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1. Introduction 

The survival of man depends on the early construction of an ultra- 
intelligent machine. 

In  order to design an ultraintelligent machine we need to understand 
more about the human brain or human thought or both. In  the follow- 
ing pages an attempt is made to take more of the magic out of the brain 
by means of a “subassembly” theory, which is a modification of Hebb’s 
famous speculative cell-assembly theory. My belief is that the first 
ultraintelligent machine is most likely to  incorporate vast artificial 
neural circuitry, and that its behavior will be partly explicable in terms 
of the subassembly theory. Later machines will all be designed by ultra- 

* Baaed on trrlke given in a Conference on the Conceptual Aspects of Biocommunica- 
tione, Neuropsychiatric Institute, University of California, Los Angeles, October 1962; 
and in the Artificial Intelligence Sessions of the Winter General Meetings of the IEEE, 
Jenwry 1963 [ I ,  461. 

The first draft of this monograph was completed in April 1963, and the present 
slightly emended version in May 1964. 

I em much indebted to Mre. Euthie Anthony of IDA for the 8rdUOUe teak of typing. 
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intelligent machines, and who am I to guess what principles they will 
devise? But probably Man will construct the dew ex machina in his own 
image. 

The subassembly theory sheds light on the physical embodiment of 
memory and meaning, and there can be little doubt that both will need 
embodiment in an ultraintelligent machine. Even for the brain, we shall 
argue that physical embodiment of meaning must have originated for 
remons of economy, at lemt if the metaphysical reasons can be ignored. 
Economy is important in any engineering venture, but especially so 
when the price is exceedingly high, as it  most likely will be for the first 
ultraintelligent machine. Hence semantics is relevant to the design of 
such a machine. Yet a detailed knowledge of semantics might not be 
required, since the artificial neural network will largely take care of it, 
provided that the parameters are correctly chosen, and provided that 
the network is adequately integrated with its sensorium and motorium 
(input and output). For, if these conditions are met, the machine will be 
able to l e m  from experience, by means of positive and negative re- 
inforcement, and the instruction of the machine will resemble that of a 
child. Hence it will be useful if the instructor knows something about 
semantics, but not necessdy more useful than for the instructor of a 
child. The correct choice of the parameters, and even of the design 
philosophy, will depend on the usual scientific method of successive 
approximation, using speculation, theory, and experiment. The 
percentage of speculation needs to be highest in the early stages of any 
endeavor. Therefore no apology is offered for the speculative nature of 
the present work. For we are certainly still in the early stages in the 
design of rn ultraintelligent machine. 

In  order that the argumente should be reasonably self-contained, it is 
necessary to discuss a variety of topics. We shall define an ultra- 
intelligent machine, and, since its cost will be very large, briefly con- 
sider its potential value. We say something about the physical embodi- 
ment of a word or statement, and defend the idea that the function of 
meaning is economy by describing it as a process of “regeneration.” In  
order to explain what this means, we devote a few pages to the nature of 
communication. (The brain is of course a complex communication and 
control system.) We shall need to discuss the process of recall, partly 
because ifs understanding is very closely related to the understanding of 
understanding. The process of recall in its turn is a special cme of 
statistical information retrieval. This subject will be discussed in 
Section 6. One of the main difficulties in this subject is how to estimate 
the probabilities of events that have never occurred. That such 
probabilities are relevant to intelligence is to be expected, since intelli- 
gence is sometimes defined as the ability to adapt to new circumstances. 
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The difficulty of estimating probabilities is sometimes overlooked in the 
literature of artificial intelligence, but this article would be too long if 
the subject were surveyed here, A separate monograph has been written 
on this subject [as]. 

Some of the ideas of Section 6 are adapted, in Section 6, to the prob- 
lem of recall, which is discussed and to some extent explained in terms 
of the subassembly theory. 

The paper concludes with some brief suggestions concerning the 
physical representation of “meaning.” 

This paper will, as we said, be speculative: no blueprint will be 
suggested for the construction of an ultraintelligent machine, and there 
will be no reference to transisitom, diodes, and cryogenics. (Note, 
however, that cryogenics have the important merit of low power 
consumption. This feature will be valuable in an ultraintelligent 
machine.) One of our aims is to pinpoint some of the difficulties. The 
machine will not be on the drawing board until many people have talked 
big, and others have built small, conceivably using deoxyribonucleic 
acid (DNA). 

Throughout the paper there are suggestions for new research. Some 
further summarizing remarks are to be found in the Conclusions. 

2. Ultraintelligent Machines and Their Value 

Let an ultraintelligent machine be defined as a machine that can far 
surpass all the intellectual activities of any man however clever. Since 
the design of machines is one of these intellectual activities, an ultra- 
intelligent machine could design even better machines; there would 
then unquestionably be an “intelligence explosion,” and the intelli- 
gence of man would be left far behind (see for example refs. [ZZ], [34], 
[44]). Thus the first ultraintelligent machine is the last invention that 
man need ever make, provided that the machine is docile enough to tell 
us how to keep it under control. It is curious that this point is made so 
seldom outside of science fiction. It is sometimes worthwhile to take 
science fiction seriously. 

In  one science fiction story a machine refused to design a better one 
since it did not wish to be put out of a job. This would not be an in- 
superable difficulty, even if machines can be egotistical, since the 
machine could gradually improve itself out of all recognition, by acquir- 
ing new equipment. 

B. V. Bowden stated on British television (August 1962) that there is 
no point in building a machine with the intelligence of a man, since it is 
easier to construct human brains by the usual method. A similm point 
was made by a speaker during the meetings reported in a recent IEEE 
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publication [ I ] ,  but I do not know whether this point appeared in the 
published report. This shows that highly intelligent people can overlook 
the “intelligence explosion.” It is true that it would be uneconomical to 
build a machine capable only of ordinary intellectual attainments, but 
it seems fairly probable that if this could be done then, at double the 
oost, the machine oould exhibit ultr&ntelligence. 

Since we are concerned with the economical construction of an ultra- 
intelligent machine, i t  is necessary to consider &st what such a machine 
would be worth. Carter [ I I ]  estimated the value, to the world, of J. M. 
Keynes, as at least 100,000 million pounds sterling. By definition, an 
ultraintelligent machine is worth far more, although the sign is un- 
certain, but since it will give the human race a good chance of surviving 
indehitely, it might not be extravagant to put the value at a mega- 
keynes. There is the opposite possibility, that the human race will 
become redundant, and there are other ethical problems, such as 
whether a machine could feel pain especially if it contains chemical 
artScial neurons, and whether an ultraintelligent machine should be 
dismantled when it becomes obsolete [43, 841. The machines will create 
social problems, but they might also be able to solve them in addition 
to those that have been created by microbes and men. Such machines 
will be feared and respected, and perhaps even loved. These remarks 
might appear fanciful to some readers, but to the writer they seem very 
real and urgent, and worthy of emphasis outside of science fiction. 

If we could raise say a hundred billion dollars we might be able to 
simulate all the neurons of a brain, and of a whole man, at a cost of fen 
dollars per artificial neuron. But it seems unlikely that more than say a 
millikeynes would actudly be forthcoming, and even this amount might 
be difficult to obtain without first building the machine! It would be 
justified if, with this expenditure, the chance of sucoess were about lo-*. 

Until an ultraintelligent machine is built perhaps the best intellectual 
feats will be performed by men and machines in very close, sometimes 
called “symbiotio,” relationship, although the term “biomechanical” 
would be more appropriate. As M. H. A. Newman said in a private 
communication in 1946, an electronic computer might be used as “rough 
paper” by a mathematidan. It could already be used in this manner by 
a ohm player quite effectively, although the effectiveness would be much 
increased if the ahess-playing programs were written with extremely 
close man-machine interaction in mind from the start. The reason for 
this effectiveness is that the machine has the advantage in speed and 
accuracy for routine calculation, and man has the advantage in im- 
agination. Moreover, a large part of imagination in chess can be 
reduced to routine. Many of the ideas that require imagination in the 
amateur are routine for the matar.  Consequently the machine might 
34 
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appear imaginative to many observers and even to the programmer. 
Similar comments apply to other thought processes. 

The justification for chess-playing programs is that they shed light 
on the problem of artificial intelligence without being too difficult to 
write. Their interest would be increased if chess were replaced by so- 
called “randomized chess,” in which the positions of the white pieces 
on the first rank are permuted a t  random before the game begins (but 
with the two bishops on squares of opposite colors), and then the 
initial positions of the black pieces are determined by mirror symmetry. 
This gives rise to 1440 essentially distinct initial positions and effectively 
removes from the game the effect of mere parrot learning of the open- 
ings, while not changing any of the general principles of chess. In  or- 
dinary chess the machine would sometimes beat an international 
Grandmaster merely by means of a stored opening trap, and this 
would be a hollow victory. B’urthermore a program for randomized 
chess would have the advantage that it would not be necessary to store 
a great number of opening variations on magnetic tape. 

The feats performed by very close man-machine interaction by say 
1980 are likely to encourage the donation of large grants for further 
development. By that time, there will have been great advances in 
microminiaturization, and pulse repetition frequencies of one billion 
pulses per second will surely have been attained in large computers 
(for example see Shoulders [91]). On the other hand, the cerebral cortex 
of a man has about five billion neurons, each with between about twenty 
and eighty dendrites ([go], pp. 36 and 61), and thousands of synapses. 
(At the recent IEEE meetings, P. Mueller offered the estimate 300,000 
orally. It would be very interesting to know the corresponding figure 
for the brain of a whale, which, according to Tower [99], has about 
three times as many neurons as a human brain. Perhaps some whales 
are ultraintelligent! [as].) Moreover, the brain is a parallel-working 
device to an extent out of all proportion to  any existing computer. 
Although computers are likely to  attain a pulse repetition speed ad- 
vantage of say a million over the brain, it seems fairly probable, on 
the basis of this quantitative argument, that an ultraintelligent machine 
will need to be ultraparallel. 

In  order to achieve the requisite degree of ultraparallel working it 
might be weful for many of the elements of the machine to contain a very 
short-range microminiature radio transmitter and receiver. The range 
should be small compared with the dimensions of the whole machine. 
A “connection” between two close artificial neurons could be made by 
having their transmitter and receiver on the same or close frequencies. 
The strength of the connection could be represented by the accuracy 
of the tuning. The receivers would need numerous filters so as to be 
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capable of receiving on many different frequencies. “Positive reinforce- 
ment” would correspond to improved tuning of these filters. 

It cannot be regarded &B entirely certain that an ultraintelligent 
machine would need to be ultraparallel, since the number of binary 
operations per second performed by the brain might be far greater than 
is nece- for a computer made of reliable components. Neurons are 
not fully reliable; for exrtmple, they do not all last a lifetime; yet the 
brain is extremely efficient. This efficiency must depend partly on 
“redundancyyy in the aense in which the term is used in information 
theory. A machine made of reliable components would have an ad- 
vantage, and it seems jwt possible that ultrapardel working will not be 
essential. But there is a great waste in having only a small proportion 
of the components of a machine active at  any one time. 

Whether a machine of classical or ultraparallel design is to be the 
first ultraintelligent maohine, it will need to be able to handle or to learn 
to handle ordinary language with great facility. This will be important 
in order that its instructor should be able to teach it rapidly, and so that 
later the machine will be able to teach the instructor rapidly. It is very 
possible also that natural languages, or something analogous to them 
rather than to formd logic, am an essential ingredient of scientific 
imagination. Also the machine will be called upon to translate languages, 
and perhaps to generate fine prose and poetry a t  high speed, so that, 
all in all, linguistic facility is at a high premium. 

A man cannot leam more than ten million statements in a lifetime. 
A maohine could already store this amount of information without much 
difficulty, even if it were not ultraparallel, but it seems likely that it 
would need to be ultrapmallel in order to be able to retrieve the in- 
formation with facility. It is in recall rather than in retention that the 
ordinary human memory reveals its near magic. The greatest mental 
achievements depend on more than memory, but it would be a big step 
towmd ultraintelligence if human methods of recall could be simulated. 

For the above reaaons, it will be assumed here that the first ultra- 
intelligent machine will be ultraparallel, perhaps by making use of 
radio, aa suggested. For definiteness, the machine will be assumed to 
incorporate an artificial neural net. This might be in exceedingly close 
relationship with an ordinary electronic computer, the latter being used 
for the more formalizable operations [33]. In  any event the ultra- 
intelligent machine might as well have a large electronic computer at 
its beck and call, and also a multimillion dollar information-retrieval 
installation of large capacity but of comparatively slow speed, since 
these would add little to the total cost. 

It is unlikely that facility in the use of language will be possible if 
semantic questions are ignored in the design. When we have read or 
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listened to some exposition we sometimes remember for a long time what 
it meant, but seldom how it was worded. It will be argued below that, 
for men, meaning serves a function of economy in long-term retention 
and in information handling, and this is the basis for our contention 
that semantics are relevant to the design of an ultraintelligent machine. 

Since language is an example of communication, and since an ultra- 
intelligent machine will be largely a complicated communication system, 
we shall briefly consider the nature of communication. It will be argued 
that in communication a process of “generalized regeneration” always 
occurs, and that it serves a function of economy. It will also be argued that 
the meanings of statements are examples of generalized regeneration. 

3. Communication as Regeneration’ 

In  a communication system, a source, usually a time series denoted 
here by S( t )  or S for short, undergoes a sequence of transformations. 
The f i s t  transformation is often a deterministic encoding, which trans- 
forms the source into a new time series, T&’(t). This is noisily (indeter- 
ministically) transmitted, i.e., it undergoes a transformation T ,  which 
is a random member of some class of transformations. If the possible 
sources are, in some sense, far enough apart, and if the noise is not too 
great, then the waveforms T , T d  will, also in some sense, tend to form 
clumps, and it will be possible with high probability to reconstruct the 
encoded sources at the receiving end of the channel. This reconstruction 
is called here (generalized) regeneration, a term that is most familiar in 
connection with the reshaping of square pulses. When dealing with 
groups of consecutive pulses, the term error correction is more usual, 
especially when it is assumed that the individual pulses have themselves 
been fist regenerated. Another way of saying that the source signals 
must be far enough apart is to say that they must have enough redund- 
ancy. In a complicated network, it is often convenient to regard signals 
as sources at numerous places in the network and not merely at the 
input to the network. The redundancy might then be represented, for 
example, by mere serial or parallel repetition. 

A compromise between pure regeneration and the use of the whole 
garbled waveform T,T&’(t) is probabilistic regeneration, in which the 
garbled waveform is replaced by the set of probabilities that it has arisen 
from various sources [42]. In  probabilistic regeneration less information 
is thrown away than in pure regeneration, and the later data-handling 
costs more, but less than it would cost if there were no regeneration at 
all. The hierarchical use of probabilistic regeneration would add much 
flexibility to complicated communication networks. 

