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ABSTRACT

This paper deals with a challenging task of learning from differ-

ent modalities by tackling the difficulty problem of jointly face

recognition between abstract-like sketches, cartoons, caricatures

and real-life photographs. Due to the significant variations in the

abstract faces, building vision models for recognizing data from

these modalities is an extremely challenging. We propose a novel

framework termed as Meta-Continual Learning with Knowl-

edge Embedding to address the task of jointly sketch, cartoon,

and caricature face recognition. In particular, we firstly present

a deep relational network to capture and memorize the relation

among different samples. Secondly, we present the construction

of our knowledge graph that relates image with the label as the

guidance of our meta-learner. We then design a knowledge embed-

ding mechanism to incorporate the knowledge representation into

our network. Thirdly, to mitigate catastrophic forgetting, we use

a meta-continual model that updates our ensemble model and im-

proves its prediction accuracy. With this meta-continual model, our

network can learn from its past. The final classification is derived

from our network by learning to compare the features of samples.
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1 INTRODUCTION

Deep learning has been quite effective in narrowing the represen-

tational gap for multi-modal learning applications such as multi-

modal or cross-modal face recognition. Prior work in this area

focused on real-world facial images such as near-infrared, depth

imagery, etc. Approaches for these modalities have been quite suc-

cessful due to the inherent similarity in the structure of a face

captured using different modalities [34, 42, 59]. However, multime-

dia facial analytics, where one of the modality is a sketch, cartoon,

or caricature, is a challenging task due to the extreme levels of facial
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appearance variations (e.g., exaggerations, point of view, appear-

ance, and the underlying artistic style) [27].

Photograph to Sketch/Caricature Recognition
Sketch/Caricature to Photograph 

Recognition

Cartoon Face Recognition

Figure 1: Illustration of The Heterogeneous Face Task. It

consists of five task, i.e., photograph to sketch recognition,

sketch to photograph recognition, photograph to caricature

recognition, caricature to photograph recognition, cartoon

face recognition. In the settings of this paper, we consider

the above five tasks as a whole, i.e., the recognition of jointly

sketch, cartoon, and caricature face.

Given the heterogeneous nature of photographs and its abstract

faces (i.e., sketches/cartoons/caricatures) stemming from different

generation mechanisms (i.e., intensity by digital sensor vs. drawing

by hand) [10, 38, 56, 56], there can be large geometric deformations

and texture differences between a face photograph and its associ-

ated abstract faces [19, 41, 57]. These factors make abstract face

recognition a challenging heterogeneous face recognition problem

[8]. In this paper, we focus on the recognition of jointly sketch,

cartoon, and caricature face, as shown in Figure 1. In general, there

are three main challenges for this heterogeneous face recognition:

(1) Many variations can influence recognition, such as facial ap-

pearance exaggerations and distortions, point of view, appearance,

and the underlying artistic style.

(2) While joint training a model for sketch, cartoon, and carica-

ture face recognition, the learning of the later tasks may degrade

the performance of the models learned for the earlier tasks.

(3) Photographs and abstract faces in the datasets are limited.

What’s more, for these images, it seems to be implicitly related [29].

In contrast, even though there is a lot of variations in abstract

faces beyond realism, humans are very good at recognizing the

subjects. Why can human beings recognize abstract faces quickly

and accurately with very little direct supervision or none at all?

Probably because human beings can use the experience from the

past to learn [44, 53ś55, 58, 60], and the network can’t. And isn’t

this one of the mechanisms of meta-learning [43]? We may use this

mechanism to solve the above first issue. So, why don’t we use the

principle of meta-learning to build a network for heterogeneous face

recognition?

Besides, our human brains seem to have this remarkable ability

to learn lots of different tasks without any of them negatively

interfering with each other [13, 33]. Continual learning algorithms

try to achieve this ability for the neural networks and to solve the

catastrophic forgetting problem [36]. We may use this algorithm

to solve the above second issue. Thus, why does not use continual

learning for jointly training in heterogeneous face recognition?

