
Asirra: A CAPTCHA that Exploits
Interest-Aligned Manual Image Categorization

Jeremy Elson, John R. Douceur, Jon Howell
Microsoft Research

{jelson,johndo,howell}@microsoft.com

Jared Saul
Petfinder, Inc.

jared@petfinder.com

ABSTRACT
We present Asirra (Figure 1), a CAPTCHA that asks users to iden-
tify cats out of a set of 12 photographs of both cats and dogs. Asirra
is easy for users; user studies indicate it can be solved by humans
99.6% of the time in under 30 seconds. Barring a major advance
in machine vision, we expect computers will have no better than a
1/54,000 chance of solving it. Asirra’s image database is provided
by a novel, mutually beneficial partnership with Petfinder.com. In
exchange for the use of their three million images, we display an
“adopt me” link beneath each one, promoting Petfinder’s primary
mission of finding homes for homeless animals. We describe the
design of Asirra, discuss threats to its security, and report early de-
ployment experiences. We also describe two novel algorithms for
amplifying the skill gap between humans and computers that can
be used on many existing CAPTCHAs.

1. INTRODUCTION
Over the past few years, an increasing number of public web

services have attempted to prevent exploitation by bots and auto-
mated scripts, by requiring a user to solve a Turing-test challenge
(commonly known as aCAPTCHA1 or HIP2) before using the ser-
vice. Because the challenges must be easy to generate but diffi-
cult (for non-humans) to solve, all CAPTCHAs rely on some secret
information that is known to the challenger but not to the agent
being challenged. For our purposes, we can divide CAPTCHAs
into two classes depending on the scope of this secret. InClass I
CAPTCHAs, the secret is merely a random number, which is fed
into a publicly known algorithm to yield a challenge, somewhat
analogous to a public-key cryptosystem.Class IICAPTCHAs em-
ploy both a secret random input and a secret high-entropy database,
somewhat analogous to a one-time-pad cryptosystem. A critical
problem in building a Class II CAPTCHA is populating the database
with a sufficiently large set of classified, high-entropy entries.

Class I CAPTCHAs have many virtues. They can be concisely
described in a small amount of software code; they have no long-

1“Completely Automated Public Turing test to tell Computers andHumans
Apart.” CAPTCHA is a trademark of Carnegie Mellon University.
2“Human Interaction Proof”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia,
USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

Figure 1: An Asirra challenge. The user selects each of the 12 images
that depict cats. As the mouse is hovered over each thumbnail, a larger
image and “Adopt me” link appear. “Adopt me” first invalidate s the
challenge, then takes the user to that animal’s page on Petfinder.com.

term secret that requires guarding; and they can generate a prac-
tically unbounded set of unique challenges. On the other hand,
their most common realization—a challenge to recognize distorted
text—evince a disturbingly narrow gap between human and non-
human success rates. Optical character recognition algorithms are
competitive with humans in recognizing distinct characters, which
has led researchers toward increasing the difficulty of segmenting
an image into distinct character regions [11]. However, this in-
crease in difficulty affects humans as well. Although laboratory
experiments suggest that humans can segment text characters accu-
rately [2], CAPTCHAs deployed on commercial public web sites
continue to use cleanly segmented challenges (e.g., Fig. 2a), some
of which are dialed-down versions (Figs. 2d and 2e) of CAPTCHAs
with difficult segmentation challenges (Fig. 2c). The owners of
commercial web sites have apparently decided that a user’s success
at navigating a CAPTCHA depends not only on whether they are
able to solve the challenge, but also on whether they arewilling
to put forth the effort. Informal discussions with MSN and other
web site owners suggest even relatively simple challenges can drive
away a substantial number of potential customers.

Class II CAPTCHAs have the potential to overcome the main
weaknesses described above. Because they are not restricted to
challenges that can be generated by a low-entropy algorithm, they

Figure 2: A gallery of text CAPTCHAs. Simple text challenges, such
as a (register.com), are still common despite recent defeat by optical
character recognition. Researchers have begun to focus on schemes
that make letter segmentation difficult, as seen inb (Carnegie Mellon
[13]) and c (Microsoft Research [2]). Webmasters, wary of what users
will tolerate, dial back researchers’ noise parameters, seen in d (Mi-
crosoft Hotmail) and e (Yahoo! Mail).

can exercise a much broader range of human ability, such as recog-
nizing features of photographic images captured from the physical
world. Such challenges evince a broad gulf between human and
non-human success rates, not only because general machine vision
is a much harder problem than text recognition, but also because
image-based challenges can be made less bothersome to humans
without drastically degrading their efficacy at blocking automatons.

A significant issue in building a Class II CAPTCHA is popu-
lating the secret database. Existing approaches take one of two
directions: (a) mining a public database or (b) providing entertain-
ment as an incentive for manual image categorization. Examples
of the first group include the seminal work by Chew and Tygar [3],
which used Google Image Search [6]; hotcaptcha [1], which ref-
erences the HotOrNot database [7]; and KittenAuth [16], which
draws images from Wikimedia Commons [17]. A problem with
these approaches is that the public source of categorized images is
small or available to attackers, so a small, fixed amount of effort
spent reconstructing the private database can return the ability to
solve an unbounded number of challenges. The second direction
was pioneered by the ESP-PIX CAPTCHA [13], whose database is
populated as a deliberate side effect of playing the ESP Game [15],
a very clever mechanism for enticing people to label images accu-
rately. Although potentially powerful, it is not yet clear whether
this approach will yield a sufficiently large set of categorized im-
ages. Furthermore, many of the images in the current implemen-
tation are rather abstract, which may make the challenge difficult
enough to drive away users.

In this paper, we present a new direction for populating image
databases for Class II CAPTCHAs, namely re-purposing a large,
continually evolving, private database of images that are manually
categorized. Although this may seem trivial, it is nota priori clear
why the owner of such a database would be willing to release the
images for use in Turing-test challenges. The answer is that there
can exist—and, in at least one instance, does exist—analignment of
interestsbetween a database owner and web-service owners wish-
ing to secure their sites. Both parties can benefit from selective,

wide-scale display of categorized images: the latter for security
and the former for advertising.

