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ABSTRACT 
M Research has developed a 

real-time, isolated-word speech recognizer called Tangora, which 
accepts natural English sentences drawn from a vocabulary of 
20,000 words. Despite its large vocabulary, the Tangora recognizer 
requires only about 20 minutes of speech from each new user for 
training purpwes. The accuracy of the system and its ease of 
training are largely attributable to the use of hidden Markov models 
in its acoustic match component. This paper describes an automatic 

chnique for constructing Markov word models, and includes 
sults of experiments with speaker-dependent and 
eakcr-independent models on several isolated-word recognition 

1 .  INTRODUCTION 
ition group at IBM Research has recently 
riniental large-vocabulary natural-language 
h recognition system [ 1 ,  21 The PC-based 
for Albert Tangora who is listed in the 

Records as the fastest typist, is capable of 
word vocabulary in real time. At the heart of 

omponent in which hidden 
the pronunciatioil of words 

ach to constructing acoustic 
Wc describe a method for deriving an acoustic 

I eprcsentation of a word automatically from sample utterances of 
thc word. This method results in a substantial decrease in 
rccognition error rate when compared with methods based on 

der word-based Markov models. An example of 
tcm which uses word-based Markov models is 
inented by Bakis [7, 131. Here, each word is 

Markov model which is derived from sample 
wold The number of states in the model for a 
hc average duration of the word in frames. The 
is’ system IS 10 milliseconds Figure 1 shows an 

arkov models 

I‘igurc 1. Word-bawd Markob model, used by Bakis. 

The Markov model in Fig 
speech synthesis machine. Star the left-most state a 
transition is made during each tim until the final state is 
leached. In the Bakis model, ther ee possible transitions 
out of most states: one 
leading to the next state on the right, and one leading to the state 
after next Associated 
probability distribution describi arious sounds which can 
be output during the transiti a transition probability 
indicating the likelihood of takin 

In a speech recognizer it the acoustic match 
component to determine the ome observed speech 
being generated by such a m bability of generating 
the observed speech is relati the word represented 
by the Markov inodel is considered a likely candidate for the true 
word. An efficient lattice-based algorithm for computing the 
required probability is d 

In the Bakis model, the 
the average pronunciation word. The self-loops allow for 
elongation of the word, a transitions which skip around 
states allow for shortening of the word. The transition 
probabilities and output distributions for each word are estimated 
from several sample uttera he word, using the 
Forward-Backward parameter algorithm [8, 9, 131. 
This system worked very ly on a 250-word 
continuous-speech speaker-dependent recognition task. 
However, there is one major ack to such a recognizer: the 
user must provide several s utterances of each word for 
parameter estimation, so it is not practical for large-vocabulary 
systems. The number of Markov parameters and the training 
data requirements grow linearly 

More recently, Rabiner and Le 
which the number of states in 
about five This results in a substantial reduction in the number 
of parameters, without much degradation in the accuracy of the 
model. This is because neighboring states in the Bakis model 
tend to be quite similar, and reducing several similar consecutive 
states into a single state does not degrade the model very much. 
However, training each word model requires several sample 
utterances, so the training ill grows linearly with 
vocabulary size 

Another way to reduce the nu ameters is to build word 
models from a small inventory of sub-word models, such as  
phones, diphones, syll c. Most attempts to define 
sub-word units are base uistic or phonetic concepts. An  
example of a system in which phones are used as the building 
blocks for constructing word models is described by Bahl, Jelinek 
and Mercer [3, 4, 141. Each word is represented by a sequence 
of phones, called the phonetic baseform of the word. A Markov 
model is established for each phone, and the Markov model for a 

497 
CH2561-9/88/0000-0497 $1.00 0 1988 IEEE 



word is obtained by replacing each phone in its bascforni by the 
Markov model for the phone. This decomposition of words into 
phone sequences removes the dependence of the training data 
size on the vocabulary. In order to train the system adequately, 
one only needs several samples of each phone, and not several 
samples of each word. Phonetics-based models, however, have 
the drawback that the phonetic baseforni is based on “expert” 
human knowledge, which unfortunately is subjective, difficult to 
extract, and subject to error. 

