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Abstract— Automatic sketch colorization is a challenging task
that aims to generate a color image from a sketch, primarily
due to its inherently ill-posed nature. While many approaches
have shown promising results, two significant challenges remain:
limited color patterns and a wide range of artifacts such as
color bleeding and semantic inconsistencies among relevant
regions. These issues stem from the operation of traditional
convolutional structures, which capture structural features in a
pixel-wise manner, resulting in inadequate utilization of regional
information within the sketch. Therefore, we propose the Region-
Assisted Sketch Coloring (RASC) method, which introduces an
intermediate representation called the ‘Region Map’ to explicitly
characterize the regional information of the sketch. This Region
Map is derived from the input sketch and is effectively formulated
by our RASC architecture, enhancing the perception of region-
wise features beyond the original pixel-wise features. Specifically,
we start by employing the sketch encoder to extract hierarchical
feature maps from the input sketches. Subsequently, we introduce
a coarse-to-fine decoder comprising a series of Region-based
Modulation (RM) blocks. This decoder modulates features that
combine the modulation results of its previous block and the
sketch features of the corresponding encoder block with our
Region Formulation module. Each module explicitly formulates
the sketch features in a region-wise manner. This accurately
captures both the inner-region local style and inter-region global
context dependency, resulting in various color patterns and
fewer synthesis artifacts. Our experimental results show that
our proposed method surpasses state-of-the-art methods in both
synthetic and real sketch datasets.

Index Terms— Sketch colorization, GAN, media art.

I. INTRODUCTION

A
NIME sketch colorization aims to generate a high-quality

color image from a given sketch with sparse content.

It has a wide range of applications in fields such as the ani-

mation industry, business advertising, and artistic design [1],

[2]. However, it is very challenging due to its ill-posed nature,

which means there exist multiple plausible results generated

for one input. Due to the significant advancements and suc-

cesses of deep learning techniques in various visual tasks,
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a wide range of deep learning methods have been thoroughly

investigated in the field of colorization [3], [4], [5], [6], [7],

[8], [9], [10], [11].

Current approaches in sketch colorization predominantly

fall into two categories: reference-based methods [1], [3],

[12], [13], [14] and non-reference based methods [5], [9],

[15]. Reference-based methods require additional references

such as color scribbles [3], [13], color images [12], [16],

or text tags [14], [17], [18], [19] for line art colorization.

These methodologies achieve colorization by discerning and

transferring color information based on the inherent correlation

between the input sketch and the provided color refer-

ences. Recent advancements in non-reference-based sketch

colorization have primarily leveraged Generative Adversarial

Networks (GANs) [20]. Unlike reference-based methods, these

techniques operate without relying on specific color guides for

each sketch, which severely suffers from the ill-posed nature

due to the absence of constraints in learning coherent color

distribution mapping. Multi-model frameworks [15] have been

investigated to generate diverse color styles, leveraging three

distinctive models, each embodying specific color patterns.

The concept of dual color space supervisions, exemplified

by the incorporation of an additional HSV color space [5],

has been embraced to harness the complementary information

inherent in diverse color spaces. Additionally, the constraint of

cycle-consistency [21] has been integrated into the colorization

workflow, aiming to yield more natural and photorealistic

illustrations [9]. CWR [14] introduces new constraints by

contacting and discriminating skeleton region maps in a pixel-

wise manner for sketch colorization. Significant progress has

been made in the field of non-reference-based sketch coloriza-

tion; however, the current methodologies are plagued by two

primary limitations. Firstly, the existing methods tend to yield

images characterized by a restricted variety of color patterns.

Secondly, these methods underutilize the inherent structural

information in sketches, resulting in the emergence of artifacts.

The essence of the observed limitation is ascribed to the

operational characteristics of conventional convolutional struc-

tures, which capture structural information predominantly in

a pixel-wise manner. Considering the inherent distinct and

explicit regions in anime images, each sketch region typically

presents an individual color style. However, conventional

convolutional structures face significant challenges in learning

a consistent style across all pixels within the same region

and in learning the correlations in a region-wise manner.

This capability is especially crucial for sketch colorization.

Consequently, numerous artifacts are visible in the images

generated, manifested as color bleeding (e.g., color gradients,

wherein the color from one region permeates into adjacent

regions) and semantic color inconsistency (e.g., the occurrence

1941-0042 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on November 10,2023 at 00:52:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: REGION ASSISTED SKETCH COLORIZATION 6143

Fig. 1. Representative examples colorized by our RASC. The first row is the
sketch input, and the second row is the corresponding colorization results. The
third row is the demonstration for multiple colorization for the same input.

of disparate colors in two eyes or markedly distinct color styles

within different segments of hair), as depicted in Figure 5.

Therefore, in this paper, we proposed the Region Assisted

Sketch Colorization (RASC) method in pursuit of increasing

the diversity of color patterns and reducing artifacts in the

generated color images. Our RASC explicitly processes the

sketch feature in a region-wise manner through region aggre-

gation and region attention to effectively estimate the local

style of each region and their implicit global dependencies.

Specifically, our RASC includes a sketch encoder and a

decoder which consists of several Region-based Modulation

(RM) blocks. Initially, the structural information, represented

as ‘region maps,’ is derived from the input sketch. Subse-

quently, the sketch is subjected to the encoder to generate

a sequence of feature maps that are utilized by the decoder.

