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A B S T R A C T

The latent space of pre-trained generative adversarial networks (GANs) is rich in semantic information, which
often becomes highly entangled. It is crucial to identify semantic directions within this latent space, as these
directions correlate with image attributes and are vital for image editing tasks. Existing methods for semantic
discovery usually involve labor-intensive procedures such as manual labeling and training attribute classifiers,
which limits their practicality. In response to this issue, the paper proposes the Optimal Transport-based
Unsupervised Semantic Disentanglement (OTUSD) algorithm. This novel method efficiently uncovers semantic
directions in the latent space of GANs by utilizing the concepts of manifold learning and optimal transport
(OT) theory. OTUSD applies singular value decomposition (SVD) to the OT matrix that links latent codes to
generated images. This process yields singular vectors that correspond to semantically meaningful directions.
Unlike traditional methods, OTUSD bypasses the need for time-consuming labeling and training processes, thus
enhancing efficiency and revealing a wider array of semantically meaningful directions. Experimental results
demonstrate the effectiveness of OTUSD in discovering semantic directions from several state-of-the-art GAN
models, including StyleGAN, StyleGAN2, and BigGAN. This performance emphasizes the potential applicability
of OTUSD to image editing and other related tasks, and illuminates its value in harnessing the manifold learning
and OT mapping capabilities inherent in GANs for semantic disentanglement. The implementation code is
available at https://github.com/LuckAlex/OTUSD.

1. Introduction

Generative adversarial network (GAN) models [1–4] have garnered
significant attention in the machine learning community. These models
are renowned for their ability to generate photo-realistic samples that
rival the quality and authenticity of actual images. Given the impressive
prowess of GANs in image generation, a natural progression is image
manipulation. This introduces the tantalizing prospect of precisely con-
trolling and modifying specific attributes of an image, such as altering
facial age or changing the ambiance of a landscape photo. The pivotal
question is: How can such manipulations be effectively achieved?

A direct approach might involve manipulating the pixel values of an
image to induce the desired changes. However, this method encounters
several challenges:

• Complexity: Due to the high-dimensional nature of image data,
direct manipulations become intricate and challenging to control.
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• Inconsistencies: Pixel-level alterations, without a deep under-

standing of underlying structures, can lead to unrealistic and

jarring modifications.
• Lack of generalization: An alteration effective for one image

might prove unsuitable for another, given the intrinsic variations

in attributes.

Contrastingly, the latent space of a GAN provides a more structured

and conducive environment for manipulating semantic attributes [5–8]:

• Compact representation: The latent space offers a condensed

representation of images. Alterations in this domain can effectu-

ate controlled modifications in the resultant image, assuming an

understanding of the relationships between different dimensions

in the latent space.
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• Disentanglement potential: While entanglements are inherent
to the latent space, its structured nature permits, with the right
techniques, the isolation and disentanglement of specific semantic
attributes. Such disentanglement ensures that modifications to
one attribute do not inadvertently influence others.
• Generalizability: Upon discovering semantic directions in the la-
tent space, they can be consistently applied across various images,
ensuring realistic and controlled modifications.

Given this context, multiple methods, categorized primarily into
supervised and unsupervised paradigms, have been proposed to manip-
ulate images through semantic disentanglement in the latent space.

Supervised methods are commonly used for latent semantic dis-
covery. They involve converting a large amount of potential code
into a set of images. Then, based on the specific semantic direction,
use manual or attribute classifiers to label or classify these images.
These methods can control the corresponding attribute of the gen-
erated image. Several works have explored different techniques for
fine-grained image editing using GAN models. Both InterfaceGAN [7]
and AdvStyle [9] use GANs to understand the relationship between
attributes of images and the latent space, which is a multi-dimensional
space inside the model used for generating images. However, their
methods for manipulating these attributes differ. InterfaceGAN employs
support vector machines [10], a type of machine learning model, to
discern boundaries between different binary attributes. This process
effectively creates a line of demarcation in the latent space, aiding in
understanding what changes can lead to a shift from one attribute to
another. On the other hand, AdvStyle adopts an adversarial technique
to discover attribute directions within the latent space, using a game-
theoretic approach to identify how attributes influence the generated
images. More recently, StyleFlow [11] introduced a unique technique
called reversible mapping. This method employs normalizing flows
and pre-trained classifiers to create a back-and-forth mapping between
the latent space and the image space. This results in a more adapt-
able manipulation of image attributes. However, these approaches still
have limitations in capturing the non-linearities and location specific
properties of facial attributes. Addressing this issue, Jiang et al. [12]
proposed a new concept termed a semantic field. A semantic field is
a vector field that explains the specific direction and magnitude of
changes for different attributes within the latent space of a GAN. This
concept allows for more accurate face editing by moving along a curved
trajectory defined by the semantic field. Despite these advancements,
supervised methods, which learn from labeled data, face limitations.
They require specific target attributes for labeling, which can restrict
their ability to discover a wide variety of interpretative directions. As
a result, they might not identify new and diverse semantic directions
beyond the initial set of attributes, meaning the scope of what they can
learn and generate could be constrained by the labeled data on which
they are trained.

