
Learning-Logic: Casting the

Cortex of the Human Brain

in Silicon

by David B. Parker

Technical Report TR-47 February 1985

Center for Computational Research

in Economics and Management Science
1. 6. . BRLLding. E40-140. . _

Massachusetts Institute of Technology

Cambridge, MA 02139

Phone: (617) 253-8419

BitNet: DBPDEV@GMITVMA
Arpanet: DBPDEV%’MITVMAGMIT-MULTICS.ARPA

© 1985, Massachusetts Institute of Technology

Learning-Logic Patent Pending by Stanford University

ABSTRACT

Learning-Logic is two things: 1) a model of the neurons in the human

cortex and 2) a practical way to create electronic circuits that can

learn and, I believe, think.

As a model of our brains, Learning-Logic can explain why there are two

types of neurons in our cortex -- the pyramidai and stellate neurons -~

and can describe mathematically how each type works. As part of this,

Learning-Logic can explain how long term memory works. These

explanations can be verified experimentally because Learning-Logic makes

several specific predictions about the behavior of the pyramidal and

stellate neurons. By being able to identify the significance of various

neural features to learning and thinking, Learning-Logic may be of help

in the search for cures to certain types of learning disorders.

As a practical invention, I believe Learning-Logic will enable us to

bypass the Sth generation of computers and move directly to the 6th --

to computers which require no programming at all and which have the same

capabilities as the human mind. Learning-Logic cells, which correspond

to the neurons of our brains, can be simulated in software that runs on

standard computers or can be created directly on integrated circuit

chips. Stanford University is. patenting Learning-Logic.

Table of Contents

Introduction Se ee

Updating Algorithms . 1. 6 6 ee ee we ee tee ee he

Averages Fn

Signals . 0 6 ee ee ee eee ee ee ee ee ee

How Function Cells Work . 2 6 + 8 6 ee 8 ee ew ee te ees

How Basic Learning~Logic Cells Work . . 6. 2. + © 6 ee ee . oo

How Error Cells Work ee er ee ee . ee ee

How General Learning-Logic Cells Work .. . 2. 2. «© + 2 ee ee «

Practical Considerations Se

Clipping 6 eee ee ee tee ee ee ee
Use of Exponentials and Logarithms Pe ee ee ee

Tnresholding . 2. 6 ee ee ee ee ee te ee ee

Questions and Answers About Our NeuronS . 2. + s+ 6 6 es ee oe

What evidence is there that Learning-Logic works in any way like

our cortical neurons? . « 6 «6» 2 6 6 © © ew ee ew

What is the evidence that function and error cells correspond to

pyramidal and stellate neurons, and not vice-versa? ..

What can Learning-Logic say about long term memory in pyramidal

OM@WEONST 6 ee a ee ee ae ee
How about long term memory in stellate neurons? .. + «+ +

How about short term memory? 2. 6 ee es eee te ee ew

What about inhibitory and excitatory neurons? ...-. +. +
.

What are some of the differences between our neurons and perfect

Learning-Logic cells, and do they matter? .. + ++. >

Can Learning-Logic say anything about learning disorders? .

What predictions does Learning-Logic make about our cortical

neurons that can be tested experimentally? os ew ew ow

References SS

10

20

26

35

36
37
38
40

41

42

43

43

44
44
45

45
45

46

47

LEARNING-LOGIC 1

INTRODUCTION

Off. and on for the past 44 years I have been thinking about how the

neurons in our brains work: how they operate individually and in

concert. I now feel ready to present the results of my investigations,

which are:

Mathematical learning algorithms for individual cells. Each cell is

basically doing a least-squares fit. The algorithms presented are

o(p?) approximate updating algorithms (where p is the number of

parameters) that converge to exact least-squares solutions.

Mathematical algorithms for connecting arbitrary numbers of such

cells into networks. The interconnections are arranged so that each

cell changes as little as possible when the network as a whole learns

something new. This ensures that the network remembers old

information as long as possible. The derivation of the

interconnection algorithm is based on the method of Lagrange

multipliers. A consequence of this is that in order to connect celis

together in a manner similar to the neurons in our brains, two

different types of cells are required.

An association between the mathematical elements of the above

algorithms and the physical elements of real neurons. Some observed

phenomena that can be explained if this correspondence can be

experimentally verified are:

1. The two types of neurons in our cortex, the stellate and pyramidal

neurons, correspond to the two types of cells Mentioned above.

2. Long term memory consists of certain physical changes in the

neuron. All the necessary changes could be carried out by the

neuron simply changing its shape -- all it would need to vary

would be the distances between the synapses and the axon hillock,

and the inter-synaptic distances. However, some of these. changes

are probably carried out by different, though functionally

equivalent means, such as synapses changing their -electrical

properties. In "Questions and Answers About Our Neurons" I

discuss these variations, but for the rest of the paper I'll

assume the neuron is varying just distances, to keep things

uniform. Figure 1 is a crude picture of a generic

"distance-varying" neuron. :

3. Short term memory most likely consists of variations in the

patterns of signals sent from neuron to neuron. Our neurons can

learn the digital functions used in electrical circuits which are

often used as analogies for short term memory.

There are also some as yet unobserved phenomena that Learning-Logic

predicts. The most startling prediction, at least to me, is that

LEARN ING-LOGIC

{ Dendrite {
\ | //*— Axon from another neuron
“AN M4

\\ /N\
\ “TEN

——/ N
//

//
f/

/ \
\\<— Synapse (SYN)

\\
SAHD ISD \

/ \|——--——.. .
/

/ SAHD = Synapse—Axon hillock
Axon hillock (AH) ——~ distance

ISD = Inter-synaptic distance

Direction of propagation of

Axon — action potentials along the

axon

/I\\
These branches make // \\
synapses on the 4/\ /N

dendrites of other // \\// \\
neurons —————> { {ft f{

Figure i: A typical neuron. The parts of the neuron are labeled
as though it is maintaining long term memory using distances only,
to correspond with Figure 7 and Figure 15.

stellate neurons shouldn't be able to cause pyramidal neurons to
fire, and vice versa (or at least the effect should be much less than
the effect of stellate neurons on stellate neurons and pyramidal
neurons on pyramidal neurons).

In addition, the association between the algorithms and real neurons
‘points toward several possible causes for some kinds of learning
disabilities. Perhaps Learning-Logic may be of use some day in

helping to cure then.

LEARNING-LOGIC 3

® Practical ways to create artificial neurons that can be connected

into trainable learning networks. Independently of whether these

Mathematical algorithms correspond to our brains or not, they still

work and so can be implemented in hardware or software to form what I

call "Learning-Logic” (the name comes from the fact that current

logic cirucits, such as NAND or NOR gates, can't learn and so might

be called "fixed-logic"). I have drawn the circuit diagrams in this

paper in an implementation independent fashion, using op~amp like

circuit elements whose equivalent elements in any particular

implementation can readily be worked out. Some examples of

Learning-Logic implementations are:

1. A whole network can be simulated in software that runs on an

ordinary computer.

2. Several microprocessors, each simulating one or more cells, can be

connected together to form a larger network, thus allowing the

cells to operate in parallel.

3. Learning-Logic can be directly implemented on integrated circuit

chips, with one or more cells per chip, all operating.in parallel.

Capacitors on the chips could be used to store various parameters

as electrical charges. .

Stanford University is patenting Learning-Logic. If you wish to

obtain a license for it, you can write to:

Office of Technology Licensing

Stanford University
Stanford, California 94305

Learning-Logic cells can be compared to hypothetical smart multiple

input transistors. Just as transistors can be used in either analog or

digital circuits, Learning-Logic cells can learn to perform either

analog or digital functions, or various combinations of both. What

makes Learning-Logic smart is that it can learn what the optimal

amplification. should be for each input, whereas transistors have to be

told how much to amplify. :

There have been several other efforts to create networks of cells that

can learn. The most recent I know of is the Boltzmann Machine of

Hinton, Sejnowski and Ackley (1984) . One of the more famous types of

cells is the Perceptron of Rosenblatt (1962). The cells that I am most

familiar with, and which Learning-Logic is closest to in spirit, are the

ADALINE's of Widrow, et. al., (1967).

All of these other cells require some form of randomness in their

signals in order to guarantee convergence -~ and the reason for that, I

believe, is because they are all basically O(p) devices, where p is the

number of parameters in each cell. Most types of Learning-Logic cells

4 LEARNING-LOGIC

are o(p?) devices, as I believe the pyramidal neurons of our brains are,

and so can be shown to converge without requiring any sort of

randomness. Interestingly enough, if our cortical neurons are at all

Like Learning-Logic then our stellate neurons have to be O(p) devices.

In fact, I believe our stellate neurons are basically ADALINE's.

If you'd like to try out Learning-Logic, I am distributing a

Learning-Logic program beginning in June, 1985. It is written for IBM

PC's, XT's or AT's that have at least 128K of memory, a floppy disk

drive, an 8087 or 80287 chip and that are running DOS 2.0 or higher. If

you send me $20 to cover the cost of materials, copying, shipping and

handling, I'll send you a diskette containing:

4. The Learning-Logic program (written in assembler language for speed}.

It enables you to create and run networks consisting of all the types

of cells discussed in this paper.

