
Chapter 1
Chervonenkis’s Recollections

Alexey Chervonenkis

Abstract These recollections about the origins ofVC theorywerewritten byAlexey
Chervonenkis in 2004 for several colleagues and not intended for publication. They
are now published for the first time. (Eds.) Translated by Vladimir Vovk.

The original setting of the problem (Autumn 1962) of pattern recognition learning
was as follows. There are N decision rules (ways of dividing objects into classes).
The teacher is using one of them. A training sequence x1, . . . , xl is given, and the
teacher classifies it naming for each point its class ω1, . . . , ωl using one of the N
known rules. The learning machine excludes from the list those rules that make an
error, i.e., work differently from the teacher. There remain N1 rules, and they are
bound to contain the true one. (We called such algorithms algorithms with complete
memory, as opposed to recurrent ones.)

The idea was to prove that there exists a training sequence such that N1 becomes
equal to 1, i.e., only the true decision rule remains, and, moreover, l ∼ log N . This
scheme is reminiscent of searching for a counterfeit coin using a series of weighings
(in which case l ∼ log N is indeed sufficient).

An almost inverse statement is easy to show for recognition of binary vectors. If
we want each of the N decision rules to be chosen given some training sequence,
the number N must be at most the number of all variants of the training sequence of
length l. For binary vectors of dimension n the number of such variants is equal to
2(n+1)l . From this we get
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N ≤ 2(n+1)l ,

l ≥ log2 N

n + 1
.

Therefore the length of the sample must be at least1 log2 N
n+1 .

It turned out, however, that the opposite inequality

l � ln N

in this setting is, in general, not correct.
For example, let there be N − 1 objects, N − 1 decision rules each of which

assigns one of the objects to class I and the rest to class II, and the N th decision
rule assigning all objects to class II. If the teacher is using the last rule, all the given
objects will be assigned to class II and only at most l decision rules will be discarded,
and to discard all of them (except for the right one) everything has to be shown. That
is, l = N − 1 rather than log N .

Up to this point the problem did not involve probability. The indicated failure,
and also other considerations, forced us to change the setting in March 1963.

The training sequence is not given but generated by some sourceΓ independently
with a constant, but unknown, distribution P(x) (the i.i.d. hypothesis). On the other
hand, we do not require that only one decision rule remains in reserve, but allow
arbitrarily many provided they are close to the true one, i.e., make an error with
probability < κ (under the same distribution as for training). Then it is easy to get
a logarithmic estimate.

The probability that a rule that is different from the true one by more than κ will
not be eliminated on a sample of length l is less than

p = (1 − κ)l .

The probability that at least one such rule will not be eliminated is less than

N (1 − κ)l .

1In fact, in the setting of the problem as described here it is also true that

N ≤ 2l

l ≥ log2 N

(log2 standing for base 2 logarithm). Alexey’s weaker (but sufficient for his purpose) bound
(log2 N )/(n + 1) also holds in a situation that is easier for the learner: he knows the true deci-
sion rule, and his goal is to choose a training sequence x1, . . . , xl proving that the known decision
rule is indeed the true one (in the sense that the observed ω1, . . . , ωl is compatible with only one
rule). (Eds.)
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Setting

N (1 − κ)l = η

(η is a given small number > 0), we obtain

l ln(1 − κ) + ln N = ln η,

l = ln N − ln η

− ln(1 − κ)
≈ ln N − ln η

κ

.

At that time we already knew that the number of ways to divide K points by a
hyperplane in an n-dimensional space is

∼ N = K n

n! .

Since at that time people worked mainly with binary vectors, and there are only
2n of them in n-dimensional space, then K = 2n ,

N ≤ (2n)n = 2n2 ,

which implies

ln N ≤ n2,

and this can be regarded as acceptable.
We were very glad that for the first time one could justify theoretically a learning

method of the same type as algorithms with complete memory. But in Autumn
1963 Aizerman talked about Novikoff’s result that if a training sequence is rotated
cyclically on a perceptron (1-layer, giving rise to a linear decision rule), then there
can be at most D2/ρ2 errors overall, where D is the diameter of the point set and ρ is
the distance between the convex hulls. From this they (the Aizermans2), after some
tricks, managed to show that for a good performance on a test (exam) it is sufficient
that

l ∼ D2/ρ2.

Comparing with our result we can see that this does not involve the dimension and
does not require discreteness. On the other hand, we do not require that classes should
be separable by a wide band, i.e., ρ can be arbitrarily small.

2Here Alexey jokingly refers to Aizerman, Braverman, and Rozonoer (members of Aizerman’s
laboratory at the Institute of Control Sciences) as the Aizermans. (Eds.)
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Soon afterwards it became clear that the dimension n and the value D2/ρ2 are in
some respect interchangeable. Without additional assumptions it is impossible to get
a good estimate without bounding either dimension n or D2/ρ2.

However, we also required the discreteness of the space (otherwise it is impossible
to get a finite N ) unlike Novikoff–Aizerman, and this appeared redundant, although
in 1964–65 we did not manage to do anything about it. This was the setting of the
problem: to obtain an estimate depending only on the dimension, but without the
requirement of discreteness.

At that time new competitors appeared. Tsypkin started saying that all learning
methods could be easily justified with the help of the method of “stochastic approxi-
mation” (1964–65), for which asymptotic convergence was proved (but without any
rates). The Aizermans also were concerned only with convergence, not rates.

Tsypkin did not even want to listen to us when we said that something was proved
in the discrete case. He used to say, “Spare me your talk of some finite set of decision
rules, everything is proved a long time ago in the continuous case, for a continuum
of decision rules.”