This decoder, containing several RM blocks, integrates the

modulated features from its preceding block and the sketch

features corresponding encoder block. Importantly, this pro-

cedure is modulated by the corresponding region maps via

the Region Formulation module, which formulates both the

regional patterns and inter-region correlations to accurately

depict local styles and global dependencies, mitigating col-

orization artifacts. Particularly, in the Region Formulation

module, the hierarchical regional features are first obtained

by aggregating the feature maps from each encoder block.

Then, self-attentions are employed to formulate the correla-

tions between the regions, ensuring a consistent style in a

region. The obtained region-aware patterns are finally broad-

cast with the region map at the corresponding hierarchical

level. Consequently, RASC can accurately estimate the local

style of each region along with its implicit global dependen-

cies, yielding visually convincing and color-rich images with

fewer artifacts. In addition, the proposed architecture enables

style-content disentanglement and multiple colorization results

can be obtained. In summary, the key contributions of our

proposed method are as follows:
• We propose an innovative Region Assisted Sketch Col-

orization (RASC) model designed for non-reference

sketch colorization, with the objective of generating col-

orized images characterized by diversified and realistic

color patterns. This model incorporates an additional

region map, leveraged by the specifically devised region-

aware architecture to optimize the colorization process.

• We devised a novel hierarchical Region-based Modula-

tion (RM) Block that effectively formulates the regional

patterns and their implicit correlations through the

Region Formulation module, and introduces region-based

modulation to modulate high-dimensional feature maps.

Different from previous works, it explicitly capture struc-

tural information in a region-wise manner and accurately

characterizes both the local style and the global context

of regional patterns, alleviating synthesis artifacts in col-

orization results.

• Extensive experiments carried out on both synthetic

and real sketch datasets validate that our pro-

posed methodology surpasses existing state-of-the-art

techniques. Further, the experiments showcase the

potential for attaining controllable and seamless multi-

colorization for a single sketch by manipulating the latent

code.

II. RELATED WORK

Non-reference-based sketch colorization is notably chal-

lenging due to the absence of explicit color references for

sketches, which presents an ill-posed problem with min-

imal constraints for learning color distribution mappings.

The initial attempt to address this challenge was made by

Petalica Paint [15], which introduced three models: Tan-

popo, Satsuki, and Canna. Each of these models utilized

different U-Net [22]-based architectures to generate separated

color styles for anime sketches. However, these models often

exhibited limited diversity and perceptible synthesis artifacts

in their colorization results. Ci et al. [4] introduced a local

feature network aimed at mitigating overfitting to specific

sketch types by extracting common semantic features from

sketches of diverse styles. During the training phase, they

also incorporated sketches both with and without color ref-

erences to facilitate the learning of mappings applicable to

both non-reference and reference-based colorization. Based

on [4], HSV and RGB color spaces were integrated to

construct dual color spaces for supervision [5]. DP loss

and DCSA loss were introduced to guide the colorization

process at both local and global dimensions respectively.

Zhang et al. [9] incorporated the Cycle-Consistent idea from

CycleGAN [21] to make network training more robust by

applying two-way supervisions between sketches and color

images. While considerable advancements have been made,

significant gaps remain between generated colorizations and

real anime, especially the inadequacy of diversity in color

styles. Also, synthesis artifacts such as color bleeding and

semantic color inconsistency continue to be prevalent issues

in the generated results. CWR [14] integrates skeleton region

maps sourced from DanbooRegion [23]. This integration

serves to mitigate artifacts to some extent, owing to the

implicit inclusion of region information within these maps.

Differing from our method, we directly extract region maps

from line art images. These extracted region maps provide

explicit structural information about different regions in the

line art, achieved by the Trapped Ball method [24] that

performs fine-grained region partitioning. Notably, all of the

aforementioned methods capture structural features in a pixel-

wise manner, which constrains the network’s capacity to

fully comprehend the structural information of the sketches.
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Fig. 2. Overview of the proposed network, which follows an encoder-decoder scheme. Given a sketch input, a latent style code, and a series of feature maps
organized hierarchically based on the encoder blocks, they are subsequently fed into the region-based modulation (RM) Blocks within the decoder. Specifically,
each RM Block initially employs the region formulation module to formulate the regional patterns and their correlations, utilizing the corresponding region
map obtained directly from line art images. Subsequently, the block modulates the concatenated feature map accordingly. The intricate details pertaining to
the region formulation module are depicted in Figure 3.

In contrast, our approach, which leverages the region map

and our specialized region formulation module, empowered by

region feature aggregation, region correlation, and region fea-

ture broadcast, facilitates a comprehensive comprehension of

global contexts while preserving local patterns. Consequently,

this empowers our model to produce colorization results that

manifest superior coherency and diversity.

Reference-based sketch colorization methods often

require additional references to alleviate the issues caused

by the ill-posed nature of the colorization task. They usually

exploit implicit feature correspondence between the sketches

and the references such as color scribbles [3], [4], [5], [13],

reference images [6], [7], [12], [16], and text tags [8], [17]. For

example, Zhang et al. [3] proposed a two-stage colorization

network to perform colorization as two simple sub-tasks

with separate objectives, including drafting and refinement

stages for improved colorization quality. Lian et al. [6] intro-

duced Spatially-Adaptive Normalization (SPADE) to transfer

semantic attributes from reference images to target images.