2. Instructions on how to use the program.

3. Some sample networks and data to get you started.

I would like to thank everyone in the Computation Research Group,
directed by Prof. Jerry Friedman, at the Stanford Linear Accelerator

Center for all their help and encouragement on this project. Much of my

work on Learning-Logic was carried out at SLAC. Similarly, I would like

to thank everyone at the Center for Computational Research in Economics

and Management Science, directed by Prof. Ed Kuh, at the Massachusetts
Institute of Technology, where this paper was prepared.

Two people I would like to give a special thanks to are JoAnn Malina, of
SLAC, for all our midnight discussions, and Prof. Bernard Widrow, of

Stanford, for getting me pointed in the right direction.

UPDATING ALGORITHMS

The algorithms used by Learning-Logic cells are known as updating
algorithms. The variables and parameters inside a Learning-Logic cell
are being continuously modified as they are simultaneously being used.

For example, an updating algorithm for a vector @ might be expressed as
. follows:

LEARNING-LOGIC 5

This should be interpreted as:

aa(tte) 7 aa(t)
= e(t) + d(t) ——

at . at

where ¢« is a measure of the delay time through the circuitry that is’

calculating asafat. If € is sufficiently small compared to the rate at

which @ and d are changing and if certain other conditions are met -- in

this case, if -1 < d < 1 -- then we can solve for aa/at to get:

2a 1
— = — é

at i-d

AVERAGES

Throughout this discussion, great use will be made of averages. There

are several ways that these averages can be calculated (see Figure 2).

However, there is one particular form of average -- called an

approximate running average -- which is not only the most practical to

use for Learning-Logic cells, but which is, I believe, used by real

neurons.

Let us start by examining an ordinary average (see Part 1 of Figure 2):

t

avg(x(f)) = | X(r) ar

an

From now on where it is clear that a function depends on time, the f's

and r's will be dropped, so we can write:

t

avg(x) = [. dr

~
i
r

An ordinary average remembers all history from t = 0. This is useful in

many circumstances, but for Learning~Logic it will be more helpful to

have an average that can forget part of its history (as we will see in

the next section on signals).

LEARN ING~LOGIC

t
1

avg(x(t)) = -— | x(r) dar
t

aavg(a(t)) 1 .
—————_ = _ - (a(t)-avg(a(t)))

at t

1) An ordinary average.

t
1

avg(x(t)) = ; X(r) ar

t-h

aavg (x(t)) 1

——@— = - (a(t)-x(t-h))
at h

2) A running average, where Aisa positive constant.

t
1

avg(x(t)) = ri exp(—(t-r)/#) x(7) dr

0
aavg(x(t)) 1
——— = _ — (&(t)-avg(x(f)))

ot A

3) An approximate running average, where # is a positive

constant.

Figure 2: fhree types of averages. The positive constant f# is a
measure of the history retained by the running average and

approximate running average. ‘The only reason # is constant in the
above equations is to suppress extraneous mathematical details

from the expressions. In many cases it will be of advantage to

allow # to vary with time. For example, if we set # = f then both
_the running average and approximate running average become

identical to the ordinary average.

LEARNING-LOGIC 7

| ava (f ,f 2)

HS

AN \-/ aavg (fifo) 1 f
= +~(f ~ avg(f fo))

uA at ho “?
T]

/&\

fy, i fo

/I\ Integrator /&\ Multiplier /-\ Inverter /E\ summer

Figure 3: Circuit diagram for an averaging multiplier. ~

One kind of average that can forget part of its history is the running

average (see Part 2 of Figure 2):

~

x dr

t-h

avg(x) =

i

Here 4 is be a postive constant, or a function of time, that explicitly

states how much history we wish to retain. This would be perfect for

Learning-Logic, except for a problem with its derivative:

savg(x) 1
= — (a(t)-a(t-A))

at 7]

We will want to use the derivative to update the average, but to do $0

for a running average means we would have to retain all values of 2 from

t-f to t. This is too much information to save.

We can get almost the same effect as a running average, without having

to gave past values of x, if we use an approximate running average (see

Part 3 of Figure 2). What we do is tnis: instead of using the value

x(t-#) when updating the running average, we will instead use our best

guess as to what x(t-f) was, which is of course just avg (x):

8 LEARN ING-LOGIC

aavg (x) 1
—— = - (k-avg(x))

at A

This gives us an average that allows us to control the amount of history

retained and that is easy to update.

A component we will use later that is based on an approximate running

average is the averaging multiplier (see Figure 3). It performs the

function:

aavg (f yf 2) 1
——\—_ = - (Fs fg - avalfifo))

at A

An averaging multiplier is used in Figure 8.

Variations and extensions of approximate running averages can be found

in the section "Practical Considerations" under "Use of Exponentials and
Logarithms".

SIGNALS

Learning-Logic cells, like the neurons of our brains, communicate by

Means of signals (see Figure 4). There are various kinds of signals

that different types of cells might use.

The signals used by our neurons are pulses called action potentials (see

_Part 1 of. Figure 4). These pulses. strongly resemble the binary 0..or 1

pulses used in digital electronics. ~ However, if Learning-Logic is an

accurate model of our cortical neurons then there is a distinct

difference between digital electronic pulses and action potentials.

Digital electronic pulses are themselves the carrier of information, but
I believe it is the frequency of the ‘action potentials, and not the

individual pulses themselves, which carries useful information.

Thus I believe that our neurons are basically analog devices, not
digital, with the analog signal being the frequency of the action

' potentials. One way in which our neurons could measure the frequency of
a series of action potentials is by means of an approximate running
average:

LEARNING-LOGIC 9

v
Oo

1 tt

s

Time .

1) Pulses. The frequency at a given instant is

proportional to the average number of pulses in a small
region around that instant.

Vv
fc) / \
1 _/ \

t / \

8 / \

Time

2) Analog signals. Instead of using the frequency of a

series of pulses, an analog signal can be transmitted

directly.

.00 .09 .14 .27 .45 1.00 1.00 1.00 .86 .33 .25 .19 .02

__—-

Time

3) Numbers. Integers or floating point numbers can be used

to approximate an analog signal or series of pulses.

‘Figure 4: Some examples of signals. © Many other types of signals

are possible, depending on how the cells are constructed.

af aavg (x) 1 1
_— = — (ax-avg(x)) = i (a-f)

at at 7]

where x is a function of time representing the action potentials (like

Part 1 of Figure 4) and f is a measure of their frequency. This is an

example of why we wanted an average that could forget part of its

history: to make an accurate judgement of the instantaneous frequency of

10 LEARNING-LOGIC

a series of pulses, we should only count the pulses in some pertinent

region of the immediate past. ‘

Actually f isn't a frequency. It is scaled so that the minimum
frequency (no pulses) corresponds to the minimum value of xX and the
Maximum frequency (continuous pulses) corresponds to the maximum value

of x. For example, suppose the minimum value of X is 0 and the maximum

is 1. Then if there were no pulses f would be 0 and if xX was a _ series

of continuous pulses (i.e. at no time does it go to 0), then f would be

1. If X were alternately 0 and 1, then f would be %.

A physical manifestation of this hypothesis would be that a neuron would

appear to remain sensitive to succeeding action potentials of a series.

The time of sensitivity is a measure of 4. Neurons that remain

sensitive for longer periods of time would be better at dealing with low

frequency phenomena; neurons with shorter sensitive periods would be

better at dealing with high frequency phenomena (and cells that have 0

sensitivity would in fact be dealing with pulses on a pulse by pulse

basis). -

Another example of how to convert pulses to analog signals is in the

section “Practical Considerations" under "Thresholding".

Learning-Logic cells need not be built, however, to reproduce the action

potentials of our brains, as action potentials probably arose as an

evolutionary expedient. We can transmit analog signals directly from

cell to cell (see Part 2 of Figure 4). If Learning-Logic was being
constructed directly on integrated circuit chips, voltage levels would

probably be the appropriate analog signals to use. We could even

combine the pulse and analog signal approaches and send an analog signal

which is averaged like the pulses.

If one is simulating Learning-Logic on a computer, integers or floating

-point numbers can be used in-place of pulses or analog signals. ~ (see
Part 3 of Figure 4).

HOW FUNCTION CELLS WORK

Function cells, either by themselves or as subcomponents of other types
of cells, are basic components of any Learning-Logic network. I believe

that the pyramidal cells of our cortex are the biological equivalent of
function cells.

LEARNING-LOGIC li

Four (t)

A
/\

/ \
/ \

/ \
/ a,(t) ag(t) vee ap(t) \

/ _A \
t

]

f,(t) Fo(t) .-. Falt) e(t)

Four(t) = Fourl ar(t)eeesAplt) fy (t)s-.-rFglt))

e(t) = d(t) - Four(t)

Figure 5: "Black box" diagram of a function cell, where

teeeerfg are input signals, 41,-.-,@p are internal parameters,

four is the output signal, @ is the error signal, and d is the

desired function. The cell continuously updates its internal

parameters to minimize the error signal.

Figure 5 is a picture of a general function cell. It is given Fareverka

as input signals from which it calculates

Four = Fourl @iseserPpef qreeeeka)

where Atreeer Ap are ‘the céll's internal parameters; which the cell is

‘continuously updating as part of its learning and remembering process.

