turn to a 
pointer to some future developments. 

SOME FURTHER GENERALIZATIONS 

We have intensi vely studied the learn ing characteristics of the gen
eral ized delta rule on feed forward networks and semi l i near activations 
functions.  In terest ingly these are not the most general cases to which 
the learning procedure is applicable. As yet we have on ly studied a few 
examples of the more fu l ly  genera l ized system, but it is relatively easy 
to apply the same learn ing rule to sigma-pi units and to recurrent net
works . We wi l l  s imply s�qg� here . 
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The General ized Delta R u l e  and S igma-Pi Uni ts  

It  wi l l  b e  recal led from Chapter 2 t h a t  i n the case of sigma-pi u n i ts 
we have 

( I 7 ) 

where i varies over the set of conj u ncts feed i ng i n t o  u n i t  j and k varies 
over the elements of the conj uncts .  For s i mpl ic i ty of  exposit ion , we 
restrict oursel ves to  the case in which no conjuncts i n vo l ve more than 
two elements.  In this case we can notate the weight from the conj u nc
t ion of u n i ts i and j to unit  k by wkij ' The wei ght on the di rect con
nection from unit  i to  unit  j would,  th u s ,  be wji; , and s ince the rel at ion 
i s  mult i pl icat i ve ,  Wkij = Wkj; '  We can now rewri te Equat ion 17 as 

OJ = Ij (L Wjh; 0h 0; ) .  
; .h 

We now set 

Taking the deri vative and si m pl i fyi ng , we get a rule for sigma-pi un i ts 
strictly analogous to the ru le  for sem i l i near act i vat ion fu nctions:  

!l.p wkij = 8 k o; oj . 

We can see the correc t form of the error si gnal , 8 ,  for this case by 
inspect ing Figure 1 6 .  Consider the appropriate value of 8; for un i t  U; 
in the figure. As before,  the correct val ue of 8 ;  is given by the sum of 
the 8 's for al l of the un i ts i nto wh ich U; feeds , wei ghted by the amount 
of effect due to the acti vat ion of U; t i mes the deri vat i ve of the acti va
tion funct i on.  In the case of sem i l inear functions, the measure of a 
unit's effect on another un i t  is gi ven simply by the weight W connect
i ng the fi rst u n i t  to the second . In  this case,  the u, 's effect on Uk 
depends not only on Wk;j , but also o n  the value of Uj . Thus, we have 

8; = I 'j (net; ) L8 k Wk;j OJ 
j ,k 

if u; is not an output unit and, as before , 

8 ; = .1 '; (net; ) (t;- o; )  
i f  i t  is an output uni t .  
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& .  & .  
J t 

FIGU RE 1 6 .  The genera l i zed delta rule for s igma -pi units .  The products of act i vat ion 
values of i nd iv idua l units act i vate output units .  See text  for explanation of how the 8 

values are com puted in th is  case . 

Recurrent Nets 

We have thus far restricted ourselves to /eed/orward nets. This may 
seem l i ke a substant ial restrict ion,  but as Mi nsky and Papert point out, 
there is ,  for every recurrent network, a feed forward network wi th ident
ical behavior (over a fin i te period of ti me) . We wi l l  now indicate how 
this construction can proceed and thereby show the correct form of the 
l earning rule for the recurrent network. Consider the si mple recurrent 
network shown in Figure 1 7  A. The same network in a feedforward 
archi tecture is shown in Figure 1 7B. The behavior of a recurrent net
work can be ach ieved in  a feedforward network at the cost of dupl icat
ing the hardware many t imes over for the feedforward version of the 
network . 9 We have distinct units and distinct weights for each point in 
t ime. For nami ng convenience , we subscri pt each uni t  with i ts unit 
number in the corresponding recurrent network and the t ime it 
represents. As long as we constrain the weights at each level of the 
feedforward network to be the same, we have a feedforward network 
which performs identica l l y  with the recurrent network of Figure 1 7  A. 

9 Note that in  th is  d iscuss ion,  and i ndeed in  our  ent i re  development here, we have 
assumed a discrete time system with synchronous upda te and with each connection 
i n volving a un i t  delay. 
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FIGURE 1 7 , A comparison of a recu rrent network and a feedforward network wi th  
identical behavior, A :  A completely connected recurrent network with two un i t s , B: A 
feedforward network which behaves the  same as the recurrent network , In t h is case, we 
have a separate un i t  for each t ime step and we requ i re that the weights connect ing each 
layer of un i ts  to the next  be the same for a l l  layers, Moreover, they m ust be the same as 
the analogous weights in the recurrent case, 

The appropriate method for maintain ing the constrai nt that all weights 
be equal i s  simply to keep track of the changes dictated for each weight 
at each l evel and then change each of the weights according to the sum 
of these indi vidual ly prescribed changes. Now, the general rule for 
determin ing the change prescribed for a weight i n  the system for a par
ticular t ime is s imply CWf,lPighted � of an appropriate error 
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measure 8 and the input along the relevant l ine both for the appropriate 
times. Thus, the problem of specifying the correct learning rule for 
recurrent networks i s  s imply one of determin ing the appropriate value 
of 8 for each t ime. In a feedforward network we determine 8 by mult i
plying the deri vat ive of the acti vation funct ion by the sum of the 8 's 
for those un i ts it feeds into weighted by the connection strengths. The 
same process works for the recurrent network - except in this case, the 
value of 8 associated with a particular unit changes in  t ime as a unit 
passes error back,  sometimes to i tself. After each i teration, as error is 
being passed back through the network, the change in  weight for that 
i teration must be added to the weight changes specified by the preced
ing iterations and the sum stored. This process of passing error 
through the network should continue for a number of i terations equal 
to the number of i terations through which the act ivation was originally 
passed . At th is  point, the appropriate changes to all of the weights can 
be made. 

In general , the procedure for a recurrent network is  that an input 
(general ly a sequence) i s  presented to the system while i t  runs for some 
number of iterations. At certain specified ti mes during the operation of 
the system, the output of certain units are compared to the target for 
that unit at that t ime and error signals are generated. Each such error 
signal is then passed back through the network for a number of i tera
t ions equal to the number of i terations used in the forward pass . 
Weight changes are computed at each i teration and a sum of all the 
weight changes dictated for a part icular weight is  saved . Finally, after 
all such error signals have been propagated through the system , the 
weights are changed . The major problem wi th this procedure is the 
memory requi red. Not only does the system have to hold i ts summed 
weight changes whi le  the error is being propagated, but each unit must 
somehow record the sequence of act i vat ion values through which it was 
dri ven during the original processing. This fol lows from the fact that 
during each i teration whi le the error is passed back through the system, 
the current 8 is  relevant to a point earl ier in t ime and the requ i red 
weight changes depend on the act ivation levels of the units at that time. 
It is not enti rely clear how such a mechan ism could be implemented in  
the brain .  Nevertheless , i t  is  tantal iz ing to rea l ize that such a procedure 
is potential ly very powerfu l ,  since the problem it is attempting to solve 
amounts to that of finding a sequential program ( l i ke that for a digi tal 
computer) that produces specified input-sequence/ output-sequence 
pairs. Furthermore , the interaction of the teacher wi th the system can 
be quite flexible ,  so that , for example, should the system get stuck in a 
local min imum,  the teacher cou ld in t roduce " h ints"  in the form of 
desi red output values for intermediate stages of processing.  Our exper i 
ence with recurrent net�Hmi�tePMII we have carried out some 
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experiments .  W e  turn fi rst t o  a very s imple problem in  which the sys
tem is induced to invent a shift register to solve the problem. 

Learning to be a shift register. Perhaps the simplest class of 
recurrent problems we have studied i s  one in  which the input and out
put units are one and the same and there are no hidden units. We sim
ply present a pattern and let  the system process i t  for a period of t ime .  
The state of the system is then compared to some target state . If i t  
hasn ' t  reached the target state a t  the designated t i me, error is  i njected 
into the system and it modifies its weights. Then it is shown a new 
input pattern and restarted. In these cases , there is no constrai nt on 
the connections in  the system .  Any unit can connect to any other uni t .  
The simplest such problem we have studied is what we ca l l  the shift 
register problem. In th is  problem, the units are conceptualized as a cir
cular shift register. An arbi trary bit pattern is fi rst establ ished on the 
units. They are then allowed to process for two t ime-steps. The target 
state , after those two time-steps, is the original pattern shifted two 
spaces to the l eft . The interesting question here concerns the state of 
the uni ts between the presentation of the start state and the t ime at 
which the target state is presented. One solution to the problem is for 
the system to become a shift register and shift the pattern exactly one 
unit to the left during each t ime period . If the system did this then it 
would surely be shifted two places to the left after two t ime units. We 
have t ried this problem with groups of three or five uni ts and , if we 
constrain the biases on al l of the units to be negat ive (so the uni ts are 
off unless turned on) , the system always learns to be a shift register of 
this sort . IO Thus, even though in principle any unit  can connect to any 
other unit, the system actual ly learns to set al l  weights to zero except 
the ones connecting a uni t  to i ts l eft neighbor. Si nce the target states 
were determined on the assumption of a c i rcular register, the left-most 
unit developed a strong connection to the right-most uni t .  The system 
learns this relatively quickly. With T/ = 0 .25  it learns perfectly in fewer 
than 200 sweeps through the set of possible patterns with ei ther three
or five-unit  systems. 

The tasks we have described so far are exceptional ly  simple, but they 
do i l lustrate how the algori thm works with unrestricted networks. We 
have attempted a few more difficult problems with recurrent networks. 

10 If the constraint that biases be negat ive is not imposed , other solutions are possible.  
These so l ut io ns can i nvolve the units passing through the complements of the shifted 
pattern or even through more complicated in termediate states. These trajectories are 

interesting in that they match a s i m ple shift register on a l l  even numbers of shifts, but do 
not match following an odd num ber of shifts. 
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One of the more interesting involves learni ng to complete sequences of 
patterns. Our final example comes from this domain .  

Learning to complete sequences. Table 10 shows a set of 25 
sequences which were chosen so that the first two i tems of a sequence 
uniquely determine the remain ing four .  We used this set of sequences 
to test out the learning abi l i t ies of a recurrent network . The network 
consisted of five i nput units (A, B, C, D, E) , 30 hidden units, and 
three output units ( I ,  2 ,  3 ) . At Time 1 , the input unit  corresponding 
to the first i tem of the sequence is  turned on and the other input units 
are turned off. At Time 2 ,  the input uni t  for the second item in the 
sequence is turned on and the others are al l turned off. Then al l the 
i nput units are turned off and kept off for the remain ing four  steps of 
the forward i terat ion .  The network must learn to make the output units 
adopt states that represent the rest of the sequence. Unli ke simple 
feedforward networks (or thei r i terati ve equivalents) , the errors are not 
only assessed at the final layer or t ime.  The output units must adopt 
the appropriate states during the forward i terat ion, and so during the 
back-propagation phase, errors are injected at each t ime-step by com
paring the remembered actual states of the output units with their 
des ired states . 

The learning procedure for recurrent nets places no constraints on 
the al lowable connectivity structure. 1 1  For the sequence completion 
problem, we used one-way connections from the input units to the hid
den units and from the hidden units to the output units . Every hidden 
unit had a one-way connection to every other h idden unit  and to i tself, 

TABLE 1 0  

2 5  SEQUENCES TO B E  LEARNED 

AA 1 2 1 2  AB1 223 AC 1 23 1  A D l 2 2 1  AEI 2 1 3  

BA23 1 2  BB2323 BC233 1  B023 2 1  BE23 1 3  

CA3 1 1 2  CB3 1 23 CC3 1 3 1  C03 1 2 1  CE3 1 1 3 

OA2 1 1 2  OB2 1 23 OC2 1 3 1  002 1 2 1  OE2 l l 3  

EA 1 3 I 2  EB 1 3 23 EC 1 3 3 1  ED l 3 2 1  EEI3 1 3  

1 1 The constra int  i n  feed forward networks is that i t  must b e  possible t o  arrange the 

units into l ayers such that uni ts  do not infl uence units in the same or lower layers. In 
recurrent networks this amounts to the constra int  that during the forward iterat ion,  
future states must not affect past  ones. 
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and every output un i t  was also connected to every other output unit  
and to i tself. All  the connections started with smal l  random weights 
uniformly distributed between - 0.3  and + 0. 3 .  All the hidden and out
put units started with an acti vi ty level of 0.2 at the beginning of each 
sequence. 

We used a version of the learning procedure in  wh ich the gradient of 
the error with respect to each weight i s  computed for a whole set of 
examples before the weights are changed . This means that each con
nection must accumulate the sum of the gradients for all the examples 
and for a l l  the t ime steps i nvolved i n  each example.  During train i ng, 
we used a part icular set of 20 examples , and after these were learned 
almost perfectly we tested the network on the remain ing examples to 
see if it had picked up on the obvious regularity that relates the fi rst 
two i tems of a sequence to the subsequent four .  The results are shown 
in Table 1 1 .  For four  out of the fi ve test sequences , the output un i ts 
all have the correct val ues at al l  t imes (assu ming we treat val ues above 
0.5 as 1 and values below 0.5 as 0) . The network has clearly captured 
the rule that the fi rst item of a sequence determines the th ird and 
fourth ,  and the second determines the fi fth and si xth . We repeated the 
simulation with a d ifferent set of random in i t ial  weights, and i t  got a l l  
five test sequences correct . 

The learning requi red 260 sweeps through a l l  20 t rai ning sequences .  
The errors in  the output un i ts were computed as fol lows : For a uni t  
that should be on,  there was no error  if  i t s  act i vity level was above 0 . 8 ,  
otherwise the deri vati ve o f  the error was t h e  amount below 0 .8 .  S imi 
larly, for output uni ts that should be off, the deri vat ive of the error was 
the amount above 0. 2 .  After each sweep, each weight was decremented 
by .02 t imes the total gradient accumulated on that sweep plus 0 .9  
t imes the previous weight change. 

We have shown that the learning procedure can be used to create a 
network with interest ing sequential behav ior ,  but  the part icular problem 
we used can be sol ved by s imply  usi ng the hidden un i ts to create " delay 
l ines " wh ich hold information for a fi xed length of t ime before a l lowing 
i t  to influence the output .  A harder problem that cannot be sol ved 
with delay l ines of fi xed duration is shown in Table 1 2 . The output i s  
the same as  before , but  the two input i tems can arri ve at var iable t imes 
so that the i tem arriving at t ime 2, for example, could be either the 
first or the second i tem and could therefore determine the states of the 
output units at ei ther the fifth and s ixth or the seventh and eighth 
ti mes. The new task is  equi valent to requ i r ing  a buffer that recei ves 
two input " words " at variable t imes and outputs their " phonemic real i 
zat ions " one after the other .  This  problem was solved successful ly by a 
network si mi lar  to the one above except that i t  had 60 hidden uni ts and 
half of their possi ble iItM1iynnmetf>Ma� omitted at random. The 
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TABLE 1 1  

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQU ENCES 

Input Sequence A D 

Desi red Outputs 2 2 

Actual States of: 
Output Uni t  1 0 .2  0. 1 2  0.90 0.22 0. 1 1  0.83 
Output Unit 2 0.2 0. 1 6  0 . 1 3  0 .82  0 .88  0.03 
Output Unit 3 0. 2 0.07 0.08 0.03 0 .01  0 .22 

Input Sequence B E 

Desired Outputs 2 3 3 

Actual States of: 
Output Unit  1 0 .2 0. 1 2  0.20 0.25 0.48 0.26 
Output Unit  2 0 .2 0. 1 6  0.80 0.05 0.04 0.09 
Output U nit 3 0 .2 0 .07 0 .02 0.79 0 .48 0.53 

Input  Sequence C A 

Desired Outputs 3 2 

Actual States of: 
Output Unit  1 0 .2  0. 1 2  0. 1 9  0.80 0.87 0. 1 1  
Output Unit  2 0 .2  0. 1 6  0. 1 9  0 .00 0. 1 3  0 .70 
Output Unit  3 0 .2  0.07 0.80 0. 1 3  0.01 0 .25 

Input Sequence D B 

Desi red Outputs 2 2 3 

Act ual States of: 

Output Uni t  1 0 .2 0. 1 2  0. 1 6  0.79 0.07 0. 1 1  
Output Uni t  2 0.2 0. 1 6  0.80 0. 1 5  0.87  0.05 
Output Unit 3 0.2 0.07 0.20 0.01 0 . 1 3  0.96 

Input Sequence E C 
Desired Outputs 3 3 

Actual States of: 

Output Un i t  1 0.2 0 . 1 2  0 .80 0.09 0.27 0.78 
Output Unit  2 0.2 0. 1 6  0.20 0. 1 3  0.01 0 .02 
Output Unit  3 0.2 0.07 0.07 0 .94 0.76 0 . 1 3  

learn ing was much slower, requir ing thousands of  sweeps through all 
1 36 training examples . There were also a few more errors on the 1 4 
test examples , but the general i zation was st i l l  good with most of the 
test sequences being coll!RJp)9tgRfd'lieM»terial 
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TABLE 1 2  

SIX VARIATIONS OF THE S EQUENCE EA \ 3 1 2  PRODUCED BY 

PRES ENTING THE FI RST TWO ITEMS AT V A R I ABLE TI M ES  

EA-- 1 3 1 2  
- EA- 1 3 1 2  

E - A - 1 J 1 2  

- E - A I 3 1 2  

E - - A I 3 l 2  

- - EA \ 3 1 2  

Note: With these temporal variat ions,  t h e  2 5  sequences shown i n  
Table 10  can be used to generate 1 50 different seque nces . 

CONCLUSION 

In the i r  pess imist ic  d iscussion of percept rons, Minsky and Papert 
( 1 969) finally d iscuss mult i layer mach ines near the end of their book .  
They state: 

The perceptron has shown i tself worthy of study despi te (and 
even because of! ) i ts severe l im i tat ions. It has many features 
that attract attention: its l inearity;  i ts i ntr iguing learning 
theorem; i ts clear paradigmatic si mplicity as  a k ind of paral lel 
computat ion . There is  no reason to suppose that any of these 
vi rtues carry over to the many-layered version ,  Nevertheless, 
we consider i t  to be an important  research problem to elucidate 
(or reject ) our intu i t i ve judgement that the extension is  ster i le .  
Perhaps some powerfu l  convergence theorem wi l l  be 
discovered, or some profound reason for the fai lu re to produce 
an interesting " learn i ng theorem " for the mult i layered machine 
wi l l  be found. (pp.  2 3 1 -232)  

Although our learning resu lts do not  guarantee that we can find a sol u
t ion for a l l  solvable problems, our analyses and resul ts  have shown that 
as a practical matter, the error propagation scheme leads to solut ions i n 
vi rtually every case,  In short, we bel ieve that we have answered Min 
sky and Papert 's  chal lenge and have found a learn ing result  sufficient ly 
powerful to demonstrate that thei r pessi mism about learning in mul
t i layer machines was misplaced. 

One way to view the procedure we have been descri bing is as a paral
lel computer that , having been shown the appropriate input/  output 
exemplars specifying some function , programs i tself to compute that 
function in general . Paral lel computers are notoriously difficult to pro
gram. Here we have a mechan ism whereby we do not actual ly have to 
know how to write the program in order to get the system to do i t .  
Parker ( 1 985) has emph�fflJIigHt-eB�rerial 
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On many occasions we have been surprised to learn of new methods 
of comput ing interest ing  funct ions by observi ng the behavior of our 
learn ing algori t h m .  Th is  also raised the question of genera l izat ion. In 
most of the cases presented above, we have presented the system wi th 
the ent i re set of exemplars. It  i s  in terest ing to ask what would happen 
if we presented only a subset of the exemplars at trai n i ng t i me and then 
watched the system general ize to remai n i ng exemplars .  In  small  prob
lems such as those presented here, t he system sometimes fi nds solu
t ions to the problems which do not properly general ize.  However, pre
l i minary results  on l arger problems are very encouraging i n  this  regard. 
This research is st i l l  i n  progress and cannot be reported here .  This is  
currently a very act i ve interest of ours .  

Fi nal ly ,  we should say that th is  work is not yet i n  a fi nished form. 
We have only begun our study of recurren t  networks and s igma-pi 
uni ts .  We have not yet appl ied o u r  l earn ing procedure to many very 
com plex problems . However, the results  to date are encouragi ng and 
we are cont i n u i ng our work . 
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PART III 

FORMAL ANALYSES 

Part III is focused on the formal tools employed in the study of PDP 
models and their application in the analysis of several specific aspects of 
PDP mechanisms. 

In Chapter 9, Jordan provides a very accessible introduction to linear 
algebra and its applications to the analysis of PDP models. This chapter 
is designed to be a tutorial for those who are not familiar with the 
basics of linear algebra. Most of the book can be read and understood 
without knowledge of linear algebra, but an understanding of this 
important tool will greatly enhance a reader's understanding of the 
mathematical discussions that can be found in several chapters of the 
book. 

In Chapter 10, Williams provides a useful analysis of activation func
tions. Throughout the book we employ several different activation 
functions. There is a question as to whether we will need to look for 
more complex activation functions to carry out some of the more com
plex computations. Williams shows that we will never have to consider 
activation functions more complex than the sigma pi function. 

In Chapter 11, Stone provides a useful analysis of the delta rule, 
which plays an important role throughout the book. Stone shows how a 

change of basis can be employed to reveal the internal workings of the 
delta rule. He shows that when there is no deterministic relationship 
between inputs and targets, the delta rule leads to a system whose out
puts match the central tendencies of the target patterns. Finally, he 
shows how the delta rule is related to linear regression. 
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In Chapter 12, McClelland analyzes the capacity limitations of two 
kinds of networks. He studies the effects of limitations of fan-in and 
fan-out on the capacities of standard pattern-association networks, and 
he explores the costs in units and connections of using programmable 
networks of the kind outlined in Chapter 16. 

Finally, in Chapter 13, Zipser and Rabin describe a computer simula
tion system, called P3, for building computer simulations of PDP 
models. P3 provides both a language for describing networks and an 
interface for interacting with these networks and observing their 
behavior. Chapter 13 gives as an example a description of how the 
competitive learning algorithm can be built in P3. 

In general, the chapters in this section are useful for two reasons. 
First, they describe several useful basic results-results that lie behind 
many of the simulation models described in other sections of the book. 
Second, and perhaps more importantly, they indicate some of the for
mal tools that are available for analyzing parallel networks, and show 
through example how these tools can be used to produce useful results. 
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CHAPTER 9 

An Introduction to Linear Algebra in 

Parallel Distributed Processing 

M. I. JORDAN 

Many of the properties of the models described in this book are cap
tured by the mathematics of l inear algebra. This chapter serves as a 
introduction to l inear algebra and is a good starting place for the reader 
who wishes to delve further into the models presented in other parts of 
the book. I wil l focus on the aspects of li near algebra most essential for 
the analysis of parallel distributed processing models, particularly the 
notions of a vector space, the inner product, and l ineari ty. I will also 
discuss some simple PDP models, and show how their workings 
correspond to operations on vectors. 

VECTORS 

A vector is a useful way to describe a pattern of numbers. Co.-.sider 
for example the pattern of numbers that describe the age, height,·�nd 
weight of an average person . Suppose that Joe is 37 years old , 72 
inches tal l ,  and weighs 175 pounds. This information can be summar
ized in a vector or ordered l ist of numbers. For each person , there is a 
corresponding vector, as in Figure IA. Each vector has three com
ponents: age, height ,  and weight .  There is no reason to l imit  oursel ves 
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to only three components, however. If, for example, we also wanted to 
keep track of Joe's shoe size and year of birth, then we would simply 
make a vector with five components, as in Figure lB. 

One important reason for the great util ity of linear algebra lies in the 
simplicity of its notation. We will use bold, lower-case letters such as v 
to stand for vectors. With this notation, an arbitrarily long list of infor
mation can be designated by a single symbol. 

When a vector has no more than three components, it can be 
represented graphically by a point or an arrow in three-dimensional 
space. An example with three components is given in Figure 2 for the 
vector corresponding to Mary. Each axis in the figure corresponds to 
one of the three components of the vector. 

It will prove helpful to try and visualize vectors as points or arrows in 
two- and three-dimensional space in proceeding through this chapter in 
order to develop geometric intuition for the operations on vectors. 
Notice, however, that there is no fundamental distinction between such 
vectors and vectors with more than three components. All of the 
operations upon vectors described in later sections apply equally well to 
vectors with any finite number of components. 

In a parallel distributed processing model, many quantities are best 
represented by vectors. The pattern of numbers representing the 
activations of many processing units is one example. Other examples 
are the s�t of weights on the input lines to a particular processing unit, 
or the set of inputs to a system. 
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BASIC OPERATIONS 

Multiplication by Scalars 

In l i near algebra, a single real number is referred to as a scalar. A 
vector can be multipl ied by a scalar by multiplying every component of 
the vector by the scalar.  

Examples: [-3] [-15] 
5 4 = 20 1 5 

Geometrically, scalar mult ipl icat ion corresponds to lengthening or 
shortening the vector, while leaving i t  po inting in the same or opposite 
di rection . As can be seen in  Figure 3, mult iplying a vector by 2 leaves 
it pointing in the same di rection but twice as long. In general , multi
plying a vector by a posit ive scalar produces a new vector that is  longer 
or shorter by an amount corresponding to the magnitude of the scalar. 
Multipl ication by a negati ve scalar produces a vector pointing in the 
opposite di rection. I t ,  too, is longer or shorter depending on the mag
nitude of the scalar. Two vectors that are scalar multiples of one 
another are said to be co'lJ8ffjf;ghted Material 
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Addition of Vectors 

Two or more vectors can be added by adding their components. The 
vectors must have the same number of components to be added; other
wise the operation is undefined. 

Examples: 

Vector addition is associative (the vectors can be grouped in any 
manner) and commutative (the order of addition is unimportant) just 
l ike addi tion in ordinary algebra. This is true because if we consider 
one component at a time, vector addition is just addition in ordinary 
algebra. 

How can vector addition be represented graphically? Consider Figure 

4, where lhe vectors vI - [ � 1 and. 2 - [ : 1 are being added. It can be 

seen that the sum v 1 + V 2 is a vector [ � 1 which l ies between v 1 and v 2' 

Forming the paral lelogram with sides v 1 and v 2, we see that the sum of 
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4 5 

the two vectors is the diagonal of this parallelogram. In two and three 
dimensions this is easy to visual ize , but not when the vectors have 
more than three components. Nevertheless, it wil l  be useful to imagine 
vector addit ion as forming the diagonal of a parallelogram. One impli
cation of this view, which we will find useful , i s  that the sum of two 
vectors is a vector that l ies in the same plane as the vectors being 
added. 

Example: Calculating averages. We can demonstrate the use of the 
two operations thus far defined in  calculat ing the average vector. Sup
pose we want to find the average age , height, and weight of the four 
individuals in Figure lA. Clearly this involves summing the com
ponents separately and then dividing each sum by 4. Using vectors , 
this corresponds to adding the four vectors and then multiplying the 
resulting sum by the scalar 1/4. Using u to denote the average vector, 

u = ! II ��l + I !�l + I �� l + I :�ll = I �::� l · 175 61 121 155  128 

Using vector notat ion, if we denote the four vectors by v I, V 2, V 3, and 
v 4, then we can write the averaging operation as 

1 u= '4 ( V I + V 2 + V3 + V4 )' 
Copyrighted Material 
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The vector u, then, is  a vector whose components are the averages of 
the components of the four individual vectors . Notice that the same 
result is obtained if each vector is fi rst multiplied by 1/4, and the 
resulting vectors are added. This shows that multiplication by scalars 
and vector addition obey a distributive law, as in ordinary algebra. 

LINEAR COMBINATIONS AND LINEAR 
INDEPENDENCE 

Linear Combinations of Vectors 

The average vector calculated in the last section is an example of a 
linear combination of vectors. In this section , we pursue this idea 
further.  

Consider the vectors v ,  = [ �], V 2 = [ �], and u = [ 1 �]. Can u be 

written as the sum of scalar multiples of v, and v 2? That is, can scalars 
c, and C2 be found such that u can be written in the form 

U = CIVI+C2V2? 

If so, then u is said to be a linear combination of the vectors v I and v 2. 
The reader can verify that c, = 3 and C2 = 2 witt work, and thus u is a 
linear combination of v, and v 2. 

This can also be seen directly in Figure 5 ,  where these vectors are 
plotted. Remembering that multipl ication by a scalar shortens or 

10 

5 

o �----�------�------�--5 10 15 

FIGURE 5. 
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lengthens a vector and that vector addit ion corresponds to forming the 
diagonal of a parallelogram, i t  seems clear that we can find scalars to 
adjust v 1 and v 2 to form a paral lelogram that yields u. This is indicated 
in the figure .  It also seems clear that , using posit ive scalars , any vector 
in the shaded area of the figure can be generated this way. By using 
both negati ve and posit ive scalars , any vector in the plane can be wri t
ten as a l inear combination of v 1 and v 2. This is true because mult ipl i
cation by a negative scalar reverses the direction of a vector as well as 
shortening or lengthening i t .  The vectors v 1 and v 2 are said to span the 
plane, because any vector in the plane can be generated from these two 
vectors. 