Maejima et al. [7] proposed a graph-matching-based anime

colorization method to colorize sketches using multiple ref-

erence images. Tag2Pix [8] was proposed to colorize a sketch

according to the given color tags by devising a squeeze and

excitation with a concatenation module to enhance multi-label

segmentation for various semantic tags. The SGA method

[25] enhances coloring quality by resolving gradient conflicts

between the reference and target domains. ControlNet [18]

and T2I-Adapter [19] leverage the capabilities of large-scale

models for generating text to images, achieving high-quality

colorization results with reduced network resource require-

ments. Nevertheless, these models are dependent on text

references. When default text prompts are used or not avail-

able, the generated images tend to display a consistent color

scheme.

Gray-scale image colorization is tasked with convert-

ing a gray-scale image into RGB space. Unlike sketches,

gray-scale images possess dense structural information, facil-

itating networks in the formulation of spatial correlations and

the recognition of patterns. For reference-based colorization,

statistic similarities between the reference and the target were

estimated through low-level similarities [26], [27], seman-

tic features [28], or super-pixels [29], [30]. For automatic

colorization [31], [32], [33], [34], [35], Su et al. [34] inte-

grated instance-aware features to accommodate the appearance

variations inherent to distinct objects. Wu et al. [35] recov-

ered vivid color by leveraging the rich and diverse color

priors encapsulated in the pre-trained BigGAN [36]. They

extracted corresponding features utilizing a GAN encoder,

subsequently integrating these features into the colorization

process through feature modulations. Deoldify1 was developed

to automatically colorize world-realistic gray-scale images

with several improvements such as self-attention and new

training strategies. While these methods achieve notable

colorization outcomes for gray-scale images, our empirical

investigations reveal their inadequacy in appropriately coloriz-

ing sketches, due to the sparse nature of sketches and their lack

of consideration for structural information in the region map.

III. PROPOSED METHOD

In this section, a detailed exposition of our RASC archi-

tecture is provided. Initially, a comprehensive overview of the

model’s entire workflow is presented. Subsequently, elabora-

tions are made on its three pivotal components: (1) Region

Map Identification, (2) Region-based Modulation (RM) Block,

and (3) Region Formulation module. Finally, our loss functions

are discussed in detail.

A. Overview

As illustrated in Figure 2(a), the proposed colorization archi-

tecture generates a colorized RGB image X̂rgb ∈ R
Crgb×W×H

as the estimation of the ground truth Xrgb using a sketch

input image Xline ∈ R
Cline×W×H , where Crgb = 3 indicates

the three RGB channels, Cline = 1 indicates the one-channel

sketch, W is the width and H is the height of the images.

The architecture first obtains the corresponding region maps

X
r , then introduces a CNN based encoder Enc to generate

multi-level feature maps X
e = {Xe

M , . . . , Xe
1} from the input

sketch, where Xe
m ∈ R

ce
m×W e

m×H e
m is the output feature map

1https://github.com/jantic/DeOldify
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Fig. 3. Illustration of the proposed region formulation module. The module consists of three components: 1) region feature aggregation, 2) region correlation,
and 3) region feature broadcast.

of the m-th encoder block and M is the number of encoder

blocks in Enc, and a sketch related latent code w ∼ N (0, 1)

using an additional multilayer perceptron (MLP) on Xe
1. Then,

a coarse-to-fine decoder Dec involving X
e, w, and the region

maps X
r is devised for the generation of the colorized image,

which consists of several RM Blocks. Particularly, denote

the output feature maps of Dec as X
d = {Xd

1 , . . . , Xd
N },

where Xd
n ∈ R

Cd
n ×W d

n ×Hd
n is the output map of the n-th

RM Block (see Section III-B.3) and N is the number of

encoder blocks in Enc. We set M = N in this study,

i.e., the numbers of encoder blocks and RM Blocks are

equal. Overall, X
e and w are in pursuit of two different

perspectives. w serves as the style input of the decoder Dec

and is mainly responsible for controlling the global style of

the generated image (i.e., overall color style). While each

Xe
k ∈ X

e is taken by our RM Block as the multi-level injection

mechanism of high-level representations to affect the local

stochastic variations and guide the details of the structure

reconstruction.

B. Three Region Aware Components

(1) Region Map Identification

In practical scenarios, photorealistic grayscale images typi-

cally contain abundant details, where explicit region divisions

are not discernible. However, due to the unique nature of

anime and the sparsity of the sketch, the line strokes partition

the entire sketch into several distinct regions, each typically

displaying its consistent color style. Therefore, we identify a

series of region maps, denoted as X
r = Xr

1, . . . , Xr
K , to help

define the regional patterns used to partition the input image

into multiple regions. In detail, Xr
k ∈ R

W×H indicates the k-th

region in Xline and K is the number of regions as illustrated

in Figure 3. Note that if the pixel (i, j) of the input image is

located in the k-th region, the element of the i-th row and j-th

column in Xr
k satisfies Xr

k(i, j) = 1; otherwise Xr
k(i, j) = 0.

These region maps can be obtained by using the trapped-ball

algorithm [24]. Note that the scale of Xr
k may need to be

resized to match the shape of Xe
m ∈ R

Ce
m×Wm×Hm using nearest

neighbour interpolation. For the sake of convenience, we do

not introduce a new symbol for the resized Xr
k and X

r .