Furthermore, to address the third issue, facing limited informa-

tion, humans still can learn to understand this scenario, due they

acquire knowledge by integrating implicit relations [6]. In partic-

ular, they learn referents in knowledge by statistically matching

words with occurrences of images in the environment [40]. Tradi-

tional recognition models, however, are usually developed based

on single modalities or tasks with limited access to this implicit

relations. Since a crucial aspect of traditional recognition model is

to learn appropriate representations for designated tasks, it seems

particularly important to combine implicit relations also in learning

these representations. Isn’t this exactly the problem that knowledge

embedding [46] devote to solving?Why not design knowledge em-

bedding to embed the implicit relations among data into our model?

To address the issues mentioned above, in this paper, we propose

a novel meta-continual learning-based model for jointly sketch,

cartoon, and caricature face recognition, which exploits knowledge

embedding strategy in the whole process. We build a two-branch

relation network via meta-continual learning. First, we use the

embedding approach to do feature extraction of training images. In

this process, we design knowledge embedding to guide our network.

Then, to compare the features, we design a relation model that

determines if they are from matching categories or not. Finally, to

mitigate catastrophic forgetting, we design a meta-continual model

that updates our whole model and improves the accuracy of its

predictions. Experimental results show that our model performs

better than similar works, and has strong robustness. The qualitative

discussion suggests that the meta-learning-based proposed strategy

achieves significantly higher performance compared with other

meta-learning-based methods.

In summary, our main contributions are as follows:

☼ We propose a novel and unified approach to achieve jointly

sketch, cartoon, and caricature face recognition. To the best of our

knowledge, this is the first attempt to study a jointly heterogeneous

face recognition with respect to sketch, cartoon, and caricature simul-

taneously. Experimental results show that the proposed approach

has strong robustness and outperforms existing similar methods.

☼ We design a novel knowledge embedding mechanism to unify

a knowledge graph with deep networks to facilitate heterogeneous

faces recognition, with injecting the mined implicit relations among

data into deep networks. To the best our knowledge, this is the first

attempt to study heterogeneous faces recognition method based on

this knowledge embedding.

☼ We present a novel meta-learning-based approach to learn

the discriminative features cross different datasets.

☼ We design a novel strategy combing meta-learning with con-

tinual learning to learn how to guide the optimization of neural
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 Feature Maps Concatenation

Network and Knowledge-Based Representation Learning Relation Model

 Relation 

Score
Person

(Label)

Meta-Continual Learning

Figure 2: The Framework of Our Relation Network. It

contains three modules: a network and knowledge-based

representation learning model, a relation model, a meta-

continual learning model. The network and knowledge-

based representation learning model Fθ parametrized by θ

produces feature maps to represent feature extraction func-

tion. The relation model Jr elation (·) represents the similar-

ity between sample and query, which are from training set

during the training phase, and from support set and query

set, during the test phase, respectively. The meta-continual

learning model Fθ updated by weight W updates the whole

model towards learning on new data quickly whileminimiz-

ing forgetting, and produces the final results.

network parameters for the problem of catastrophic forgetting,

commonality and robustness cross different domains.

2 PROPOSED APPROACH

2.1 Problem Definition

We consider the problem of heterogeneous face recognition (sketch,

cartoon, and caricature face recognition) as meta-continual classi-

fier learning. The model is shown in Figure 2.

NotationsThewholemodel consists of two phases: meta-training

and meta-testing. In meta-training, our training data Dmeta-train =

{(xi ,yi )}
n
i=1 from a set of classes Ctrain are used for training a

classifier, where xi is a image, yi ∈ Ctrain is the corresponding per-

son (label), and n is the number of training samples. In meta-testing,

a support set of v labeled examples Dsupport = {(x j ,yj )}
v
j=1 from

a set of new classes Ctest is given, where x j is a image for testing,

and yj ∈ Ctest is the corresponding person (label). The goal is to

predict the labels of a query set Dquery = {(x j )}
v+q

j=v+1, where

q is the number of queries. This split strategy of training and sup-

port set aims to simulate the support and query set that will be

encountered at test time. Further, we use the meta-learning on the

training set to transfer the extracted knowledge to the support set.