In general , given a set v I> v 2 • • • • •  V II of vectors, a vector v is said to 
be a l inear combinat ion of the Vi if scalars el>e2 • . . . •  ell can be found 
such that 

(1) 
The set of all l inear combinations of the v, is called the set spanned by 
the v ,. 

Exampk. The � vecto� [�I, [! I Md [ � I s� an ru thre� 

dimensional space since any vector v - [!I can be written as a l inear 

combination v - a [i I +b [! 1+ c m The vecto� are ref erroo to 

as the standard basis for three-dimensional space (more on the idea of a 
basis in  the next section) . 

Linear Independence 

To say that a set of vectors span a space is to say that all vectors in 
the space can be generated from the original set by l inear combination . 
We have shown examples in which two vectors span two-dimensional 
space and three vectors span three-dimensional space. We might be led 
to expect that , in general , n vectors suffice to span n -dimensional 
space. In fact , we have been using the term "dimension" without defin
ing what it means; it would seem that a good definition of n 
dimensional space i s  theeBhph�t81jr�PJWBfd by n vectors. 
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To make this definition work, we would require that the same size 
space be generated by any set of n vectors. However, this is not the 
case, as can be easily shown. Consider any pair of collinear vectors, for 
example. Such vectors lie along a single line, thus any linear combina
tion of the vectors will lie along the same line. The space spanned by 
these two vectors is therefore only a one-dimensional set. The col-

linear vectors [ � I and [ ; I are a good example. Any linear combina

tion of these vectors will have equal components, thus they do not span 
the plane. 

Another example is a set of three vectors that lie on a plane in 
three-dimensional space. Any parallelograms that we form will be in 
the same plane, thus all linear combinations will remain in the plane 
and we can't span all of three-dimensional space. 

The general rule arising from these examples is that of a set of n 
vectors, if at least one can be written as a linear combination of the 
others, then the vectors span something less than a full n-dimensional 
space. We call such a set of vectors linearly dependent. If, on the other 
hand, none of the vectors can be written as a linear combmation of the 
others, then the set is called linearly independent. We now revise the 
definition of dimensionality as follows: n -dimensional space is the set 
of vectors spanned by a set of n linearly independent vectors. The n 
vectors are referred to as a basis for the space. 

Examples: 

1. [�I and [ ; I are linearly dependent. They span only a one

dimensional space. 

2. I: I and 1 � I are linearly independent. Thus they span the 

plane, a two-dimensional space. 

3. 1 � I, 1 � I, and 1- � I are linearly dependent since 7 times the 

first vector minus 4 times the second vector is equal to the third 
vector. 

4. [ i J.[ � I , an+ � I are linearly dependent. Clearly they =not 

span all of three-dimensional space, because no vector with a 
nonzero third component can be generated from this set. 

Copyrighted Material 
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Notice the relationship between examples (2) and (3). The vectors in 
example (2) are linearly independent, therefore they span the plane. 
Thus any other vector with two components is a linear combination of 
these two vectors. In example (3), then, we know that the set will be 
linearly dependent before being told what the third vector is. This sug
gests the following rule: There can be no more than n linearly indepen
dent vectors in n -dimensional space. 

A l inearly independent set of vectors has the important property that 
a vector can be written as a linear combination of the set in only one 
way. In other words, the coefficients c; in Equation 1 are unique if the 
vectors v; are linearly independent. This fact can be easily seen, for 
example, in the case of the standard basis, for there is only one vector 
in the basis which has a nonzero entry for any given component. 

For linearly dependent vectors, however, the situation is different. If 
a vector can be written as a linear combination of a linearly dependent 
set of vectors, then there are an infinite number of sets of coefficients 
that will work. Let us attempt to demonstrate this fact with the aid of 
geometric intuition. Suppose that we wish to write vector v as a linear 
combination of three vectors v I, V 2, and v 3 in the plane. Let us choose 
any arbitrary coefficient C I for the vector v I. As shown in Figure 6, 
there must be a vector w such that v = C IV I + w. Thus, if we can write 
w as a linear combination of V2 and v3, i.e., w = c2v2 + C3V3, then we 
have succeeded in writing v as a  linear combination of v b v 2, and v 3' 
But clearly we can do this, because w is a vector in the plane, and v 2 
and v 3 together span the plane. 

v 

FIGURE 6. 
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VECTOR SPACES 

Let us pause to reflect for a moment upon what a vector is. I have 
implied that a vector is a l i st of numbers, and I have also used the term 
to refer to a point or an arrow in space. Are both of these objects vec
tors , or is one just a heuristic representation for the other? Are there 
other objects that should be cal led vectors? Just what is a vector? 

As is often the case in mathematics ,  these kinds of questions are 
solved by being avoided . Consider the fol lowing definition of an 
abstract vector space, and try to decide what a vector is .  

A vector space is  a set V of elements, called vectors , with the follow
ing properties: 

• To every pair ,  u and v, of vectors in V. there corresponds a 
vector u + v also in  V, called the sum of u and v ,  in such a way 
that addition is commutative and associative. 

• For any scalar c and any vector v in V, there is a vector cv in 
V, called the product of c and v, in such a way that multiplica
t ion by scalars is associative and distributive with respect to 
vector addit ion . l  

The answer to the question is that a vector is an undefined object in 
l inear algebra, much l ike a l ine in geometry. The definition of a vector 
space simply l ists the properties that vectors must have, without speci
fying what a vector must be. Thus, any set of objects that obey these 
properties can be cal led a vector space. Lists of numbers are vectors 
when addition is defined as adding components separately and scalar 
multipl ication is defined as multiplying all the components by the 
scalar, because these operations fill all the requirements of a vector 
space. Arrows or points in space are also vectors when addition is 
defined geometrically as taking the diagonal of a parallelogram and 
scalar multipl ication is defined as lengthening or shortening the arrow, 
because again ,  these operations fi ll the requi rements of a vector space . 
A seemingly unrelated example of a vector space is the set of polyno
mials of order n, with addition and scalar multipl ication defined in the 
obvious way. 

This sort of abstraction is common in mathematics. It is useful 
because any theorem that is true about a general vector space must be 

1 I have left out certain technicalities usually included as axioms for a vector space. 

These include the axiom that there must be a zero vector, and for every vector, there is 

an additive inverse. 
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true about any instantiation of a vector space . We can therefore discuss 
general properties of vector spaces without being committed to choos
ing a particular representation such as a list of numbers. Much of the 
discussion about l inear combinations and l inear independence was of 
this nature. 

When we do choose numbers to represent vectors, we use the fol
lowing scheme. First we choose a basis for the space . Since every vec
tor in the space can be written as a l inear combination of the basis vec
tors , each vector has a set of coefficients c J, c 2 • • • • •  cn which are the 
coefficients in the linear combination . These coefficients are the 
numbers used as the components of the vector. As was shown in the 
previous section, the coefficients of a gi ven vector are unique because 
basis vectors are l inearly independent. 

There is a certain arbitrariness in assigning the numbers , since there 
are infinitely many sets of basis vectors , and each vector in th� space 
has a different description depending on which basis is used . That is ,  
the coefficients, which are referred to as coordinates, are different for 
different choices of basis .  The implications of this fact are discussed 
further in a later section where I also discuss how to relate the coordi
nates of a vector in  one basis to the coordinates of the vector in 
another basis . Chapter 22 contains a lengthy discussion of several 
issues relating to the choice of basis .  

INNER PRODUCTS 

As of yet , we have no way to speak of the length of a vector or of 
the similarity between two vectors . This will be rectified with the 
notion of an inner product. 

The inner product of two vectors is  the sum of the products of the 
vector components . The notation for the inner product of vectors 
v and w is v . w. As with vector addit ion , the inner product is defined 
only if  the vectors have the same number of components. 

Example: 

v . w = (3 . 1) + (- 1 . 2) + (2 . 1) = 3. 
Copyrighted Material 
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The inner product is a kind of mUltiplication between vectors, 
although somewhat of a strange sort of multipl icat ion ,  since i t  produces 
a single number from a pai r of vectors . What does this single number 
"measure" ? 

Length 

As a special case , consider taking the inner product of a vector wi th 

i tself. An example is the vector v = [ ! [ in Figure 7. The inner pro

duct of v with i tself i s  

v . v = 32 + 42 = 25. 
Consider the right triangle in  Figure 7 with sides corresponding to the 
components of v. and hypotenuse v itself. The Pythagorean theorem 
tells us that the square of the length of v i s  equal to the sum of the 
squares of the sides . Since this is  exactly what is  calculated by the 
inner product v . v, i t  appears that a reasonable definition of the length 
of a vector is the square root of the inner product of the vector with 
i tself. Thus we define the length of a vector v, denoted by IIvll , as 

IIvll = (v' v)'h. 
Although the definition was motivated by an example in two dimen
sions , it can be appl ied to any vector. Notice that many of the 

FIGURE 7. 
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properties we intuit ively associate wi th length are included in this defin
ition. For example, if a vector has larger components than another 
vector, i t  wil l  be longer, because the squared components wi ll contri
bute to a larger inner product . Multiplying a vector by a scalar pro
duces a new vector whose length is the absolute value of the scalar 
times the length of the old vector: 

lIevll = !clllvll· 

This is a property that can be easily proved . Somewhat harder to prove 
is the so-called triangle inequality, which states that the length of the 
sum of two vectors is less than or equal to the sum of the lengths of 
the two vectors: 

Geometrically, the triangle inequal ity corresponds to the statement that 
one side of a triangle is  no longer than the sum of the lengths of the 
other two sides . 

Thus, in the special case where the operands are the same vector, the 
inner product is closely related to the idea of length. What if the 
operands are different vectors? 

Angle 

The angle between two vectors v and w is defined in  terms of the 
inner product by the following definit ion: 

v 'w 
cos 

(J = IIvll IIwil 
(2) 

where (J is the angle between v and w. Note that all of the quantit ies on 
the right hand side of the equat ion are easi ly calculated for n 
dimensional vectors . At the end of this section, I will show geometri
cally why this formula is correct in  two-dimensional space, using the 
ordinary geometrical definit ion of angle. 

Example. Find the angle (J between the vectors v I = [ � 1 and 

v 2 = [ � I. First , we calculate the necessary inner product and lengths: 
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and then substi tute these values in Equation 2: 
1 

cos (J = 1 . .Ji = 0.707. 

Thus, 

(J = COS- I (0.707) = 45°. 
This  result could also have been found using basic trigonometry, but 
clearly the inner product method is superior in general (consider find
ing the angle between vectors with forty components! ) . 

The inner product is often said to measure the" match" or" similarity" 
between two vectors . In a vague sense , this seems to be the case from 
the definit ion of the inner product as the sum of products . Equation 2 ,  
however, shows this in a clearer way: Wri t ing out the equation in  
terms of  the components of  the vectors gives 

I:. Vi Wi 
i-I cos (J "" --..;.....�---

(I:. v/)'h(t w/)'h 
i-I i-I 

This is the formula for the correlation between two sets of numbers 
with zero means. 

We can use our geometrical intui tions about angles and our under
standing of correlation to turn Equation 2 around and gain a better 
understanding of the inner product . This  understanding is important 
for the analysis of PDP models , because as will be seen, PDP models 
often compute inner products. Let us imagine moving two vectors 
around in space l ike the hands on a clock . If we hold the lengths of the 
vectors constant , then Equat ion 2 says that the inner product is propor

tional to the cosine of the angle :  v . w = I lv 1 I IIw II cos (J. For example , if 
the angle between the vectors is zero , where the cosine is at a max
imum, the inner product must therefore be at a maximum . As the two 
vectors move farther apart , the cosine decreases , thus the inner product 
decreases. It reaches zero when the angle is 90° , and its most negative 
value when the angle between the vectors is 1 80°, that is, when the 
vectors po int in opposite di rect ions. Thus, the closer the two vectors 
are , the larger the inner product .  The more the vectors point in oppo
site di rections , the more negative the inner product . 

We must be careful , however, in claiming that two vectors are closer 
together than two others because they have a larger inner product. We 
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must remember to divide the inner product by the lengths of the vec
tors involved to make such comparative statements. 

An important special case occurs when the inner product is  zero. In 
this case, the two vectors are said to be orthogonal. Plugging zero into 
the right side of Equation 2 gives 

cos () == o. 

which implies that the angle between the vectors is 90°. Thus, orthog
onal vectors are vectors which lie at right angles to one another. 

We will often speak of a set of orthogonal vectors . This means that 
every vector in  the set is  orthogonal to every other vector in the set. 
That is, every vector lies at a right angle to every other vector. A good 
example in three-dimensional space is the standard basis referred to 
earlier. Although we will skip the proof, it is probably clear that any 
orthogonal set is  l inearly independent. Indeed, orthogonali ty is 
stronger than linear independence: whereas every orthogonal set is 
linearly independent, there are very many linearly independent sets of 
vectors that are not orthogonal. An example in two-dimensional space 

is the pair [ : 1 and [ � I· When we choose a basis for a space, we typi· 

cally choose an orthogonal basis. In fact , in much of classical physics 
and mathematics, there is  not the slightest hint that a basis should be 
anything but orthogonal . 

Projections 

A further application of the inner product , closely related to the ideas 
of length and angle ,  is the notion of a projection of one vector onto 
another. An example is  given in Figure 8. The distance x is the pro
jection of v on w, In two dimensions, we readily know how to calculate 
the projection.  It is 

x .. IIvll cos () (3) 

where () is the angle between v and w, This formula generalizes , and 
for any vectors v and w, the projection of v on w is  given by Equation 
3. It is a scalar which can be thought of as indicating how much v is 
pointing in the direction of w . 
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" 

FIGURE 8. 

There is a close relationship between the inner product and the pro
jection. Using Equation 2, we can rewrite the formula for the projec
tion: 

x = \Iv II cos 9 
v 'w 

= IIv\l \lvll IIwll 

Thus, the projection is the inner product divided by the length of w. In 
particular, if w has length one, then IIwll = I, and the projection of v 
on wand the inner product of v and ware the same thing. This  way of 
thinking about the inner product is consistent with our earlier com
ments. That is ,  if we hold the lengths of v and w constant ,  then we 
know that the inner product gets larger as v moves toward w. From the 
picture, we see that the projection gets larger as well. When the two 
vectors are orthogonal , the projection as wel l  as the inner product are 
zero. 

Inner Products in Two Dimensions 

Equation 2 can be shown to be correct in two-dimensional space with 
the help of some simple geometry. Let v and w be two vectors in the 
plane, and 9 be the angle between them, as shown in Figure 9.  Denote 
the x and y coordinates of v �nd w by V..J � Vy and wx, wy, respectively. 

COPYrighted Material 
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v 

w 

Let I denote the projection of v on w. We have I = Ilv II cosO from 
geometry. We can break I into two pieces Ix and Iy as shown in the fig
ure . I, can be computed from the diagram by noticing that triangles 
OAD and COB, in Figure 1 0, are similar triangles. Thus, the rat io of 
corresponding sides is constant: 

giving 

Iy Wy 
�= Ilwll' 

FIGURE 10. Copyrighted Material 
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A __ _ 

Ol�----- wx -----"' D 

FIGURE 11. 

In Figure 1 1 , we see how to compute lx, by observing that triangles 
EOO and CAB are similar, Thus, 

giving 

We can now write I = Ix + Iy, which yields 

Thus, 

vow 
cos 9 = IIvJJJJwll' 

Algebraic Properties of the Inner Product 

In this section, we collect together some useful algebraic theorems 
concerning inner products, Most of these theorems can be easily 
proved using the definition of the inner product and properties of real 
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numbers . In what follows ,  c and Cj wil l be any scalars ,  and the v and w 
will be n -dimensional vectors . 

v·w= w·v 

C (v . w) = (e v) . w = v . (e w) 

w . (v I + v 2) = w . V I + w . V 2 

(4) 

(5) 
(6) 

The first theorem says simply that order is unimportant ; the inner pro
duct is commutative. The second and thi rd theorems show that the 
inner product is a linear function , as we wil l  discuss at length in a later 
section . We can combine these two equations to get 
w . (eIVI + C2V2) = c) (w . VI) + C2 (w . V2). It is also well worth our 
while to use mathematical induction to general ize this formula , giving 
us 

(7) 
This important result tells us how to calculate the inner product of w 
and a l inear combination of vectors. 

Another useful theorem is 

Iv . wi � IIvllllwll (8) 
This is known as the Cauchy-Schwartz inequali ty. It gives an upper 
bound on the inner product. 

ONE UNIT IN A PARALLEL DISTRIBUTED 

PROCESSING SYSTEM 

In this section ,  we show how some of the concepts we have intro
duced can be used in analyzing a very simple PDP model . Consider the 
processing unit in Figure 12 which receives inputs from the n units 
below. Associated with each of the n + 1 units there is a scalar activa
tion value. We shall use the scalar u to denote the activation of the out
put unit and the vector v to denote the activations of the n input uni ts. 
That is , the ith component of v is the activation of the ith input unit. 
Since there are n input units, v is an n -dimensional vector. 

Associated with each l ink between the input units and the output 
unit ,  there is a scalar wemwr;�& �g�� can think of the set of n 
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FIGURE 12. 

FIGURE 13. 

weights as an n -dimensional vector w. This  is the weight vector 
corresponding to the output unit. Later we will discuss a model with 
many output units, each of which wil l have its own weight vector. 

Another way to draw the same model is shown in Figure 13. Here 
we have drawn the n input units at the top wi th the output unit on the 
right. The components of the weight vector are stored at the junctions 
where the vertical input l ines meet the horizontal output line. Which 
diagram is to be preferred (Figure 12 or Figure 13 ) is mostly a matter 
of taste , although we will see that the diagram in Figure 13 generalizes 
better to the case of many output units. 

Now to the operation of the model : Let us assume that the activa
tion of each input unit is multi pl ied by the weight on its l ink, and that 
these products are added up to give the act ivation of the output unit .  
Using the definit ion of the inner product , we translate that statement 
into mathematics as fol lows: 

u =W · v. 
The activation of the output unit i s  the inner product of its weight vec
tor with the vector of input activations. 
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The geometric properties of the inner product give us the following 
picture to help in understanding what the model is computing. We 
imagine that the set of possible inputs to the model is a vector space. 
It is an n -dimensional space, where n is the number of input lines. 
The weight vector also has n components, thus we can plot the weight 
vector in the input space. The advantage of doing this is that we can 
now state how the system will respond to the various inputs. As we 
have seen, the inner product gives an indication of how close two vec
tors are . Thus, in this simple PDP model, the output activation gives 
an indication or measurement of how close the input vector is to the 
stored weight vector. The inputs lying close to the weight vector will 
yield a large positive response, those lying near 900 will yield a zero 
response, and those pointing in the opposite direction will yield a large 
negative response. If we present a succession of input vectors of con
stant length, the output unit will respond most strongly to that input 
vector which is closest to its weight vector, and will drop off in 
response as the input vectors move away from the weight vector. 

One way to describe the functioning of the processing unit is to say 
that it splits the input space into two parts, the part where the response 
is negative and the part where the response is positive. We can easily 
imagine augmenting the unit in the followi ng way: if the inner product 
is positive, output a 1; if the inner product is negative, output a O. 
This unit ,  referred to as a linear threshold unit, explicitly computes 
which part of the space the input lies in. 

In some models, the weight vector is assumed to be normalized, that 
is, Ilwll = 1. As we have seen, in this case, the activation of the output 
unit is simply the projection of the input vector on the weight vector. 

MATRICES AND LINEAR SYSTEMS 

The first section introduced the concepts of a vector space and the 
inner product . We have seen that vectors may be added together and 
multiplied by scalars. Vectors also have a length, and there is an angle 
between any pair of vectors. Thus, we have good ways of describing 
the structure of a set of vectors . 

The usefulness of vectors can be broadened considerably by introduc
ing the concept of a matrix .  From an abstract point of view, matrices 
are a kind of "operator" �tftlitl{>ing from one vector space 
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to another vector space. They are at the base of most of the models in 
this book which take vectors as inputs and yield vectors as outputs. 

First , we wil l  define matrices and show that they have an algebra of 
their own which i s  analogous to that of vectors . In particular, matrices 
can be added together and multiplied by scalars. 

MATRICES 

A matrix is s imply an array of real numbers. If the array has m rows 
and n columns, then we will refer to the matrix as an m x n matrix. 
Capi tal letters will be used to denote matrices. 

Examples: [3 4 sj 
M= 1 0 1 1 3 0 0

1 N = 0 7 0 
001 

[ 10 - lj 
P = -1 27 

M i s  a 2 x 3 matrix, N is  a 3 x 3 matrix ,  and P i s  a 2 x 2 matrix . 

Some special matrices. There are several classes of matrices that are 
useful to identify. A square matrix is a matrix wi th the same number 
of rows and columns. The matrices Nand P are examples of square 
matrices. A diagonal matrix is a square matrix that is zero everywhere 
except on its main diagonal . An example is matrix N .  A symmetric 
matrix is a square matrix whose i ,Jth element is equal to its j, ith ele
ment. Any diagonal matrix  is symmetric. Matrix P is an example of a 
symmetric matrix that is not diagonal. Finally, the diagonal matri x that 
has all ones on i ts main diagonal is referred to as the identity matrix ,  
and is denoted I . 

Multiplication by Scalars 

A matrix can be multiplied by a scalar by multiplying every element 
in the matrix by that scalar. 

Example: [3 4 s j [9 12 lSj 
3M = 3 1 0 1 = 3 0 3 

Copyrighted Material 
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Addition of Matrices 

Matrices are added together by adding corresponding elements. Only 
matrices that have the same number of rows and columns can be added 
together. 

Example: [345] [-1 0 2 ] M + N = 1 0 1 + 4 1 -1 = [ 2 4 7] 510 

Notice that there is a close relationship between these definit ions and 
the corresponding definit ions for vectors. In fact , for fixed integers 
m and n, the set of all m x n matrices is  another example of a vector 
space. However, we will not exploit this fact, rather, we will think 
about matrices in another way , in terms of functions from one vector 
space to another. This  is the subject of the next section. 

Multiplication of a Vector by a Matrix 

We now link up vectors and matrices by showing how a vector can be 
multiplied by a matrix to produce a new vector. Consider the matrix 

W -[ � � :] and the vector v = [ � I . We wish to define a vector u 

which is the product of W and v . and denoted 

u = W v -[ � � ;] m 
To define this operation, first imagine breaking the matrix into i ts rows. 
Each row of the matr ix is a list of three numbers. We can think of the 
row as a three-dimensional vector and speak of the row vectors of the 
matrix. There are two such row vectors. Now consider forming the 
inner products of each of these row vectors with the vector v . This will 
yield two numbers. These two numbers can be thought of as a two
dimensional vector u, which is defined to be the product W v .  

Copyrighted Material 
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Example: 

[345] 11] [3'1+4.0+5'2] [13] 
u = Wv = 1 0 1 � = 1 . 1 + o· 0 + 1· 2 = 3 

The components of u are the inner products of v with the row vectors 
ofW. 
For a general m x n matrix Wand an n -dimensional vector v ,  2 the 

product Wv is an m -dimensional vector u ,  whose elements are the 
inner products of v with the row vectors of W. As suggested by Figure 
14, the ith component of u is the inner product of v with the ith row 
vector of W .  Thus, the multiplication of a vector by a matrix can be 
thought of as simply a shorthand way to write down a series of inner 
products of a vector with a set of other vectors. The vector u tabulates 
the results. This way of thinking about the multiplication operation is a 
good way to conceptualize what is happening in a PDP model with 
many output units, as we will see in the next section. 
There is another way of writing the multiplication operation that 

gives a different perspective on what is occurring. If we imagine break
ing the matrix up into its columns, then we can equally well speak of 
the column vectors of the matrix . It can then be easily shown that the 
multiplication operation Wv produces a vector u that is a linear combi
nation of the column vectors of W. Furthermore, the coefficients of 
the linear combination are the components of v. For example, letting 
Wlo w2, w3 be the column vectors ofW, we have 

u W V 

i,h 0 i,h 0 ( ) component row 

FIGURE 14. 

2 The dimensionality of v must be equal to the number of columns of W so that the 

inner products can be defined. 
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where the Vi are the components of v.  This way of viewing the multi
plication operation is suggested in Figure 1 5  for a matrix with n 
columns. 

If we let the term column space refer to the space spanned by the 
column vectors of a matrix, then we have the following interesting 
result: The vector u is in the column space of W .  
Finally, it is important to understand what is happening on an 

abstract level. Notice that for each vector v, the operation Wv pro
duces another vector u .  The operation can thus be thought of as a 
mapping or function from one set of vectors to another set of vectors. 
That is, if we consider an n -dimensional vector space V (the domain) 
and an m -dimensional vector space U (the range), then the operation 
of multiplication by a fixed matrix W is a function from V to U, as 
shown in Figure 1 6. It is a function whose domain and range are both 
vector spaces. 

Algebraic Properties of Matrix Mapping 

Several properties of matrix-vector multiplication follow directly from 
the properties of the inner product. In all cases, the number of 

w v u 

I I v[ I 
w[ wn v[w[ + . . .  + vnwn 

I I vn I 
FIGURE 15. 

v U 

FIGURE 16. Copyrighted Material 
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components of the vector must be the same as the number of columns 
of the matrix. 

W (av) = aWv 
W (u + v )  = Wu + Wv 

(9) 
(0) 

These equations are the counterparts to Equations 5 and 6. As in that 
section, they can be combined and generalized to general linear combi
nations: 

(1 1 )  

In the next theorem, the matrices M and N must have the same 
number of rows and columns. 

Mv + Nv = (M + N )v 

ONE LAYER OF A PARALLEL DISTRIBUTED 
PROCESSING SYSTEM 

(12) 

I now generalize the simple model presented earlier to show how 
matrices can be used in analyzing PDP models . Consider Figure 17, 
which is the generalization of Figure 1 2  to the case of many output 
units. Suppose that there are m output units, each one connected to all 
of the n input units. Denote the activation of the output units by 
U b U 2, . . . •  Urn· Each output unit has its own weight vector Wi' 
separate from the other output units. As before, the activation rule 

Outputs: 

Inputs: 

FIGURE 17. 
Copyrighted Material 
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says that the activation of an output unit is given by the inner product 
of its weight vector with the input vector, thus, 

Ui = Wi ' v .  

If we form a matrix W whose row vectors are the Wi' then we can use 
the rule for matrix-vector multiplication to write all of the computations 
at once. Let u be the vector whose components are the Ui' Then 

u=Wv. 

This is a very succinct expression of the computation performed by the 
network. It says that for each input vector v .  the network produces an 
output vector u whose components are the activations of the output 
units. 
Another way to draw the network is shown in Figure 1 8. which is the 

generalization of Figure 13  to the case of many output units. At each 
junction in the diagram there is a weight connecting an input unit with 
an output unit. 3 The weight vectors associated with each output unit 
appear on the horizontal lines. When drawn this way, it is clear why a 
matrix appears in the equation linking the output vector to the input 
vector: The array of junctions in the diagram is exactly the weight 
matrixW. 
Now let us attempt to understand geometrically what is being com

puted by the model. Each output unit is computing the inner product 

FIGURE 18. 

V 
1 

w 
ml 

W 
12 

W 
21 

W 
m2 

Inputs 

J Note that the weight in the ith row and jth column connects the Jth input unit to the 

ith output unit. Copyrighted Material 
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of its weight vector and the input vector (which is common to all out
put units) . Thus, each unit can be thought of as computing how close 
its weight vector is to the input vector . A larger activation is attained 
the closer the two vectors are. If all of the weight vectors have the 
same length, then that output uni t with the largest activation will be the 
unit whose weight vector is closest to the input vector. 
In the model with only one output unit, we imagined plotting the 

weight vector in the input vector space. This enabled us to see directly 
which input vectors led to a large response and which input vectors led 
to a small response. In the model with several output units, we can 
generalize by plotting each weight vector in the input space. Now we 
can see for each unit which inputs it responds to. If the weight vectors 
are spread around in the space, then every input will lead to some 
response. Also, the different units will respond to different inputs . If 
the weight vectors are assumed to have unit length , then the activation 
of the i th output unit is just the projection of v on the i th weight vec
tor. For a given input, we can draw the projections of the input on the 
weight vectors. This gives us a graphic representation of the output of 
the network. It should be emphasized, however, that this representa
tion is useful mostly as a conceptual tool. The graphic approach cannot 
be used in most systems, which can have hundreds or thousands of 
input lines. 
Another perspective on the operation of the model can be obtained 

by focusing on the columns of the weight matrix rather than on its 
rows. Whereas the rows of the matrix are the weights on the lines com
ing in to the processing units, the columns correspond to the weights 
on the lines going out from the processing units. Each unit on the 
lower row in Figure 1 7  is associated with such a vector: The com
ponents of the vector are the weights l inking that unit with the output 
units above. These vectors are referred to as the outgoing weight vec
tors, as contrasted with the incoming weight vectors which are the rows of 
the weight matrix . 4 In the previous section, it was seen that when a 
matrix multiplies a vector , the resulting vector is a linear combination 
of the columns of the matrix . This view applies to the PDP model as 
follows: The output vector u is a linear combination of the outgoing 
weight vectors from the input units. The coefficients in the l inear com
bination are the activations of the input units. Thus, in this perspec
tive, each input unit multipl ies its outgoing weight vector by its activa
tion , and the resulting vectors are added to yield the output vector of 
the system. 
In general, as will be discussed further in a later section, a unit can 

4 This is not standard termi9P!�Y,  .a� I d)lJ{�ntin�e to use the term weight vector to 
refer to the incoming weight �M¥!7f} te a ena 
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appear in a multilayer system and thus have both an incoming weight 
vector and an outgoing weight vector, as shown in Figure 1 9. In this 
case, both views of matrix-vector multiplication can be useful : The unit 
can be thought of as matching its incoming weight vector to the current 
input using the inner product, and sending the result of this match 
multiplied by the outgoing weight vector to the next level . 