(2) Region-based Modulation Block

The color images produced by existing conventional convo-

lutional structures in a pixel-wise manner exhibit synthesis

artifacts, leading to perceptually unsatisfying colorization

results. This is attributed to color bleeding effects and semantic

color inconsistency across corresponding regions. In order

to address the aforementioned challenges, we introduce a

novel mechanism termed ‘Region-Based Modulation’. This

mechanism incorporates individual region maps to guide the

colorization process, consequently resulting in a significant

reduction in synthetic artifacts. As depicted in Figure 2(b), the

m-th Region Modulation (RM) Block is designed to receive

four distinct inputs. These include the high-dimensional gen-

erative features, denoted as Xd
m−1; the latent code, represented

by w; the region maps, indicated by X
r ; and finally, the high-

dimensional features, Xe
m , derived from the corresponding

encoder block.

First, Xd
m−1 is upsampled and put through the convolution

block. Inspired by [37], we utilize the latent code w to

modify the convolution block, which introduces global style

information encapsulated in w to our RM Block. Then we use

Xe
m and X

r to formulate region-aware patterns X
f
m through

the Region Formulation module (see Section III-B). Finally,

we use X
f
m to modulate the concatenation of Xe

m and the

convolution output as:

Xd
m = X

f
m ⊙ (Xe

m + Conv(Upsample(Xd
m−1))). (1)

It’s important to note that prevailing methodologies, pri-

marily relying on conventional convolutional neural structures,

typically capture the structural information of sketches in

a pixel-wise manner. Due to the inherent explicit regions

of the sketch, achieving uniformity and consistency in both

global and local patterns poses a significant challenge. Conse-

quently, such methods are inefficient; They fail to accurately

characterize the local style of a specified region, leading

to undesirable color bleeding effects. Additionally, they fail

to discern the global style correlations among disparate

regions, resulting in semantic color inconsistencies. In con-

trast, our RM Block explicitly employs region assistance by

formulating regional patterns and their correlations through

the Region Formulation module. It then formulates high-

dimensional sketch feature maps in a region-wise manner.

This key difference provides a more robust and accurate

colorization procedure and reduces artifact issues due to the

unified correlation learning for all pixels located in the same

region.
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(3) Region Formulation

As illustrated in Figure 3, when provided with the region

maps X
r and the high-dimensional features Xe

m from the

corresponding encoder block, our Region Formulation mod-

ule accomplishes the formulation of both the local style of

each region and the implicit global correlations among them

through feature aggregation and the incorporation of the self-

attention mechanism.

1) Region Feature Aggregation: In order to formulate

region-wise features, we need to aggregate representations

located in the same region according to the region maps.

In detail, the region maps Xr
k is adopted as a mask on Xe

m

to obtain the features of the k-th region. Then, a maximum

pooling strategy is applied to the spatial dimensions:

Xe
k,m(c) = max

i, j
((Xr

k ⊙ Xe
m)(c, i, j)) ∈ R

Ce
m , (2)

where ⊙ is an element-wise matrix multiplication for each

channel of Xe
m , (Xr

k ⊙ Xe
m)(c, i, j) indicates the elements of

the c-th channel, i-th row and j-th column in the feature maps,

and xe
k,m(c) is the c-th element in xe

k,m . Finally, by stacking

xe
k,m from k = 1 to K in a row-wise manner, a feature matrix

Xe
·,m ∈ R

K×Ce
m can be obtained as shown in Figure 3.

2) Region Correlation: Once region-wise features are

acquired, we proceed to implement self attentions [38] on Xe
·,m

to formulate patterns and establish correlations between these

regions. In detail, query Qm , key Km and value Vm matrices

are formulated by linear projections:

Qm = Xe
·,mWQ,m; Km = Xe

·,mWK ,m; Vm = Xe
·,mWV,m; (3)

where WQ,m , WK ,m , and WV,m are matrices containing learn-

able parameters. Subsequently, attention weights are computed

based on Qm and Km , and an output region representation can

be derived as follows:

Hm = softmax(
QmK

⊺

m
√

Ce
m

)Vm, (4)

where softmax(
Qm K

⊺

m√
Ce

m

) is denoted as Am in Figure 3, repre-

senting the attention weight, and Hm ∈ R
K×Ce

m is derived as

the final region patterns involving their correlations.

3) Region Feature Broadcast: Since each row of Hm con-

tains attention-aware information for one region, we further

broadcast each row to every pixel in the original feature map.

To be more specific, the k-th row of Hm is broadcasted to

populate a feature map X
f
m as follows:

X
f
m(c, i, j) =

K
∑

k=1

Xr
k(i, j)Hm(k, c), (5)

where c = 1, . . . , Ce
m , i = 1, . . . , W and j = 1, . . . , H . Note

that all within each region share identical regional patterns,

which ensures consistency and alignment in terms of local

style for each region throughout the modulation process,

as detailed in Section III-B(2).

Fig. 4. Illustrations of the original image, synthetic sketches, mirror padding,
and sketch simplification (from left to right).

C. Losses for Optimization

Overall, our RASC is defined as a function G with learnable

parameters. For the optimization of G, we employ both an

adversarial loss and a perceptual loss [39], taking into account

two distinct perspectives. The adversarial loss La plays a min-

max game to guide the generation to follow the real color

image distribution:
min
G

max
D

La = log(1 + exp(D(Xrgb)))

+ log(1 + exp(−D(G(Xline)))), (6)

where D is a convolution-based discriminator to classify

whether a color image is generated or not.