It aims to perform the model’s learning on the support set better

and classify the query set more successfully.

Learning toContinually Learn In the setting ofmeta-continual

classifier learning, we divide the sake of traning representation

learning into two goals, one is how to better obtain effective fea-

tures and classification results for each task, the other is how to build

on top of existing knowledge to learn on new data quickly while

minimizing forgetting for all tasks. For the training set Dmeta-train,

we define the sample set as X = {(xi )}
n
i=1, where X ∈ X ⊆ R

+.
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Figure 3: The Architecture of Our Relation Network. First

of all, we use our network to extract the features of image,

and get the image feature fnetwork . Meanwhile, we construct

our knowledge graph that relates images with correspond-

ing label using label information to get knowledge embed-

ding vector fknowledдe . Then, we use the gated mechanism

to fuse the f
network and f

knowledдe , and get the knowledge-

based representation feature f . Finally, we apply the relation

model and the meta-continual learning model.

Our objective is to predict their regression labels, i.e., Y = {yi }
n
i=1,

where Y ∈ Y . We achieve our goal by learning a mapping func-

tion F : X → Y . For each task, we define a mapping function

Fθ : X → Y parametrized by θ to learn the discriminative features

and achieve the classification effectively. If we regard all tasks as a

whole, for all tasks, we define a mapping function FW : X → Y

updated by weight W to learn on new data quickly while mini-

mizing forgetting. Obviously, these two functions composes the

function F : F = FW (Fθ (X )).

More concretely, given task T sampled from task distribution

p (T ), let Loss ∈ Y × Y → R be the function that defines loss

between a prediction yj and target yi as Loss (yj ,yi ). If we assume

that inputs X are seen proportionally to some density µ : X →

[0,∞), then we want to minimize the total loss Ltotal for all tasks:

Ltotal (W ,θ ) = E[Loss (F (X ),Y )] =
∫

[

∫

[Loss (F (x ),y)p (y |x )dy]]µ (x )d (x )
(1)

where W and θ represent the set of parameters that are updated to

minimize the total loss. To this end , we limit ourselves to learning

by online updates on a single k length trajectory sampled from

p ((Sk |(T ), where Sk = {(xi ,yi )}
i+k−1

i (k < n + 1).

2.2 Knowledge Graph Construction and
Representation

In this subsection, we construct our knowledge graph that relates

images with corresponding person (label). For the construction

of our knowledge graph, we use the GGNN [24] method. Built

upon it, we use the GGNN to propagate node message through the

graph and compute a feature vector for each node. All the feature

vectors are then concatenated to generate the representation for

the knowledge graph.

Principle of GGNN GGNN [24] is an end-to-end trainable

network architecture that can learn features for arbitrary graph-

structured data by iteratively updating node representation in a

recurrent fashion. Formally, the input is a graph represented as
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G = {V,A}, in which V is the node set and A is the adjacency

matrix denoting the connections among these nodes. We define t

is the time step of conducting the knowledge graph. At t = 0, input

feature vectors xv that depends on the special task is initialized as

the hidden state. Then, at time-step t , we define hv
t as the hidden

state. For each node v ∈ V, the basic propagation recurrent process

is formulated as

hv
0
= xv

av
t
= Av

T [h1
t−1 · · · h |V |

t−1]T + b

hv
t
= дate (av

t
, hv

t−1)

(2)

where Av is a sub-matrix of A represents the connections of node

v with its neighbors, and дate denotes gated update mechanism,

which is defined as:

zv
t
= σ (Wz

av
t
+ U

z
hv

t−1)

rv
t
= σ (Wr

av
t
+ U

r
hv

t−1)

h̃
t
v = tanh(Wav

t
+ U(rv

t ⊙ hv
t−1))

hv
t
= (1 − zv

t ) ⊙ hv
t−1
+ zv

t ⊙ h̃
t
v

(3)

where ⊙, σ and tanh are the element-wise multiplication operation,

the logistic sigmoid and hyperbolic tangent functions, respectively.

