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ABSTRACT 

Learning-Logic is two things: 1) a model of the neurons in the human 

cortex and 2) a practical way to create electronic circuits that can 

learn and, I believe, think. 

As a model of our brains, Learning-Logic can explain why there are two 

types of neurons in our cortex -- the pyramidai and stellate neurons -~ 

and can describe mathematically how each type works. As part of this, 

Learning-Logic can explain how long term memory works. These 

explanations can be verified experimentally because Learning-Logic makes 

several specific predictions about the behavior of the pyramidal and 

stellate neurons. By being able to identify the significance of various 

neural features to learning and thinking, Learning-Logic may be of help 

in the search for cures to certain types of learning disorders. 

As a practical invention, I believe Learning-Logic will enable us to 

bypass the Sth generation of computers and move directly to the 6th -- 

to computers which require no programming at all and which have the same 

capabilities as the human mind. Learning-Logic cells, which correspond 

to the neurons of our brains, can be simulated in software that runs on 

standard computers or can be created directly on integrated circuit 

chips. Stanford University is. patenting Learning-Logic. 
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INTRODUCTION 

Off. and on for the past 44 years I have been thinking about how the 

neurons in our brains work: how they operate individually and in 

concert. I now feel ready to present the results of my investigations, 

which are: 

Mathematical learning algorithms for individual cells. Each cell is 

basically doing a least-squares fit. The algorithms presented are 

o(p?) approximate updating algorithms (where p is the number of 

parameters) that converge to exact least-squares solutions. 

Mathematical algorithms for connecting arbitrary numbers of such 

cells into networks. The interconnections are arranged so that each 

cell changes as little as possible when the network as a whole learns 

something new. This ensures that the network remembers old 

information as long as possible. The derivation of the 

interconnection algorithm is based on the method of Lagrange 

multipliers. A consequence of this is that in order to connect celis 

together in a manner similar to the neurons in our brains, two 

different types of cells are required. 

An association between the mathematical elements of the above 

algorithms and the physical elements of real neurons. Some observed 

phenomena that can be explained if this correspondence can be 

experimentally verified are: 

1. The two types of neurons in our cortex, the stellate and pyramidal 

neurons, correspond to the two types of cells Mentioned above. 

2. Long term memory consists of certain physical changes in the 

neuron. All the necessary changes could be carried out by the 

neuron simply changing its shape -- all it would need to vary 

would be the distances between the synapses and the axon hillock, 

and the inter-synaptic distances. However, some of these. changes 

are probably carried out by different, though functionally 

equivalent means, such as synapses changing their -electrical 

properties. In "Questions and Answers About Our Neurons" I 

discuss these variations, but for the rest of the paper I'll 

assume the neuron is varying just distances, to keep things 

uniform. Figure 1 is a crude picture of a generic 

"distance-varying" neuron. : 

3. Short term memory most likely consists of variations in the 

patterns of signals sent from neuron to neuron. Our neurons can 

learn the digital functions used in electrical circuits which are 

often used as analogies for short term memory. 

There are also some as yet unobserved phenomena that Learning-Logic 

predicts. The most startling prediction, at least to me, is that
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Figure i: A typical neuron. The parts of the neuron are labeled 
as though it is maintaining long term memory using distances only, 
to correspond with Figure 7 and Figure 15. 

stellate neurons shouldn't be able to cause pyramidal neurons to 
fire, and vice versa (or at least the effect should be much less than 
the effect of stellate neurons on stellate neurons and pyramidal 
neurons on pyramidal neurons). 

In addition, the association between the algorithms and real neurons 
‘points toward several possible causes for some kinds of learning 
disabilities. Perhaps Learning-Logic may be of use some day in 

helping to cure then.
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® Practical ways to create artificial neurons that can be connected 

into trainable learning networks. Independently of whether these 

Mathematical algorithms correspond to our brains or not, they still 

work and so can be implemented in hardware or software to form what I 

call "Learning-Logic” (the name comes from the fact that current 

logic cirucits, such as NAND or NOR gates, can't learn and so might 

be called "fixed-logic"). I have drawn the circuit diagrams in this 

paper in an implementation independent fashion, using op~amp like 

circuit elements whose equivalent elements in any particular 

implementation can readily be worked out. Some examples of 

Learning-Logic implementations are: 

1. A whole network can be simulated in software that runs on an 

ordinary computer. 

2. Several microprocessors, each simulating one or more cells, can be 

connected together to form a larger network, thus allowing the 

cells to operate in parallel. 

3. Learning-Logic can be directly implemented on integrated circuit 

chips, with one or more cells per chip, all operating.in parallel. 

Capacitors on the chips could be used to store various parameters 

as electrical charges. . 

Stanford University is patenting Learning-Logic. If you wish to 

obtain a license for it, you can write to: 

Office of Technology Licensing 

Stanford University 
Stanford, California 94305 

Learning-Logic cells can be compared to hypothetical smart multiple 

input transistors. Just as transistors can be used in either analog or 

digital circuits, Learning-Logic cells can learn to perform either 

analog or digital functions, or various combinations of both. What 

makes Learning-Logic smart is that it can learn what the optimal 

amplification. should be for each input, whereas transistors have to be 

told how much to amplify. : 

There have been several other efforts to create networks of cells that 

can learn. The most recent I know of is the Boltzmann Machine of 

Hinton, Sejnowski and Ackley (1984) . One of the more famous types of 

cells is the Perceptron of Rosenblatt (1962). The cells that I am most 

familiar with, and which Learning-Logic is closest to in spirit, are the 

ADALINE's of Widrow, et. al., (1967). 

All of these other cells require some form of randomness in their 

signals in order to guarantee convergence -~ and the reason for that, I 

believe, is because they are all basically O(p) devices, where p is the 

number of parameters in each cell. Most types of Learning-Logic cells 
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are o(p?) devices, as I believe the pyramidal neurons of our brains are, 

and so can be shown to converge without requiring any sort of 

randomness. Interestingly enough, if our cortical neurons are at all 

Like Learning-Logic then our stellate neurons have to be O(p) devices. 

In fact, I believe our stellate neurons are basically ADALINE's. 

If you'd like to try out Learning-Logic, I am distributing a 

Learning-Logic program beginning in June, 1985. It is written for IBM 

PC's, XT's or AT's that have at least 128K of memory, a floppy disk 

drive, an 8087 or 80287 chip and that are running DOS 2.0 or higher. If 

you send me $20 to cover the cost of materials, copying, shipping and 

handling, I'll send you a diskette containing: 

4. The Learning-Logic program (written in assembler language for speed}. 

It enables you to create and run networks consisting of all the types 

of cells discussed in this paper. 

2. Instructions on how to use the program. 

3. Some sample networks and data to get you started. 

I would like to thank everyone in the Computation Research Group, 
directed by Prof. Jerry Friedman, at the Stanford Linear Accelerator 

Center for all their help and encouragement on this project. Much of my 

work on Learning-Logic was carried out at SLAC. Similarly, I would like 

to thank everyone at the Center for Computational Research in Economics 

and Management Science, directed by Prof. Ed Kuh, at the Massachusetts 
Institute of Technology, where this paper was prepared. 

Two people I would like to give a special thanks to are JoAnn Malina, of 
SLAC, for all our midnight discussions, and Prof. Bernard Widrow, of 

Stanford, for getting me pointed in the right direction. 

UPDATING ALGORITHMS 

The algorithms used by Learning-Logic cells are known as updating 
algorithms. The variables and parameters inside a Learning-Logic cell 
are being continuously modified as they are simultaneously being used. 

For example, an updating algorithm for a vector @ might be expressed as 
. follows: 
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This should be interpreted as: 

aa(tte) 7 aa(t) 
= e(t) + d(t) —— 

at . at 

where ¢« is a measure of the delay time through the circuitry that is’ 

calculating asafat. If € is sufficiently small compared to the rate at 

which @ and d are changing and if certain other conditions are met -- in 

this case, if -1 < d < 1 -- then we can solve for aa/at to get: 

2a 1 
— = — é 

at i-d 

AVERAGES 

Throughout this discussion, great use will be made of averages. There 

are several ways that these averages can be calculated (see Figure 2). 