To help it update its internal parameters, the cell uses an error

signal, @, to guide it.

The function fou, can be either linear or non-linear, but to keep the

notation as simple as possible in the derivations and proofs, I will

assume that the function is linear:

fout = aify + @ofo + eae + apfp

The results of these derivations and proofs will, of course, be stated

for both the linear and non-linear cases. For the linear case, if we

12 LEARN ING~LOGIC

let f be the vector of input signals, and @ be the vector of internal

Parameters, we can write:

fout = a,fy + aafo + nae + apf = af = Fla

We will dssume that the error signal @é@ is being generated as the
difference between a desired function @ and the actual output of the

ceil fout: a

e = @-four = d-aTF = gd - F%

This makes the derivations and proofs much easier. In real life, the

error signals needn't be related to the function outputs at all. For

instance: it's painful when you lose an hour's worth of editing because

the computer happens to die, but the computer didntt die just because

you had been typing for an hour (although there does exist some evidence

to the contrary).

There are many methods a function cell could use to update its internal

parameters @ to try and minimize @, and most of them will probably work

with the interconnection method discussed in the next section. However,

we will concentrate on variations of the method of least-squares.

The exact least-squares method works as follows: a reasonable way to
choose @ is to find the @ that minimizes the total squared error from f¢
= 0 to the present:

t t t

Cr rorar = | @? dr = | (d-Four)? dr = | (d-F7a)? ar

0 0 0

t

= | (d --ayfy - @ofo - see - apfp)? ar

ce)

The well-known solution is that:

t t t t
. -1 -1
a= FFT ar | df ar = FFT ar (f ourte)F ar

0 0 fc) a)

We’ can scale everything by 1/f to arrive at the equivalent average
formula: .

a@ = avg(FFT)-‘avg(d?) = avg (FFT) “avg ((Ff ouete)h)

LEARN ING-LOGIC 13

fo convert this to an updating formula, we take a/at to get:

aa
— = avg (FFT) "1H" eF
at

H is a diagonal matrix, the elements along the diagonal being the amount

of history that the averages are retaining (we are assuming, for

convenience, that all the averages involved are retaining the same

amount of history). For instance: if the averages are all ordinary

averages, retaining history from f = 0 to the present, then:

t oo . . Oo Y/t oo . . O

o t . . . o ‘s/t...

Hos ee ee : Aol = rs

~ oe 6 ¢ 0 . . « Yt Oo

o . . 0 ¢t o . «0 Yt

This exact updating formula is inconvenient to use for Learning-Logic

cells, however. To invert the matrix avg(FF") in real time -~ order(1)

time, or O(1) time for short -- would require at least 0(p3) circuit

elements.

An ideal function cell would require only O(p) circuit elements /-- one

for each internal parameter. However, I don't think that such an ideal

cell can be constructed. For a while I tried to find such a cell and

only succeeded in deriving exact O(p) updating formulas for sucn

restricted cases as series of orthogonal functions. The ADALINE's of

Widrow, et. al., (1967) come as close to being O(p) function cells as I

think possible, for they were shown to converge to the exact o(p)

least-squares solution under certain circumstances, but not in general.

So, I decided to look for an o(p?) algorithm that converges to the o(p3)

exact least-squares solution. There is one algorithm in particular that

I was able to devise that is my favorite because it requires the fewest

circuit elements of any I have seen and because of its suggestive

correspondence with the neurons of our brains. Figure 6 gives the

algorithm and Figure 7 is a circuit diagram for it. Later I found that

there is another O(p?) algorithm described in the literature ~~ the

Recursive Least-Squares algorithm (Ljung and Soderstrom, 1983) -- but it

is not nearly as efficient in terms of circuit elements required, nor

does it correspond in any particular fashion with our neurons.

To derive my favorite algorithm, we start with the 0(p%) exact updating

formula in its average form: ,

14 - LEARNING-LOGIC

aa af our
— = [we :
at aa 7

afour four! af out four" aa
- [avg(— —) - diag (avg (— —))] — |

aa 0a aaa at

1) Updating formula if fou, is non-linear.

aa aa
— = HoteF - [avg(FF™)-aiag(avg(FFT))] —
at at

2) Updating formula if Foy, is linear.

Figure 6: My favorite updating alogithm, in its non-linear and

linear forms.

— = avg(FFT)~'H-'eF
at

If we multiply both sides by avg(F?™), we get:

aa
avg(FFT) — = H- ‘ef

at

At this point we can write out in full the components of the matrix
avg(FF"), the matrix # (calling the non-zero elements, which all lie on
the diagonal, A, to Ap), the vector f and the vector aa/at:

od; O42 2ap

avg(fif,) — + avg(Fifo) —- + .. . + avglfufp) — = hy ‘er,
ot at at

aay 282 dap
avg (f of 4) — + avg (F of 2) — + . a2 et avg (F of p) — = ha” ‘ef.

at at at

; aay aay ; ; dap ;
avg(Fpf,;) — + avg(Fpf2) — + .. . + avg(fpfp) — = fp 'efp

at at at

LEARNING-LOGIC 15

t Four(t)
A

/\
/AH \

/ \

r—

AL AL AL

Tf _ f/N we / _
/ FSAHD,\ / FSAHD2\ /_FSAHDp\

FISD ip

an oe aa

. FISDop

: 7

ASD safe : we

oe ;
FISD 12 1SDaa[s-°* wee

aT ee a

/ \ /\ we ,\
/ _F SYN, \

JEISD4| |EISD2| JEISDp|

/
F4(t) Fo(t) /ESYN \ Fo(t)

. .
| e(t)

ESYN. Error synapse
FSYN, Furiction synapse i

EISD,; Error to function inter-synaptic distance i

FISD;; Function to function inter-synaptic distance i,j

FSAHD, Function synapse to axon hillock distance i

AH Axon hillock

Figure 73 Circuit diagram for a linear function cell based on

the algorithm of Figure 6. I believe this is approximately how

the pyramidal neurons of our cortex work. The subcomponents . have

been suggestively labeled to correspond with the diagram of a

"distance-varying" neuron in Figure 1. Circuit diagrams for these

subcomponents are given in Figure 8.

16 LEARN ING-LOGIC

Fout | ait,

/\\ i
7/3N 7 LN \

_ SEAN _/ Ff far
, xi] \ /FSAHD ,|/I\ \

/ \ ; / \

ak, see| apfp f, aa,/at

fF, f;

h hyo te

\a/ava (f if 4)
} T

/X%\ EISD, aa; t i aa;
— x/ / —

wt at — y at
| FISD,

1 é
8ay aay

avg (Ff yf 5) — avg (F yf 5) —

at at

aa,
fy | —

aa, at aap
avg (fF yf) — / iN avg (F \f 5) —

at |../ /8\\..- at fe
__ jy / 1/u,; Vp _ Le

Jy + \ / \
/ \2Z/ /X\ \ / \

/ t-—t+— Tf sorsyn; \ / ' \
/ \-/ /X\ \ / ‘ gsyn \

/ —— \ 4 \
t

/E\ Summer /X\ Multiplier /-\ Inverter

/\ Integrator /A\ Averaging multiplier ,

Figure 8: Circuit diagrams for the subcomponents of the linear

function cell in Figure 7. Neurons implement a variation on these
subcomponents (because they use pulses instead of analog voltages,
may use methods other than distance to maintain some variables,

. etc.), but the functionality is the same (see "Questions and

Answers About Neurons" for details). |

_ LEARN ING-LOGIC 17

Then we can solve the first equation for a4,/at, the second for aa,/at,
and so on:

aa, 342° a8p

avg (ff)— = 4,7 ‘ef, wavg(f yfg)—- - . . . -avg(F fp) —
at at ot

dao oa, dap

avg (f of2)— = hea” 'efo -avg(f of 1) — - 2 6. cavg(f of p)—
ot aat at

, dap ; , 38,4 ; aae . .
avg (f pf p) — = hy ‘ef p -avg (F of 4}— ~avg (Ff pf 2) — —“.ee.

at at at

We can recast this in matrix-and-vector form as:

aa aa
diag(avg(FF™)) — = A 'eF - { ava(FF')-diag(avg (FFT).] —

at at

where diag(avg(fF™)) is a diagonal matrix consisting of the diagonal

elements of avg(ff"). Multiplying both sides by diag(avg(FF™))~' gives:

aa aa
— = diag(avg(FFT))7! H-‘eF = [avg(FF")-aiag(ava(FF™))] — |
at. at

This formula for 3a/at makes for an excellent updating algorithm. If fF

and @€ change slowly compared to the speed at which @ can be updated,

then this method is basically doing an exact least-squares fit.

Finally, we can reach my favorite algorithm by making a slight change

that reduces the number of circuit elements required, yet the algorithm

.wil2 still converge to the. exact. least-squares solution. We will

replace the matrix diag(avg(7FF7))~' py another diagonal matrix Urt;

aa aa

— Vy! [ater - { avg(FF")-diag(ava(FF*)) } — |
at ; ot

As we shall see later, this algorithm will converge to the exact

least-squares solution as long as the non-zero elements of U (which all

lie along the diagonal) are greater than the corresponding elements of

diag(ava(7?')). ‘Thus, for instance, if we have an upper bound fer the

elements of diag (avg (FF*)) then we can replace it by a constant matrix.