We presentAsirra 3, a CAPTCHA that asks users to categorize
photographs depicting either cats or dogs. An example is shown in
Figure 1. Asirra’s strength comes from an innovative partnership
with Petfinder.com [9], the world’s largest web site devoted to find-
ing homes for homeless animals. Petfinder has a database of over
three million cat and dog images, each of which is categorized with
very high accuracy by human volunteers working in thousands of
animal shelters throughout the United States and Canada. Petfinder
has granted ongoing access to its database, which grows by nearly
10,000 images daily, to the Asirra project. In exchange, Asirra
provides a small “Adopt me” link beneath each photo, promoting
Petfinder’s primary mission of exposing adoptable pets to potential
new owners. This partnership is mutually beneficial, and also pro-
duces the dual social benefits of improving computer security and
animal welfare.

This paper describes Asirra and an analysis of its strengths and
weaknesses. We also report our deployment experience, and the
results of two user studies involving 332 test subjects.

Asirra is easy for users; it can be solved by humans 99.6% of the
time in under 30 seconds (Section 6, Table 1). Barring a major ad-
vance in machine vision or compromise of our database, we expect
computers will have no better than a 1/54,000 chance of solving it
(Section 6, Table 2). Anecdotally, users seem to find the experience
of using Asirra much more enjoyable than a text-based CAPTCHA
that provides equal security.

The organization of this paper is as follows. In Section 2, we
review related work in more detail. In Section 3, we describe the
design of Asirra. §3.1 describes user experiments we performed
to quantify humans’ performance.§3.2 explores the other side of
the equation—potential attacks on Asirra, and how they can be re-
sisted. We developed two algorithms that can be used to improve
virtually all CAPTCHAs, including those that are text-based; these
improvements are described in Section 4. In Section 5 we describe
our scalable Asirra implementation. Finally, in Section 6, we sum-
marize our contributions and offer conclusions.

Asirra is available free atwww.asirra.com.

2. RELATED WORK
Since the concept of a CAPTCHA was widely introduced by von

Ahn in 2000 [14], hundreds of design variations have appeared. By
far, most are text-based: The computer generates a challenge by se-
lecting a sequence of letters, rendering them, distorting the image,
and adding noise. Text CAPTCHAs are popular because they are
simple, small, and easy to design and implement. Challenges as
short as four characters are robust against random guessing; there
are364 ≈ 1.7 million possible four-character challenges consisting
of case-insensitive letters and digits.

Unfortunately, computers can do far better than guess randomly.
Simard et al. showed that Optical Character Recognition (OCR)
can achieve human-like accuracy, even when letters are distorted,
as long as the image can be reliably segmented into its constituent
letters [11]. Mori and Malik demonstrated that von Ahn’s original
GIMPY CAPTCHA [13] can be solved automatically 92% of the
time [8].

Consequently, recent text-based CAPTCHAs have focused on
making image segmentation difficult. Figure 2c shows a challenge
designed by Chellapilla et al., who claim it is hard for OCR be-
cause the noise confounds known segmentation techniques [2]. Mi-
crosoft’s Hotmail (free email service) deployed it; however, due

3“Animal Species Image Recognition for Restricting Access”

to usability concerns, they later selected noise parameters demon-
strated in Figure 2d. Yahoo’s current CAPTCHA, shown in Fig-
ure 2e, seems to have suffered a similar fate. The noise is not suffi-
cient to make automatic segmentation unreliable. Text CAPTCHAs
seem either too easy to be secure, or too difficult to be tolerated by
users.

2.1 Image Classification CAPTCHAs
Text-based CAPTCHAs seem to universally suffer from an un-

fortunate property: Making them hard for computers also makes
them hard for humans. This has led some researchers to use pho-
tographs as CAPTCHAs instead. Because general machine vision
is a much harder problem than character recognition, there are op-
portunities to find and exploit larger gaps in the capabilities of hu-
mans and computers.

Chew and Tygar [3] were among the first to describe using la-
belled photographs to generate a CAPTCHA. They generated a
database of labelled images by feeding a list of easily-illustrated
words to Google Image Search [6]. Unfortunately, this technique
does not yield well-classified results due to Google’s method of in-
ferring photo contents based on surrounding descriptive text. To
use Chew and Tygar’s example, the wordpumpkinmay refer to ei-
ther a large vegetable or someone’s pet cat Pumpkin. Because of
these errors, they manually cull bad images from their collection.
This is devastating to the security of the scheme. A database small
enough to be manually constructed by researchers is also small
enough to be manuallyre-constructed by an attacker.

Of course, applying automation to database construction is in-
herently problematic. If a researcher can populate a database by
writing a program to automatically classify images, an attacker can
write a program to beat the CAPTCHA by performing the same
classification.

A novel solution to this problem is described by von Ahnet al.:
They were able to entice humans to manually describe images by
framing the task as a game. Their “ESP Game” awards points to
teams of non-communicating players who can both pick the same
label for a random image, encouraging them to use the most obvi-
ous label [15]. Their PIX CAPTCHA displays four images from
the ESP Game database that have the same label, then challenges
the user to guess the label from a menu of 70 possibilities.

PIX is clever, but has several potential problems. First, its scale
seems insufficient. By solving PIX repeatedly, it is not hard to get
repeated images, making the database easy to reconstruct by an
attacker. However, perhaps more fundamental, it has a fixed menu
of only 70 object classes. This makes it a potential target for brute
force attacks (though potentially defensible using our token bucket
scheme; see Section 4.2). Even with a large number of categorized
images, it may be difficult to add a large number of classes. As the
number of classes goes up, so does the number of words that could
reasonably be used to describe a set of photos. Finally, PIX photos
are sometimes abstract, making it potentially difficult or frustrating
as a CAPTCHA.