LINEARITY 

A distinction is often made between a linear system and a nonlinear 
system. In general , linear systems are relatively easy to analyze and 
understand, whereas nonlinear systems can be difficult. In this section, 
I will characterize linear systems. Nonlinear systems are defined simply 
as everything else. In a later section, I will give some specific examples 
of nonlinear systems. 
Suppose that there is a function f which represents a system in that 

for each input x to the system, the output y is given by 

y = j (x ) .  
The x and y might be scalars or they might be vectors, depending on 
the particular system. The function j is said to be linear if for any 
inputs X l and x 2 ,  and any real number c ,  the following two equations 
hold: 

f (ex ) = c f (x ) .  
f (X l + X 2 )  = f (X I )  + f (X2) '  

FIGURE 19. 
Copyrighted Material 
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The first of these two equations implies that if we multiply the input by 
some constant, then the output is multiplied by the same constant. 
The second equation is more important. Consider presenting the inputs 
X l  and x 2  separately to the system and measuring the outputs. In a 
linear system, knowing how the system responds separately to the 
inputs is all we need to predict the output of the system when the sum 
Xl + x 2 is presented. We simply add the outputs found separately to 
obtain the response to the sum. In a nonlinear system, on the other 
hand, we might find that the response to the sum is much larger or 
smaller than would be expected based on the inputs taken separately . 
The response to the sum might be zero even when strong responses are 
obtained separately. 
If we restrict ourselves to scalar functions of a scalar variable, then 

the only linear functions are those in which the output is proportional 
to the input, i.e. , for some real number c :  

y = ex. 

However, many systems are scalar or vector functions of a vector input. 
For example, for a fixed vector w ,  the function 

u = W ' v  

is a scalar function of a vector input v This function is a linear func
tion because 

w . (c v ) = c (w . v ) 

and 

w . (v I + v 2) = w . V I + W • V 2' 

The PDP model with one output unit is an example of such a linear 
system. 

A system in which the output is obtained from the input by matrix 
multiplication is also a linear system , according to Equations 9 and 10. 
lt turns out that these are the only linear vector functions. That is, if a 
function f which maps from one vector space to another vector space 
is linear, then it can be represented by matrix multiplication. 5 
The PDP model discussed in the previous section is an example of a 

linear system because it is represented by matrix multiplication. In 
such a system, because of linearity, we know what the output will be 
when the sum of two vectors is presented if we know the outputs when 

S Let vi be the ith standard basis vector and let Wi = f (V i ) '  Then if W is a matrix 
whose columns are t he wi , f Gp'P¥fiJJllletlalllff.terial 
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the vectors are presented separately . We also know what the output 
will be to scalar multiples of a vector. These properties imply that if we 
know the output to all of the vectors in some set {v I } ' then we can cal
culate the output to any linear combination of the v j . That is, if 
v = C tV I  + C2V 2 + . . .  + CnV n ' then the output when v is presented to 
the system is 

Wv = W ( C IV I + c 2v 2 +  . . .  + cnv n ) = 

( IS) 
The terms in the parentheses on the right are known vectors : They are 
the outputs to the vectors V i . Thus, we simply multiply these vectors 
by the Cj to calculate the output when v is presented . If the v j are a 
basis for some vector space, then every vector in the space is a linear 
combination of the v I .  Therefore, knowing the outputs of the system 
to the basis vectors allows us to calculate immediately the output to any 
other vector in the vector space without reference to the system matrix 
W .  The preceding statement should be studied carefully, because it 
expresses an extremely important defining property of linear systems. 
Another way to say the same thing is as follows: Imagine that we are 
studying some physical system by measuring its responses to various 
inputs. The system might be electronic or physiological , for example. 
If it is a linear system, then we should first measure the responses to a 
set of inputs that constitute a basis for the input space. We then have 
no need to make any further measurements. The responses of the sys
tem to any other input vector can be immediately calculated based on 
the measurements that we have already made. 

MATRIX MULTIPLICATION AND MULTILAYER 
SYSTEMS 

The systems considered until now have been one-layer systems. That 
is, the input arrives at a set of input units , is passed through a set of 
weighted connections described by a matrix , and appears on a set of 
output units. Let us now arrange two such systems in cascade, so that 
the output of the first system becomes the input to the next system, as 
shown in Figure 20. The composite system is a two-layer system and is 
described by two matrix-vector multiplications. An input vector v is 
first multiplied by the matrix N to produce a vector z on the set of 
intermediate units: 

z = Nv , Copyrighted Material 
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u 
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M 
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z 
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N 
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v 

FIGURE 20. 

and then z is multiplied by M to produce a vector u on the uppermost 
set of units: 

u = Mz . 

Substituting N v for z yields the response for the composite system: 

u = M (Nv ) .  ( 1 6) 

This equation relates the input vectors v to the output vectors u . 
We wil l  now define an operation on matrices, called matrix multiplica

tion , which wil l  simplify the analysis of cascaded systems, allowing us to 
replace the two matrices M and N in Equation 1 6  by a single matrix P .  
Matrices M and N can be multiplied to produce a matrix P = M N  as 
follows: The i , j th element of P is the inner product of the i th row of 
M with the j th column of N .  Note that the order of multipl ication is  
important -the product MN is  general ly not equal to the product N M .  
This  i s  t o  b e  expected from the asymmetric treatment of M and N in 
the definit ion.  

Example: 1 3 

4 

5 ] 1 0 1  
o 1 , 2 

1 1 2 ] 1 ( 3 + 8 - 5 ) ( 6 + 0 + 5 ) ] 1 6 1 1 ] 
2 0 = 0 + 0 - 1 )  ( 2 + 0 + 1 )  = 0 3  

- 1 1 ( 0 + 2 - 2 )  ( 0 + 0 + 2 )  0 2 

Another way to think about matrix multi pl ication fol lows from the 
definition of matri x-vector multiplication . Each column vector of P is 
the product of the matrix M � th the corresponding column vector of 
N . For example,  the fi&£>�q,MitWiebmputed by multiplying the 
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first column of N by the matrix M .  This is shown in Figure 2 1 ,  where 
we have explicitly shown the column vectors of N and P .  

The product of two matrices i s  defined only if the number of 
columns of the fi rst matrix is equal to the number of rows of the 
second matrix .  Otherwise, the inner products cannot be formed. A 
handy rule is the following: Multiplying an r x s matrix and an s x t 
matrix yields an r x t matrix .  

Let us return to Figure 20 and Equation 1 6, which descri bes the sys
tem. I make the claim that the matrices M and N in the equation can 
be replaced by the matrix P ,  if P is the matrix product of M and N .  In 
other words , 

u = M ( Nv ) = ( MN ) v  .. Pv . 

What this equation says i s  that the two-layer system in Figure 20 i s  
equivalent to  a one-layer system with weight matrix P .  For every input 
vector v ,  the two systems wil l  produce the same output vector u .  Thus, 
for l inear systems at least , the distinct ion between two-layer systems 
and one-layer systems is  more apparent than real . 6 

We can attempt to justify our claim and ,  in so doing, get a better 
understanding of matrix multipl ication if we examine the system in Fig
ure 20 more closely .  Let us assume that a matrix P exists which can 
replace the cascaded pai r M ,  N ,  and consider what the element in the 
first row and the first column of P should be. This  element gives the 
strength of the connection between the fi rst component of the input 
vector v and the first component of the output vector u .  In the cas
caded system, there are s paths through which this connection can 
occur, as shown in Figure 22 .  We must multiply the weights along 
each path and add the values for the paths to get the strength of the 
connection in the equivalent one-layer system. This is calculated as 

P l I = m I l n I l  + m I 2 n 2 I  + . . .  + m Is ns ) ' 

M N p 

FIGURE 2 1 .  

6 The two systems are identical i n  the sense that they compute the same funct ion.  Of 

course, they may have d ifferent internal  dynamics and therefore take different amounts 

of t ime to compute their outpl$;)pyrighted Material 
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o 

o 

FIGURE 22.  

This equation can be easily  generalized to give the strength of the con
nection between the j th element of v and the i th element of u :  

This formula calculates the inner product between the i th row of M 
and the j th column of N ,  which shows that P is equal to the product 
MN .  

This result can be extended to systems with more than two layers by 
induction. For example ,  in a three-layer system, the first two layers 
can be replaced with a matrix (as we have just seen) , and then that 
matrix can be multiplied by the matrix of the remaining layer to get a 
single matrix for the whole system. In general , the cascaded matrices 
of any n -layer l inear system can be replaced by a single matrix which is 
the product of the n matrices. 

As a final comment , the definition of matrix multiplication may 
seem somewhat odd, especially since it would seem more straightfor
ward to define it by analogy with matrix addit ion as the element-wise 
product.  In fact , it  would be perfectly acceptable to define mult ipl ica
tion as the element-wise product , and then to use another name for the 
operation we have discussed in this section. However, element-wise 
multiplication has never found much of an application in l inear algebra. 
Therefore , the term mult ipl ication has been reserved for the operation 
described in this section, which proves to be a useful definition, as the 
application to multilayer systems demonstrates . 

Copyrighted Material 
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Algebraic Properties of Matrix  Mult ipl ication 

The following properties are identical to the corresponding propert ies 
of matrix-vector mult i plication . This is to be expected gi ven the rela
tionship between matrix multipl icat ion and matrix-vector multipl ication 
(cf. Figure 21) . 

M ( cN ) = cMN 

M ( N  + P ) = MN + MP 

{ N  + P ) M = NM + PM 

EIGENVECTORS AND EIGENVALUES 

( 1 7) 
( 1 8) 
( 1 9) 

The next two sections develop some of the mathematics important 
for the study of learning in PDP networks. Fi rst , I wi ll discuss eigenvec
tors and eigenvalues and show how they relate to matrices . Second, I 
will discuss outer products. Outer products provide one way of con
structing matrices from vectors . In a later section, I wi l l  bring these 
concepts together in a discussion of learning. 

Recall the abstract point of view of matrices and vectors that was dis
cussed earl ier: The equation u = Wv describes a junction or mapping 
from one space, cal led the domain, to another space, called the range. 
In such vector equations , both the domain and the range are vector 
spaces,  and the equation associates a vector u in the range wi th each 
vector v in the domain.  

In general , a function from one vector space to another can associate 
an arbitrary vector in the range wi th each vector in the domain .  How
ever ,  knowing that u = Wv is a l inear function highly constrains the 
form the mapping between the domain and range can have . For exam
ple, if  v 1 and v 2 are close together in the domain ,  then the vectors 
u 1 - Wv 1 and u 2 = Wv 2 must be close together in the range . This is 
known as a continuity property of l inear functions. Another important 
constraint on the form of the mapping is the following, which has 
already been discussed. If v 3  i s  a l inear combinat ion of V I  and V 2 ,  and 
the vectors U 1  = WV I and U 2  = WV 2 are known , then U 3  = WV 3 is com
pletely determined -it  is  the same l inear combination of U 1  and U 2 ' 
Furthermore, i f  we have a set of basis vectors for the domain,  and it is 
known which vector in  the range each basis vector maps to, then the 

Copyrighted Material 



400 FORMAL ANALYSES 

mappings of all other vectors in the domain are determined (cf. Equa
tion 1 5  ) .  

In this section, let us special ize to the case of square matrices, that 
is ,  matrices with the same number of rows as columns. In this case, 
the domain and the range wil l  have the same number of dimensions 
(because the vectors v and u must have the same number of com
ponents) , and the vectors in the domain and the range can be plotted in 
the same space. This is done in Figure 23 , where we have shown two 
vectors before and after multiplication by a matrix .  

In  general , vectors in this space wi l l  change direction as well as 
length when multipl ied by a matrix .  However, as demonstrated by one 
of the vectors in Figure 2 3 ,  there wi l l  be some vectors that wi l l  change 
only in length,  not di rection. In other words, for these vectors, multi 
pl ication by the matrix is no different than mult ipl ication by a simple 
scalar. Such vectors are known as eigenvectors. Each eigenvector v of a 
matrix obeys the equation 

Wv = AV (20) 
where A is a scalar. A is called an eigenvalue, and indicates how much v 
is shortened or lengthened after mult ipl ication by W .  

Example: 

FIGURE 23. 
Copyrighted Material 
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A matrix can have more than one eigenvector, which , geometrically, 
means that i t  is possible to have e igenvectors in more than one di rec
tion . For example, the leftmost matrix above also has the eigenvector I : ] with eigenvalue 3 ,  and the diagonal matrix on the right also has the 

eigenvector I �] with eigenvalue 4. 

There is  another, more trivial ,  sense in which a matrix can have mul
tiple eigenvectors : Each vector that is coll inear with an eigenvector is 
itself an eigenvector. If v is an eigenvector with eigenvalue A ,  and if 
y = c v ,  then i t  is easy to show that y is also an eigenvector wi th eigen
value A . For the ensuing discussion, the coll inear eigenvectors wil l  just 
confuse things ,  so I wi l l  adopt the convention of reserving the term 
eigenvector only for vectors of length 1 .  Thi s  is equivalent to choosing 
a representat ive eigenvector for each di rection in which there are eigen
vectors.  

Let us now return to the diagonal matrix I � �] . We have seen that 

this matrix has two eigenvectors, I �] and I �] . with eigenvalues 3 and 

4. The fact that the eigenvalues are the same as the diagonal elements 
of the matrix is  no coincidence : This i s  true for all diagonal matrices . 
as can be seen by multiplying any diagonal matrix by one of its 
eigenvectors - a  vector in the standard basis .  It i s  also true that this 
matrix has only two eigenvectors. This  can be seen by considering any 

vector of the form I :1 , where a and b are both nonzero. Then we 

have 

I � �I I �I - I  �] 
Such a vector is not an eigenvector , because the components are mult i
plied by different scalars .  The fact that the matrix has distinct eigen
values is the determining factor here . If the d iagonal elements had 
been identical , then any two-dimensional vector would indeed have 
been an eigenvector. This can also be seen in the case of the n x n 
identity matrix I .  for which every n -dimensional vector is an eigenvec
tor wi th eigenvalue 1 .  

In general . an n x n matrix can have up to, but no more than , n dis
tinct eigenvalues . Furthermore, distinct eigenvalues correspond to dis
tinct di rections . To b��ghm_erilil a matrix has n distinct 
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eigenvalues, then the n associated eigenvectors are linearly independent. 
Although the condi tions under which a matrix has a full set of distinct 
eigenvalues are beyond the scope of this chapter, it is quite possible to 
have matrices with fewer than n eigenvalues, as in the case of the iden
tity matrix .  

I wi l l  not discuss how to  find eigenvectors and eigenvalues for a par
ticular matrix ,  but refer the reader to the books on linear algebra listed 
at the end of the chapter. There are several methods, all of which can 
be computationally expensive for large matrices. In a later section I 
wi ll discuss how to construct a certain class of matrices given a set of 
desi red eigenvectors . 

The goal now is to show how eigenvectors can be used . To do so, let 
us begin by assuming that we are dealing with the most favorable case : 
an n x n matrix W with n distinct eigenvalues } q , A 2 • . . . • An . 
Denote the associated l inearly independent eigenvectors by 
v \ I  V 2 • • • • •  V II .  Recall that if we have a set of basis vectors for the 
domain of a matrix ,  and if we know the vectors in the range associated 
with each basis vector, then the mapping of all other vectors in the 
domain are determined. The eigenvectors of W form such a basis .  
This is because there are n eigenvectors, and they are linearly indepen
dent. Furthermore, we know the vectors in the range associated with 
each eigenvector V i ;  they are simply the scalar multiples given by 
Wv = AV .  

To show how to take advantage of these observations , pick an arbi 
trary vector v in the domain of W .  It can be written as a l inear combi
nation of the eigenvectors, because the eigenvectors form a basis: 

We can now write: 

u = Wv 

Using l inearity, 

If we next substi tute for each of the quantities Wv i ,  using Equation 20: 

U = C IA lv l + C2A 2v 2 + . . .  + cn A nV n . (21) 

Copyrighted Material 
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Notice that there are no matrices in this last equation. Each term ci A ;  is 
a scalar; thus we are left with a simple l inear combination of vectors 
after having started with a matrix multipl icat ion. 

This equation should give some idea of the power and uti l i ty of the 
eigenvectors and eigenvalues of a matrix .  If we know the eigenvectors 
and eigenvalues ,  then, in essence, we can throw away the matrix .  We 
simply wri te a vector as a l inear combination of eigenvectors, then mul
tiply each term by the appropriate eigenvalue to produce Equation 2 1 ,  
which can be recombined to produce the result . Eigenvectors tum 
matrix multipl ication into simple multiplication by scalars .  

It i s also revealing to consider the magnitudes of  the eigenvalues for 
a particular matrix .  In Equation 2 1 , all of the vectors v ;  are of unit 
length , thus the length of the vector u depends directly on the product 
of the magnitudes of the C; and the eigenvalues A i . Consider the vec
tors that tend to point in the di rections of the eigenvectors with large 
eigenvalues. These are the vectors wi th large C; for those eigenvectors . 
Equation 2 1  says that after multiplication by the matrix they will  be 
longer than vectors of the same init ial length that point in other direc
tions. In particular, of all unit length vectors , the vector that will be 
the longest after mult ipl ication by the mat rix is the eigenvector with the 
largest eigenvalue. In other words , knowledge of the eigenvectors and 
eigenvalues of a system tells which input vectors the system will give a 
large response to. This fact can be useful in the analysis of l inear 
models .  

TRANSPOSES AND THE OUTER PRODUCT 

The transpose of an n x m matrix W is an m x n matri x  denoted 
W T . The i , j th element of W T is the j , i th element of W .  

Example: 

1 3 

4 5 1 T 

_ [ 3  1 1 1 0 2 - 4 0 

5 
2 

Another way to describe the transpose is as fol lows: The row vectors of 
WT are the column vectors of W ,  and the column vectors of W T  are 
the row vectors of W . 

Copyrighted Material 
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Algebraic Properties of the Transpose 

( W T ) T = w 

( CW ) T  = cW T 

( M  + N ) T = M T  + N T  

( MN ) T  = N TM T  

If a matrix i s  its own transpose ,  that i s  i f  W T = W .  then the matrix is 
symmetric. 

Outer Products 

Before discussing outer products, let me attempt to ward off what 
could be a confusing aspect of the notat ion we are using. Consider, for 
example, the entity below. Is it a matrix with one column or is it a 
vector? 

The answer is  that i t  could be either- there is  no way of distinguishing 
one from the other based on the notation. There is nothing wrong with 
this fai lure to distinguish between vectors and n x 1 matrices for the 
following reason. In equations involving vectors and matrices , the 
same results will be obtained whether entities such as the one above are 
treated as vectors or as matrices . This  is true because the algebra for 
vectors and matrices is exactly the same, as a review of the relevant 
earlier sections wil l  show. Thus, as long as we are simply interested in 
calculating values and manipulating equations, there is no need to dis
tinguish between vectors and n x 1 matrices. Rather , by treating them 
as the same thing, we have a uniform set of procedures for dealing with 
all equations involving vectors and matrices. 

Nevertheless, on the conceptual level , it is important to distinguish 
between vectors and matrices. The way we are using the terms, a vec
tor is an element in a vector space, whereas a matrix can be used to 
define a l inear mapping from one vector space to another .  These are 
very different concepts. 

With this caveat in mind, we wil l  conti{lue to take advantage of the 
uniformity of notation, bt.�fii'lWdMft{nOObn between a vector and an 
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n x 1 matrix .  For example, for every n -dimensional vector v ,  we can 
form the transpose v T , which is  simply a matri x  with one row. We can 
then form the product v T u ,  where u is any n -dimensional vector, as in 
the following example. 

Example: 

u � �I 21 1 �I � [ 61 
Notice that the result has only a sing:e component , and that this com
ponent is calculated by taking the inner product of the vectors v and u .  
In many applications, there i s  no need to distinguish between vectors 
with one component and scalars , thus the notation v T u is often used 
for the inner product. 

Let us next consider the product u v T. This is a legal product 
because the number of columns in u and the number of rows in v T are 
the same, namely one. Following the rule for matrix multiplicat ion ,  we 
find that there are n 2 inner products to calculate and that each inner 
product involves vectors of length one. 

Example: 

U V  T _ I  � 1 3  1 2 ] [ 3  1 2 ] = 12 4 8 
o 0 0 

The i , j th element of the resulting matrix is equal to the product Uj v} . 
For those who may have forgotten the noncornrnutat ivity of matrix 

multiplication, this serves as a good reminder: Whereas the product 
v TU has a single component, a simple change in the order of multipl i 
cation yields an n x n matrix .  

Products o f  the form u v  T are referred t o  as outer products, and wil l  
be discussed further in the next section. Note that the rows of the 
resulting matrix are simply scalar multiples of the vector v .  In other 
words, if we let W be the matrix uv T , and let W j be the i th row of W ,  
then we have 

Wj = UjV 
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OUTER PRODUCTS, EIGENVECTORS, AND LEARNING 

In this section , I discuss two example PDP systems that bring 
together several of the concepts discussed previously ,  including eigen
vectors and outer products. These systems are described in 1. A . 
Anderson , S i lverstei n, Ritz, and Jones ( I 977) and Kohonen ( t  977) . 

We have seen that simple l inear PDP systems can be modeled with 
the equation u = Wv , where W is  a weight matrix .  The rows of W are 
the weight vectors associated with each of the units in the upper level 
of the system. Unti l  now, we have taken the matrix W to be a given, 
and have discussed how it maps input vectors to output vectors. Let us 
now consider a simple scheme, referred to as a Hebbian learning rule, 
whereby we can choose a matri x  that associates a particular output vec
tor u with a part icular input vector v .  A system that can autonomously 
implement such a scheme is capable of a rudimentary form of associa
t ive learning. 

The scheme will only work with input vectors of unit length, so let 
us begin by making that assumption. Thus, we have v . v = 1 .  Let us 
consider the simplest case , in which the output vector u has only one 
component,  which we will denote by u. This is the system discussed in 
Figure 1 3 .  We wish a weight vector w such that when v is present as 
the input , the output is u: u = w . v .  Note that u and v are the given 
here, and w is the unknown. To make a choice for w, we can use the 
following logic .  We wish to convert the vector v into a scalar u. If we 
were to choose v i tself as the weight vector, then we would have 
v . v = 1 .  Since we wish the scalar u, not 1 ,  we choose v multipl ied by 
u, which gives the desired result. This can be seen using simple algebra 
as follows: 

w . v = ( uv ) . v 

= u (v ' v )  

= u. 

Geometrically, the problem of finding w corresponds to finding a 
vector whose projection on v is u. As shown in Figure 24, any vector 
along the dotted l ine wi l l  work , because each such vector projects to the 
same place on v .  Our solution involved making the simple choice of 
the vector that points in the same direction as v .  

It is not difficult to generalize to the case of an output vector u with 
more than one component . To do so, let us consider the PDP system 
of Figure 1 8 .  Each output unit has a weight vector, and these weight 
vectors form the rows of the weight matrix W . As discussed earlier, 
each unit calculates the ��n its weight vector and the 
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input vector v ,  and these inner products are the components of the out
put vector u . To implement a learning scheme, we need to be able to 
choose weight vectors that produce the desi red components of u .  
Clearly,  for each component,  we can use the scheme al ready described 
for the single unit model above . In other words, the i th weight vector 
should be given by 

W, = UjV . (22) 

The i th unit  wi l l  then produce the i th component of u when presented 
wi th v .  Thus, the system as a whole will produce the vector u when 
presented with v .  We now would l ike a way to write a matrix W whose 
rows are gi ven by Equation 22 .  This is done by noting that Equation 22 
is � set of  equations calculating the outer product of  u and v .  Thus, W 
can be wri tten as fol lows : 

W = uv T . 

We can check the correctness of this choice for W as fol lows : 

Wv = (uv T ) v  

= u (v Tv )  

= u 

using the fact that v is of length one in making the last step. 
The fact that W is  an outer Ploduct h� i mportant implications for 

the implementation of �8BKllf1U!gfltMgtfW'DP networks . As discussed 
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in the previous sect ion ,  the i , j t,h element of W is equal to the product 
u, vi ' which is the product of the activation of the j th input unit and 
the i th output unit .  Both of these quantit ies are avai lable in a physi
cally circumscribed area on the l ink joining these two units. Thus, the 
weight on that l ink can be changed by autonomous local processes. The 
Hebb rule is often referred to as a local learning rule for this reason. 

To summarize , we have established a procedure for finding a matrix 
W which will  associate any particular pai r of input and output vectors . 
Clearly for every pair of vectors , we can find a different weight matrix 
to perform the association . What is less obvious is that the same 
matrix can be used for several pairs of associations. Let us assume that 
we are given n n -dimensional output vectors U b  U 2 , . . .  , U n  which 
we want to associate with n n -dimensional input vectors 
v I ,  V 2 ' . . . , V n .  In other words, for each i , we wish to have 

Let us further assume that the vectors v, form a mutually orthogonal 
set and that each vector v, is of unit length. That is ,  we assume 

T 
1 1  if i = .i 

v j Y j = 0 otherwise. 

We now form a set of matrices W, using the learning scheme 
developed above: 

Finally, we form a composite weight matrix W which is the sum of 
the W, : 

W = W 1 +  . . .  + W, +  . . . + Wn •  

We already know that , for example, W \ above will associate V I and 
U I .  It is also true that W will perform al l such associations. Thus, for 
arbitrary i : 

Wv, = (W \  + . . . + W ,  + . . .  + Wn  h, 

= (U \V \T + . . .  + u ·v .T + . . .  + U v T) y . I I n n  I 

= (u \v th,  + 

= U \  ( v tv , ) + 

+ (u ,ylh, + 

+ u , ( ylv , ) + 

= 0 + . . .  + u i (y lv i ) + . . .  + 0 
Copyrighted Material 

+ (u ny!h, 

+ U n  ( v!v , ) 
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The property of orthogonality was crucial here , because it forced the 
disappearance of all terms involving vectors other than Uj in the next to 
last step. The reader may find it useful to justify the steps in this 
derivation. 

When the set of input vectors i s  not orthogonal , the Hebb rule wil l  
not correctly associate output vectors with input vectors. However, a 
modification of the Hebb rule, known as the delta rule, or the Widrow
Hoff rule, can make such associations. The requi rement for the delta 
rule to work is that the input vectors be linearly independent. The 
delta rule is discussed further in Chapter 1 1 ,  and at length in Kohonen 
( 977) . 

Earlier it was discussed how, at least for square matrices , knowledge 
of the eigenvectors of a matrix permits an important simplification to 
be made. The matrix multipl ication of a vector can be replaced by 
scalar multipl ication (cf. Equation 2 1 ) . I wil l  now show that the Heb
bian learning scheme fits nicely wi th the notion of eigenvectors . Sup
pose that we wish to associate vectors with scalar copies of themselves. 
This is what is done, for example,  in an auto-associator l ike those dis
cussed in J .  A. Anderson et al . (977 ) ; see Chapters 2 and 1 7 .  In other 
words , we want the vectors U ; to be of the form A ;  v i where v i are the 
input vectors .  Let us further assume that the n scalars Ai are distinct . 
Using the outer product learning rule,  we have 

where 

If we now present the vector v I to the matrix W thus formed, we have 

WVi = (W I + . . .  + WI + . . . + Wn h i  

= ( A IV IV { + . . .  + A jv jvl + . . .  + A n v n v ! h ,  

= 0 + . . . + A i v , (V  lv j ) + . . .  + 0 

This equation shows that v I is an eigenvector of W with eigenvalue A i ' 
Let me summarize. When we calculate a weight matrix W using the 

Hebbian learning rule and associate input vectors to scalar multiples of 
themselves, then those input vectors are the eigenvectors of W .  It  is 
important to note that the matrix W need not even be calculated -as 
was stated in the section on eigenvectors, once we have the eigenvec
tors and eigenvalues of a matrix ,  we can throw away the matrix .  All 
input-output computatiditPK4§'I"dcMft�rW using Equation 21 .  This 
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approach is in contrast to a scheme in which we first calculate a matrix 
W from the input vectors, and then calculate the eigenvectors from the 
matrix W .  Here, the eigenvectors are avai lable in the statement of the 
problem. 

