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Abstract— In recent years, many brands have started
incorporating anime characters into their marketing strategies
to boost brand recognition and appeal to a broader audience.
These generated characters can also be utilized in online
games, further enhancing creativity within the entertainment
industry. However, image generation in style transfer tasks
presents significant challenges due to the complex variations
seen in anime images. It is crucial to retain key features, such
as emotions and gestures, during image generation. Generative
models like Denoising Diffusion Probabilistic Models (DDPMs)
are effective in producing high-quality and detailed images.
They work by progressively refining noisy inputs, making
them well-suited for capturing intricate details like emotions
and gestures. However, the sampling process in DDPMs
requires running a Markov chain through numerous steps,
making the process computationally expensive. To address
these challenges, Denoising Diffusion Implicit Models (DDIMs)
have been introduced. DDIMs generate high-quality samples
with improved efficiency by wusing a more implicit,
deterministic method for denoising at each stage, significantly
speeding up the image generation process.
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1. INTRODUCTION

Image generation have achieved a remarkable progress
over the years, from traditional deterministic methods to
generative models. Generative Adversarial Networks
(GANSs) gained popularity for their capability to produce
highly realistic and high-resolution images. Generative
models learns to approximate complex data distributions to
produce highly realistic data. However, GANs often suffered
from many problems such as instability during training mode
collapse and the need of fine tuning hyper- parameters.

To overcome these limitations, Diffusion models showed up
as a novel approach for image generation, providing an
alternative to adversarial training. These models function by
gently introducing noise to the data during the training
process and reversing the process during generation. This
step-by-step denoising process enables diffusion models to
create diverse and high-quality outputs with greater stability
and efficiency. While GANs operate within a game-theoretic
framework, involving a competitive game between a
generator and a discriminator, diffusion models adopt a
probabilistic framework, making their training more stable
and adaptable. Recent developments, including DDPMs
(Denoising Diffusion Probabilistic Models) [1], DDIMs
(Denoising Diffusion Implicit Models) [2], and latent
diffusion models, have further advanced their capabilities,
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enabling high-resolution image synthesis while ensuring
computational efficiency.

This paper consists of using Denoising Diffusion Implicit
Models (DDIMs) based framework for image generation.
DDIMs marks a remarkable progress in diffusion models by
offering a more efficient way to image synthesis. Unlike
traditional diffusion models, which involve multiple steps of
noise addition and denoising, DDIMs provide a more direct
and computationally less expensive method through an
implicit sampling process.DDIMs involves a non-Markovian
framework which means that DDIMs can achieve high-
quality image generation in just a fewer steps. Our study
showcases the the effectiveness of DDIMs in producing
high-resolution images, highlighting their potential for
various creative and practical applications in generative
modeling.

In this paper, we utilize the High-Resolution Animeface
Dataset (512x512), easily available on Kaggle, which is part
of the Danbooru2019 Portraits collection. This dataset,
curated by Gwern Branwen and the Danbooru Community,
consists of 303,000 high-quality anime face images.

This proposed work combines the elements of deterministic
and stochastic processes, incorporates adaptable noise
schedules, and emphasizes a clear separation of signal and
noise components. These features offer several advantages:
1. Accelerated sampling with a reduced number of
reverse steps.
2. Enhanced output quality by improving the
reconstruction of the original clean image.
3. Greater versatility, enabling the model to be
adaptable for various tasks, datasets, and conditions.

II. UNDERLYING CONCEPTS OF DIFFUSION MODELS

A. Key Ideas Related to Diffusion Models

Diffusion models, a type of generative approach that
generate data by iteratively transforming random noise into
more meaningful results. These models are built on
principles of probabilistic modeling and stochastic processes.
The process of diffusion involves two primary phases:
forward diffusion or reverse diffusion.

Forward diffusion process involves progressively
corrupting a data sample xothrough a sequence of noise in a
step-by-step manner until it completely turn into pure noise.
Mathematically, this process is illustrated as a Markov
chain[2]:
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Equation (2) represents the conditional probability

distribution where x; denotes the noisy data at each
timestamp t and Xx;; represents the data from the previous
timestamp, o, regulates the amount of noise introduced at
each timestamp t. After many steps T, the data is
effectively transformed into pure Gaussian noise.