However, there is one particular form of average -- called an 

approximate running average -- which is not only the most practical to 

use for Learning-Logic cells, but which is, I believe, used by real 

neurons. 

Let us start by examining an ordinary average (see Part 1 of Figure 2): 

t 

avg(x(f)) = | X(r) ar 

an
 

From now on where it is clear that a function depends on time, the f's 

and r's will be dropped, so we can write: 

t 

avg(x) = [. dr 

~
i
r
 

An ordinary average remembers all history from t = 0. This is useful in 

many circumstances, but for Learning~Logic it will be more helpful to 

have an average that can forget part of its history (as we will see in 

the next section on signals). 
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t 
1 

avg(x(t)) = -— | x(r) dar 
t 

aavg(a(t)) 1 . 
—————_ = _ - ( a(t)-avg(a(t)) ) 

at t 

1) An ordinary average. 

t 
1 

avg(x(t)) = ; X(r) ar 

t-h 

aavg (x(t) ) 1 

——@— = - ( a(t)-x(t-h) ) 
at h 

2) A running average, where Aisa positive constant. 

t 
1 

avg(x(t)) = ri exp(—(t-r)/#) x(7) dr 

0 
aavg(x(t)) 1 
——— = _ — ( &(t)-avg(x(f)) ) 

ot A 

3) An approximate running average, where # is a positive 

constant. 

Figure 2: fhree types of averages. The positive constant f# is a 
measure of the history retained by the running average and 

approximate running average. ‘The only reason # is constant in the 
above equations is to suppress extraneous mathematical details 

from the expressions. In many cases it will be of advantage to 

allow # to vary with time. For example, if we set # = f then both 
_the running average and approximate running average become 

identical to the ordinary average. 
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Figure 3: Circuit diagram for an averaging multiplier. ~ 

One kind of average that can forget part of its history is the running 

average (see Part 2 of Figure 2): 

~
 

x dr 

t-h 

avg(x) = 

i
 

Here 4 is be a postive constant, or a function of time, that explicitly 

states how much history we wish to retain. This would be perfect for 

Learning-Logic, except for a problem with its derivative: 

savg(x) 1 
= — (a(t)-a(t-A) ) 

at 7] 

We will want to use the derivative to update the average, but to do $0 

for a running average means we would have to retain all values of 2 from 

t-f to t. This is too much information to save. 

We can get almost the same effect as a running average, without having 

to gave past values of x, if we use an approximate running average (see 

Part 3 of Figure 2). What we do is tnis: instead of using the value 

x(t-#) when updating the running average, we will instead use our best 

guess as to what x(t-f) was, which is of course just avg (x): 
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aavg (x) 1 
—— = - ( k-avg(x) ) 

at A 

This gives us an average that allows us to control the amount of history 

retained and that is easy to update. 

A component we will use later that is based on an approximate running 

average is the averaging multiplier (see Figure 3). It performs the 

function: 

aavg (f yf 2) 1 
——\—_ = - (Fs fg - avalfifo) ) 

at A 

An averaging multiplier is used in Figure 8. 

Variations and extensions of approximate running averages can be found 

in the section "Practical Considerations" under "Use of Exponentials and 
Logarithms". 

SIGNALS 

Learning-Logic cells, like the neurons of our brains, communicate by 

Means of signals (see Figure 4). There are various kinds of signals 

that different types of cells might use. 

The signals used by our neurons are pulses called action potentials (see 

_Part 1 of. Figure 4). These pulses. strongly resemble the binary 0..or 1 

pulses used in digital electronics. ~ However, if Learning-Logic is an 

accurate model of our cortical neurons then there is a distinct 

difference between digital electronic pulses and action potentials. 

Digital electronic pulses are themselves the carrier of information, but 
I believe it is the frequency of the ‘action potentials, and not the 

individual pulses themselves, which carries useful information. 

Thus I believe that our neurons are basically analog devices, not 
digital, with the analog signal being the frequency of the action 

' potentials. One way in which our neurons could measure the frequency of 
a series of action potentials is by means of an approximate running 
average:
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v 
Oo 

1 tt 

s 

Time . 

1) Pulses. The frequency at a given instant is 

proportional to the average number of pulses in a small 
region around that instant. 
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2) Analog signals. Instead of using the frequency of a 

series of pulses, an analog signal can be transmitted 

directly. 

.00 .09 .14 .27 .45 1.00 1.00 1.00 .86 .33  .25 .19 .02 

__—- 

Time 

3) Numbers. Integers or floating point numbers can be used 

to approximate an analog signal or series of pulses. 

‘Figure 4: Some examples of signals. © Many other types of signals 

are possible, depending on how the cells are constructed. 

af aavg (x) 1 1 
_— = — ( ax-avg(x) ) = i ( a-f ) 

at at 7] 

where x is a function of time representing the action potentials (like 

Part 1 of Figure 4) and f is a measure of their frequency. This is an 

example of why we wanted an average that could forget part of its 

history: to make an accurate judgement of the instantaneous frequency of
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a series of pulses, we should only count the pulses in some pertinent 

region of the immediate past. ‘ 

Actually f isn't a frequency. It is scaled so that the minimum 
frequency (no pulses) corresponds to the minimum value of xX and the 
Maximum frequency (continuous pulses) corresponds to the maximum value 

of x. For example, suppose the minimum value of X is 0 and the maximum 

is 1. Then if there were no pulses f would be 0 and if xX was a _ series 

of continuous pulses (i.e. at no time does it go to 0), then f would be 

1. If X were alternately 0 and 1, then f would be %. 

A physical manifestation of this hypothesis would be that a neuron would 

appear to remain sensitive to succeeding action potentials of a series. 

The time of sensitivity is a measure of 4. Neurons that remain 

sensitive for longer periods of time would be better at dealing with low 

frequency phenomena; neurons with shorter sensitive periods would be 

better at dealing with high frequency phenomena (and cells that have 0 

sensitivity would in fact be dealing with pulses on a pulse by pulse 

basis). - 

Another example of how to convert pulses to analog signals is in the 

section “Practical Considerations" under "Thresholding". 

Learning-Logic cells need not be built, however, to reproduce the action 

potentials of our brains, as action potentials probably arose as an 

evolutionary expedient. We can transmit analog signals directly from 

cell to cell (see Part 2 of Figure 4). If Learning-Logic was being 
constructed directly on integrated circuit chips, voltage levels would 

probably be the appropriate analog signals to use. We could even 

combine the pulse and analog signal approaches and send an analog signal 

which is averaged like the pulses. 

If one is simulating Learning-Logic on a computer, integers or floating 

-point numbers can be used in-place of pulses or analog signals. ~ (see 
Part 3 of Figure 4). 

HOW FUNCTION CELLS WORK 

Function cells, either by themselves or as subcomponents of other types 
of cells, are basic components of any Learning-Logic network. I believe 

that the pyramidal cells of our cortex are the biological equivalent of 
function cells.
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Figure 5: "Black box" diagram of a function cell, where 

teeeerfg are input signals, 41,-.-,@p are internal parameters, 

four is the output signal, @ is the error signal, and d is the 

desired function. The cell continuously updates its internal 

parameters to minimize the error signal. 

Figure 5 is a picture of a general function cell. It is given Fareverka 

as input signals from which it calculates 

Four = Fourl @iseserPpef qreeeeka ) 

where Atreeer Ap are ‘the céll's internal parameters; which the cell is 

‘continuously updating as part of its learning and remembering process. 

To help it update its internal parameters, the cell uses an error 

signal, @, to guide it. 

The function fou, can be either linear or non-linear, but to keep the 

notation as simple as possible in the derivations and proofs, I will 

assume that the function is linear: 

fout = aify + @ofo + eae + apfp 

The results of these derivations and proofs will, of course, be stated 

for both the linear and non-linear cases. For the linear case, if we 
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let f be the vector of input signals, and @ be the vector of internal 

Parameters, we can write: 

fout = a,fy + aafo + nae + apf = af = Fla 

We will dssume that the error signal @é@ is being generated as the 
difference between a desired function @ and the actual output of the 

ceil fout: a 

e = @-four = d-aTF = gd - F% 

This makes the derivations and proofs much easier. In real life, the 

error signals needn't be related to the function outputs at all. For 

instance: it's painful when you lose an hour's worth of editing because 

the computer happens to die, but the computer didntt die just because 

you had been typing for an hour (although there does exist some evidence 

to the contrary). 

