
GOCHIUSA FACES, A DATASET FOR ANIME FACES

Rignak

ABSTRACT

We introduce the GochiUsa Faces dataset, building a

dataset of almost 40k picture of faces from nine characters.

The resolution range from 26x26 to 987x987 with 356x356

being the median resolution.

We also provide two supplementary datasets: a test set of

independent drawings and an additional face dataset for nine

minor characters.

Some experiments show the subject on which GochiUsa Faces

could serve as a toy dataset. They include categorization, data

compression and conditional generation.

Index Terms— dataset, anime, categorization, condi-

tional generation, data compression

1. INTRODUCTION

1.1. Deep learning and anime-related content

Recently, we saw a growing interest for anime-related deep

learning applications. The constant upgrade of hardware en-

abled to try tasks that could, a decade ago, only be run on low-

resolution pictures, for anime world problems. There were

tasks ranging from super-resolution to [1] image generation

[2] or multi-label estimation [3].

In parallel, there was a dramatic increase in the content of

content related to anime through imageboards such as Dan-

booru or Pixiv. A core feature of such website is a tag system.

It allows users (and not only the uploader) to edit the descrip-

tors added to a post. They have the advantage of enabling

tagging, giving us a precious source of annotated pictures.

Through the years, several datasets were built using these im-

ageboards, such as Nico-Illust [4] contains 400k pictures, or

Danbooru2019 [5] with 3.33 m. Still, it is difficult to obtain a

large number of pictures for a given character, except for few

very popular ones. More so, as they are illustration drawn by

a wide range of artists, they have a high intra-class variability

and thus are difficult to use for experimentation.

On the other hand, according to the website MyAnimelist,

there were respectively 39, 24, 42 and 30 series airing in Win-

ter, Spring, Summer and Fall 2019. With most of them being

cours of 12 or 13 episodes, each of them 22 minutes long,

and with 24 frames per second, they represent a number of 50

million frames for this single year. This amount, however, is

purely fictional as most of the frames are identical. Another

issue comes from that it comes with no annotation of the con-

tent (except the copyright) when extracted from the videos.

Believing that these frames are a precious source of anime

character pictures, we searched for an anime that could have

both a limited number of characters (to have a high number

of samples for each class) and a focus given on the faces (to

assure high resolutions).

1.2. Gochuumon wa Usagi desu ka ?

Gochuumon wa Usagi desu ka ? (abreviated in GochiUsa) is

a manga written by Koi and published by Houbunsha since

2011. As of early 2020, it has been adapted in two cours and

two OAV by White Fox and Kinema Citrus. A third season by

Sentai Filmworks is expected to be aired in fall 2020.

These anime are good material to fulfil bot our goals.



First, the story is centred around a cast of fewer than ten char-

acters. The screen time allocated for secondary characters is

extremely reduced, allowing to have a large number of frames

for each main character.

The second interesting point lies in the themes of the orig-

inal manga. With a focus on the characters, their interactions

and the slice-of-life, an important place is given for portraits.

This ensures a profusion of high-resolution portraits.

After explaining how the GochiUsa Faces dataset was

build, we will present some statistical data of the pictures and

finish with a few use cases for this dataset.

2. BUILDING OF THE DATASET

2.1. Choosing the frames

After getting all Blu-ray files (with a resolution of 1920x1080

pixels), we extracted two kinds of frames: the K-frames and

the P-frames.

For compression motives, all the frames of a video are not

directly encoded. Two subsequent frequent are, most of the

time, very similar. Thus, at a given time, it is interesting to use

the previous frames to provide information. These predicted

frames are called P-frames. Of course, some of the pictures,

usually when there are a lot of dissimilarities, are completely

encoded. They are denoted as key frame, or K-frames.

To avoid having too much of identical pictures, we de-

cided to use all the K-frames, but also 1 over 24 P-frame (one

P-frame at each second). Almost no K-frame contains char-

acters closing her eyes, so the P-frames are useful to increase

the diversity of facial expressions. At the end of the dataset

creation, the number of K-frame is 6097 (15.1% of the total)

while there are 34420 P-frames.

2.2. Extracting the frames

After getting these dozens of thousands of frames, we used

a face detector specifically created for anime faces [6]. Of

course, the face detector is not perfect, so we had to remove

all the false positives.

Since (i) all frames do not always depict a face and (ii)

there could be multiple faces on some frames, it is difficult to

predict a number of faces that we could expect beforehand.

Thus, it is unknown how many faces were lost via true nega-

tives. Simultaneously to removing the false positives, we also

removed the faces that didn’t belong to either the main classes

or the additional classes. We end up 40517 pictures.