Unsupervised methods, such as LowRankGAN [13], Style Inter-
vention [14], and SeFa [15], have gained increased attention due
to their flexibility in discovering semantic directions. However, these
methods also have limitations. LowRankGAN [13] performs low-rank
decomposition of the Jacobian matrix, but calculating the matrix is
time-consuming and difficult to generalize and apply. The Style In-
tervention method [14] requires an optimization procedure for each
input image and involves operations on each graph, which is not
easily generalizable. SeFa [15] identifies edited semantic directions in
the latent space by decomposing the pre-trained GAN model weights,
but it only considers the weight used in the first transformation step
and is constrained by the fixed weight parameters of the pre-trained
GAN model. This may result in semantic entanglement and inaccurate
control of the discovered semantic direction.

In this study, we introduce a pioneering approach that adeptly
uncovers disentangled semantic directions within the GAN latent space.
Our innovative algorithm, termed Optimal Transport-based Unsuper-
vised Semantic Disentanglement (OTUSD), leverages optimal transport

(OT) theory. This allows it to compute the ideal mapping between
two probability distributions, culminating in the generation of an OT
matrix bridging the input and output realms of the GAN model. This
matrix, rich in information about image variations, forms the nexus
between latent and generated spaces, transmuting modifications in the
latent codes into discernible variations in the resultant images. Employ-
ing singular value decomposition (SVD) on this matrix, OTUSD pin-
points singular vectors intrinsically linked with semantically relevant
directions. This methodology not only simplifies the disentanglement
process but also expands the range of discernible semantic directions,
laying the groundwork for expansive applications in image editing and
allied domains. Our main contributions are:

• A groundbreaking unsupervised approach that simplifies the dis-
entanglement process and broadens the scope of identifiable se-
mantic directions.
• An efficient algorithm that surpasses state-of-the-art methods in
its range and accuracy.
• Comprehensive experiments showcasing the effectiveness of OTUSD.
• Demonstrated robustness across various GAN models and datasets.

The rest of this article is organized as follows. Section 2 provides
an overview of related work in the field. Our OTUSD is introduced
in detail in Section 3. Section 4 presents an empirical evaluation of
our approach. In Section 5, we engage in a detailed discussion of our
findings. Finally, Section 6 encapsulates our conclusions and potential
future directions.

2. Related works

2.1. Generative adversarial networks

GANs have revolutionized image processing in recent years [16–18]
and have been widely used in the creation of handwritten fonts [19,20],
image editing programs [7,21], and image super-resolution [22], etc.
Although state-of-the-art models such as StyleGAN2 [17] and Big-
GAN [23] have made great progress in terms of synthesis quality and
training stability, there is still a lack of research on controlling the
generation process of GANs.

2.2. OT

OT is the problem of efficiently moving one mass distribution to
another [24]. This fundamental problem has numerous applications
in mathematical fields [25,26] such as partial differential equations,
geometry, functional analysis, optimization, and probability. OT is
a powerful tool for studying probability distribution modeling using
geometric methods, and it has significant implications for engineer-
ing fields [27] such as image processing, data science, economics,
and chemical physics. To obtain more comprehensive reviews, the
researcher may refer to Refs. [28,29].

2.3. Semantic editing with conditional GANs

In general, unconditional GANs can only generate images ran-
domly [17,30,31]. To control the process of image generation, it is
necessary to design the loss function, network structure, or provide
extra prior knowledge. Isola et al. [32] proposed pix2pix as a typical
conditional GAN that combines two conditional GANs to perform image
conversion tasks. Lu et al. [33] generate high-resolution images from
low-resolution inputs that satisfy given semantic attributes. However,
the quality of images generated by conditional methods is generally
inferior to that of unconditional GANs such as StyleGAN [31] and
BigGAN [23], and they can only manipulate a few specific attributes.
In contrast, exploring semantic directions in the latent space can
accurately control image attributes while ensuring image quality.
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Fig. 1. Overview of the proposed OTUSD. Given a pre-trained GAN model 𝐺, we use the OT algorithm to calculate the OT matrix 𝐀 between the latent code 𝐳 and the generated
image 𝐈. After noise filtering and SVD of the OT matrix 𝐀, the semantic directions 𝐍 = [𝐧𝑠1 ,…,𝐧𝑠𝑟 ,…,𝐧𝑠𝑘 ] can be extracted. Using 𝐧𝑠𝑖 can transform the original generated image
𝐈 to the edited image 𝐈∗, whose gender attribute is changed.

2.4. GAN inversion

The GAN inversion technique can invert a given real image into the
latent space of a pre-trained GAN model, which is essential for GAN-
based real image editing applications [34]. Existing GAN inversion
solutions can be divided into three categories: learning-based [35,
36], optimization-based [34], and hybrid-based [37,38]. Generally,
learning-based GAN inversion approaches cannot accurately recon-
struct image content. Recent advancements in learning-based GAN
inversion approaches have focused mostly on accurately reconstructing
images, such as incorporating extra face recognition losses during train-
ing or iterative feedback. The optimization-based approach can pro-
vide superior image reconstruction results, but at a prohibitively high
computing cost. Recent optimization-based enhancement techniques
have emphasized locating the necessary potential code more quickly
and have proposed various initialization and optimizer methodologies.
Hybrid-based approaches attempt to balance the aims of reconstruction
quality and inference speed, but swiftly finding the correct latent code
remains challenging.

3. Methods

In this section, we first illustrate the problem of semantic disen-
tanglement in GANs and then demonstrate how the OT algorithm can
be used to compute editable disentangled semantic directions. Fig. 1
illustrates the overall framework of the proposed OTUSD.