If U-’ is sufficiently small and if our updating Mechanism is

sufficiently quick, then we can solve for aa/at to get:

18 LEARN ING-LOGIC

— = [avg(FF')~aiag(avg(FF"))+U]-' Hoe?

Comparing this with the exact updating formula:

oa

— = avg(FF')-'H- ‘ef
at

we see that essentially all we are doing is replacing the diagonal of

avg (FFT).

Not only does this slight change reduce the number of circuit elements

required, but it makes it possible for the algorithm to then correspond

to real neurons. Assuming that our neurons are maintaining all

variables as distances, then each element of @ corresponds to the

distance between a function synapse (i.e. a synapse made by another

function cell) and the axon hillock. Similarly, each off-diagonal term

of avg(f?") corresponds to the distance between two function synapses

(remembering that there are really only 4(p2-p) different values in
avg(FF')-aiaglavg(FF™)) because it is a symmetrix matrix with zeros
along the diagonal, and that this number is exactly the number of

function inter-synaptic distances between p function synapses). Each

term of A>’ corresponds to the distance between each function synapse

and the error synapse, and each element of #/~' governs the rate at which

a function synapse can change its distance from the axon hillock. See

“Questions and Answers About Our Neurons" for more details.

To show that this algorithm converges to the exact least-squares
solution, we can start from the expressions for the derivatives (primed
variables represent the exact values in the following):

afl a@
exact: — = avg(FF')-' H-'e/F

at a

aa
approximate: — = [avg(FF')-aiag(avg(FF"))+U]~' Ho ter

ot

Rewriting e’ and e as d-7'a’ ana d-F"a, respectively, and rearranging
things a bit gives:

avg (FFT) —
. at

AO'dF - HOUFPTa?

[avg (FFT)-diag (avg (FFT))4+U] — Hod? - Ho FFTa

LEARNING-LOGIC 19

Finally, we can take the difference between these two equations and

solve for aa/at:

ag 2a’
— = [avg(FF")-asag(avg (FFT))+Y | >! avg (FFT) —
at at

+ (avg(FF')-aiag(avg (FFT))4U J 71 A 'FFT (a/-a)

We are left with an expression for aa/at with two terms: one involving

aa‘/at, and the other involving a’-@.

Of the two terms, the first one is the least important. If the exact

algorithm converges then beyond some point the expected value of aa’f/at

will be ©. From then on the first term will, on average, contribute

nothing to aa/af and so can be ignored. If the exact alogithm doesn't

converge (i.e. @ isn't stationary within the amount of history we are

retaining) then the contribution to aa/at from the first term will at

least be within 90° of aa’/at if UYU is chosen as discussed below.

The second term, involving a’-a, is the more important of the two.

Since # and FF’ are already positive semi-definite, the contribution to

aa/at from the second term will cause convergence (i.e. will decrease

a’-a) if we can ensure that

avg (FFT) - diag(avg(FF")) + U

is also positive semi-definite. This leads to our requirement that the

elements of # must be greater than or equal to the elements along the

diagonal of avg(FF").

Although the o(p?) approximate updating algorithm I have described here

is my favorite, because of its efficiency and the suggestive way in

which the mathematical elements of the algorithm can be associated with

the physical elements of real neurons, it is not the only o(p?)

approximate... updating “algorithm. Trivially, various multiplicative

factors can be inserted in the above algorithm. Non-trivially, another

algorithm I have used with success is, in its non-linear form:

aa
— =! [avetFour
at

) + avg(e) - avg(
af out af out af out afout™ _ |

a

aa aa aa =a

and in its linear form:

— =U"! Cavalfourt) + avaleF) - avg(FFTya }

20 LEARN ING-LOGIC

This formula doesn't work as well in the non-linear case, however,

because it depends on the values of the internal parameters and not just

on their derivatives.

HOW BASIC LEARNING-LOGIC CELLS WORK

To connect function cells into a network, we need to add a little bit of

extra circuitry to each cell. This added circuitry upgrades function
cells to basic Learning-Logic cells. Figure 9 is an example of a

network of basic Learning-Logic cells, and Figure 10 shows their

internal structure.

For basic Learning-Logic cells, the training signals propagated from
cell to cell can be either error signals, @, or desired function
signals, ¢. These correspond to training by correction or training by
example. Slightly different cells need to be constructed for each case,
the difference being addition and subtraction units that need to be
added to each cell for the d-type cells. Since the @-type cells are the
more basic of the two, and since the d-type are easily derived from
them, we will work exclusively with the e-type cells. Besides, I
believe the neurons in our brains are mostly @-type cells. Not to imply
that networks of é-type cells can't learn by example: they can if the
error signais depend on the function outputs, f, from the network (e.g.
if e =d-f).

The method we will tse to connect the function cells together is based
upon the following observation: when learning the new, it is good to
remember the old. Speaking mathematically this means that when
converging to..a.solution, we should try..to minimize the changes to the
internal parameters. _ : :

We will now derive an algorithm for connecting function cells together

that approximately minimizes the sum of the squares of the changes to

the internal parameters at any instant.

Consider the sample networks of Figure 11. For simplicity, we'll make a
few assumptions that won't change the conclusion we reach but that will

. Make the derivation less cluttered. We'll assume:

1. ‘that the input signal .f, remains constant while we adjust the
internal parameters 41, @2 and &3.

LEARN ING-LOGIC 21

can either be error signals, @, or desired function signals,

depending on how the cells are constructed.

Oni (bt) @ino(t) @ing(t)

Fouri(t) or Fourg(t) or fouts(t) or
Gini ft) G in2(t) dinalt)

t i
H | |

AY AY A+

/ BAS, \ / BAS, \ / BAS3 \

/ \ / \ f \
t ' t t t t
' I | ! I |

{ t] I I]

I | I] i I

| . 1
I t--, ---/ L___ r---/ {

! l { t I '

I I I T i !

I ! | rn | | I

' tA+ \ teASF '
1 / BAS 4 \ 1 / BASs \ 1

| / \ t / \ l

t t 14 tt
l ! I -/ t | |

I (| 1 I |

| (| l ({

l 7 J l | rn J L es | — J

I l i | 1 |

I ‘ | 1 1 |

l I I | | |
YAY YAY tA

/ BAS. \ / BAS? \ / BASg \

/ \ / \

| | |
‘ ¥ v

. Bouts (t) Couta(t) Couta(t)

Fand(t) or Finatt) or fing(t) or

Pours (ft) dourall) Fouralt)

Function signals BAS, Basic Learning-Logic cell i

---- Training signals

|
Figure 9: An example of a network of basic Learning-Logic cells.

The training signals for a network of basic Learning-Logic cells

a,

22 LEARN ING-LOGIC

Figure 10:

cell.

Diagram of a basic Learning-Logic cell.

Fourth) .
C ins (f) @ ine (t)

+ ’

l , . I
' /\\ \

/ 1 /\\ N \
were rer er er err er empress see]

/ BAS; _A_ LW \
/ afour(t) / FCia\ aFour(t) \2/ \

/ af ing (t) 4 af ina(t) , ett) \
/ - | \

/ SE bfi-------- I+ \
/ at a \

/ \x/ x/ \
/ ! !

i 1
' 1
I !
+ +

Gout (t) F sai (t) f ing(t) Coutg(t)

1) Non-linear basic Learning-Logic cell.

Pint (t) Foue(t) Gime (t)

1 . t
/\\ \

/ } /\N ! \

/ BAS; _A_ Li \
/ ay / FC AN ap 2/ \

/ t) e(t) \\

/ p-------4 pt t-------- 4 \
/ a4 4 \

/ \x/ \x/ \
/ i |

1 1
{ I

\ I
‘ ‘

Gouri lt) F na(t) Finp(t) Coutp(t)

2) Linear basic Learning-Logic

Note that we

have pulled out some signals that we need from inside the function
cell.

LEARNING-LOGIC 23

fy te,=d,- Fy Fy | t @2 =d2- fy

As A4
/ ay \ / aa \

/ \ / \

afr | fg I afs

@g = @, e eg —

afgl----- -----! , * af

tad
/ ag \

/ . \ afs
és = [eg + @4) —

l af,

Fa ‘ ar, afa afy [or] afs afy 4 af,

1) Non-Linear sample network: f, = f4(@1,f3), etc.

frp tersdi- fy fa} tea da fa

Ad At
/ ay \ / ao \

/ \ / \ ——— +t

Og = 0181 | Fs | 04 = 8282

| TT4 pee!
bad

/ a3 \

/ \
eens

' .

fa ‘ = [@,8; + @242) ag

2) Linear sample network: f, = aif3, etc.

the Figure 11: Small sample networks used to illustrate

calculation of the error signals.

24 LEARNING-LOGIC

2. that the desired functions 7, and d@2 remain constant while we adjust

the internal parameters.