1 For a short survey of the nature of communication, BBB for example Pierce [800]. 
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An example of generalized and hierarchical regeneration is in the use 
of words in a language. A word in a spoken language could well be 
defined aa a clump of short time series, that is, a cZm8 of time series 
having various properties in common. (The class depends on the speaker, 
the listener, and the context; and membership of the class is probabilist- 
ic since there are marginal caaes.) If any sound (acouatic time series) 
belonging to the clump is heard, then the listener mentally regenerates 
the sound and replaces it by some representation of the word. He will 
tend to remember, or to write down, the word and not its precise sound, 
although if any other significant property of the sound is noticed it 
might also be remembered. The advantage of remembering the word 
rather than the precise sound is that there is then less to remember and a 
smaller amount of information handling to do. 

This process of regeneration occurs to some extent at each of the 
levels of phonemes, worda, sentences, and longer linguistic stretches, 
and even at  the semantic level, and wherever it occurs it serves a 
function of economy. But the economy is not parsimonious: “redun- 
dancy,’ often remains in the coding in order that the encoded message 
should continue to have useful error-correcting features. The redun- 
dancy often decreases with the passage of time, perhaps leading eventu- 
ally to the extinction of a memory. 

That communication theory haa a bearing on the philosophy of 
meaning haa been suggested before (see for example, Weaver [89], 
pp. 114-117, and Lord Brain [S]) .  Note also the definition of the 
amount of subjective information in a proposition, as - log, p where p 
is the initial subjective probability that the proposition is true ([21], 
p. 76). This could also be described aa subjective semantic information: 
when the probabilities are credibilities (logical probabilities) we obtain 
what might be called objective semantic information [5, 101, the exist- 
ence of which is, in my opinion, slightly more controversial. That sub- 
jective probability is just aa basic as communication theory to prob- 
lems of meaning and recognition, if not more so, is a necessary tenet for 
any of us who define reasoning aa logic plus probability ([21], pp. 3 and 
88; see also Colin Cherry [12], pp. 200 and 274, Woodward “51, and 
Tompkins [98]). The implication is that both the initial (prior) proba- 
bilities and the likelihoods or “weights of evidence” [21] should be 
taken into account in every practical inference by a rational man, and 
in fact nearly always are taken into account to some extent, at least 
implicitly, even by actual men. (In caae this thesis should appear as 
obvious to some readers aa it  does to the writer, it  should be mentioned 
that in 1960 very few statisticians appeared to accept the thesis; and 
even now they are in a minority.) There is conclusive experimental 
evidence that the recognition of worda depends on the initial proba- 
38 



THE FIRST ULTRAINTELLIGENT MACHINE 

bilities [94]: a well-known method of deception when trying to  sell a 
speech-synthesis system is to tell the listeners in advance what will be 
said on it, and thereby to make i t  easily intelligible when it is repeated. 
There is a similar effect in the perception of color [9].  

The rational procedure in perception would be to estimate the final 
(a posteriori) probabilities by means of Bayes’ theorem, and then 
perhaps to select one or more hypotheses for future consideration or 
action, by allowing also for the utilities. (Compare refs. [24], [IZ], p. 
206, and Middleton [SS].) In  fact the “principle of rationality” has been 
defined as the recommendation to maximize expected utility. But it is 
necessary to  allow also for the expected cost of information handling 
including theorizing [23, 401, and this is why regeneration and proba- 
bilistic regeneration are useful. 

We pointed out above that the organization of regeneration is often 
hiermchical, but i t  is not purely so. For example, we often delay the 
regeneration of a phoneme until the word to which the phoneme 
belongs has been regenerated with the help of the surrounding context. 
Likewise if a machine is to  be able to “understand” ordinary spoken 
language in any reasonable sense, it  seems certain that its correspond- 
ing regeneration structure must not be purely hierarchical unless it is 
also probabilistic. For each process of nought-one or pure regeneration 
(each definite “decision”) loses information, and the total loss would 
certainly be too great unless the speech were enunciated with priggish 
accuracy. The probabilistic regeneration structure that will be required 
will be much more complex than a “pure” regeneration structure. 
(Historical note: the hierarchical structure of mental processes was 
emphasized by Gall [20], McDougall [66], and many times since-see 
for example MacKay [63], Hayek [53], and others [30], [34], [87], [all .)  

It seems reasonable to the present writer that probabilistic regenera- 
tion will, for most purposes, lose only a small amount of information, 
and that, rather than to use anything more elaborate, it is likely to be 
better to compromise between pure and probabilistic regeneration for 
most purposes. 

The applications of regeneration in the present paper will be to 
assemblies, subassemblies, and meaning. When a person recalls a 
proposition he could be said to regenerate its meaning; when he under- 
stands a statement made by another person the term “transgeneration” 
would be more appropriate; and when he thinks of a new proposition, 
the process would be better called “generation,” but we shall use the 
word “regeneration” to cover all three processes. For example, when 
listening to speech, the production of meaning can be regarded as the 
last regeneration stage in the hierarchy mentioned before, and it per- 
forms a function of economy just as all the other stages do, It is possible 
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that this has been frequently overlooked because meaning is associated 
with the metaphysical nature of consciousness, and one does not readily 
associate metaphysics with questions of economy. Perhaps there is 
nothing more important than metaphysics, but, for the construction of 
an artificial intelligence, it will be necessary to represent meaning in 
some physical form. 

4. Some Representations of “Meaning” and Their Relevance to In- 
telligent Machines 

Semantics is not relevant to all problems of mechanical language 
processing. Up to a point, mechanical translation can be performed by 
formal processes, such as dictionary look-up and some parsing. Many 
lexical ambiguities can be resolved statistically in terms of the context, 
and some as a consequence of the parsing. Sometimes one can go 
further by using an iterative process, in which tke lexic’al ambiguities are 
resolved by the parsing, and the parsing in its turn requires the resolu- 
tion of lexical ambiguities. But even with this iterative process it seems 
likely that perfect translation will depend on semantic questions [ l a ,  
891. Even if this is wrong, the design of an ultraintelligent machine will 
still be very likely to depend on semantics [31,50]. What then is meant 
by semantics? 

When we ask for the meaning of a statement we are talking about 
language, and are using a metalanguage; and when we ask for the mean- 
ing of “meaning” we are using a metametalanguage, so it is not sur- 
prising that the question is difficult to answer. A recent survey chapter 
waa entitled “The Unsolved Problem of Meaning” [3]. Here we shall 
touch on only a few aspeots of the problem, some of which were not 
mentioned in that survey (see also Black [7]). 

It is interesting to recall the thought-word-thing triangle of Charles 
Pierce and of Ogden and Richards. (See, for example Cherry [12], p. 
110. Max Black ascribed a similar “triangle” to the chemist Lavoisier 
in a recent lecture.) It will help to emphasize the requirement for a 
physical embodiment of meaning if it  is here pointed out that the 
triangle could be extended to a thought-word-thing-engram tetra- 
hedron, where the fourth vertex represents the physical embodiment of 
the word in the brain, and will be assumed here usually to be a cell 
aasembly. 

Given a class of linguistic transformations that transform statements 
into equivalent statements, it  would be plausible to represent the 
meaning of the statement, or the proposition expressed by the state- 
ment, by the class of all equivalent statements. (This would be analo- 
gous to a modified form of the Frege-Russell definition of a cardinal 
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integer, for example, “3” can be defined as the class of all classes 
“similar” to the class consisting of the words “Newton,” “Gauss,” and 
“Bardot.”) The point of this representation is that it makes reference to 
linguistic operations alone, and not to the “outside world.” It might 
therefore be appropriate for a reasoning machine that had few robotic 
properties. Unfortunately, linguistic transformations having a strictly 
transitive property are rare in languages. There are also other logical 
difficulties analogous to those in the Frege-Russell definition of a 
cardinal integer. Moreover, this representation of meaning would be 
excessively unwieldy for mechanical use. 

Another possible representation depending on linguistic trans- 
formations is a single representative of the class of all equivalent state- 
ments. This is analogous to another “definition” or, better, “representa- 
tion,” of a cardinal integer (see for example Halmos [51], p. 99). This 
representation is certainly an improvement on the previous one. If this 
representation were to be used in the construction of an ultraintelligent 
machine, i t  would be necessary to invent a language in which each 
statement could be reduced to a canonical form. Such an achievement 
would go most of the way to the production of perfect mechanical 
translation of technical literature, as has often been recognized, and it 
would also be of fundamental importance for the foundations of in- 
tuitive or logical probability ([21], pp. 4 and 48). The design of such a 
“canonical language” would be extremely difficult, perhaps even 
logically impossible, or perhaps it would require an ultraintelligent 
machine to do it! 

For human beings, meaning is concerned with the outside world or 
with an imaginary world, so that representations of meaning that are 
not entirely linguistic in content might be more useful for our purpose. 
The behaviorist regards a statement as a stimulus, and interprets its 
meaning in terms of the class of its effects (responses) in overt behavior. 
The realism of this approach was shown when “Jacobson . . . made the 
significant discovery that action potentials arise in muscles simul- 
taneously with the meaning processes with which the activity of the 
muscle, if overtly carried out, would correspond” ([3], p. 667). Thus the 
behavioral interpretation of meaning might be relevant for the under- 
standing of the behavior and education of people and robots, especially 
androids. But, for the design of ultraintelligent machines, the internal 
representation of meaning (inside the machine) can hardly be ignored, 
so that the behavioral interpretation is hardly enough. 

So far we have been discussing the interpretation and representation 
of the meaning of a statement, but even the meaning of a word is much 
less tangible and clear-cut than is sometimes supposed. This fact was 
emphasized, for example, by the philosopher G .  E. Moore. Later John 
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Wisdom (not J. 0. Wisdom) emphasized that we call an object a cow 
if it has enough of the properties of a cow, with perhaps no single 
property being essential. The need to make this interpretation of 
meaning more quantitative and probabilistio has been emphmized in 
various places by the present writer, who has insisted that this “proba- 
bilistic definition” is of basic important for future elaborate information- 
retrieval systems [29, 35, 31, 43, 411. “An object is said to belong to 
class C (such as the class of cows) if some function f(zll, Pa, . . ., p,) 
is positive, where the p’s are the credibilities (logical probabilities) that 
the object has qualities Qr, Qa, . . ., Q,. These probabilities depend on 
further functions related to other qualities, on the whole more element- 
ary, and so on, A certain anuyurtt of circulatmy &s typical. For example, a 
connected brown patch on the retina is more likely to be caused by the 
presence of a cow if it has four protuberances that look like biological 
legs than if it has six; but each protuberance is more likely to be a 
biological leg if it is connected to something that resembles a oow rather 
than a table. In view of the ciroularity in this interpretation of “defini- 
tion,” the stratification in the struoture of the cerbral cortex can be 
only a first approximation to the truth” ( [a l l ,  pp. 124-125; see also 
Hayek [53], p. 70) .  The slight confusion in this paswge, between the 
definition of a cow and the recognition of one, ww deliberate, and 
especially appropriate in an anthology of partly baked ideas. It can be 
resolved by drawing the distinction between a logical probability and a 
subjective probability (see for example [36]), and also the distinction 
between subjective and objective information that we made in the 
previous section. 

If we abandon interpretations of meaning in terms of linguistic 
transformations, such as dictionary definitions, or, in the case of state- 
ments, the two interpretations mentioned before; and if also we do not 
regard the behavioral interpretations w sufficient, we shall be forced to 
consider interpretations in terms of internal workings. Since this article 
is written mainly on the assumption that an ultraintelligent machine will 
consist largely of an artificial neural net, we need in effect a neuro- 
physiological representation of meaning. The behavioral interpretation 
will be relevant to the education of the machine, but not so much to its 
design. It does not require much imagination to appreciate that the 
probabilistic and iterative interpretation of the definition of a word, as 
described above, is liable to fit well into models of the central nervous 
system. 

It has been difficult for the writer to decide how much neurophysiol- 
ogy should be discussed, and hopefully an appropriate balance is made 
in what follows between actual neurophysiology and the logic of arti- 
ficial neural networks. The discussion will be based on the speoulative 
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cell-assembly theory of Hebb [54] (see also [53] and [71]), or rather on a 
modification of it in which “subassemblies” are emphasized and a 
central control is assumed. If the present discussion contains incon- 
sistencies, the present writer should be blamed. (For a very good survey 
of the relevant literature of neurophysiology and psychology, see 
Rosenblatt [82], pp. 9-78.) 

5. Recall and Information Retrieval 

Whatever might be the physical embodiment of meaning, it is 
certainly closely related to that of long-term recall. Immediate recall 
is not strongly related to semantics, at any rate for linguistic texts. 
In  fact, experiments show that immediate and exact recall of sequences 
of up to fifty words is about ati~ good for meaningless texts as it is for 
meaningful texts, provided that the meaningless ones are at lemt “fifth 
order” approximations to English, that is to say that the probability of 
each word, given the previous five, is high [70]. 

The process of recall is a special case of information retrieval, so that 
one would expect there to be a strong analogy between the recall of a 
memory and the retrieval of documents by means of index terms. An 
immediate recall is analogous to the trivial problem of the retrieval of a 
document that is already in our hands. The problem of the retrieval of 
documents that are not immediately to hand is logically a very different 
matter, and so it is not surprising that the processes of immediate and 
long-term recall should also differ greatly. 

The problem of what the physical representation is for immediate 
recall is of course not trivialy but for the moment we wish to discuss 
long-term recall since it is more related to the subject of semantics. 

The usual method for attacking the problem of document retrieval, 
when there are many documents (say several thousand), is to index 
each document by means of several index terms. We imagine a library 
customer, in need of some information, to list some index terms without 
asauming that he uses any syntax, at least for the present. In  a simple 
retrieval system, the customer’s index terms can be used to extract 
documents by means of a sort, as of punched cards. The process can be 
made more useful, not allowing for the work in its implementation, if 
the terms of the documents, and also those of the customer, are given 
various weights, serving in some degree the function of probabilities. 
We then have a weighted or statistical system of information retrieval. 

One could conceive of a more complicated information-retrieval 
system in which each document had associated with it a set of resona- 
ting filters forming a circuit C. All documents would be queried in 
parallel: the “is-there-a-doctor-in-the-house” principle [MI. The 
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amount of energy generated in the circuit C would be fed back to  a 
master control circuit. (In the brain, the corresponding control system 
might be the “centrenoephalic system” [79].) Whichever circuit C fed 
back the maximum power, the corresponding document would be 
extrwted first. If this document alone failed to satisfy the customer 
completely, then the circuit C would be provisionally disconnected, and 
the process repeated, and so on. 

Ideally, this search would be probabilistic, in the sense that the 
documents would be retrieved in order of descending a posteriori 
probability, and the latter would be registered also. If these were 
p,, pa, . . ., then the process would stop at the nth document, where 
there would be a threshold on n, and on p ,  + pa + , , , + p,,, For ex- 
ample, the process might stop when n = 10, or when pl + p a  + . . . 
+ p,, > 0.96, whichever occurred first. The thresholds would be param- 
eters, depending on the importance of the search. (For the estimation 
of probabilities, see [48].) 