The objective of the perceptual loss Lp is to maintain the

overall structure of an input sketch and ensure the perceptual

plausibility of the colorized image:

minLp =
I

∑

i=1

∥

∥φi (G(Xline)) − φi

(

Xrgb

)∥

∥

1
, (7)

where φi denotes the activation map at the i-th layer of a pre-

trained VGG-19 network [40]. Particularly, we chose the layers

including relu1−1, relu2−1, relu3−1, relu4−1, and relu5−1

from the VGG-19 network.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

To train our model, we assembled a dataset compris-

ing 40,000 triplets, each consisting of a sketch, a color

illustration, and a region map. The color illustrations are

collected from Danbooru2020 [41]. The sketches are extracted

from color illustrations using XDoG algorithm [42] and the

region maps are prepossessed using the algorithm mentioned

in Section III-B(1). We set the parameters of XDoG as

τ = 0.999997, κ = 1.0001, and σ is randomly picked

from {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Following the training phase,

we employ three distinct test sets to comprehensively evalu-

ate our proposed approach and existing methods. These test

sets encompass both synthetic sketches and real sketches.

(Test Set A) : 1,969 synthetic sketches generated through the

XDoG algorithm from Danbooru2020 [41]. (Test Set B) :

2,778 real sketches collected by [4]. (Test Set C) : 1,194 real

sketches collected by ourselves from the Internet.

B. Experimental Settings

For both training and testing, all images are resized to

256 × 256 pixels using mirror padding. To mitigate overfitting

concerns arising from synthetic sketch extraction, we applied

sketch simplification [43] to all sketches. An illustration of

this image pre-processing is presented in Figure 4. Our model

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on November 10,2023 at 00:52:49 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Qualitative examples of our method and the state-of-the-art non-reference-based sketch colorization methods. From left to right: (a) Line Art,
(b) Tanpopo [15], (c) Satsuki [15], (d) Canna [15], (e) CCGAN [9], (f) AlacGAN [4], (g) DPGAN [5], (h) Style2Paints, (i) ControlNet [18], (j) Ours, and
(k) Ground Truth.

is trained using a batch size of 8, and the default learning rate

is set to 0.002, with no weight decay. In terms of optimization,

we employ the Adam optimizer [44] with β1 = 0 and

β2 = 0.99. All experiments are conducted on four Nvidia

GTX 1080Ti GPUs.

C. Overall Performance

We conduct a comparative analysis of our method against

several state-of-the-art sketch colorization techniques, which

include Tanpopo [15], Satsuki [15], Canna [15], CCGAN [9],

AlacGAN [4], DPGAN [5], Style2paints,2 CWR [14], and

ControlNet [18]. Furthermore, we compare our results with

several recently proposed photorealistic image colorization

methods to highlight the superiority of our method in terms of

sketch colorization, including GCPGAN [35] and Deoldify.3

For the purpose of comparison, all existing methods are trained

and evaluated using our datasets. To ensure fairness in the

comparison, we utilized the default descriptor settings for

the textual input of ControlNet [18]. We included positive

2https://github.com/lllyasviel/style2paints
3https://github.com/jantic/DeOldify
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TABLE I

PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART METHODS. THE BEST RESULTS ARE IN BOLD

descriptors such as “best quality” and “extremely detailed”

were used, and negative descriptors such as “longbody,”

“lowres,” “bad anatomy,” “bad hands,” “missing fingers,”

“extra digit,” “fewer digits,” “cropped,” “worst quality,” and

“low quality”.

1) Quantitative Evaluation: Unlike photo-realistic image

colorization, assessing sketch colorization quality is subjective.

Aligning with prior studies [4], [5], [9], [14], we utilize

Fréchet Inception Distance (FID) [45] for quantitative analysis,

where a lower FID indicates a distribution closer to real

color illustrations, suggesting enhanced diversity and quality.

However, since FID only evaluates certain aspects of image

quality, we also conduct a Mean Opinion Score (MOS) user

study to reflect human perceptual judgments of visual quality

and to compare our method with others. Sixty sketches were

chosen and colorized by each method. Twenty volunteers

rated the colorization results from 1 (poor) to 5 (excellent),

focusing on, diversity, and visible artifacts like color bleeding

and semantic inconsistencies. The average of these scores is

calculated as the MOS for each method.

The quantitative results are provided in Table I. Our method

is observed to yield the lowest FID score on both synthetic

sketches (Test Set A) and real sketches (Test Sets B & C),

indicating that the images generated by our method have a

distribution closer to real color illustrations compared to those

produced by other methods. It is noteworthy that ControlNet’s

performance relies on the generative capability of large models

and, as such, is also impacted by the data distribution inherent

to these large models. Therefore, even after being trained on

our dataset, the results produced by ControlNet may exhibit

a higher FID score and an MOS comparable to our method.

Additionally, our method attains the highest MOS, signifying

that, compared to state-of-the-art methods, our model gener-

ates the most perceptually pleasing colorization results with

higher diversity and fewer visible artifacts.

2) Qualitative Evaluation: Figure 5 displays qualitative

examples to visually compare our method with other state-

of-the-art, non-reference-based sketch colorization methods.