When sufficient data are available to train them, the Bakis 
word-based models outperform the phonetics-based models [5]. 
The performance of phonetics-based models can be improved by 
using context-dependent phone models [6, 181, but it is doubtful 
if they can be made to perform as well as word-based models. 
The main reason for the superiority of the word-based models is 
that they model the words at a much finer level of detail. The 
effects of context-dependence and coarticulation are implicitly 
built into the models. 
Our aim is to construct Markov models that retain the accuracy 
of the word-based models while requiring no more training data 
than the phonetics-based models. 
We can consider phones to partition the acoustic space into 
regions. The partition is based on a priori human linguistic 
knowledge. A phonetic baseforin of a word is then a 
specification of the sequence of acoustic regions traversed in 
pronouncing that word. Instead of using phones, we will show in 
the following sections how to use a partition of the acoustic space 
which is derived automatically through the use of‘ a vector 
quantizer. Based on this partition, we will construct a new type 
of baseform called a fenonic baseform. These baseforins can be 
used to construct Markov word models in the same way that 
phonetic baseforms are used for constructing word models. 

2. SPEAKER-DEPENDENT SINGLETON BASEFORMS 

We will assume that readers are familiar with the basic concepts 
of vector quantization as used in speech recognition systems. 
Articles by Gray [ l l ] ,  and Makhoul et a l [ 1 5 ]  contain excellent 
surveys of vector quantization techniques. A vector quantizer 
has as its input an acoustic waveform, and produces as its output 
a sequence of discrete labels. The input acoustic waveform is 
digitized, and a vector of acoustic parameters is extracted from 
the signal at regular intervals. This vector is then compared to a 
set of reference vectors, and a label is produced which identifies 
the closest reference vector. In our system, we extract a vector 
of 20 ear-model parameters [ l ,  101 from the speech signal at 
regular intervals of 10 milliseconds, and compare this vector to 
200 reference vectors using a Euclidean distance measure. So 
labels are produced at a fixed rate of 100 per second, and the 
label alphabet is of size 200. 

Let Y , - ~  =y,,jb, ...Y,~ be the label sequence produced by the 
acoustic processor in response to a speaker uttering the word w. 
We can treat the label sequence y,*nrz as if it were a baseform for 
the word w. Of course, other utterances of the same word will 
not result in label sequences that are identical to y,+,,,. but they 
will generally produce sequences that are similar to y,*,,, . We can 
model this variation by replacing each label in the baseform by a 
Markov model. What we are doing here is replacing the 
phonetie-phone alphabet used in making phonetic baseforms by 
an alphabet of label-based phones. We shall call these 
label-based phones fenones, and we shall call a baseforin 
expressed in terms of fenones a fenonic baseform. When the 

baseforni is constructed from a single utterance, as here, we shall 
call it a singleton-fenonic baseform, or singleton baseform for 
short. 

Let P = {p,,p2, . . .p,  1 represent the alphabet of fenones. There is 
an obvious one-to-one correspondence between the elements of 
the fenone alphabet and the underlying label alphabet. And from 
the method of construction it can be seen that each fenone in a 
baseform will represent a single time frame on average. 
Since each fenone represents a very short acoustic interval, the 
variation can be adequately modeled by very simple Markov 
models like those shown in Figure 2. 

a b C 

Figure 2. Examples of Markov models for fenones. 

A 2 or 3 state model with 3 or 4 transitions suffices to account 
For the variation in a fenone, while a much larger model is needed 
for adequately modeling the variation in a phone. The transitions 
drawn as dotted lines result in no output. 

The Markov model for a word is obtained by concatenating the 
Markov models of the fenones in its fenonic baseform. In Fig. 
2c, the lowest transition for fenone II connects to the initial state 
of fenone ti + 2, so concatenating these models results in a 
Bakis-type word model. The model in Fig. 2a is the simplest, and 
allows for deletion and unlimited elongation of a fenone. The 
model in Fig. 2b limits a fenone from producing more than 2 
labels, while the model in Fig. 2c allows shortening by no more 
than a factor of two. Obviously, many other models are possible. 
All the experimental results in this paper were obtained using a 
fenone model of the type in Fig. 2a. Experiments were also 
carried out with models of the type shown in Fig. 2b and 2c, and 
there were no significant differences in recognition accuracy. 
Figure 3 shows the topology of a fenonic baseform using the 
fenone model of Fig. 2a. 

Figure 3. Topology of a typical fenonic Markov word model. 

By taking one instance of each word in the vocabulary we can 
produce singleton baseforms for each word in the vocabulary. 
The Markov model for any given word may then be constructed 
by concatenating the elementary Markov models of the fenones 
in its baseform. Note that the total number of Markov model 
parameters depends only on the size of the fenone alphabet, and 
not on the size of the vocabulary. 
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Fenonic baseforms model the acoustic trajectory of a word at a 
uch finer level of detail than phonetic baseforms. In this 
spect, f enonic baseforms are similar to word templates used in 

DP matching [12, 171. The lattice [13] generated from the 
fenonic model of Fig 3 is the same as the lattice used in 
conventional DP matching. But, whereas the transition and 
output probabilities associated with the Markov models of 
fenones are trained to the speaker, no such training process exists 

matching Also, since all the words are composed of the 
fenones, there is an implicit “tying” amongst subparts of 

different words It is this tying that makes it possible to train all 
he word models even if the training data does not contain 

samples of all the words in the vocabulary. 
Since a .jingleton baseform is derived from a single sample of a 
word, it may not be typical and may not result in good 

ition accuracy. 