3.1. Problem formulation

Simplified model of GANs: Consider a GAN where the generator
𝐺 accepts a 𝑑-dimensional latent code 𝐳 as input, typically drawn from
a Gaussian distribution, and transforms it into an image as follows:

𝐈 = 𝐺 (𝐳) = 𝐀𝐳 (1)

where 𝐈 is the output image with dimensions 𝐻 (height), 𝑊 (width),
and 𝐶 (number of channels), such that 𝐈 ∈ R

𝐻×𝑊 ×𝐶 . And 𝐀 is a
transformation matrix that encapsulates the mapping from a Gaussian
noise distribution to the distribution of generated image data. This

linear representation serves as a simplified model to facilitate theoreti-
cal analysis, acknowledging that actual GAN models comprise multiple
layers of non-linear transformations.

It is important to note that the linear transformation representation
in Eq. (1) is a simplification. In actual GAN models, the generator often
comprises multiple layers of non-linear transformations instead of a
singular linear transformation. However, this simplified model serves
as a convenient abstraction to comprehend the fundamental concepts
and aid in theoretical analysis.

Mathematical framework for semantic disentanglement: Se-
mantic disentanglement refers to the process of identifying and isolat-
ing semantically meaningful directions in the latent space of a GAN,
allowing for independent control and manipulation of distinct image
attributes in the generated output.

Let 𝑍 denote the latent space of a GAN, and 𝑆 be the set of all
possible semantic attributes. For each semantic attribute 𝑠 ∈ 𝑆, we aim
to find a direction 𝐧𝑠 ∈ 𝑍 such that modifying the latent code along 𝐧𝑠
results in changes in the attribute 𝑠 in the generated image.

For a given direction 𝐧𝑠 associated with the semantic attribute 𝑠, the
edited image 𝐈∗ can be represented as:

𝐈∗ = 𝐺
(

𝐳 + 𝜆𝐧𝑠
)

= 𝐀𝐳 + 𝜆𝐀𝐧𝑠 = 𝐺 (𝐳) + 𝜆𝐀𝐧𝑠 (2)

where 𝜆 is a scalar that modulates the intensity of the attribute 𝑠 in the
edited image 𝐈∗.

To edit a specific attribute of an image, such as the eyes or smile, dif-
ferent control parameters can generate the desired effect. For instance,
setting 𝜆 as 𝜆1 results in the edited image becoming 𝐈∗

𝟏
= 𝐺(𝐳) + 𝜆1𝐀𝐧𝑠.

When 𝜆 is set as 𝜆2, the edited image becomes 𝐈
∗
𝟐
= 𝐺(𝐳) + 𝜆2𝐀𝐧𝑠. The

difference between these two edited images is:

𝐈∗
𝟏
− 𝐈∗

𝟐
= (𝜆1 − 𝜆2)𝐀𝐧𝑠 (3)

It is important to emphasize that only the specific attribute be-
ing edited changes to varying degrees, while other attributes remain
constant.

As depicted in Fig. 2, the latent semantic direction 𝐧𝑠 only under-
goes a transformation stretch when acted upon by the transformation
matrix 𝐀, while its direction remains unaltered. This aligns with the
definition of singular vectors, stating that the right singular vector
𝐯 of a real-valued matrix 𝐀 experiences only stretching or shrinking
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Fig. 2. Illustration of identifying a principal activation direction. Directionality is
indicated by a color gradient: blue to purple. Despite spatial orientations due to varying
distribution shapes, the color gradient consistently represents the true transformation
direction across both spaces.

Fig. 3. The working principle of GAN from the perspective of manifold learning.

Source: Modified from Ref. [39].

by a factor of 𝜇 when acted upon by 𝐀, with its direction remaining
the same. Hence, the latent semantic direction 𝐧𝑠 that satisfies these
conditions is the right singular vector of 𝐀, i.e., 𝐧𝑠 = 𝐯. Consequently,
Eq. (3) can be rewritten as:

𝐈∗
𝟏
− 𝐈∗

𝟐
= (𝜆1 − 𝜆2)𝐀𝐧𝑠 = (𝜆1 − 𝜆2)𝜇𝐀𝐧𝑠 (4)

where 𝜇 denotes the constant singular value.
In conclusion, by adjusting the control parameters, the edited im-

ages exhibit changes solely in attributes associated with the latent
semantic direction, allowing for precise and efficient control over target
images. The solution to this problem involves identifying the trans-
formation matrix 𝐀 and subsequently obtaining the set of semantic
directions by performing SVD.

3.2. Motivation

In a GAN, the generator, which is central to the model, usually
consists of a sequence of non-linear transformations. These transforma-
tions map a simple noise distribution to a complex data distribution.
Representing this series of transformations as a single matrix, denoted
as 𝐀, can be complicated due to the intricate, multi-layered structure
of the generator. This complexity often necessitates us to resort to
simplifications, treating the entire chain of transformations within the
generator as a single, effective transformation encapsulated in the
matrix 𝐀.

In related work, LowRankGAN [13] calculates the Jacobian matrix
between the input and output to represent matrix 𝐀. However, this
method can be computationally intensive, taking more than an hour
to calculate a single Jacobian matrix. Another approach, SeFa [15],
constructs matrix 𝐀 using the weight parameters of the first layer of
the pre-trained GAN model. While this method is computationally more
efficient, it may not fully capture the entire generative process as it only
considers the first layer of the generator.