There are many methods a function cell could use to update its internal 

parameters @ to try and minimize @, and most of them will probably work 

with the interconnection method discussed in the next section. However, 

we will concentrate on variations of the method of least-squares. 

The exact least-squares method works as follows: a reasonable way to 
choose @ is to find the @ that minimizes the total squared error from f¢ 
= 0 to the present: 

t t t 

Cr rorar = | @? dr = | (d-Four)? dr = | (d-F7a)? ar 

0 0 0 

t 

= | (d --ayfy - @ofo - see - apfp)? ar 

ce) 

The well-known solution is that: 

t t t t 
. -1 -1 
a= FFT ar | df ar = FFT ar (f ourte)F ar 

0 0 fc) a) 

We’ can scale everything by 1/f to arrive at the equivalent average 
formula: . 

a@ = avg(FFT)-‘avg(d?) = avg (FFT) “avg ( (Ff ouete)h)
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fo convert this to an updating formula, we take a/at to get: 

aa 
— = avg (FFT) "1H" eF 
at 

H is a diagonal matrix, the elements along the diagonal being the amount 

of history that the averages are retaining (we are assuming, for 

convenience, that all the averages involved are retaining the same 

amount of history). For instance: if the averages are all ordinary 

averages, retaining history from f = 0 to the present, then: 

t oo . . Oo Y/t oo . . O 

o t . . . o ‘s/t... 

Hos ee ee : Aol = rs 

~ oe 6 ¢ 0 . . « Yt Oo 

o . . 0 ¢t o . «0 Yt 

This exact updating formula is inconvenient to use for Learning-Logic 

cells, however. To invert the matrix avg(FF") in real time -~  order(1) 

time, or O(1) time for short -- would require at least 0(p3) circuit 

elements. 

An ideal function cell would require only O(p) circuit elements /-- one 

for each internal parameter. However, I don't think that such an ideal 

cell can be constructed. For a while I tried to find such a cell and 

only succeeded in deriving exact O(p) updating formulas for sucn 

restricted cases as series of orthogonal functions. The ADALINE's of 

Widrow, et. al., (1967) come as close to being O(p) function cells as I 

think possible, for they were shown to converge to the exact o(p) 

least-squares solution under certain circumstances, but not in general. 

So, I decided to look for an o(p?) algorithm that converges to the o(p3) 

exact least-squares solution. There is one algorithm in particular that 

I was able to devise that is my favorite because it requires the fewest 

circuit elements of any I have seen and because of its suggestive 

correspondence with the neurons of our brains. Figure 6 gives the 

algorithm and Figure 7 is a circuit diagram for it. Later I found that 

there is another O(p?) algorithm described in the literature ~~ the 

Recursive Least-Squares algorithm (Ljung and Soderstrom, 1983) -- but it 

is not nearly as efficient in terms of circuit elements required, nor 

does it correspond in any particular fashion with our neurons. 

To derive my favorite algorithm, we start with the 0(p%) exact updating 

formula in its average form: , 
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aa af our 
— = [ we : 
at aa 7 

afour four! af out four" aa 
- [ avg(— — ) - diag (avg (— —))] — | 

aa 0a aaa at 

1) Updating formula if fou, is non-linear. 

aa aa 
— = HoteF - [ avg(FF™)-aiag(avg(FFT)) ] — 
at at 

2) Updating formula if Foy, is linear. 

Figure 6: My favorite updating alogithm, in its non-linear and 

linear forms. 

— = avg(FFT)~'H-'eF 
at 

If we multiply both sides by avg(F?™), we get: 

aa 
avg(FFT) — = H- ‘ef 

at 

At this point we can write out in full the components of the matrix 
avg(FF"), the matrix # (calling the non-zero elements, which all lie on 
the diagonal, A, to Ap), the vector f and the vector aa/at: 

od; O42 2ap 

avg(fif,) — + avg(Fifo) —- + .. . + avglfufp) — = hy ‘er, 
ot at at 

aay 282 dap 
avg (f of 4) — + avg (F of 2) — + . a2 et avg (F of p) — = ha” ‘ef. 

at at at 

; aay aay ; ; dap ; 
avg(Fpf,;) — + avg(Fpf2) — + .. . + avg(fpfp) — = fp 'efp 

at at at 
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Figure 73 Circuit diagram for a linear function cell based on 

the algorithm of Figure 6. I believe this is approximately how 

the pyramidal neurons of our cortex work. The subcomponents . have 

been suggestively labeled to correspond with the diagram of a 

"distance-varying" neuron in Figure 1. Circuit diagrams for these 

subcomponents are given in Figure 8. 
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Figure 8: Circuit diagrams for the subcomponents of the linear 

function cell in Figure 7. Neurons implement a variation on these 
subcomponents (because they use pulses instead of analog voltages, 
may use methods other than distance to maintain some variables, 

. etc.), but the functionality is the same (see "Questions and 

Answers About Neurons" for details). | 
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Then we can solve the first equation for a4,/at, the second for aa,/at, 
and so on: 

aa, 342° a8p 

avg (ff )— = 4,7 ‘ef, wavg(f yfg)—- - . . . -avg(F fp) — 
at at ot 

dao oa, dap 

avg (f of2)— = hea” 'efo -avg(f of 1) — - 2 6. cavg(f of p)— 
ot aat at 

, dap ; , 38,4 ; aae . . 
avg (f pf p) — = hy ‘ef p -avg (F of 4}— ~avg (Ff pf 2) — —“.ee. 

at at at 

We can recast this in matrix-and-vector form as: 

aa aa 
diag(avg(FF™)) — = A 'eF - { ava(FF')-diag(avg (FFT). ] — 

at at 

where diag(avg(fF™)) is a diagonal matrix consisting of the diagonal 

elements of avg(ff"). Multiplying both sides by diag(avg(FF™))~' gives: 

aa aa 
— = diag(avg(FFT))7! H-‘eF = [ avg(FF")-aiag(ava(FF™)) ] — | 
at. at 

This formula for 3a/at makes for an excellent updating algorithm. If fF 

and @€ change slowly compared to the speed at which @ can be updated, 

then this method is basically doing an exact least-squares fit. 

Finally, we can reach my favorite algorithm by making a slight change 

that reduces the number of circuit elements required, yet the algorithm 

.wil2 still converge to the. exact. least-squares solution. We will 

replace the matrix diag(avg(7FF7))~' py another diagonal matrix Urt; 

aa aa 

— Vy! [ ater - { avg(FF")-diag(ava(FF*)) } — | 
at ; ot 

As we shall see later, this algorithm will converge to the exact 

least-squares solution as long as the non-zero elements of U (which all 

lie along the diagonal) are greater than the corresponding elements of 

diag(ava(7?')). ‘Thus, for instance, if we have an upper bound fer the 

elements of diag (avg (FF*)) then we can replace it by a constant matrix. 

If U-’ is sufficiently small and if our updating Mechanism is 

sufficiently quick, then we can solve for aa/at to get: 
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— = [ avg(FF')~aiag(avg(FF"))+U ]-' Hoe? 

Comparing this with the exact updating formula: 

oa 

— = avg(FF')-'H- ‘ef 
at 

we see that essentially all we are doing is replacing the diagonal of 

avg (FFT). 

Not only does this slight change reduce the number of circuit elements 

required, but it makes it possible for the algorithm to then correspond 

to real neurons. Assuming that our neurons are maintaining all 

variables as distances, then each element of @ corresponds to the 

distance between a function synapse (i.e. a synapse made by another 

function cell) and the axon hillock. Similarly, each off-diagonal term 

of avg(f?") corresponds to the distance between two function synapses 

(remembering that there are really only 4(p2-p) different values in 
avg(FF')-aiaglavg(FF™)) because it is a symmetrix matrix with zeros 
along the diagonal, and that this number is exactly the number of 

function inter-synaptic distances between p function synapses). Each 

term of A>’ corresponds to the distance between each function synapse 

and the error synapse, and each element of #/~' governs the rate at which 

a function synapse can change its distance from the axon hillock. See 

“Questions and Answers About Our Neurons" for more details. 