It is evident that the colorization results of existing methods

exhibit similar and restricted color patterns in each image (best

viewed in each row), whereas our method introduces vivid

and diverse color styles across different examples. Further-

more, our method effectively mitigates the artifacts observed

in colorization results. For instance, Tanpopo, Satsuki, and

Canna generate images exhibiting limited color patterns and

consequently receive higher FIDs. DPGAN tends to produce

noticeable color bleeding effects, particularly in background

or hair regions. CCGAN struggles with semantic color incon-

sistency across various regions, such as clothes or hair, and

tends to colorize all sketches in similar styles. ControlNet,

leveraging a pre-trained large-scale model for text-to-image

generation, is inherently dependent on text references. When

utilizing default text prompts, it is observed that the images

generated often exhibit analogous color styles. Additionally,

the technique used by ControlNet may produce results that

are incongruent with the original line art; for example, in the

sixth and seventh column of the i − th rows, the generated

backgrounds, the open eyes in the last two columns, and the

extra fingers are inconsistent with the information depicted in

the original line art. In contrast, our proposed method yields

more perceptually satisfying and cohesive results.

Figure 6 presents a visual comparison with photo-realistic

image colorization methods. It is important to note that

the characteristics inherent to natural image colorization and

anime sketch colorization can significantly differ. Photo-

realistic grayscale images encompass rich structural details,

and there are no significant, explicit region divisions. There-

fore, conventional convolutional structures are able to exploit

these intricate patterns and successfully execute colorization in

a pixel-wise manner. However, the line strokes delineate the

entire sketch into several explicit regions, each region typically

maintaining its own pattern. Hence, it is observable that these

photo-realistic image colorization methods struggle to learn a

promising color style for each region, resulting in numerous

artifacts. In contrast, our RASC adeptly captures structural

features in a region-wise manner, which incorporates the local

style and the global dependency of each region, yielding fewer

artifacts.

D. Ablation Study

1) Ablation Study for Region Guidance: Initially, we con-

trast our comprehensive model with the baseline architecture,

which does not incorporate region maps during the col-

orization process (refer to the architecture in Figure 2

excluding Region Map and Region Formulation). As observed

in Table II, the absence of the region map in our method

results in more conspicuous artifacts, thereby accruing a higher

average FID score of 36.59 across all test sets. This score

signifies inferior overall quality compared to our full model’s

score of 33.95. Additionally, we constructed a simplified

architecture where only the region map is utilized, without

implementing the region formulation. In this architecture, the

input is received as the concatenation of line art and the

region map in the encoder, and the encoder output, Xe
m ,

is subsequently concatenated in the decoder. As indicated in

the penultimate row of Table II, this simplified architecture

achieves an FID score of 36.32, surpassing our baseline but not
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Fig. 6. Qualitative examples of our method and the state-of-the-art methods used for grayscale image colorization. From top to bottom: (a) input sketch,
(b) Deoldify, (c) GCPGAN [35], (d) ours, and (e) Ground Truth.

Fig. 7. Visual comparisons for CWR [14] and ablation study of our method.
From left to right: (a) Sketch, (b) CWR [14] (c) Ours w/o region maps (d) Ours
w/o region formulation (e) Ours w/ region guidance. For each colorization
result, we have incorporated zoomed-in versions of the marked regions.

reaching the performance of our complete architecture. This

emphasizes the effectiveness of integrating region maps. All

implementations incorporating region guidance (region map

and formulation), referenced in the bottom row of Table II,

register the lowest FID score, attesting to the potency of

our Region Formulation Module. Considering that FID only

evaluates the overall quality and cannot accurately represent

TABLE II

AVERAGE EVALUATION RESULTS FOR CWR [14] AND DIFFERENT VARI-
ANTS OF OUR APPROACH ON THREE TEST SETS

human perceptual judgments, we conduct an additional user

study to assess the following two aspects of the colorization

results: (1) fewer artifacts such as color bleeding and semantic

color inconsistency, and (2) the diversity of generated color

styles and patterns. The average MOS score of all volunteers

is reported in Table II. It is evident that, in the absence of

region guidance, our model maintains substantial diversity but

scored significantly lower on the criterion of fewer artifacts.

This provides strong evidence that the inclusion of region maps

and region modulation, as proposed in our RASC method, does

indeed enhance both diversity and the reduction of artifacts in

the colorization results.

Figure 7 presents the visual comparison results. In the

absence of region maps’ guidance, our method often exhibits

noticeable artifacts in regions within the same semantic

context. For example, in the first, third, and fourth rows,

it produces obvious color gradients and bleeding colors in

the region of the arms, legs, and shoulders. Also, it colorizes

different colors for the two eyes of the character in the

second row, leading to semantic inconsistency. Without the

region formulation (solely using the region map), it prevents

artifacts to some extent since it contains the region maps of

the corresponding sketch. However, semantic inconsistency

still exists in the region of arms, and eyes in the first, and

second rows. In contrast, our full method manages to reduce

color bleeding effects (e.g., shoulder in the first row, rhombus

patches in the third row, and sleeve in the fourth row) by

learning the consistent style for each region under the guidance

of region maps. Also, our full model leverages consistent

color for regions that have the same semantic meanings (e.g.,

eyes in the second row) since it fully exploits the structural
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Fig. 8. Upper Segment: Illustration of multi-colorization results for one sketch. Lower Segment: Illustration of the interpolation results between two different
noise codes w1, w2 ∼ N (0, 1). We can see that during the interpolation, the color styles of the images are: brown → green (brown + blue) → blue.

Fig. 9. Visual comparisons between trapped-ball region map formulation
and danbooregion map formulation.

information by using region-wise formulation to learn the

correlations among different regions.