When we wish to recall a memory, such as a person’s name, we con- 
sciously or unconsciously use clues, analogous to index terms. These 
clues are analogous to weighted index terms, and it seems virtually 
certain that they lead to the retrieval of the appropriate memory by 
means of a parallel search, just as in the above hypothetical document- 
retrieval system. The speed of neural conduction is much too slow for a 
primarily serial search to be made. The search might very well be purtly 
serial: the less familiar memories take longer to recall and require more 
effort. This might be because the physical embodiment of the less 
familiar memory requims a greater weight of clues before it will 
“resonate” strongly enough. 

Further evidence that the search is, on the whole, more parallel than 
serial can be derived from Mandelbrot’s explanation of the Zipf “law” 
of distribution of words [28]. The explanation requires that the effort 
of extracting the pth oommonest word from memory is roughly pro- 
portional to log r. This is reasonable for a parallel search, whereas the 
effort would be roughly proportional to r for a serial search. 

When the clues do spark off the sought memory, this memory in its 
turn reminds us of other clues that we might have used in advance if 
we had thought of doing so. These “retrieved clues” often provide an 
enormous factor in favor of the hypothesis that the memory retrieved is 
the one that wm sought: consequently we are often morally certain 
that the memory is the right one once i t  is recalled, even though its 
recall might have been very difficult. There is again a strong resem- 
blance to document retrieval. 

When we extract a wrong memory, it causes incorrect clues to come 
to mind, and these are liable to block the correct memory for a number of 
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seconds, or for longer if we panic. This is another reaaon why the leas 
familiar memories take longer to recall. 

When we wish to recall incidents from memory, pertaining to a 
particular subject, the method used is to  bring to mind various relevant 
facta and images in the hope that they are relevant enough, numerous 
enough, vivid enough, independent enough, and specific enough to acti- 
vate the appropriate memory. (If specificity is lacking, then the wrong 
memory is liable to be recalled.) There is a clear analogy with the 
probabilistic definition of a word and probabilistic recognition of an 
object quoted in Section 4. A corresponding method of information 
retrieval is to list index terms that are relevant enough, numerous 
enough, independent enough, and specific enough, and (if the process 
is not entirely mechanized) vivid enough. This attitude towards index 
terms leads to forms of probabilistic or statistical indexing, as suggested 
independently by the writer ([35], [31], p. 12) and by Maron and Kuhns 
[64] who treated the matter in more detail. The present writer regards 
subjective and logical probabilities as partially ordered only [21], but 
does not consider that the fact of only partial ordering is the main 
source of the difficulties in probabilistic indexing. 

We have said enough to bring out the analogy between the process of 
recall and the techniques of document retrieval, and to indicate that, if 
i t  is possible to develop a comprehensive theory of either of these 
subjects, i t  should be a probabilistic theory. The need for a probabilistic 
theory is further brought out by means of a short discussion of what 
might be called “statistical semantics.” 

A complete discussion of statistical semantics would lean heavily on 
(i) the very intricate subject of non-statistical semantics, and on (ii) 
some statistical theory concerning language, without any deep dis- 
cussion of semantic problems, But our purpose in this section is only 
to make clear that a complete treatment of statistical semantics would 
be somewhat more general than recall and document retrieval. 

If we wish to teach a language to a baby who starts in a state of 
comparative ignorance, we simultaneously allow him to become familiar 
with some part of the world of nonlinguistic objeots and also with lin- 
guistic sounds, especially phonemes. The primitive ability of the baby 
to achieve this familiarity, although not much more remarkable than 
the achievements of lower animals, is still very remarkable indeed, and 
more so, in the writer’s opinion, than anything that comes later in his 
intellectual development. If this opinion is correct, then most of the 
struggle in constructing an ultraintelligent machine will be the con- 
struction of a machine with the intelligence of an ape. 

The child later associates words with objects and activities, by 
implicit statistical inference: in fact the fist words learned are surely 
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regarded by the child aa properties of an object in much the same sense 
aa the visual, olfactory, and tactual properties of the object. For ex- 
ample, if the child succeeds in pronouncing a word to an adequate 
approximation, and perhaps points in approximately the right direction 
or otherwise makes approximately the right gesture, then, statistically 
speaking, events are more likely to occur involving the object or activity 
in question; and, if the environment is not hostile, the events are likely 
to be pleasurable. Thus the words and gestures act aa statistical index 
terms for the retrieval of objects, and the activation of processes. A t  a 
later stage of linguistic development, similar statistical associations are 
developed between linguistic elements themselves. The subject of 
statistical semantics would be concerned with all such statistical 
aesociations, between linguistic elements, between nonlinguistic and 
linguistic elements, and sometimes even between nonlinguistic elements 
alone. 

A basic problem in Statistical semantics would be the estimation of 
probabilities P( W, I 0,) and P(Oj I WJ, where Wi represents a word (a 
clump of acoustic time series defined in a suitable abstract space, or, in 
printed texts, a sequence of letters of the alphabet with a space at  both 
ends: admittedly not an entirely satisfactory definition), and 0, 
represents an object or an activity. P( Wi I 0,) denotes the probability 
that a person, speaking a given language, will use the word W, to 
designate the object O,, and P(Oj I Wi) is the probability that the 
object 0, is intended when the word W, is used. Strictly, the estimation 
of probabilities is nearly always interval estimation, but, for the sake 
of simplicity, we here talk as if point estimation is to be used. The 
ranges of values of both i and j  are great; the vocabulary of an educated 
man, in his native tongue, is of the order of 30,000 words and their 
simple derivatives; whereas the range of values of j is far far greater. 
The enormity of the class of objects is of course reducible by means of 
classification, which, in recognition, again involves a process of re- 
generation, just as does the recognition of a word, 

An ideal Statistical dictionary would, among other things, present 
the two probability matrices, 

(Compare Sparck Jones [95] and the discussion.) Such a dictionary 
would, apt& from interdependences between three or more entities, 
give all the information that could be given, by a dictionary, for naming 
an object and for interpreting a word. Existing dictionaries sometimes 
indicate the values of the probabilities P(W, I Oj) to the extent of 
writing “rare”; and also the variations between subcultures are 
indicated (“archaic,” “dialect,” “slangyyy “vulgax,y’ and 80 on). But let 
46 



THE FIRST ULTRAINTELLIGENT MACHINE 

us, somewhat unrealistically, imagine a statistical-dictionary maker who 
is concerned with a fixed subculture, so that the two probability 
transition matrices are fixed. One method he can use is to take lin- 
guistic texts, understand them, and thus build up a sample (f,), where 
fij is the frequency with which object Oj is designated by word W,. 
Within the hypothetically infinite population from which the text is 
extracted, there would be definable probabilities P( Wi) and P(Oj) for 
the words and objects, and a joint probability P( Wi Oj) crudely 
estimated by fij/Zij fij. If these joint probabilities could be estimated, 
then the two probability matrices could be readily deduced. 

We have now said enough to indicate the very close relationship that 
exists between statistical semantics, recall, and the retrieval of docu- 
ments. In  the remaining discussion in this section we shall restrict our 
attention to  the question of retrieval of documents, including abstracts. 
This is a particular case of the retrieval of objects and the inauguration 
of processes, and the discussion brings out some of the theoretical 
difficulties of statistical semantics in a concrete manner. 

A basic problem, bordering on semantics, is the estimation of the 
probability P(D, I Wi), where V, represents a word, or index term, and 
Dj represents a document, or other object, and P(Dj I Wi) denotes the 
probability that D, represents a sought document, when Wi is an index 
term, and when i t  is not known what the other index terms are. Strictly 
speaking, the probability depends on the customer, but, for the sake of 
simplicity, it  will be msumed here that the indexer of the documents, 
and all the customers, speak the same indexing language. The problem 
of estimating P(Dj I Wi) is nontrivial to say the least [a], but let us 
imagine it solved for the present. 

Next suppose that index terms W,, W,, . , . , W, have been specified. 
Then we should like to be able to compute the probabilities P( Dj I W ,  * 
W ,  . . . - Wm), where the periods denote logical conjunction. One could 
imagine this probability to be estimated by means of a virtually infinite 
sample. Reasonable recall systems would be those for which (i) the 
probability that the document Dj will be recalled is equal to the above 
probability; (ii) the document Dj that maximizes the probability is 
selected; or (iii) the documents of highest (conditional) probability 
are listed in order, together with their probabilities. (Compare, for 
example [35], [31], p. 12, [a l l . )  

I n  one of the notations of information theory [26, 671, 

log P(D, I W ,  * w, * . . . * W,) 

= log P(Dj)  + I(D, : w, * w8 ’ . . . * W,) (5.1) 

where I ( I  : E”) denotes the amount of information concerning B provided 
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by F, and is defined (for example [26, I&]) as the logazithm of the 
“twociation factor” 

(The “clssociation factor” as defined in refs [27], [31], and [all is the 
factor by which the probability of one proposition is multiplied in the 
light of the other. It is used in a different sense, not as a population 
parameter, in Stiles [96].) The amount of information concerning E 
provided by P is a symmetrical function of 1c and P and is also called 
the “mutual information” between E and F, and is denoted by I ( E ,  P) 
when we wish to emphasize the symmetry. Notice that our “mutual 
information” is not an expected value aa is, for example, the “related- 
ness” of McGill and Quastler [67]. Shannon [89] always used expected 
values. 

If the index terms W1, Ws,  . . . , W ,  provide statistically independent 
information concerning Dj (i.e., if W,, . . . , W ,  are statistically inde- 
pendent, and are also statistically independent given D5), then 

m 

r-1 
log P(D5 I W1’ . . * Wm) = log P(D5) + C I(D,  : Wr) (6.3) 

The expected rate at which the individual index terms provide in- 
formation concerning documents is 

conveniently denoted by I ( D  : W )  (compare [89], p. go), but this does 
not allow for the expectation of the mutual information when several 
index terms are used. A knowledge of the expectations, for various 
values of m, would be relevant to the design of information-retrieval 
systems, since its antilogarithm would give some idea of the “cut-down 
factor” of an m-term request. 

When one wishes to choose between only two documents, then the 
final log-odrle ere equal to the initial log-odds plus the sum of the 
“weighta of evidence” or “log factors” (see [21] for the terminology 
here and cf. Minsky [73]). 

It should be noted that Eq. (6.1) and (6.3) ere just ways of writing 
Bayes’ theorem, but this is not a stricture, since Bayes’ theorem is like- 
wise just a way of writing the product axiom of probability theory, It 
is suggestive to think of Bayes’ theorem in a form that is expressible in 
one of the nofactions of information theory, since the various terms in 
Eqs. (6.1) and (6.3) might correspond to physical meohanisma, associa- 
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tive bonds between memory traces (see Section 6). The use of Eq. (6.3) 
might be described aa the “crude” use of Bayes’ theorem, or as a first 
approximation to the ideal procedure. It was used, for example, in 
[73], and I think also in [64]. It is a special case of discrimination by 
means of linear discriminants of the form 

which have been used, for example, in the simplest class of perceptra 
[82], and in suggestions or experiments related to mechanical chess and 
chequers (draughts) (for example [33, 83, 18, 8 3 ~ 1 ) .  

One can write (5.4) in the form 

aj + c 4 , P  &P (6.5) 

where now the summation is over all words in the language, not just 
those that occur in the context, and eP is defined aa 1 if W, does occur 
and as 0 otherwise. It is because of this mode of writing (6.4) that we 
call i t  a linear discriminant. It has been claimed [I041 that the more 
general form, (6.4) or ( 5 4 ,  is often much better than the crude use of 
Bayes’ theorem, i.e., Eq. (6.3). 

In  order to estimate the second term on the right of Eq. (5.1), a very 
large sample would usually be required, and this is why i t  is necessary 
to make approximations. Successively better approximations can 
presumably be obtained by truncating the following series: 

log P(Dj I W1, W,, * * * 9 W,) 

(r,  s, t ,  . . . = 1, 2, . . . , rn; r < s < t < . . . ), where the 1 ’ s  are “inter- 
actions of the first kind” as defined in the Appendix. If, for example, we 
were to truncate the series after the interactions of the second order 
(the Ja’s), we would obtain a special case of the quadratic discriminant 

which, with optimal coefficients, would of course give a better approxi- 
mation. (An example of the relevance of the quadratic terms, in 
analogous problems in learning machines, is in the evaluation of 

49 



IRVING JOHN GOOD 

material advantage in chess: the advantage of two bishops [33].) If we 
truncate Eq. (6.6) dter the third-order interactions, we of course obtain 
a special case of a cubic discriminant, and so on. 
An interesting class of problems arises when we ask: What are the 

optimal linear, quadratic, cubic, etc., discriminants, and how do we 
set about finding them? There is some discussion of this problem in [I91 
and in  [85]. Here we merely make the obvious comment that, if the 
number of words is large, the number of coefficients increases rapidly 
with the degree, and optimization problems might be exceedingly 
difficult even for the cubic discriminant. Even without optimization, the 
work of estimating the interactions I(Dj ,  W,, W,, W,) would be enor- 
mous. It will be suggested, in Section 6, that the subassembly theory of 
the brain is capable of explaining, or at least of explaining away, how 
the brain can in effect embody these higher interactions as association 
bonds between sets of subassemblies. But in the present seotion we shall 
not consider biological processes. 

Let us consider how, in principle, the vaious terms in Eq. (6.6) could 
be obtained. We should begin by taking 8 sample of 8ucoe.98fuZ library 
applicatim, each being of the form ( W1, Wg, . , . , W,; D,), meaning 
that the index terms W1, Wg, . . ,, W, were used by the customer, and he 
was satisfied with the document D,. If on a single oocasion he was 
satisfied by more than one document, then, in this notation, that 
occasion would correspond to more than one successful library applica- 
tion. It should be remembered that we are assuming that all customers 
speak the same language. This msumption is in flagrant contradiction 
with the facts of life, but we assume i t  as an approximation in order to 
avoid complication. It should be noted that a sample of the kind 
mentioned here would form a useful part of any practical operational 
research on document retrieval. 

We can now imagine the raw statistical data to be entered in a 
contingency table in w + 1 dimensions, where w is the number of index 
terms in use (the “size of the vocabulary”); w of the sides of the con- 
tingency table would be of length 2, whereas the remaining side would 
be of length d, the number of doouments. It might be suggested that the 
way to enter the data in the table would be to regard each successful 
library application as a long vector 

where el is 1 or 0 depending on whether the ith index term in a diction- 
ary of index terms is one of the index terms, Wl, . . , , W, that was used 
in the application; and so to put a tick in the cell (6.8) of the contingency 
table. This method of constructing the contingency table would be very 
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misleading, since there is a world of difference between missing out an 
index term and explicitly saying that the term is irrelevant to the 
sought document. This method of construction would be appropriate 
only if the entire vocabulary of index terms were presented to the 
customer to be used as a yes-no tick-off list. As R. A. Fairthorne has 
often pointed out, the idea of negation is not usually a natural one in 
indexing. 