SPEAKER-DEPENDENT FENONIC BASEFORMS 

Since singlcton baseforms may not perform very well, we 
investigated the possibility of using fenonic baseforms derived 
from multiple utterances of words. 

We start with singleton baseforms, and train the acoustic Markov 
models using some training data. This establishes transition and 
output probabilities for the fenones in P. Let yl!) ”,,, yj!!n72, .. , yl? ,J,n 

be the label sequences corresponding to n different utterances of 
the word w. The optimal fenonic baseform for w is defined to be 

e fenone sequence;,,. which maximizes the probability of the 
I I  observed label sequences for w, i.e. 

Note that, for the sake of simplicity we have dropped the 
subscripts on y andp. 
Assuming that, given p, y(’) is conditionally independent of y[ j )  for 
I # J ,  then 

to search for the optimal fenonic baseform. The first 
modification is to replace the vocabulary of words by the 
vocabulary of fenones. The second modification is that the 
acoustic match is carried out for multiple label strings; the total 

eing the product of the individual 
for the label strings. Obviously, 
can also be adapted to look for the 

experiments on Keyboard and Office 
then carried out using fenonic 

eforms obtained from multiple utterances. All experiments 
e carried out with a single speaker, and all recordings 

The Keyboard task consi 
from a vocabulary of 62 WO vocabulary included the 
letters of the alphabet A- umbers 0-9, punctuation 
characters like ,:, and o 
test data consisted of 10 utterances of each word spoken in 
random order. Ten utterances of each word were used to 

words. In the case of the natural sentences, recognition was 
carried out with a 3-gram language model [4]. Homophonous 
words such as “to”, “too”, and “two” were constrained to have 
identical baseforms, so that when a uniform language model was 
used, the scores of homophonous words were identical, thereby 

of each word 
om words, the 

error rates were 2 and 5.2% for 
phonetic baseforms. with a 3-gram 
language model, the YO for fenonic 
baseforms and 2.5% f 

4. SPEAKER-INDEPEND NONIC BASEFORMS 

The baseforms used in Section 3 do not alleviate the problem of 
reducing the amount of training data, since the speaker must 

word for vocabularies 

Correspondence task, 
at the vocabulary was 
uent words. Details of 

ch word in the vocabulary, one 
ers. The speakers were obtained 

porary office help. They were all 
York-New Jersey area. Using 

each of the speakers, a 
speaker-independent label t was constructed by vector 
quantization. The entire speech database was then labeled with 

which is simi 

recorded utterances. 

about 1200 words eaker-dependent label alphabet was 
established for each 
dictionary from f ’  tes of speech. Note that the 

fenone alphabet. This fferent from the phonetic case, 

fenone Markov models 
training data. Recognition wa a test script of 50 
sentences, comprising a spoken as isolated 
utterances. These sente at random from a 
collection of IBM inter ndence. Sentences 

constructing a vector quantizat 
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containing words outside the vocabulary were rejected. 
Recognition was performed for 8 speakers, 4 male and 4 fcmalc, 
none of whom contributed utterances from which the fenonic 
baseforms were obtained. In all cases a 3-gram language model 
was used. The use of fenonic models reduced the average word 
error rate to 2.5% from 3.5% for phonetic models - a reduction 
of 28% in the number of errors. 

5. CONCLUSIONS 
We have described a method for constructing a new type of 
acoustic baseform for a word. This baseform is a sequence of 
fenones. Fenones are very short acoustic events and the 
inventory of fenones is obtained automatically by vector 
quantization of the acoustic space. Fenones are completely 
independent of any pre-conceived linguistic or phonetic notions. 
Fenonic baseforms model words at a much grcater lcvel of detail 
than phonetic baseforms, and result in a substantial reduction in 
the word error rate. Training of the fenonic Markov models for a 
new speaker can be accomplished with a short training script. 
Fenonic baseforms are somewhat similar to word teinplatcs used 
in DP matching, but have a crucial difference. The word models 
constructed from fenonic baseforms can be trained to a new 
speaker, whereas DP word templates cannot be trained. 
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