The reverse process aims to reconstructs the original
image by gradually recovering from the noise in the
corrupted data, undoing the forward diffusion. A trained
neural network needed to approximate the conditional
probability pe (Xi-1lxy, progressively denoising x back to
Xo.

The denoising process also follows a markov chain as
given below:

)

Equation (3) models to tranform the noisy data x: into a
less noisy data x;-; as step in the reverse diffusion process
and right part of the equation illustrates  Gaussian
distribution, having pb(x,t) as mean and Xgx,t) as
variance[2]. This can be illustrated as:

PoXe-11Xe) = N(Xe-1;10(X0,t), ZoXe,t))

po(xo,t) = 1/(ab). (x— B/(1—Va™y) . €0(xu,t))
and Zg(X,,t) = B/(1—a )]

The overall training objective is to approximate the forward
and reverse diffusion, so for that we will use a neural
network usually a U-Net like structure. The objective is to
simply minimize the discrepancy between the actual noise
¢ and the predicted noise €¢. This loss is often derived from
variational lower bound (ELBO) which ensures that the
learned distribution closely aligns with the true data
distribution.

L=Eq(x.x0)[lle- o x,)I°] 4)

Eg(x:x0) in equation (4) indicates the expectation or average
taken over the joint probability distribution of the noisy data
x¢ and the original data xo from the forward diffusion
process.
[lle= € x,0)II? represents squared difference between the two,
original noise € and the predicted noise € [2].The goal is to
minimize this error, enabling the model to accurately
estimate the noise which is being introduced during the
forward diffusion process.
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Figure 1. Forward and Reverse Diffusion

The transition from an anime-style clean image xo to a
completely noisy image xr in forward diffusion, and its
gradual restoration back to Xo during reverse diffusion,
demonstrates the model's ability to synthesize or
reconstruct high-quality outputs through this collaborative
diffusion process. This figure effectively visualizes the
interaction between noise addition and removal in the
generative framework.

B. Denoising Diffusion Implicit Models(DDIMs)

Denoising Diffusion Implicit Models, an extention of

traditional diffusion models which offers a more efficient
approach to generative modeling by emphasizing the
denoising process[1]. Unlike the DDPMs which operate
through the iterative process of introducing and eliminating
noise, implicit model aims to learns a faster reversal of a
diffusion process with fewer steps thereby improving
generation speed while improving high quality outputs.
There is a deterministic mappnig between the timestamps i.e
from one timestamp to the next which skips the need for
stochastic sampling during the reverse process and enhances
efficiency by improving the way the process is carried
out.The overall model works by leveraging a non-Markovian
approach to transition between noisy states, effectively
providing more flexibility in terms of model architecture and
training.
Rather than relying on stochastic sampling for x¢; , Implicit
models utilizes a reparameterized determination equation to
compute X directly from x; eliminating the need for
randomness[1].

Xi-1= \/at(xt—\/ 1—ay.€6(X0,t))/ \ at)+1—\/at.€9(xt,t) (5)

Po Xe-11X0) = N(Xe-1; Ho(Xot), ZoXot) ) (6)

such that, pa(x,t) = \ o (x—Bv/(1—Var ). €0(x,1))
and Zo(x,t) =0

Authorized licensed use limited to: NERV. Downloaded on July 05,2015 at 12:47:15 UTC from IEEE Xplore. Restrictions apply.



III.  RESEARCH METHDOLOGY
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Figure 2. U-Net Model Architecture

Algorithm 1: Diffusion Process

Input: Xo: Clean image, T: Forward timesteps, S: Reverse
timesteps, noise_schedule(t): Function providing signal rate; and
noise_ratet, network: trained model predicting €0.

Output: Reconstructed clean image Xo .