Instead, the above “successful library application” is better regarded 
as contributing to the “marginal total,” denoted [47] by 

~ ~ ~ I , . . I I I ~ ~ ~ I . . . I ~ I ~ I ~ ~  ..... . ~ t t l I l ~ . . . ~ ~ t j  

The meaning of this notation is this. Let 

nc,e,. . . c w j  

be the hypothetical entry in the contingency table in the cell given by 
(5.8);  “hypothetical” since tick-off lists are not in fact used, In  the 
above notation, each of the l’s, of which there are m, corresponds to the 
specification of an index term, and the acute accents indicate summa- 
tions of n,, . . . r,) . over all the ei’s that do not correspond to one of these 
m terms. 

After a large amount of sampling, one would have good estimates for 
the values of many of the marginal totals of the “population contingency 
table,” that is, the (w + 1)-dimensional array of population proba- 
bilities. The “principle of maximum entropy” [47, 56, 481 could then 
be used in principle for estimating all the 2”d probabilities. The amount 
of calculation would be liable to be prohibitive, even if i t  were ultra- 
parallel, although it might be practicable in analogous small problems 
such as the recognition of printed characters or phonemes. 

It should be possible in principle to cut down the size of both the 
sample and the calculation by making use of the theory of clumps 
(“botryology”) or of clusters. One of the benefits of such a theory would 
be that, by lumping together words into clumps, the dimensionality 
of the contingency table would be reduced. 

The theory of clumps is still in its infancy (see for example [30, 35, 
31, 41, 78, 75, 76]),  and is necessarily as much an experimental science 
as a theory: this is why we prefer to call it  “botryology.” Research 
workers who use the term “cluster” rather than “clump” (see for 
example [77, 97, 81, 93, 78~~12) seem to be concerned with the grouping 
of points that lie in a Euclidean space, and their methods tend to be 
fairly orthodox from the point of view of statistical methodology. In 
botryology the methods tend to be less orthodox, and it is sometimes 
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actually desirable that the clumps should overlap, both in applications 
to information retrieval and in potential application to neural nets. 
Nevertheless the two theories might be expected eventually to merge 
together. 

Let us consider how botryology might be applied for finding clumps of 
aasociated index terms and “conjugate” clumps of documents. (The 
method could also be applied to the categorization of diseases, by re- 
placing the index terms by symptoms and the documents by people.) 
Let there be w index terms, and d documents. Let fjj be the frequency 
with which index term i occurs in document j ,  and consider the w by 
d matrix 

F = (f,) 
Various botryological computations with F have been suggested in the 
references: the one proposed here is closest to that of Needham [76], 
who, however, wm concerned with a square symmetric matrix of 
frequencies of co-occurrence of index terms, and who did not use 
logarithms or “balanoing,” rn described below. 

First replace the matrix P by the matrix @og (fij + k)], where k is a 
small oonstant (less than unity). A reason for using the logarithm is that 
we are proposing to use additive methods and a sum of log-frequencies 
is a log-likelihood. The addition of the small oonstant k to the frequen- 
cies is necessary to prevent zeros from going to minus infinity, and can 
be roughly justified for other rewona (see for example [58], [25], p. 241, 
or [48]). This modified matrix is now “balanced” in the following sense. 

By balancing an arbitrary matrix we mean adding ui + bj to cell 
(i, j )  (i, j = 1 , 2 ,  . . .) in such a manner that each row and each column 
adds up to zero. It is eaay to show that the balanced matrix is unique, 
and that the balancing conatants can be found by first selecting the 
q ’ s  to make the rows add up to zero, and then selecting the 4’s to make 
the columns add up to zero. The column balancing does not upset the 
row balancing. For a symmetric matrix the row-balancing constants are 
equal to the column-balancing constants. I n  what follows, instead of 
balancing the matrix i t  might be adequate to subtract the mean of all 
the entries from each of them. 

Let B be the result of balancing the matrix [log(& + k)]. Consider the 
bilinear form b = x’By, where x is a column vector consisting of +l’s 
and -1’8, and the prime denotes transposition. We now look for local 
maxima of b in the obvious manner of b t  fixing x, perhaps randomly, 
and finding y to maximize b (i.e., taking y = sgn Ex), and then fixing 
y and finding x to maximize b (i.e., taking x = sgn By), and so on 
iteratively. The process t e d a t e s  when the bilinear form takes the 
same value twice running. The process would lead to the separation of 
52 



THE FIRST ULTRAINTELLIGENT MACHINE 

the words into two classes or large clumps, and two conjugate clumps of 
documents. 

Consider one of the two smaller matrices obtained by extracting 
the rows and columns from B, corresponding to a clump and its con- 
jugate. Balance this smaller matrix, and find a local maximum of its 
bilinear form. This procedure will split our clump into two smaller 
clumps, and will simultaneously split the conjugate clump, In this 
manner we can continue to  dichotomize our clumps until they are of 
approximately any desired size. The whole collection of clumps would 
form a tree. 

Actually, it is desirable that clumps should overlap in some applica- 
tions to information retrieval, and this can be achieved by means of a 
slight modification of the above procedure, in which the “large” 
clumps are made larger still. That is, in place of taking all the +l’s 
in w as a clump, one could take all the components in B’z algebraically 
greater than some negative threshold; and, in the conjugate clump, 
all the components in By above some negative threshold. 

The effect of this botryological procedure is to induce a partially 
ordered structure each of whose elements is a clump of index terms to- 
gether with its conjugate clump of documents. 

Having obtained the partially ordered set of clumps, one could apply 
the methods described in [at?], which, however, have not been completely 
worked out, in order to make estimates of I ( i ,  j) when fi, is too small 
for the estimate log& - logf,, - logffj to be usable (for example when 
f.. v = 0 or 1). (We have writtent,, and!,, for the total frequencies of Wi 
and D,.) Hopefully, the higher-order mutual information (interaction) 
I( Wl, Wa, . . . , W,,, I D,) could be estimated in a similar manner. 

Another conceivable method for associating documents with index 
terms would be in terms of the eigenvectors of B B  and of B’B, where 
the primes still indicate transposition. By a theorem of Sylvester, the 
eigenvalues of B‘B are the same as those of BB’, together with d - w 
zeroes, if d 2 w. We can use the nonzero eigenvalues in order to pair 
off the two sets of eigenvectors, and we could order each of the two sets 
of eigenvectors in the order of the magnitudes of the eigenvalues. Then 
we could associate with the ith index term the i th component of the 
normalized eigenvectors of BB‘, and with the j t h  document the j t h  
component of the Corresponding w eigenvectors of B’B. This would 
amociate a w-dimensional vector with each index term and with each 
document. The relevance of index term i to document j could now be 
defined as the correlation coefficient between the two associated vectors. 
An approximate relationship between relevance and mutual information 
aould then be found experimentally, and we could then apply Eq. (6.1) 
for document retrieval. The amount of calculation required for the 
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application of this method would be exceedingly great, whereas the 
clumping algorithm mentioned before could perhaps be carried out on a 
computer of the next generation. 

6. Cell Assemblies and Subassemblies 

Suppose that one wishes to simulate psychological association and 
recall on a machine. We restrict our attention to the recall of one word 
when rn other WOTdB are pwented, but most of the discussion can be 
adapted, in an obvious manner, to the recall of a concept given various 
attributes, or to the retrieval of a document, given various index terms. 
The discussion could be modified in order to cover the cme when the 
words are presented serially and form a Markov chain, this being a 
well-known approximate model for the prediction of words in a lan- 
guage text (of. [St?]). For the sake of simplicity, we shall ignore problems 
of syntax, so that our discussion will be in this respect more pertinent 
to methods of information retrieval based only on index terms than to 
the full problem of recall. This limited problem is difficult enough for the 
present, and is I think a necessary preliminary to any more ambitious 
discussion of recall in general. 

If there are w words in the vocabulary, there are potentially 
w(w - 1)/2 associations of various strengths between pairs of words. 
( K i d  of association are here being ignored.) The process of recall, in 
this example, is that of selecting the word, A, that is in some sense 
most associated with the m words A,, A,, . . . , A, which have been 
recently inserted at the input of the computer. In  the usual problem of 
information retrieval A would be a document and A,, A,, . . . , A, 
would be index terms, and the discussion of the previous section is all 
relevant to the present problem. 

The difficulty of making the probability estimates [48] provides some 
of the explanation of why men are not entirely rational in their proba- 
bility estimates and in their recall. It is possible, for example, that, for 
men, the probability of retrieval of a word is approximated by only a few 
terms of Eq. (5.6) of the previous section. An ultraintelligent machine 
might be able to use more terms of the equation, since it might be able 
to speed up the calculations by invoking the electronic computer with 
which it would be in close relationship (of. [33]). 

Russell and Uttley [I021 suggested that a time delay might be the 
neural embodiment of the amount of information in a proposition, 
I ( H )  = -logP(H), and that this would make conditional proba- 
bilities eaaily embodiable, since the difference between two time delays 
is itself a time delay. As point out in [38], this idea extends at once to 
mutual information, log-odds, weights of evidence, and tendency to 
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cause. But of course time delay is only one of many possible physical 
representations of a real variable, and others could be suggested in terms 
of synaptic facilitation. In view of the complexity of the brain, it  
is quite probable that more than one representation is used, and this 
would give greater scope for adaptability. One must not be overready 
to apply Ockham’s lobotomy. As in other complex systems, many 
theories can contain elements of the truth. Economists are familiar 
with this principle. 

We return now to our problem of information retrieval. 
Suppose that w = 30,000 and that some acceptable method were 

found for est,imating the mutual information between each pair of the 
30,000 words. Then it will still be hardly practicable to list the 450 
million answer8 in immediately accessible form in a machine that is 
not ultraparallel. Instead it would be necessary to put the words that 
have appreciable association with a given word, A,  into a list of memory 
locations, called shy the A list. Each word in each list must have the 
strength of the association (the logarithm of the association factor) 
tagged to it. Many of the lists would be very long. The process of recall 
involves the collation of the words in the lists corresponding to recent 
input words, together with some further arithmetic. Collation is a slow 
process, and it is tempting to ask whether i t  would be more economical 
to simulate the process of recall by means of an artificial neural net- 
work, or at  any rate by means of ultraparallelism. The use of artificial 
associative memories is a step in this direction, but so far only a small 
one (for example [60, 651). For purposes of information retrieval, which 
in effect is what we are discussing, it might be worth while to design 
computers that are not ultraparallel but have extremely rapid collation 
as a special feature. Such computers would be very useful for informa- 
tion retrieval by means of index terms, but when the words are strongly 
interdependent statistically, as in ordinary language, a machine using 
artificial neural nets seems intuitively to hold out more promise of 
flexibility. (See also the discussions of “higher-order interactions” later 
in this section). 

If each word were represented by an artificial neuron, or otherwise 
highly localized, it would take too long to set up the associations, unless 
there were w(w - 1) association fibers built in, and this would be very 
expensive in equipment. Moreover, it is not easy to see how more than 
a small fraction of such a machine could be in operation at any one time, 
so that there would be a great wastage of potential computation power. 
For these reasons, a machine with “distributed memory” seems more 
promising. As Eccles says ([16], p. 266), “Lashley argues convincingly 
that millions of neurons are involved in any memory recall, that any 
memory trace or engram has multiple representation; that each neuron 
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or even each synaptic joint is built into many engrams” [61]. A further 
relevant quotation, from [34], is: 
“An interesting analogy is with the method of superimposed coding, 

of which Zatocoding is an example. This is a method of coding of 
information for information-retrieval purposes. Suppose we wish to 
identify a document by means of m index terms. Each term is repres- 
ented by means of v punched holes in a card containing N locations 
each of which can be punched or not punched. [For each of the index 
terms] we may select v locations out of the N at  random [to punch]. 
The representation of the joint occurrence of rn index terms is then 
simply the Boolean sum of the m individual punchings of v locations 
each. . . . In the application to information retrieval if we extract all 
the oards punched in the v locations corresponding to any given term, 
we may get some cards that are irrelevant by chance. If N is large, and v 
is suitably selected, mistakes need seldom occur. In fact it is natural to 
arrange that 

i.e., 

This must be the best value of v since to have half the holes punched 
gives the largest variety of possible punchings. 

“By analogy, Nature’s most economical usage of the brain would be 
for a reasonable proportion of it to be in operation at  any one time, 
rather than having one concept, one neuron.” Instead, each neuron 
would occur in a great many distinct circuits, and would not be in- 
dispensable for any of them. 

Such an analogy can at  best give only a very rough idea of what 
goes on in the brain, which is an ultradynamic system as contrasted 
with a collection of punched cards. (The analogy would seem a little 
better if, instead of taking the Boolean sum, a threshold were used at  
each location.) But if we take m = 20, on the grounds that the game of 
“twenty questions” is a reasonably fair game, we find that the represent- 
ation of a word occupies say a thirtieth of the neurons in the corhx. It 
must be emphasized that this is not much better than a guess, partly 
bemuse it is based on a very crude optimality principle. But it is not 
contradicted by the experiments of Penfield and others (for example 
[80], p. 117) who found that the electrical stimulation of a small area on 
the surfwe of the cortex could inhibit the recall of a fraction of the 
subject’s vocabulary. (For further references, see Zangwill [108].) For 
it is entirely possible that a large subnetwork of neurons could be in- 
hibited, and perhaps even sparked off, by stimulation at  special points. 

Among the theories of distributed memory, the ‘‘cell msembly” 
theory is prominent, and, aa stated in the previous section, a modified 
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form of this theory will be adopted here. The meaning and point of the 
theory can be explained in terms of its applications to the linguistic 
activities of the brain, although the theory is usually discussed in a 
more general context. There are some advantages in discussing a 
special case, and some generalizations will be obvious enough. A cell 
assembly is assumed to consist of a great number of neurons, which can 
all be active at least once within the same interval of about a quarter 
to half a second. For simplicity we shall generally take the half-second 
estimate for granted. An aasembly reverberates approximately as a 
unit, and, while reverberating, it tends to inhibit the remainder of the 
cortex, not neuron by neuron, but enough so that no other assembly 
can be very active during the same time interval. A word, or a familiar 
phrase, is often represented by an assembly, and, more generally, an 
assembly usually corresponds in Hebb’s words, to a “single element of 
consciousness.” But the consciousness might habituate to assemblies 
that occur very frequently. 

It will be assumed in this paper that there are also subassemblies that 
can be active w i t h t  dominating the whole cortex, and also that when 
an assembly becomes fatigued and breaks up i t  leaves several of its 
own subassemblies active for various lengths of time, from a second to 
several minutes, and typically about ten seconds. Each subassembly 
would consist of a smaller group of neurons than an assembly, but with 
greater relative interconnectivity. The subassemblies might in their 
turn break up into still smaller groups of still greater relative inter- 
oonnectivity and of greater “half-lives.” These could be called sub- 
subassemblies, etc., but we shall usually use the term “subassembly” 
generically to include subsubassemblies, etc. When an wsembly gains 
dominance for a moment it is approximately completely active, when 
the subject is wide awake. The process is assumed to be one of approxi- 
mate regeneration. It is not exact regeneration for if it  were there would 
be no learning. Probabilistic regeneration might often be represented 
by the degree of activity of an assembly. This degree of activity will be 
oarried forward by the subassemblies, so that the benefits of probabilis- 
tic regeneration, as described in a previous section, will be available. 
Also the activity is less, and the assembly is somewhat smaller, when 
the subject is sleepy or dreaming, but the activity is assumed to be 
nearly always enough for the assembly to have a definite identity, 
except perhaps in dreamless sleep. When the subject is nearly asleep, 
there might be frequent intervals of time when there is no active 
amembly. 