As we wanted to avoid any information loss, we did not

discriminate the pictures based on their resolutions (except

when the face was too small for the character to be recog-

nizable) nor did we resize them. The resolution range from

26x26 pixels to 987x987 pixels. However, the median reso-

lution is 356x356. The figure 1 shows the distribution of the

resolution. We choose to plot with a log scale since datasets

are often resized to power of two.

Fig. 1. Distribution of the resolution. The labels on the x-axis

are 2
i+0.5 for i from 3 to 11.

All the faces were manually divided into classes, ending

the construction of the dataset. All the filenames follow the

pattern ”{filename} {frame type}-{i}-{j}.png” where :

• filename is the name of the video from which we ex-

tracted the picture ;

• frame type is either ”k” if the frame was a K-frame or

”p” if the frame was a P-frame ;

• i is the id of the frame (all K-frames were kept, but P-

frames were taken every second so i is to be multiply

by 24 to find the real id) ;

• j is the id of the face within the frame (as the face de-

tector could find multiple faces in one frame).

2.3. Training, validation and test set

We do not provide a division between training and valida-

tion set. In fact, it is not easy to do so because (i) pictures

are heavily time-correlated (especially the p-frames) and (ii)

the existence of openings, endings and previews (fortunately,

there is no flashback in GochiUsa) imply that some frames

are identical through multiple episodes. Thus, it is not possi-

ble to randomly divide the dataset in two, nor it is possible to

strictly choose the last pictures to make a validation dataset.

However, as we wanted to have independent pictures for

testing, we provide a third dataset. Henceforth, we did not

extract frames from the anime, but from illustrations scrapped

on Danbooru. We only downloaded works with a single char-

acter tag, this way we don’t have to go through all of them

for manual categorization. We applied the same detector as

on the frames and through the pictures to remove false pos-

itive. For this dataset, the filenames follow the pattern {id}
{i} face.png where id is the id of the picture on Danbooru



and i, as for the two other datasets, the index of the face within

the picture.

You can see samples of each dataset (main, additional and

test) in the figure 2.

(a)

(b)

(c)

Fig. 2. From left to right and top to bottom: sample for Blue

Mountain, Chino, Chiya, Cocoa, Maya, Megumi, Mocha,

Rize, Sharo for (a) the main dataset and (b) the test set,

Anko, Chiya’s grandmother, Cocoa’s mother, Rin, Rize’s fa-

ther, Saki, Takahiro, Tippy and Yura for (c) the additional

characters.

The distribution of each class is printed in the figure 3.

Sadly, the main dataset is unbalanced with the smallest class

(Blue Mountain) getting 1067 faces while the Cocoa class has

8571 elements. The criterion to belong to the main dataset

was to have more than one thousand pictures. However, one

could think about avoiding the Mocha and the Blue Mountain

class because of the number of samples, which is not even

half of the third smallest.

3. APPLICATIONS

Now that we have introduced the dataset, we will provide few

examples of tasks on which it can be used.

3.1. Categorization

The most obvious way to use it is for categorization.

Fig. 3. Number of pictures for each class and each dataset.

In the main dataset, two things can help to discriminate

the characters. The first one is the haircut : Chiya, Maya and

Sharo have blunt bangs, Rize and Megumi are usually depicted

with twintails, Chino has two x-hair ornaments and Cocoa an

hairclip. However, as seen in the figure 2, the most recog-

nizable features are the hair and eye colour. There are a few

outliers (like sepia pictures taken from the ending of the sec-

ond OAV), and sometimes the eyes are closed (or blank), but

the hair colour still is a good way to make a categorizer.

The figure 4 shows the histograms of the hue component

of each class, with 32 bins. They have been corrected by the

mean to avoid the peak over the skin colour (coincidentally,

there are the same as the maximum values for Blue Mountain,

Cocoa and Mocha).

We trained a single layer categorizer taking the thirty-two

bins of the histogram as input (thus, we get a very small

network with only 330 parameters). With this primitive ap-

proach, and no fancy techniques, we get an accuracy of 70%

on the validation set, but of only 44% on the test set.

After that, we trained a InceptionV3 to do the same work.

On the contrary with the histogram method, the InceptionV3

network needs all the elements of the training set to have the

same shape, so we choose to use pictures of size 128x128 pix-

els (of course, we had to upscale smaller images, and down-

scale bigger ones). To avoid an upscale too important, we

did not include picture smaller than 64x64 in this experiment

training set (this is a loss of 1.9% of all pictures). Again with-

out fancy techniques, we got 95% of accuracy on training and

88% on the test set. The confusion matrix of each of the two

methods are presented in the figure 5. We can see that the



Fig. 4. Difference between the mean hue histogram and the

hue histogram of each character.

deep learning model struggle with Mocha, having difficulties

to segment it from Cocoa (as it is her sister in GochiUsa, they

share similar hair and eye colours) and Chino (which is more

surprising). Overall, this capacity to generalize to the test set,

which comes from completely different source, and a much

more variability in style, is interesting.