As early as in 1962 Highleyman’s work [1] appeared, where for the first time he
considered the learning problem as minimization of empirical risk. But the justifica-
tion of convergence was rather “wild.” He wrote that since by the Bernoulli theorem
for any decision rule the empirical risk converges to the true one (both are considered
as a function of the decision rule, in his case of the coefficients of the hyperplane),
the minimization of the empirical risk is asymptotically equivalent to (will lead to
the same result as) the minimization of the true risk.

Ya.I. Khurgin and his Ph.D. student Loginov, following Highleyman’s idea, went
even further. Using Chebyshev’s inequality (although using the binomial distribution
would be more precise) they obtained absolute figures: in order to approach the true
minimum with accuracy 10% approximately 300 observations are sufficient; for
1%, it appears that approximately 10,000 are sufficient. And this was without any
restrictions whatsoever.

Since we were asked to review their paper, and Khurgin was Lerner’s friend, there
was a heated discussion between us in Summer 1965. We gave explicit examples
where getting an acceptable result required an arbitrarily long training sequence
(even for linear rules). It is here that uniform convergence was mentioned for the first
time. Khurgin was saying, “You are playing on the non-compactness of the Hilbert
ball,” or “You are demanding uniform convergence.” I was replying, “Yes, we are!”

Loginov was saying, “Don’t you believe in the consistency of the method of
empirical risk minimization for linear rules?” We were replying, “We believe but
cannot prove it (without assuming discreteness).”

Khurgin was saying, “For a fixed decision rule the Bernoulli theorem (and the
binomial distribution) is true. One can get a good estimate which is true for any
decision rule. Therefore, it is true for all rules, and we are right.” I was objecting,
“The probability to meet randomly a syphilitic in Moscow is, say, 10−5. But if you
went to a venereal clinic, it is significantly greater, even though it is also in Moscow.
Looking for the best decision rule is like a trip to a venereal clinic.”
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In September 1965 at the All-Union Conference on Automatic Control3 (it took
place on the Black Sea aboard the ship “Admiral Nakhimov,” which later sank) there
was a flood of talks from the Aizermans, Tsypkin, Khurgin, et al., about learning
algorithms that always converge without any restrictions (the dimension can be arbi-
trarily large, the distance between the classes arbitrarily small, etc.).

Prof. Kovalevskii from Kiev (later he was an examiner for my candidate thesis)
said, “Why don’t you stop them?” He was doing practical recognition: building a
reading automaton.

Nevertheless we could not offer any alternatives.
Only in June 1966 I realized a thing very close to what you are doing now.4

Given a sample x1, . . . , xl , if we add xl+1 to it, build a generalized portrait from
x1, . . . , xl , xl+1, and then remove xl+1, then theGPwill change only in the casewhen
xl+1 was a support vector. But the probability that the last vector in the sequence will
be a support vector is k/(l +1), where k is the number of support vectors. And in the
general case this number does not exceed the dimension. If, on the other hand, xl+1
is not a support vector, no error will be made on it when learning only on x1, . . . , xl .

Therefore, the mathematical expectation of the number of errors made based on
a sample of length l (averaged over all samples of this length) will not exceed

n

l + 1
.

This is how, at last, an estimate appeared (although only for the case of GP) that
depends only on the dimension and is not connected with discreteness.

Vapnik then suggested that we should not publish this result, because it is too
simple, and it is embarrassing thatwehad “overlooked” it earlier. Itwasfirst published
only in the book [4] in 1974.

After that, events developed quickly. It became clear that instead of the general
population one can use an exam. In the simple case mentioned above the exam
consisted of only one point. But the exam sample is usually sufficiently long, for
example, as long as the training one. The following two experiments are equivalent:

1. We take a training sample of length l, learn on it, and are examined on a random
sample of the same length.

2. We take straight away a random sample of length 2l and randomly divide it into
two halves. Learn on the first and are examined on the second.

In the second case one can forget about the general population and assume that the
world has narrowed down to this double sample. In the first case, on the contrary, we
can use the usual Bernoulli theorem as applied to the exam (or the usual binomial
distribution) and assume that the exam result is close to the true risk.

3 The Third All-Union Conference on the Theory of Automatic Control, Odessa, September 20–26,
1965. (Eds.)
4Alexey means the method of conformal prediction; the first monograph [5] on the subject was
being prepared by his colleagues at that time. (Eds.)
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If we prove that in the second case all is well, then because of the equivalence all
is well also in the first.

But the second case is discrete by definition. The sample itself gives a discrete set
of points. But then one could use the old idea for finitely many decision rules. This
way the growth functionwas born (on the same day) and an estimate was obtained for
an arbitrary system of decision rules with a polynomial growth function. (Its being 2l

or a polynomial (VC dimension) was proven later in the course of proving necessary
and sufficient conditions for uniform convergence, but that is another story.)

At the same time in July 1966 (published in 1968) we wrote and submitted for
publication (in Automation and Remote Control) the paper “Algorithms with com-
pletememory and recurrent algorithms in pattern recognition learning” [2], wherewe
gave these results and compared them with what can be obtained for the perceptron.

And after that I remembered that Khurgin had been saying, “You demand uniform
convergence.” It became clear that the result for algorithms with complete memory
could be turned into a proof of sufficient conditions of uniform convergence of
frequencies to probabilities.

In a draft form this was done during the same month. But our inferiority complex
did not allow us to stop here. We thought: what if they say, “You invented some
growth function, and for the case when it grows as a polynomial proved that uniform
convergence is present. But maybe it is always present, or present in a much wider
range of cases?” It was necessary to show that it is present in this and only this case.
And we also managed to do it in a draft form in July 1966.

At the time we did not know anything about the Glivenko(–Cantelli) theorem,
and met it only when preparing the final version of [3] (towards the end of 1966 and
in 1967).
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