In contrast, our approach utilizes the OT matrix to represent 𝐀.
This is based on the observation that GANs, viewed through the lens
of manifold learning, perform two main tasks [24,40]:

1. Manifold learning: This involves computing the generative map-
ping 𝐺𝜃 , where 𝜃 represents the parameters of a deep neural
network, from the latent space 𝑍 to a manifold

∑

embedded
in the ambient space 𝜒 .

2. Probability distribution transformation: This entails the transfor-
mation of white noise, typically Gaussian distributed, into a data
distribution. The generator of the GAN is essentially computing
an OT mapping from the white noise to the data distribution.

These are not independent tasks but are deeply intertwined. The
generator and discriminator of the GAN work together to achieve these.
While the generator is responsible for both tasks, creating a mapping
from the latent space to the data distribution, the discriminator plays
a crucial role in guiding this process. It measures the Wasserstein
distance [41] between the generated data distribution and the true data
distribution. This measurement acts as a feedback signal to the genera-
tor, helping it refine the transformation it applies to the latent code to
produce a distribution more similar to the true data distribution.

These fundamental processes are depicted in Fig. 3.
OT theory [42] provides a rigorous method for computing the

optimal mapping from one probability distribution to another. In the
context of a GAN, the generator is essentially computing this OT
mapping.

Our approach utilizes the OT matrix as matrix 𝐀, aiming to address
the limitations of previous methods and offer an alternative solution for
precise control and manipulation of semantic directions in GAN models.

3.3. Calculate the transformation matrix

Given the latent code 𝐳 of 𝑑 dimensions, the frequency distribution
is captured by weights 𝑧𝑖 for each dimension 𝑖. Formally:

𝐳 = [𝑧1, 𝑧2,… , 𝑧𝑑 ] (5)

where 𝑧𝑖 represents the probability of occurrence of the 𝑖th dimension.
The histogram distribution of the image 𝐈 is denoted by 𝐲 in R

𝑙.
Each bin 𝑗 has a probability weight 𝑦𝑗 , representing the likelihood of a
specific intensity:

𝐲 = [𝑦1, 𝑦2,… , 𝑦𝑙] (6)

where 𝑦𝑗 is the probability of the 𝑗th intensity value in the histogram
of the image.

With these frequency distributions, we approach the OT problem to
align the distributions. The problem is to find the transformation matrix
𝐀 that minimizes the total transportation cost, subjected to constraints:

𝐀 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐀
∑𝑑

𝑖

∑𝑙

𝑗
𝑐𝑖,𝑗𝑎𝑖,𝑗

𝑠.𝑡.
∑𝑑

𝑖
𝑎𝑖,𝑗 = 𝑧𝑗 ;

∑𝑙

𝑗
𝑎𝑖,𝑗 = 𝑦𝑖; 𝑎𝑖,𝑗 ≥ 0

(7)

where 𝑎𝑖,𝑗 denotes the mass transferred between bins, and 𝑐𝑖,𝑗 represents
the distance (cost) between bins.1

However, OT is a linear programming problem that can be solved
with time complexity (𝑛3𝑙𝑜𝑔𝑛 ), which is quite expensive. This prob-
lem can be addressed by adding a regularization term [43]. The use of
the regularization term in the OT problem has following effects: (1) it
can significantly improve the speed of solving OT problem; (2) it makes
the issue convex, ensuring that there is only one solution.

Therefore, the regularized OT problems between 𝐳 and 𝐲 can be
expressed as

𝐀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐀
∑𝑑

𝑖

∑𝑙

𝑗
𝑐𝑖,𝑗𝑎𝑖,𝑗 + 𝜆𝛺(𝐀)

𝑠.𝑡.
∑𝑑

𝑖
𝑎𝑖,𝑗 = 𝑧𝑗 ;

∑𝑙

𝑗
𝑎𝑖,𝑗 = 𝑦𝑖; 𝑎𝑖,𝑗 ≥ 0

(8)

1 𝑇ℎ𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑎𝑛 𝑏𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑐𝑜𝑚𝑚𝑜𝑛𝑙𝑦 𝑢𝑠𝑒𝑑

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑𝑠, 𝑎𝑛𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

𝑖𝑛 𝑡ℎ𝑖𝑠 𝑝𝑎𝑝𝑒𝑟.
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Fig. 4. Generated images under different parameters 𝜆. (a) Pose (StyleGAN [31] trained on CelebA-HQ [46]); (b) Smile (StyleGAN [31] trained on FFHQ [31]); (c) Space zoom
(BigGAN [23] trained on ImageNet [47]).

where 𝛺 is the regularization term. Moreover, the regularization term
𝛺 can be expressed by the Entropic regularization [44], i.e.,

𝛺(𝐀) =
∑

𝑖,𝑗

𝑎𝑖,𝑗 𝑙𝑜𝑔(𝑎𝑖,𝑗 ) (9)

The solution of the resulting optimization problem can be expressed
as

𝐀 = 𝑑𝑖𝑎𝑔(𝐰)𝐊𝑑𝑖𝑎𝑔(𝐯) (10)

where 𝐰 and 𝐯 are vectors and 𝐊𝐢,𝐣=𝑒𝑥𝑝(−𝑐𝑖,𝑗∕𝜆). Sinkhorn–Knopp [44]
is an alternate projection algorithm that, given high quantities of regu-
larization, can be extremely effective in solving the optimization issue.
The detailed derivation of the Sinkhorn–Knopp algorithm can be seen
in [44]. After calculation, we can get the OT matrix (transformation
matrix) 𝐀 between the latent code 𝐳 and the generated image 𝐈.