The association between two assemblies could be largely embodied 
in the subassemblies that they have in common. 

When a man is in a sleepy condition, an assembly need not be followed 
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by mother aonsciousness-provoking assembly for a short time. In that 
owe, the assembly A might recover from fatigue and be reactivated by 
the subassemblies that it itself had left in its wake when it last fired. 
This would account for the occasional repetitivity of thought when one 
is sleepy. The hypothesis is not that the assembly reverberates for 
longer than usual, but that it is liable to reactivate because there has 
not been enough activity to disperse its subassemblies. The subassem- 
blies themselves, both in sleepiness and in dreams, have lower activity 
than in wakefulness, so that, when one wakes up, the memory and 
atmosphere of dreams would be easily erased. When dreaming there is 
perhaps not enough energy in the cortex to sustain many full assemblies 
so that the subassemblies would be less inhibited than in wakefulness. 
It might well be that there are far more subassemblies active during 
sleep, and they would form arrangements having less logical cohesion 
and higher entropy. This would explain the remarkable rate at  which 
visual information can be internally generated during dreams; and the 
incomplete regeneration of full assemblies would explain the non 
sequitur and imaginative nature of dreams. 

In the same spirit, if assemblies correspond to conscious thoughts, it 
might well be that subassemblies c o r r e a e  to unconaciow and Mpecially 
to prewnscious thoughts, in the wakeful state m well a8 in sleep. 

What gives the assemblies their semipermanent static structures, 
corresponding to long-term memory, is assumed, following Hebb, to be 
the pattern of strengths of synaptic joints throughout the cortex. 
The physical counterpart of learning is the variation of these strengths. 
We have already conjectured that the number of possible states of any 
synaptic joint is small enough to justify calling the strength a “discrete 
variable.” This assumption makes it easier to understand how memories 
can be retained for long periods, and how the identities of assemblies 
can be preserved. 

We wsume that the strength of a synapse, when not in use, occasion- 
ally mutates in the direction of some standard value. This mechanism 
would explain the gradual erosion of memories that have not been re- 
called, and would also help to prevent all synapses from reaching equal 
maximal strength, which would of course be disastrous. Equally, the 
increase in strength of a synapse when its activation leads to the firing 
of a neuron can rewonably be assumed to be a mutation and only 
probabilistic. The number of synapses is so large that it might well be 
sufficient for only a small fraction of them to mutate when they 
oontribute to the firing of a neuron. This hypothesis would also help to 
explain why all 8ynwpee8 do not reach d m u m  strength. 

Even when an assembly sequence is frequently recalled, some of the 
strengths of the relevant synapses would nevertheless have mutated 
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downwards, so that some of the many weaker subassemblies involved 
in the assembly sequence would have become detached from the 
structure of the assembly sequence. Thus the structure of a frequently 
used assembly sequence, used only for recall and not for building into 
fantasy or fiction, would tend to become simplified. In  other words, 
detail would be lost even though what is left might be deeply etched. 
Thus the corresponding memory would tend to become stereotyped, 
even in respeot of embellishments made to it after the first recording. 

It is interesting to consider what enables us to judge the time elapsed 
since a memory was fist inscribed. Elapsed time seems introspectively 
to be recorded with roughly logarithmic accuracy: the least discernible 
difference of a backward time estimate is perhaps roughly proportional 
to the time elapsed, not allowing for the “cogency” of the recall, that 
is, not allowing for the interconnections and cross-checks in the recall. 
This conjecture, which is analogous to the Weber-Fechner law, could be 
tested experimentally. An aging memory suffers from a gradual loss of 
“unimportanty’ detail. If, on the other hand, we recall an item repeated- 
ly, we preserve more of the detail than otherwise, but we also overlay the 
memory with additional associations to assemblies high up in the 
hierarchy. We can distinguish between “reality” and imagination be- 
cause a memory of a real event is strongly connected to the immediate 
l ~ - o r d e r  sensory and motor assemblies. As a memory ages i t  begins to 
resemble imagination more and more, and the memories of our child- 
hood are liable to resemble those of a work of fiction. 

One of the advantages that an ultraintelligent machine would have 
over most men, with the possible exception of millionaires, would be 
that it could record all its experiences in detail, on photographic film or 
otherwise, together with an accurate time-track. This film would then 
be available in addition to any brain-like recordings. Perfect recall 
would be possible without hypnotism! 

As pointed out by Rosenblatt ([82], p. 55),  a permanent lowering of 
neural firing thresholds would be liable to lead to all thresholds becom- 
ing minimal, unless there were a “recovery mechanism.’’ He therefore 
prefers the more popular theory of synaptic facilitation, which we are 
using here [15,54]. Although there are far more synapses than neurons, 
a similar objection can be raised against this theory, namely, too many 
synapses might reach maximal facilitation, especially if we assume a cell 
assembly theory. This is why we have assumed a mutation theory for 
synaptic strengths. In  fact, we assume both that a synapse, when not in 
use, mutates downwards, with some probability, and also, that when it 
has just been used, i t  mutates upwards, with some probability. The 
higher the strength at any time, the greater the probability of mutating 
downwards when not used, and the smaller the probability of mutating 
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upwclrde when used. It is neither neoessary nor desirable that every 
synapse should increase its strength whenever it is used. The enormous 
number of neurons in an assembly make it unnecessary, and the fie- 
quent uses of the synapses make it undesirable. After a oertctin number 
of urn, an rtssembly does not need any further strengthening. 

A sentenoe lasting ten seoonds would oorrespond to an meembly 
eequence of about twenty assemblies. Hebb, ([54], p. 143) says that the 
appmnt duration of a “oonoeptual prooess” in man is from one to five 
or ten seoonds. The expression “oonoeptual process” is of course vague, 
and the disoussion is here made somewhat more oonorete by fiaming 
it in terms of linguistio aotivity. A phoneme, when it is part of a word, 
perhaps oorreaponds fo a subassembly, and there will be many other 
subassemblies oorresponding to other properties of the word, but only 
a fraction of these will remain aotive when the assembly breaks up. 

Whioh assembly beoomes aotive at the next moment must depend 
on the ourrent sensory input, the ourrent dominant assembly, and the 
ourrently aotive subaaeemblies. Indireotly, therefore, it depends on the 
recent aaembly eequence, wherein the most recent wsemblies will have 
the greatest influence. It also depends of o o w e  on the semipermanent 
statio storwe, the “past history.” Well-formed assemblies will tend to be 
aotivated by a small fraotion of their subassemblies; this is why it is 
posaible to read fast with praotioe: it is not neo888&Ly to observe all the 
print, Memory abbreviates. 

An example that shows how the aotivation of an assembly oan 
depend on the previous assembly sequenoe is the recall of a long 
sequenoe of digits, suoh as those of T.  A. C. Aitken and Tom Lehrer, for 
example, oan repeat several hundred digits of T oorreotly. If we assume 
that there is one assembly for eaoh of the ten digits 0, 1, . , ., 9, then it is 
oleax that the next wsembly to be mtivated must depend on more than 
just the previously aotive assembly. If there is no hexanome (sequenoe 
of six digits) that is repeated in the firat 600 digits of T,  then one 
method of remembering the 600 digits in order is to memorize a funo- 
tion of hexrtnomes to mononomes. Then any six oonseoutive digits 
would uniquely determine the next digit in this pieoe of T ;  for example, 
the digit 6 is determined by the hexanome 416926. 

Let us oonsider how the subassembly theory would aooount for this. 
For the sake of argument, we shall ignore the strong possibility that a 
oaloulating prodigy has an assembly for say =oh of the hundred distinot 
dinornee, and continue to msume one amembly for eaoh of the ten 
digits. (The argument oould be modified to allow for other possibilities.) 
We take it for granted that the subjeot (Aitken) is in the psyohologioal 
“set” oorresponding to the reoitation of the digits of T. Suppose that the 
aemmbly oorresponding to the digit i haa subaaeemblies e( i ,  l), a(&, 2)) 
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. . . , and that these symbols correspond to subassemblies of succes- 
sively shorter “half-lives.” Then, provided that the digits are recited by 
Aitken at a constant rate, one set of subassemblies that would activate 
the assembly corresponding to 6 would be of the form 4 4 ,  l), s(4,2), . . ., 
4 4 ,  n,,,); . . . ; 4 6 ,  l), 4 6 ,  2), . . . , 4 6 ,  R , , ~ ) ,  where s(i, is the next 
subassembly (belonging to assembly i) to become extinguished after j 
“moments of time.” If at  least one subassembly of each assembly is 
extinguished at each moment within the first six moments after the 
assembly is extinguished, then this theory could account for the 
possibility of the recitation. For, a t  any given moment, the active sub- 
assemblies would uniquely determine the next assembly to be activated. 
If the recitation were slowed down by a moderate factor, then there 
would still be enough clues for the unique determination of the succes- 
sive digits. In  fact a knowledge of the maximum slow-down factor 
would give quantitative information concerning the numbers and 
durations of activation of the subassemblies. 

There is an analogy between cell assemblies and the gel that can 
form in a polymerization reaction. (See Flory [I71 for a comprehensive 
discussion of polymerization, or [45] for a short self-contained des- 
cription of some mathematical theory that might also be relevant to cell 
aaemblies.) The gel is often regarded as a molecule of infinite size, but 
there can be other largish molecules present simultaneously, analogous 
to the subassemblies. Polymerization is not as dynamic as cerebral 
activity, so the analogy is imperfect, but i t  is instructive since it shows 
the plausibility of subassemblies. 

A theory that does some of the work of the subassembly theory is 
the theory of “primed neurons” ([MI, p. 606 and [71]). We quote 
(from the former reference): “After an assembly has just been extin- 
guished, many of its neurons will have received subthreshold activation 
without having fired. Milner calls them ‘primed neurons’. . . . A primed 
neuron may be regarded as the opposite of a refractory one. Therefore, 
in virtue of ‘temporal summation’ for neurons, parts of a recently 
extinguished assembly will be primed, so that it  will be easily re- 
activated during the next few seconds. This is an explanation of short- 
term memory different from that of reverberatory circuits; but an 
activated assembly must itself reverberate. Milner assumes that the 
effect of priming dies away after a few seconds. But I think it would be 
useful to assume that the time constant can vary greatly from neuron to 
neuron since this may help to explain our sense of duration, and also 
medium-term memory. Here, as elsewhere, other explanations are 
possible, such as the gradual extinction of small reverberating circuits 
within assembles.” (The last remark is a reference to subassemblies; 
see also [all.) 
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The subassembly theory seems to be a more natural tool than that of 
primed neurons, for the purpose of explaining the sequence of firing of 
assemblies although both might be features of the brain. One would 
expect subassemblies to exist, since the density of connectivity in an 
assembly would be expected to vary from place to place in the cortex. 
Subclumps of high connectivity in a network would be expected to 
reverberate longer than those of low connectivity. Although it could be 
argued that highly connected subclumps should become exhausted 
more quickly, it  should be observed that the synapses in these sub- 
clumps will tend to be stronger than where the connectivity is low. 
It is therefore natural to assume that the subclumps correspond to sub- 
assemblies. 

It might turn out that the theory of primed neurons will be sufficient 
to explain the workings of the brain, without the assumption of sub- 
assemblies, but the latter theory gives the kind of discrete representa- 
tion that fits in well with the notion of probabilistic regeneration. 

The theory of subassemblies is so natural for any large partly random- 
looking communication network (such as that of a human society) 
that it tempts one to believe, with Ashby ( [4],  p. 229), that a very wide 
class of machines might exhibit intelligent behavior, provided that they 
have enough interconnectivity and dynamic states. Machines certainly 
need some design, but it is reasonable to suppose that money and 
complication can be traded for ingenuity in design. For example, a well- 
designed machine of say lo8 components might be educable to ultra- 
intelligence, but a much more carelessly designed machine of say 10l8 
components might be equally good. 

That some design is necessary can be seen from one of the objections 
to the cell assembly theory as originally propounded by Hebb. Hebb did 
not originally assume that it was necessary to assume inhibition, and 
Milner pointed out that, without inhibition, the assemblies would fill 
the whole cortex. Ultimately there could be only one assembly. Either 
inhibition must be assumed to exist, as well as excitation, or else the 
assemblies would have to be microscopically small in comparison with 
the cortex. The latter assumption would be inconsistent with “dis- 
tributed memory.” Milner accordingly assumed that neurons tend to 
inhibit those near them. Therefore one may picture an assembly as a 
kind of three-dimensional fishing net, where the holes correspond to 
inhibited neurons. 

The simplest model would assume that each fishing net (assembly) 
spans the entire cortex, or perhaps only the entire association cortex, 
or perhaps also other parts of the brain [67]. In future, mctinly for verbal 
simplicity, we w e  th word “&ex’y uqwli$ed. There is a need for 
some mathematical theorems to show that a very large number of 
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distinct assemblies could exist under reasonable assumptions for the 
parameters that describe connectivity. It is reasonable to conjecture 
that the thinness of the cortex is a relevant parameter, or rather the 
“topology” that is encouraged by the thinness. The dimensions of the 
cortex, if straightened out, would be about 60 cm by 60 cm by 2 mm 
([go], pp. 32 and 34). It is possible that the assembly theory would 
become impossible if the cortex were much “thicker.” If we cannot treat 
the problem mathematically, perhaps we should experiment with an 
artificial neural net of neural dimensions approximately 60 x 10,000 x 
10,000, but smaller-scale experiments would naturally be tried fist. 
There must surely be some advantage in having thin cortices, otherwise 
people would have thicker ones. It seems unlikely that the brain con- 
tains many useless residuals of evolutionary history. Hence the anatomy 
of the brain is very relevant to the design of the first ultraintelligent 
machine, but the designer has to guess which features have important 
operational functions, and which have merely biochemical functions. 

Since it is not known what values of the parameters are required for 
the intelligent operation of a neural net, it  is possible only to guess which 
features of the cortex are most relevant for the design of an ultra- 
intelligent machine. The feature of a good short-term memory (“atten- 
tion span”), of the order of 207, where T is the active time of a single 
assembly, is certainly essential for intelligence. (In a machine T need not 
be approximately half a second.) It might even be possible to improve on 
the performance of a brain by making the average duration of the 
sequence somewhat greater than 207. But there must be a limit to the 
useful average duration, for a given cost in equipment. This limit might 
be determined by the fact that the longer an assembly sequence the 
smaller must be the average size of the assemblies; but is more likely to be 
determined by the fact that the complexity of concepts can be roughly 
measured by the durations of the assembly sequences, and beyond a 
certain level of complexity the brain would not be large enough to handle 
the relationships between the concepts. (In a more precise discussion the 
duration would be interpreted as a kind of “half-life.”) 