3. that &-! 4s small enough so that we can make the following
approximation to the updating algorithm in Figure 6:

Non-linear case Linear case

aa aF
— = We — = UH 'eF
ot a@a

This essentially converts the cells into the ADALINE's that were
studied by Widrow, et. al., (1967) and which were shown to converge

under certain circumstances (and, incidentally, the following
algorithm can be used to connect ADALINE's into networks, although

the networks aren't as powerful as Learning-Logic networks).

Our strategy will be to reduce the errors @; and @2 in Figure i1 to zero

in a step-like fashion, at each step making small changes 4a, Aa. and

443 in the internal parameters 4;, @2 and @,. The amounts A@, and Aé€,

that we thus reduce @,; and @, by are approximately:

Non-linear case Linear case

af, af,
“de, = Af, = — Aa, + — fg = fada, + a dfy

384 ats

af, af, afy
= — 4a, + — — Aa = Fada, + af 4Aag

aay afy aa3

afo ato
-A@. = Af = — Aa. + — af 3 = f gAao + aodfg

aa afs

afo afs ats .
= — s&@o + — — Ady = Foahag + aofghay

dao afy 383

Even though 4@; and A@, depend on Aa,, Aas and Aa 3, we can pretend that

we were given Ag, and Aé@é> first. Then the above two equations can be
viewed as constraints, where our object at each step is to find the 48,
Aa, and 4@ which minimizes

Aa,? + bao? + Aas?

We can solve this constrained Minimization problem using the method of
Lagrange multipliers. If we let \, and \y be the Lagrange multipliers
for the 2 constraint equations, we will end up with 5 equations in 7
unknowns:

LEARN ING-LOGIC 25

Non-linear case Linear case

af,

4a, = ’ ‘yo = Yor, fy

af,

Mag = dg — = 4a fs
cor- 2

ary afo 7 afy
Aa3 = wr, the = % [\ 444 + AQ@Q] Fa

ats afa + aay

af, af, af,
-Ae,; = —— Aa, + —— — dag = fda, + aif hag

aay afs 2a

afo afs afy

-h@> = — Aa. + — — dag = F,Aao + Bof hag

8 af 24g :

Switching perspectives again, we will assume that A@,, A@2, 4@,, Aa and

4@3 are all variables which depend on 4, and do. We see then that we

Gan choose 4, and \» at will with the assurance that no matter what 4@,

and A@, turn out to be, the corresponding Aa ,? + day? + Aa? will be the
minimum that could account for them. Thus, if we choose 44's and 2's
wisely so that successive Aé@,'s and A@y's reduce @; and @2 to zero, then
we have converged the network while at the same time minimizing the

changes to the internal parameters at each step.

In particular: under assumptions 1 and 2 the approximate algorithm of
assumption 3 will cause the cells to converge (except in a few
degenerate situations), so we can set %, to UY-'W-'e, and %ro to

U-'W-e, to get:

Non-linear case Linear case
=<———o—T—o— 1 =o

af,
4a, = Uridw-'e, —_— = U-'H'e sf

oa,

afo

dao = Ute, —_— = UNH ek

aao

at, afo 1 af3
dag = U-tw [e: + @9 = UH 1(e484, + C282 lh,

afs afs O84

26 LEARNING-LOGIC

From these equations we see, as in Figure 11, that @, snould be set to

@ ,*af ,/afs, @4 Should be set to @2*df/af3, and that the cell containing

@3 should treat the sum of these two as the total error that it should

correct for.

The argument above can be extended to networks of any number of cells.

The only requirement is that each cell must send the appropriate error

signal to each of its input cells. That is, the connection between two

cells must be bi-directional, with function signals going one direction

and error signals the opposite.

HOW ERROR CELLS WORK

Basic Learning-Logic cells aren't accurate models of the neurons of our

cortex. They require bi-directional conduction of the function and

error signals, whereas real neurons conduct signals in only one

direction.

We can, however, pair each function cell with an error cell to form
networks that very much resemble our cortical neurons (Figure 12 is an
example of such a network). I believe that error cells correspond to
the stellate neurons.

Each pair of function and error cells approximates the behavior of a
basic Learning-Logic cell -- in fact, one can enclose each pair in a box
to form approximate Learning-Logic cells (see Figure 17). The network
of approximate Learning-Logic cells in Figure 18 is identical to the
network of function. cell-error cell pairs in Figure 12. Both in turn
are approximately equivalent to the network of basic Learning-Logic
cells in Figure 9.

The purpose of an error cell is to decide what the total error @ou:t

should be for its associated function cell. To make its decision, it is

given the output f of its associated function cell (see Figure 13) and,

for all the function cells which receive the output of its associated
function cell, it receives their total errors @4,...,@s.

To derive the algorithm used by the error cells, we will work with a

specific example -- the three pairs of cells in the top left-nand

quarter of Figure 12. We will derive the algorithm used by ECy. EC, is

given the output of FC, and, because FC, and FCy receive the output of

FCy, EC, also receives the total errors from EC, and EC». In what

LEARN ING-LOGIC 27

Fours(t) Ping) Fouta(t) Ping (2) Foutalt) @ing(t)
t

] | I

t l (

AL yt AL yt —A_ t+
/ FCN TEC / /-FCp,\ \YECR / /FCa,\ \YECS /

t + + 7

L--4 L.-4 L--4

I : : t

i] i

t T i}

I t {

--t--|----, ----1-+---4,----)-1-
i] ol Il I

(ot tt |

A. fed ee eee i
I {Fc \ \leCa / / FCsa\ \YECs / '

+ + ¥

L-- L--4--4
| t | |

i fl \ 1
i F T 1

I] 1 |

{]

b-=4 ;----1-}{---5 ----1--[----,,
lot tol {ot

(ol {ol Io]

mL cower vomur
/ FC \ \WECe / /FC7,\ \YEC? / FCaa\ \YECg /

t + ¥ 4 7

| a L--4- Lo-4

|] . 1

! | l
FY ' ‘

Fani(t) Bout s(t) Fino(t) Cout2(t) Fina(t) Coutglt)

Function signals FC, Function cell i

---- Error signals EC, Error ceil i

Figure 12: An example of a network of function and error cells,

corresponding, I believe, to the pyramidal and stellate neurons.

28 LEARN ING-LOGIC

F(t) e1(f) €2(t) eee es(f)

\

t t i
\ y /

\ /
\ b(t) ba(t) ww. (8) /

\ /
\ /

\ /
\/

v
‘

Sour (t) .

Coutl(l) = Coucl Oy(t),--- Bp (Et) 0 4(f),.-- s(t))

Figure 13: "Black box" diagram of an error cell.

follows we will use FC, to mean either the cell labeled FC, or the
output of cell FC4, etc.

From "How Basic Learning-Logic Cells Work" we know that optimally the
output of EC, should be:

arc, aFCo
EC, +

OFC, : . OFC,

ECqg = EC)

Unfortunately EC, has no knowledge of what aFC,/aFC, and aFC2/aFC, are
because these are maintained in FC, and FC2, respectively (these are the
signals that basic Learning- Logic cells pull out of the function cells,
as in Figure 10).

So, EC, must try its best to estimate what these derivatives are.

Letting #, be the estimate for aFc,/aFc, and by, be the estimate for
OFC2/aFC4, then the output of EC4 will be:

ECqg = BEC, + bokC2

Let's start with b,. The desired function d@, for’ cell FC, can be
Written ass

LEARNING-LOGIC 29

ab e@ourt
— = U'A'F
at ab

1) Updating formula if @gyt is non-linear.

. ab .
— = U-'st-'fe
at

2) Updating formula if @py~ is linear.

Figure 14: Updating algorithm for an error cell. The diagonal
matrices #°' and #~' can be combined into a single diagonal
matrix, but I kept both of them in the formula because they arose
in separate ways.

d, = EC, + FC,

or equivalently:

EC; = dy - FC,

FC, is a function of many variables, but we know that at least one of

them is FCy. So, we can linearize FC, around the current value of FC,

to get:

aFC,(FC4(fo),---)

EC, d, - FC,(FCa(to),---) - (FC q(t) -FC4(fo))

aFCy4(to)

aFC,(FC4(fo),---)

dy - FC,(FCy(fto),---) + FC4(fo)
aFC4 (fo)

aFC ,(FC4(to),-~-)
FC, (t)

aFC4(fo)

Further, we'll assume. that aFC,(t)/oFc,(f) stays fairly close to

aFC,(FCg(to),-..)/aFC4(to) for a sufficiently useful interval, so that

we can write:

BFC,

EC, = a, - FC 4 junk —— FC4

aFC,

30 LEARNING-LOGIC

f(t)

\FsYn_/ e,(t) ' eo(t) wae er(t)

¥ | I |
J | !

|FIsD,|! |FISD,| | [FIsD,|!
tf t_t

_ESYN, / __ESIN: / ae _ESYN, /

\,,/ \L/ \,/

_ESAHD ,/ _ESAHD 2/ se _ESAHD,/
Nf Nf NL -/

I L 1
bot - ee 1 | ~---- ee J

\ /
\aH /
\/

v

t @our(t)

ESYN; Error synapse i
FSYN Function synapse
FISD, Function to error inter-synaptic distance i
ESAHD,; Error synapse to axon hillock distance i
AH Axon hillock