2) Comparison With Region-Aware Architecture CWR: We

further validate the superiority of our region map and region-

aware architecture by contrasting it with CWR [14], which

integrates skeleton region maps from DanbooRegion [23] for

line art colorization. Figure 7 illustrates the respective visual

comparative results. It is observable that CWR continues

to manifest relatively conspicuous artifacts in regions with

analogous semantic meanings, whereas our method produces

visually pleasing results with fewer visual artifacts. It should

be noted that CWR employs a skeleton map to furnish region

guidance for colorization, which can indeed mitigate artifacts

to a degree as it implicitly encompasses the region structural

information of the corresponding sketch. Nonetheless, the

absence of explicit constraints prevents the network from

learning a consistent style for each region, as both skele-

ton maps and sketches are processed purely in a pixel-wise

manner. Consequently, the network remains unable to fully

leverage region-wise features derived from region information,

resulting in visual artifacts, including color bleeding effects.

In contrast, our approach employs explicit region parti-

tions via the region map, subsequently aggregates region-

wise information through the feature aggregation process

(Section III-B.1), and discerns local styles and global correla-

tions at the regional level rather than the pixel level through

the region correlation process (Section III-B.2). Consequently,

our model is proficient in maximizing the utility of region

information, yielding visually appealing colorization results.

As demonstrated in Table II, it is evident that our method

attains markedly lower FID and superior user study scores in

comparison to CWR, thereby confirming the superiority of our

region map and region-aware architecture.

E. Controllable Multi-Colorization for One Sketch

Our RASC accomplishes style-content disentanglement.

In RASC, the latent code w predominantly governs the global

style of colorization, while the multi-level feature maps, inte-

grated with region-based modulation, essentially influence the

local variations and structure-correlated contents. Therefore,

our RASC is endowed with the capability to yield multiple

colorization results, each reflecting varied color styles for a

singular sketch, all while preserving the structural information

inherent in the sketch. To elaborate further, during the infer-

ence stage, rather than employing a latent code as predicted by

the MLP layer, we can initialize noise w ∼ N (0, 1) randomly,

serving as a global style for a given sketch, and continue to

utilize the encoder Enc to extract content information from

the sketch. Consequently, numerous colorization results, each

showcasing varied color styles, can be achieved. As depicted in

the upper segment of Figure 8, a range of images, each exhibit-

ing distinct color styles, is generated for a single provided

sketch. Moreover, our method also leverages the advantages

of the interpretable controls inherent in GANs, enabling the

achievement of controllable and smooth transitions through

traversing the latent space of w. More precisely, by performing

linear interpolation between two distinct noise codes w1, w2 ∼
N (0, 1), we can achieve a smooth transition between their

respective colorization results. As illustrated in the lower

segment of Figure 8, the color style of the images transitions

seamlessly from brown to a blend of brown and blue, and

ultimately to blue.

F. Evaluations on Different Types of Region Maps

In this section, we analyze the impact of employing differ-

ent region maps from the Trapped-Ball algorithm [24] and

DanbooRegion [23] on our RASC architecture. The quan-

titative evaluations, represented in Table III, reveal that the

Trapped-Ball algorithm, although more time-consuming, gen-

erates marginally better results compared to DanbooRegion,

owing to its traditional algorithms which perform fine-grained

region divisions based on the structural sketch. In contrast,

DanbooRegion, utilizing a network to learn the transformation

from sketches to regions directly, often compromises accuracy.

This discrepancy is evident in Figure 9, where the fine-

grain and comprehensiveness of region maps created by the

Trapped-Ball algorithm enhance the performance of our model

compared to those generated by DanbooRegion.

Experiments were performed to assess the impact of

employing fixed-size patches as substitutes for region maps
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Fig. 10. Visual comparisons between fixed-sized region map formulation
and our trapped-ball region map formulation.

TABLE III

AVERAGE EVALUATIONS OF REGION MAP FORMULATIONS OBTAINED BY

DIFFERENT METHODS ON THREE TEST SETS

and to investigate potential fluctuations in model efficacy.

The average number of patches in the region maps, based

on training dataset statistics, was 166, with a maximum of

729. We chose five patch numbers: 1, 64, 169, 256, and

1024, each corresponding to a unique patch size (Figure 10).

When the patch size is equal to the input image size of

256 ∗ 256, the produced image displays uniform style and

pattern due to our region formulation mechanism’s feature

aggregation (Figure 10, first column). An increase in patch

numbers is correlated with enhanced diversity in the generated

images, as illustrated in Table IV, due to the varied local

region information captured by the patches. Additionally,

an increase in patch numbers amplifies correlation learning

between patches, thus improving global dependency and mit-

igating colorization artifacts. Notably, when the patch size

is set to 8 ∗ 8, following three downsampling instances, the

pixel-level self-attention operation is indeed performed on the

image. Although improvements are evident across all metrics,

the network is yet to fully leverage the region-wise feature

Fig. 11. Two region correlation structures for investigating gradient conflict.
The red line represents that the gradient is positively correlated with the total
gradient of the branch.

TABLE IV

AVERAGE EVALUATIONS ON DIFFERENT FIXED-SIZE PATCHES OF REGION

MAP FORMULATIONS ON BOTH THREE TEST SETS

based on region map, resulting in color bleeding as depicted in

the fifth column of Figure 10. Our method fully considers the

individual region feature and the correlation between regions,

achieving the improvement of diversity and fewer artifacts as

shown in Table IV

G. Exploring Gradient Conflicts in Our Region Correlation

In our study, we conducted an investigation into the gradient

conflict problem [25] associated with our Region Correlation.