When guessing what biological features are most relevant to the 
construction of an ultraintelligent machine, it  is necessary to allow for 
the body as a whole, and not just the brain: an ultraintelligent machine 
would need also an input (sensorium) and an output (motorium). Since 
much of the education .of the first ultraintelligent machine would be 
performed by a human being, it would be advisable for the input and 
output to be intuitively tangible. For example, the input might contain 
a visual and a tactual field and the output might control artificial 
limbs. In short the machine could be something of a robot. The sen- 
sorium and motorium might be connected topographically to parts of 
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the two surfaces of the disk that represents the cortex. Many other 
decisions would have to be made concerning the design, even before any 
really useful experiments could be performed. These decisions would 
concern qualitative details of structure and also the values of quanti- 
tative parameters. The need for further theory is great, since, without 
advances in theory, the amount of experimentation might be pro- 
hibitive. Even if the values of the parameters in the cerebral cortex 
were known [9O], theory would be required in order to decide how to 
scale them to a model with fewer components. A very tentative example 
of some quantitative theory is given near the end of the present section. 

It has been argued [79] that the cortex seems to be under the control 
of a more centrally placed subcortical region, partly in the diencephalon, 
“not in the new brain but in the old” ([SO], p. 21).9 Penfield calls the 
partly hypothetical controlling region the “centrencephalic system. ” It 
seems that consciousness is likely to be associated with this system. A 
natural inference of the hypothesis that consciousness is associated with 
the old brain is that the lower animals have consciousness, and can 
experience “real metaphysical pain,” an inference natural to common 
sense but disliked by some experimentalists for obvious reasons: they 
therefore might call i t  meaningless. 

Sometimes Penfield’s theory is considered to be inconsistent with 
Hebb’s, but in the present writer’s opinion, the a88embly theory is mads 
easier to accept by d i n i n g  it with this hypthesie of a central wntrol. 
For the following mechanism suggests itself. The greater the amount of 
activity in the cortex, the greater the number of inhibitory pulses sent 
to all currently inactive parts of the cortex by the centrencephalic 
system. This negative feedback mechanism would prevent an assembly 
from firing the whole cortex, and would also tend to make all assemblies 
of the same order of size, for a given state of wakefulness of the cen- 
trencephalic system. This in its turn would be largely determined by the 
condition of the human body as a whole. 

This “assembly theory, MARK 111,” as we may call it  (taking a leaf 
out of Milner [71]), has two merits. First, it would allow a vastly greater 
class of patterns of activity to assemblies: they would not all have to 
have the pattern of a three-dimensional fishing net, filling the cortex. 
This makes it much easier to accept the possibility that a vast variety 
of assemblies can exist in one brain, as is of course necessary if the 
awembly theory is to be acceptable. A second, and lesser, merit of the 
modified theory is that a single mechanism oan explain both the control 
of the “cerebral atomic reactor” and degrees of wakefulness, and per- 
haps of psychological “set” also. Finally, the theory will shortly be seen 

‘ZengWill givea earlier referentma in hie intemtiug survey [108]. 
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to fit in well with a semiquantitative theory of causal interactions 
between assemblies. 

It is proposed therefore that our artificial neural net should be 
umbrella-shaped, with the spikes filling a cone. 

During wakefulness, most assemblies will have a very complicated 
atructure, but, during dreamless sleep, the centrencephalic system will 
become almost exclusively responsible, directly and indirectly, for the 
wtivity in the cortex, taking for granted of course the long-term or 
“static” structure-of the cortex. The input from the cortex to the 
centrencephalic system will, as it were, be “reflected back’’ to the cortex. 

The assumption is that the excitation put out by the centrencephalic 
system has the function of encouraging cortical activity when it is low, 
and discouraging i t  when it is high. Under a wide class of more detailed 
models, the amount of activity will then have approximately simple 
harmonic amplitude when other input into the cortex is negligible. 
Since we are assuming that the duration of a cell assembly is about half 
a second, following Hebb, it is to be expected that the period o i  this 
simple harmonic motion will also be about half a second. This would 
expZain the delta rhythm ([103], p. 167) which occurs during sleep. 
Apparently, very rhythmic assemblies do not correspond to conscious 
thought. To some extent this applies to all assemblies that are very 
hequently used. Consciousness is probably at its height when assem- 
blies grow. 

In  order to explain the alpha rhythm, of about five cycles per 
second, when the eyes are closed and the visual imagination is inactive, 
along similar lines, we could assume that “visual assemblies” have a 
duration of only about a fifth of a second. This would be understandable 
on the assumption that they are on the whole restricted to the visual 
oortex, i.e., to a smaller region than most other assemblies (cf. Adrian 
and Matthews [2]). 

We have assumed that, when no assembly is active, the centrenceph- 
alic system encourages cortical activity, so that, at such times, the 
various current active subassemblies will become more active. This 
process will continue until the activity reaches a critical level, a t  which 
moment the neurons not already active are on the whole inhibited by 
those that are active, including those in the centrencephalic system. 
This is the moment at which, by definition, an assembly has begun to 
fire. If this happens to be a new assembly, then the interfacilitation 
between its subassemblies will establish it as an assembly belonging to 
the repertoire of the cortex. This will happen whenever we learn some- 
thing new or when we create a new concept. 

The newborn child has certain built-in tendencies, such as the exercise 
of its vooal organs. We assume that there me pleasure centers in the 
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brain, whose function is reinforcement, and that they are usually 
activated when there is a “match” between a sound recently heard and 
one generated by the vocal organs. The matching could be done by a 
correlation mechanism, which in any case is apparently required in 
order to recognize the direction of a sound. E. C. Cherry [I31 points 
out the need for this, and also the possibility of its more general 
application (see also [57, 631). Also the child is rewarded by attention 
from its parents when it pronounces new phonemes for the &st time. 
Thus one would expect assemblies to form, corresponding to the simplest 
correctly pronounced phonemes. The phonemes in agricultural com- 
munities might be expected to be influenced by the farm animals. 
Assemblies corresponding to syllables and short words would form next, 
apart from the words that were negatively reinforced. Each assembly 
representing a word would share subassemblies with the assemblies 
that represent its phonemes. An assembly for a word would also have 
subassemblies shared with nonlinguistic assemblies, such as those 
representing the taste of milk, and, more generally, representing 
experiences of the senses, especially at the nine apertures, where the 
density of neurons is high for evolutionary reasons. And so, gradually, 
the largely hierarchical structure of assemblies would be formed, the 
lowest levels being mostly closely connected with the motorium and 
also with the sensorium, especially where the surface neural density is 
high. 

It is interesting to speculate concerning the nature of the associations 
between oell assemblies. We shall suppose that there is some measure 
of the strength of the wsociation from one cell assembly, P, to  another 
one, A,  or from an assembly sequence P to the assembly A. Assliming 
the subassembly theory, this association will be largely embodied in 
the strength of the association to A from the subassemblies left behind 
by 4, and will depend on the degrees of activation of the subassemblies 
and on the current psychological “set.” A few distinct but related 
formulas suggest themselves, and will now be considered. In  these 
formulas we shall take for granted the degrees of activation and the 
psychological set, and shall omit them from the notation. 

The first suggestion is that the strength of the association from P to A 
should be measured by I (A  : P), as in the discussion of information 
retrieval in Section 6. If P is the assembly sequence Al, As, . , . , A,, 
and if these assemblies supply statistically independent information, we 
have, by Eq. (6.3): 

rn 

r-1 
log P ( A  I A, A ,  * . . * * A,) = log P(A)  + c I ( A  : A,) 

It could then be suggested that the term log P(A)  is represented by the 
66 



THE FIRST ULTRAINTELLIGENT MACHINE 

strength of the connectivity from the centrencephalic system to A. 
Actually i t  is unlikely that the assemblies will supply statistically 
independent information, and it will be necessary to assume that there 
are interaction terms as in Eq. (5.6). We would then have an explanation 
of why the next assembly that fires, following an assembly sequence, is 
often the one that ought to have the largest probability of firing in a 
rational man. More precisely, the terms I (A  : A,) corresponding to the 
most recently active assemblies will be represented with larger weights. 
Consequently, when we wish to recall a memory, it pays to hold in 
mind all the best clues without the intervention of less powerful clues. 

An objection to the above suggestion is that i t  is necessary to add a 
constant to log P(A)  to make it positive, and then the neurophysiologic- 
a1 “calculation” of the strength of the association from the centren- 
cephalic system would be ill-conditioned. Accordingly we now consider 
an0 ther suggestion. 

One of the distinctions between the action of the brain and document- 
retrieval systems is that the brain action is considerably more dynamic. 
The activity of the assemblies constitutes an exceedingly complicated 
causal network. It is natural to consider whether the causal calculus 
[39] might be applicable to it. 

Reference [39] contains two immediately relevant formulas, namely, 

the tendency of P to cause E ( P  denotes “not P”), also described as 
“the weight of evidence against P if E does not occur”; and 

the “intrinsic” tendency of F to cause E. In both formulas, the laws of 
nature, and the state of the world immediately before the occurrence 
of P, are taken for granted and omitted from the notation. Like the 
mutual information, both Q and K have the additive property 

&(E : P * G) = &(E : P) + &(E : B I P) 
K(E : P * G) = K(E : P) + K(E : Q [ P) 

&(E : P * G) = &(E : P) + &(E : Q) 

K(E : P - G) = K(E : F) + K ( E  : Q) 

Moreover 

when P and G are “independent oauses” of E. This means that F and G 
are statistically independent, and are also statistically independent 
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given not 1. This definition of independent causes, extracted from [39], 
was seen to be a natural one by the consideration of a firing squad: 1 
is the event that the victim is shot, P and U are the events of shooting 
by two marksmen; and part of the given information, taken for granted 
and omitted from the notation, is that the sergeant at  arms gives the 
order to fire. 

We now take P m the firing of an assembly or membly sequence, 
also denoted by F, and we take 1 as the firing of the assembly A. The 
suggestion is that Q or K is a reasonable measure of the strength of the 
association from F to A. We then have additivity in so fax as the 
components of P , assemblies or subassemblies, have independent 
tendencies to cause A to fire. Otherwise various intermtion terms can be 
added, and can be expressed in various ways, for example, 

K ( l  : P a) = K(B : P) + K(B : U) + I ( P  : U) - I ( P  : U I 4) 

The “causal force,” K(B : F), tends to activate A, but the assembly 
that is activated will not be the one that maximizes R(B : F), but rather 
the one that maximizes P(B I F). This can be achieved by assuming 
that the oentrenctephdic system applies a “force” -log[l - P(B)].  
[This will always be well approximated simply by P(B).] The resultant 
force will be -log[l - P(B I P)] and increaaes with P(B I P) as it 
should. We see that K(B : P) appears to be more logical than Q(E : P) 
for our purpose, since it would be more difficult to see how the centren- 
cephdic system could apply a “force” equal to -log [l - P(B I p) ]  
to A. 

If there exists no B for which -log[l - P(l I P)] exoeeds some 
threshold, then a new assembly will be activated, or else the next 
thought that occurs will be very much of a non eeprcitur. 

It could be asked, what is the advantage of using K(B : P) rather 
t hm -log[l - P(B I P)], as a memure of the strength of the associ- 
ation from P to A ?  (In the latter cam the centrencephdic system 
would not need to make a contribution.) Two answers can be given: 
first that, if P(B I P) = P(B), then P should have no tendency to 
muse A to fire. Second, that, when P and U have independent tenden- 
cies to cause B, we can easily see that 

-@[I - P(l I P a)] = -lOg[1 - P(B I P)] 
-lo@ - P(B I a)] + log[l - P(1)] 

and consequently the strengths would not be additive. 
Hopefully, these memures of strengths of association between assem- 

blies will help to suggest some quantitative neural mechanisms that 
oould be put to experimental test. 
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In physical terms, the interaction between a pair of assemblies, A 
and B, will depend on the number and size of the subassemblies (in- 
oluding the subsubassemblies) that they have in common. This set of 
subassemblies could be called the “intersection,” A.B. (A more com- 
plete notation would be A.B(T),  where T is the time since B fired. 
The intersection decrertses to zero as T increases.) The second-order 
interaction between three assemblies, A, B, and C, will depend on the 
set of subassemblies common to all of them, A.B.C. If B and C have 
just been active, they will contribute a “force” tending to activate A, 
expressible in the form I A.B I + I A.C I - I A.B.C I, where the 
moduli signs represent in some sense the current total strengths of 
the sets of subassemblies. The term I A.B.C I is subtracted in order 
that it should not be counted twice. More generally, as in the Boole- 
P o i n c d  theorem, the firing of an assembly sequence, A,, A,, , , . A, ~ 

will have an “intrinsic” tendency to cause A to fire, measured (compare 
the Appendix) by 

(Y < 8 < t < . . .). To this must be added a term depending on the 
ourrent “force” on A from the centrencephalic system, which will 
perhaps be a function only of the probability that A fires conditional 
only on past history and psychological c‘set.’y The assembly, A, for 
which the total causal force is a maximum is the one most likely to 
fire, or, on a deterministic theory, the one that actually will fire. The 
formula can be interpreted in various ways, depending on whether we 
have in mind a theory of primed neurons, a theory of subassemblies, or 
a mixture of the two if we use the anti-Ockham principle for very 
complex systems. 

We shall now consider another semiquantitative aspect of the inter- 
aotion between assemblies. 

Suppose that A and B are two assemblies having no previous associ- 
ation, but that A happens to oocur before B, owing to the sequence of 
events at the sensorium. Suppose that each of the assemblies contains 
about a fraction a of the cortex (or of the association areas), where a 
might be, say, 1/30, although this is in large part a guess, as we said 
before. The neurons in common will constitute about aa of the cortex. 
The synapses connecting these will undergo a slight change of state, 
enoouraging interfacilitation. Thus the common neurons will have some 
tendency to include a set of subassemblies containing less than as of the 
oortex. It is not necessary to w u m e  that the temporal order of A and B 
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is also represented in the interfacilitation in order that a record be made 
of the temporal sequence of events, provided that we allow for assembly 
sequences consisting of more than two assemblies. When we recall some 
event having extension in time, we need to regenerate an assembly 
sequence. That this is possible is not surprising in view of the sub- 
assembly theory. For each assembly was originally fired by the sub- 
assemblies left behind by the previous assemblies of the sequence, so 
if we have succeeded in recalling most of these assemblies it is likely 
to be easy to recall the next one (since we shall have injected just 
about the right collection of subassemblies into our cortex), The sub- 
assemblies left in the wake of an assembly sequence A,, A,, . . . , A, will 
tend to fire A,+,, not A,, that is, there will be little tendency to re- 
member serial events in reverse time order. 