Figure 15: Circuit diagram for a linear error cell based on the

algorithm of Figure 14. I believe this is approximately how the

stellate neurons of our cortex work. The subcomponents have been

suggestively labeled to correspond with the diagram of a

"“distance-varying" neuron in Figure 1. Circuit diagrams for these

subcomponents are given in Figure 16.

where:

BFC y(FC4(fg),---)

FC ayunk = FC, (FC4(to),.---) 7 FC 4 (fo)

aFC4(fo)

Now, we know that FC; is adjusting itself so as to minimize:

LEARNING-LOGIC 31

Ff f

\ 7 a/h
\ PSYN / FISD tf

\ \) / \k/

hy I
; t Ayotf

Ay 'f \ e; ab ,/at 4 e,

Saath / | _ ow ’ 1/4 y5\X ESYN , ; __ /'ESAHD ,/
\ Ve / \ott /_

WWx/ ft / _N\x/_/
Se 2 \/

abi/at } + a, { bye,

bye, u I, b,e,

\ | +
\antt{ /
\\E/ /
\t/
\V/

v

1 Gout

/E\ Summer /X\ Multiplier /§\ Integrator

Figure 16: Circuit diagrams for the subcomponents of the linear

error cell in Figure 15.

t t
aFC,

| EC;2 dr = | (dy - FCqjunk - FC,)? ar
OFC,

0

So, we can get a good estimate of aFC,/aFC4 by adjusting 6, to minimize

the same thing:

32 LEARNING-LOGIC

Four (ft)
Cins(t) @yno(t) @ins(t)

t t
I { ne |

/\\ ! \ 1
/\\ ‘ ‘

/ ta;p-4 ys q
/ APP a) iin \

/ AL ee \

/ / FC y,\ \YEC, / \
/ t ‘ \

/ LCo-teorr ee 1 \

/ | \
t

. |

|
Fins(t) Fang (t) f ing(t) ‘

Cour lt)

Figure 17: An approximate Learning-Logic cell, which is nothing

more than a pair of function and error cells drawn in a box.

t t

| EC,;2 dr = | (d4- FCyyunk - ByFCq)? ar

0

This is a simple least-squares problem in only one variable, and the
well-known solution for 8, is:

t t
“1

b, = [FC4? ar (dy - FCyjunk)FC4 ar
L

0

Scaling everything by 1/f, we arrive at the equivalent average formula:

By = avg(FC42) ~ lava ((d y-FC 4 junk) FC4)

- However, the error cell can't use this formula to calculate 9, because
it isn't given d, or FCijunk+ From earlier in the derivation, though,

we know that: .

LEARN ING-LOGIC 33

fours (f) apne) Fouta(t) @in2(t) fours(t) @ina(t)

t 1 I

i] ' I
A + _A + A 7

/ APP, \ / APP, \ / APP3 \
/ \ / \ / \

t t t
| ' 1

I l {

I ! 1

T T !
t 1 I

1
pt-- ne fi j4,----|--

t Io Ww !

I Id im 1

t I Wwe7 4 I
I A + A vv I | .

| / APP, \ / APPs \N4 \
I / T \ / ; \ { I

| I
, | --/ |
I | | t
I | I I

T T T |
| | I |

| I
on rn t_--l-,, 7 TTT foe ta |

| It It

rt It i

Io it 1
A v4 A vy Ave

/ APP. \ / APP? \ / APPg \
/ \ / \ /

I ' l

t ' !
+ ‘ +

fins(t) Couti(t) Fyn2(t) Couta(t) F ina(t) Goutg(t)

Function signals APP, Approximate Learning-Logic cell i

---- Error signals

Figure 18: An example of a network of approximate Learning-Logic

cells. :

34 LEARNING-LOGIC

OFC,

0, - FCyjunk = BC, + FC4
aFc,

Making this substitution gives us:

aFc,
by = avg (FC4?) ~ 'avg ((EC y+-——FC g) FC 4)

aFC,

We're closer, but this formula still can't be used because the error

cell wasn't given the past values of aFC,/aFC, which are needed to
calculate the average. Instead, though, we can use the past values of
6, -- which is our estimator for aFC,/aFC4 -- to get:

by = avg(FC4*) ~ avg ((EC +b yFC4) FC 4)

The error cell coulda now use this formula because either it is given or
already contains all of the necessary information. We will find it
simplifies things, though, if we take the a/at to arrive at the

following updating formula:

ab,

—— = avg(FC47) ~ 1h, FC AEC,
at

where #, is the amount of history that was involved in the average.
This is also a good formula to use, but we are going to simplify it even
further. In "How Function Cells Work" we saw we could replace the
diagonal matrix diag(avg(7?#"))-~' py another diagonal matrix JU7'.

Similarly, we can replace avg(FC,2)~' by any u,~' where uw, > avg(FC4?):

ab,

— = uy hy 'FcgEc,
aft

If we went through the same process for by we would finds:

abs

— = tg ‘ho 'FC4EC2
ot

These formulas can be generalized because the same reasoning applies to

any error cell. We can write 4, and 62 as the vector b, Ec, and EC2 as
the vector @, FC, as f, fy and 42 as the diagonal matrix #, and uw, and
Uy as the diagonal matrix U (see Figure 13 and Figure 14):

ab .
— = UH 'fe
at

Of course, we can combine the two diagonal matrices U/~' and H7' into a
single diagonal matrix, but since they arose for different reasons we'll

LEARNING-LOGIC 35

leave them as they are. In fact, real Learning-Logic networks --
ineluding our neurons -- would probably have at least these two
multiplicative factors and possibly more.

This updating formula is mathematically identical to the algorithm used

by Widrow, et. al., (1967) for their ADALINE's, although they derived it’

in a different context. Many otners have probably derived

mathematically identical algorithms, too.

It is interesting to note the similarities between the algorithms used

by the function and error cells. The error cell algorithm (Figure 14)

is the limiting case of the function cell algorithm (Figure 6) in at

least three cases: .

4. wnen U7' in the function cell algorithm becomes very small -- as

noted in "How Basic Learning-Logic Cells Work".

2. When avg(FF')-aiag(avg(FF?")) in the function cell algorithm equals

zero. ; .

3. When there is only one input to the function cell.

In fact, really the only difference between a function cell and an error

cell is that the function cell can accumulate correlations between its

inputs. Since the pyramidal cells presumably evolved from more

primitive cells (maybe even the stellate cells), it 4s comforting to

know that not much of a change was necessary.

HOW GENERAL LEARNING-LOGIC CELLS WORK

More general Learning-Logic cells can be constructed. However, the

principles and algorithms used are all simple extensions of those used

in making function cells, error cells, basic Learning-Logic cells and

approximate Learning-Logic cells, so I won't bother discussing more

general Learning-Logic cells except to show you a picture of one (Figure

19).

I don't imagine that more general Learning-Logic cells will be used

much, since they can be replaced by networks of simpler cells. However,

one advantage a more general cell has is that it may require fewer

components because it needn't duplicate the components that might be

common to several simpler cells -- such as the avg(f7"') correlation

matrix. N

36 LEARN ING-LOGIC

@inalt) C@inglt) @ynu(t)

Fours(t) Foura(t) Foutr(t) or or or
dins(f) d ing(t) d inm(t)

A A A 1 Peewee 4

/\ /\ /\ ' 1 1
_/ \ / \ /.-\ ‘ ‘ u

/ \

/ \

/ \

/ \

/ \

/ \
/ \

\
t 1 t

{ pose. 1
eee y. ‘ +

Couti(f) C@oura(t) Gourk (ft)

Feai(t) Fino(t) Finn (t) or or or
doutrlt) dout2(t) Gourk(t)

Figure 19: The most general Learning-Logic cell.

There are other generalizations possible -- such as cells that treat

function signals as error signals or vice-versa, or that convert signals

from one form to another -- but again they don't involve anything beyond

what has already been discussed.

PRACTICAL CONSIDERATIONS

When connecting function cells, error cells, basic Learning-Logic cells

or approximate Learning-Logic cells into networks, there are some

practical matters to take into consideration. Many of these practical

Modifications increase the class of functions that can be learned by a

network of linear Learning-Logic cells (without increasing the amount of

circuitry involved), make the network converge faster, or otherwise

enhance its behavior. Of course, the practical matters that need to be

considered depend on thé particular implementation of Learning-Logic.

For instance, there are modifications that can be made to Learning-Logic

software that are impractical for hardware implementations.

LEARN ING-LOGIC 37

However, there are three modifications that I believe are applicable to
a wide variety of Learning-Logic implementations. I believe that all
three of them are used, for example, by our cortical neurons. In
decreasing order of importance, they are:

e Clipping.

@ Use of exponentials and logarithms.

@ Thresholding.

Because of their wide applicability, I will examine each of them in some
detail.

Clipping

In an ideal Learning-Logic cell or network, any parameter or signal
could theoretically range from -© to te. Clipping refers to limiting

these ranges to within some practical bounds (see Figure 20). For

example, theoretically the output of a linear Learning-Logic cell may

range from ~= to +e, However, any physical implementation of

Learning-Logic will place lower and upper bounds on what the output

actually can be. Thus, in a practical implementation of linear

Learning-Logic, the output will be approximately linear in some region

and then will be clipped (or will saturate) at the upper and lower

bounds of the linear region.