To show that this algorithm converges to the exact least-squares 
solution, we can start from the expressions for the derivatives (primed 
variables represent the exact values in the following): 

afl a@ 
exact: — = avg(FF')-' H-'e/F 

at a 

aa 
approximate: — = [ avg(FF')-aiag(avg(FF"))+U ]~' Ho ter 

ot 

Rewriting e’ and e as d-7'a’ ana d-F"a, respectively, and rearranging 
things a bit gives: 

avg (FFT) — 
. at 

AO'dF - HOUFPTa? 

[ avg (FFT)-diag (avg (FFT) )4+U ] — Hod? - Ho FFTa
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Finally, we can take the difference between these two equations and 

solve for aa/at: 

ag 2a’ 
— = [ avg(FF")-asag(avg (FFT) )+Y | >! avg (FFT) — 
at at 

+ ( avg(FF')-aiag(avg (FFT) )4U J 71 A 'FFT (a/-a) 

We are left with an expression for aa/at with two terms: one involving 

aa‘/at, and the other involving a’-@. 

Of the two terms, the first one is the least important. If the exact 

algorithm converges then beyond some point the expected value of aa’f/at 

will be ©. From then on the first term will, on average, contribute 

nothing to aa/af and so can be ignored. If the exact alogithm doesn't 

converge (i.e. @ isn't stationary within the amount of history we are 

retaining) then the contribution to aa/at from the first term will at 

least be within 90° of aa’/at if UYU is chosen as discussed below. 

The second term, involving a’-a, is the more important of the two. 

Since # and FF’ are already positive semi-definite, the contribution to 

aa/at from the second term will cause convergence (i.e. will decrease 

a’-a) if we can ensure that 

avg (FFT) - diag(avg(FF")) + U 

is also positive semi-definite. This leads to our requirement that the 

elements of # must be greater than or equal to the elements along the 

diagonal of avg(FF"). 

Although the o(p?) approximate updating algorithm I have described here 

is my favorite, because of its efficiency and the suggestive way in 

which the mathematical elements of the algorithm can be associated with 

the physical elements of real neurons, it is not the only o(p?) 

approximate... updating “algorithm. Trivially, various multiplicative 

factors can be inserted in the above algorithm. Non-trivially, another 

algorithm I have used with success is, in its non-linear form: 

aa 
— =! [ avetFour 
at 

) + avg(e ) - avg( 
af out af out af out afout™ _ | 

a 

aa aa aa =a 

and in its linear form: 

— =U"! Cavalfourt) + avaleF) - avg(FFTya }
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This formula doesn't work as well in the non-linear case, however, 

because it depends on the values of the internal parameters and not just 

on their derivatives. 

HOW BASIC LEARNING-LOGIC CELLS WORK 

To connect function cells into a network, we need to add a little bit of 

extra circuitry to each cell. This added circuitry upgrades function 
cells to basic Learning-Logic cells. Figure 9 is an example of a 

network of basic Learning-Logic cells, and Figure 10 shows their 

internal structure. 

For basic Learning-Logic cells, the training signals propagated from 
cell to cell can be either error signals, @, or desired function 
signals, ¢. These correspond to training by correction or training by 
example. Slightly different cells need to be constructed for each case, 
the difference being addition and subtraction units that need to be 
added to each cell for the d-type cells. Since the @-type cells are the 
more basic of the two, and since the d-type are easily derived from 
them, we will work exclusively with the e-type cells. Besides, I 
believe the neurons in our brains are mostly @-type cells. Not to imply 
that networks of é-type cells can't learn by example: they can if the 
error signais depend on the function outputs, f, from the network (e.g. 
if e =d-f). 

The method we will tse to connect the function cells together is based 
upon the following observation: when learning the new, it is good to 
remember the old. Speaking mathematically this means that when 
converging to..a.solution, we should try..to minimize the changes to the 
internal parameters. _ : : 

We will now derive an algorithm for connecting function cells together 

that approximately minimizes the sum of the squares of the changes to 

the internal parameters at any instant. 

Consider the sample networks of Figure 11. For simplicity, we'll make a 
few assumptions that won't change the conclusion we reach but that will 

. Make the derivation less cluttered. We'll assume: 

1. ‘that the input signal .f, remains constant while we adjust the 
internal parameters 41, @2 and &3.
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can either be error signals, @, or desired function signals, 

depending on how the cells are constructed. 

Oni (bt) @ino(t) @ing(t) 

Fouri(t) or Fourg(t) or fouts(t) or 
Gini ft) G in2(t) dinalt) 

t i 
H | | 
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/ BAS, \ / BAS, \ / BAS3 \ 

/ \ / \ f \ 
t ' t t t t 
' I | ! I | 
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| . 1 
I t--, ---/ L___ r---/ { 

! l { t I ' 

I I I T i ! 

I ! | rn | | I 

' tA+ \ teASF ' 
1 / BAS 4 \ 1 / BASs \ 1 

| / \ t / \ l 

t t 14 tt 
l ! I -/ t | | 

I ( | 1 I | 

| ( | l ( { 

l 7 J l | rn J L es | — J 

I l i | 1 | 

I ‘ | 1 1 | 

l I I | | | 
YAY YAY tA 

/ BAS. \ / BAS? \ / BASg \ 

/ \ / \ 

| | | 
‘ ¥ v 

. Bouts (t) Couta(t) Couta(t) 

Fand(t) or Finatt) or fing(t) or 

Pours (ft) dourall) Fouralt) 

Function signals BAS, Basic Learning-Logic cell i 

---- Training signals 

| 
Figure 9: An example of a network of basic Learning-Logic cells. 

The training signals for a network of basic Learning-Logic cells 

a, 
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Figure 10: 

cell. 

Diagram of a basic Learning-Logic cell. 

Fourth) . 
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1) Non-linear basic Learning-Logic cell. 
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2) Linear basic Learning-Logic 

Note that we 

have pulled out some signals that we need from inside the function 
cell. 
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fy te,=d,- Fy Fy | t @2 =d2- fy 

As A4 
/ ay \ / aa \ 

/ \ / \ 

afr | fg I afs 

@g = @, e eg — 

afgl----- -----! , * af 

tad 
/ ag \ 

/ . \ afs 
és = [eg + @4) — 

l af, 

Fa ‘ ar, afa afy [or] afs afy 4 af, 

1) Non-Linear sample network: f, = f4(@1,f3), etc. 

frp tersdi- fy fa} tea da fa 

Ad At 
/ ay \ / ao \ 

/ \ / \ ——— +t 

Og = 0181 | Fs | 04 = 8282 

| TT4 pee! 
bad 

/ a3 \ 

/ \ 
eens 

' . 

fa ‘ = [@,8; + @242) ag 

2) Linear sample network: f, = aif3, etc. 

the Figure 11: Small sample networks used to illustrate 

calculation of the error signals. 
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2. that the desired functions 7, and d@2 remain constant while we adjust 

the internal parameters. 

3. that &-! 4s small enough so that we can make the following 
approximation to the updating algorithm in Figure 6: 

Non-linear case Linear case 

aa aF 
— = We — = UH 'eF 
ot a@a 

This essentially converts the cells into the ADALINE's that were 
studied by Widrow, et. al., (1967) and which were shown to converge 

under certain circumstances (and, incidentally, the following 
algorithm can be used to connect ADALINE's into networks, although 

the networks aren't as powerful as Learning-Logic networks). 