If assemblies A,, A,, . . , , A,, having no previous association, happen 
to occur in sequence, where k is not more then about 20, then primitive 
subassemblies (or classes of subassemblies) (A,, A,),  (A,,  A*),  . . ., 
(AE-,, AE)  will form, and perhaps also some weaker subassemblies 
(A?, As) ,  where T < B - 1. These will be at least analogous to the mutual 
informations I (& As), which, for nonperiodic Markov processes, do 
tend to be weaker and weaker, the larger is B - T.  Similarly sets of 
subassemblies and perhaps subsubassemblies will form, corresponding 
to triples of assemblies, and analogous to the mutual informations 
I @ , ,  A,, At),  and so on, for interactions of higher order. (Similar com- 
ments, both here and later, can be made if the strengths of association 
are defined in terms of K in place of I.) The set of subassemblies arising 
from the “intersection” of q assemblies of which none had been pre- 
viously associated, could hardly occupy a proportion of the cortex 
larger than aq, so that, if a = 1/30, q could not be larger than log,, 
(5 x lo0) = 64. This would not constitute a serious biological dis- 
advantage, since high-order interactions can generally be ignored, 
judging by the practice of statisticians in factorial experiments (see the 
Appendix). The upper limit is reminiscent of the “depth hypothesis” 
[SS, 1071. Compare also the experiment mentioned at the beginning of 
Section 5. 

We have seen that it is impracticable to take a sample of language 
that is large enough to be able to judge the association factors (the 
exponentials of the amounts of mutual information) between all pairs 
of 30,000 words by simple frequency counts. It is reasonable to assume 
that direct psychological association between words is determined by 
the frequencies with which they occur nearly simultaneously in thought, 
and this is easy to understand in a general way in terms of the assembly 
and subassembly theory. But we can recognize logical associations 
between pairs of words that have never occurred together in our 
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experience; for example, the words “ferry” and “fare” can be seen to be 
associated in the same manner as “bus” and “fare,” even if we never 
previously made the association in our minds. Likewise, if we were 
asked to estimate the mutual information between the first two words 
“ferry” and “fare,” regarded as index terms for sentences, we could 
reasonably take it as equal to that between the second pair. This is a 
simple example to show that we make use of semantics even in the 
simplest problems of association whenever our samples have not been 
large enough to rely on mere frequencies. The simplest conditional 
probability machines, such as those designed by Uttley [ l o l l ,  rely only 
on frequencies, in other words the probabilities are maximum-likelihood 
estimates, and they make no use of semantics. Such machines could be 
improved in principle by means of automatic classification of words 
into “clumps” (see Section 6). The essential idea is that words can be 
seen to be associated not merely because they occur frequently together, 
but because they both occur frequently in conjunction with a third 
word, or more generally with other words that belong to some reason- 
ably objectively definable clump of words. The search for clumps is 
especially interesting for the purpose of trying to construct a thesaurus 
mechanically, hopefully for application to problems of classification 
and mechanical translation. A comprehensive search is liable to be very 
expensive in computer time, if the computer is of classical design. By 
using an artificial neural net, it  might be possible to perform the search 
faster, owing to the parallel working. If A,, A,, . . . , A, is a clump of 
assemblies having respectively n,, n,, , . . n, subassemblies, and if Ai 
and A, have mu subassemblies in common; then, for each i ,  the “clump- 
iness” 

L Z ?  
k - 1  , 

is much larger than i t  would be for a random class of k assemblies. One 
can define a clump by insisting that the clumpiness is decreased if any 
assembly is added to the clump or removed from it. Many other defini- 
tions of a clump are possible (see for example Section 6, and [31, 411, 
and references given in the latter article), and it is not yet clear to what 
extent the definitions agree with each other, nor which definitions are 
appropriate for various purposes. At  any rate we must suppose that 
there is some mechanism by which an msembly representing a clump of 
aesemblies tends to be formed, a mechanism that will correspond at least 
to some aspects of “abstraction” or “generalization.” Often this 
assembly will itself represent a word, and the existence of the word 
will encourage the assembly to form (for example [all ,  p. 122): in the 
example of ferries and buses the word might be “vehicle.” In  the design 
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of an ultraintelligent machine based on an artificial neural net, one of 
the most vital problems is how to ensure that the above mechanism 
will be effective. It seems to be necessary to assume that, when an 
aaembly is active, it  causes a little activity in all the assemblies with 
which it is closely msociated, although only one at most of these 
amemblies will be the next to fire. This “priming” of assemblies is 
analogous to the priming of neurons; it is presumably operated by the 
subwemblies. The slightly active assemblies in their turn might 
encourage an even smaller amount of activity in those with which they 
are closely wociated. In  this way, there will be a small amount of 
activity in all the clesemblies of a clump, although none of them is 
actually fired, and consequently a gradually increased chance that an 
ctsaembly will form that will represent a clump. In  terms of man, since, 
by hypothesis, we are not conscious of cortical activity that is not part of 
an active assembly, when we form a new abstraction it will emerge 
from the preconscious or unconscious in a manner that will seem to our 
conscious minds like a flash of inspiration! 

It is possible that one of the functions of sleep is to give the brain an 
opportunity of consolidating the waking experiences by means of un- 
conscious botryologioal calculations, especially those leading to 
improved judgments of probabilities. This assumption would be con- 
sistent with the advice to “sleep on a problem.” It might turn out that 
an ultraintelligent machine also would benefit from periods of com- 
parative rest, but not by being switched off. 

Some of the matters that have been discussed in this section can be 
apprehended as a whole in terms of the following survey of short-term 
and long-term memory. In most modern computers there are several 
levels of storage, sucoessively larger but slower. The reason for this is 
that it  would be too expensive to have an exceedingly large storage with 
instant recall. It is natural to suppose that human memory too is 
split up into levels corresponding to different mechanisms. The follow- 
ing classification would be consistent with the discussion in this section. 
It is of course conjectural. 

(i) I m d i a t e  recall (about sec~nd). Concepts currentl$’in con- 
sciousness, embodied in the currently active assembly. 

(ii) Very slaort-term mewmy or attention eyMin (i) second to 10 em&) .  
Embodied in the currently active subassemblies, largely the residues of 
recently active assemblies. The span might be extended up to several 
minutes, with embodiment in subsubeseemblies, etc. 

(iii) Short-term (from about 10 aeconrls or 10 minutes to about one day). 
Embodied in primed neurons. 

(iv) Nedium-term (about one day to about m month, below the age of 
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30, or about one week above the age of 50). Assemblies are neither partly 
active nor partly primed, but present only by virtue of their patterns 
of synaptic strengths, and with little degradation. 

(v) Long-term (about one month to a hundred years). As in (iv) but with 
more degradation of pattern and loss of detail, 

A program of research for quantitative theory would be to marry the 
histological parameters to those in the above list. This program will 
not be attempted here, but, as promised earlier, we shall give one 
example of how a quantitative theory might be developed (see also, for 
example, [6, 921). Let us make the following provisional and artificial 
assumptions: 

(i) The probability, in a new brain, that a pair of neurons is connected 
is the same for every pair of neurons. 

(ii) Each neuron has p inhibitory synapses on it, and vastly more 
excitatory ones. 

(iii) A single “pulsed” inhibitory synapse dominates any number of 
pulsed excitatory ones, during a summation interval. 

(iv) An assembly occupies a proportion 01 of the cortex and the active 
subassemblies not in this assembly occupy a proportion P - a, making 
a total activity equal to P. 

Then a random neuron has probability (1 - /I)’ of escaping in- 
hibition. In order to be active, the neuron must also escape inhibition 
by the centrencephalic system. So 

Therefore 
P < (1 - P Y  

log P 
< log(1 - 8) 

For example, i fg  = 1/16, then p < 62. It seems unlikely that any 
biochemical mechanism could be accurate enough to give the required 
value of p, without some feedback control in the maturation of the 
brain. But it is perhaps significant that the number of neurons in the 
cortex is about 292, so that, perhaps, in the growth of the brain, each 
neuron acquires one inhibitory synapse per generation, 31 in all. The 
conjecture would have the implication that close neurons would tend to 
inhibit each other more than distant ones, as required by Milner [71] 
(compare [34]). We emphasize that this example is intended only to be 
illustrative of how a quantitative theory might proceed. Taken at its 
face value, the example is very much more speculative than the sub- 
assembly theory as a whole. 

We conclude this section with a brief discussion of an objection that 
has been made to the assembly theory. Allport ([3], p. 179) says, 
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regarding the observation of a whole that consists of parts, a, by c, 
“. . . There is, in Hebb’s scheme, no apparent reason why we should not 
have . . . a perception of the parts a, by c and alongside these at the same 
time another equally vivid perception of the whole, that is, of t .  This, 
however, does not occur: we perceive either the parts in their separate- 
ness OT the parts as integrated into a whole, but not both at once” 
(see Hebb [54], pp. 9F4-99). 

This does not seem to be an objection to the theory in the form 
presented here. Even if the assembly t were originally built up largely 
from parts of the assemblies a, b, c, it does not contain the whole of 
any one of these three assemblies. Instead, it consists of parts of a, b, c 
and also of parts not in a, by or c. Consequently it is only to be expected 
that we do not apprehend an object both as a whole and in its parts at 
quite the same moment. 

In  the next section we suggest how meaning might be represented in 
terms of subassemblies, but only in a general manner, and not with the 
degree of precision that could be desired. We aim mainly to strengthen 
the cme that semantics me relevant to artificial intelligence, and to 
lend support to the feeling, that is very much in the air at present, that 
much more detailed research into these matters is worthwhile. 

7. An Assembly Theory of Meaning 

Our purpose is not to define “meaning,” but to consider its physical 
embodiment. We have already discussed various aspects of meaning 
in previous sections, and this will enable us to keep the present section, 
and the next one, short. 

A distinction can be made between the literal meaning of a statement, 
and the subjective meaning that the statement has (on a particular 
occasion) to a man or machine. It is the latter that is of main concern 
to us in this essay. (For a man, subjective meaning could also be aptly 
called “personal meaning” but this name would at present seem in- 
appropriate for a machine.) Although we are concerned with subjective 
meaning, the behavioral interpretation of meaning is not enough for 
us, as wm said in Section 4. Instead, the subjective meaning of a state- 
ment might be interpreted as the set of tendencies to cause the activa- 
tion of each assembly sequence at each possible time in the future. The 
physical embodiment of meaning, when a statement is recalled to mind, 
would then be a class of submsemblies. 

This embodiment of meaning is related to the probabilistic inter- 
pretation for the meaning of a word, given in Section 4 (the proba- 
bilistic form of “Wisdom’s cow”). The qualities Q1, Qn, . . . , Q,, when 
noticed one at a time, would activate msemblies, but, when they are 
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noticed only preconsciously, and so directly cause activity only in 
subassemblies, they are at best contributory causal agents in the 
activation of assemblies. 

If a statement provoked an assembly sequence, So, presumably the 
(subjective) meaning of the statement is embodied in some of the sub- 
assemblies that were left behind by s,, the ones that reverberated the 
longest being the most, important ones. Two statements have close 
meanings if the sets of subassemblies left behind by them bear a 
close resemblance to each other, or even if the resemblance is not close 
provided that the effects are similar, just as a cow can be recognized on 
different oocasions by the apprehension of different sets of probable 
properties. We feel that we have understood the meaning of a statement 
when we somehow recognize that the statement waa a definite causal 
agent in our thought processes or in our propensities to future motor 
activity, and that these propensities are of a kind which we think 
wm intended by the person who communicated the statement. But I 
shall ignore these intentions and interpret “meaning” aa “meaning 
for us.” Degrees of meaning exist, and correspond in part to greater 
or lesser degrees of causal tendency. 

The rrcircularityy’ mentioned in Section 4, in connection with the 
probabilistic interpretation of meaning, corresponds to the obvious 
possibility that an assembly can help to strengthen some of the weak 
subassemblies that helped to activate the assembly itself. 

A more formal suggestion for the representation of meaning can be 
framed as follows. 

Let 8 be an assembly sequence, and 6 a %et” in the psychological 
sense. (An assembly theory of psychological set is given in Hebb [54].) 
Let Z be a statement. Denote by 

P(A I s . G ’ Z) 

the probability that A will be the next dominant assembly to follow 
the assembly sequence 8 when the subject is in psychological set 6, and 
when he has been told C and had no reason to doubt the veracity of his 
informant. If the subject had not been told Z the corresponding proba- 
bility would be 

and, if he had been told that Z was false, the probability would be 
denoted by 

Then the function of A, S, and 6, with values 

P(A I s ’ G) 

P(A I 8 ’ G * Z) 
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for all A, S, and G, is a reasonable fist approximation to a representa- 
tion of the “meaning” of C. The representation of the meaning of the 
negation of C is minus that of C. A reasonable representation of the 
“effectiveness” of the statement would be the function with values 

(7.2) 

The rewon why this latter formula would be inappropriate as a repres- 
entation of“meaning” is that it is sensitive to the subject’s degree of 
belief in C before he is told C. A man’s degree of belief in a statement 
should not be very relevant to its meaning. 

It is not intended to be implied by this representation that the sub- 
ject could obtain the values of the probabilities by introspection. The 
probabilities am intended to be physical probabilities, not the sub- 
jective probabilities of the man or machine. (For a discussion of kinds of 
probability, see, for example, [36].) 

Expression (7.1) may be described as the log-factor or weight of 
evidence in favor of the hypothesis that C was stated rather than z, 
provided by the event that assembly A was activated, given that the 
previous assembly sequence was 8, and that the psychological set was 
G, (The terminology is that of [26] and [21], for example, and was 
mentioned in Section 5.) If the subject is deterministio, then the 
probabilities would be pseudoprobabilities, of the same logical nature 
as those assooiated with pseudorandom numbers. Expression (7.2) is 
the mutual information between the propositions that the assembly A 
was activated on the one hand and that C was stated on the other. 

If the class of values of (7.1) is extended also over several subjects 
(who could be specified in the notation) then we should have a repres- 
entation of multisubjective meaning, and we might perhaps approxi- 
mate to a representation of “true meaning” if there is such a thing. A 
representation of “literal meaning” could be obtained by restricting the 
class to “literal-minded” men and robots, in order to exclude the 
poetic and irrational influences of a statement. 

Formulas (7.1) and (7.2) are of course only examples of possible 
quantitative representations of “meaning.” It might be better to 
replace them by the formulas for causal tendency. 

log[P(A I s ’ 6 ’ C)/P(A I s * G)]  

(7.la) 

(7.lb) 

These formulas would be more consistent with the interpretation of the 
meaning of a statement in terms of its causal propensities. 
76 



THE FIRST ULTRAINTELLIGENT MACHINE 

Although we are arguing that semantics are relevant to the design of 
an ultraintelligent machine, we consider that it will not be necessary 
to solve all of the problems of semantics in order to construct the 
machine. If we were using the approach depending on a “canonical 
language” (see Section 4), the problems would all need solution, but if a 
neural net is used, we believe that the net might be capable in effect of 
learning semantics by means of positive and negative reinforcement, in 
much the same manner as a child learns. The theory of assemblies and 
subassemblies, as applied to semantics, is intended to provide some at 
least intuitive justification for this belief. It should be possible, by 
means of more quantitative theory and experiment, to improve, to 
disprove, or to prove the theory. A thoroughgoing quantitative theory 
will be difficult to formulate, and the experiments will be laborious and 
expensive, but the reward or punishment will be great. 