A fascinating use of a large-scale human-generated database is
the site HotCaptcha.com. HotCaptcha displays nine photographs
of people and asks users to select the three which are “hot.” Its
database comes from HotOrNot.com, a popular web site that in-
vites users to post photos of themselves and rate others’ photos as
“hot” or “not.” HotCaptcha is clever in its use of a pre-existing mo-
tivation for humans to classify photos at a large scale. However,
humans may have difficulty solving it because the answers are sub-
jective and culturally relative; beauty has no ground truth. It is also
offensive to many people, making it difficult for serious web sites
to deploy.

Finally, worthy of mention is the similar-seeming KittenAuth
project [16]. Like Asirra, KittenAuth authenticates users by asking
them to identify photos of kittens. However, this is a coincidental
and superficial similarity. KittenAuth is trivial to defeat because it
is has a database of less than 100 manually selected kitten photos.
An attacker can (indeed, already has [12]) expose the database by
manually solving the KittenAuth challenge a few dozen times. An
arbitrary number of challenges can then be solved using an image
comparator robust to simple image distortions.

3. ASIRRA
Asirra surmounts the image-generation problem in a novel way:

by forming a partnership with Petfinder.com [9], the world’s largest
web site devoted to finding homes for homeless pets. Asirra gen-
erates challenges by displaying 12 images from a database of over
three million photographs that have been manually classified as cats
or dogs. Nearly 10,000 more are added every day by volunteers at
animal shelters throughout the United States and Canada. The size
and accuracy of this database is fundamental to the security pro-
vided by Asirra; it is what differentiates our work from previously
proposed image-based CAPTCHAs.

In exchange for access to Petfinder’s database, Asirra provides
an unobtrusive “Adopt me” link beneath each photo. This promotes
Petfinder’s primary mission of exposing adoptable pets to potential
new owners. To maximize the probability of successful adoptions,
Asirra will employ IP geolocation to determine the user’s approx-
imate region, and preferentially displays pets that are nearby. The
security implications of this feature are discussed in Section 3.2.1.

Asirra has several attractive features:

• Humans can solve it quickly (§3.1.2) and accurately (§3.1.3).

• Computers can not solve it easily (§3.2).

• Unlike many image-based CAPTCHAs which are abstract
or subjective, Asirra’s challenges are concrete, inoffensive
(cute, by some accounts), require no specialized or cultur-
ally biased knowledge, and have definite ground truth. This
makes Asirra less frustrating for humans. Some beta-testers
found it fun. The four-year-old child of one asked several
times to “play the cat and dog game again.”

• It promotes an additional social benefit: finding homes for
homeless animals.

Asirra also has several disadvantages:

• Most CAPTCHAs are implemented as stand-alone program
libraries that can be integrated into a web site without intro-
ducing external dependencies. In contrast, Asirra, like PIX,
is both an algorithm and adatabase; there is only one in-
stance of it. Therefore, Asirra must be implemented as an
administratively centralized web service that is used to gen-
erate and verify CAPTCHAs on-demand for every site that
wishes to use it. (Our scalable implementation is described
in Section 5.)

• Asirra may abruptly lose its security if the database is com-
promised. For example, an attacker may hire cheap labor to
classify all three million images. If this does happen, we may
not even be aware of the attack.

• A typical Asirra challenge requires more screen space than a
traditional text-based CAPTCHA.

• Like virtually all other CAPTCHAs, Asirra is not accessible
to those with visual impairments (§3.3).

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

A
cc

ur
ac

y

Image Area (pixels2)

Average Accuracy as a function of Image Area

Figure 3: Size of an individual image vs. classification accuracy in our
test population.

3.1 Usability
To quantitatively evaluate Asirra, we performed several user stud-

ies. We also collected data from our live Asirra deployment, which
is described in Section 5.

The user studies, in total, displayed 23,208 cat and dog images to
332 test subjects. The subjects were Microsoft employees, friends,
and family, recruited via postings to internal mailing lists. Our
experiment displayed a random sequence of cat and dog images,
one at a time. Users were asked to identify the species depicted in
each image as it appeared. We used 300 random images from the
Petfinder database, each scaled to a random size as described in the
next section. The users’ response time and accuracy were recorded.
To match the conditions of a real CAPTCHA, we implemented the
experiment in the web browser using HTML and JavaScript, and
asked users to participate from their own home or office comput-
ers.

The real Asirra web service went live in March of 2007. In the
subsequent 6 weeks, it served about 100,000 challenges. Most of
these were from our own web page that demonstrates Asirra. How-
ever, several dozen web sites (blogs, free services, etc.) have ex-
perimented with integrating Asirra and were responsible for about
13,000 “real” challenges.

In following sections, we characterize various aspects of Asirra’s
performance, based on both the outcome of our user experiments
and data from our deployment.

3.1.1 Best Image Size
Our first design question was, “What is the best image size to dis-

play?” We expected larger images to exhibit higher accuracy and
faster response time. However, smaller images have the advantage
of taking up less screen space, making Asirra easier to integrate vi-
sually with the rest of a web page. Smaller images are also faster to
download, which especially important for users with slow Internet
connections.

To find the best image size, our first user experiment randomly
varied the size of the images from a minimum of 225 total pixels
(about 15x15 pixels square) to a maximum of 30,000 pixels (about
175x175 pixels square). We used total pixels instead of linear di-
mension as our metric because most images are not square. We
collected data from 18,311 displays of images to 185 users.

Figure 3 plots image size vs. average accuracy. Each graph seg-
ment depicts the average of 1/100th (183) of our data points. 10,000
pixels seems to be the sweet spot: larger images show no improve-
ment. (We quantify classification accuracy in Section 3.1.3).