Why should one want to associate vectors with scalar copies of them
selves? Essenti al ly, the answer is  that a system which learns in this 
way wi l l  exhibit the desirable property of completion. That is , when par
tial versions of previously learned vectors are presented to the system, 
it wi l l  be able to produce the whole vector. Readers desiring more 
details on how this is done should consult Anderson et at . ( 1 977) . 

MATRIX INVERSES 

Throughout this chapter, I have discussed the l inear vector equation 
u = Wv . First , I discussed the si tuation in which v was a known vector 
and W a known matrix .  This  corresponds to knowing the input to a 
system and its matrix ,  and wanting to know the output of the system. 
Next ,  I discussed the situation in which v and u were known vectors, 
and a matrix W was desi red to associate the two vectors . This is the 
learning problem discussed in the previous section. Finally, in this sec
t ion ,  I discuss the case in which both u and W are known,  but v is 
unknown . There are many situations in which this problem arises, 
including the change of basis discussed in the next section .  

As  we  will see , the solution to  this problem involves the concept of  a 
matrix in verse. Let us fi rst assume that we are dealing with square 
matrices . The inverse of a matrix W ,  if it exists , is another matrix 
denoted W- l that obeys the following equations: 

W - l W = I 

WW- l = I 

where I is the identity matrix .  

Example: 

[ 1 'h l 
W = - 1  1 

{ 2  3 
W- l -- 2 

Copyrighted Materi 1 3 
1 3 
2 
3 
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2 1 

WW- I = [ _ � '� I 3 3 - [ ! �] 2 2 
3 3 

2 1 
W- IW = 

3 3 [ 1 � 1 _ [ 1 0 ] 
2 2 - 1 1 - 0 1 
3 3 

A good discussion of how to calculate a matrix inverse can be found 
in Strang ( 1 976) . 

Let us now show that the matrix inverse is the tool we need to solve 
the equation u = W v .  where v is the unknown. We mult iply both 
sides of the equation by W- I , which yields 

W · l u = W-l WV 

= Iv 

= v . 

Thus the solution of the equation simply involves multiplying u by the 
matrix W- I . 

Example. We wish to find the vector v that sati sfies the equation 

To do so, we use the matri x  W- l given above: 

We can now check the result as fol lows : 

I l 1h ] l l ] _ [ 3 [ - 1 1 4 - 3 ' 

It is important to realize that W- l , despite the new notation, is sim
ply a matrix l ike any other .  Furthermore, the equation v = W- 1u is 
nothing more than a l inear mapping of the kind we have studied 
throughout this chapter'cJ,P;t;800IfWra9brlajs mapping is the range of 
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W ,  and the range of the mapping is the domain of W .  This inverse 
relationship is shown in Figure 25 .  The fact that W- I represents a 
function from one vector space to another has an important conse
quence . For every u in the domain of W- I , there can be only one v in 
the range such that v = W- I u . This is true because of the definition of 
a function. Now let us look at the consequence of this fact from the 
point of view of the mapping represented by W .  If W maps any two 
distinct points v I and v 2 in its domain to the same point u in its range, 
that is ,  if W is not one-to-one, then there can be no W- I to represent 
the inverse mapping. 

We now wish to characterize matrices that can map distinct points in 
the domain to a single point in the range, for these are the matrices 
that do not have inverses . To do so, first recall that one way to view 
the equation u = W v is that u is a l inear combination of the column 
vectors of W .  The coefficients of the l inear combination are the com
ponents of v . Thus, there is more than one v which maps to the same 
point u exactly in the case in which there is more than one way to write 
u as a l inear combination of the column vectors of W .  These are com
pletely equivalent statements. As discussed earlier, we know that a 
vector u can be written as a unique l inear combination of a set of vec
tors only in the case where the vectors are l inearly independent . Other
wise, if the vectors are l inearly dependent, then there are an infinite 
number of ways to write u as a l inear combination. Therefore, we have 
the result that a matrix has an inverse only if its column vectors are 
l inearly independent. 

For square matrices with l inearly dependent column vectors and for 
non-square matrices , it is possible to define an inverse called the gen
eralized inverse, which performs part of the inverse mapping. In the 
case in which an infinite number of points map to the same point, there 
wil l  be an infinite number of generalized inverses for a particular 
matrix ,  each of which will  map from the point in the range to one of 
the points in the domain .  

w-1  
FIGURE 25. Copyrighted Material 



9. INTRODUCTION TO LINEAR A LG EBRA 4 1 3  

In summary, the matri x inverse W - [ can be used t o  solve the equa
tion u = W v ,  where v is  the unknown , by mult iplying u by W- I .  The 
inverse exists only when the column vectors of W are l inearly i ndepen
dent. Let me mention in  passing that the maximum number of l inearly 
independent column vectors of a matrix is called the rank of the 
matrix? An n x n matri x is defined to have full rank if  the rank is  equal 
to n .  Thus, the condit ion that a matri x have an i nverse is equivalent to 
the condition that i t  have ful l  rank.  

CHANGE OF BASIS 

As was discussed earl ier,  a basis for a vector space is  a set of l inearly 
independent vectors that span the space.  Although we most naturally  
tend to th ink in terms of the standard basis,  for a variety of reasons i t  
is often convenient to change the basis .  For example,  some relat ion
ships between vectors or operations on vectors are easier to describe 
when a good choice of basis  has been made. To make a change of 
basis, we need to be able to describe the vectors and matrices we are 
using in terms of the new basis .  In this section , I use the results of the 
previous section to discuss the problems that arise under a change of 
basis.  I also discuss some of the implications of a change of basis for 
linear PDP models. 

The numbers that are used to represent a vector, it should be 
remembered, are relative to a particular choice of basis .  When we 
change the basis,  these numbers,  which we refer to as coordinates, 
change. Our first task, then , is to find a way to relate the coordinates 
in a new basis to the coordinates in the old basis .  Let me begin with an 
example.  In Figure 26, there is a vector Y ,  which in the standard basis 

has the coordinates [ � I .  We now change basis by choosing two new 

basis vectors , Y 1 � [ _ :  1 and Y 2 = [ � I .  As shown in Figure 27 ,  v can 

be written as a l inear combination of Y I and Y 2. It turns out , as we 
shall see below, that the coefficients 1 and 2 are the correct coefficients 
of Y l  and Y 2  in the l inear combination.  Let the symbol Y ·  represent v 

in the new basis .  Thus, v ·  - [ ; I .  
7 An important theorem in linear algebra establ ishes that, for any matri x ,  the max

imum number of linearly independent column vectors is equal to the maximum number 
of linearly independent row vee8��H1eWMA?��? be taken as either .  
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v 

FIGURE 26. 

We now want to show how to find the coordinates of a vector v ir .  
new basis Y h Y 2 , . . .  , Y n • These coordinates are s imply the coef 
cients Cj in the equation 

(2 

Let us form a matrix Y whose columns are the new basis vectors : 
and let v ·  be the vector whose components are the Cj . Then Equati 
23 i s  equivalent to the following equation: 

v = Yv · (2 

where v ·  i s  the unknown. The solution to the problem is now clear: . 
use the inverse matrix y - I  to calculate the unknown vector as in t 
previous section: 

v ·  = y - 1 v .  

Example. Letting Y I = [ _ ! I and Y 2 = [ I� I ,  we have Y = [ _ ! I, 

2 1 - - -
3 3 

and y - I = 2 2 
3 3 

Copyrighted Material 
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Thus, 

v ·  = y- I v  = 

2 
3 
2 
3 

1 
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/ 
Y2 / 

I 
I 

I· 
I . 

. .  v 

� [ � [ = [ � I · 3 

Notice that we have also solved the inverse problem along the way . 
That i s ,  suppose that we know the coordinates v ·  in  the new basis ,  and 
we wish to find the coordinates v in the old bas is .  This transformation 
is that shown in Equation 24:  We simply multiply the vector of new 
coordinates by y .  

We have shown how to represent vectors when the basis i s  changed . 
Now, let us accomplish the same thing for matrices . Let there be a 
square matr ix W that t ransforms vectors in accordance with the equa
tion u = Wv . Suppose we now change basis and write v and u in the 
new basis as v ·  and u · .  We want to know if  there is a matrix that does 
the same thing in the new basis as W did in the original basis .  In other 
words , we want to know if  there is a matri x  W· such that u ·  = W ·  v ·  . 
This is shown in  the diagram in  Figure 28 ,  where i t  should be remem
bered that v and v ·  (and u and u · )  are real ly the same vector,  just 
descri bed in terms of different basis vectors . 

To see how to find W · , consider a somewhat roundabout way of 
solving u ·  = W ·  v · . We can convert v ·  back to the original basis ,  then 
map from v to u using the matrix W ,  and finally convert u to u ·  . 

Copyrighted Material 
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w *  
v· .. U · 

y-t y 

v • U 
w 

FIGURE 28.  

Luckily, we al ready know how to make each of these 
transformations- they are gi ven by the equations: 

v = yV · 

u = WV 

u · = y - I U .  

Putting these three equations together, we have 

u ·  = y - I u  

= y - I Wv 

= y - I Wyv· . 

Thus, W ·  must be equal to y- I  WY. Matrices related by an equation of 
the form W ·  = y-IWY are called similar. 

One aspect of this discussion needs further elaboration. We have 
been treating matrices as linear operators on a vector space . However, 
as the results of this section make clear, a matrix i s  tied to a particular 
basis .  That is ,  the numbers in the matrix are just as arbitrary as the 
numbers used for representing vectors . When the basis changes , the 
numbers change according to the equation W ·  = y - I WY .  The under
lying mapping, which remains the same when the matrix W is used in 
the original basis and the matrix W ·  is used in the new basis, is called a 
linear traniformation. The same l inear transformation is represented by 
different matrices in different bases . 

It is interesting to recast the results on eigenvectors in terms of a 
change of basis .  For sOfflSP.w�mJVMJrerN§ consider changing basis to 
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the eigenvectors of W .  Let u s  find the matrix W ·  i n  the new basis .  
For each eigenvector Y i ,  by defi nit ion 

(25 )  
If  Y i s  a matrix whose columns are the Y I ' then we can write Equation 
25 for all of the eigenvectors at once as fol lows (cf. Figure 2 1 ) :  

WY = Y A 

where A is a diagonal matrix whose entries on the main diagonal are 
the eigenvalues A i ' You should try to convince yourself of the correct
ness of this equation, part icularly the placement of A .  Now premultiply 
both sides by y - I  to give 

y - I WY = A .  

Thus, the matri x W ·  i s  equal to A .  I n  other words, when we use the 
eigenvectors of W as the new basis ,  the matrix corresponding to W in 
the new basis is  a diagonal matrix whose entries are the eigenvalues. 
This is  really nothing more than a restatement of the earl ier results on 
eigenvectors , but seen in a different perspective. 

It is worthwhi le to consider the impl ications of a change of basis for 
PDP models. How does the behavior of the model depend on the basis 
that is chosen ? This  question is  discussed in depth in Chapter 22. For 
now, let us s imply note that the linear structure of a set of vectors 
remains the same over a change of basis .  That is ,  if a vector can be 
written as a l inear combination of a set of vectors in one basis, then i t  
can be  written as  the  same l inear combination of  those vectors in  al l 
bases . For example, let w = av I + bv 2. Let Y be the matrix of a 
change of basis .  Then we have 

w' = y- 1 w  

= y- I ( a v l  + bV2 ) 
= ay- l v1 + by- 1 v2 
= av j + bvi. 

The coefficients in  the l inear combination are the same in the old and 
in the new basis .  The equations show that this result holds because 
change of basis is a linear operat ion .  

The behavior of a l inear PDP model depends entirely on  the  l inear 
structure of the input vectors .  That is, if  w = av I + bv 2 ,  then the 
response of the system to w is determined by its response to v I and v 2 
and the coefficients a a�/lyriiJjb@cfWlelMafd change of basis preserves 
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the l inear structure of the vectors shows that i t  is this l inear structure 
that is relevant to the behavior of the model , and not the particular 
basis chosen to describe the vectors. 

NONLINEAR SYSTEMS 

The use of nonlinearity occurs throughout this book and throughout 
the l iterature on parallel distributed processing systems (Anderson et 
aI . ,  1 977;  Grossberg, 1 978 ;  Hopfield, 1 982 ;  Kohonen, 1 977) . In this 
section, I wi l l  indicate some of the reasons why nonl inearities are 
deemed necessary. 8 Although these reasons are based on the desire for 
behaviors outside the domain of l inear models, it should be stated that 
l inear systems have a great deal of power in themselves , and that many 
of the nonlinearities represent comparatively small changes to underly
ing models which are l inear. Other models are more fundamentally 
nonlinear. Further discussions of nonlinear mathematics can be found 
in Chapters 1 0  and 22 .  

One simple nonlinearity has already arisen in the  discussion of  a PDP 
system with one output unit. Such a system computes the inner pro
duct of its weight vector and the input vector. This is a l inear system, 
given the l inearity of the inner product . The geometrical properties of 
the inner product led us to picture the operation of this system as com
puting the closeness of input vectors to the weight vector in space . 

Suppose we draw a line perpendicular to the weight vector at some 
point , as in Figure 29 .  Since all vectors on this l ine project to the same 
point on the weight vector, their inner products with the weight vector 
are equal . Furthermore, al l vectors to the left of this line have a 
smaller inner product , and all vectors to the right have a larger inner 
product . Let us choose a fixed number as a threshold for the unit by 
requiring that if the inner product is  greater than the threshold,  the unit 
outputs a i , otherwise i t  outputs a O. Such a unit breaks the space into 
two parts by producing a different response to vectors in the two parts. 

This  use of a threshold is natural in using the unit to classify patterns 
as belonging to one group or another. The essential point is that the 
threshold permits the unit to make a decision .  Other units in a larger 

8 Since nonlinear systems in general are systems that are defined as " not linear," it is 
important to understand clearly what " lineat" means. A review of the section on linearity 
may be necessary before proc�ding. 
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system that take their input from this unit could choose completely dif
ferent behaviors based on the decision. Notice also that the unit is a 
categorizer: Al l input vectors that are on the same side of the space 
lead to the same response. 

To introduce a threshold into the mathematical description of the 
processing unit ,  it is necessary to distinguish between the acti vation of 
the unit and i ts output . A funct ion relating the two quantities is shown 
in Figure 30. It produces a one or a zero based on the magni tude of 
the activation. It is also possible to have a probabi l istic threshold. In 
this case, the farther the activat ion is  above the threshold, the more 
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l ikely the unit is to have an output of one,  and the farther the activa
tion is  below the threshold, the more l ikely the unit is to have an out
put of zero. Units such as these are discussed in  Chapters 6 and 7 .  

The threshold unit is a good example of  many of  the nonlinearities 
that are to be found in PDP models .  An underlying l inear model is 
modified with a nonlinear function relating the output of a unit to its 
activation. Another related example of such a nonl ineari ty is termed 
subthreshold summation . It is often observed in biological systems that 
two stimuli presented separately to the system provoke no response, 
although when presented simultaneously ,  a response is obtained . Fur
thermore, once the system is responding, further stimuli are responded 
to in a linear fashi on .  Such a system can be modeled by endowing a 
l inear PDP unit with the nonlinear output function in Figure 3 1 .  Note 
that only i f  the sum of the activations produced by vectors exceeds T 
will a response be produced . Also, there is a linear range in which the 
system responds l inearly.  It is often the case in nonl inear systems that 
there is such a l inear range, and the system can be treated as l inear pro
vided that the inputs are restricted to this l inear range. 

One reason why subthreshold summation is desi rable is that it 
suppresses noise. The system wi ll not respond to small random inputs 
that are assumed to be noise. 

All physical systems have a l imi ted dynamic range. That is, the 
response of the system cannot exceed a certain maximum response. 
This fact can be modeled with the output function in Figure 3 2 ,  which 
shows a linear range followed by a cutoff. The system will  behave 
linearly until the output reaches M ,  at which point no further increase 
can occur.  In Figure 3 3 ,  a nonlinear functi on is shown which also has a 
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maximum output M. This curve, called a sigmoid, is a sort of hybrid 
between Figure 31 and Figure 3 2 .  It combines noise suppression with a 
l imited dynamic range . Chapter 8 shows how such units are necessary 
for certain kinds of interesting behavior to arise in layered networks. 

To summarize, I have described some of the ways in which l inear 
systems are modified to produce nonlinear systems that exhibit certain 
desired behaviors. All  of these systems have an important l inear com
ponent and are sometimes referred to as semilinear. Furthermore, 
several of the systems have a l inear range in which the nonlinearities 
can be ignored. The next chapter discusses more fundamentally non-

l inear systems. Copyrighted Material 
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CHAPTER 10 

The Logic of Activation Functions 

R. J. WILLIAMS 

The notion of logical computation, in some form or other, seems to 
provide a convenient language for describing the operation of many of 
the networks we seek to understand. Digital computers are built out of 
such constituents as AND and OR gates. Feature-detecting neurons in 
biological sensory systems are often idealized as signaling the presence 
or absence of their preferred features by becoming highly active or 
inactive, respectively. It seems a relatively simple extension of this 
concept to allow the activity of units in the network to range over some 
interval rather than over just two values; in this case the activity of a 
unit is regarded as signaling its degree of confidence that its preferred 
feature is present, rather than just the presence or absence of this 
feature. There are several ways one might attempt to formalize this 
degree-of-confidence notion. For example, if the activation values 
range over the closed unit interval [0,11. one might treat such an 
activation value as a conditional probability; alternatively, it might be 
viewed as a measure of truth in some unit-interval-valued logic, such as 
fuzzy logic (Zadeh, 1965). 

There is at least one alternative to the notion of activation as degree 
of confidence which sometimes provides a convenient language for dis
cussing the role of, for example, neural feature detectors in sensory 
systems. In this view, the activation of a unit encodes (within finite 
limits) the amount of its preferred feature present. This rival view 
seems advantageous particularly when the computation performed is 
described in the langual!e of linear systems fr linear signal processing; 
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examples of this are the concepts of spatial filtering and spatial Fourier 
analysis in the visual system and the concept of correlational processing 
in matrix models of associative memory (Kohonen, 1977). Chapter 9 
describes the relevant mathematics for this approach, that of linear 
algebra. 

This chapter explores some ideas motivated by the first of these two 
views of a PDP unit's computation (i.e., as some generalization of the 
notion of a Boolean function), but the approach is implicitly based on a 
very liberal interpretation of what this means. Essentially, the only 
structure assumed for the set of confidence values is that it be a totally 
ordered set with a Boolean interpretation of its endpoints. While a fully 
developed mathematical theory along these lines would deal with those 
properties that are invariant under any transformations preserving this 
structure, the ideas presented here do not go this far. 

The specific program to be embarked upon here is probably best 
described as an exploratory interweaving of several threads, all related 
to these notions of logical computation and their potential applicability 
to the study of activation functions. First, the point of view is taken 
that any function whatsoever is a candidate for being an activation 
function. From this perspective, the traditional linear and thresholded 
linear activation functions may be viewed as very isolc.:ed examples 
from a much larger range of possibilities. Next, several ways to shrink 
this vast space of possibilities are suggested. One way proposed here is 
the imposition of a constraint based on the requirement that the notion 
of excitatory or inhibitory input be meaningful. Another way is the 
introduction of an equivalence relation on activation functions based on 
invariance under transformations preserving the logical and ordinal 
structure. Finally, an investigation is carried out to determine just 
where certain familiar types of activation functions, built out of the 
more traditional ingredients such as additive, subtractive, and multipli
cative interactions among input values and weights, fit into this 
scheme. As a by-product of this development, some elementary results 
concerning implementation of Boolean functions via real-valued func
tions are also obtained. 

This last aspect is closely related to what is historically one of the 
oldest formal approaches to the theory of neural computation, in which 
neurons are treated as Boolean devices. This approach was pioneered 
by McCulloch and Pitts (1943); an introductory overview of this whole 
subject can be found in the text by Glorioso and Colon Osorio (I 980). 
An important influence on much of the work done in this area has 
been the percept ron research of Rosenblatt (I 962; Minsky & Papert, 
1969). 

In what follows, several simplifying assumptions will be made. The 
first is that the range of values over which each input to a unit may 
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vary is the same as the range of values over which the output of the 
unit (its activation) may vary. Another is that time may be ignored as a 
variable. The activation function of a unit will be taken to be a func
tion that computes the output of the unit (at a fixed but unspecified 
time) as a function of its inputs (at a presumably sl ightly earlier but 
unspecified time). Thus, given a unit with n inputs whose activation 
values range over the set A, the activation function a for this unit is 
just a function from A n (the set of ordered n -tuples of elements of A) 
to A, denoted a :An-A. 

In order to avoid cluttering the presentation, detailed proofs of the 
results have been omitted; in their place are short sketches indicating 
the key steps. A more rigorous and abstract formulation of the basic 
concepts introduced here, along with detailed proofs of the results, may 
be found in Williams (1983). 

EXAMPLES OF ACTIVATION RULES 

The following are some examples of activation functions from which 
models have been constructed. 

Example 1. A = (0,11 (the two-point set), a=fog, where g is 
l inear into JR and f: JR-A is a thresholding function. (The operator 0 

between two functions here denotes composition in a right-to-left 
manner.) A unit using this activation function is called a threshold logic 
unit or a linear threshold unit and is the basis of the simple perceptron 
(Rosenblatt, 1962; Minsky & Papert, 1969). 

Example 2. A = JR, a l inear (Kohonen, 1977). 

Example 3. A = I (the closed unit interval [0,1)), a=fog, where 
g is linear into JR and f is nondecreasiI-., into I. This is a commonly 
used variant of Example 1. Let liS call this a quasi-linear activation func
tion. The function f is sometinu:!s called a squashing function for obvi
ous reasons. 

Example 4. A = I, a = fog. where f is nondecreasing into I and g 
is a multilinear function into JR of the form 

g(X\, . . .  ,xn) = X\X2+XJX4+ ... +Xn-lxn 

(where n is assumed to be even). Such an activation function is sug
gested by Hinton (1981 b) . Note that this is similar to Example 3 
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except that the coefficients have now become explicit inputs. This type 
of activation function will be called a gating activation jUnction because 
the odd-numbered inputs gate the even-numbered ones (and vice
versa). 

Example 5. A = I, a = fog , where f is nondecreasinr into I and g 
is an arbitrary multilinear function into R. That is, g is of the form 

g(x\, . . .  ,xn ) = L Wj TIx; , 
SjEP ;ESj 

where P is the power set (Le., set of subsets) of {1. . . .  ,n}. Such an 
activation function is called a sigma-pi activation jUnction, with the coef
ficients Wj being called weights. (We might also call this a quasi
multilinear activation jUnction to emphasize its relationship to Example 
3.) Note that Examples 3 and 4 are just special cases of this activation 
function. 

THE MAIN CONCEPTS 

Henceforth in this chapter the set of activation values will be 
assumed to be the closed unit interval [0,1], denoted I. An activation 
jUnction is then simply a function a :In-I. It will be convenient to 
identify 0 E I with the Boolean value false and 1 E I with the Boolean 
value true. 

Now we introduce a key concept of this chapter by considering the 
extension of the familiar notion of a monotonic function to the multi
dimensional case in two different ways. In order to get a feeling for the 
precise definitions to be given below, first consider what it means for 
an input to a unit to have an excitatory influence on the output 'If that 
unit. Such an input must have the property that an increase in its value 
must result in an increase in the output of the unit, as long as all other 
inputs are held constant. Furthermore, this should be true regardless 
of the values of the other inputs. A similar property should ho!d for an 
inhibitory input, where the output of the unit must decrease as the 
value of the input is increased in this case. This is the basic idea 
behind the notion of uniform monotonicity, as defined below. The 
weaker notion of monotonicity-in-context corresponds to the situation in 
which an input may be sometimes excitatory and sometimes inhibitory, 
depending on the values taken on by the other inputs. 

Now we make these concepts rigorous. Let a :In-I. Pick one of 
the coordinates, say the k th, and fix all coordinates but this one, which 
is allowed to vary. This&rlWlfJhPeffIJfiJisl1apf a single variable which is 
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parameterized by the remaining coordinates. Such a function is called a 
section of the original function a along the k th coordinate. Note that 
there is one such sect ion along the kth coordinate for each possible 
combination of values for the remaining n-l coordinates. Now make 
the following definitions: I 

1. a is monotonic-in-context along the k th coordinate if all its sec
tions along the kth coordinate are monotonic. 

2. a is uniformly monotonic in the k th coordinate if all sect ions 
along the k th coordinate are monotonic and have the same 
sense (i.e., all are nondecreasing or all are nonincreasing). 

3. a is monotonic-in-context if it is monotonic- in -context along all 
its coordinates. 

4. a is uniformly monotonic if it is uniformly monotonic along all 
its coordinates. 

One special case of a uniformly monotonic function is a uniformly 
nondecreasing function , which has the property that all its sections along 
all coordinates are nondecreasing. This special case will be used later. 

Note that if a is uniformly monotonic then it is monotonic-in
context, but the converse need not be true, unle!:s a is a function of a 
single variable, in which case both definitions collapse onto the usual 
notion of monotonicity. The key distinction between uniformly mono
tonic and monotonic-in-context is that the sense of monotonicity of the 
sections of a along the k th coordinate must be fixed for each k in 
order for a to be uniformly monotonic . 

It is important to emphasize the significance of these monotbnicity 
concepts for activation functions. An activation function is uniformly 
monotonic if and only if each input may be classified as solely excita
tory or solely inhibitory, independently of the values actually taken on 
by any other inputs. Thus the usual sense of excitatory or inhibitory 
input to a unit is meaningful exactly when the unit's activation function 
is uniformly monotonic . If a unit's activation function is monotonic 

in-context , then it may not be possible to categorize its inputs as solely 
excitatory or solely inhibitory, but the following may be a useful con
ceptual ization of such a unit's operation: Certain inputs to the unit are 

I The reader should be warned that the names introduced here for these concepts are 
not standard; these terms were chosen because it was felt that they helped to clarify the 
important distinctions being made in the current context. 
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useu to set the context for the computation of its output as a function 
of the remaining inputs, and each input in this latter group has purely 
excitatory or purely inhibitory effect on the unit's output in this partic
ular context. Whether this turns out to be a useful way to view the 
monotonic-in-context activation function and its possible role in activa
tion models will not be explored here. The main reason for introducing 
the concept is simply that it appears to be the strongest variant on 
monotonicity satisfied by any activation function capable of computing 
an arbitrary Boolean function (such as the multilinear and sigma-pi 
activation functions, as will be seen later) . 

In order to capture the notion of an activation function being simply 
an extension of a Boolean function, define an activation function 
a :1"-1 to be Boolean-like if a (XI, ... , xn) = 0 or 1 whenever all the 
Xi are 0 or 1. In other words, an activation function is Boolean-like if 
and only if it can be viewed as a Boolean function when restricted to 
the vertices of 1 n .  It is also useful to say that such an activation func
tion realizes the Boolean function obtained by restricting to vertices. 

In order to capture the notion of two activation functions agreeing 
for Boolean input values, define two activation functions a ha2: 1"-1 
to be vertex-equivalent if a I (x), ... , xn) = a 2(X) • . • . • xn) whenever all 
the Xi are 0 or 1. In other words , two activation functions are vertex
equivalent if and only if they agree on the vertices of 1 n It is clear that 
vertex-equivalence is indeed an equivalence relation. 

The reason for introducing this notion is the suggestion that there 
may be a certain interchangeability between different activation func
tions that are vertex-equivalent, in that the logic of a unit's computa
tion might be considered to reside solely in what it does when all input 
lines are set to their extreme values (corresponding to true or false). If 
two vertex-equivalent activation functions are additionally monotonic
in-context and continuous, then an even stronger case can be made for 
their interchangeability in certain models, but these ideas will not be 
pursued here. 

ILLUSTRATION OF THESE CONCEPTS 

A number of examples of activation functions a : I 2_ I will now be 
presented to clarify the definitions given in the previous section. The 
figure corresponding to each example consists of three different graphi
cal representations for that particular function: (a) a three-dimensional 
plot of a (X},X2) versus (X},X2); (b) a contour plot showing at which 
points (X(,X2) certain values of C.r(X(,X2) are attained ; and (c) various 
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sections of a along xI superimposed on a single two-dimensional plot. 
The activation function being displayed in each figure is defined in the 
caption of that figure. 

Figures I, 2, and 3 show three different activation functions that 
realize the Boolean AND function at the vertices, while Figures 4, 5, 
and 6 show three different activation functions realizing the Boolean 
OR function at the vertices. These functions are all Boolean-like and 
uniformly monotonic. 

Figure 7 shows a realization of the Boolean XOR (exclusive or) func
tion. The activation function depicted is Boolean-like and monotonic
in-context, but not uniformly monotonic. In fact, no realization of 
XOR can be uniformly monotonic. Figure 8 shows an activation func
tion that is uniformly monotonic but not Boolean-like. Its restriction to 
vertices thus does not have a straightforward Boolean interpretation; 
this activation function might be viewed as a unit-interval confidence 
measure based on the number of active inputs. Finally, Figure 9 shows 
a rather pathological example of an activation function. It is Boolean
like and vertex-equivalent to the constant function I, but intuition sug
gests that any unit in a PDP network which performs such a computa
tion "will behave very differently from one which puts out the constant 
value 1. This essential difference in behavior is formalized here in 
terms of the observation that such an activation function fails to be 
monotonic-in-context while the constant function 1 is uniformly mono
tonic. 