The propagation process is repeated until our fixed iteration T .

During this process, we update the representation of each node

based on its history state and the message sent by its neighbors.

Thus, we can obtain the final hidden states {h1
T
, h2

T
, . . . , h |V |

T }.

All in all, the computation process of equation (2) can be reduced to

hv
t = GGNN(h1

T
, h2

T
, . . . , h |V |

T ;Av ). Similar to [15], we employ

an output network that is implemented by a fully-connected layer

o, to compute node-level feature, expressed by

ov = o([hv
T
, xv ]),v = 1, 2, 3, · · · |V| (4)

ACase of Constructing Image-Person GGNN Distinctly, we

need to construct two knowledge graphs of which one relates im-

ages with corresponding person (label). Given dataset that cov-

ers Ctrain classes and n images, the graph has a node set V with

Ctrain +n elements. Similar to [4], we define the Ctrain ×n matrix

SPerson&Imaдe that denotes the confidence that this class has the

image and its value range is [0, 1]. Then, we can get the adjacency

matrix APerson&Imaдe expressed as

APerson&Imaдe =

[

0Ctrain×Ctrain SPerson&Imaдe

0Ctrain×n 0n×n

]

(5)

where 0· is a zero vector with dimension ·.

Finally, by this way, we can get the knowledge graphGPerson&Imaдe

= {VPerson&Imaдe ,APerson&Imaдe }.

Knowledge Graph Representation After building the knowl-

edge graph, we employ the GGNN to propagate node message

through the graph and compute a feature vector for each node.

All the feature vectors are then concatenated to generate the final

representation for the knowledge graph.

We count the probabilities of all possible relationships given

images and person in dataset, which are denoted S = {s0, s1, · · · , sL }.

We initialize the node refers to the image i with si , and the node

refers to each person with a zero vector. Thus, we can get the input

feature for each node can be represented as

xv =

{

[si , 0n−1] if node v refers to one image i

[0n] if node v refers to one person
(6)

where 0· is a zero vector with dimension ·.

After T iteration, according to the principle of the GGNN, we

can get the node-level feature ov
Person&Imaдe computed by Eq.(4).

Finally, these features are concatenated to produce the final knowl-

edge representation f
knowledдe .

2.3 Network-Based Representation Learning

Our network architecture is shown in Figure 3. Figure 3 describes

a traditional process of convolution and pooling. We use the 6-

layer network architecture. Taking an image as input, the output

of the 6-th pooling layer is a 2048-dimensional vector, which we

regard as network features. The kernels of network change in turns:

3 × 256 × 256→128 × 128 × 128 (Convolution, kernel size: 1 × 1)

→256 × 64 × 64 (Convolution, kernel size: 3 × 3)→512 × 32 × 32

(Convolution, kernel size: 3 × 3) →1024 × 16 × 16 (Convolution,

kernel size: 3× 3)→256× 8× 8. Then, we apply the fully connected

layer to change into 2048-dimensional vector, denoted as fnetwork .

2.4 Knowledge-Based Representation Learning

We introduce the gated mechanism that embeds the knowledge

representation to enhance the representation learning, considering

suppressing non-informative features and allowing informational

features to pass under the guidance of the our knowledge graph,

similar to [5], we introduce a gated mechanism expressed as

f = σ (д(fnetwork
, f
knowledдe )) ⊙ f

network (7)

where σ is the logistic sigmoid, ⊙ denotes the element-wise multipli-

cation operation, д is a neural network that takes the concatenation

of the feature of the final knowledge embedding and the feature of

extracting by using the feature fusion network. It is implemented

by two stacked fully connected layers.

2.5 Meta-learning Model

As illustrated in Figure 2, we define the function Fθ represents

feature extraction function using network and knowledge-based

representation learning, i.e., the output of Fθ is f , and the function

C represents feature concatenation function.