3.4. Semantic disentanglement

As previously discussed, the transformation matrix 𝐀 has been
solved, yet it contains both structural information and noise. Therefore,
in order to filter the noise and extract the structural information from
𝐀, the robust principal component analysis (RPCA) [45] algorithm is
employed to decompose the matrix 𝐀 into two additive matrices, that
is,

𝑚𝑖𝑛
𝐀,𝐄

𝑟𝑎𝑛𝑘 (𝐀) + 𝜂𝐄 0 𝑠.𝑡 𝐀=𝐀∗+𝐄 (11)

where 𝐄 is the filtered-out sparse noise matrix and 𝐄 0 represents the
count of non-zero elements in the matrix 𝐄 (i.e., the zero ‘‘norm’’).
𝐀∗ is the low-rank representation of the transformation matrix 𝐀,
encapsulating significant information about the transformation of latent
space semantics into image attributes.

Therefore, the original precise control process of the target image
based on Eq. (2) changes as follows

𝐈∗ = 𝐺
(

𝐳 + 𝜆𝐧𝑠
)

= 𝐀∗
(

𝐳 + 𝜆𝐧𝑠
)

= 𝐀∗𝐳 + 𝜆𝐀∗𝐧𝑠 = 𝐺 (𝐳) + 𝜆𝐀∗𝐧𝑠
(12)

where 𝐧𝑠 is a latent semantic direction.

Furthermore, the significant information in matrix 𝐀 is needed to
extract to discover and obtain disentangled semantic directions. By SVD
algorithm, we can get the singular values and singular vectors of 𝐀, i.e.,

𝐀∗=𝐍Λ𝐍𝐓 (13)

where Λ is a diagonal matrix sorted by singular values, 𝐍 = [𝐧𝑠1 ,…,𝐧𝑠𝑟 ,

…,𝐧𝑠𝑘 ] is an orthogonal matrix composed of the singular vectors of 𝐀,
which contains the main 𝑘 important semantic directions. Eventually,
we can simply edit a specific attribute of an image by using the singular
vector matrix 𝐍 based on Eq. (12).

4. Experiments

Our method, OTUSD, has been validated using three state-of-the-
art, pre-trained GAN models: BigGAN [23], StyleGAN [31] and Style-
GAN2 [17]. These models were initially trained on various datasets,
including FFHQ [31], CelebA-HQ [46], anime faces [48], art faces [49],
LSUN Car [49], LSUN Cat [49], and ImageNet [47]. The evaluations
were carried out on a computer environment equipped with an Intel(R)
Core(TM) i5 CPU, operating at 2.90 GHz, and 32 GB RAM. We assessed
the performance of OTUSD both qualitatively and quantitatively to
demonstrate the versatility and efficiency of our proposed method.

4.1. Implementation details

Algorithm 1 OTUSD Algorithm for Semantic Disentanglement

Input: Pre-trained GAN model with generator 𝐺, latent code 𝐳

Output: Identified latent semantic directions 𝐍 = [𝐧𝑠1 ,…,𝐧𝑠𝑟 ,…,𝐧𝑠𝑘 ]

1: 𝐈 ← 𝐺(𝐳) ⊳ Generate image from latent code
2: {𝑧𝑖}

𝑑
𝑖=1

← ℎ(𝐳) ⊳ Compute occurrence probabilities for latent code
3: {𝑦𝑗}

𝑙
𝑗=1

← ℎ(𝐈) ⊳ Compute histogram distribution for image
4: 𝑐𝑖,𝑗 ← 𝑑(𝑖, 𝑗) ⊳ Compute cost between bins
5: Solve for 𝐀 using regularized OT problem from Eq. (8)

⊳ Calculate transformation matrix 𝐀

6: 𝐀∗,𝐄 ← RPCA(𝐀) ⊳ Apply RPCA to decompose 𝐀

7: 𝐍,𝚲 ← SVD(𝐀∗) ⊳ Extract singular vectors and values using SVD
8: return 𝐍 ⊳ Return the identified latent semantic directions

Algorithmic overview:The proposed method, OTUSD, for seman-
tic disentanglement is presented in Algorithm 1. A brief explanation
follows: The process initiates by generating an image from a latent
code using a pre-trained GAN model (Step 1). Subsequently, the method
computes the occurrence probability of the latent code and the his-
togram distribution of the generated image (Steps 2–3). A pivotal
component is Step 5, where the transformation matrix 𝐀 is derived
using a regularized OT problem, establishing the relationship between
the latent and image spaces. The subsequent step filters noise from
𝐀 through RPCA (Step 6) and extracts the semantic direction using
SVD (Step 7). The algorithm concludes by returning the identified
latent semantic direction, which can be harnessed for precise image
manipulations (Step 8). This algorithm embodies the essence of the
OTUSD method, facilitating the semantic disentanglement process in
GANs.