800

900

1000

1100

1200

1300

1400

1500

0 5000 10000 15000 20000 25000 30000

M
ed

ia
n

R
es

po
ns

e
T

im
e

(m
s)

Image Area (pixels2)

Median Response Time as a function of Image Area

Figure 4: Size of an individual image vs. time required to classify it in
our test population.

3.1.2 Typical Response Time
We also used our first experiment to evaluate the effect of image

size on response time. Figure 4 shows the results. We plot the me-
dian response time because it is robust against outliers (e.g., when a
subject receives a phone call during the experiment). 10,000 pixel
images are typically classified in about 900msec. There does seem
to be a slight (50msec) speed benefit to displaying images larger
than 10,000 pixels. It is also interesting to note from Figures 3 and
4 that smaller images cause degradation in both response timeand
accuracy. That is, users spend longer looking at an image but still
end up getting it wrong.

Budgeting 900msec per image, plus a few extra seconds to un-
derstand the task, we expect most users will spend about 15 seconds
solving a single, 12-image Asirra challenge.

3.1.3 Classification Accuracy
After our first experiment made the best image size clear, we ran

a second user experiment focusing exclusively on images scaled to
10,000 pixels. Our goal was to collect a large number of samples
at our target image size. We collected data from 4,717 displays of
images to 147 users. The overall accuracy rate was 98.5%.

The Asirra challenge has 12 images. Based on a 98.5% per-
image accuracy, 83.4% of users should be able to pass Asirra after
one challenge, 97.2% after two challenges, and 99.5% after three.
However, Asirra uses a novel scheme called thePartial Credit Al-
gorithm, described in Section 4.1, which significantly increases the
probability of users passing Asirra while only marginally improv-
ing the yield of a bot. With PCA, we expect 99.6% of users will
solve Asirra after two challenges.

Extracting a good estimate of users’ error rates in the wild is
somewhat more difficult. In our controlled experiment, users were
focused exclusively on image categorization, so errors were clearly
attributable to task difficulty. In contrast, the deployed CAPTCHA
is integrated into web forms with many other fields and informa-
tion. Any click of the form’s “Submit” button causes Asirra to
score the challenge, even if the user had some other intent in mind;
26% of scoring requests received by our server had no response
at all (no cats selected). Of non-null responses scored, 66% were
scored as correct. Note that in this accounting, a user who success-
fully solves Asirra on her second try counts as 50% accuracy (one
right plus one wrong response). In addition, since Asirra is new,
users may sometimes be tinkering: “Oh, what happens if I get one
wrong?”

Figure 5: Though rare, some images at Petfinder.com are confusing
to humans. (left) A photo depicting a cat and dog together.(right) A
dog-like cat.

3.1.4 Automatic Database Pruning
The classification errors made by users are not uniformly dis-

tributed: some images are confusing, even to humans. Figure 5
shows two examples.

If Asirra achieves only modest popularity, our accuracy figures
are likely to stay close to those described in the previous section.
However, if Asirra receives widespread use (tens of thousands of
challenges generated per day), we will have enough data to make
automatic, statistically significant judgements about confusing im-
ages. There will be cases when a user ultimately succeeds in pass-
ing Asirra, but may have made errors along the way. Once Asirra
decides a user is human, it will be able to mark the previously-
incorrect images as “possibly confusing.” Images that are marked
beyond a threshold can then be removed from the database.

3.1.5 Interest in the “adopt me” link
In both user experiments, we placed a small “Adopt me” link

below the cat or dog displayed in each trial. We did not give users
any instructions regarding this link or tell them what it did. Our
goal was to test how often Internet users involved in some unrelated
task would be motivated (by curiosity, cuteness of a photo, etc.)
to click it. This test is important because it suggests whether our
partnership with Petfinder is viable.

In our controlled experiments, 27 users (7.5% of the test popula-
tion) clicked “Adopt me”. One of our beta-testers adopted a beagle.

The public’s interest in the link has been lower. In the 6 weeks
following Asirra’s release, we issued 13,334 “real” challenges—
that is, integrated with pages other than our own demonstration
pages. 279, or 2.1%, led to clicks on “Adopt me”.

We discuss the security implications of “Adopt me” in§3.2.1.

3.2 Security
Before discussing the security of Asirra, it is useful to review

the threat model. CAPTCHAs are an unusual area of security in
that we are not trying to provide absolute guarantees, only slow
down attackers. By definition, anyone can “break” a CAPTCHA
by devoting a small amount of human effort to it. A CAPTCHA
therefore is successful, essentially, if it forces an automated attack
to cost more than 30 seconds worth of a human’s time in a part
of the world where labor is cheap. The generally accepted figure
in the literature [13, 2] seems to be that CAPTCHAs should admit
bots less than with less than 1/10,000 probability.

3.2.1 Attacks on “Adopt Me”
The most common first question we get when people see Asirra

is, “Doesn’t the adopt-me link defeat your security?” This mis-
conception is understandable; each pet’s page on Petfinder.com de-

scribes it as being either a cat or dog. However, this is not ac-
tually a security hole. The adopt-me links are not direct links to
Petfinder.com; they lead to the Asirra web service. Asirra provides
a redirection to Petfinder.com only after it has marked the challenge
as invalid. (A new challenge is then fetched and displayed.) Asirra
rejects attempts to solve invalidated challenges. In addition, Asirra
only permits redirection for a single adopt-me link per 12-image
challenge. The number of allowed redirections per IP address per
day is also limited, to prevent adopt-me from becoming a vector for
revealing large portions of the database.

Adoption links also have a second, more subtle effect on secu-
rity. Currently, the images shown as a challenge are selected at
random from the entire database of pet images. To maximize its
utility to Petfinder, we would ultimately like to restrict the chal-
lenge to pets that are close to the user based on IP geolocation,
and currently available for adoption. These constraints reduce the
usable database for a given user to just a few thousand images,
small enough to be easily exploitable. Our plan, therefore, is to
allow the first few challenges per day from an IP address to use
the restricted database; subsequent challenges will be drawn from
the complete collection. We have not yet implemented this feature,
so our challenges currently draw images from Petfinder’s complete
image pool, including the history of pets previously available for
adoption.