Relation Model Suppose sample x j ∈ Dsupport and sample

xi ∈ Dmeta-train, the concatenated feature map of the training and

testing sets is used as the relation model Jr elation (·) to get a scalar

in range of 0 to 1 representing the similarity between xi and x j ,

which is called relation score. Suppose we have one labeled sample

for each of n unique classes, our model can generate n relation

scores Judдei, j for the relation between one support input x j and

training sample set examples xi :

Judдei, j = Jr elation (C (

The f of xi
︷  ︸︸  ︷

Fθ (xi ) ,

The f of x j
︷  ︸︸  ︷

Fθ (x j ) ))

i = 1, 2, · · · ,n

(8)

Furthermore, we do the operation of the element-wise sum over

representation learning outputs of all samples from each training
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class to form this class’s feature map. This pooled class-level feature

map is concatenated with the feature map of the test image as above.

Objective Function of Each TaskWe use mean square error

(MSE) loss to train our model, regressing the relation score Judдei, j
to the ground truth: matched pairs have similarity 1 and the mis-

matched pair have similarity 0.

Loss (Fθ (xi ;x j ), {yi ;yj }) = argmin

n∑

i=1

m∑

j=1

(Judдei, j − (yi == yj ))

2

(9)

We design the two fully-connected layers to relation model. We

use two fully-connected layers to have 1024 and 512 outputs, re-

spectively, followed by a sigmoid function to get the final similarity

scores mentioned in Eq. (9).

2.6 Meta-Continual Learning Model

After the process of learning the function Fθ , where θ is learned

by minimizing Loss and then later fixed at meta-test time, we learn

FW for Ltotal from a single trajectory S using fully online SGD

updates in a single pass. We design the two fully-connected layers

to meta-continual learning model treated as W . We use two fully-

connected layers to have 256 and 1 outputs, respectively.

Objective Function of All Tasks Therefore, our total objective

is defined as:

min
W ,θ

∑

Ti∼p (T )

Ltotal (W ,θ ) =

∑

Ti∼p (T )

∑

Sk
z∼p (Sk |Ti )

[Ltotali (U (W ,θ ,Sk
z ))]

(10)

where Sk
z
= {(xi

z
,yi

z )}i+k−1i and z is the statue (meta-train or

support) of Sk . U (W ,θ ,Sk
z )) = (Wk ,θ ) represents an update

function where Wk is the weight vector after k steps of stochastic

gradient descent.

3 EXPERIMENTAL RESULTS

In this section, we conduct experiments on three kind datasets

(sketch datasets, cartoon datasets, and caricature datasets) to eval-

uate the performance of the proposed approach. Compared with

the state-of-the-art models on these datasets, our approach yields

better performance in term of accuracy (Acc.).

3.1 Experimental Setup

In this subsection, we describe the implementation details.

We resize the images from the three kind datasets to 256×256×3.

In sketch/caricature face recognition, we randomly choose 80 real

face images and 80 corresponding sketches/caricatures of the 80

subjects for training, and the remaining samples of these 80 subjects

are used in test. In cartoon face recognition, we randomly choose

16000 (8000×2) cartoon-face images of the 8000 subjects to construct

a training set, and the remaining samples of these 8000 subjects are

used as a test set. We randomly choose 10 times as per the above

strategy and take the average recognition accuracy for comparison.

Knowledge Graph Construction and Representation For

the GGNN model, the dimension of the hidden state is set as 4098

and that of the output feature is set as 512. The iteration timeT is set

as 5. GGNN is trained with ADAM following [28]. We get the 2560

(512 × 5) -dimensional knowledge embedding vector fknowledдe .

Knowledge-Based Representation Learning We build two

stacked fully connected layers in which the first one is 4608 (2048+

2560) dimension to 1024 dimension followed by the hyperbolic

tangent function while the second one is 1024 dimension to 2048.

Our Network Setting For all components, we use Adam opti-

mizer [21] with a learning rate of 0.001 and a decay for every 50

epochs. We train 1000 epochs when the loss starts to converge.

3.2 Comparison with the State-of-the-Art
Methods

We compare the state-of-the-art approaches with ours on these

three kind datasets. In this subsection, łOurs w/o GGNN" means

a variant of Ours, which only using network-based representation

learning and not using knowledge graph and knowledge-based

representation learning.