Selection of input–output pairs: Our approach does not neces-
sitate the computation of an OT matrix for every individual image.
This provides a significant computational advantage as, once derived, a
single semantic direction can be reused across multiple images, saving
on redundant calculations. The semantic directions gleaned from one
image can be effectively leveraged to edit either the same image or
other images. This feature renders OTUSD as both user-friendly and
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Fig. 5. Results on various models and datasets, with the cat model trained on StyleGAN2 [17] and the others on StyleGAN [31].

versatile. Although semantic directions obtained from a single image
can be effectively utilized for editing the same or different images,
there are certain attribute features that may not be prevalent across all
images. To ensure that the method captures a comprehensive range of
image attributes, especially when dealing with diverse image datasets,
it might be beneficial to gather multiple input–output pairs, compute
their corresponding 𝐀𝑖 matrices, and subsequently obtain a variety of
singular vectors.

Semantic direction determination and parameter selection of
singular vectors: The unsupervised nature of OTUSD offers a distinct
advantage: the capability to identify rare yet valuable semantic direc-
tions associated with image manipulations. However, this comes with
a challenge: the inability to predict in advance which attributes corre-
spond to each feature vector. Decomposing the singular vectors of the
OT matrix yields a set of singular vectors, 𝐍 = [𝐧𝑠1 ,… ,𝐧𝑠𝑟 ,… ,𝐧𝑠𝑘 ], en-
compassing 𝑘 key semantic directions. Yet, even with these directions,
the semantics associated with each singular vector remain unclear.

To gain clarity, we apply the decomposed singular vector 𝐧𝑠𝑟 to
a sampled latent code. The intensity of changes in image features is
regulated by the parameter 𝜆 (as detailed in Eq. (12)). To systematically
understand its influence, we sample 10 parameter values uniformly
within the interval [−𝑝, 𝑝]. Each sampled value generates a correspond-
ing image. Displaying these images consecutively provides clear insight

into the semantic attributes associated with the singular vector, as
shown in Fig. 4.

An essential observation from Fig. 4 is the sensitive nature of 𝜆.
Surpassing certain thresholds with 𝜆 can lead to unintended semantic
modifications or degrade image quality. Specifically, 𝜆 values above
5 or below −5 tend to yield suboptimal results. Consequently, we
suggest maintaining 𝜆 within the range [−5,5] to ensure meaningful
and high-quality image transformations.

Input spaces for different models: In order to get good results in
different models, the input spaces used in different models are given
in this section. Firstly, since the significant characteristic of the style-
based generator architecture for GANs (such as StyleGAN [31] and
StyleGAN2 [17]) is: the input vector 𝐳∈𝐙 can be translated to the
intermediate latent vector 𝐰∈𝐖, which can ‘‘unwarp’’ 𝐖 and make
the components of variation in the intermediate latent space much
more linear. This mapping not only helps the generator to produce
realistic images, but also for better analyzing the property of the linear
subspace. Moreover, it allows undertaking additional semantic editing
in the latent space. Therefore, we focus on the latent space 𝐖. In
addition, BigGAN [23] is a large-scale GAN model built for conditional
generation. The latent code is simultaneously transferred to the initial
feature map and given to every convolution layer. For the BigGAN, we
choose the input latent space 𝐙.
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Fig. 6. Different interpretable directions found in the BigGAN [23], which is trained on ImageNet [47].

4.2. Results on different models and datasets

Given that OTUSD is not reliant on specific model structures or
datasets, we first evaluated its performance using popular models such
as StyleGAN [31] and StyleGAN2 [17], as well as models trained on
distinct datasets such as anime faces, cat images, car photos, and artistic
portraits. Fig. 5 provides visual examples of different models and
datasets. By applying OTUSD to each of these cases, we observed that
it successfully decomposes various semantic directions across diverse
datasets, allowing for precise editing of specific properties. These re-
sults demonstrate that OTUSD exhibits a high degree of generalization,
with broad applications in image editing.

Next, we proceeded to analyze the BigGAN model, which was
trained on ImageNet [47] using conditional training and a large-scale
approach. Specifically, we evaluated the generalization capability of
OTUSD using images from a variety of categories. Fig. 6 shows ex-
amples of the manipulated images produced by our approach. As
demonstrated by these results, OTUSD is able to uncover meaningful se-
mantics that can be used to manipulate images from diverse categories.
These findings corroborate our previous results and further support the
generalization capability of OTUSD.

4.3. Comparison with supervised approaches

In this section, we applied the proposed OTUSD algorithm to a typ-
ical face synthesis model, specifically a StyleGAN model [31] that was
pre-trained on the FFHQ dataset [31]. Furthermore, we compared the
results obtained using OTUSD with those obtained using state-of-the-art
supervised algorithms such as InterFaceGAN [7] and AdvStyle [9].

4.3.1. Qualitative results
In this test, we mainly compared the editing results of OTUSD with

InterFaceGAN [7] and AdvStyle [9] for typical attribute directions of
the generated images (e.g., gender, glasses, age, smile, and pose), and
the results are shown in Fig. 7.

It can be seen that AdvStyle causes significant changes in gender
when controlling the semantic attributes of glasses, and is not very pre-
cise in controlling other semantic attributes. In contrast, both OTUSD
and InterFaceGAN provide precise control over these attributes of the
generated face. However, InterFaceGAN introduces a slight variation in
the smile attribute when controlling for changes in the gender attribute.
OTUSD achieves comparable or even superior control effects compared
to supervised methods.