SOME RESULTS 

Before stating the main results, it will be helpful to define two func
tions, the first of which maps vertices of I n to Boolean expressions in 
formal variables X), . . . •  Xn, and the second of which maps such 
Boolean expressions to real algebraic expressions in formal variables 
Xl • • • • •  Xn. In our notation for Boolean expressions we will use" +" 
to denote disjunction and juxtaposition to denote conjunction but it will 
always be clear from the context whether Boolean or real operations are 
intended. 

The mapping from vertices to Boolean expressions is defined by 
assigning to a vertex (v I • . . . •  vn) the conjunction in which each Xi 
appears once, with the negation operator applied to Xi if and only if 
Vi = O. For example, !pplyinlLthis function to the vertex (0,1,1,0) ofl4 
yields the expression XIX2X�4. 
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FIGURE 1. a (xJ,X2) = x\x2- A: Three-dimensional plot. The cube is bounded by the 
planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along xl
Note that each section along xl is a linear function with nonnegative slope; by symmetry 
the same is true of each section along x2- Thus this function is uniformly nondecreasing_ 
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ex 
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FIGURE 2. a (XJ,X2) - min(xt.x2) '  A: Three-dimensional plot. The cube is bounded 
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along 
xl' Note that the three-dimensional plot of this function consists of two planar surfaces. 
Evidently, each section along xl is a nondecreasing function; by symmetry the same is 
true of each section along x2' Thus this function is uniformly nondecreasing. 
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FIGURE 3. a (x\,X2) = max(O,xI+x2-l). A: Three-dimensional plot. The cube is 
bounded by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sec
tions along xI' Note that the three-dimensional plot of this function consists of two 
planar surfaces. Clearly, each section along xI is a nondecreasing function; by symmetry 
the same is true of each section along x2' Thus this function is uniformly nondecreasing . 
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FIGURE 4. a (X!,X2) = xl+x2-xlx2' A: Three-dimensional plot. The cube is bounded 
by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sections along 
xl' Note that each section along xl is a linear function with nonnegative slope; by sym
metry the same is true of each section along x2' Thus this function is uniformly non
decreasing. 
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FIGURE 5. a (xJ,x2) = max(xJ,x2)' A: Three-dimensional plot. The cube is bounded 
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along 
xI' Note that the three-dimensional plot of this function consists of two planar surfaces . 

Note also that each section along xI is a nondecreas ing function; by symmetry the same 
is true of each section along x2' Thus this function is uniformly nondecreasing. 
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FIGURE 6. a (XhX2) = min(l,xl+x2)' A: Three-dimensional plot. The cube is bounded 
by the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along 
x I' Note that the three-dimensional plot of this function consists of two planar surfaces. 
Evidently, each section along xI is a nondecreasing function; by symmetry the same is 
true of each section along x2' Thus this function is uniformly nondecreasing. 
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FIGURE 7. a (xIoX2) - xl+x2-2xlx2' A: Three-dimensional plot. The cube is bounded 
by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sections along 
XI ' Note the saddle shape of the three-dimensional plot of this function. Also note that 
the sections along XI are linear functions with slopes ranging from 1 to -I; by symmetry 
the same is true of the sections along Xl' Thus this function is monotonic-in-context but 
not uniformly monotonic. 
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FIGURE 8. ex (x1,X2) = Ih(xl+x2)' A: Three-dimensional plot. The cube is bounded by 
the planes where each coordinate is 0 or 1. B: Contour plot. C: Some sections along x I' 
Note that the three-dimensional plot of this func�on consists of a single planar surface. 
Each section along xI is a linear function with 'slo\>e 'h, as is each section along x2, by 
symmetry. Thus this function is uniformly nondecreasing. 
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FIGURE 9. cdx),x2) = (2x'I- t)2(2x'2- t)2. A: Three-dimensional plot. The cube is 
bounded by the planes where each coordinate is 0 or I. B: Contour plot. C: Some sec
tions along xI' Note that the sections along XI are parabolas of varying widths. Evi
dently, this function is not monotonic-in-context since, for example, when x2- 0, a first 
decreases and then increases as X I increases. 
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The mapping from Boolean expressions to real algebraic expressions 
is defined by replacing: 

1. True by 1. 
2. False by O. 
3. The disjunction operator by addition. 
4. The conjunction operator by multiplication. 
S. The negation operator by subtraction from 1. 
6. Xi by Xi, for each i. 

For example, applying this function to the Boolean expression 
X,X2+ X, yields the real expression XI (I-x 2) + (I-XI). It should be 
emphasized that this is a function defined only on formal expressions; 
two expressions that are equivalent under Boolean algebra will not, in 
general, be mapped to the same real algebraic expression or even 
equivalent real algebraic expressions. In other words, it is not a map
ping from Boolean functions to real functions. 

A standard result from Boolean algebra is that any Boolean function 
may be expressed in a certain canonical form, called the disjunctive nor
mal form. A simple prescription for this form is as follows: Form a dis
junction of terms, each of which is the result of applying the vertices
to-Boolean-expressions function described above to those vertices ofln 
for which the function takes on the value true. For example, the dis
junctive normal form for the Boolean function /3(XbX2) = X,+X2 is 
X,X2+ X,X2+ X,X2· 

A closely related result for multilinear functions is the following: 

Lemma. For any function assigning arbitrary real numbers to the 
vertices of P there is a unique multilinear function agreeing with 
the given function on these vertices. 

This function is formed in a manner generalizing the prescription 
given above for the disjunctive normal form: For each vertex of In, 
form the corresponding Boolean conjunct; then apply the other function 
described above to turn each of these conjuncts into a real expression; 
finally, form the sum of these individual expressions with each one 
weighted by the value cf the given function at the corresponding ver
tex. It will be convenient to dub the result the vertex normal form for 
the given function. For example, the vertex normal form for a multi
linear function a of two variables is 

a (X "X2) = a (O,O)(l-x:)(I-x2)+a(O,O(I-x,)x2 

+a (l,O)x,(1-x2)+a (l,l)x,x2. 
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This lemma has the following immediate consequence: 

Theorem 1. Given any Boolean function, there is a unique multi
linear activation function realizing it. 

In contrast, not every Boolean function can be realized by a quasi
linear activation function. Those Boolean functions that can be so real
ized are called linearly separable. It is easily shown that any linearly 
separable Boolean function is necessarily uniformly monotonic, but the 
converse is not true. A simple example of a function that is not 
linearly separable is the XOR function t31(X\.X2) = X1X2+X1X2. The 
easiest way to see that it is not linearly separable is to observe that it is 
not uniformly monotonic. An example of a function that is uniformly 
monotonic but not linearly separable is 

t32(X\.X2,X3,x4) = X1X2+ X3X4· 

Our next result, also a consequence of the lemma, shows that the 
very general class of all activation functions may be represented up to 
vertex-equivalence by the narrower class of multilinear activation 
functions. 

Theorem 2. Every activation function is vertex-equivalent to a 
unique multilinear activation function. 

The next result suggests that monotonicity-in-context is enjoyed by a 
fairly wide variety of activation functions. 

Theorem 3. Every sigma-pi activation function is monotonic-in
context. 

This is an easy consequence of three facts: (a) that a multilinear 
function is linear in each variable when the other variables are held 
constant; (b) that a linear function is monotonic; and (c) that the com
position of monotonic functions is monotonic. 

The following result characterizes uniform monotonicity for multi
linear activation functions. 

Theorem 4. A multilinear activation function is uniformly mono
tonic if and only if its restriction to vertices is uniformly monotonic. 

The key step in the proof of this result is the observation that a 
multilinear function may be built up inductively through linear interpo
lation, starting with the values at the vertices. This follows from the 
fact that a multilinear function is linear in each variable when the other 
variables are held constant. The remainder of the proof consists of ver
ifying that each step of this inductive construction preserves uniform 

Copyrighted Material 
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monotonicity. This result may be extended to the sigma-pi case as 
well, under certain mild restrictions, using the fact that a strictly 
increasing function has a monotonic inverse. 

Corollary. Let a = fog be a sigma-pi activation function, where g is 
multilinear and f is a squashing function. If f is strictly increasing, 
then a is uniformly monotonic if and only if its restriction to ver
tices is uniformly monotonic. 

The results presented up to this point would seem to suggest that the 
class of multilinear activation functions provides us with sufficient 
power that we need not consider the more general class of sigma-pi 
activation functions. However, from the standpoint of uniform mono
tonicity, there may be some drawbacks in restricting ourselves to multi
linear activation functions. One such potential drawback is that a uni
formly nondecreasing multilinear activation function may have some 
negative weights. For example, the Boolean function 
{3 (X 1 ,X 2) = Xl + X 2 corresponds, by Theorem 1, to the multilinear 
activation function a (Xl,x2) = X\+X2-x\X2, which requires a negative 
weight even though it is uniformly nondecreasing. But what if a more 
general sigma-pi activation function were to be used? Is there a 
sigma-pi realization of this same Boolean function for which all weights 
are nonnegative? Of course there is in this case: The sigma-pi activa
tion function a (Xl,x2) = min (x l + x2, n is one such realization; many 
others could be devised. (These two realizations of the OR function 
are displayed in Figures 4 and 6.) It seems reasonable to suspect that 
the following is true: 

Cor/iecture. Every uniformly nondecreasing activation function is 
vertex-equivalent to a sigma-pi activation function with nonnegative 
weights. 

Note that any sigma-pi activation function with nonnegative weights 
is certainly uniformly nondecreasing. The conjecture is that the con
verse is true (up to vertex equivalence). Under the assumption that 
the uniformly nondecreasing activation function is Boolean-like (as in 
the preceding example), the conjecture is indeed valid, as the following 
theorem shows. In fact, the conclusion may be made even stronger in 
this case. 

Theorem 5. Every uniformly nondecreasing Boolean-like activation 
function is vertex-equivalent to a sigma-pi activation function whose 
weights are all 0 or 1. 

The essential step in the proof of this result is showing that any uni
formly nondecreasing �t.�a/may be expressed as a 
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disjunction of conjunctions containing no negated factors. Once such 
an expression is available, the desired sigma-pi activation function is 
obtained by converting this Boolean expression to a real expression and 
then composing this with the function j (z) = min (z ,1). 

This theorem may be generalized to cover arbitrary senses of uni
form monotonicity by running any inputs for which the activation func
tion is nonincreasing through the "inverter" j(x) = I-x . Thus the 
general class of all uniformly monotonic Boolean-like activation func
tions may be represented up to vertex-equivalence by a narrower class 
of sigma-pi activation functions of a certain form. 

It is instructive to contrast the sigma-pi activation functions which 
result from applying Theorems I and 5 to a particular uniformly mono
tonic activation function. Consider the Boolean function of six vari
ables IHXJ,X2,x3,X4,XS,X6) - X1X2+ X�4+ XsX6' Theorem I real
izes this using the vertex normal form, which, after simplification, 
becomes 

Q l(Xl,x2,x3 ,X4,xS,x6) = xlx2+xJX4+XsX6 

- xlx�JX4 - xlx� sX6 - xJX4XsX6 

+xlx�JX4XsX6' 

In contrast, Theorem 5 implies a realization of this same function by 
the gating activation function 

Q2(Xl,x2,x3,x4,x5,x6) = min(xlx2+XJX4+XsX6, n. 

CONCLUSION 

As suggested in the introduction, the ideas and results presented 
here represent an exploratory set of concepts intended to help in under
standing PDP networks. There is a clear need for a general language 
and set of concepts for describing and understanding PDP computation, 
both at the local, individual unit level, as explored here, and at the 
level of whole networks. (In fact, the greatest need is for a means of 
describing and understanding the relationship between computation at 
these two levels.) Whether the ideas contained in this chapter can 
extend naturally to become a useful framework for understanding the 
behavior of whole networks is difficult to foresee. One way that this 
gap between local and global computation might be bridged is by deal
ing with questions of learning in such networks. The goal of learning is 
generally to cause the ne���$te�Xfa,erra5ticular global behavior, but 
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the learning should be implemented locally. An example of how the 
requirement that the network be capable of learning might interact with 
the ideas explored here can be found by considering the recently 
discovered back-propagation learning algorithm, described in Chapter 8. 
To be able to apply such a learning algorithm requires imposing the 
constraint on activation functions that they be differentiable, a property 
not satisfied by all the examples considered here. As our understand
ing of learning in PDP networks progresses, we may find still further 
restrictions useful or even necessary. 
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CHAPTER } }  

An Analysis of the Delta Rule 
and the Learning of Statistical Associations 

G. o. STONE 

The development of parallel distributed processing models involves 
two complementary enterprises: first, the development of complete 
models with desired operating characteristics� and second, the in-depth 
analysis of component mechanisms and basic principles. The primary 
objective in modeling is the development and testing of complete sys
tems. In general these models are complex and their behavior cannot 
be fully deduced directly from their mathematical description. In such 
cas�s, simulation plays an important role in understanding the proper
ties of a model. Although simulations are useful in determining the 
properties of a specific model, they do not, on their own, indicate how 
a model should be modified when a desired behavior is not achieved. 
An understanding of basic principles and a collection of potential 
mechanisms with known properties provide the best guides to the 
development of complex models. 

This chapter provides an analysis of one of the most popular 
components-namely, the error correction learning rule developed by 
Widrow and Hoff (1960). This learning rule which has been analyzed 
and employed by a number of authors (Amari, 1977a, 1977b; 
Kohonen, 1974, 1977 ; Sutton & Barto, 1981), has been called the 
Widrow-Hoff rule by Sutton and Barto (1981) and is generally referred 
to as the delta rule in this book. This rule is introduced in Chapter 2, 
discussed extensively and generalized in Chapter 8, and employed in 
models discussed in a number of chapters-most notably Chapters 17 
and 18. In the present chapter I show how concepts from linear algebra 

Copyrighted Material 
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and vector spaces can provide insight into the operation of this learning 
mechanism. I then show how this mechanism can be used for learning 
statistical relationships between patterns, and finally show how the delta 
rule relates to multiple linear regression. Concepts from linear algebra 
are used extensively; for explanation of these concepts, especially as 
applied to PDP models, the reader is referred to Chapter 9. 

The Delta Rule in Vector Notation 

The delta rule is typically applied to the case in which pairs of pat
terns, consisting of an input pattern and a target output pattern, are to 
be associated so that when an input pattern is presented to an input 
layer of units, the appropriate output pattern will appear on the output 
layer of units. It is possible to represent the patterns as vectors in which 
each element of the vector corresponds to the activation value of a 
corresponding unit. Similarly, we can represent the connections from 
input units to the output units by the cells of a weight matrix. For 
linear units, the output vector can be computed by multiplying the 
input vector by the weight matrix. In the present chapter our analysis 
is restricted to linear units . (See Chapter 8 for a discussion of the delta 
rule for nonlinear units . )  

Now we imagine a learning situation in which the set of  input/ output 
pairs are presented (possibly repeatedly) to the system. If the set of 
input vectors are orthogonal (i.e ., at right angles to each other), a sim
ple pattern associator can be constructed using a product learning rule 
in which the change in weight wj; following the presentation of pattern 
p is given by the product of the ith input element and the jth target 
element, that is, 

where tpj represents the value of the desired or target output for the 
jth element of pattern p and ip; is the activation value of the ith ele
ment of the input for that pattern. I In vector notation, we can write the 
change for the entire weight matrix as 

Ap - tpiJ 

I Note this is essentially the Hebbian learning rule. In the Hebbian rule it is assumed 
that the product of the activation levels of the input and output units determine the 
weight change. If we assume that the activation of the output unit is entirely determined 
by the target input the product rule described here is identically the Hebbian rule. 

Copyrighted Material 
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where, as usual, bold letters indicate vectors, uppercase indicates 
matrices and the superscript T indicates the transpose of a vector or 
matrix. This learning rule was described in some detail in Chapter 9 
and that discussion will not be repeated here. It was shown there that 
if the input vectors are normalized in length so that ip . ip = 1 and are 
orthogonal, the product rule will, after the presentation of all of the 
input/ output patterns, lead to the following weight matrix: 

If the input vectors are orthogonal, there will be no interference from 
storing one vector on others already stored so that the presentation of 
input ip will lead to the desired output tp' that is, 

Wip = tp 

for all patterns p from 1 to P. Unfortunately, we cannot always insure 
that the input vectors are orthogonal. Generally, the storage of one 
input/ output pair can interfere with the storage of another and cause 
crosstalk. For this case a more sophisticated learning rule is required. 

Fortunately, as we saw in Chapter 8, the delta rule is a rule that will 
work when the input patterns are not orthogonal. This rule will pro
duce perfect associations so long as the input patterns are merely 
linearly independent (see Chapter 9) and will find a weight matrix which 
will produce a "least squares" solution for the weight matrix when an 
exact solution is not possible (i.e., the input patterns are not linearly 
independent). In matrix notation the rule can be written as 

W (n) = W (n - 1) + 1)8 (n)j T (n ) (1) 

where W (n) is the state of the connection matrix after n presentations, 
i (n) is the input presented on the nth presentation, 1) is a scalar con
stant which determines the rate of learning, and 8 (n) is the difference 
between the desired and actual output on trial n , such that 

IS (n ) = t (n ) - W (n - l)i (n ) (2) 

where t (n) is the desired output (or t arget) for presentation n and 
W (n - l)i (n ) = 0 (n) is the output actually produced on that presenta
tion. W (0) is assumed to be the matrix with all zero entries. In other 
words, the weight matrix is updated by adding the outer product of the 
response error and the input. (See Chapter 9 for discussion of outer 
product.) Proofs concerning the convergence of this recursion to the 
optimum weight matrix (in the sense outlined above) are provided by 
Kohonen 0974, 1977, 1984) . . ht d _Jf t . I Copyng a IVla ana 
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The Delta Rule in Pattern-Based Coordinates 

To this point we have discussed the delta rule for what Smolensky 
(Chapter 22) has called the neural or unit level of representation. 
Before proceeding, it is useful to consider the form that the rule takes 
in the conceptual level of representation in which there is one vector 
component for each concept. In general, the input and output patterns 
correspond to an arbitrary set of vectors. Interestingly, it is possible to 
show that the delta rule applies only to the "structure" of the input and 
output vectors and not to other details of the representation. In a 
linear system, it is only the pattern of correlations among the patterns 
that matter, not the contents of the specific patterns themselves. 

We can demonstrate this by deriving the same learning rule following 
a change oj basis from the unit basis to the pattern basis. Since a detailed 
discussion of the process whereby bases can be changed is given in 
Chapter 9 and, in more detail, in Chapter 22, I will merely sketch tl1e 
concept here. Each pattern over a set of units corresponds to a vector. 
If there are N units, then the vector is of dimension N. In the unit 
basis, each element of the vector corresponds to the activation value of 
one of the units. Geometrically, we can think of each unit as specify
ing a value on a dimension and the entire vector as corresponding to 
the coordinates of a point in N-dimensional space. Thus, the dimen
sions of the space correspond directly to the units (this is why it is 
called the unit basis). Now, a change of basis amounts essentially to a 
change in coordinate system. This can be accomplished through rota
tion, as well as other linear transformations. Converting to the pattern 
basis merely involves transforming the coordinate system so that the 
patterns line up with the axes. Figure 1 illustrates a simple case of this 
process. In Figure lA we give the geometric representation of the pat
terns. Pattern 1, PI, involves two units, each with activation value + 1. 
Pattern 2, P2, has activation values < + 1 ,- 1 >. The patterns described 
in the unit basis are 

Figure 1 B shows the same two vectors, but now expressed with respect 
to a new coordinate system, the pattern coordinate system. In this case 
the axes correspond to the patterns not the units. The vectors 
corresponding to patterns 1 and 2 now become 

p* 1 = [?] and p* 2" [A]· 
Copyrighted Material 
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A Unit 2 

-1--------�-------

-1 

B -1 

Pattern 1 
<+1,+1> 

Unit 1 

Pattern 2 
< +1,-1 > 

+1 

< 0,+1 > 

-1 
+1 

FIGURE 1. An example of conversion from unit-based coordinates into pattern-based 

coordinates. 

In general, conversion to a new basis requires a matrix P which 
specifies the relationship between the new and old coordinate systems. 
For each vector, Pi' we write the new vector p* i as P* i = Pp i' If all of 
the vectors and matrices of the original system are converted into the 
new basis, we simply have a new way to describe the same system. For 
present purposes we have !wo tran"formation matrices, one that Cbpyngnred MaTerial 
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transforms the input patterns into a coordinate space based on the input 
patterns, which we denote P /, and one that transforms the target pat
terns into a coordinate space based on the target patterns, P r. In this 
case, we have i*; = P/i; for the input vectors and t*, = Prt, for the 
target vectors. Moreover, since the output vectors must be in the same 
space as the target vectors we have 0*; = Pro,. We must also 
transform the weight matrix W to the new basis. Since the weight 
matrix maps the input space onto the output space, both transforma
tions must be involved in transforming the weight matrix. We can see 
what this transformation must be by considering the job that the weight 
matrix must do. Suppose that in the old bases Wi = 0 for some input i 
and output o. In the new bases we should be able to write W*i* = 0* 

Thus, W*P/i = Pro and PT"IW*P/i = 0 = Wi. From this we can 
readily see that P T" I W*p / = Wand finally, we can write the appropriate 
transformation matrix for W as 

W* = PrWP[I. 

We can multiply both sides of Equation 1 by P r on the right and P [I 
on the left. This leads to 

PrWp[ l (n) = PrWp[l(n- 1) + PT1}8(n)ir(n)p/1 

which, by substitution, can be written as 

W* (n) = W* (n - 1) + 1/8*  (n ) [ P [I i * (n ) r P /1, 

where 

8 * (n ) = t* (n ) - W* (n - 1) i* (n ). (3) 

Finally, by rearranging we have 

(4) 

where the matrix C, given by C = (p/I )Tp[l, is a matrix which holds 

the correlational information among the original input patterns. To see 
this, recall that we are changing the input patterns into their pattern 

basis and the target patterns into their pattern basis. Therefore, the 

vector i *j consists of a 1 in the jth cell and zeros eve�ywhere else. 

Thus, since i· = P/l i* j' we see that P /1 must be a matrix whose j th 

column is th� j th original input vector. Therefore , C is a matrix with 

the inner product of the input vectors i I and i j occupying the ith row 

and j th column. This inner product is the vector correlation between 

the two patterns. Copyrighted Material 



450 FORMAL ANALYSES 

We have finally constructed a new description which, as we shall see, 
allows many insights into the operation of the delta rule which are nor
mally obscured by the internal structure of the patterns themselves. 
Instead, we have isolated the critical interpattern structure in the 
matrix C. 

One advantage of this new description is that the output the system 
actually produces-even when it does not match any target exactly-can 
easily be interpreted as the weighted average of the various target pat
terns. The value in each cell of the output vector is the coefficient 
determining the amount of that target in the output. In this case the 
sum squared error for input/output pattern p, given by 

Ep = L (t*j - O"jP' 

measures the error directly in terms of the degree to which each target 
pattern is present in the output, rather than the degree to which each 
unit is present. It should be noted, of course, that this new pattern
based error function is related to the old unit-based error by the same 
change of basis matrices discussed above. 

It might be observed further that under this description, the perfect 
associator-which results when the input and output patterns are 
linearly independent -will be the identity matrix, I, in which the main 
diagonal has a 1 in each entry and all other entries are O. It should be 
noted, however, that the preceding analysis of this new description has 
assumed the input and target output patterns were linearly independent. 
If they are not, no such pattern basis exists. However, there is an 
analogous, but somewhat more complex, development for the case in 
which these vectors cannot form a legitimate basis. 

I will now demonstrate some of the useful insights which can be 
gained through this analysis by comparing the unit and pattern basis 
descriptions for a sample learning problem. The upper portion of Fig
ure 2 gives the representations of the four input/ output patterns to be 
learned in the unit basis. These patterns are all linearly independent and 
were generated under the constraint that each pattern has unit length 
and that the input patterns have the correlation structure given in the 
matrix shown in the figure. 

Figure 3 shows the states of Wand W* after one, four, and eight 
sweeps through the four input/ output patterns. While inspection of the 
unit-based representations gives no direct information about the degree 
of learning and crosstalk between targets, this information is explicit in 
the pattern-based representation. For example, one can discern that 
the error for the pairs with highly correlated inputs (pairs 1 and 2) is 
greater at each stage than that for the pairs with slightly correlated input 

Copyrighted Material 
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FIGURE 2. Key-target pairs and the key correlation structure. 

patterns (pairs 3 and 4). Moreover, there is no intrusion of targets 
associated with orthogonal inputs. In addition, the intrusion of targets 
from correlated pairs is least for the pair most recently learned, pairs 2 
and 4. (The patterns were presented in order 1-2-3-4 on each sweep.) 
Finally, it is clear from inspection of the pattern-based weight matrix 
that after eight sweeps the patterns have been almost perfectly learned. 

The pattern-based formulation also allows a more detailed analysis of 
the general effect of a learning trial on the error. We can define the 
.. potential error" to pattern j, a J * as 
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Learning with g = 1.20 

AFTER 1 Learning Cycle 

Pallem Based: mse=O.09 Unit Based: mse-0.049 

0.39 -0.18 0_00 0.00 -O.U -0.13 0_02 0_10 -0.01 -0.42 -0.35 0.12 

0.90 1.20 0.00 0.00 -O.ID 0.1J8 -0.59 0.00 O.U -0.29 -U8 -0.40 

0.00 0.00 1.11 -0.06 057 0.28 O.OS 0.35 0.10 0.52 O.ID 0.33 

0.00 0.00 0.30 1.20 -0.04 0.13 -0.23 0.07 O.OS -0.14 0.10 -0.23 

0.30 -0.33 0.17 -0.59 -O.IM 0.94 - 0.13 0.23 

O.OS 0.50 -0.17 0.20 0.06 0.20 0.81 -0.42 

AFTER 4 Learning Cycles 

Pall em Based: mse=O.OO Unir Based: mse = 0.00 

0.98 -0.01 0.00 0.00 - US  ·0.18 0.07 0.01 -O.IM ·0.34 -0.31 0.13 

0.03 1.01 0.00 0.00 -0.117 0.02 -0.57 -O.OS 0.10 -0.28 -0.20 -0.41 

0.00 0.00 1.00 0.00 0.59 0.13 -0.30 0.1 1 0.16 O.SO -0.29 0.13 

0.00 0.00 0.00 1.00 -O.OS 0.16 -0.10 0.14 0.02 -US 0.17 -0.16 

0.36 -0.42 -0.47 -0.81 0.08 0.86 -0.53 -0.12 

0.06 0.66 0.16 0.53 0.02 0.09 1.01 -0.19 

AFTER 8 Learning Cycles 

Pallem Based: mseaO.OO Unir Based: moe=O.OO 

1.00 0.00 0.00 0.00 -0.1.5 -0.18 0.117 0.01 -O.IM -0.34 - 0.31 0.13 

0.00 1.00 0.00 0.00 ·0.117 0.02 -0.57 -O.OS 0.10 - 0 .28 -0.20 -0. 41 

0.00 0.00 1.00 0.00 0 . .59 0.13 -0.32 0.10 0.16 O.SO -0.30 0.12 

0.00 0.00 0.00 1.00 -0.05 0.16 -0.10 0. 14 0.02 -D.1S 0.18 -0.15 

0.35 -0.43 -0.49 -0.82 0.08 O.SS -0 . .54 -0.13 

0.06 0.66 0.17 0 . .54 0.02 0.10 1.01 - 0. 18 

FIGURE 3. Comparison of unit-based and pattern-based weight matrices after one, four, 
and eight learning cycles. 

(5) 

Substituting for W* (n) from Equation 1, gives 

where k is the index of the pattern presented on trial n - 1. Simplify
ing further, we have the recursive form: 

8 . '" (n) = B . '" (n - 1) - '(18 k '" (n - 1 )i * lei * j • 
J J Copyrighted Material 

(6) 
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Since the vectors i* j and i* [ consist of a 1 and the rest zeros, the 
entire expression i* [e i* j reduces to Ckj' the entry in the k th row and 
jth column of matrix e. Thus, Equation 6 becomes simply 

(7) 

In other words, the decrease in error to the jth input/output pair due 
to a new learning trial is a constant times the error pattern on the new 
learning trial. The constant is given by the learning rate, Tt, times the 
correlation of the currently tested input and input from the learning 
trial. Thus, the degree to which learning affects performance on each 
test input is proportional to its correlation with the pattern just used in 
learning. Note that if Tt is small enough, the error to the presented pat
tern always decreases. In this case Equation 7 can be rewritten 

8k -en) = 8k - (n - D(1 - 'rjCkk)' 
Recalling that Ckk is given by i[ik, the length of the kth input vector, 
we can see that the error will always decrease provided 11 - Tt i[ik I < 1. 