Our strategy will be to reduce the errors @; and @2 in Figure i1 to zero 

in a step-like fashion, at each step making small changes 4a, Aa. and 

443 in the internal parameters 4;, @2 and @,. The amounts A@, and Aé€, 

that we thus reduce @,; and @, by are approximately: 

Non-linear case Linear case 

af, af, 
“de, = Af, = — Aa, + — fg = fada, + a dfy 

384 ats 

af, af, afy 
= — 4a, + — — Aa = Fada, + af 4Aag 

aay afy aa3 

afo ato 
-A@. = Af = — Aa. + — af 3 = f gAao + aodfg 

aa afs 

afo afs ats . 
= — s&@o + — — Ady =  Foahag + aofghay 

dao afy 383 

Even though 4@; and A@, depend on Aa,, Aas and Aa 3, we can pretend that 

we were given Ag, and Aé@é> first. Then the above two equations can be 
viewed as constraints, where our object at each step is to find the 48, 
Aa, and 4@ which minimizes 

Aa,? + bao? + Aas? 

We can solve this constrained Minimization problem using the method of 
Lagrange multipliers. If we let \, and \y be the Lagrange multipliers 
for the 2 constraint equations, we will end up with 5 equations in 7 
unknowns: 
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Non-linear case Linear case 

af, 

4a, = ’ ‘yo = Yor, fy 

af, 

Mag = dg — = 4a fs 
cor- 2 

ary afo 7 afy 
Aa3 = wr, the = % [\ 444 + AQ@Q] Fa 

ats afa + aay 

af, af, af, 
-Ae,; = —— Aa, + —— — dag = fda, + aif hag 

aay afs 2a 

afo afs afy 

-h@> = — Aa. + — — dag = F,Aao + Bof hag 

8 af 24g : 

Switching perspectives again, we will assume that A@,, A@2, 4@,, Aa and 

4@3 are all variables which depend on 4, and do. We see then that we 

Gan choose 4, and \» at will with the assurance that no matter what 4@, 

and A@, turn out to be, the corresponding Aa ,? + day? + Aa? will be the 
minimum that could account for them. Thus, if we choose 44's and 2's 
wisely so that successive Aé@,'s and A@y's reduce @; and @2 to zero, then 
we have converged the network while at the same time minimizing the 

changes to the internal parameters at each step. 

In particular: under assumptions 1 and 2 the approximate algorithm of 
assumption 3 will cause the cells to converge (except in a few 
degenerate situations), so we can set %, to UY-'W-'e, and %ro to 

U-'W-e, to get: 

Non-linear case Linear case 
=<———o—T—o— 1 =o 

af, 
4a, = Uridw-'e, —_— = U-'H'e sf 

oa, 

afo 

dao = Ute, —_— = UNH ek 

aao 

at, afo 1 af3 
dag = U-tw [ e: + @9 = UH 1( e484, + C282 lh, 

afs afs O84
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From these equations we see, as in Figure 11, that @, snould be set to 

@ ,*af ,/afs, @4 Should be set to @2*df/af3, and that the cell containing 

@3 should treat the sum of these two as the total error that it should 

correct for. 

The argument above can be extended to networks of any number of cells. 

The only requirement is that each cell must send the appropriate error 

signal to each of its input cells. That is, the connection between two 

cells must be bi-directional, with function signals going one direction 

and error signals the opposite. 

HOW ERROR CELLS WORK 

Basic Learning-Logic cells aren't accurate models of the neurons of our 

cortex. They require bi-directional conduction of the function and 

error signals, whereas real neurons conduct signals in only one 

direction. 

We can, however, pair each function cell with an error cell to form 
networks that very much resemble our cortical neurons (Figure 12 is an 
example of such a network). I believe that error cells correspond to 
the stellate neurons. 

Each pair of function and error cells approximates the behavior of a 
basic Learning-Logic cell -- in fact, one can enclose each pair in a box 
to form approximate Learning-Logic cells (see Figure 17). The network 
of approximate Learning-Logic cells in Figure 18 is identical to the 
network of function. cell-error cell pairs in Figure 12. Both in turn 
are approximately equivalent to the network of basic Learning-Logic 
cells in Figure 9. 

The purpose of an error cell is to decide what the total error @ou:t 

should be for its associated function cell. To make its decision, it is 

given the output f of its associated function cell (see Figure 13) and, 

for all the function cells which receive the output of its associated 
function cell, it receives their total errors @4,...,@s. 

To derive the algorithm used by the error cells, we will work with a 

specific example -- the three pairs of cells in the top left-nand 

quarter of Figure 12. We will derive the algorithm used by ECy. EC, is 

given the output of FC, and, because FC, and FCy receive the output of 

FCy, EC, also receives the total errors from EC, and EC». In what 
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Figure 12: An example of a network of function and error cells, 

corresponding, I believe, to the pyramidal and stellate neurons. 
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F(t) e1(f) €2(t) eee es(f) 
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Figure 13: "Black box" diagram of an error cell. 

follows we will use FC, to mean either the cell labeled FC, or the 
output of cell FC4, etc. 

From "How Basic Learning-Logic Cells Work" we know that optimally the 
output of EC, should be: 

arc, aFCo 
EC, + 

OFC, : . OFC, 

ECqg = EC) 

Unfortunately EC, has no knowledge of what aFC,/aFC, and aFC2/aFC, are 
because these are maintained in FC, and FC2, respectively (these are the 
signals that basic Learning- Logic cells pull out of the function cells, 
as in Figure 10). 

So, EC, must try its best to estimate what these derivatives are. 

Letting #, be the estimate for aFc,/aFc, and by, be the estimate for 
OFC2/aFC4, then the output of EC4 will be: 

ECqg = BEC, + bokC2 

Let's start with b,. The desired function d@, for’ cell FC, can be 
Written ass
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ab e@ourt 
— = U'A'F 
at ab 

1) Updating formula if @gyt is non-linear. 

. ab . 
— = U-'st-'fe 
at 

2) Updating formula if @py~ is linear. 

Figure 14: Updating algorithm for an error cell. The diagonal 
matrices #°' and #~' can be combined into a single diagonal 
matrix, but I kept both of them in the formula because they arose 
in separate ways. 

d, = EC, + FC, 

or equivalently: 

EC; = dy - FC, 

FC, is a function of many variables, but we know that at least one of 

them is FCy. So, we can linearize FC, around the current value of FC, 

to get: 

aFC,(FC4(fo),---) 

EC, d, - FC,(FCa(to),---) - (FC q(t) -FC4(fo)) 

aFCy4(to) 

aFC,(FC4(fo),---) 

dy - FC,(FCy(fto),---) + FC4(fo) 
aFC4 (fo) 

aFC ,(FC4(to),-~-) 
FC, (t) 

aFC4(fo) 

Further, we'll assume. that aFC,(t)/oFc,(f) stays fairly close to 

aFC,(FCg(to),-..)/aFC4(to) for a sufficiently useful interval, so that 

we can write: 

BFC, 

EC, = a, - FC 4 junk —— FC4 

aFC,
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f(t) 

\FsYn_/ e,(t) ' eo(t) wae er(t) 

¥ | I | 
J | ! 

|FIsD,|! |FISD,| | [FIsD,|! 
tf t_t 

\_ESYN, / \__ESIN: / ae \_ESYN, / 

\,,/ \L/ \,/ 

\_ESAHD ,/ \_ESAHD 2/ se \_ESAHD,/ 
Nf Nf NL -/ 

I L 1 
bot - ee 1 | ~---- ee J 

\ / 
\aH / 
\/ 

v 

t @our(t) 

ESYN; Error synapse i 
FSYN Function synapse 
FISD, Function to error inter-synaptic distance i 
ESAHD,; Error synapse to axon hillock distance i 
AH Axon hillock 

Figure 15: Circuit diagram for a linear error cell based on the 

algorithm of Figure 14. I believe this is approximately how the 

stellate neurons of our cortex work. The subcomponents have been 

suggestively labeled to correspond with the diagram of a 

"“distance-varying" neuron in Figure 1. Circuit diagrams for these 

subcomponents are given in Figure 16. 

where: 

BFC y(FC4(fg),---) 

FC ayunk = FC, (FC4(to),.---) 7 FC 4 (fo) 

aFC4(fo) 

Now, we know that FC; is adjusting itself so as to minimize:
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Figure 16: Circuit diagrams for the subcomponents of the linear 

error cell in Figure 15. 