4.3.2. Diversity comparison

For editing characteristic attributes (e.g., race), it is not simply
a matter of changing specific organs or facial expressions, but also
involves changes to the overall facial characteristics. Therefore, it is a
challenging task to modify race attributes while preserving other facial
features.

To address this challenge, we varied race, skin color, and beard
to different degrees in this experiment, and the results are shown in
Fig. 8. This figure presents semantic directions that are absent from the
InterFaceGAN and AdvStyle papers. It can be observed that OTUSD can
adjust race attributes without producing drastic changes in other facial
attributes, which is difficult to achieve. Furthermore, the proposed
method enables precise control of skin color and beard attributes. This
is because OTUSD is not restricted by the attribute predictor and can
extract and apply attribute directions from small samples in the dataset.

Importantly, our method does not require computing the OT matrix
for each image. The semantic directions obtained from one image can
be used to efficiently edit itself or other images, as illustrated in Fig. 8.
This makes OTUSD user-friendly and flexible.

4.3.3. Attribute correlation

Theoretically, different editable attribute directions should be dis-
entangled, i.e., attribute directions are independent of each other [9].
To assess whether they are disentangled, we use cosine similarity to
calculate the correlation matrix between different attribute direction
vectors and determine their similarity. In particular, the cosine simi-
larity between two attribute direction vectors is independent of their
magnitudes, but only of their angle. For example, a cosine similarity
closer to 1 indicates a higher correlation between the vectors, closer
to 0 indicates a lower correlation, and a negative value indicates a
negative correlation, which can usually be considered irrelevant. Fig. 9
shows the correlation matrices calculated by cosine similarity between
different attributes of OTUSD, InterFaceGAN [7] and AdvStyle [9]. As
shown in Fig. 9(b) and (c), the discovered directions of InterFaceGAN
and AdvStyle are relatively entangled. On the contrary, most directions
of OTUSD are highly disentangled (see Fig. 9(a)), i.e., they are orthog-
onal to each other. Therefore, it can be demonstrated that OTUSD can
effectively disentangle into different attribute directions.
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Table 1
Quantitative comparison with LowRankGAN [13] and GANSpace [50].

Methods IS FID Success rate (%) User study (%) Time (minutes)

SeFa [15] 3.35 19.51 92.2 27 1
LowRankGAN [13] 3.46 21.05 88.7 20 68
GANSpace [50] 3.41 20.34 93.0 24 2
OTUSD 3.52 19.48 94.2 29 1

Fig. 7. Qualitative comparison of the latent semantics discovered by OTUSD and supervised methods (InterFaceGAN [7], AdvStyle [9]), including gender, glasses, age, smile, and
pose.

4.3.4. Time comparison
Labeling data in supervised learning: The labeling process, es-

pecially for intricate tasks such as discerning semantic attributes in
images, can be quite lengthy. Depending on the complexity of the
dataset and other factors, it can take anywhere from days to weeks or
even months. Exact quantification is challenging due to the variability
in datasets and the labeling process.

Inferring semantic attributes using OTUSD: Our method drasti-
cally reduces this time. From sampling noise in the hidden space to
calculating and decomposing the OT matrix, the process is completed
in approximately one minute. The subsequent process of inferring
semantic attributes is detailed in the ‘‘Semantic direction determination
and parameter selection of singular vectors’’ subsection of Section 4.1.
Typically, this inference concludes within 5 min, regardless of the
expertise level of the user.

4.4. Comparison with unsupervised approaches

4.4.1. Qualitative results
In this test, We compared OTUSD with the unsupervised approaches,

including SeFa [15], LowRankGAN [13], GANSpace [50], and the
StyleGAN2 [17] model trained on FFHQ [31]. We selected the most
relevant vectors that can regulate gender and smile based on their
articles, and the results are depicted in Fig. 10. From the results, it
can be observed that when gender is edited, SeFa modifies both fat
and glass properties, while GANSpace is somewhat less effective and
produces a background shift. Moreover, when using SeFa to edit smile,
the fat and glass attributes vary, while the hairstyle and background
of GANSpace change significantly. The change in the skin and hair
color of LowRankGAN is visible to the human eye. On the other hand,
OTUSD has a negligible change in other attributes when adding a smile
or changing the hairstyle. Therefore, the proposed OTUSD method has a
better decoupling effect compared to other unsupervised methods. The
gender editing results of LowRankGAN were not presented in Fig. 10 as
the code provided by LowRankGAN did not yield the semantic vector
required for gender editing. In addition, the article of the study did not
report any outcomes of gender editing.

4.4.2. Quantitative results
To conduct a more in-depth comparative analysis of our method,

OTUSD, we employed a series of established metrics to quantitatively
assess the effectiveness and accuracy of image editing, as well as the

Fig. 8. Results of editing attributes of race, skin color, and whisker, where these images
are generated by moving in positive or negative directions.

quality of the edited images and efficiency. Specifically, we selected a
set of 2𝐾 images, edited their smile attributes, and then evaluated the
results using the following metrics:

• Inception score (IS): IS [51] quantifies the Kullback–Leibler di-
vergence between the conditional and marginal class distributions
of generated images. A higher IS signifies enhanced quality and
diversity.
• Fréchet inception distance (FID): FID [52] evaluates the Wasser-
stein distance between the multi-dimensional Gaussian distri-
butions fitted to the feature representations of both real and
generated images. A lower FID indicates a better resemblance to
real images.
• Success rate: This metric evaluates the accuracy of semantic ma-
nipulations. A subset of images is altered along a specific vector,
and a facial recognition tool, such as the LightFace API [53],
determines the success of the intended alteration. The success
rate signifies the percentage of images that accurately exhibit the
intended manipulation.
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Fig. 9. Correlation matrices between different attributes of the (a) OTUSD; (b) InterFaceGAN [7]; (c) AdvStyle [9].