To summarize, this exercise has demonstrated that a mechanism can 
often be made more conceptually tractable by a judicious transforma
tion. In this case, expressing the possible input and output representa
tions in the appropriate pattern bases clarified the importance, indeed 
the sufficiency, of the input "structure" (i.e., the pattern of inner pro
ducts among the input vectors) in determining the role of the input 
representations in learning. Furthermore, converting the weight matrix 
into a form from which the errors at any stage of learning can be read 
directly allowed us to "see" the learning more obviously. The result 
has been a clearer understanding of the operation of the delta rule for 
learning. 

STATISTICAL LEARNING 

In this section we extend our analysis of the delta rule from the case 
in which there is a fixed target output pattern for each input pattern to 
the case in which sets of input patterns are associated with sets of out
put patterns. We can think of the sets as representing categories of 
input and outputs. Thus, rather than associate particular input patterns 
with particular output patterns, we analyze the case in which categories 
bf input patterns are associated with categories of output patterns. This, 
for example, might be the case if the system is learning that dogs bark. 
The representation for dog might differ on each learning trial with 
respect to size, shagginSi§p�htW8iNtatb;;afepresentation for the bark 
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might vary with regard to pitch, timbre, etc. In this case, the system is 
simultaneously learning the categories of dog and bark at the same time 
it is learning the association between the two concepts. 

In addition, when we have category associations, statistical relation
ships between the input and output patterns within a category can be 
picked up. For example, the system could learn that small dogs tend to 
have high-pitched barks whereas large dogs may tend to have low
pitched barks. 

In order to analyze the case of statistical learning, we now treat the 
input/ output pairs of patterns as random variables. In other words, 
each time pattern ij is selected as input, its entries can take different 
values. Similarly, the target output for pair j, Ij will have variable 
entries. The probability distributions of these random variables may 
take any form whatsoever, but they are assumed not to change over 
time. Moreover, we can consider the entire set of input/ output pairs to 
form a single probability distribution. We then assume that on each 
trial an input/ output pair is randomly sampled from this overall proba
bility distribution. 

We proceed with our analysis of statistical learning by computing the 
expected or average change in the weight matrix following a presenta
tion. From Equations 1 and 2 we get the following form of the delta 
rule: 

W (n) = W (n - 1) + .,., [t (n ) - W (n - 1) i (n ) ] i T (n ). 

Simplifying and taking the expected value of each side we have 

Note, we may take 

E[W (n - 1)i{n)i T (n)] = E[W (n - 1)]E[i{n)i T (n)] 

since each trial is assumed to be statistically independent of all preced
ing trials, upon which W (n - 1) depends. Letting R J = E [Ii T] be the 
pattern of statistical correlations among the input patterns and 
R JO = E hi T] be the statistical correlations between the input and tar
get patterns, we can rewrite Equation 7 as 

E[W (n) ] = E[W(n- 1)](1 - .,.,RJ) + .,.,RJO. 

If we solve the recursion by replacing W (n - I) with an expression in 
terms of W (n - 2) etc. down to W (0) and assuming that W (0) = 0, the 
matrix of all 0 entries, we can write the expected value of the weight 
matrix after n trials as 

Copyrighted Material 



11. THE DELTA RULE 455 

E(W(n) ] = 7)RJOt (I - 7)R, )i. 
(9) 

i-O 
Fortunately, in the limit, this matrix reduces to a simpler form. To see 
this, we must introduce the concept of the pseudo-inverse of a matrix. 
This is a matrix which, unlike the inverse, is certain to exist for all 
matrices, but which has a number of properties in common with an 
true inverse. (See Chapter 9 for a discussion of matrix inverses and the 
conditions under which they exist.) In particular, it is the true inverse, 
if the true inverse exists. The pseudo-inverse of a matrix B, designated 
B+, is given by 

B+ = 7)BTr, (I - 7)BBT)l 
i-I 

provided 7) is sufficiently small. (See Rao & Mitra, 1971, and 
Kohonen, 1977, 1984, for a full discussion of the pseudo-inverse.) 

In order to convert Equation 9 into a form that includes the expres
sion for the pseudo-inverse, we observe that since the square matrix 
R, = EUiT] has independent rows and columns, we can select a 
matrix P such that ppT = R, and P also has linearly independent rows 
and columns. Since the generalized inverse of P, P+, is also the true 
inverse of P, it satisfies (P T )-Ip T = I. Thus, taking the limit as 
n-oo of Equation 9 and substituting P, we can write 

00 
limE(W(n)] = E(Woo] = RJO (pT )-1 (7)pT:E (I - 7)ppT F1. ( 10) 
n-oo i=\ 

Now, by substituting in for the pseudo-inverse of P and simplifying we 
get 

Since the rows and columns ofR, are linearly independent, R,I = Rt. 
So we finally get 

( 12) 

Now we wish to show that, after training, the system will respond 
appropriately. Without further restrictions, we can demonstrate a 
minimal appropriateness of the response, namely, we can show that 
E [W J ] = E [t ]. In other words, we can show that the mean output 
of the system, after learning, is the mean target. Since the test trials 
and learning trials are statistically independent we can write 

E[Wooi] = E[Woo lEU]. 
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Now, substituting in from Equation 9 we have 

Although it is not generally true that (BC)+ = C+B+, this relation does 
hold for B = i and C = iT, where i is a column vector. Thus, we have 

Finally, since i has only one column, its columns are linearly indepen
dent and i+i = 1. We have therefore obtained the desired result. 

Thus far we have only shown that the mean response to inputs is 
equivalent to the mean of the target patterns. This result says nothing 
about the appropriateness of the response to a particular pattern. 
Ideally we would want the expected response to a particular pattern to 
yield the expected value of our target given the input. We can show 
that the input will produce this result as long as i and t are distributed 
normally with zero means. Although this seems to be a strong assump
tion, it is not a difficult situation to obtain. First, we can easily arrange 
that the input patterns have zero means by simply having a bias feeding 
into each unit equal to minus the mean of the value for that cell of the 
pattern. This is not especially difficult, but we will not dwell on the 
process here. (See Chapter 8 for a discussion of biases and the learning 
of biases.) Suffice it to say that it is not very difficult to convert a set of 
input vectors into a set of patterns with zero mean. 

The requirement of normal distributions is often not as restrictive as 
it appears. When input patterns being associated are themselves the 
output cf a linear system, each entry in the pattern will be a linear com
bination of the original input's entries. If the patterns have large 
dimensionality (i.e., there are many components to the vectors), one 
obtains an approximation to an infinite series of random variables. A 
powerful central-limit theorem due to Lyapunov (Eisen, 1969, Ch. 13) 
shows that such a series will converge to a normal distribution so long 
as several weak assumptions hold (most importantly, the means and 
variances of each random variable must exist and none of the random 
variables may be excessively dominant). 

Under these conditions, it can be shown that the expected value of 
the target t given the input i, takes the form E(tji ] = R/OR/-1j 
(Meditch, 1969, chap. 3). Since E[Woa) = RIOR/-l, we have shown 
that 

( 13) 

so that after a sufficient number of learning trials, the law of large 
numbers and the conve8lYPing��et9�rJW-afule learning process imply 
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that, given a particular input, the system will produce an output equal 
to the average of the targets paired with that input. In this sense, sys
tematic covariation of input/ output pairs will be learned. 

The Delta Rule and Multiple Linear Regression 

Some readers may have already noticed the similarity of the learning 
task we have been analyzing to the problem encountered in multiple 
linear regression. In a linear regression problem the objective is to 
predict, to the degree possible, one variable, say y, from a set of vari
ables x. In these problems we typically wish to find a set of coeffi
cients, b, such that 

(where Xo is taken to be 1) and the sum-squared error 

is minimized. This is precisely the problem that the delta rule seeks to 
solve. In this case, each element of the target vector for input/ output 
pair (p tp) is analogous to a to-be-predicted observation Yj; our predic
tion variables x j are analogous to our input vectors ip; our regression 
coefficients b correspond to a row of the weight matrix W; and the 
intercept of the regression line, bo, corresponds to the bias often 
assumed for our units (cf. Chapter 8). In our typical case the target 
vectors have many components, so we are simultaneously solving a 
multiple regression problem for each of the components of the target 
vectors. Now, the standard result from linear regression, for zero-mean 
random variables, is that our estimate for the vector b, b is given by 

where X is the matrix whose columns represent the values of the pred
ictors and whose rows represent the individual observations. (Again, 
we take the first column to be all Is.) Now, note from Equation 12 
that the delta rule converges to 

E[Wco) - (E[iTi ])+E[iTt]. 
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This equation is the strict analog of that from linear regression theory. 2 
If we assume that each output unit has a bias corresponding to the 
intercept bo of the regression line, we can see that the delta rule is, in 
effect, an iterative method of computing the best, in the sense of least 
squares, linear regression coefficients for our problems. 

SUMMARY 

To summarize, this chapter has shown that close examination of the 
delta rule reveals a number of interesting and useful properties. When 
fixed patterns are being learned, the rule's operation can be elucidated 
by converting from a unit-based description to a pattern-based descrip
tion. In particular, the analysis showed that the correlations between 
the input patterns, and not the specific patterns used, determined their 
effect on the learning process. Thus, any alteration of the specific 
input patterns that does not alter the correlations will have no effect on 
learning by a linear delta rule. It was also shown that expressing the 
inputs and outputs in terms of the patterns being learned facilitated 
analysis of the learning process by allowing one to read directly from 
the output produced the degree to which each target was present in the 
output generated by a given input pattern. 

When the patterns being learned are variable, it was noted that the 
final weight matrix could be expressed simply in terms of the inter
correlations among the input patterns, RI, and the correlations between 
the input and output patterns, RIO' It was also shown that when 
several reasonable requirements for the distribution of the input/ output 
random variables are met, the delta rule will learn the pattern of covari
ation between the inputs and targets. Finally, we showed that the delta 
rule carries out the equivalent of a multiple linear regression from the 
input patterns to the targets. Those familiar with linear regression 
should conclude from this both the power of the rule and its 
weaknesses. In particular, wherever a linear regression is insufficient to 
provide a good account of the relationship between input and target pat
terns, the system will perform poorly. The solution to this problem is 
to have nonlinear units and intermediate layers of hidden units. 
Chapter 8 is a detailed discussion of the generalized delta rule and its 
application to these situations. 

2 Actually, there is a sl ight difference in convention between our deve lopment and that 
typical of linear regression. In our case, the stimulus vectors are the column vectors, 

whereas in linear regression the predictor variables are the rows of the matrix X. Thus 
this equation differs by a transposition from Equation 12. This has no consequences for 
the points made here . 
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The preceding discussion does not, by any means, provide a com
plete analysis of the delta rule. Rather, it illustrates two important 
ideas. First, that a basic principle (in this case, the use of pattern
based, rather than unit-based representations) can provide valuable 
insights into the operation of a useful mechanism; and second, that the 
analysis of component mechanisms which were designed for one use 
can often reveal new applications. 
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CHAPTER 12 

Resource Requlrements of 
Standard and Programmable Nets 

1. L. McCLELLAND 

In several places in this book we have examined the capabilities of 
various models of parallel distributed processing. We have considered 
models that are guaranteed to do one thing or another-to learn, say, 
up to some criterion of optimality or to settle into global states with 
probabi l i t ies proportional to the goodness of the states. In later 
chapters , we describe various models of psychological or neurophysio
logical processes and consider how well they account for the data. The 
models, then , are held up against various criteria of computational, 
psychological,  and sometimes physiological adequacy. 

In this chapter I raise another question about PDP models . I con
sider the resources they require, in terms of units and connections, to 
carry out a particular amount of work . This issue is touched on in vari
ous other places in the book, particularly Chapter 3. There we showed 
that a distributed model can often perform even an arbitrary mapping 
with less hardware than a local model would require to do the same 
task. 

In this chapter I continue this line of thinking and extend i t  in vari 
ous ways, drawing on the work of several other researchers, particularly 
Willshaw (1971, 1981). The analysis is far from exhaustive , but it 
focuses on several fairly central questions about the resource require
ments of PDP networks. In the first part of the chapter,  I consider the 
resource requirements of a simple pattern associator. I review the 
analysis offered by Willshaw ( 1981) and extend it in one or two small 
ways , and I consider how it might be possi ble to overcome some 
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limitations that arise in networks consisting of units with limited con
nectivity. In the second part of the chapter, I consider the resource 
requirements of a distributed version of the dynamically programmable 
networks described in Chapter 16. 

THE STANDARD PATTERN ASSOCIATOR 

In this section, we will consider pattern associator models similar to 
the models studied by J. A. Anderson (e.g., Anderson, 1983) and 
Kohonen (1977, 1984), and to the past-tense learning model described 
in Chapter 1 8. A small pattern associator is illustrated in Figure 1. A 
pattern associator consists of two sets of units, called input and output 
units, and a connection from each input unit to each output unit. The 
associator takes as input a pattern of activation on its input units and 
produces in response a pattern on the output units based on the con
nections between the input and output units. 

Different pattern associators make slightly different assumptions 
about the processing characteristics of the units. We will follow 
Willshaw's ( 198 1) analysis of a particular, simple case; he used binary 
units and binary connections between units. Thus, units could take on 
activation values of 0 or I. Similarly, the connections between the 
units could take on only binary values of 0 and I. 

In Willshaw nets, processing is an extremely simple matter. A pat
tern of activation is imposed on the input units, turning each one either 
on or off. Each active input unit then sends a quantum of activation to 
each of the output units it has a switched-on connection to. Output 
units go on if the number of quanta they receive exceeds a threshold; 
otherwise they stay off. 

The learning rule Wil lshaw studied is equally simple. Training 
amounts to presenting each input pattern paired with the corresponding 
output pattern, and turning on the connection from each active input 
unit to each active output unit. This is, of course, a simple variant of 
Hebbian learning. Given this learning rule, it follows that when the 
input pattern of a known association is presented to the network, each 
of the activated input units will send one quantum of activation to all of 
the correct output units. This means that the number of quanta of 
activation each correct output unit will receive will be equal to the 
number of active input units. 

In examining the learning capacity of this network, Wil lshaw made 
several further assumptions. First, he assumed that all of the associa
tions (or pairs of patterns) to be learned have the same number of 
active input units and the�yxgmew'Mat8Hiftive output units. Second, 
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FIGURE 1. A pattern associator consisting of a set of input units (across the bottom) 
and output units (a)ong the right side), with a connection from each input unit to each 
output unit. 

he assumed that the threshold of each output unit is set equal to the 
number of active input units. Given this assumption, only those out
put units with switched-on connections from all of the active input 
units will reach threshold . 

Now we can begin to examine the capacity of these networks. In 
particular, we can ask questions l ike the following. How many input 
units (n/) and output units (no) would be needed to allow retrieval of 
the correct mate of each of r different input patterns? 

The answer to such a question depends on the criterion of correct 
retrieval used. For present purposes, we can adopt the following cri
terion: All of the correct output units should be turned on , and, on the 
average, no more than one output unit should be turned on spuriously. 
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Since the assumptions of the model guarantee that all the correct out
put units will be turned on when the correct input is shown, the 
analysis focuses on the number of units needed to store r patterns 
without exceeding the acceptable number of spurious activations. 

The answer to our question also depends on the number of units 
active in the input and output patterns in each pattern pair and on the 
similarity relations among the patterns. A very useful case that 
Willshaw considered is the case in which each of the r associations 
involves a random selection of mi input uni ts and mo output units. 
From the assumpt ion of randomness, i t  is easy to compute the proba
bility that any given junction will be turned on after learning all r asso
ciations. From this it is easy to compute the average number of spuri
ous activat ions. We will now go through these computations. 

Fi rst we consider the probability Pon that any given junction will end 
up being turned on, for a particular choice of the parameters n" no, m" 
mo, and r. Imagine that the r patterns are stored , one after the other, 
in the ni no connections between the ni input units and the no output 
units. As each pattern is stored, it turns on m,mo of the nino connec
tions, so each junction in the network is turned on with probability 
mi mol ni no. The probability that a junction is not turned on by a single 
association is just 1 minus this quanti ty. Since each of the r associa
tions is a new random sample of m, of the ni input units and mo of the 
no output units, the probability that a junct ion has not been turned 
on-or 1 minus the probabil ity that it has been turned on-after r pat
terns have been stored is 

I mimo I' I- p = 1- --on nino 

Rearranging to solve for Pan we obtain 

I mimo I' P = 1- 1- --on nino 

Now that we know Pon ' it is easy to calculate the number of spurious 
activations of output uni ts. First, any output unit that should not be 
activated will be turned on if and only if all of its junct ions from the m, 
active input units happen to be on. Given the assumption of random
ness, this will occur with probability Pon 

mj, since each junction is on 
with probability Pon ' Since there are no - mo output units that are can
didates for spurious activation, the average number of spuriously 
activated units is 

(no - mo)Pon 
mi. 
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We want to keep this number less than 1. Adopting a slightly more 
stringent criterion to simplify the calculations, we can set 

or 
I 

I nlo I mj 
� Pon 

Rearranging, we get 

For small positive x, logO-x ) = -x. If we restrict ourselves to cases 
where mj mol nj no < .1- that is, reasonably sparse patterns in  the sense 
that m < nl.JTO- the approximation will hold for the right-hand side of 
the equation, so that taking logs we get 

We can solve this for r, the number of patterns, to obtain 

(1) 

Now, -log 1- [ n� I �, I ranges upward from .69 for very sparse patterns 

where mj = 10g2no' Using .69 as a lower bound, we are safe if we say: 

or 
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This result tells us that the number of storage elements (that i s ,  con
nections , nj na) that we need is proportional to the number of associa
tions we wish to store t i mes the number of connections (mj ma) 
activated in  storing each association. This  seems about right, intui 
tively. In fact, this i s  an upper bound rather greater than the true 
number of storage elements requi red for less sparse patterns, as can be 
seen by plugging values of mj greater than log2na into Equation 1. 

It is interesting to compare Wilishaw nets to various kinds of local 
representation. One very simple local representation would associate a 
single, active input unit with one or more acti ve output uni ts. Obvi
ously, such a network would have a capacity of only nj patterns. We 
can use the connections of a Willshaw net more effectively with a dis
tributed input if the input and output patterns are reasonably sparse. 
For instance , in a square net with the same number n of input and out
put units and the same number m of acti ve elements in each, if 
n = 1000 and m = 10, we find that we can store about 7,000 associa
tions instead of the 1,000 we could store using local representation over 
the input units. 

Another scheme to compare to the Willshaw scheme would be one 
that encodes each pattern to be learned with a single hidden unit 
between the input and output layers. Obviously a net that behaved per
fectly in performing r associations between mj active input elements 
and ma active output units could be handcrafted using r hidden units, 
each having m, input connections and ma output connections. Such a 
network can be economical once it is wired up exactly right: It only 
needs r (m;+mo) connections. However, there are two points to note. 
First, it is not obvious how to provide enough hardware in advance to 
handle an arbitrary r patterns of m, active input units and mo active 
output units. The number of such patterns possible is approximately 

(n, mil m, !)(no mol mo 1 ) , and if we had to provide a unit in a,dvance for 
each of these our hardware cost would get out of hand very fast. 
Second, the economy of the scheme is not due to the use of local 
representation, but to the use of hidden units. In many cases even 
more economical representation can be achieved with coarse-coded hid
den units (see Chapter 3 and Kanerva, 1984). 

Randomly Connected Nets 

Returning to the standard Wilishaw net, there are several minor diffi
culties with Willshaw 's scheme. First, i t  assumes that each input unit  
sends one and only one connection to each output unit. In a neural 
network, we might aSSCDP¥r_diMHI�rMllit sends out a randomly 
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distributed array of connections to the set of output units without any 
guarantee that each output unit actually receives a connection. Second, 
the analysis depends on a rather strict and sharp threshold for output 
unit activation. In a random net rather than a fully connected net, we 
could not actually guarantee that a given output unit would in fact 
receive mj inputs� and in realistic nets, we would expect there to be 
some inherent variability in the activations of the units. Thus, we 
would not be able to guarantee that all correct units would exceed the 
sharp threshold, nor that all incorrect units would fal l  below it. 

However, it turns out that we can reformulate the problem just 
slightly and get a handle on networks that have these properties. 
Assume that we have a square network of n input and n output units 
and that we wish to store associations between m active input units and 
m active output units. Suppose each input unit has f output connec
tions which fal l  where they may among the n output units so that the 
output units have an average of f inputs each. Note again that the 
connections are randomly distributed without restriction so that there is 
no guarantee that input unit i projects to output unit j. 

To study the performance of this net, imagine storing some number 
, of patterns using the Willshaw learning scheme. During testing, we 
will examine the number of active inputs each output unit that should 
be turned on will receive and the number of active inputs each unit 
that should not be turned on will receive, and we will then calculate the 
signal-detection measure of sensitivity d' (Green & Swets, 1966) as an 
index of the ability of inputs reaching each output unit to distinguish 
between units that should be on and units that should not be on. Since 
d' is independent of the threshold, this measure allows us to bypass the 
question of the threshold itself. 

Let us first consider what happens in our random network as we train 
it with pai rs of patterns using Willshaw's scheme. Pick an arbitrary 
connection in our net between an arbitrary input unit and an arbitrary 
output unit. Now, consider learning an arbitrary pattern. The probabi l
ity that a particular input unit will be on is m/ n .  Similarly, the proba
bility that a particular output unit will be on is m/ n. The probability 
that the units joined by the particular connection we are considering 
will be one of the ones turned on in learning a particular pattern, then, 
is m2/ n2 just as before. The rest of the earlier analysis still applies, and 
we get 

This is exactly the same value that we had before in the original 
Willshaw model, and it is independent of f, the number of connections 
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each unit makes. This factor wil l  become important soon , but i t  does 
not affect the probability that a particular connection wil l  be on after 
learning r patterns. 

Now consider what happens during the testing of a particular learned 
association. We activate the correct m input units and examine the 
mean number of quanta of activation that each output unit that should 
be on wi l l  receive. The m active input units each have f outputs, so 
there are mf total " active" connections. A particular one of these con
nections reaches a particular output unit with probability lin ,  since 
each connection is assumed to fall at random among the n output uni ts. 
Thus, the average number of active connections each output unit 
receives wil l  simply be mf In. For output units that should be on, each 
of these connections will have been turned on during learning, so 
mfln is  the average number of quanta that unit will receive. Assum
ing that n is reasonably large, the distribution of this quantity is 
approximately Poisson, so its variance is also given by mfl n .  

Units that should not be on also recei ve a n  arbitrary connection from 
an act ive input unit with probability lin ,  but each such connection is 
only on with probability Pon' Thus, the average number of quanta such 
units receive is (mf In )Pon' This quantity is also approximately Pois
son , so i ts variance is also equal to its mean. 

Our measure of sensitivi ty, d', is the difference between these means 
divided by the square root of the average of the variances. That is, 

d' = mf I n (I - Pon ) 

J(mfln)(l + Pon)/2 

Simplifying, this becomes 

, ..Jm1Tii 1 - Pon 
d = mfln 

JO + Pon )/ 2 

We can get bounds on the true value of d' by noting that the denomi 
nator above cannot be greater than 1 or l ess than .Jiii . The largest 
value of the denominator sets a lower bound on d', so we find that 

d' � .Jmf/n (t - Pon)' 

Substituting for 1 - Pon, we obtain 

d' � .J mf / n [ 1 - :: r. (3) 
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Taking logs of both sides, invoking the logO - X) = -x approxima
tion, and solving for" we obtain 

, �.5 ;:[ log(m//n)- 2 10g(d'» ) . 

One of the first things to note from this expression is its similarity to 
the expression we had for the case of Willshaw's fully connected net. 
In particular, if we let / = n, so that each unit sends an average of one 
connection to reach another unit, we get 

, � .5 ;: [ log(m) - 210g(d') ] . 
(4) 

The expression in brackets on the right expresses the fact that the capa
city of the net goes down as the sensitivity we want to achieve goes up 
and captures the fact that there is a slight benefit as we increase m, 
independent of its effect on the ratio of total connections to connec
tions activated per association. This is due to the fact that the distribu
tions of activations of correct and spurious units pull apart as m gets 
larger. These are relatively small factors for moderate values of m and 
d'. More important, as before, is the ratio of the number of connec
tions (n2) relative to the average number of connections each pattern 
takes up (m2). 

Effects of Limited Fan-Out 

A new result emerges when we consider other possible values for /: 
Equation 3 indicates that d' is directly proportional to the square root of 
/. Thus, we can achieve any degree of fidelity we require by increasing 
/ though returns diminish as / gets bigger and bigger. Alternatively, 
the performance of our network will degrade gracefully as fan-out is 
reduced. 

We can also see that increases in n are no longer uniformly benefi
cial. The term log (m/ / n) decreases a n increases; we can no longer 
increase the capacity indefinitely simply by increasing n. 

Figure 2 indicates a discovery of Mitchison (personal communica
tion, 1984) concerning the capacity, of a network as a function of n 
for several values of m and /, with d' = 5. Capacity depends roughly 
on n2/m2 and is relatively insensitive to / as long as .Jm/!n » d'. 
However, as n increases we reach a point where .Jm/!n approaches d'; 
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FIGURE 2. Effects of limited fan-out in a randomly connected associative net as a func
tion of the log of n, the number of input and output units; for different values of m, the 
number of active units in each input and output pauern, indicated below each pair of 
curves. The upper member of each pair of curves is for fan-out of 10,000; the lower 
member is for fan-out of 1,000. In all cases, the y-axis reflects the Jog of the maximum 
number of paUerns that can be stored while maintaining a d' of 5. Calculations are based 
on Equation 2 (Equation J gives misleading results for .Jm//n near d'). 

here capacity levels off and further increases in n result in no further 
increase in sensitivity. The maximal capacity achievable by increasing 
n is invariant, regardless of the value of m , and depends only on d I and 
J. Thus, if we were to pick a fixed value of d', we would find that the 
maximum number of patterns we could store would be strictly limited 
by J. 

Biological limits on storage capacity oj neural nets. With these ana
lyses in mind, we can now consider what limits biological hardware 
might place on the storage capacity of a neural net. Of course , we must 
be clear on the fact that we are considering a very restricted class of 
distributed models and there is no guarantee that our resul ts will gen
eralize. Nevertheless, it is reasonably interesting to consider what it 
would take to store a large body of information, say, a million different 
pairs of patterns, with each pattern consisting of a 1,000 active input 
units and 1,000 active output units. 

To be on the safe side, let's adopt a d I of 5. With this value, if the 
units have an unbiased threshold, the network will miss less than 1 % of 
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the units that should be on and false alarm to less than 1 % of the units 
that should be off. 1 

How big would a net have to be to meet these specifications? 
Assuming a fully connected net , and consult ing Equation 4, we find 
that we need to set n equal to a value near about 106 to get r large 
enough. 

This number of units is not a serious problem since estimates of the 
number of units in the brain generally range upward from 1010 (see 
Chapter 20). However, individual units are not general ly assumed to 
have enough connections for this scheme to work as stated. If there 
are 1,000 to 10,000 connections per unit ,  as suggested in Chapter 20, 
we are off by two to three orders of magnitude in the number of con
nections per unit . 

Given this limitation on fan-out, we had better consult Figure 2. 
The figure indicates that the maximum capacity of a net with a fan-out 
of 1,000 and a d' of 5 is only about 150 patterns. With / - 10,000 we 
get up to a capacity of about 15,000 patterns, but we are still well short 
of the mark. It seems, then, that the fan-out of neurons drastically 
l imits the capacity of a distributed network. 

A simple method for overcoming the fan-out limitation. But all is 
not completely lost. It turns out that i t  is a relatively simple matter to 
overcome the fan-out l imitation. The trick is simply to use multiple 
layers of units. Let each input unit activate a set of what we might call 
dispersion units, and let each output unit receive i nput from a set of col
lection uni ts. Let the / outgoing connections of each of the dispersion 
units be randomly distributed among the "dendri tes" of the collection 
uni ts. A miniature version of this scheme is i l lustrated in Figure 3. 
Note that it is assumed that each dispersion unit is driven by a sin gle 
input unit ,  and each collection unit projects to a Single output unit. 
Collection units are assumed to be perfectly l inear so that the net input 
to each output unit is just the sum of the net inputs to the collector 
uni ts that project to it. Assuming each input unit and each dispersion 
unit has a fan-out of /, the effective fan-out of the input and disper
sion layers together becomes /2. Simi larly, the set of collection units 
feeding into each output unit col lect an average of /2 connections. To 
construct an associator of 1 mil l ion input units by 1 mill ion output 
units assuming each unit has a fanout of 1,000, we will need 1 bill ion 
dispersion units and 1 bi l l ion collection units. The number of connec
tions between the dispersion units and the collection units would be on 
the order of 1012, or 1 tr i l lion connections. 

I It should be pointed out that any intrinsic noise in the units would reduce the actual 
observed sensitivity. 
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FIGURE 3. A diagram of a multilayer network consisting of an input layer, a dispersion 

layer, a collection layer, and an output layer. The network serves to square the effective 
fan-out of each input unit, relative to the simple two-layer case. 

The network would require about 20% of human cortex, based on 
the estimate that there are lOs neurons under each square millimeter of 
the brain and that there are about lOS square millimeters of cortical sur
face. This might be a little tight, but if the fan-out were 1 0,000, the 
network would fit handily. In that case, it would only require about 2 
percent of the 1 010 units. 