t t 
aFC, 

| EC;2 dr = | (dy - FCqjunk - FC, )? ar 
OFC, 

0 

So, we can get a good estimate of aFC,/aFC4 by adjusting 6, to minimize 

the same thing:
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Figure 17: An approximate Learning-Logic cell, which is nothing 

more than a pair of function and error cells drawn in a box. 

t t 

| EC,;2 dr = | ( d4- FCyyunk - ByFCq )? ar 

0 

This is a simple least-squares problem in only one variable, and the 
well-known solution for 8, is: 

t t 
“1 

b, = [ FC4? ar (dy - FCyjunk )FC4 ar 
L 

0 

Scaling everything by 1/f, we arrive at the equivalent average formula: 

By = avg(FC42) ~ lava ((d y-FC 4 junk) FC4) 

- However, the error cell can't use this formula to calculate 9, because 
it isn't given d, or FCijunk+ From earlier in the derivation, though, 

we know that: .
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Figure 18: An example of a network of approximate Learning-Logic 

cells. : 
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OFC, 

0, - FCyjunk = BC, + FC4 
aFc, 

Making this substitution gives us: 

aFc, 
by = avg (FC4?) ~ 'avg ( (EC y+-——FC g) FC 4) 

aFC, 

We're closer, but this formula still can't be used because the error 

cell wasn't given the past values of aFC,/aFC, which are needed to 
calculate the average. Instead, though, we can use the past values of 
6, -- which is our estimator for aFC,/aFC4 -- to get: 

by = avg(FC4*) ~ avg ( (EC +b yFC4) FC 4) 

The error cell coulda now use this formula because either it is given or 
already contains all of the necessary information. We will find it 
simplifies things, though, if we take the a/at to arrive at the 

following updating formula: 

ab, 

—— = avg(FC47) ~ 1h, FC AEC, 
at 

where #, is the amount of history that was involved in the average. 
This is also a good formula to use, but we are going to simplify it even 
further. In "How Function Cells Work" we saw we could replace the 
diagonal matrix diag(avg(7?#"))-~' py another diagonal matrix JU7'. 

Similarly, we can replace avg(FC,2)~' by any u,~' where uw, > avg(FC4?): 

ab, 

— = uy hy 'FcgEc, 
aft 

If we went through the same process for by we would finds: 

abs 

— = tg ‘ho 'FC4EC2 
ot 

These formulas can be generalized because the same reasoning applies to 

any error cell. We can write 4, and 62 as the vector b, Ec, and EC2 as 
the vector @, FC, as f, fy and 42 as the diagonal matrix #, and uw, and 
Uy as the diagonal matrix U (see Figure 13 and Figure 14): 

ab . 
— = UH 'fe 
at 

Of course, we can combine the two diagonal matrices U/~' and H7' into a 
single diagonal matrix, but since they arose for different reasons we'll 
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leave them as they are. In fact, real Learning-Logic networks -- 
ineluding our neurons -- would probably have at least these two 
multiplicative factors and possibly more. 

This updating formula is mathematically identical to the algorithm used 

by Widrow, et. al., (1967) for their ADALINE's, although they derived it’ 

in a different context. Many otners have probably derived 

mathematically identical algorithms, too. 

It is interesting to note the similarities between the algorithms used 

by the function and error cells. The error cell algorithm (Figure 14) 

is the limiting case of the function cell algorithm (Figure 6) in at 

least three cases: . 

4. wnen U7' in the function cell algorithm becomes very small -- as 

noted in "How Basic Learning-Logic Cells Work". 

2. When avg(FF')-aiag(avg(FF?")) in the function cell algorithm equals 

zero. ; . 

3. When there is only one input to the function cell. 

In fact, really the only difference between a function cell and an error 

cell is that the function cell can accumulate correlations between its 

inputs. Since the pyramidal cells presumably evolved from more 

primitive cells (maybe even the stellate cells), it 4s comforting to 

know that not much of a change was necessary. 

HOW GENERAL LEARNING-LOGIC CELLS WORK 

More general Learning-Logic cells can be constructed. However, the 

principles and algorithms used are all simple extensions of those used 

in making function cells, error cells, basic Learning-Logic cells and 

approximate Learning-Logic cells, so I won't bother discussing more 

general Learning-Logic cells except to show you a picture of one (Figure 

19). 

I don't imagine that more general Learning-Logic cells will be used 

much, since they can be replaced by networks of simpler cells. However, 

one advantage a more general cell has is that it may require fewer 

components because it needn't duplicate the components that might be 

common to several simpler cells -- such as the avg(f7"') correlation 

matrix. N 
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Figure 19: The most general Learning-Logic cell. 

There are other generalizations possible -- such as cells that treat 

function signals as error signals or vice-versa, or that convert signals 

from one form to another -- but again they don't involve anything beyond 

what has already been discussed. 

PRACTICAL CONSIDERATIONS 

When connecting function cells, error cells, basic Learning-Logic cells 

or approximate Learning-Logic cells into networks, there are some 

practical matters to take into consideration. Many of these practical 

Modifications increase the class of functions that can be learned by a 

network of linear Learning-Logic cells (without increasing the amount of 

circuitry involved), make the network converge faster, or otherwise 

enhance its behavior. Of course, the practical matters that need to be 

considered depend on thé particular implementation of Learning-Logic. 

For instance, there are modifications that can be made to Learning-Logic 

software that are impractical for hardware implementations.
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However, there are three modifications that I believe are applicable to 
a wide variety of Learning-Logic implementations. I believe that all 
three of them are used, for example, by our cortical neurons. In 
decreasing order of importance, they are: 

e Clipping. 

@ Use of exponentials and logarithms. 

@ Thresholding. 

Because of their wide applicability, I will examine each of them in some 
detail. 

Clipping 

In an ideal Learning-Logic cell or network, any parameter or signal 
could theoretically range from -© to te. Clipping refers to limiting 

these ranges to within some practical bounds (see Figure 20). For 

example, theoretically the output of a linear Learning-Logic cell may 

range from ~= to +e, However, any physical implementation of 

Learning-Logic will place lower and upper bounds on what the output 

actually can be. Thus, in a practical implementation of linear 

Learning-Logic, the output will be approximately linear in some region 

and then will be clipped (or will saturate) at the upper and lower 

bounds of the linear region. 

This is the same behavior as is observed in transistors, for instance. 

They amplify approximately linearly over some region, but clip the 

signal to some minimum or maximun value outside that region. 

Clipping is a very desirable property for linear Learning-Logic. Just 

as clipping in transistors is the basis for digital electronics (the 

lower and upper bounds can represent 0 and 1, or false and true), it 

enables linear Learning-Logic cells to learn both digital and analog 

functions. 

Besides allowing linear Linear-Logic cells to learn digital functions, 

clipping allows networks of linear Learning-Logic cells to represent 

other non-linear functions as well. A theoretical network of perfectly 

linear Learning-Logic cells isn't very useful, because linear functions 

of linear functions are still linear functions, so clipping is a way of 

extending the power of a network of linear Learning~Logic cells without 

increasing the amount of circuitry involved.
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1) Unclipped linear signal. 2) Clipped linear signal. 

Figure 20: Clipping example. 

Clipping can be observed in our neurons. The most obvious occurence is 
in the frequency of the action potentials, which can range from 0 -- the 
lower bound -- up to the maximum firing rate of the neuron, several 
hundred pulses per second, say -- which is the upper bound. 

Use of Exponentials and Logarithms 

Exponential functions occur so frequentiy in nature, and are of such 
practical importance, that it seems appropriate to discuss their use in 
Learning-Logic. . 

The two most important uses for exponentials and logarithms are to 
multiply signals together and to update parameters. 