3.2.2 Brute Force
The simplest attack on Asirra is brute force: Give a random so-

lution to challenges until one succeeds. If an attacker has no basis
for a decision (that is, a 50% probability of success for each image)
brute force will succeed with probability 1/4,096 for a 12-image
challenge. This is a large enough slowdown that it becomes easy
to detect and evade such an attack. We use a token bucket scheme,
described in detail in Section 4.2. Briefly, the scheme penalizes IP
addresses that get many successive wrong answers by forcing them
to answer two challenges correctly within 3 attempts before gain-
ing a ticket. With this scheme in place, attackers can expect only
one service ticket per 5.6 million guesses.

3.2.3 Machine Vision Attacks
While random guessing is the easiest form of attack, various

forms of image recognition can allow an attacker to make guesses
that are better than random. Asirra’s strength, however, comes not
only in the size of its image database, but its diversity. Photos
have a wide variety of backgrounds, angles, poses, lighting, and
so forth—factors that make accurate automatic classification diffi-
cult. As Figure 6 demonstrates, the variations between photos are
large, but visual differences between cats and dogs are often subtle.

Based on a survey of machine vision literature and vision ex-
perts at Microsoft Research, we believe classification accuracy of
better than 60% will be difficult without a significant advance in
the state of the art. For example, the best known algorithms for fa-
cial recognition can achieve in excess of 90% accuracy under con-
trolled conditions, but are not robust to occlusions and variations
in pose similar to those seen in our database [5, 18]. The 2006
PASCAL Visual Object Classes Challenge [4] included a competi-
tion to identify photos as containing several classes of objects, two
of which were Cat and Dog. Although cats and dogs were eas-
ily distinguishable from other classes (e.g., “bicycle”), they were
frequently confused with each other.

One attack on our database proposed by vision researchers was
color histogram analysis. We implemented and tested this tech-
nique. We first characterized each of 150 random images as a 15-
feature color vector, computing histograms of each fifth of the red,

Figure 6: The differences between cats and dogs are immediately ob-
vious to humans. In many cases, species look similar, with only subtle
cues to distinguish them. This makes it a hard vision problem.

green, and blue channels of each image. We then computed the best
least-squares fit coefficients of these 15 features to the two (cat and
dog) image classes. The coefficients were then used to predict the
class of another 150 images. The result was 56.9% accuracy.

If we assume an attacker can build a 60% accurate classifier, the
probability of solving a 12-image challenge improves from 1/4,096
to 1/459. However, with our token bucket scheme in place (§4.2),
this is reduced to one ticket per about 70,000 guesses.

3.2.4 Database Attacks
One way to attack any image-based CAPTCHA is to reconstruct

its underlying database. In a sense, this attack is unavoidable: A
portion of the database is revealed each time a challenge is dis-
played. By solving enough challenges manually, the entire database
is eventually revealed to the attacker. The key question is not “is
database reconstruction possible?” but rather “is database recon-
struction economical?”

A CAPTCHA can be considered secure if the most cost effective
way to defeat it is for a human to solve it once per unit of service
gained. In other words, our goal is to make the most efficient attack
an on-demand one (e.g., pay people to sign up for one Hotmail
account at a time). This tradeoff is directly informed by the size
and stability of the underlying database.

Oli Warner’s KittenAuth provides an instructive example. It orig-
inally launched with only 42 images; within days, someone posted
a map of those images’ MD5 hashes to a cat-or-dog bit [12]. Classi-
fication of 42 images does not take much investment, so this form of
attack was an easy choice. Asirra’s three million images moves the
break-even point significantly. An attacker would expect to solve
about 750,000 12-image challenges to reveal 95% of the database.
Reconstruction of our database is not economical unless there is a
financial incentive to solve millions of Asirra challenges.

Attackers might also try to reconstruct Asirra’s database by at-
tacking its source—that is, automating a long series of queries to
Petfinder.com. However, Petfinder’s public interface only displays
pets currently available for adoption, which represents less than
10% of their total historical database. In addition, there is no ef-
ficient way to track database changes using Petfinder’s public in-
terface. The private API provided to Asirra by Petfinder is not
available to the public.

Note that in this section we do not consider techniques for re-
using an individual image such that it appears to be multiple distinct
images. There are robust image comparator functions (e.g., image
hashes, color histograms) that are insensitive to many simple image
distortions. Warping an image sufficiently to fool a computer will
likely also be troublesome to a human—the arms race found in text
CAPTCHAs that we are trying to avoid.

3.2.5 Implementation Attacks
Many CAPTCHAs suffer from weak implementations. For ex-

ample, some allow a session ID authorized by a single successful
challenge to be re-used repeatedly to gain access to a protected ser-
vice. Some assume trustworthy clients.

To avoid such weaknesses, we have taken two approaches. First,
we made the Asirra web service as conceptually simple as possi-
ble, so that we can verify its correctness via code review. (The web
service is about 700 lines of Python code.) Second, as we discuss
further in Section 5.1, we designed the Asirra interface so as to
minimize the implementation burden on the webmaster. For exam-
ple, we do not require sites that use Asirra to keep track of user
sessions or any other form of state. Our example service is, in fact,
completely stateless.

3.3 Accessibility
Virtually all visual CAPTCHAs, including Asirra, are not acces-

sible to visually impaired users. The problem of CAPTCHA acces-
sibility is an important one, but beyond the scope of this paper. Ac-
cessible web sites typically allow users to switch between a visual
challenge (e.g., distorted letters) and an auditory one (e.g., numbers
being recited over noise). Asirra is only meant to replace visual
CAPTCHAs. The audio-accessible version of a site’s CAPTCHA
is valuable, but orthogonal to Asirra.