There are, of course, a lot of reasons to doubt that these figures 
represent anything more than a first-order estimate of the capacity of 
real associative networks . There are several oversimplifications, includ
ing for example the assumption that the dispersion units are each 
driven by a single connection. We must also note that we have 
assumed a two-layer net along with an extremely simple learning rule. 
The intermediate layers postulated here merely serve to provide a way 
of overcoming the fan-out limits of individual units. However, as was 
pointed out in Chapters 7 and 8, a multilayer net can often learn to 
construct its own coding schemes that are much more efficient than the 
random coding schemes used here. Even simple two-layer nets can 
profit if there are somedcf���}bed M1

t�?ra
fetwork and if they use a 
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sensible learning rule, as shown in Chapter 18. Thus random nets like 
the ones that have been analyzed in this section probably represent a 
lower limit on efficiency that we can use as a benchmark against which 
to measure "smarter" PDP mechanisms. 

Effects of Degradation and the Benefits of Redundancy 

One virtue of distributed models is their ability to handle degrada
tion, either of the input pattern or of the network itself. The d' 
analysis allows us to tell a very simple story about the effects of degra
dation. In this section I will just consider the effects of degradation by 
removal, either of a random fraction of the pattern or of a random frac
tion of the connections in the network; effects of added noise will be 
considered later on. In the case of removal, we can think of it either in 
terms of presenting an incomplete pattern or actually destroying some 
of the input units so that parts of the pattern are simply no longer 
represented. Consider the case of a network that has already been 
trained with some number of patterns so that Pan can be treated as a 
constant. Then we can write the equation relating d' to m, f, and n as 

d' � k.Jmf!n. 

Now, suppose that during testing we turn on only some proportion PI 
of the m units representing a pattern. The m in the above equation 
becomes mpI, so we see that the sensitivity of the network as indexed 
by d' falls off as the square root of the fraction of the probe that is 
presented. Similarly. suppose some of the connections leading out of 
each unit are destroyed. leaving a random intact proportion Pi of the 
mf active connections. Again. the sensitivity of the network wi l l  be 
proportional to the square root of the number of remaining connec
tions. Thus, performance degrades gracefully under both kinds of 
damage. 

Another frequently noted virtue of distributed memories is the 
redundancy they tend naturally to provide. The ability of simple distri
buted memories to cope with degraded input patterns is really just a 
matter of their redundancy, as Willshaw (1981) pointed out. For. if a 
network is fully loaded, in the sense that it can hold no more associa
tions and stil l meet some predetermined standard of accuracy with com
plete patterns, it will not be able to meet that same criterion with degra
dation. The only way to guard against this problem is to load the net
work lightly enough so that the criterion can stil l be met after subject
ing the network or the inputs to the specified degree of degradation. 
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PROGRAMMABLE PATTERN ASSOCIATORS 

In this section , I extend the sort of analysis we have performed on 
simple associator models to the resource requirements of connection 
information distribution (CID) networks of the type discussed in 
Chapter 16. 

The mechanism shown in Figure 4 is a distributed CID mechanism. 
The purpose of this network is to allow connection information stored 
in a central associative network to be used to set connections in several 
local or programmable networks in the course of processing so that more 

Central 
Input 
Units 

Central Output Units� 

'- Local Input Units 

CA Units 

o 

FIGURE 4. A connection information distribution (CID) network consisting of two 
local, programmable networks; a central, standard network; and a set of connection 
activation (CA) units. Each local input unit projects to the corresponding central input 
unit, and each CA unit projects to the corresponding connection in both local networks. 

Central output units turn on CA units relevan t to processing the patterns they program 
the local modules to process. �MlWe'ri8# are a few examples of each type. 
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than one input pattern can be processed at one time. The mechanism 
works as follows: One or more patterns to be processed are presented 
as inputs, with each pattern going to the input units in a different pro
grammable network. The input pattern to each local net is also 
transmitted to the input units of the central associative network. When 
more than one pattern is presented at a time, the input to the central 
network is just the pattern that results from superimposing all of the 
input patterns. This pattern, via the connections in the central associa
tive network, causes a pattern of activation over the central output 
units. The central output pattern, of course, is a composite representa
tion of al l  of the input patterns. It is not itself the desired output of 
the system, but is the pattern that serves as the basis for programming 
(or turning on connections) in the local, programmable networks. The 
local networks are programmed via a set of units cal led the connection 
activation (CA) units. The CA uni ts act essentially as switches that 
turn on connections in the programmable networks. In the version of 
the model we will start with, each CA unit projects to the one specific 
connection it corresponds to in each programmable network, so there 
are as many CA units as there are connections in a single programma
ble net. In the figure, the CA units are laid out so that the location of 
each one corresponds to the location of the connection it commands in 
each of the programmable networks . 

To program the local networks, then, central output units activate the 
CA units corresponding to the connections needed to process the pat
terns represented on the central output units . The CA units turn on 
the corresponding connections. This does not mean that the CA units 
actual ly cause activation to pass to the local output units. Rather, they 
simply enable connections in the programmable nets. Each active local 
input unit sends a quantum of activation to a given local output unit if 
the connection between them is turned on. 

The question we will be concerned with first is the number of CA 
units required to make the mechanism work properly. In a later sec
tion, we wilI consider the effect of processing multiple items simultane
ously on the resource requirements of the central network. 

Connection Activation Unit Requirements 

Consider a CID mechanism containing programmable networks of n; 
by no units in which we wish to be able to associate each of s different 
output patterns with each of s different input patterns arising at the 
same time in different local networks. Input and output patterns con
sist of rn; by rno active units, respectively. Fol lowing the assumptions 
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for Willshaw nets, we assume binary units and connections, and we 
assume that output units are turned on only if they receive m quanta of 
activation. 

Now, let us consider how many CA units are needed to implement 
this mechanism. For now we bypass the bottom-up activation of CA 
units and assume instead that we know in advance which connections 
need to be turned on. If each local network must be as complex as a 
standard network capable of processing r different patterns, we are in 
serious trouble. In the previous analysis of Willshaw networks, we 
found that the number of connections we needed to process r associa
tions of m by m active units was 

It looks as though the number of connections required in each local 
network grows linearly with the number of known patterns times the 
content of each. If we had one CA unit for each programmable con
nection, a programmable version of our square I-million-pattern associ
ator would require 1012 CA units, a figure which is one or two orders of 
magnitude larger than conventional estimates of the number of units in 
the brain. Just putting the matter in terms of the cost we must bear to 
use programmable connections, it appears that we need n 2 CA units 
just to specify the connections needed for a standard net that could do 
the same work with just the connections between n input and n output 
units. 2 

However, things are not nearly as bad as this argument suggests. 
The computation I just gave misses the very important fact that it is 
generally not necessary to pinpoint only those connections that are 
relevant to a particular association. We can do very well if we allow 
each CA unit to activate a whole cohort of connections, as long as (a) 
we activate all the connections that we need to process any particular 
pattern of interest, and (b) we do not activate so many that we give rise 
to an inordinate number of spurious activations of output units. 

The idea of using one CA unit for a whole cohort of programmable 
connections is a kind of coarse coding. In this case, we will see that we 
can reap a considerable benefit from coarse coding, compared to using 
one CA unit per connection. A simple illustration of the idea is shown 
in Figure 5. The figure illustrates CA units projecting to a single one 

2 Many readers will observe that the CA un its are not str ictly necessary. However, the 
specificity of their connections to connect ions in local networks is an issue whether CA 
units are used as intermediaries or not. Thus, even if the CA un its were eliminated, it 
would not change the relevance of the following resu l ts . In a later section , the CA units 
and central output units will be collapsed into one set of units; in that case, this analysis 
will apply directly to the numI>edJfYllf}hlWl¥'lf.Mt�pe required. 
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o o o o 

o 

o 

FIGURE 5. A programmable network with 8 input units and 8 output units and 64 pro
grammable connections. Each of the 16 connection activation units is assumed to project 
to a random set of 4 programmable connections. These connections are only drawn in 
for two of the CA units. The sets of connections are chosen without replacement so that 
each connection is programmed by one and only one CA unit. Whenever a CA unit is 
on it turns on all of the connections it projects to. 

of two programmable networks. Note that a given CA unit must 
activate the same connections in each programmable net when there is 
more than one. 

One Pattern at a Time 

To see how much this scheme can buy us, I will start by considering 
the case in which we want to program some local nets to process a sin
gle pattern. We ask, how small a number n CQ of CA units can we ge� 
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by with, assuming that each one activates a distinct, randomly selected 
set of ni nol nco connections? 

First of all, the number of CA units that must be activated may have 
to be as large as mi mo, in case each of the different connections 
required to process the pattern is a member of a distinct cohort. 
Second, for comparability to our analysis of the standard network, we 
want the total fraction of connections turned on to allow no more than 
an average of 1 output unit to be spuriously activated. As before, this 
constraint is represented by 

[ 1 I �i Pon �;; • 

As long as mi � log2n;, .5 will be less than the right-hand side of the 
expression, so we will be safe if we keep Pon less than or equal to .5. 
Since we may have to activate mimo CA units to activate all the right 
connections and since we do not want to activate more than half of the 
connections in all, we conclude that 

From this result we discover that the number of CA units required 
does not depend at all on the number of connections in each program
mable network. Nor in fact does it depend on the number of different 
known patterns. The number of known patterns does of course influ
ence the complexity of the central network, but it does not affect the 
number of CA units. The number of CA units depends on mimo, the 
number of connections that need to be turned on per pattern. Obvi
ously, this places a premium on the sparseness of the patterns. Regard
less of this , we are much better off than before. 

Several Patterns at a Time 

So far we have considered the case in which only one item is 
presented for processing at a time. However, the whole point of the 
connection information distribution scheme is that it permits simultane
ous processing of several different patterns. There is, however, a cost 
associated with simultaneous processing, since for each pattern we need 
to turn on all the connections needed to process it. In this situation, 
we will need to increase the total number of CA units to increase the 
specificity of the set of connections each association requires if we are 
to keep the total fractiWSP9f;g1W�a�hat have been turned on 
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below .5. Formally, assume that we know which s patterns we want to 
process. Each one will need to turn on its own set -of mimo CA units 
out of the total number nca of CA units. The proportion of connec
tions turned on will then be 

I m, mo ]S p, =1- 1- --on nca 

This formula is, of course, the same as the one we saw before for the 
number of connections activated in the standard net with s, the 
number of different patterns to be processed simultaneously, replacing 
r, the number of patterns stored in the memory, and with nca, the 
number of connection activation units, replacing nino, the total number 
of connections. Using Pon = .5 and taking the log of both sides we get 

-.69 = slog 1 1 _ m�:o ]. 
Invoking the 10g (1- x) = -x approximation, we obtain 

nca � 1.45sm 2. 

This formula underestimates nca slightly for s < 3. With this caveat, 
the number of CA units required is roughly proportional to the number 
of patterns to be processed at one time, times the number of connec
tions needed to process each pattern. 

Overlapping the Programmable Networks 

In Chapter 16, the CID scheme we have been considering thus far 
was generalized to the case where the programmable networks over
lapped with each other. This allowed strings of letters starting in any of 
a large number of input locations to correctly activate units for the 
corresponding word at the appropriate location at the next higher level. 
Here I will consider a more general overlapping scheme using distri
buted representations in the overlapping local networks. A set of three 
overlapping local networks is illustrated in Figure 6. In this scheme, 
both the input and the output units can play different roles depending 
on the alignment of the input pattern with the input units. In conse
quence, some of the connections also play more than one role. These 
connections are assumed to be programmable by a number of different 
CA units, one for each of the connection's different  roles. Obviously, 
this will tend to increase the probability that a connection wil l be turned 
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FIGURE 6. Three overlapping programmable networks of 8 x 8 units each. The net

works overlap every four units, so the input and output units can participate in two dif

ferent, partially overlapping networks. 

on, and therefore will require a further revision of our estimate of the 
number of CA units required. 

Unfortunately, an exact mathematical analysis is a bit tricky due to 
the fact that different junctions have different numbers of opportunities 
to be turned on. In addition, input patterns in adjacent locations will 
tend to cross-activate each other's output units. If the patterns to be 
processed are wel l separated, this will not be a problem. Restricting our 
attention to the well-separated case, we can get an upper bound on the 
cost in CA units of allowing overlapping modules by considering the 
case where all of the connections are assumed to play the maximum 
number of roles. This number is equivalent to the step size or grain, 
g, of the overlap, relat�6pW-;��WifaRfn-IDe pattern as a whole. For 
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example, for four-letter words, if the increments in starting places of 
successive overlapping networks were one letter wide, g would be 4. 
Assuming that the connections turned on for each slice of a pattern are 
independent of those turned on by each other slice, it is easy to show 
that the formula for Pan becomes 

Pan � 1 - 1 _ _  , _0 , 
[ m· m I Sg nco 

and the number of CA units required to keep Po" less than .5 is approx
imated by 

The cost goes up with the number of patterns to be processed simul
taneously times the grain of the overlap .  

Summary of CA Unit  Requirements 

In summary , the number of CA units required to program a pro
grammable network depends on different variables than the number of 
connections required in a standard associator. We can unify the two 
analyses by noting that both depend on the number of patterns the net 
must be ready to process at any given time. For the standard associa
tor, the number is r, the number of known patterns; for the program
mable net, the number is sg , the number of patterns the net is pro
grammed for times the grain of overlap allowed i n  the starting locations 
of input patterns. 

This analysis greatly increases the plausibility of the CID scheme. 
For we find that the " initial investment " in CA units needed to pro
gram a set of networks to process a single association is related to the 
content of the association or the number of connections required to 
allow each of the active input elements to send a quantum of acti vation 
to each of the active output elements. Incorporating a provision for 
overlapping networks, we find that the in vestment required for process
ing one association is related to the content of the association times the 
grain of the overlap. This cost is far more reasonable than it looked 
like it might be at first, and, most importantly, it does not depend on 
the number of patterns known. 

An additional important result is that the cost of programming a set 
of networks grows with the number of patterns we wish to program for 
at one time. This cost seems commensurate with the l inear speedup we 
would get by being abtc

o
b�d

h
��CJM�lJ��,1 patterns simultaneously. 
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The somewhat intangible benefit to be derived from mutual constraint 
among the patterns would come over and above the simple l inear 
throughput effect. However, this benefit, as we shall see in the next 
section, is balanced by the extra cost associated with the possibility that 
there might be spurious patterns in the intersection of input elements 
of the presented patterns. 

The Cost of Simultaneous Access 

So far, we have proceeded as though we already knew what patterns 
to prepare each local module for. However, the CID mechanism was 
intended to allow several inputs to access the central network simul
taneously and thereby program the local networks in the course of pro
cessing. This simultaneous access costs something; in this section we 
consider how much . The discussion here is relevant to the general i ssue 
of the C:lsts of simultaneous access to a PDP network, as well as to the 
specific question of the capacity requirements of CID. 

For simpl ici ty I will begin by considering local representations at the 
central output level. That is, I wil l assume that each central output unit 
represents a different pattern and that it is switched on only when all of 
the central input units corresponding to its pattern are active. 

Now, recall that a central input unit is switched on if the correspond
ing unit is active in any of the programmable nets . Thus, what the cen
tral output units actually see is the pattern of activation that results 
from the superimposition of the input patterns presented for simultane
ous processing . The effect of this is that there is some possibil ity that 
ghosts of patterns not actual ly presented wil l show up in the result. 
This is just the kind of si tuation that is described in Chapter 16 when 
similar words such as SAND and LANE are presented to each of two 
programmable networks for simul taneous processing. When the acti va
tion patterns of the two words are superimposed, the central word units 
for LAND and SANE get turned on just as strongly as the central word 
units for SAND and LANE. Thus, the programmable networks end up 
being programmed to process any one of these four words , rather than 
just any one of the two actually presented. 

Is there anything that can be done to control the number of different 
patterns that show up when several patterns are superimposed? In fact, 
there/is. If we increase the number of input units in each programma
ble network or if we reduce the number of input units active in each 
pattern, we will reduce the possibility of spurious patterns showing up 
in the superposition. 
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To get a quantitative grip on this matter, assume that the i nput pat
terns are random selections of m out of the n input units as we have 
been assuming throughout .  The probabi l i ty that a spurious pattern is 
present in the superposition of s patterns can now be easily calculated . 
First ,  we calculate the probabi l i ty that a randomly selected unit wil l  be 
on; this is just 

The probabil ity that a particular spurious pattern is ful ly represented in 
the set of units activated by the s patterns is just this number to the 
power m ,  and the average number of such patterns out of r known pat
terns is just this probabi l i ty times r - s .  Thus, the average number of 
spurious patterns present in the superposition is 

Assuming r » s ,  we can simplify by replacing r - s with r. If we 
take acceptable performance to be an average of one or fewer spurious 
patterns present and therefore of spurious CP units active, we get 

Rearranging and taking logs , 

log [ 1 - ( !  ) !  1 =  s log ( 1 - mi n ) . 

Several things are apparent from this equation . First , the number of 
patterns that can be processed at one time increases wi th the number of 
input units. The effect is approximately l inear as long as m/ n � . 1 .  
Second , though i t  i s  not quite as straightforward, s tends to increase 
with a decrease in m .  For example,  suppose n = 5 ,000 and 
r = 1 0,000. In this case , when m drops from 1 ,000 to 500, s increases 
from 2 1  to about 37 ; if m drops to 1 00,  s goes up to about 1 20. Third, 
for a fixed m and n ,  especially for large m ,  we can make very large 
changes in r with only minimal impact on s .  Thus, if we have, say, 
n = 10,000 and m = 1 ,000 with r = 1 06 , we get s = 43; if we reduce r 
to lOS ,  we only get an increase of 2 i n  s ,  to 45 .  

I f  we allow overlapping local networks , and we  assume that the pat
terns are random with independent subparts ,  we need only replace s in 
the preceeding equation with sg . While this is a fai rly steep cost , i t  is 
sti l l  the case that reasonably moderate values of n (about 2. 5 x lOS) 
would be sufficient to process 1 0  out of 1 06 known patterns of size 
1 ,000 simultaneously with a grain of 1 00. 
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Simultaneous Access to Distributed Representations 

The results just described, i t  must be remembered, depend on the 
use of local representations at the central output level . What happens if 
we consider s imultaneously accessing distributed representations 
instead ? Obviously this question remains relevant to general questions 
about s imultaneous access, as wel l  as to the situat ion that would arise 
using distributed central output units in CID. Furthermore, we should 
note that the central output units in  Figure 4 simply mediate a mapping 
from one distributed representation - on the central input units - to 
another-on the CA units .  The present analysis describes what would 
happen if  we s imply collapsed these two sets of units into one, activat
ing the connect ions di rectly from the central output units. 

We consider a case exactly like the one we were just considering, 
except that now the output representat ion is not a single unit per pat
tern , but mo act ive units on out of no central output units .  We con
sider two somewhat separate questions . First , i f  we superimpose 
several input patterns, what effect does this have on 

d ' 
at the central 

output level , relat ive to the case where only a single pattern is shown ? 
Second, what is the probabi l i ty that ghosts of whole patterns not 
presented will show up in the output of the central network ? 

To begin our analysis of the fi rst question , recal l  from Equation 2 the 
expression for d '  in random nets with full fan-out (n = j ) :  

d ' = .rm; 1 - Pon 

I .J ( 1 + Pon )/ 2 . 

We first ask,  what is the effect on d' of turning on spurious input units 
with probabi l ity p , i n  addit ion to the m units representing a particular 
pattern to be processed? The number M; of input units that wi l l  then 
be on is 

M; == mj + (nj - mj )p .  

Consider first , output units that should not be on . These will receive 
M; active i nputs, and each of these connections wi l l  be on with proba
bil ity Pon . The output units that should be on will receive mj i nputs on 
the input l ines whose connecti ons were turned on in learning the 
presented pattern plus (nj - mj )p inputs to connections that wi l l  have 
been turned on in learning other patterns wi th probabi l i ty Pon ' The 
numerator for our revised expression wi l l  then simply reduce to its old 
value,  with the (n; - mj )p term cancel ing out. However, there will be 
an increase in variance, and hence a decrease in  

d '. The denominator 
is  as before the square r.oot of the average of the variances of the two 
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means, which are , also as before , equal to the means. The expression 
for d '  therefore becomes 

d' = m 
( 1 - Pan ) 

J (m; + m ; pon + 2 ( n; - m;)p 1/ 2 

We get a simpler expression i f  we approximate by replacing Pan in the 
denominator wi th its maximum value of 1 ;  this gives us a sl ight overes
timate of the variance and therefore a sl ight underestimate of d ': 

d '  � 
( 1 - Pan ) 

? m .j m; + ( n; - m; )p . 

The variance goes up with the mean number of spuriously activated 
units, and d' goes down with the effect of this on the square root of the 
variance . 

To determine the effect of presenting several patterns on d ', we note 
that from the point of view of the units that belong to one of the pat
terns, all the units activated by the other patterns are spurious. The 
number of such units is 

1 - ( 1 - m;/ ny - I 

Inserting this for p in the previous equation gives 

d '  = m 
( 1 - Pan ) 

.Jm; + ( n; - m; ) [ I - ( 1- m;/ny- I ]  

Using this equation we can examine the effects o f  increasing s o n  the 
value of d '. Not too surprisingly ,  d '  does go down as s goes up, but 
the effect is relat ively benign . For example, with n = 106 , r = 106 , 
m = 1 ,000, and s = 1 ,  d '  is about 1 1 .6 .  It drops to half that value at 
s = 4, and drops much more gradual ly thereafter. With n = 2 x 1 06 

units and the same values of r and m ,  we can get an acceptable value 
of d' (� 6) with s as high as 1 6. 

The final issue we will consider is the possibi l i ty that new spurious 
output patterns have been introduced in the superposition of the s out
put patterns simultaneously activated in processing the s mput patterns. 
For simplicity, we will just consider the probabi l i ty of a " ghost ," given 
that all and only the correct ma units are active for each of the s pat
terns. The analysis is entirely the same as the one we gave before for 
the probabi l i ty of ghosts showing up in the input patterns. We get an 
average of one ghost when 

1 � r [ 1 - ( 1  - m/ n )S 1m • 
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As before , the number of simultaneous patterns we can tolerate 
increases with n and decreases with m and is relatively insensi tive to 
the value of r .  

In general , i t  appears that the probabi l ity of ghosts occurring can be 
kept small with sufficiently large dedication of resources, but these 
trade off approximately l inearly with s .  With fixed n ,  we must simply 
make the patterns sparser or tolerate some loss of sensitivity. 

Discussion 

This analysis of the resource requirements of networks l ike the eIn 
model has discovered a number of basic results. In essence, the picture 
is really a very simple one. The resource requi rements of eIn depend 
on the number of programmable networks one wants to program for at 
once. The number of connections needed in each local network 
depends on the number of patterns to be programmed for and i s  
independent of  r .  the number of  known patterns. In the central net
work, the number of units required to keep spurious activations under 
control grows wi th s ,  as does the number of units required to keep 
ghosts from emerging in the input and output patterns. It is worth 
noting, also,  that the probabi l i ty of ghosts incr eas es as we increase m. 

The fact that the resource requi rements of the local networks are 
independent of the number of patterns known is obviously important .  
Relative to the central network , it means that the local networks are 
very cheap . The number of distinct inputs that are needed to program 
them is quite reasonable, and,  as I wi l l  explain ,  we can even get by with 
far fewer units in the local networks than we need at the central level . 

On the other hand, the results concern ing the costs of simul taneous 
access to the central network are much less encouraging for the eIn 
scheme. Using local or distributed representat ions in the central 
module, the unit requirements grow with the product of s and r - a 
very expensi ve proposit ion since the number of central connections wi l l  
then grow as  sr2 .  

However, there are several important further observations. One is  
that , a t  fixed numbers of  units and patterns known , the degradation of  
sensitivity as  a function of  s is  rather gradual . And, given a l ightly 
loaded network, one can take s up to reasonable values wi thout catas
trophe . Simultaneous access by mult iple patterns is very much l ike 
degradation: a network can handle it without a noticeable decrement of 
function if it is l ightly loaded . A second observation concerns the l im
its of coarse coding. Fot[�l1teYw!5le9jaF of m essential ly amounts 
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to a question of how coarse the code is: Large m corresponds to very 
coarse coding, and small m corresponds to very fine coding. As we saw 
in Chapter 3 ,  the abil ity to represent several patterns at a time goes 
down as the coding gets coarser. For simultaneous processing we need 
sparse patterns, with each unit serving as a rather sharply tuned con
junctive detector. 

The final observation is that large costs are associated wi th simul
taneous access to the central network. This fact has lead me to the 
view that it is probably most reasonable to imagine that we must prob
ably restrict simultaneous access, except perhaps in the case of smal l ,  
compact and well-differentiated subpatterns l ike letters.  I incorporated 
this idea of restricted access in the programmable blackboard model of 
reading by assuming that we program successive parts of the program
mable blackboard sequentially, using only the contents of the spotlight 
of attention to access the central network; but that the local networks 
so programmed continue to process and hold patterns of activation and 
to allow those patterns to interact with one and other after the spotl ight 
of attention has moved on. In this way we get the best of both worlds: 
sequential access to central knowledge, combined with interactive paral 
lel processing of several stimuli in the programmable nets. Another 
point is that it may be a good idea to dissociate the inputs to the local 
networks and the inputs to the central networks . Throughout this 
chapter and Chapter 16 ,  I have assumed that the units in each local net
work would be isomorphic to units in the central network . However , 
there is no reason for them to be. The central network needs much 
higher " resolution " (n proportional to r )  than the local networks (n 
proportional to s ) . Thus, the units in the programmable modules need 
only provide a few primitive clues to which of the s patterns are to be 
represented in their outputs , while the units i n  the central network 
would require a much higher-resolution representation. 

CONCLUSION 

This chapter has indicated how Willshaw's fruitful analysis of simple 
pattern associator models can be extended in several di rections. These 
extensions have lead to several interesting observations , particularly 
into the effects of l imited connect ivi ty (Mitchison, personal communi
cation , 1 984) and into the capacity requirements of programmable net
works. A large number of issues remain to be explored. I hope that 
this discussion and elaboration of Willshaw's analysis will aid in this 
continuing exploration . 
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CHAPTER 13 

P3: A Parallel Network Simulating System 

D. ZIPSER and D. RABIN 

Research on parallel distributed processing is to a large extent depen
dent upon the use of computer simulation, and a good deal of the 
researcher's time is spent writing programs for this purpose. Virtually 
all the PDP systems described in this book require special-purpose com
puter programs to emulate the networks under study, In writing pro
grams of this type, it is usually found that the basic algorithms of the 
PDP network are easy to program but that these rather simple "core" 
programs are of little value unless they are embedded in a system that 
lets the researcher observe and interact with their functions. These 
user interface programs are generally tedious and very time consuming 
to write. What is more, when they are directed toward one particular 
system they can be quite inflexible, making it difficult to easily modify 
the PDP network being studied. Also, because of the time involved, 
particularly for interactive graphics programs, the researcher often 
makes do with very limited facilities for analyzing the performance of 
the network. In this chapter we will describe a general-purpose parallel 
system simulator called P3. It was developed with PDP research explic
itly in mind and its major goal is to facilitate simulation by providing 
both the tools for network description and a powerful user interface 
that can be used with any network described using the tools. There are 
many problems to be faced and tradeoffs to be made in designing such 
a system but in the process of doing this we feel that not only has a 
useful system been developed, but also that we have learned a great 
deal about the whole problem of PDP simulations. 
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In P3 networks, each computing element, called a unit, contains a 
computer program that reads inputs from connections and sets outputs 
on other connections, possibly also modifying some local state parame
ters. The major components of P3 are: 

• The plan language, which describes the collection of units in a 
model and specifies the connections between them. This 
description is called a "plan." 

• The method language, an extension to LISP, which implements 
the internal computational behaviors of the units in a model. 

• The constructor, which transforms the plan and associated 
methods into a computer program and, when run, simulates the 
network. 

• The simulation environment, which provides an interactive 
display-oriented facility for observing and testing P3 models. 

Input to units described in a P3 plan can come only from other units 
in the plan. That is, there is no "outside world" in a P3 plan language 
description of a network. This means that at the level of description of 
the P3 plan language, the P3 network is closed. Access to the outside 
world must occur inside a unit through its method. Methods may 
access the world outside the P3 system through any available computer 
peripheral. The only thing that methods are not allowed to do is to 
reconfigure with the P3 system itself or communicate with other 
methods through "underground connections" not mentioned in the P3 
plan. 