1. Forward Diffusion (Training Phase):
Initialize an empty sequence {xt}
For t=1to T:
1. Compute signal rate,
noise_schedule(t,T).
2. Sample noise € from a standard normal
distribution, e~N(0,I).
3. Compute x¢= signal_ratet-xo+noise_rater-€
4. Append x to the sequence.
End For
Set xr = x¢ (final noisy image).

noise_rates using

2. Reverse Diffusion (Generation Phase):
Initialize xr as the input noisy image.
For s=Sto 1:
Set T=s/S.
2. Compute signal ratet,
noise_schedule(T,s).
3. Compute signal rateci, noise rate.1 for the next
timestamp.
4. Predict noise €p = network(xs,t).
Compute Xo= (xcnoise_rater-ep)/(signal_ratey)
6. Update x1= signal ratev; .Xo +noise_ratev: . (xc—
signal_rate - Xo )/(noise_rater)
End For.
Return Xo
During training, the U-Net as in figure (2) learns to estimate

the noise €y which is added to image at each timestep by

—

noise_ratet using

e

reducing the difference between the true noise € and its
prediction. During generation, the U-Net uses its learned
ability to iteratively predict €y for each noisy image x,
progressively refining it back to the clean image xo. Thus, the
collaborative process between forward and reverse diffusion,
powered by the U-Net, enables the synthesis of high-
resolution images [11]. The diffusion_schedule function in
the model governs the diffusion process, where noise is
gradually introduced and later removed from the image. It
transforms diffusion times into angles, computes signal and
noise rates using trigonometric relationships, and ensures
that their squared sum equals 1. This scheduler controls the
specific amount of noise applied at each step, allowing the
model to progressively refine noisy data and produce high-
quality images over multiple iterations. EMA with a decay
factor ($=0.999) is employed to create a more reliable model
by averaging the weights, making them less affected by
short-term  fluctuations. This contributes to better
generalization and performance, particularly in scenarios
involving noisy updates, such as in GANs or diffusion
models. In this research, we utilize the Kernel Inception
Distance (KID) metric to check the quality of synthesized
images. This metric computes the Maximum Mean
Discrepancy (MMD) between the original and generated
image distributions, using a pretrained network mainly
Inception network for feature extraction and lower value of
kID 1is better as it ensures dependable comparisons
throughout different stages of model training.

IV. RESULT & ANAYSIS

This research utilized diffusion models for generating
anime images and evaluated their performance on the
Danbooru, CelebA, and Oxford Flowers datasets.The results
emphasize the models effectiveness, with Danbooru

achieving a KID score of 0.1;CelebA a KID score of 0.2 and
Oxford Flowers yielding a KID score of 0.1.These outcomes
demonstrate the model's capability for the generation of
diverge high-quality images across different datasets.

DANBOORU CELEBA
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OXFORD FLOWER

TABLE I. KID SCORES ON DIFFERENT DATASETS

Dataset KID Noise Loss Image Loss
Danbooru[15] 0.12 0.13 0.21
Celeba[16] 0.20 0.14 0.13
Oxford Flower [17] 0.10 0.12 0.21

TABLE II. VALIDATION RESULTS ON DANBOORU

Epoch KID Noise Loss Image Loss

1 1.8 0.7 2.2

5 1.1 0.3 0.9
10 0.6 0.1 0.2
15 0.2 0.1 0.2
20 0.2 0.1 0.2
25 0.2 0.1 0.2
30 0.1 0.1 0.2
35 0.1 0.1 0.2
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and validation image loss over epochs
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Fig (3) and (4) illustrates the KID score and training or
validation loss over 35 epochs on danbooru [15]. Both
training and validation losses show a consistent decrease,
indicating effective model optimization. Image loss
indicates that difference between the generated image and
the clean image should be low, reflecting the model's ability
to generate accurate images. Noise loss identifies the
model's ability to predict and remove noise during the
diffusion process. Lower noise and image loss indicates
better performance in restoring the image to its clean state.

V. CONCLUSIONS

This paper focuses on the design and assessment of a
Denoising Diffusion Implicit Model (DDIM) for creating
high-quality anime character images, leveraging a U-Net
architecture. The proposed approach showcased the
capability of DDIMs to generate intricate and visually
compelling images while providing a more efficient
sampling process compared to conventional diffusion
models. Future work could involve adding conditional
diffusion, utilizing larger datasets for better generalization
and incorporating positional embeddings and thoughtfully
crafted noise schedules.
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