This is the same behavior as is observed in transistors, for instance.

They amplify approximately linearly over some region, but clip the

signal to some minimum or maximun value outside that region.

Clipping is a very desirable property for linear Learning-Logic. Just

as clipping in transistors is the basis for digital electronics (the

lower and upper bounds can represent 0 and 1, or false and true), it

enables linear Learning-Logic cells to learn both digital and analog

functions.

Besides allowing linear Linear-Logic cells to learn digital functions,

clipping allows networks of linear Learning-Logic cells to represent

other non-linear functions as well. A theoretical network of perfectly

linear Learning-Logic cells isn't very useful, because linear functions

of linear functions are still linear functions, so clipping is a way of

extending the power of a network of linear Learning~Logic cells without

increasing the amount of circuitry involved.

38 LEARNING-LOGIC

/
° / ° oo.

u / u /
t / t /

P / pPl.. /
u / u
t . t

input input

1) Unclipped linear signal. 2) Clipped linear signal.

Figure 20: Clipping example.

Clipping can be observed in our neurons. The most obvious occurence is
in the frequency of the action potentials, which can range from 0 -- the
lower bound -- up to the maximum firing rate of the neuron, several
hundred pulses per second, say -- which is the upper bound.

Use of Exponentials and Logarithms

Exponential functions occur so frequentiy in nature, and are of such
practical importance, that it seems appropriate to discuss their use in
Learning-Logic. .

The two most important uses for exponentials and logarithms are to
multiply signals together and to update parameters.

A common way to multiply signals together is to take their logarithms,

then add the logarithms together, and then take the exponential of the

result:

aif, = exp(log(a;)+log(f;))

This is how many electronic analog multipliers actually work. _Note that
all the quantities involved must be positive: this only multiplies
quantities in the first quadrant.

LEARN ING-LOGIC 39

The other major use for exponentials and logarithms is in the
accumulation of parameters. Neurobiologists have found that due to the
electrical properties of a neuron, the influences of input signals fall
off exponentially as the distances from their synapses to the axon
hillock. Assuming those distances contained the internal parameters,
then a neuron instead of performing the linear function

Four = O4fy + Qofo + «6. + pfp = aTF = FTa

is basically performing the function

Four = exp(a’ 1)f ,texp(a’o)fa+ ... +exp(a’p)fp = exp(a/™)F = Flexp(a’)

The a’'s are the logarithms of the @'s, and they correspond roughly to
the negatives of the distances from the corresponding synapses to the
axon hillock, multiplied by some constant.

Tt would seem that if the neurons are actually updating the logarithm of

the internal parameters instead of the internal parameters themselves,

that they could no longer use the linear form of my favorite updating

algorithm. It turns out, however, that they can. The updating formula”

aa. , aa
— = yr! [ater - [avg(7F™)-aiag(avg(FFT)) J — |
at at

converges to the exact least-squares solution for either the internal

parameters or the logarithms of the internal parameters depending on

whether @ represents the internal parameters or the logarithms of the

internal parameters. In fact, one can substitute any suitably

well-behaved functions g,(a’,) for the internal parameters @, and the

linear algorithm will still converage to the exact least-squares

solution for 4’; as long as agj;/oa’,; is always non-negative (and

probably even in lots of cases where it's not). The proof of this

fortunate occurence will be left to the interested reader. It exactly

Parallels. the proof of convergence in the completely linear case given

in the section "How Function Cells Work".

Another example of how logarithms can be used in the accumulation of

parameters is in the averaging multiplier of the section "Averages". If

the average product of two quantities is going to be fairly small, it

may be of advantage to accumulate the logarithm of the average product.

The following updating algorithm can then be used:

dlog (avg (F yf2)) {
—_— ee ; (fifo - exp(log(ava(Fyf2))))

ot

As above, other functions besides logarithms and exponentials will work

with this algorithm.

40 LEARNENG-LOGIC

Thresholdin

Thresholding is a method used to generate pulses whose frequency

transmits information (see Figure 21). It would only be of use in

Learning-Logic cells that were using puises as signals. A thresholding

Mechanism can be viewed as an analog-to-pulse converter (the inverse of

the pulse-to-analog converter discussed in "Signals"). In fact, the

thresholding mechanism can be used to eliminate pulse-to-analog

conversion of a cell's inputs, because accumulating the threshold

variable ¥ automatically converts whatever is being accumulated to

analog. I believe that a neuron's axon hillock acts as a thresholding

mechanism (Kuffler and Nicholls, page 15).

A taxi stop can be used as a simple analogy for a thresholding

mechanism. The number of people per minute who want to take a taxi can

be viewed as an analog signal Foy, -- at 4:30 a.m. it is close to 0,

while at rush hour up to 30 people per minute, say, might want to take a

taxi. The accumulation variable v is the number of people who are

currently waiting at the taxi stop. For instance, if no taxis came for

a while then the value of y might build up to over 100. However, we'll

Make sure to supply enough taxis to handle the load. We'll suppose that

each taxi waits until there are two people ready to go, so that the

threshold value Vo is 2, and that it then takes both of them, so that

Vout is also 2. We can then view each departing taxi as a pulse. At
4:30 a.m. the number of taxis leaving would be close to 0, while at rush

hour there would be approximately 15 taxis per minute departing. Thus,

the analog signal has been converted to a series of pulses whose

frequency transmits the relevant information.

In this example, the factor of 1/2 between the analog signal fou, and
the frequency of the pulses illustrates the inverse amplification
possible depending on our choice of Vour- If we used taxis that. held
four people instead of two, then the number of pulses per second would
have been cut down to about 7. Similarly, if we used taxis that held
only one person, the number of pulses would have gone up to 30.
Fortunately, the updating algorithm for the internal parameters @ is
transparent to this amplification -- it will automatically correct a for

it. :

Another item to note about this example is that the frequency of the

output pulses is relatively insensitive to the threshold value Vo. If

the taxi drivers were really rude and waited till there were four people

waiting before driving off with only two of them, there would still be

Close to 0 taxis per minute leaving at 4:30 a.m. and close to 15 taxis

per minute leaving at rush hour.

LEARN ING-LOGIC 41

ov

— = four - Vout
at

pulse, if V > Vo
Sout =

no pulse, if ¥ < Vo

¥o = threshold value of the threshold variable y.
Vout = Change in vy if a pulse occurs, 0 if no pulse occurs.
out = Signal to convert to pulses -- for a linear function cell:

Fout = a'F if the inputs have already been converted to analog.
four = 47% if the inputs are still in pulse form.

Figure 21: Description of thresholding.

A third thing to note is that since the frequency of the pulses now

carries the relevant information, the magnitude of the pulses is

unimportant. For instance, if the taxi drivers were all homocidal and

killed one of their two passengers, so that only one passenger was

delivered to their destination, the frequency of the taxis would still

be the same.

Finally, before dropping this example, we can note that a leaky

integrator can replace the ideal integrator we've been using to

accumulate Vv. The equation for ¥ would then become:

ov

— = fout— Your ~ av
at

where 4 is a measure of the history involved, i.e. how long people are

willing to wait for a cab. If h is close to zero then if there isn't a

taxi immediately available everybody gets disgusted and leaves, and if h

is close to infinity everyone will wait forever for a taxi. I imagine

that this same sort of leakage occurs at the axon hillock of our

neurons, and probably everywhere else an integrator is used in our

neurons. Many implementations of Learning-Logic will also involve leaky

integrators.

QUESTIONS AND ANSWERS ABOUT OUR NEURONS

42 LEARNING-LOGIC

This section explores the correspondences between Learning-Logic and our

cortical neurons, in question-and-answer format.

What evidence is there that Learning-Logic works in any way like our

cortical neurons?

There are many pieces of evidence:

i. In order to get Learning-Logic to work well with cells that conduct

signals in only one direction (as all neurons do), mathematically

there have to be two types of cells in the network: function and

error cells. I don't think it is a coincidence that there just

happen to be two types of neurons in our cortex: the pyramidal and

stellate neurons.

2. Since error cells are simpler than function cells, one of these two

types of neurons has to be simpler than the other. And, indeed, it

seems that stellate neurons are simpler than pyramidal neurons (see

the answer to the next question). The reason a network needs both is

that Learning-Logic doesn't work very well if all of the cells are

either function or error cells. There has to be a mixture of the

two. (This isn't true for bi-directional Learning~-Logic: networks

composed of only basic Learning-Logic cells work fine.)

3. Function and error cells need to conduct their signals in roughly

opposite directions, and in the picture I use (Kuffler and Nicholls,

page 39) the axons of the stellate and pyramidal neurons seem to be

going in opposite directions.

4. Learning-Logic contradicts nothing else that I know about our
cortical neurons (if it contradicts something you know, please tell

me). I know of no other theory of our cortex that 1) can be shown to

work on its own and 2) that doesn't contradict some observed fact
about our cortical neurons. Beyond that, Learning-Logic provides

several hypotheses about neural behavior that can be tested

experimentally (see the question about the predictions Learning-Logic

Makes) .