A common way to multiply signals together is to take their logarithms, 

then add the logarithms together, and then take the exponential of the 

result: 

aif, = exp( log(a;)+log(f;) ) 

This is how many electronic analog multipliers actually work. _Note that 
all the quantities involved must be positive: this only multiplies 
quantities in the first quadrant.
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The other major use for exponentials and logarithms is in the 
accumulation of parameters. Neurobiologists have found that due to the 
electrical properties of a neuron, the influences of input signals fall 
off exponentially as the distances from their synapses to the axon 
hillock. Assuming those distances contained the internal parameters, 
then a neuron instead of performing the linear function 

Four = O4fy + Qofo + «6. + pfp = aTF = FTa 

is basically performing the function 

Four = exp(a’ 1)f ,texp(a’o)fa+ ... +exp(a’p)fp = exp(a/™)F = Flexp(a’) 

The a’'s are the logarithms of the @'s, and they correspond roughly to 
the negatives of the distances from the corresponding synapses to the 
axon hillock, multiplied by some constant. 

Tt would seem that if the neurons are actually updating the logarithm of 

the internal parameters instead of the internal parameters themselves, 

that they could no longer use the linear form of my favorite updating 

algorithm. It turns out, however, that they can. The updating formula” 

aa. , aa 
— = yr! [ ater - [ avg(7F™)-aiag(avg(FFT)) J — | 
at at 

converges to the exact least-squares solution for either the internal 

parameters or the logarithms of the internal parameters depending on 

whether @ represents the internal parameters or the logarithms of the 

internal parameters. In fact, one can substitute any suitably 

well-behaved functions g,(a’,) for the internal parameters @, and the 

linear algorithm will still converage to the exact least-squares 

solution for 4’; as long as agj;/oa’,; is always non-negative (and 

probably even in lots of cases where it's not). The proof of this 

fortunate occurence will be left to the interested reader. It exactly 

Parallels. the proof of convergence in the completely linear case given 

in the section "How Function Cells Work". 

Another example of how logarithms can be used in the accumulation of 

parameters is in the averaging multiplier of the section "Averages". If 

the average product of two quantities is going to be fairly small, it 

may be of advantage to accumulate the logarithm of the average product. 

The following updating algorithm can then be used: 

dlog (avg (F yf2)) { 
—_— ee ; ( fifo - exp(log(ava(Fyf2))) ) 

ot 

As above, other functions besides logarithms and exponentials will work 

with this algorithm. 
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Thresholdin 

Thresholding is a method used to generate pulses whose frequency 

transmits information (see Figure 21). It would only be of use in 

Learning-Logic cells that were using puises as signals. A thresholding 

Mechanism can be viewed as an analog-to-pulse converter (the inverse of 

the pulse-to-analog converter discussed in "Signals"). In fact, the 

thresholding mechanism can be used to eliminate pulse-to-analog 

conversion of a cell's inputs, because accumulating the threshold 

variable ¥ automatically converts whatever is being accumulated to 

analog. I believe that a neuron's axon hillock acts as a thresholding 

mechanism (Kuffler and Nicholls, page 15). 

A taxi stop can be used as a simple analogy for a thresholding 

mechanism. The number of people per minute who want to take a taxi can 

be viewed as an analog signal Foy, -- at 4:30 a.m. it is close to 0, 

while at rush hour up to 30 people per minute, say, might want to take a 

taxi. The accumulation variable v is the number of people who are 

currently waiting at the taxi stop. For instance, if no taxis came for 

a while then the value of y might build up to over 100. However, we'll 

Make sure to supply enough taxis to handle the load. We'll suppose that 

each taxi waits until there are two people ready to go, so that the 

threshold value Vo is 2, and that it then takes both of them, so that 

Vout is also 2. We can then view each departing taxi as a pulse. At 
4:30 a.m. the number of taxis leaving would be close to 0, while at rush 

hour there would be approximately 15 taxis per minute departing. Thus, 

the analog signal has been converted to a series of pulses whose 

frequency transmits the relevant information. 

In this example, the factor of 1/2 between the analog signal fou, and 
the frequency of the pulses illustrates the inverse amplification 
possible depending on our choice of Vour- If we used taxis that. held 
four people instead of two, then the number of pulses per second would 
have been cut down to about 7. Similarly, if we used taxis that held 
only one person, the number of pulses would have gone up to 30. 
Fortunately, the updating algorithm for the internal parameters @ is 
transparent to this amplification -- it will automatically correct a for 

it. : 

Another item to note about this example is that the frequency of the 

output pulses is relatively insensitive to the threshold value Vo. If 

the taxi drivers were really rude and waited till there were four people 

waiting before driving off with only two of them, there would still be 

Close to 0 taxis per minute leaving at 4:30 a.m. and close to 15 taxis 

per minute leaving at rush hour.
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ov 

— = four - Vout 
at 

pulse, if V > Vo 
Sout = 

no pulse, if ¥ < Vo 

¥o = threshold value of the threshold variable y. 
Vout = Change in vy if a pulse occurs, 0 if no pulse occurs. 
out = Signal to convert to pulses -- for a linear function cell: 

Fout = a'F if the inputs have already been converted to analog. 
four = 47% if the inputs are still in pulse form. 

Figure 21: Description of thresholding. 

A third thing to note is that since the frequency of the pulses now 

carries the relevant information, the magnitude of the pulses is 

unimportant. For instance, if the taxi drivers were all homocidal and 

killed one of their two passengers, so that only one passenger was 

delivered to their destination, the frequency of the taxis would still 

be the same. 

Finally, before dropping this example, we can note that a leaky 

integrator can replace the ideal integrator we've been using to 

accumulate Vv. The equation for ¥ would then become: 

ov 

— = fout— Your ~ av 
at 

where 4 is a measure of the history involved, i.e. how long people are 

willing to wait for a cab. If h is close to zero then if there isn't a 

taxi immediately available everybody gets disgusted and leaves, and if h 

is close to infinity everyone will wait forever for a taxi. I imagine 

that this same sort of leakage occurs at the axon hillock of our 

neurons, and probably everywhere else an integrator is used in our 

neurons. Many implementations of Learning-Logic will also involve leaky 

integrators. 

QUESTIONS AND ANSWERS ABOUT OUR NEURONS
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This section explores the correspondences between Learning-Logic and our 

cortical neurons, in question-and-answer format. 

What evidence is there that Learning-Logic works in any way like our 

cortical neurons? 

There are many pieces of evidence: 

i. In order to get Learning-Logic to work well with cells that conduct 

signals in only one direction (as all neurons do), mathematically 

there have to be two types of cells in the network: function and 

error cells. I don't think it is a coincidence that there just 

happen to be two types of neurons in our cortex: the pyramidal and 

stellate neurons. 

2. Since error cells are simpler than function cells, one of these two 

types of neurons has to be simpler than the other. And, indeed, it 

seems that stellate neurons are simpler than pyramidal neurons (see 

the answer to the next question). The reason a network needs both is 

that Learning-Logic doesn't work very well if all of the cells are 

either function or error cells. There has to be a mixture of the 

two. (This isn't true for bi-directional Learning~-Logic: networks 

composed of only basic Learning-Logic cells work fine.) 

3. Function and error cells need to conduct their signals in roughly 

opposite directions, and in the picture I use (Kuffler and Nicholls, 

page 39) the axons of the stellate and pyramidal neurons seem to be 

going in opposite directions. 

4. Learning-Logic contradicts nothing else that I know about our 
cortical neurons (if it contradicts something you know, please tell 

me). I know of no other theory of our cortex that 1) can be shown to 

work on its own and 2) that doesn't contradict some observed fact 
about our cortical neurons. Beyond that, Learning-Logic provides 

several hypotheses about neural behavior that can be tested 

experimentally (see the question about the predictions Learning-Logic 

Makes) . 

5. Learning-Logic networks can learn both digital and analog functions, 

just as humans can -- and even blend the two, just as humans can. 
This gives me confidence that suitably constructed networks 

consisting of large numbers of Learning-Logic cells (aided, perhaps, 

by some "fixed-logic" or hardwired cells, just as our cortex is 

probably aided by more primitive areas of our brains) will soon be 

exhibiting "intelligent" behavior. All of the building blocks seem 

to be there.



LEARNING-L@GIC 43 

What is the evidence that function and error cells correspond to 
pyramidal and stellate neurons, and not vice-versa? 

There are two main pieces of evidence: 

1. Function cells are more advanced than error cells, and in the picture 
I use (Kuffler and Nicholls, page 39) pyramidal neurons look more 
complex than stellate neurons. 