8. The Economy of Meaning 

Just as the activation of an assembly is a form of regeneration, so 
also is that of a subassembly, although the regeneration of subassem- 
blies might be less sharp. The degree of regeneration of a subassembly 
corresponds to a preconscious estimate of the probability of some prop- 
erty, so that the process of recall is physically one of regeneration mixed 
with probabilistic regeneration. We have argued that, in any communi- 
cation system, the function of regeneration and of probabilistic re- 
generation is economy, and so the physical embodiment of meaning also 
serves a function of economy. It is even possible that the evolutionary 
function of meaning and understanding is economy, although meta- 
physically we might consider that the function of evolution is the 
attainment of understanding! 

Imagine, for the sake of argument, that each meaningful proposition 
(defined as a class of logically equivalent statements) could be expressed 
by each of a hundred different statements, each of which had an entirely 
distinct representation in the brain. Suppose that the number of or- 
dered pairs of propositions that are mentally associated is N. Corres- 
ponding to each pair of propositions, there would be 10,000 equivalent 
pairs of statements. In  order to represent the N associations between 
propositions, we should require 10,OOON associations between state- 
ments. Although the number 100 is here a pure guess, i t  is clear that 
there must be a tremendous premium on the representation of state- 
mente by their meanings. For this saves a factor of 100 (nominally) 
in the storage of the propositions, and a corresponding factor of 10,000 
in the storage of the associations between pairs of propositions. The 
latter factor is relevant in long-term recall, since the process of recalling 
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a fact usually requires that one should have in mind several other facts. 
It is clear therefore that the physical representation of meaning 
performs a very important function of economy, especially in long-term 
recall, and can be expected to perform an equally important function in 
an ultraintelligent machine. 

9. Conclusions 

These “conclusions” are primarily the opinions of the writer, as they 
must be in a paper on ultraintelligent machines written at the present 
time. I n  the writer’s opinion then: 

It is more probable than not that, within the twentieth century, an 
ultraintelligent machine will be built and that it will be the last in- 
vention that man need make, since it will lead to an “intelligence 
explosion.” This will transform society in an unimaginable way. The 
first ultraintelligent machine will need to be ultraparallel, and is likely 
to be achieved with the help of a very large artificial neural net. The 
required high degree of connectivity might be attained with the help 
of microminiature radio transmitters and receivers. The machine will 
have a multimillion dollar computer and information-retrieval system 
under its direct control. The design of the machine will be partly 
suggested by analogy with several aspects of the human brain and 
intellect. In particular, the machine will have high linguistic ability 
and will be able to operate with the meanings of propositions, because 
to do so will lead to a necessary economy, just as it does in man. 

The physical representation of both meaning and recall, in the human 
brain, can be to some extent understood in terms of a subassembly 
theory, this being a modification of Hebb’s cell assembly theory. A 
similar representation could be used in an ultraintelligent machine, 
and is a promising approach. 

The subassembly theory leads to reasonable and interesting explana- 
tions of a variety of psychological effects. We do not attempt to sum- 
marize these here, but merely refer the reader back to Section 6. Even 
if the first ultraintelligent machine does not after all incorporate a vast 
artificial neural network, it is hoped that the discussion of the sub- 
assembly theory is a contribution to psychology, and to its relationships 
with the theories of communication and causality. 

The activation of an assembly or a submsembly is an example of 
generalized regeneration, a function of which is again economy, The 
assembly and subassembly theories are e d e r  to accept if combined with 
the assumption of a centrencephalic control system, largely because 
this would enable a very much greater variety of assemblies to exist. 

The process of long-term recall can be partly understood as a statist- 
ical information-retrieval system. Such a system requires the estimation 
78 



THE FIRST ULTRAINTELLIGENT MACHINE 

of probabilities of events that have never occurred. The estimation of 
such probabilities requires some nontrivial theory even in simple cases, 
such as for multinomial distributions having a large number of cate- 
gories. In  more complicated cases, the theories are very incomplete, 
but will probably require a knowledge of and an elaboration of all 
the methods that have so far been used by actuaries and other statisti- 
cians for the estimation of probabilities. Among the techniques will be 
included the maximum-entropy principle, the use of initial probability 
distributions [47, 56, 481, and “botryology” (the theory and practice of 
clump-finding). 

A form of Bayes’ theorem expresses the final log-probability of a 
“document” or “memory” as an initial log-probability, plus some terms 
representing I(Dj  : WJ, the information concerning a document 
provided by an index term (or concerning a memory provided by a 
“clue”), plus additional terms representing the mutual information 
between index terms and the document. It is suggested that, in the 
brain, the initial log-probability is possibly represented in some sense 
by the strength of the connectivity between an assembly and the 
centrencephalic system; that the terms I ( D j  : W,) are represented by 
the subassemblies shared between the assemblies corresponding to Dj 
and Wd; and that other terms are represented by the interactions 
between sets of at least three assemblies. 

An alternative suggestion, which seems slightly to be preferred, is 
that the strengths of association are expressible in terms of K(E : P), 
the intrinsic tendency of an event E to be caused by F. This is equal to 
minus the mutual information between F and not E.  Then the strength 
of the association from the centrencephalic system and an assembly 
would be approximately equal to the initial (prior) probability of the 
firing of the assembly, given the psychological “set.” The same remarks 
concerning interactions apply here as in the first suggestion. 

Whereas, in ordinary information-retrieval problems, the expression 
I (Dj  : Wi) will often need to be estimated with the help of computation- 
al techniques for clumping, the strength of the connectivity between two 
assemblies will often be physically represented because of the manner 
in which the two assemblies were originally formed, by being built up 
from co-occurring subassemblies. 

The representation of informational or causal interactions, or both, 
up to about the sixth or seventh order, is presumably embodied in the 
subassemblies common to assemblies. The magical proficiency of the 
brain, in recall, can be largely attributed to its facility in handling these 
interactions. My guess is that only an ultraparallel machine, containing 
millions of units capable of parallel operation, could hope to compete 
with the brain in this respect. 
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It seems reasonable to conjecture that the organization of the 
interactions into subassemblies might require the intervention of 
periods of rest or sleep. A possible function of sleep is to replay the 
assembly sequences that were of greatest interest during the day in 
order to consolidate them. During wakefulness, half-formed sub- 
assemblies would be subjected to the inhibitory effect of fully active 
assemblies, but during sleep a half-formed subassembly would have 
time to organize and consolidate itself. On this hypothesis, a function of 
sleep is to strengthen the unconscious and preconscious parts of the 
mind. 

The first ultraintelligent machine will be educated partly by means of 
positive and negative reinforcement. The task of education will be 
eased if the machine is somewhat of a robot, sinae the activity of a 
robot is concrete. 

Regarding the microstructure of the learning process, it is proposed 
that this be effected by means of reinforcement of the strengths of 
artificial synapses, that the available strengths for each synapse should 
form a discrete set, that when a synapse is not used for a certain length 
of time it should have a certain small probability of “mutation” down 
one step, and that when a synapse is “successfully used” (i.e,, contrib- 
utes to the activation or inhibition of an artificial neuron) it has a 
certain small probability of mutation up one step. The need for the 
changes in synaptic strength to be only probabilistic, with small proba- 
bilities, is that they would otherwise vary too quickly for the machine 
to be of any use, at any rate if the assembly or subassembly theory is 
incorporated. Deterministic changes, in any obvious sense, would be 
uaeful only if a very small fraction of the machine were in use at one 
instant, and this would be uneconomical. 

10. Appendix: Informational and Causal Interactions 

Let El ,  E,, . . . , En represent events or propositions. Let the proba- 
bility P(El - 1% . . . * En), for example, where the vinculum denotes 
negation, be denoted by where 0 mean$ false and 1 means true. 
The 2“ different possible logical conjunctions of the n propositions and 
their negations have probabilities denoted by pi, where i = (il, is, . . . , 
in) is an n-dimensional vector each of whose components is either 0 or 1. 
The array (pi) is a 2n population contingency table. 

A murginal total of the table is obtained by summing out one or more 
of the suffixes, and we denote Zi3, is pi, for example, by piliz ,;, ,isi, . . . 
When the s d x e s  not summed out are equal to 1, we use an alternative 

denote the marginal total by Pl lo lo l l l~~~  1, Thus the numbers (Pi)  form 
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another 2n array, which consists of a subset of the marginal totals of the 
original table. Note that Po,, . .I , = p,, ,  . . . , = 1, and that, for example, 
P,,o,, , , , , = P(E,  - E J .  The probabilities (Pi)  have more direct rele- 
vance to information retrieval than the probabilities (pi), since it is 
more natural to assert an index term than to deny one. The most 
relevant Pi’s for this purpose will be those for which I i I is small, 
where I i I denotes the number of nonzero components of i. 

Just aa each Pi is the sum of some of the pl)i)s, so each pi can be 
expressed as a linear combination of Pi’s. For example (the Boole- 
PoincarrB theorem), 

=-y(-l)lilPi 

=So - S s , + S ,  - . . . + (-l)”S, 

P1000 ... 0 = S; - 8; + 8; - * ’ ’ 
where S,, is the sum of all Pi’s for which I i I = p, and 

where SL is the s u m  of all Pi’s for which I i I = p and i, = 1. 

Write 

the amount of information in the proposition E concerning itself 

Interactions between events: Let E and F be two propositions or events. 

I @ )  = -logP(E) 

([211, P. 74, [26l). Let 

I ( E :  F )  = I(E,  F )  = log P(E * F) - log P ( E )  - log P(F) 

= I (E)  + I ( F )  - I (E * F )  ( A 4  

the amount of information concerning E pmvided by F .  It is also called 
the mutual information between E and F, when it is desired to emphas- 
ize the symmetry, and in this caae the comma is more appropriate than 
the colon, since the colon is pronounced “provided by.” The equatior 
shows that I(E,  F )  can be regarded as a measure of information inter- 
action between E and F .  For sets of more than two propositions, i t  is 
natural to generalize this definition by using the n-dimensional mod 2 
discrete Fourier transform, aa in the definition of interactions for factor- 
ial experiments (see for example [32]). We write 

I - 2  j -  131 - f ix i ( - ly j logP iAj  (A.3) 

where ij = iljl + , . . + id,, is the inner product of i andj,  and i A j = 

(iJ,, , , . , id*,) is the “indirect product” (halfway between the inner 
81 



IRVING JOHN GOOD 

product and the direct product). We call I5 an (informational) inter- 
action of the $rat kind8 and order I j I -1. For example, 

l o o 0  ... 0 = 1% Po00 ... 0 = 0 

I,,, . .  . 0 = 1% Po00 . . . 0 - log P i 0 0  . . . 0 = -1% P(4) = wu 
1 1 1 0 . .  . o = I ( 4 )  + I@a)  - 
I i u o  .. . o = I(&) + + - I(Ba * ZJ 

= I(#,  : El)  + I(E8 : EP) - I(B8 : El A'S) 

* Ea) = I(Ei9 Ba) 

- I(E8 El)  - I(E1. Ea) + I ( E i .  Ba * 1 8 )  

(A.4) 

I i i i i o . .  . o = I(E4 : Ei) + I ( 8 4  : Ea) + I(E4 : f l a )  - I(E4 : Ba * EA 
- I(B4 : E i * E a )  - I(E4 : 81 .I#*) + I(E4 : El * Ea *E8) 

( A 4  
In  [37], this last expression was denoted by I4E4 : El - 8 s  6 Es),  but 
18(E4 : 1, * E, * E J  would be a more natural notation. We avoid this 
notation here since we are using vectors for suffixes. We prefer to write 
Illllo.. . = I(El, Bay E8, B4), and regard it as the mutual information 
between the four propositions. By means of the Fourier inversion 
formula, we see, for example, that (as in [16a], p. 68) 

- log Piiiio . . . o = I@i '1, B8 E4) 

= - c '('V ' 8 )  

+ I(',, E8Y 't) - '2, E8Y 

where 1 < r < 8 < t < 4. Equation (6.6) is readily deducible. 
Interactions between causal tendencies (& or K, see page 67), are 

definable in a similar manner. (Compare [39], where the signs are not 
quite the same as here.) But we shall leave these to the reader's im- 
agination. 
We also write 

J, = c i( - 1Ii5 log 24 (A.7) 

and oall J, an (infOmnai0nal) interaction of the second kind, of order 
I j I - 1. (It was denoted by I j  in [47].) Yet another kind of inter- 

action, involving expected amounts of information, wm defined by 
McGill and Quastler [67]. 

If fi  is not small, the number of cells in the population contingency 
table is very large, and an exceedingly large sample would be required 
in order to make a direct estimate of all the pi's. In  order to get around 
this difficulty to some extent we can sample just 8 m e  of the marginal 
totals. Then we c m  use the "maximum-entropy principle" [47, 48, 
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52,55,56,62,100] in order to m&e at least a provisional estimate of the 
pi's. According to this principle, one maximizes the entropy - z p c  
log pi, subject to the constraints (here, the assigned marginal totals) 
in order to set up a null hypothesis (at least this is the way it is ex- 
pressed in [47] and [as]). The idea in a nutshell is to assume as much 
statistical independence as one can. Among other things, the following 
result is proved in [47]: 

Suppose that we know or msume a complete set of rth-order wnstraints 
for (pL) ,  i.e., all totals of the pi's over each subset of n - r coordinates. 
Then the null hypothesis generated by the principle of maximum entropy 
i% the vanishing of all the rth and higher-order interactions of the second 
kind. 

In  this theorem, instead of assuming a complete set of rth-order 
constraints, we could assume all the interactions of the first kind and 
orders r - 1 or less. 

In order to see this, we take r = 4 for simplicity and consider Eq. 
(A.3). If we know Pi for all i with I i I 2 4, we can calculate all I,  with 

I j I 5 4, i.e., we can deduce all the interactions of the first kind and 
of orders 3 or less. Conversely, given these interactions of the first 
kind, we can first calculate log P1oooo, log Poloo, log Pool0, log Poool, 
then log P,,,, (since we know log P,,,, - log P,,,, - log Pol,,), 
and so on. We can thus determine Pi for all i with I i I 5 4, i.e., we 
have a complete set of fourth-order constraints of the (pi's. 

Nearly always, when a statistician discusses interactions of any kind, 
he believes or hopes that the high-order interactions will be negligible, 
The maximum-entropy principle provides a comparatively new kind of 
rationale for this belief regarding interactions of the second kind. 
Whether a similar partial justification can be provided for other kinds 
of interaction is a question that has not yet been investigated. The 
question is analogous to that of the truncation of power series and 
series of orthogonal functions, as in polynomial approximation. 
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