However, it is worthwhile to note that Asirra’s core idea of in-
terest alignment is potentially usable in an audio CAPTCHA. For
example, online music stores typically provide free samples of mil-
lions of songs in their catalogs. These might be used with a “buy
me” link.

4. IMPROVEMENTS TO ALL CAPTCHAS
In the course of our work on Asirra, we developed two algo-

rithms that can be used to improve virtually all CAPTCHAs, in-
cluding those that are text-based. These techniques share a com-
mon theme. Imagine that users’ responses to Asirra challenges
were scored manually, by a human judge, instead of automatically
by computer. Even in this seemingly straightforward task, the flexi-
bility of human judgement would be a valuable asset. For example,
our human judge could see the same user try to solve three chal-
lenges, getting 11 out of 12 images correct each time. She might
say, “That looks like a human who is just having a little trouble. I’ll
let him pass.” Conversely, our judge might see the same IP address
submitting thousands of random, incorrect answers. Even when
finally given a correct answer, she’d still suspect the user was a bot.

In the next sections, we describe two algorithms designed to
make CAPTCHA scoring a little more “human”: the Partial Credit
Algorithm (§4.1) and CAPTCHA Token Buckets (§4.2).

4.1 The Partial Credit Algorithm
Traditionally, computers score CAPTCHA responses with one

bit of output: right or wrong. The intuition behind the Partial Credit
Algorithm (PCA) is thata user’s response contains much more than
one bit of information. Two “almost right” answers are strong evi-
dence that a user is human; two random answers are not. Without
PCA, this distinction is lost.

The idea of an “almost right” response is meaningful in the con-
text of a wide variety of CAPTCHAs. For example, in a text-
based CAPTCHA, typing five out of six characters correctly can
be considered almost-right. In Asirra, we consider a response to
be almost-right if 11 out of the 12 images presented are identified
correctly.

Asirra awards Partial Credit to a user who gets a challenge almost
right. If the user gets a subsequent challenge almost right—that is,
while already holding Partial Credit—we judge the response as if
it were completely correct. (Asirra challenges all take place within
asession, making it easy to associate a single user’s responses.)

The appeal of PCA is that its use of previously-ignored informa-
tion allows us to significantly improve the pass rates for humans
while minimally improving the pass rates for bots. For example, in
Asirra, PCA reduces the number of humans rejected after 2 chal-
lenges from 2.8% to 0.4%: a 7-fold reduction in unhappy users
(Section 6, Table 1). However, the bot yield improves from 1/4,096
to 1/3,952: only a 3% improvement (Section 6, Table 2).

In comparison, simply scoring every almost-right answer as cor-
rect (i.e., passing users who get 11/12) has a devastating effect on
security: a random-guess bot’s success rate improves from 1/4,096
to 1/315, a 13-fold increase.

We can mathematically model the effect of PCA as follows. We
consider a new user to arrive in the unverified (u) state, and by solv-
ing a challenge the user moves into the verified (v) state. PCA in-
troduces an intermediate (i) state, which the user moves into when
getting a challenge almost right. From the intermediate state, if the
user almost—or completely—solves a subsequent challenge, the
user moves to the verified state; otherwise, the user is returned to
the unverified state.

Let α represent the probability of solving a challenge,β be the
probability of getting close enough to enter the intermediate state,
andγ be the probability of getting close enough to become veri-
fied when in the intermediate state. Aftern steps, the probability
that the user is in each state is given by the following recurrence
relation:

un = (1 − α − β) un−1 + (1 − γ) in−1, u0 = 1

in = β un−1, i0 = 0

vn = vn−1 + α un−1 + γ in−1, v0 = 0

The expected number of trials until verification is:

E =
X

1≤n<∞

n (vn − vn−1) =
1 + β

α + β γ

In Asirra, the user moves to the intermediate state if exactly one
image (out of 12) is misclassified; from the intermediate state, the
user moves to the verified state if zero or one image is misclas-
sified. Thus, using the binomial distribution functionb, the PCA
probabilities are:

α = b(0; 12, 1 − p)

β = b(1; 12, 1 − p)

γ = b(0; 12, 1 − p) + b(1; 12, 1 − p)

This model can be used to compute the effect of PCA on any
CAPTCHA that can define a solution as “almost right.” The effect
on 12-image Asirra challenges is shown in Tables 1 and 2.

4.2 CAPTCHA Token Buckets
Asirra, like virtually every CAPTCHA, is subject to brute-force

attacks. Since guessing is nearly free, a success probability of
1/4,096 may not be a strong enough assurance that attackers can’t
automatically collect service tickets en masse.

Our countermeasure is based on the supposition that a bot can be
identified as a small number of IP addresses that submit a very large
number of incorrect responses, interspersed with a much smaller
number of correct responses. (Assume for the moment that each
user has a unique IP address; we will relax this constraint shortly.)

The scheme works by assigning a token bucket to every IP ad-
dress that requests an Asirra challenge. Each bucket is initialized
with TB-Maxtokens. Every time a client submitsany response to
a challenge, a single token is removed from the client IP’s bucket,
down to a minimum of 0. Every time a client submits acorrectre-
sponse,TB-Refilltokens are added, up to a maximum ofTB-Max.
In our implementation,TB-Max is 100 andTB-Refill is 3. (The
bucket is also re-initialized toTB-Maxtokens after 24 hours of dis-
use, but this is not strictly required.) If a user submits a response
while its token bucket is empty, the user is told the answer is incor-
rect, regardless of their response.

A brute-force bot trying to earn a large number of service tickets
from Asirra will quickly empty its token bucket, as its incorrect
guesses will outnumber its correct guesses by more than a factor of
TB-Refill. In this steady-state, the empty-bucket policy will force

bots to correctly answertwo challenges withinTB-Refillattempts
before they earn credit for a correct response.