Sketch Face Recognition

We evaluate our approach on two tasks in sketch datasets: photo-

graph to sketch recognition and sketch to photograph recognition

on CUFS dataset [30, 47], CUFSF dataset [47, 52], IIIT-D Sketch

dataset [2], PRIP-VSGC dataset [3, 18], PRIP-HDC dataset [23],

MGDB dataset [35], UoM-SGFS dataset [16], and VIPSL dataset [37]

respectively. The photograph to sketch recognition here is: given

real faces of a public figure, we can recognize all the sketch faces of

that public figure from a dataset of the sketch. Sketch to photograph

recognition here is given sketch faces of that public figure, we can

recognize all real face of a public figure from a dataset of the sketch.

Baselines for Sketch Face Recognition We compare against

various state-of-the-art baselines for sketch face recognition, in-

cluding CAL-HFR [25], DVR [50], DLFace [39], LightCNN+DVG

[14], IACycleGAN [12], ASPT [51], and RCN [11].

Photograph to Sketch Recognition Table 1 shows the results

of baselines and ours for photograph to sketch recognition.

Effect of Proposed Knowledge Embedding. For evaluating

the impact of our approach, we compare results reported in row-

łOurs w/o GGNN" and row-łOurs". Our method utilizes the same

loss functions and features used in row-łOurs w/o GGNN" for a fair

comparison. We observe that the proposed approach improves per-

formance consistently in all cases. It is evident that using knowledge

embedding can enhance the effectiveness of our approach.

Effect of Our Approach. From Table 1, it is evident that our

approach is better than others. Specifically, ours is 11.6%, 15.1%,

19.8%, 24.8%, 33.3%, 28.1%, and 35.5% higher than CAL-HFR, DVR,

DLFace, LightCNN+DVG, IACycleGAN, ASPT, and RCN, on the

CUFS dataset, respectively. Besides, in other sketch datasets, there

are similar scenarios as the above. From above, our approach is more

effective and robust than the state-of-the-arts approaches for the task

of the photograph to sketch recognition.

Sketch to Photograph Recognition Table 2 shows the results

of baselines and ours for sketch to photograph recognition.

Effect of Proposed Knowledge Embedding. łOurs" is 9.4%

higher than łOurs w/o GGNN" on the CUFS dataset. Besides, in

other sketch datasets, there are similar scenarios as the CUFS

dataset. It shows the mechanism of knowledge embedding can improve

the performance for the sketch to photograph recognition.
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Table 1: Recognition Accuracies (Percent) for The Task of

Photograph to Sketch Recognition

Method

Acc.(%) Dataset
CUFS CUFSF IIIT-D Sketch PRIP-VSGC PRIP-HDC MGDB UoM-SGFS VIPSL

CAL-HFR 86.6% 82.4% 92.8% 78.0% 88.3% 92.0% 82.4% 67.2%

DVR 83.1% 79.9% 92.0% 76.3% 88.1% 91.0% 94.8% 56.3%

DLFace 78.5% 77.7% 90.8% 76.4% 82.8% 86.1% 94.8% 40.7%

LightCNN+DVG 73.5% 73.7% 97.0% 74.7% 87.0% 74.7% 93.0% 53.6%

IACycleGAN 65.0% 57.6% 88.4% 71.4% 83.7% 88.3% 89.4% 45.9%

ASPT 70.2% 59.0% 85.4% 66.9% 78.4% 67.0% 81.6% 45.4%

RCN 62.8% 72.8% 90.3% 65.6% 77.7% 65.5% 78.5% 37.6%

Ours w/o GGNN 90.1% 89.8% 92.7% 88.7% 89.5% 90.0% 92.5% 72.4%

Ours 98.2% 91.2% 99.4% 92.6% 91.5% 93.7% 97.9% 74.6%

Effect of Our Approach. łOurs" is better than others. Con-

cretely, łOurs" is 10.3%, 11.8%, 18.8%, 26.1%, 30.0%, 25.3%, and 34.1%

higher than CAL-HFR, DVR, DLFace, LightCNN+DVG, IACycle-

GAN, ASPT, and RCN, on the CUFS dataset, respectively. Besides, in

other sketch datasets, there are similar scenarios as the above. From

above, our approach is more effective and robust than the state-of-the-

arts approaches for the task of the sketch to photograph recognition.

