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ABSTRACT

Converting hand-drawn sketches into clean line drawings is a cru-

cial step for diverse artistic works such as comics and product de-

signs. Recent data-driven methods using deep learning have shown

their great abilities to automatically simplify sketches on raster im-

ages. Since it is difficult to collect or generate paired sketch and line

images, lack of training data is a main obstacle to use these mod-

els. In this paper, we propose a training scheme that requires only

unpaired sketch and line images for learning sketch-to-line transla-

tion. To do this, we first generate realistic paired sketch and line

images from unpaired sketch and line images using rule-based line

augmentation and unsupervised texture conversion. Next, with our

synthetic paired data, we train a model for sketch-to-line transla-

tion using supervised learning. Compared to unsupervised methods

that use cycle consistency losses, our model shows better perfor-

mance at removing noisy strokes. We also show that our model

simplifies complicated sketches better than models trained on a

limited number of handcrafted paired data.
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(a) Input (b) MUNIT (c) MS (d) Ours

Figure 1: Visual comparison between MUNIT [Huang et al.

2018], MS [Simo-Serra et al. 2018a] and our method.

MS and our method require only unpaired sketch and

line image data. Image is copyrighted by David Revoy

www.davidrevoy.com and licensed under CC-by 4.0.

1 INTRODUCTION

Sketching allows artists to quickly express artistic concepts with-

out worrying details. It plays a fundamental role in the early stage

for many design works such as cartoons, movies and product de-

signs. After sketch designs are complete, artists need to simplify

the sketches into clean lines due to coarseness and redundancy of

sketch strokes, which is time consuming and hinders productivity.

While this process seems an obvious task for human, automatic

sketch simplification is challenging because there must be good rea-

soning to distinguish between detailed expressions to be preserved

and noisy strokes to be removed.

Recently, Simo-Serra et al. [Simo-Serra et al. 2018a,b, 2016] pre-

sented deep learning-basedmethods that can directly simplify raster

sketch images. Their methods can learn useful features automati-

cally from data, and show robust performance on various sketch

images. However, to acquire paired training data for supervised

learning, they asked artists to inversely generate sketch images

from line images, which is expensive and time consuming.

Meanwhile, unpaired sketch and line images are much easier to

acquire than paired one from the web. Many prior works presented

unpaired image-to-image translation models [Huang et al. 2018;

Zhu et al. 2017] using unsupervised learning. These methods al-

low to learn desired image-to-image translation functions without

expensive tasks of obtaining paired dataset. However, in sketch-to-

line translation task, we found that cycle consistency losses used

in these methods lead models to preserve undesired noisy sketch

lines as shown in Figure 1 (b).

In this paper, we propose a method for automatic sketch-to-line

translation using unpaired sketch and line images via synthesis

of pair sketches. Instead of learning mapping functions between
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Figure 2: Overview of our method. Our method consists of two steps: synthesizing paired sketch and line images, and learning

to simplify using the synthetic data.

unpaired domains at one go, our method consists of two steps: syn-

thesizing sketches for paired data generation and supervised model

learning with the synthetic data. For the synthesis of sketches, we

first generate initial synthetic sketches by rule-based line augmen-

tation that perturbs each Bézier curve individually by adding noises

to its control points. We then refine the initial synthetic sketches

using a multi-model unsupervised image-to-image translation (MU-

NIT) model to bridge the gap between textures in synthetic and real

sketch images. Finally, we train a recent image-to-image translation

model [Park et al. 2019] with our synthetic paired data to perform

the sketch-to-line translation.

We show the effectiveness of our framework by comparing our

method with existing sketch simplification methods and unsuper-

vised image-to-image translation models. With extensive user stud-

ies and perceptual metrics, we show that our model can simplify

complex actual sketches better than the prior works.

2 PROPOSED METHOD

In this section, we introduce the proposed method for unpaired

sketch-to-line translation. Our method consists of two steps: syn-

thetic pair sketch generation using unpaired sketch and line images,

and training a model for sketch simplification. For synthetic sketch

generation, we first create initial sketches using rule-based line

augmentation, and then refine the sketches using the unsupervised

image-to-image translation model [Huang et al. 2018] for realistic

sketch textures. Using the synthetic paired sketch and line images,

we train a slightly modified version of the Spatially-Adaptive Nor-

malization(SPADE) model [Park et al. 2019]. Figure 2 visualizes the

overview of the proposed method.