Intuitively, the effect of this policy is to amplify the skill dif-
ference between humans and bots. Modelling it mathematically
is straightforward. A bot has some probabilityp of getting a sin-
gle challenge correct. With an empty token bucket, the bot must
also get a second challenge right withinTB-Refill tries; this hap-
pens with probability1− (1−p)TB−Refill. That is, token buckets
reduce the bot success probability to

p ×
“

1 − (1 − p)TB−Refill
”

For example, if a bot has a 1/4,096 chance of getting a single
challenge correct, andTB-Refillis 3, our scheme reduces the prob-
ability of getting a ticket to one per about 5.6 million attempts per
bot IP address.

4.2.1 Preventing denial-of-service against humans
Our scheme, as described so far, makes the assumption that each

user has a unique IP address. That assumption is both strong and
incorrect. Users share IP addresses when they access the Internet
via a web proxy or firewall that performs network address trans-
lation. Such configurations are common in large corporations and
some Internet Service Providers.

This is a problem for the token bucket scheme we described pre-
viously. When a human shares an IP address—and, thus, a token
bucket—with a bot, the human is denied service while the bot is
attacking. Since bots are much faster than humans, the human is
likely to encounter an empty token bucket every time she submits
an answer, and thus will always be marked wrong.

We address this problem by defining a slightly more complex
scheme that uses two token buckets. The first is a per-IP bucket, as
described before. The second is a per-sessionbucket. (All interac-
tions with Asirra must take place within a session, created when a
client first begins to interact with Asirra’s web service.) The rules
governing the buckets are:

• Per-IP buckets are given an initial value ofTB-Max tokens,
as before.

• When a new session is created, the per-session bucket is
given an initial value equal to the current value of the client’s
per-IP bucket. Creation of a new session also deducts a token
from the per-IP bucket.

• When any response is submitted, a token is deducted from
boththe per-IP and per-session bucket.

• When a correct response is submitted,TB-Refill tokens are
added toboththe per-IP and per-session bucket.

• A user is only told their response is correct if theirsession
bucket is non-empty.

Intuitively, this scheme blacklists IP addresses, but allows hu-
mans to restore service to individual sessions by solving one extra
challenge correctly.

Using a single, per-session bucket would not be effective because
clients are untrusted. A bot does not play by the rules, and would
simply create a new session before every guess. Therefore, the per-
IP bucket is still necessary. However, legitimate userswill create
a single session and use it persistently, allowing us to distinguish
them from bots sharing their IP address. A user sharing an IP with
an attacking bot will initially get an empty per-session bucket, but
will add TB-Refilltokens after her first correct response. These per-
session tokens are not consumed by the bot, so the user is granted
access after a second correct response.

5. DEPLOYMENT
Most CAPTCHAs arealgorithms; their realization is typically

source code that can be shared freely and integrated into web sites
without external dependencies. In contrast, Asirra is both an al-
gorithm and adatabasethat must be kept secret. To protect the
database, we had no option but to implement Asirra as a web ser-
vice. In this section, we briefly describe our service’s interface,
implementation, and deployment.

The service is divided into the trusted web service, run by us,
and the untrusted client component, implemented by us but run in
the end-user’s browser.

5.1 Interface
Our goal in designing the interface to the web service was to

make it as easy as possible for the webmaster. Overly complex
interfaces tend to be mis-used in ways that compromise security.

Suppose a web site wishes to use Asirra to protect a sign-up
form. Our site has instructions for the webmaster describing how
to include a few lines of JavaScript in the HTML form she wishes
to protect. This code loads the bulk of Asirra’s front-end imple-
mentation from the Asirra server.

Once the end-user views, completes, and submits the form—
including solving the Asirra CAPTCHA—our JavaScript will set
a hidden input field in the HTML form calledAsirra Ticket.
The ticket is a bit string that the webmaster then must validate
against the Asirra web service to ensure the client did not forge or
re-use it. This validation typically happens as a step of processing
the client’s form on the webmaster’s back-end server.

Ticket validation is simple: the ticket is passed to an Asirra val-
idation URL. Our web service returns “Pass” only if the ticket is
valid, recent, and has never been validated before. The JavaScript
that manages user interactions on the client prevents the form from
being submitted until a valid ticket has been received by passing the
Asirra challenge. Thus, webmasters typically only see validations
fail when their service is under attack.

5.2 Implementation
Asirra manages its own interaction with the user inside an em-

bedded DIV. The interactions between client and web service are
performed using “AJAX” (asynchronous HTTP requests executed
from within JavaScript). When our JavaScript is loaded, it first cre-
ates the visual elements of the challenge in the user’s browser. It
then sends requests to the Asirra web service to create a new Asirra
session, retrieve one or more challenges, and submit user responses
for scoring. The client earns a service ticket for a correct response
(or, in some cases, an almost-correct response; see Section 4.1).
The user can choose to see a new challenge if they are asked to
solve one that contains a confusing image.

Though administratively centralized, the web service’s imple-
mentation is distributed to ensure scalability. Load balancing is
achieved by mapping our web service’s DNS name to multiple IP
addresses; clients choose among them randomly. The first action
performed by a client is session creation. Whichever machine is
randomly selected by the client to execute this action becomes the
permanent custodian of that session’s state. The custodian stores
the session state locally and returns a session ID to the client. The
session ID has the custodian server’s ID embedded in it.

If later operations that are part of the same session arrive at a
different Asirra service machine, the request is forwarded to the
session custodian by finding its identity embedded in the session
ID. (The client is not trusted; a forged session ID will simply fail
to find any expected state on the incorrectly indicated custodian
server.) Our forwarding scheme ensures that at most two machines

Challenges Users Passed, Users Passed,
Solved No PCA With PCA

1 (≈15 sec) 83.4% 83.4%
2 (≈30 sec) 97.2% 99.6%
3 (≈45 sec) 99.5% 99.96%

Table 1: Expected user population that will pass Asirra after 1, 2, and
3 challenges, with and without PCA (§4.1). Assumes a 12-image chal-
lenge, 98.5% classification accuracy for an individual image (§3.1.3),
and 15 seconds required per challenge (§3.1.2).