Table 2: Recognition Accuracies (Percent) for The Task of

Sketch to Photograph Recognition

Method

Acc.(%) Dataset
CUFS CUFSF IIIT-D Sketch PRIP-VSGC PRIP-HDC MGDB UoM-SGFS VIPSL

CAL-HFR 89.5% 84.0% 95.0% 80.3% 89.5% 96.9% 84.6% 69.4%

DVR 88.0% 82.4% 94.0% 76.8% 90.3% 94.7% 97.8% 58.8%

DLFace 81.0% 82.2% 93.6% 77.6% 85.1% 87.9% 96.1% 43.0%

LightCNN+DVG 73.7% 73.8% 98.1% 78.7% 87.6% 78.4% 97.9% 57.1%

IACycleGAN 69.8% 61.4% 92.0% 76.1% 84.1% 92.6% 92.3% 48.5%

ASPT 74.5% 60.2% 89.3% 71.9% 82.0% 68.1% 86.1% 47.2%

RCN 65.7% 77.1% 91.8% 65.8% 78.0% 68.5% 82.0% 37.9%

Ours w/o GGNN 90.4% 94.2% 92.9% 92.8% 90.6% 90.4% 97.2% 77.2%

Ours 99.8% 94.9% 100.0% 96.5% 91.5% 94.2% 99.9% 78.3%

Caricature Face Recognition

We evaluate our approach on two tasks in caricature datasets:

photograph to caricature recognition and caricature to photograph

recognition on WebCaricature dataset [20], IIIT-CFW dataset [32],

Caricature-207 dataset [22] and CaVI dataset [17] respectively. Pho-

tograph to caricature recognition here is: given real faces of a public

figure, we can recognize all the caricature faces of that public figure

from a dataset of caricature. Caricature to photograph recognition

here is: given caricature faces of that public figure, we can recognize

all real face of a public figure from a dataset of caricature.

Baselines forCaricature FaceRecognitionWe compare against

various state-of-the-art baselines for caricature face recognition,

including PFRN [61], GFDF [7] and DDML [31].

Photograph to Caricature Recognition Table 3 shows the re-

sults of baselines and ours for photograph to caricature recognition.

Effect of Proposed Knowledge Embedding. FromTable 3, łOurs"

is 3.4% higher than łOurs w/o GGNN" on theWebCaricature dataset.

Besides, in other caricature datasets, there are similar scenarios as

WebCaricature. It shows the design of knowledge embedding can

improve the performance for the photograph to caricature recognition.

Effect of Our Approach. łOurs" is better than others. At length,

łOurs" is 6.2%, 8.1%, and 10.4% higher than GFDF, DDML, and PFRN,

on the WebCaricature dataset, respectively. Besides, in other carica-

ture datasets, there are similar scenarios as the above. From above,

our approach is more effective and robust than the state-of-the-arts

approaches for the task of the photograph to caricature recognition.

Table 3: Recognition Accuracies (Percent) for The Task of

Photograph to Caricature Recognition

Method

Acc.(%) Dataset
WebCaricature IIIT-CFW Caricature-207 CaVI

GFDF 87.5% 86.6% 87.5% 95.6%

DDML 85.7% 86.5% 86.7% 94.9%

PFRN 83.3% 84.5% 86.3% 96.3%

Ours w/o GGNN 90.3% 92.4% 94.8% 96.8%

Ours 93.7% 97.6% 97.3% 99.8%

Caricature to Photograph Recognition Table 4 shows the re-

sults of baselines and ours for caricature to photograph recognition.

Effect of Proposed Knowledge Embedding. FromTable 4, łOurs"

is 2.5% higher than łOurs w/o GGNN" on theWebCaricature dataset.