5. Learning-Logic networks can learn both digital and analog functions,

just as humans can -- and even blend the two, just as humans can.
This gives me confidence that suitably constructed networks

consisting of large numbers of Learning-Logic cells (aided, perhaps,

by some "fixed-logic" or hardwired cells, just as our cortex is

probably aided by more primitive areas of our brains) will soon be

exhibiting "intelligent" behavior. All of the building blocks seem

to be there.

LEARNING-L@GIC 43

What is the evidence that function and error cells correspond to
pyramidal and stellate neurons, and not vice-versa?

There are two main pieces of evidence:

1. Function cells are more advanced than error cells, and in the picture
I use (Kuffler and Nicholls, page 39) pyramidal neurons look more
complex than stellate neurons.

2. Error cells are likely to have evolved first, because error cells are
simpler, and stellate neurons seem to be more common in primitive
areas of the brain (Kuffler and Nicholls, Page 11).

If it turns out that Learning-Logic does correspond to our cortical
neurons, but that I have the correspondences reversed, then I'11 have
made a biological faux pas equivalent to hanging a Piece of modern art
upside down.

What can Learning-Logic say about long term memory in pyramidal neurons?

If pyramidal neurons correspond to function cells, then there are two

components to its long term memory. If a pyramidal neuron has 9p

Synapses from other pyramidal neurons, it needs to remember’ the Pp

internal parameters (the vector 4) for those inputs. It also needs to

remember the (p?-p)/2 correlations between those inputs (the

off-diagonal terms of the symmetric correlation matrix avg(FF")).

1. It seems to me, and I think to many others (Kuffler and Nicholls,

Chapter 16), that there are two plausible ways a neuron could

remember the p internal parameters:

e@ As the distance between each synapse and the axon hillock. Since

the electrical signal that arrives at the axon hillock from a

synapse is thought to decay roughly exponentially with the

distance between the synapse and the axon hillock (Kuffler and

Nicholls, page 135) that distance could contain the internal

parameter for that synapse. The neuron could adjust this internal

parameter by growing or shrinking appropriately.

@ As the strength of the electrical signal transmitted across the

synapse. If the distance between a synapse and the axon hillock

remains roughly constant, then the only other (plausible) way for

the neuron to adjust the internal parameter for that synapse. is to

adjust the electrical signal itself. This might be done on the

dendrite's side of the synapse, on the axon's side, or in the

synapse itself (Kuffler and Nicholls, Part Two).

44 LEARNING-LOGIC

An implausible way that the neuron could remember the internal

parameters is aS the number of synapses made by a given axon. The

neuron would have to both selectively stimulate growth of new

synapses, and selectively shed them. This seems to me to be

unlikely, given the simplicity of the other two methods.

2. It seems to me that there is only one plausible way a pyramidal

neuron could remember the (p?-p)/2 correlations between the inputs,

and that is as the distances between the synapses. Whether those

distances are measured through the body of the neuron and the

surrounding matter, or along the neuron's cell membrane, I don't

know. Whichever, it implies that the neuron can grow or shrink

between each pair of synapses, stimulated by the signals at each

synapse.

The other two obvious possibilites, that the neuron can adjust the

electrical or chemical properties between each pair of synapses, or

that synapses can be selectively grown or shed, seem too complicated.

There is at least one other outside shot that deserves mentioning,
and that is that the pyramidal neuron could maintain the correlations
as tensions along its cell membrane.

How about long term memory in stellate neurons?

If stellate neurons correspond to error celis, then they only have to

remember the Pf internal parameters (the vector 8) for the Pf synapses

from other stellate neurons. They could do this in a manner similar to

pyramidal neurons, as in 1) above. Stellate neurons wouldn't have to

remember the correlations between the inputs, as in 2) above: that is

why they are more primitive.

How about short term memory?

There is nothing in neurons that I know of that can change fast enough
to account for short term memory -- except for the signals sent between
the neurons. So, I believe that short term memory is maintained in the
.pattern of signals being sent. This view is bolstered by the fact that
Learning-Logic cells can learn to perform functions similar to those
that digital electronic circuits perform, and the registers and memories
of digital electronics are often used as analogies for short term
memory. mo,

LEARN ING-LOGIC 45

What about inhibitory and excitatory neurons?

I believe inhibitory and excitatory neurons are a practical modification
Made -necessary by the fact that almost all the ways that neurons might.
accumulate their internal parameters only accumulate Positive values.
Thus, in order for an input to have a negative influence, a negative
(inhibitory) copy of the input (or something negatively correlated with
it) is needed. In fact, in many man-made implementations of
Learning-Logic it may be better to have two versions of each signal --
one considered positive and the other negative ~- than to have to one
version that can be either positive or negative.

What are some of the differences between our neurons and perfect
Learning-Logic cells, and do they matter?

I doubt that our neurons are mathematically perfect Learning-Logic
cells. Forturnately, Learning-Logic seems to be very tolerant of
imperfections in its components and connections. In fact, I believe
there are at least two ways in which our neurons aren't ideal
Learning~Logic cells, but they don't matter.

1. I don't believe that pyramidal neurons update their avg(FFT)
correlation matrices exactly. To do so, each synapse would have to
interact with every other synapse. Instead, I believe that each
synapse interacts with only a few nearby synapses. The neuron might
not converge, except for a saving stroke: each axon usually makes
Many synapses on the neuron. That means that a synapse from one axon
is likely to be near enough to a synapse from every other axon so
that a sufficient number of elements of avg(FF') are accumulated.

2. I don't believe that the pyramidal and stellate neurons are connected
as orderly as in Figure 12. However, that just means that the error

signals are distributed only approximately correctly. The network

will still converge, except the neurons may change their parameters a

little more than they would in an ideal network. The only observable

consequence of this would be a tendency to forget some things a

little faster, though the difference would probably be insignificant.

There are probably even situations where it is better not to be

connected as orderly as in’ Figure 12. For some purposes, for

instance, it might be better to break the feedback loop from ECs to

itself while keeping the feedback loop from FCs to itself.

Can Learning-Logic say anything about learning disorders?

46 LEARN ING-LOGIC

If Learning-Logic corresponds to our cortical neurons, then knowing how

they work obviously narrows down the possibilities that need to be

investigated in determining the root cause of a specific learning

disorder. Fach of the parameters in a Learning-Logic cell is a

potential cause of a learning disorder. In fact, it may become possible

to manufacture a network of Learning~Logic cells that incorporates the

suspected defect to see if its behavior corresponds to the observed

human behavior.

On a more specific level, Learning-Logic can predict a cause for a type

of learning disorder. Unfortunately, I'm not sure which type of

learning disorder -- the cause is all I'm fairly sure of.

The most likely cause for a learning disorder seems to me to be some

defect in the pyramidal neurons' ability to update the correlations

between their inputs. This makes sense to me for several reasons:

® A defect in the pyramidal neurons makes more sense than a defect in

the stellate neurons, because the stellate neurons are more

primitive. I would think that defects in the more primitive neurons

would tend to be fatal instead of crippling because the more

primitive neurons control our basic bodily functions.

e Because the ability to update the correlations between their inputs

is the chief innovation of the pyramidal neurons, it seems likely to

be the thing most easily subject to defects. In evolutionary terms,

it is probably the "newest" thing in our brains so presumably it is

also the thing we can most easily live without -- although living

without it probably means living without intelligence, which just

happens to itself be a correspondingly recent evolutionary

innovation.

® A network of stellate and pyramidal neurons in which the pyramidal

neurons couldn't update the correlations between their inputs could

still learn fairly simple. functions. It couldn't be guaranteed to

converge, though, so that learning new things would tend to make it

more quickly forget old ones. Also, some functions are provably

impossible for it to learn. This seems to me to correspond with the

pehavior associated with some kinds of learning disabilities.

If this bears out, then hopefully positively identifying the exact

Mechanism the pyramidal neurons use to update the correlations between

their inputs will lead to an understanding of how to fix them when they

don't.

What predictions does Learning-Logic make about our cortical neurons

that can be tested experimentally?

LEARN ING-LOGIC 47

Many predictions can be made based on the matters discussed in this Paper, but the two things I feel will be the easiest to test are:

e Stellate neurons shouldn't be able to make Pyramidal neurons fire, and vice-versa. The reason is that function cells and error cells only use each other's signals for training purposes and not to
determine each other's firing rates. This prediction should hola
even if I have goofed on which type of neuron corresponds to function
Cells and which to error cells,

e The change in the pyramidal neurons that corresponds to updating the
correlations (probably a change in distance between synapses) could be measured, and then the lack of the same feature in stellate
neurons could be verified.

REFERENCES

Hinton, Geoffrey E., Sejnowski, Terrence J. and Ackley, David H.,
Boltzmann Machines: Constraint Satisfaction Networks that Learn,
May 1984, Carnegie-Mellon University Technical Report CMU-CS-84-119

Kuffler, Stephen W. and Nicholls, John G., From Neuron to Brain, 1976,
Sinauer Associates

Ljung, Lennart and Soderstrom, Torsten, Theory and Practice of Recursive
Identification, 1983, MIT Press

Rosenblatt, Frank, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms, 1962, Spartan Books

Widrow, B., Mantey, P.E., Griffiths, L.J. and Goode, B.B., “Adaptive
Antenna Systems", Proceedings of the IEEE, Dec. 1967, Vol. 55, No.
12, p. 2143