Image Classifier Bot Success Rate
Accuracy No PCA With PCA PCA + Tokens

50%(random guessing) 1/4,096 1/3,952 1/5.2 million
60%(known techniques) 1/459 1/404 1/54 thousand
70%(major AI advance) 1/72 1/54 1/990

Table 2: Expected success rates of bots with three hypothetical image
classifiers. Assumes a 12-image challenge. The effects of PCA (§4.1)
and Token Buckets (§4.2) with TB-Refill of 3 are also considered. A
detailed threat analysis can be found in§3.2.

are ever involved in servicing a single request: the machine which
receives the request from the client, and the machine that owns the
session state and receives the sub-request. The Asirra service is
therefore readily scalable; the overhead of parallelization will never
be more than 2x regardless of the total size of the farm.

In practice, we have observed lower overhead; request forward-
ing is not the common case. Many combinations of browser and
operating system continue to use the same IP address for a given
domain name for the duration of a browser session. This may be an
aspect of many browsers’ “DNS Pinning” policy meant to reduce
cross-site scripting attacks.

The web service is about 700 lines of Python code. It is currently
deployed on Amazon’s EC2 [10] compute cloud platform, making
it easy to add resources as the service’s popularity increases.

6. SUMMARY AND CONCLUSIONS
In this paper, we presented Asirra, a CAPTCHA that asks users

to identify cats out of a set of 12 photographs of both cats and
dogs. Our image database is provided by a novel, mutually bene-
ficial partnership with Petfinder.com, which has a database of over
three million images of pets looking for new homes. In exchange
for the use of these images, Asirra displays an “adopt me” link be-
neath each one, promoting Petfinder’s primary mission of finding
homes for homeless animals. (Security implications of Adopt-Me
are discussed in Section 3.2.1.)

Asirra is attractive because humans can solve it quickly and ac-
curately (Table 1), but it provides significant protection from bots
(Table 2). Asirra provides a social benefit: improving animal wel-
fare. And, anecdotally, users report that Asirra is enjoyable: Spend-
ing a few moments looking at cute kittens is generally preferred to
squinting at deformed letters.

Asirra is a free web service, available atwww.asirra.com.
Our contributions in this paper also include two techniques that

we use in Asirra, but can be added to virtually any CAPTCHA. The
Partial Credit Algorithm (§4.1) significantly improves the pass rates
of humans while only marginally improving the yield of bots. Con-
versely, our use of CAPTCHA Token Buckets (§4.2) significantly
decreases the yield of brute-force bots while having a minimal ef-
fect on humans.

CAPTCHA design seems to be both an art and a science. They
will never be strong in the sense of a cryptosystem or a proof; by
definition, they can be broken with nothing more than a few mo-
ments of casual human effort. In what may be an endless arms
race, perhaps the best we can do is ensure the latest weapondu jour
is fun for users. In this goal, at least, we hope Asirra succeeds.

7. REFERENCES
[1] Frozen Bear. hotcaptcha. http://www.hotcaptcha.com.
[2] Kumar Chellapilla, Kevin Larson, Patrice Simard, and Mary

Czerwinski. Designing human friendly human interaction
proofs (HIPs). InProceedings of ACM CHI 2005 Conference
on Human Factors in Computing Systems, volume 1 ofEmail
and security, pages 711–720, 2005.

[3] Monica Chew and J.D. Tygar. Image recognition
CAPTCHAs. InProceedings of the 7th International
Information Security Conference (ISC 2004), pages
268–279. Springer, September 2004.

[4] Mark Everingham, Andrew Zisserman, Chris Williams, and
Luc Van Gool. The PASCAL visual object classes challenge
2006 (VOC2006) results. Technical report, University of
Oxford, 2006.

[5] Ralph Gross, Jianbo Shi, and Jeff Cohn. Quo vadis Face
Recognition? Technical Report CMU-RI-TR-01-17,
Carnegie Mellon University Robotics Institute, June 2001.

[6] Google Images. http://images.google.com.
[7] Eight Days Inc. Hot or not. http://www.hotornot.com.
[8] Greg Mori and Jitendra Malik. Recognizing objects in

adversarial clutter: Breaking a visual CAPTCHA. In
Conference on Computer Vision and Pattern Recognition
(CVPR ’03), pages 134–144. IEEE Computer Society, 2003.

[9] Jared Saul. Petfinder. http://www.petfinder.com.
[10] Amazon Web Services. Ec2 scalable compute cloud.

http://aws.amazon.com/ec2.
[11] Patrice Simard, David Steinkraus, and John C. Platt. Best

practices for convolutional neural networks applied to visual
document analysis. InInternational Conference on
Document Analysis and Recognition, pages 958–962. IEEE
Computer Society, 2003.

[12] Digg.com user DoubtfulSalmon. http://tinyurl.com/2stwu3,
April 2006.

[13] L. von Ahn, M. Blum, N.J. Hopper, and J. Langford. The
CAPTCHA web page. http://www.captcha.net.

[14] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John
Langford. CAPTCHA: Using hard AI problems for security.
In Eli Biham, editor,Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003, Proceedings, volume 2656 ofLecture Notes
in Computer Science, pages 294–311. Springer, 2003.

[15] Luis von Ahn and Laura Dabbish. Labeling images with a
computer game. In Elizabeth Dykstra-Erickson and Manfred
Tscheligi, editors,Proceedings of the 2004 Conference on
Human Factors in Computing Systems, CHI 2004, Vienna,
Austria, April 24 - 29, 2004, pages 319–326. ACM, 2004.

[16] Oli Warner. Kittenauth. http://www.thepcspy.com/kittenauth.
[17] WikiMedia Foundation. http://commons.wikimedia.org.
[18] Wen-Yi Zhao, Rama Chellappa, P. J. Phillips, and Azriel

Rosenfeld. Face recognition: A literature survey.ACM
Comput. Surv, 35(4):399–458, 2003.