2.1 Rule-based Line Augmentation

In real sketches, each line segment is often represented by multiple

noisy strokes whose location and slope are slightly differ with the

line segment. To generate realistic and diverse sketch patterns, we

propose an algorithm that simulates sketching process by augment-

ing each curve with noises individually. Figure 3 visualizes the flow

of our line augmentation method.

C1

C2 C3

(a) (b) (c) (d)

Figure 3: Flow of generating initial sketches described in

Section 2.1. (a) Input curve represented by the three control

points. (b) the results of the control points perturbation. (c)

the case if the curve is divided into multiple smaller strokes.

(d) the result after repeatedly drawing the sketch strokes.

We first vectorize a clean line image to get the list of the paramet-

ric curves using existing vectorization methods[Noris et al. 2013].

These methods work well with clean line images while they often

fail to vectorize complicated sketch images. We use simple qua-

dratic Bézier curve [Carter 1997] which can model curve shapes by

three control points as follows:

B(c1, c2, c3) = (1 − t)2c1 + 2(1 − t)tc2 + t
2c3,

where t ∈ [0, 1].

By manipulating the control points c1 to c3, the Bézier curve can

intuitively deform the shape of the line. We perturb the parameters

of each Bézier curve by adding noises to the locations of the control

points to simulate noisy sketch strokes.We sample the noises ϵ from

theGaussian distributionwith zeromean and the standard deviation

α · log(lenдth(s)), where s is a given clean stroke to be perturbed,

and α is a hyperparameter value. We set the perturbation noises

proportional to the length of the line segment, because the absolute

scales of noises in sketch lines tend to increase proportionally to

the line lengths in real sketches.

We also randomly divide long curves intomultiple shorter curves,

to enhance the variety of synthetic sketches and mimic the common

behavior of artists that expressing a long line with multiple short

lines. For this purpose, we evenly divide the segment toMc curves

and add noises to each curve independently. Finally, since artists

often reinforce sketches by drawing strokes multiple times, we also
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Figure 4: Description of Multi-modal Unsupervised Image-

to-Imaget Translationmodel [Huang et al. 2018] used in our

method. The model convert the textures of the initial syn-

thetic sketches into the textures of real sketches.

repeatedly generate noisy strokes, where the number of repeats is

another hyperparameterMs . The choices of hyperparameters will

be described in detail in Section 3.1.

Finally, we augment the synthetic sketches by changing back-

ground color and illumination. We also simulate areas made of lines

that are common in sketches by running the watershed segmen-

tation and filling some regions with lines with a regular interval.

Figure 6 (d) shows some examples of the generated initial synthetic

sketch images.

2.2 Unsupervised Texture Conversion

Although the initial synthetic sketches generated by Section 2.1

mimic real sketches in shape, they do not express varying textures

and colors of papers and pencils used in real sketches. To convert

artificial textures of the synthetic sketches, we train a multi-modal

unsupervised image-to-image translation(MUNIT) model [Huang

et al. 2018] with the initial synthetic sketches and real sketches.

In the MUNIT [Huang et al. 2018], generators consist of encoders

and decoders. By decoding the contents from the synthetic sketches

using the decoder for real sketches, we can generate the images

with the contents of the synthetic sketches and the textures of real

sketches. Please refer the original paper for more detailed model

descriptions. Figure 4 describes the overall MUNIT model.

Figure 6 (e) shows some completed synthetic sketches, and Fig-

ure 6 (b) shows the results without the line augmentation. Mastering

Sketching(MS) [Simo-Serra et al. 2018a] also presented a method

for line-to-sketch conversion, and their method requires real paired

sketch and line images. We show some example sketches by their

method in Figure 6 (c).We can see that more challenging and diverse

patterns are produced with our methods.

2.3 Learning to Simplify using Synthetic Data

To learn sketch-to-line translation, we train a recently proposed

Spatially-Adaptive Normalization(SPADE) model [Park et al. 2019].

The model requires paired dataset and shows prominent progress

in semantic image generation task compared to popular Pix-to-Pix

model [Isola et al. 2017]. We train the model with our synthetic

paired sketch and line images created by Section 2.1 and Section 2.2.

normal dist.

resized sketches

+ + +

SPADE
ResBlock

Conv

+ Concat

Input

Figure 5: Description of our modified version of Spatially-

Adaptive Normalization(SPADE) model [Park et al. 2019].