Fig. 10. Qualitative comparison between SeFa [15], GANSpace [50], LowRankGAN [13] and our method. The StyleGAN2 [17] model trained on FFHQ dataset [31] is used.

• User study: Human evaluators specializing in computer vision
assess the quality of the edited images, providing insights into the
perceptual quality that might escape quantitative metrics [13,15].
Ten scholars specializing in computer vision were enlisted to
assess the editing quality of 2K pairs of original and modified
images from different methods. The ‘‘User study’’ column denotes
the proportion of images that received positive ratings for editing
quality.
• Time: This metric elucidates the duration required to compute
the set of semantic directions.

Table 1 carefully outlines the comparative results between OTUSD
and several benchmark methods, including SeFa [15], LowRankGAN [13],
and GANSpace [50]. OTUSD surpasses all comparative methods in IS,
attaining a score of 3.52, demonstrating its superior ability to edit
images with heightened quality and diversity. LowRankGAN is the
closest competitor with an IS of 3.46. In the FID metric, OTUSD also
excels, registering the lowest value of 19.48, suggesting that the edited
images by OTUSD bear a closer resemblance to real images, with SeFa
closely following at 19.51. Regarding the success rate, OTUSD leads
with 94.2%, with GANSpace following at 93.0%. In the user study, 29%
of evaluators found the images edited by OTUSD to be realistic, the
highest among the compared methods, with SeFa at 27%. Regarding
the time metric, OTUSD exhibits outstanding efficiency, determining
the set of semantic directions in merely one minute, equivalent to SeFa,
and significantly faster than LowRankGAN, which requires 68 min.
In conclusion, the exemplary performance of OTUSD across various
metrics unequivocally demonstrates its characteristics of efficiency,
accuracy, and high quality in image attribute editing, establishing it
as a leading method in the field.

4.5. Real image manipulation

To enable semantic editing of real images, we used the state-of-
the-art GAN inversion method [36] to obtain the latent code of a real
image. This method projects the real image to the latent space of a
pre-trained StyleGAN2 generator and then uses the OTUSD method to

Fig. 11. Real image manipulation.

obtain the disentangled editable semantic directions of the real image.
Fig. 11 shows examples of these directions, such as adding smiles
and glasses, which suggests the usability of the OTUSD for real image
editing.

Therefore, it can be demonstrated that OTUSD can be used for
editing not only fake images generated by GANs but also real images,
which has practical value in real image editing applications.

5. Discussion

In this section, we elucidate the distinctive merits of OTUSD in
comparison to other methods, highlight its practical applications in
fields such as computer graphics, medicine, and security, and address
its limitations while suggesting potential avenues for future research.

The merits of OTUSD over existing methods: OTUSD leverages
OT theory to effectively disentangle various semantic attributes in the
latent space of GANs. This approach ensures that the modification of
one attribute does not inadvertently affect others, leading to more
accurate and efficient image editing. Compared with the supervised
training way, our method eliminates the need for labeled data, reducing
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the resource requirements, and making it more adaptable to various
datasets. Additionally, OTUSD demonstrates greater robustness to vari-
ations in training data and can uncover more nuanced and diverse
attribute representations. Compared with other unsupervised methods,
our method exhibits superior performance in terms of image quality
and editing accuracy, as demonstrated by lower FID scores and higher
user study satisfaction rates.

Real-world applications and practical implications: OTUSD un-
locks numerous applications, particularly in computer graphics, medicine,
and security. It enables artists to create realistic and diverse content
through precise image editing. In medicine and security, OTUSD is
pivotal for discovering semantic directions of rare data points like
medical anomalies. This ability facilitates synthetic data augmentation
by generating additional data points, enriching datasets, and enhancing
the robustness and performance of machine learning models in various
scenarios.

Limitations and prospects for future work: While OTUSD makes
notable advancements in unsupervised semantic disentanglement, it
faces limitations with uncommon semantic meanings, requiring users
to locate specific sample images, a time-consuming task. This adds
complexity to discovering the semantic direction. Future work could ex-
plore strategies to streamline the identification of rare semantic mean-
ings, potentially through more efficient search algorithms or automatic
categorization of uncommon semantics.

6. Conclusion

In this work, we introduced the OTUSD algorithm, a novel approach
to interpreting the latent space of GANs for image attribute manipu-
lation. Extensive experiments underscored the robust performance of
OTUSD and its precise control in generation with well-trained GAN
models, highlighting its potential across various applications owing to
its generality and efficiency. OTUSD is distinguished by its adaptabil-
ity, ability to handle diverse attribute representations, and superiority
over other unsupervised methods. However, it encounters challenges
with uncommon semantic meanings, which signals avenues for future
exploration to streamline the identification of such semantics. Despite
these challenges, the advancements made by OTUSD pave the way for
significant real-world applications and lay the groundwork for further
research in this domain.
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