3.2. Data compression through autoencoders

This dataset seems a lot simpler, semantically speaking, than

other categorization datasets like CIFAR-10 [7]. Thus, we

wanted so see if it was possible to encode them as latent vec-

tors of a very little size.

Thus, we trained a very simple auto-encoder to compress

GochiUsa Faces from 64x64 pixels to a single 32-element

vector and did the same with the 32x32 thumbs from CIFAR-

10. This auto-encoder is built with convolutional layers of

(a)

(b)

Fig. 5. Confusion matrix of the test set with a single layer

classifier using the hue histograms (a) and the InceptionV3

on 128x128 pixels pictures (b).

128 filters, followed by max-pooling to reduce the dimension

of the input, until a convolution of 32 filters. The decoder is

basically the symmetric.

As we can see on the figure 6.a, most of the pictures from

GochiUsa Face can be encoded/decoded while retaining the

main features. The auto-encoder is especially efficient to re-

draw the eyes. However, it only stands for the ”generic” pic-

tures. For example, profile or blank eyes aren’t correctly en-

coded.

The MNIST dataset is semantically simple, as it can be

encoded efficiently on a very small number of elements. On

the contrary, the CIFAR-10 dataset, with a very high variety

of pictures, is impossible to encode on 32 values.

So we can see that the GochiUsa Faces dataset could

serve as a toy when testing auto-encoders, even if we want to

use a resolution higher than the one provided by the MNIST

dataset.

3.3. Conditional generation

As we have quite a lot of categorized samples, we have tried a

conditional implementation of StyleGAN to generate samples

of a given character.

We trained the GAN for twelve hours on a resolution of



(a) (b)

(c) (d)

Fig. 6. Truth (first line) and reconstruction (second line) for

the GochiUsa Faces dataset (a & c), MNIST (b) and CIFAR-

10 (d).

64x64 pixels on Google Colab. This corresponds to more or

less 40000 batches.

The results, though they lack originality and somewhat

fuzzy (this could have been solved by longer training, but

Google Colab does not support sessions of more than twelve

hours, except with the Pro version, not available outside of

the USA). Samples for each class are presented in the figure

7.

Fig. 7. Sample generated with a Conditional StyleGAN2

One particularity of the GochiUsa Faces dataset is that

information about the class, as we say with the hue histogram,

is mainly stored in the colour space. The figure 8 illustrates,

via the results of a categorizer with the cGAN outputs, that the

conditioning appear very quickly with the GochiUsa Faces

dataset. On the contrary, the classes of the MNIST dataset

[8] are discriminated with their shapes. It takes more time to

learn how to draw them. The plot figures three trainings for

each dataset to minimize the risk of a statistical aberration.

Fig. 8. Performance of a classifier on the generated samples

during the training

4. CONCLUSION

We have deployed the GohiUsa Faces dataset. At the core

of this dataset are 39537 pictures from nine characters of the

Gochumon wa Usagi desu ka? anime. We also provide a test

set of 3262 pictures, from drawing of various artists.

We have shown that this dataset can be used to test a large

variety of computer vision techniques, from hue histograms to

auto-encoders. It is particularly suitable to test the emergence

of conditioning when using conditional image generations.



5. REFERENCES

[1] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang, “Image super-resolution using deep convolutional

networks,” CoRR, vol. abs/1501.00092, 2015.

[2] Gwern Branwen, “This waifu does not exist,”

https://www.gwern.net/TWDNE, 2019, Accessed: 2020-

04-02.

[3] Masaki Saito and Yusuke Matsui, “Illustration2vec: A

semantic vector representation of illustrations,” 2015.

[4] Hikaru Ikuta, Keisuke Ogaki, and Yuri Odagiri, “Blend-

ing texture features from multiple reference images for

style transfer,” in SIGGRAPH Asia Technical Briefs,

2016.

[5] Anonymous, Danbooru community, and Gwern

Branwen, “Danbooru2019: A large-scale crowd-

sourced and tagged anime illustration dataset,”

https://www.gwern.net/Danbooru2019, January 2020,

Accessed: DATE.

[6] nagadomi, “lbpcascade animeface,”

https://github.com/nagadomi/lbpcascade animeface,

2011, Accessed: 2020-04-02.

[7] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton,

“Cifar-10 (canadian institute for advanced research),” .

[8] Yann LeCun and Corinna Cortes, “MNIST handwritten

digit database,” 2010.