2. Error cells are likely to have evolved first, because error cells are 
simpler, and stellate neurons seem to be more common in primitive 
areas of the brain (Kuffler and Nicholls, Page 11). 

If it turns out that Learning-Logic does correspond to our cortical 
neurons, but that I have the correspondences reversed, then I'11 have 
made a biological faux pas equivalent to hanging a Piece of modern art 
upside down. 

What can Learning-Logic say about long term memory in pyramidal neurons? 

If pyramidal neurons correspond to function cells, then there are two 

components to its long term memory. If a pyramidal neuron has 9p 

Synapses from other pyramidal neurons, it needs to remember’ the Pp 

internal parameters (the vector 4) for those inputs. It also needs to 

remember the (p?-p)/2 correlations between those inputs (the 

off-diagonal terms of the symmetric correlation matrix avg(FF")). 

1. It seems to me, and I think to many others (Kuffler and Nicholls, 

Chapter 16), that there are two plausible ways a neuron could 

remember the p internal parameters: 

e@ As the distance between each synapse and the axon hillock. Since 

the electrical signal that arrives at the axon hillock from a 

synapse is thought to decay roughly exponentially with the 

distance between the synapse and the axon hillock (Kuffler and 

Nicholls, page 135) that distance could contain the internal 

parameter for that synapse. The neuron could adjust this internal 

parameter by growing or shrinking appropriately. 

@ As the strength of the electrical signal transmitted across the 

synapse. If the distance between a synapse and the axon hillock 

remains roughly constant, then the only other (plausible) way for 

the neuron to adjust the internal parameter for that synapse. is to 

adjust the electrical signal itself. This might be done on the 

dendrite's side of the synapse, on the axon's side, or in the 

synapse itself (Kuffler and Nicholls, Part Two). 
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An implausible way that the neuron could remember the internal 

parameters is aS the number of synapses made by a given axon. The 

neuron would have to both selectively stimulate growth of new 

synapses, and selectively shed them. This seems to me to be 

unlikely, given the simplicity of the other two methods. 

2. It seems to me that there is only one plausible way a pyramidal 

neuron could remember the (p?-p)/2 correlations between the inputs, 

and that is as the distances between the synapses. Whether those 

distances are measured through the body of the neuron and the 

surrounding matter, or along the neuron's cell membrane, I don't 

know. Whichever, it implies that the neuron can grow or shrink 

between each pair of synapses, stimulated by the signals at each 

synapse. 

The other two obvious possibilites, that the neuron can adjust the 

electrical or chemical properties between each pair of synapses, or 

that synapses can be selectively grown or shed, seem too complicated. 

There is at least one other outside shot that deserves mentioning, 
and that is that the pyramidal neuron could maintain the correlations 
as tensions along its cell membrane. 

How about long term memory in stellate neurons? 

If stellate neurons correspond to error celis, then they only have to 

remember the Pf internal parameters (the vector 8) for the Pf synapses 

from other stellate neurons. They could do this in a manner similar to 

pyramidal neurons, as in 1) above. Stellate neurons wouldn't have to 

remember the correlations between the inputs, as in 2) above: that is 

why they are more primitive. 

How about short term memory? 

There is nothing in neurons that I know of that can change fast enough 
to account for short term memory -- except for the signals sent between 
the neurons. So, I believe that short term memory is maintained in the 
.pattern of signals being sent. This view is bolstered by the fact that 
Learning-Logic cells can learn to perform functions similar to those 
that digital electronic circuits perform, and the registers and memories 
of digital electronics are often used as analogies for short term 
memory. mo,
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What about inhibitory and excitatory neurons? 

I believe inhibitory and excitatory neurons are a practical modification 
Made -necessary by the fact that almost all the ways that neurons might. 
accumulate their internal parameters only accumulate Positive values. 
Thus, in order for an input to have a negative influence, a negative 
(inhibitory) copy of the input (or something negatively correlated with 
it) is needed. In fact, in many man-made implementations of 
Learning-Logic it may be better to have two versions of each signal -- 
one considered positive and the other negative ~- than to have to one 
version that can be either positive or negative. 

What are some of the differences between our neurons and perfect 
Learning-Logic cells, and do they matter? 

I doubt that our neurons are mathematically perfect Learning-Logic 
cells. Forturnately, Learning-Logic seems to be very tolerant of 
imperfections in its components and connections. In fact, I believe 
there are at least two ways in which our neurons aren't ideal 
Learning~Logic cells, but they don't matter. 

1. I don't believe that pyramidal neurons update their avg(FFT) 
correlation matrices exactly. To do so, each synapse would have to 
interact with every other synapse. Instead, I believe that each 
synapse interacts with only a few nearby synapses. The neuron might 
not converge, except for a saving stroke: each axon usually makes 
Many synapses on the neuron. That means that a synapse from one axon 
is likely to be near enough to a synapse from every other axon so 
that a sufficient number of elements of avg(FF') are accumulated. 

2. I don't believe that the pyramidal and stellate neurons are connected 
as orderly as in Figure 12. However, that just means that the error 

signals are distributed only approximately correctly. The network 

will still converge, except the neurons may change their parameters a 

little more than they would in an ideal network. The only observable 

consequence of this would be a tendency to forget some things a 

little faster, though the difference would probably be insignificant. 

There are probably even situations where it is better not to be 

connected as orderly as in’ Figure 12. For some purposes, for 

instance, it might be better to break the feedback loop from ECs to 

itself while keeping the feedback loop from FCs to itself. 

Can Learning-Logic say anything about learning disorders? 
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If Learning-Logic corresponds to our cortical neurons, then knowing how 

they work obviously narrows down the possibilities that need to be 

investigated in determining the root cause of a specific learning 

disorder. Fach of the parameters in a Learning-Logic cell is a 

potential cause of a learning disorder. In fact, it may become possible 

to manufacture a network of Learning~Logic cells that incorporates the 

suspected defect to see if its behavior corresponds to the observed 

human behavior. 

On a more specific level, Learning-Logic can predict a cause for a type 

of learning disorder. Unfortunately, I'm not sure which type of 

learning disorder -- the cause is all I'm fairly sure of. 

The most likely cause for a learning disorder seems to me to be some 

defect in the pyramidal neurons' ability to update the correlations 

between their inputs. This makes sense to me for several reasons: 

® A defect in the pyramidal neurons makes more sense than a defect in 

the stellate neurons, because the stellate neurons are more 

primitive. I would think that defects in the more primitive neurons 

would tend to be fatal instead of crippling because the more 

primitive neurons control our basic bodily functions. 

e Because the ability to update the correlations between their inputs 

is the chief innovation of the pyramidal neurons, it seems likely to 

be the thing most easily subject to defects. In evolutionary terms, 

it is probably the "newest" thing in our brains so presumably it is 

also the thing we can most easily live without -- although living 

without it probably means living without intelligence, which just 

happens to itself be a correspondingly recent evolutionary 

innovation. 

® A network of stellate and pyramidal neurons in which the pyramidal 

neurons couldn't update the correlations between their inputs could 

still learn fairly simple. functions. It couldn't be guaranteed to 

converge, though, so that learning new things would tend to make it 

more quickly forget old ones. Also, some functions are provably 

impossible for it to learn. This seems to me to correspond with the 

pehavior associated with some kinds of learning disabilities. 

If this bears out, then hopefully positively identifying the exact 

Mechanism the pyramidal neurons use to update the correlations between 

their inputs will lead to an understanding of how to fix them when they 

don't. 

What predictions does Learning-Logic make about our cortical neurons 

that can be tested experimentally? 
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Many predictions can be made based on the matters discussed in this Paper, but the two things I feel will be the easiest to test are: 

e Stellate neurons shouldn't be able to make Pyramidal neurons fire, and vice-versa. The reason is that function cells and error cells only use each other's signals for training purposes and not to 
determine each other's firing rates. This prediction should hola 
even if I have goofed on which type of neuron corresponds to function 
Cells and which to error cells, 

e The change in the pyramidal neurons that corresponds to updating the 
correlations (probably a change in distance between synapses) could be measured, and then the lack of the same feature in stellate 
neurons could be verified. 
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