Besides, in other caricature datasets, there are similar scenarios as

WebCaricature. Knowledge embedding plays an important role in

our model for caricature to photograph recognition.

Effect of Our Approach. łOurs" is better than others. Explic-

itly, łOurs" is 5.6%, 6.9%, and 4.3% higher than GFDF, DDML, and

PFRN, on the WebCaricature dataset, respectively. Besides, in other

caricature datasets, there are similar scenarios as the above. From

above, our approach is more effective and robust than the state-of-the-

arts approaches for the task of caricature to photograph recognition.

Table 4: Recognition Accuracies (Percent) for The Task of

Caricature to Photograph Recognition

Method

Acc.(%) Dataset
WebCaricature IIIT-CFW Caricature-207 CaVI

GFDF 91.1% 88.4% 91.7% 97.7%

DDML 89.9% 91.2% 90.5% 95.1%

PFRN 92.5% 93.7% 94.4% 95.7%

Ours w/o GGNN 94.2% 93.9% 95.0% 98.5%

Ours 96.8% 99.9% 98.3% 99.9%

Cartoon Face Recognition

We evaluate our approach on cartoon face recognition in the

cartoon dataset (i.e., DanbooruCharacter dataset [1, 48]): given

cartoon faces of a public figure, we can recognize other cartoon

faces of that public figure from a dataset of the cartoon.

Baselines for Face Recognition We compare against various

state-of-the-art baselines for face recognition, including Center-

Loss Face [49], SphereFace [26], CosFace [45] and ArcFace [9].

Effect of Proposed Knowledge Embedding. FromTable 5, łOurs"

is 13.2% higher than łOurs w/o GGNN" on the DanbooruCharacter

dataset. It implies knowledge embedding is an important designing

in our model for cartoon face recognition.

Effect of Our Approach. From Table 5, łOurs" is better than

others. More specially, łOurs" is 43.3%, 42.2%, 36.6%, and 30.5%

higher than Center-Loss Face, SphereFace, CosFace, and ArcFace,

on the DanbooruCharacter dataset, respectively. From above, our

approach is more effective and robust than the state-of-the-arts ap-

proaches for the task of cartoon face recognition.
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Table 5: Comparison for Cartoon Face Recognition

Method

Acc.(%) Dataset
DanbooruCharacter

Center-Loss Face 24.5%

SphereFace 25.6%

CosFace 31.2%

ArcFace 37.3%

Ours w/o GGNN 54.6%

Ours 67.8%
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Figure 4: Cross-Database Recognition Accuracy of the Pro-

posed Method. Our method is on the CUFS and CUFSF

datasets for training, with respect to testing on the IIIT-D

dataset, the PRIP-VSGC dataset and the PRIP-HDC dataset.

3.3 Discussion on the Generalization Ability

The data distributions in different heterogeneous face scenarios

could be different from that during model development. To explore

the generalization ability of the proposed method, we only use the

CUFS and CUFSF datasets as sketch datasets to train our model

for task of photograph to sketch recognition. Then, we evaluate it

with cross-database testing on the IIIT-D dataset, the PRIP-VSGC

composite sketch database, and the PRIP-HDC dataset. We run

ten times following the above strategy in this discussion. In re-

sults, the recognition accuracy comparisons of testing on these

datasets are shown in Figure 4. This experiment indicates that the

proposed method could achieve good recognition performance in such

a challenging scenario.

4 CONCLUSION

This paper presents a joint cross-modal model based on knowledge

embedded meta-continual learning that can handle extreme vari-

ations present in sketches, cartoons, caricatures for recognition

tasks. In particular, we present a novel deep relation network su-

pervised via the knowledge embedding mechanism. To mitigate

catastrophic forgetting, we design a meta-continual model that

updates our network and improves the accuracy of its predictions.

By this meta-continual model, our network can learn from its past.

Our model that bridges sketches, cartoons, caricatures, and true-

life face photograph modality facilitates the successful transfer of

information across the modalities. Experimental results show our

model has strong robustness and high recognition accuracy.
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