To achieve this, we implemented a visualization of the gradient

flow throughout the attention module. This approach facilitated

a thorough examination of the contribution made by each

individual gradient branch and the total gradient, resulting in

a comprehensive understanding of their respective influences

on the model’s learning process. Figure 11(a) illustrates the

region correlation structure within our RASC, specifically

depicting the component of the Region Correlation. Herein,

the three branches are denoted as gq , gk , and gv , with the total

gradient represented as gq + gk + gv . We separately calculate

the cosine values for each branch: cos(gq , gq + gk + gv),

cos(gk, gq + gk + gv), and cos(gv, gq + gk + gv), symbolizing

the cosine similarity values between the individual gradient

branches and the total gradient. This analysis aids in identi-

fying the degree of correlation of each gradient with the total

gradient, providing insights into the gradient flow throughout

the learning process.

In Figure 12, each row is associated with a distinct random

seed, and each column illustrates the similarity of gradients.

The uniformity in histogram distributions across varying ran-

dom seeds substantiates the robustness of our experimental

outcomes. For each distribution, the x-axis delineates the

similarity value, the y-axis denotes the epoch, and the z-axis

quantifies the number of statistical points. Due to the complete

positive correlation of gq and partial positive correlation of gk ,

we cannot eliminate the gradient of gq and gk in our module,

unlike what is done in SGA [25]. To further investigate

whether conflicts exist in gq and gk within the self-attention

mechanism, and can we use SGA to improve the capability of

our model by stopping the gradients? We attempt to add skip
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Fig. 12. The histograms of the gradient cosine value distribution in region correlation.

Fig. 13. The histograms of the gradient cosine value distribution in skip region correlation.

connections in our region correlation, obtained Skip Region

Correlation, which is followed by the operation of SGA [25]

as shown in Fig.11(b). The results of visualizing the gradient

flow as shown in Figure 13, during the training process, gq

and gv represent the problem of gradient conflict. Specifically,

the gk and gv branches compete with each other to obtain the

dominant position, and as the number of training increases,

gk occupies the dominant direction, while in gskip and gq ,

gskip always occupies the dominant direction. In both branches,

gq and gv exhibit a significant number of statistical points

with cos(, ) ≤ 0, indicating the presence of conflicts. Hence,

the SGA cannot be used in our network because there is no

gradient update multiplication between gq and gv . Besides,

we observe that in all histograms, there is always a half of

gradient points that are positively correlated with the total

Fig. 14. Deviation in gradient direction after stopping gradient on b.

gradient of the respective branch (cos(g, g + gq) > 0).

Therefore, directly applying a strategy to stop gradients in

gq or gv also requires careful consideration. We give a simple

example to illustrate the problem.
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Fig. 15. Illustration of our proposed method’s limitations. It is challenging
to colorize sketches with highly complicated regions.

Let’s denote two gradients, a⃗ and b⃗, both from the same

branch. The total gradient is represented by a green line on the

abscissa axis (as seen on the left in Fig. 14). Suppose the angle

θ1, θ2 = 45 degrees, the approximate cosine values in this

scenario would be cos(a⃗, a⃗ + b⃗) ≈ 0.525 and cos(b⃗, a⃗ + b⃗) ≈
0.525, indicating a positive correlation with the total gradient

for both gradients. If the gradient on b⃗ is stopped, the total

gradient becomes just a⃗, altering the original total gradient

direction, and impacting the network’s update direction. When

both a⃗ and b⃗ are positive, stopping b⃗ can cause the overall

gradient direction to deviate from the original direction to a⃗

(as seen on the right in Fig. 14). Addressing this deviation,

especially for negatively correlated gradients, is considered

important for future work.

V. CONCLUSION AND LIMITATIONS

In this paper, we present an innovative model with Region

Assist Sketch Colorization (RASC) for non-reference-based

sketch colorization, aiming to produce diverse and realistic

color patterns. Our model incorporates an additional region

map, fully leveraged by a specially designed region-aware

architecture to enhance the quality of colorization results.

Specifically, we propose a unique hierarchical Region-based

Modulation (RM) Block, developed to formulate regional pat-

terns using the region feature aggregation, region correlation,

and region feature broadcast module. Unlike preceding stud-

ies, our proposed model processes sketch features explicitly

in a region-wise manner rather than on a pixel-wise basis,

accurately depicting both the local style and global context

of regional patterns, which in turn reduces synthesis artifacts

in the colorization results. Comprehensive experiments con-

ducted on both synthetic and real sketches demonstrate that

our proposed method outperforms the state-of-the-art methods.

Also, experiments demonstrated that our model can achieve

controllable and smooth multi-colorization for one sketch by

manipulating the latent code.

Limitation: Although our proposed method significantly

alleviates the artifacts in colorization results, it may fail to

produce reasonable colorization results when dealing with

the inputs depicting highly complicated region divisions.

As shown in Figure 15, the corresponding region maps contain

a large number of small fragments due to the complicated and

dense strokes in sketches. In this case, our method cannot

adequately learn the style for each region and their implicit

semantic correlations, and may predict the same color for

nearby regions that actually represent different semantics,

e.g., sleeves, skirts, and head-wears. In future work, we will

improve the architecture for scenarios containing highly com-

plicated regions.
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