In any simulation, the relationship between real and modeled time is 
of key importance. A real unit, such as a neuron, would read inputs 
continuously and update its outputs asynchronously, but this cannot be 
simulated exactly on a digital computer. Many simulations use a simple 
synchronous approximation to real time. However, sometimes this pro
duces unwanted artifacts and a closer approximation of asynchrony is 
required. Often, in fact, what the investigator really wants to do is to 
experiment with the effect of different kinds of time simulation on the 
network under study. Since there is no way for the system designer to 
know in advance all the possible ways that the investigator will want to 
handle time, some strategy has to be used that allows great flexibility. 
The approach taken by P3 is that this flexibility can come through the 
methods that can use conditional updating. The P3 system itself is 
completely synchronous and updates all units on each cycle. Since 
updating a unit involves invoking its method, the question of whether 
or not the outputs of �� I"5R!mDe on any P3 cycle can be 
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decided by the method. For example, to model asynchronous updating, 
each unit can have an additional input that controls whether or not it is 
updated on a cycle. Then the decision as to which units are to be 
updated can be given to a control unit that is connected by a separate 
line to the update inputs of all the other units. The method program 
inside this control unit decides which units in the network will be 
updated on each cycle. Note that this approach is very flexible since 
small changes in the method program of the control unit can imple
ment a large range of possible update time schemes. 

A typical P3 plan might contain a large number of simple neuron-like 
units forming the core of the network together with a few special pur
pose units to generate input to the core network and control its func
tion. The master control unit, used above to implement asynchronous 
updating, is an example of this kind of special-purpose unit. They can 
also be used to sequence simulated experiments and to interpret output 
of other units. How all this can be done will become clearer as we 
describe the use of P3 in detail. They key point here is that the P3 
"style" is to include within the P3 plan all aspects of the simulation 
including input to and control of the core network. This approach sim
plifies the problem of constantly having to interfere special-purpose 
routines to a general-purpose modeling environment. 

It often happens that n�tworks are modular, that is, made up of dis
tinct subnetworks. P3 facilitates the use of modularity by allowing sub
networks to be treated as single processing units. This feature is of par
ticular use when several P3 units are used to simulate a single object 
such as a "realistic" neuron. The modular feature also facilitates "top
down" and "structured" definition of the plan even when the underly
ing networks are not particularly modular. 

The P3 plan language has an additional feature that is not directly 
concerned with describing the functional aspects of a parallel network. 
Every unit in a P3 plan has a location in a three-dimensional Euclidean 
reference frame call P3 space. This means that every P3 plan not only 
describes a network, but it also describes a geometrical structure. Since 
the functioning of a P3 network does not depend on its geometrical 
structure, it might seem odd to go to all the trouble of describing the 
geometry. There are two main reasons for locating P3 units in space. 
The first reason is to facilitate visualizing a P3 network while observing 
its function during the simulation of a model. The units can be placed 
so that they appear at the same relative positions on the computer 
display during simulation as they have in the investigator's conceptual 
image of the model. The second reason to give each unit a position in 
space is to make it possible to specify connections between units implic
itly on the basis of their spatial locations rather than explicitly. This 
latter feature is of particular importance when modeling systems in 
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which the connectivity is described in terms of geometrical relations. 
This is often the case when dealing with realistic neuronal modeling, 
especially of primary sensory processing s tructu res. 

The P3 Plan Language 

The job of the P3 p lan language is to describe the units and connec
tions that constitute the network being simulated. To do thi s, the 
language uses a small but rich set of s ta temen ts that make it possible to 
succinctly describe large groups of complex, connected units. The 
three fundamental constituents of the plan language are the UNIT 
TYPE, UNI T, and CONNECT s ta temen ts . The UNIT TYPE s ta teme nt 
name s and describes a kind of unit. The U NIT statement instantiates 
and names actual units. This statement can in stantiate either a single 
unit or a whole array of units of the same type. The CO N NEC T st ate 

ment makes connections. Since the statement can be used inside of 
loops , a single connect statement can make an arbitrarily large number 
of connection s using the available array features. 

A unit in P3 can have any number of input s and outputs together 
with any number o f parameters. Before the start of a si mula tion , 

values must be given to all parameters and to a ll output s. Each value is 
always a single computer word in length. The interpretation of thi s 
word depends on how the methods use it. A s  the simulation proceed s, 
these initial values are continuously updated. Taken together, the 
values of the parameter s and the outputs constitute the state of the sy s
tem at any time during simulation. The major difference between 
parameter values and output values is that outputs are a vai lable to 
other units in a network through connections, while the value of 
parameters can only be read by the unit to which they belong. P3 unit s 
can have two classes of parameter s: unit parameters and terminal parame
ters. The unit parameters apply to the whole unit, for example, the 
threshold in a linear threshold unit. The terminal parameters are associ
ated with individual inputs or outputs and correspond, for example, to 
weights. 

An im por tant function of the P3 plan language is to de scribe the con
nections between units. Since units can have multiple inputs and out
puts there has to be some way to name them so tha t the CO N NECT 
statements will know which connections to make. These names are 
also used within the method programs to read inputs and set outputs. 
The basic form of the CONNECT stateme nt is 

(CONNEC T < un it-name > OU TPU T < output-name> 
TO < unit-re�hlflM1Ie1Jainput-name > ) 
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For units with only a few inputs or outputs each input or output can be 
given a separate name. When a unit has a large number of inputs or 
outputs it is more convenient to group them together in input or output 
arrays. The individual items in these arrays are referenced by giving 
the array name and a set of subscript values. These arrays can be used 
in iterative statements in plans and methods. 

An output value can serve as input to any n umber of units, i.e., the 
fan-out is arbitrarily large. Each individual input can receive only one 
value. This is easy to enforce as long as it is known that just one con
nection is to be made to each input. This works well in many cases but 
it often happens that it is very hard or impossible for the programmer 
to know exactly how many connections will be made. This is the case, 
for example, when connection decisions are being made implicitly by 
some computational procedure such as "connection by location" or ran
dom connection. To overcome this, P3 secretly treats each individual 
input as an array and automatically adjusts its size to fit the num ber of 
inputs. This process is transparent to the programmer which means 
that multiple connections can be made freely to a single input. There is 
a special iteration statement in the method lang uage to access these 
multiple inputs. Each individual input that actually gets generated is 
called a TERMI N AL and there are procedures for associating parame
ters with terminals and initializing their values. 

The method programs that im plement the internal functionings of 
units are written in the form of ordinary computer programs in an 
appropriate language. In the current implementation, which runs on 
the Symbolics 3600, the language is LISP. In order to allow the 
methods to use the values of inputs and parameters in their computa
tions, a set of special access statements is incorporated into this system 
and is available to LIS P programs. These statements make it possible 
for methods to read and set inputs, out puts, and parameters more or 
less as if they are ordinary variables. 

In order to illustrate how P3 works, we will describe a model of a 
simple competitive learning network of the type described in Chapter S. 
The basic network contains two types of units: a pattern generator to 
supply stimuli and a cluster of com petitive learners connected to it, 
which s pontaneously discover some features of the patterns. Since 
learning is spontaneous and does not require a teacher, the functioning 
of the network is simple and straightforward. Thr. pattern generators 
sequentially produce output patterns that serve as input stimuli to the 
cluster units. Each pattern is an activation vector specifying which of 
the in puts are active and which are not. Each cluster unit prod uces an 
output indicating its res ponse to the current stimulus which is transmit
ted to all other members of the cluster to create a "winner take all" net
work. The cluster unit which wins is the only one that learns and it 
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uses the weight redis tri bution procedure described in the competitive 
learning chapter, that is, 

aWl} = C I 
0 if uni t j loses on stimulus k 

g...!!... - gWi} if unit j wins on stimulus k 
nk 

where Clk is e qual to 1 if in stimulus pattern Sk, element; in the lower 
layer is active and zero otherwise , and nk is the number of acti ve ele
ments in patte rn Sk (thus nk = l:Clk)' 

i 
The first step in creating a P3 plan is to supply the UNI T TYPE 

s tatements. The U NIT TYPE statement for the pattern generator is 
given below: 

(unit type dipole 
parameters flag i 1 j 1 i2 j2 
outputs (d array i j) 
method < update routine code in lisp> ) 

In this, and all our other examples, words in italics are part o f  the P3 
plan language while the nonitalicized words are supplied by the user. 
The U NIT TYPE statement gi ves the type a name that will be used 
throughout the plan. The name for the pattern generator type is 
"dipole." There are five parameters that are used internally for pattern 
generation . The technicalities of the use of these parameters is 
irrelevant here. The U NIT TYPE statement describes the output of the 
unit. This ou t put is a two-dimensional array of lines called "d." Th is 
array of outputs is the retina on which stimulus patterns are generated 
which serves as an input to the competitive learning cluster units. The 
"i" and "j" that follow the word array are dummy variables that tell P3 
how many dimensions the array has. The actual size of the array is 
var iable and is initialized when we instantiate units of the type dipole. 
Note that the unit type dipole had no inputs since it is itsel f the source 
of pat terns. 

The second basic unit type is the competitive learning unit, which in 
our plan we call "competitor." The unit type statement for it is given 
below: 

(unit type competitor 
parameters p g flag 
inputs (C array i j terminal parameters W) 

(i-A) 
outputs (o-A) 
method < Iis��ffted Material 
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Note that the input array"C" of this unit corresponds exactly in form 
to the output array "d" of the dipole unit described previously. This 
correspondence will make it possible to make one-to-one connections 
between the output of dipole type units and the input of competitor 
type units. Also notice that a terminal parameter "W" has been associ
ated with the input array"C." The competitor unit needs an additional 
input called "i-A" which will receive information from the outputs of all 
the other members of the cluster. 

We have described the two unit types we will need. We can now go 
ahead and instantiate units of these types. The statement that creates a 
pattern generator unit of type dipole is shown below: 

(unit stimulus of type dipole 
at (@ 000) 
outputs (d array (i 0 5) (j 0 5»» 

The unit statement names the unit it is creating. This is the name of a 
real unit that is actually going to exist in our model and it is the name 
that will be referred to when this unit is connected to other units. For 
P3 to build such a unit, it has to be told the type. There can be any 
number of units of the same type and they can all have different 
names. Since every real unit in P3 has a location in P3 space, we must 
specify it in the unit statement that instantiates the unit. The at clause 
is used for this. The at is followed by a location specifier that simply 
evaluates to the x-, y-, and z-coordinates of the unit in P3 space. For 
simplicity we locate the pattern generator at the origin of P3 space 
which will initially be located at the center of the display window when 
we simulate the model. Since we are building a real unit, we have to 
give a size to its array of output lines. This is done in the outputs clause 
of the UNIT statement. Each subscript specifier consists of a subscript 
name and initial value, which in the current implementation must be 0, 
and final value, which in this example is 5 for both the "i" and the "j" 
subscripts. This statement will generate a 6 x 6 array of output lines on 
connector" d." 

Now that we have a source of patterns, we need to create a cluster of 
units that will receive these patterns. The statement that instantiates 
these units is given below: 

(unit cluster array (k 0 - cluster-size 1) of type competitor 
at (@ ( ... k (+ cluster-size 4»)( + cluster-size 10) 0) 
initialize (g = 0.05) 
inputs (C array (i 0 (- stimulus-size 1)(j 0 (- stimulus-size 1)) 

In this case, we are not instantiating a single unit but an array of units. 
In the competitive learning model, the learning cluster always consists 
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of two or more units, so we want a way to vary the number of units in 
a cluster. In the first line of the unit statement we give the name clus
ter to the array and then we indicate the size of the array with a sub
script specifier. The name of this subscript is "k"; its initial value is O. 
Its final value is one less than the global constant "cluster-size." The 

value of cluster-size, which will occur at various points in the plan, is 
set by a statement at the beginning of the P3 plan that determines the 
value of global constants. This feature means that we can change the 
parameters such as cluster-size globally throughout the plan by only fid
dling with a single value. The upper bound of the stimulus input line 
array has also been set with the use of a global constant "stimulus-size" 
rather than with an integer as was done previously. Also notice that 
the variable "k" is used in an at clause to place each unit of the array at 
a different place in P3 space. 

Our next task is to connect the units together in the appropr iate 
fashion. We have two classes of connections: those that go from the 
stimulus generator to the learning cluster and those that interconnect 
the units within the learning cluster. Each of these classes of connec
tions has many individual connections within it, but these individual 
connections can be specified algorithmically in such a way that only a 
few CONNECT statements are needed to generate the entire network. 
What is more, the algorithmic specification of these connections makes 

it possible to change the size of the cluster or the size of the stimulus 
array without altering the CONNECT statements at all. The code 
required to connect the stimulus to the learning cluster is given below: 

{for (k 0 (+ 1 k}) 
exit when (> k cluster-size) do 
{for (i 0 (+ 1 j)} 

exit when (> i stimulus-size) do 
{for (j 0 (+ 1 j» 

exit when (> j stimulus-size) do 
(connect unit stimulus output d i j 

to unit (cluster k) input C i j 
terminal initialize (W - (si:random-in-range 

0.0 (! I 2.0 (expt (+ stimulus-size 1) 2»»»» 

There are three nested loops. The first ranges over each member of 
the cluster, and the next two range over each dimension of the 
stimulus array. Inside these three nested loops is a single CO N NEC T  
statement. The CO N NEC T statement has the job of initializing the 

value of any terminal parameters. In our model we have a very impor
tant terminal parameter, "W," the weight between a stimulus line and a 
cluster unit, which we �byR�il1Matl!n;lt random value which sums 
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to one for the whole input array. This is accomplished by setting the 
initial value of "W " with a LISP function that evaluates to the required 
quantity. In general, in a P3 plan wherever a number is required, a 
function (in our case a LISP function) that evaluates to a number can 
replace the number itself. The sum of the random numbers generated 
by our simple LISP function is not exactly one, but only averages one. 
This is satisfactory for the competitive learning algorithm because it is 
self-normalizing and will force the sum to one in the course of learning. 

The connections that link the members of a cluster are a bit more 
complex. Each member of the cluster must receive input from all 
other members except itself. The code for doing this in a completely 
general way for clusters of any size is given below: 

{for (k 0 (+ 1 k» 
exit when (> k cluster-size) do 
{for G 0 (+ 1 j» 

exit when (= j k) do 
(connect unit cluster k output o-A 

to unit cI uster j input i-A» 
{for G (+ k 1) (+ 1 j» 

exit when (> j cluster-size) do 
(connect unit cluster k output o-A 

to unit cluster j input i-A») 

The idea here is that we first connect each unit to those units whose 
subscripts are lower than it and then to each unit whose subscript is 
higher than it. This requires two separate loops, each with its own 
CONNEC T statement, both nested within an outer loop that ranges 
over all units in the cluster. Note that this is a case of making multiple 
connections to a single input line. We don't have to know how many 
connections there are because within the method there is code that will 
examine all connections on this line to decide if the unit has won. This 
feature is very useful and can be applied whenever a method needs to 
know the value of an input but not its originating unit. 

We have now specified all the features of a plan that describes the 
basic competitive learning network. Of course, this plan can only be 
used to construct a running model if we have available the appropriate 
method programs. Since these are ordinary computer programs written 
in LISP, we won't analyze them in detail. The code for the methods 
used here is given in the appendix of this chapter, which shows a com
plete plan for a simulation of competitive learning. It is worthwhile, 
however, to see how the method language accesses the inputs and out
puts of the units about which we have been saying so much in the 
development of the plan. 
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The only difference between the arguments to a P3 method and the 
arguments to a normal LISP function is that the P3 arguments are 
accessed by special access functions. For example, to get the value of a 
parameter, the following form is used: 

(read-un it-parameter flag) 

This form returns the current value of flag. To read an input from an 
array of input lines the following form can be used: 

(read-input (C i j» 

In this case the value of "i" and "j" must be bound at the point in the 
program where an expression using them occurs. There are 
corresponding forms for reading terminal parameters, setting outputs, 
and setting parameter values. 

The P3 Simulation System 

The P3 simulation system is the environment in which models in P3 
are simulated. It is highly interactive and makes extensive use of the 
window system and the "mouse" pointer of the Symbolics 3600. The 
first step in simulating a model is to compile the methods and construct 
the plan. The constructor is a program similar in purpose to a compiler. 
However, the input is a P3 description of a network, rather than a com
puter language description of a program. The output of the constructor 
is a data structure containing all the relevant information about the net
work that can be used by the P3 simulation system to run a simulation 
of the model. As with any form of computer programming, a model 
must be debugged before it can be simulated. There are really two 
levels of debugging for network models. First, the user wants to know 
that the network that has been created is connected up in the way 
intended. Once this has been established, the actual functioning of the 
network can be debugged. P3 provides tools for both of these phases 
of the debugging process. 

To check the correctness of connections, P3 provides a display that 
shows each unit in the model at its location in P3 space. The user 
interacts with this display with a mouse pointing device. Clicking on a 
particular unit provides a menu that enables the user to trace out any of 
the connections emanating from that unit. This facil ity for tracing out 
connections, one at a time, has proved much more useful than simply 
presenting a user with the wiring diagram of the model. Once the user 
is convinced that the constructed model corresponds to the envisioned 
network, the job of anal:ebMRt'¥PRJ�99n9Ji the model can begin. 
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Analyzing the running of a complex simulation is a demanding task. 
It is in this analysis that we have found that all the features of the P3 
system come together and begin to justify their existence. Because 
every object in the model has a location in P3 space that corresponds to 
the user's mental image of the network, the simulation system can 
display values representing the state of the system at locations on the 
screen that have meaning to the user. This means that during the 
course of a simulation, meaningful patterns of P3 variables can be 
displayed. This approach is widely used in analyzing the function of 
parallel systems. What P3 has done is to standardize it and relieve the 
user of the need to implement the details of this display strategy for 
each new model. 

In the current implementation of P3, each object in the model is 
represented at its designated location by a small rectangular icon. By 
the use of a mouse pointer driven menu system, the user can assign the 
icon representing a unit the variable whose value is to be displayed. 
Thus, for example, the icons representing the input terminals of a clus
ter unit in our example can be assigned either the value of the input to 
that terminal or the value of the weight on that terminal. These assign
ments can be made or changed at any time during a simulation run. 
They can be set to be updated continually as a simulation proceeds, or 
they can be examined in detail when the simulation is temporarily 
interrupted. The current P3 implementation displays the relevant state 
values at two possible levels of precision. The approximate value of the 
state value is indicated by the degree of darkening of the icon. There 
are five levels of intensity. Their range is under user control and can 
be changed at any time. This enables the user to adjust the range so 
that the difference between the lightest and the darkest icons will 
optimize the information content of the display. There is also a high 
precision display that permits the exact value of any P3 variable to be 
examined. 

Figure 1 shows how the screen of the Symbolics 3600 looks after 588 
P3 cycles of simulation of a competitive learning model with a 6 x 6 
stimulus array and a dipole stimulus. There are six windows displayed 
and each shows a different aspect of the simulation. Window A shows 
the three units in the model at their respective positions in P3 space. 
The upper narrow rectangle is the pattern generator. It is not displaying 
any value. The lower two rectangles represent the two cluster units. 
They are displaying the approximate value of their outputs by the size 
of the contained black rectangle. Clearly the unit on the left has a 
lower output value than the one on the right. Window B shows the 
output of the pattern generator unit, which was called "stimulus" in the 
plan. The lines form a square array because that is the way they were 
specified in the plan. The two dark rectangles show the current dipole 
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FIGURE I. Display of Symbolics 3600 during P3 session. The mouse arrow is pointing 
to the "simulate" command in the upper left. Clicking a mouse button will start simula
tion. 

pattern. Windows C and 0 show the approximate values of the weights 
on the input line arrays of each of the two cluster units. The fact that 
competition has pretty well separated the weights along a horizontal line 
is clearly visible from these two windows. Windows E and F are "strip 
chart" records that produce a graphical record of any P3 variable. The 
strip charts have been set up to record the value of a pair of 
corresponding weights, one from each unit in the cluster. Time 
increases to the right so the initial state is at the extreme left side of 
the strip charts. It is interesting to note that one of the weights became 
dominant for a while but at later times seems to have lost its 
dominance. Copyrighted Material 
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In addition to the special functions of P3, the user also has available 
all the powerful program development tools of the Symbolics 3600. 
For example, suppose that the user believes that an observed bug is 
due to an error in the code of a method. It is possible to interrupt the 
simulation, go directly to the editor buffer that contains the method 
code, alter it, recompile the alteration, and then return to the simula
tion at exactly the point at which it was interrupted. This facility has 
proved invaluable in debugging. 

As we work with the P3 simulation system, we constantly find new 
features that are useful in the analytical process. We view the imple
mentation of each of these new analytical techniques as analogous to 
adding a new instrument to a laboratory. Thus, we call the features of 
P3 that enable the user to analyze a functioning model "instruments." 
Each of these instruments can be called up at any time. Every instru
ment has a window that displays the results of the instrument's 
analysis. For example, one instrument is the "strip chart recorder" 
used in Figure 1. The strip chart recorder has a probe that can be con
nected to any particular state variable of any unit. Since multiple 
instances of any instrument can be created, any number of strip charts 
can be running at the same time. In addition to instruments that 
display the values of variables, we also envision a class of instruments 
that record these variables. Clearly, it is very important for a serious 
modeler to be able to record the results of a simulation. The instru
ment concept will enable the modeler to record just those variables 
required. This is a very important feature since simply recording the 
entire state of the model as it develops in time would produce an 
overwhelming flow of data. 

Performance 

So far we have said nothing about the speed at which simulations 
run. This is a problem of tremendous importance for PDP models . Big 
models inherently run slowly on serial computers. Generally, parallel 
programming systems like P3 stress ease of model definition and simu
lation. How much penalty must we pay in model performance? There 
is always some performance penalty for a general-purpose system. For 
any given piece of computer hardware, it is generally possible to write a 
specially tailored program that will run some particular model faster 
than any general system will run it. However, this special tailoring 
itself takes considerable time and makes it much harder to change the 
details of the model structure . Thus, we envision that programs like P3 
will be useful in the early stages of model development when the size 
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of the models are modest and there is frequent need for changes in 
structure. When the structure and parameters of a model have been 
decided upon and it is necessary to scale the model up and have it run 
extremely rapidly. it may in some cases be advantageous to write a spe
cial program to implement the model. 

The general-purpose systems, however, have several things going for 
them with respect to model performance. First of all, since the data 
structure has the same form for models, it is possible to put a lot of 
effort into optimizing running speed for the particular hardware on 
which the system is implemented. This optimization only has to be 
done once rather than for each model. A second way in which general
purpose systems can improve performance is through the use of 
special-purpose hardware. The models generated by the P3 system are 
inherently parallel models and map well to some parallel computer 
architectures. The one way to get blinding speed from parallel models 
is to implement real parallelism in parallel computers. In some cases, 
array processors can also be highly beneficial. Since all the P3 models 
are of the same sort. a constructor can be made that will provide the 
appropriate data structures to run any P3 model on these kinds of 
hardware. This will make the hardware transparently available to the 
user of systems like P3. This, we believe, is a significant plus, since it 
is notoriously difficult to program any particular application for array 
processors or truly parallel hardware. 

In conclusion, the P3 system illustrates some of the general issues 
that arise in any attempt to simulate PDP models, and provides a 
number of useful tools that can greatly facilitate model development. 
General-purpose systems like P3 have promise for speeding and facili
tating the programming of parallel models and the ultimate ability to 
run these models very fast using specialized hardware. 
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APPENDIX A 

'" 

'" 

'" 

'" P3 Plan for Competitive Learning 

'" (NOTE the use of the "plan constant" and "include" statements.) 

'" 

'" 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
'" 

'" Unit types 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
'" 

;;; ........ Dipole pattern generator ...... .. 
(unit type dipole 

parameters flag il j1 j 1  i2 j2 
outputs (d array i j) 
include dipole-generator) ... (see code file on p. 506) 

;;; .......... Learning unit ....... . 
(unit type competitor 

parameters p Q flag 
inputs (C array i j terminal parameters W) 

(i-A) 
outputs (o-A) 
include comp-learn) ... (code on p. 504) 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '" 

'" Unit instances 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '" 

(plan constant stimulus-size = 6) (plan constant cluster-size = 2) 

;;; ........ Dipole pattern generator········ 

(unit stimulus of type dipole 
at (@ 000) 
outputs(d array {i Ostimulus-size} (j Ostimulus-size) lines at (@ i j 0») 
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;;; ........ Learning units ...... .. 
(unit cluster array (k 0 (- cluster-size 1) of type competitor 

at (@ (. I (+ cluster-size 4» (+ cluster-size 10) 0) 
initialize (q = 0.05) 
inputs (C array (i 0 (- stimulus-size 1) GO stimulus-size») 

. . . ..................................................................... 
Connections 

.. . ..................................................................... 

;;;u ...... Stimulus to both clusters ....... . 
(for (k 0 (+ 1 k» 

exit when ( = k cluster-size) do 
(for (j 0 (+ 1 j» 

exit when ( = i stimulus-size ) do 
(for G 0 (+ 1 j) 

exit when ( = j stimulus-size) do 
(connect unit stimulus output d i j 

to unit cluster k input C i j 
terminal initialize 
(W = (si:random-in-range 

0.0 (! / 2.0 (expt (+ stimulus-size 1) 2»»»» 

;;; ....... Interconnect the clusters to implement competition ....... . 
(for (k 0 (+ 1 k» 

exit when ( = k cluster-size 1) do 
(for G 0 (+ 1 j» 

exit when ( = j k) do 
(connect unit cluster k output o-A 

to unit cluster j input i-A» 
for G (+ k 1) (+ 1 j» 

exit when ( = j cluster-size 1) do 
(connect unit cluster k output o-A 

to unit cluster j input i-A») 
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APPENDIX B 

'" 

,,, 

'" 

'" Competitive Learning: Methods 

'" 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ", 

to, Method for unit in cluster of competitive learners 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• to, 

method 
(let «imax (input-dimension-n C 1 )  

Gmax (input-dimension-n C 2» 
(win t) 

(N 0» 

;; ........ Is this a learning iteration? •••••••• 

(cond 

;; ........ No ....... . 
;; Accumulate the weighted sum of the pattern inputs into 
;; unit parameter p, and set the competition output p-A to 
;; that value 
«> (read-unit-parameter flag) 0) 

(loop initially (set-unit-parameter p 0) 
for i from 0 below imax do 

(loop for j from 0 below jmax do 
(set-unit-parameter p 

(+ (read-unit-parameter p) 
(. read-terminal-parameter (C i j) W) 
(read-input (C i j»»» 

finally (set-output o-A (read-unit-parameter p») 

;; ........ Flip the iteration-parity flag ...... .. 
(set-unit-parameter flag 0» 
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;; .......... Yes •••••••• 

;; Figure out whether this unit wins on this cycle. Winning 
;; requires that this unit's parameter p be greater than those 
;; for the other units of this type. Those values are available 
;; on the terminals of input i-A. 
;; NOTE: On iteration 0, everything is 0, so no unit thinks it 
;; wins, and hence all avoid learning. 
(t 

;; ........ Find out whether we won ....... . 

;; Win was initialized to t in the let at the top level of this method. 
(for-terminals k of input i-A 

(if « .. (read-unit-parameter p) 
(read-input (i-A terminal k») 

(setq win nil)) 
(when win 

;; ........ Accumulate sum of all inputs into N ....... . 
;; This will become a normalizing constant. 

(loop for i from 0 below imax do 
(loop for j from 0 below jmax do 

(setq N (+ N (read-input (C i j»»» 

; ;  .. •• .... Compute new weights ....... . 

;; But only if the total input was greater than O. 
(if (> NO) 

(loop with q-factor = (read-unit-parameter g) 
for i from 0 below imax do 
(loop for j from 0 below jmax do 

;; ........ Compute one new weight ........ 
(let· (old-weight 

(read-terminal-parameter 
(C i j) W» 

(new-weight 
(+ old-weight 

(. g-factor 
(- (II (read-input (C i j» (float N» 
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;; Update the terminal parameter to the new weight 
(set -termi nal-parameter 

(C i j )  W 
new-weight»») ) 

;; ........ Flip the iteration-parity flag ....... . 

(set-unit-parameter flag 1»» 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
, " 

", Dipole pattern generator method 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

method 

;; ........ Do we need a new pattern on this iteration? ....... . 
(cond 

;; ........ Yes. Erase old dipole and make new one ........ . 
« < (read-unit-parameter flag) l) 

Oet « imax (- (output-dimension-n d 1) 2» 
( jmax (- (output-dimension-n d 1) 2») 

(set-output (d (read-unit-parameter i 1) (read-unit-parameter i 1) 0) 
(set-output (d (read-unit-parameter i2) (read-unit-parameter i2» 0) 
(set-unit-parameter i 1 (+ (random imax) 1» 
(set-unit-parameter jl (+ (random jmax 1) 
(cond « >  (random 2) 0.5 

(cond « >  (random 2 0.5) 
(set-unit-parameter i2 (+ (read-unit-parameter il) 1)) 
(t 
(set-unit-parameter i2 (- (read-unit-parameter i 1 1) ) 

(set-unit-parameter i2 (read-unit-parameter j 1») 
(t 
(cond «> (random 2) 0.5) 

(set-unit-parameter i2 (+ (read-unit-parameter j 1) 1)) 
(t 
(set-un it-parameter i2 (- (read-un it-parameter j 1) 1»» 

(set-un it-parameter i2 (read-unit-parameter i 1»» 
(set-output (d (read-unit-parameter il) (read-unit-parameter j 1) 1) 
(set-output (d (read-unit-parameter i2) (read-unit-parameter j2» 1) 
(set-unit-parameter flag 1») 
(t 
(set-unit-parameter flag 0») 
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