We feed the generator with the feature maps encoded by an

additional convolutional neural network.

(a) (b) (c) (d) (e)

Figure 6: Comparison of synthetic sketches by vari-

ous methods. (a) Input image. Synthetic sketches by

(b) MUNIT [Huang et al. 2018], (c) MS [Simo-Serra

et al. 2018a], (d) Our line augmentation, and (e) Our

full methods. Images are copyrighted by nakamura02

https://www.deviantart.com/nakamura02.

Unlike semantic labels used in the original SPADE paper, sketch

images need to be encoded first to being semantically meaningful.

Therefore, we additionally feed the feature maps encoded by an

additional convolutional neural network jointly trained as shown

in Figure 5. Without the encoded features, we found the model

suffers to find meaningful structures in sketch images. We used

Instance Normalization for the generator. The overall architecture

of our simplification model is described in Figure 5.

3 EXPERIMENTS

3.1 Implementation Details

We collected 130 line images and created 10 sketches per each image.

To train the MUNIT model, we collected unpaired sketch and line

images from Danbooru2018 Dataset [Anonymous 2019]. We col-

lected 20,000 sketches and 1320 line arts. For the hyperparameters

used in the synthetic sketch construction, we used α ∈
{

30, 40, 50
}

and randomly sampledMc andMs values from the poisson distri-

bution with λ = 3. We set the ratio of colored or filled with lines

regions to 50% of the images. When training MUNIT and SPADE

models, we used ADAM optimizer [Kingma and Ba 2015] with a
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(a) Input sketch (b) MS (c) SPADE(MS) (d) Inker (e) CycleGAN (f) MUNIT (g) Ours

Figure 7: Visual comparison between various methods for sketch-to-line translation. The detailed references of each method

are described in Section 3.2. Upper image is copyrighted by David Revoy www.davidrevoy.com and licensed under CC-by 4.0.

learning rate of 0.0001 with β1 = 0.5 and β2 = 0.9. During training,

we first resize images into 512 × 512 and use 256 × 256 cropped

patches. We trained the models 250,000 iterations with the batch

size of 16. To prevent deformation of the line width of ground

truth line images, we use line normalization module proposed in

[Simo-Serra et al. 2018b].

3.2 Comparison with Existing Approaches

We compared our model with various state-of-the-art methods.

Figure 7 shows the visual comparison between MS [Simo-Serra

et al. 2018a], SPADE(MS), Inker [Simo-Serra et al. 2018b], Cycle-

GAN [Zhu et al. 2017], MUNIT [Huang et al. 2018] and our model.

SPADE(MS) model is trained with the sketches generated by the

line-to-sketch model presented in MS. For the results of MS and

SPADE(MS), we use the pretrained models provided by the authors,

and for CycleGAN and MUNIT, we use the codes provided by their

project sites. For Inker, we get the results from their demo site. We

resized test images into 512 × 512.

As shown in Figure 7 (e) and (f), CycleGAN and MUNIT often

suffer to remove noisy strokes, because they are forced to recon-

struct noisy strokes from generated line images by cycle consistency

losses. Compared to these models, our model is better at removing

noises from strokes without worrying about the reconstruction.

Also, our model works more robustly in difficult edge cases than

models trained with a limited number of manually generated paired

data. We believe that our model takes advantages of utilizing vari-

ous and challenging sketch patterns synthesized by the proposed

methods.

We report Fréchet Inception Distance(FID) between the distribu-

tion of results of each model and the distribution of test line images.

We used 1000 sketch and 150 line images for the measurement.

As shown in Table 1, our model achieves the lowest FID scores

among the models. For human evaluation, we asked 20 users to

choose the most visually appealing image. To reduce user burden,

three models with the highest FID scores with randomly selected

20 test sketch images were compared. We report the percentage of

Table 1: FID Scores(Lower is better) and the user study scores

of various methods.

FID Scores User Study Scores

MS 100.70 25.0%

SPADE(MS) 109.59 -

CycleGAN 100.04 25.0%

MUNIT 101.21 -

Ours 95.38 50.0%

predominant images in the table 1, and found that our method is

the most preferred by the users.
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